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Abstract The advent of sexual reproduction and the evolution of a dedicated germline in

multicellular organisms are critical landmarks in eukaryotic evolution. We report an ancient family of

GCNA (germ cell nuclear antigen) proteins that arose in the earliest eukaryotes, and feature a

rapidly evolving intrinsically disordered region (IDR). Phylogenetic analysis reveals that GCNA

proteins emerged before the major eukaryotic lineages diverged; GCNA predates the origin of a

dedicated germline by a billion years. Gcna gene expression is enriched in reproductive cells across

eukarya – either just prior to or during meiosis in single-celled eukaryotes, and in stem cells and

germ cells of diverse multicellular animals. Studies of Gcna-mutant C. elegans and mice indicate

that GCNA has functioned in reproduction for at least 600 million years. Homology to IDR-

containing proteins implicated in DNA damage repair suggests that GCNA proteins may protect

the genomic integrity of cells carrying a heritable genome.

DOI: 10.7554/eLife.19993.001

Introduction
Sexual reproduction in eukaryotes is accomplished through meiosis, a specialized cell cycle that gen-

erates genetically diverse derivatives. Meiosis is believed to have evolved once, in the common

ancestor of extant eukaryotes, about two billion years ago (Ramesh et al., 2005; Villeneuve and

Hillers, 2001). At the same time, special protection for heritable genomes evolved in the form of an

RNAi pathway that likely functioned in defense against transposons and viruses (Cerutti and Casas-

Mollano, 2006; Shabalina and Koonin, 2008). Sexual reproduction via meiosis and utilization of

specialized genome defense mechanisms are characteristics of many unicellular eukaryotes, in which

every cell contributes to the next generation. These properties became germline specific when the

distinction between germ cells and somatic cells was made in multicellular organisms, with the germ-

line being tasked with guarding the heritable genome. Accordingly, certain critical genes encoding

proteins associated with the sexual cycle, as well as those required for integrity of the heritable
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genome, share a deep, common evolutionary origin (Uanschou et al., 2007; Kumar et al.,

2010; Cerutti and Casas-Mollano, 2006). In metazoans, this reproductive assemblage expanded to

encompass proteins not directly involved in meiosis but nonetheless expressed exclusively in germ

cells; these include the RNA binding proteins DAZL/BOULE, VASA, and NANOS (Ewen-

Campen et al., 2010; Juliano et al., 2010).

Mouse is the most widely used model to study the germline in mammals. Across 22 years of

research, and >425 publications in mouse reproductive biology, investigators have employed anti-

bodies to two antigens – GCNA1 and TRA98 – to distinguish germ cells from somatic cells. Nonethe-

less, the identity of the antigens themselves has remained unknown. The striking qualities of these

markers, together with their importance to the research community, led us to attempt to discover

the underlying antigens. Here, we identify the antigen recognized by both antibodies as a single,

unannotated protein in the mouse. We name this protein GCNA and describe its ancient and ubiqui-

tous association with sexual reproduction.

Results

GCNA1 and TRA98 antibodies recognize the same previously
unannotated protein
The mouse germline is first distinguished from the surrounding soma as a population of primordial

germ cells that migrates toward the developing genital ridge. Upon arrival, germ cells undergo a

critical transition and commit to sexual differentiation, eventually giving rise to oocytes or spermato-

zoa. The handful of proteins that are expressed concomitant with entry into the genital ridge include

the classical germ cell factors DAZL and DDX4 (Mouse Vasa Homolog; MVH) and the antigens recog-

nized by GCNA1 and TRA98 antibodies (Figure 1A) (Hu et al., 2015; Enders and May, 1994;

Tanaka et al., 2000).

The GCNA1 and TRA98 monoclonal antibodies, generated independently from rats immunized

with cell lysates from adult mouse testis, are robust markers of mouse germ cell nuclei and show no

reactivity to somatic cells (Enders and May, 1994; Tanaka et al., 2000). To clone the GCNA1 anti-

gen, we carried out immunoprecipitation from an adult mouse testis lysate, followed by mass spec-

trometry. We detected 26 unique peptides representing 51% coverage of an unannotated protein

specifically in the immunoprecipitate, enabling us to confidently identify it as GCNA (Figure 1B,

eLife digest Sex allows two individuals of a species to combine their genetic information and

generate new offspring. As such, and unlike most of the cells that make up an organism,

reproductive cells carry DNA that will be passed to the next generation. To prepare for sexual

reproduction, reproductive cells undergo a process whereby they give up half of their DNA.

Moreover, in many species, reproductive cells undergo dramatic changes in size and shape to

become specialized as eggs or sperm.

For two decades, research scientists have made use of an antibody that specifically targets and

labels reproductive cells in mice and rats, long before they become recognizable as sperm or eggs.

However, nothing was known about the protein that this antibody recognizes.

Now, Carmell et al. have found that the antibody recognizes a protein called GCNA. This protein

was previously thought to be limited to mice and rats. However, GCNA is in fact a member of a far-

flung family of proteins that had gone unnoticed by researchers due to their unusual composition

and large unstructured regions. Carmell et al. show that this protein family extends beyond rodents

and even mammals, and actually exists in all branches of eukaryotic life, including plants and single-

celled organisms. In most species examined, the genes encoding these proteins are most active in

reproductive cells.

The most important next step is to figure out precisely what GCNA proteins are doing in

reproductive cells. This will also hopefully explain why these proteins appear to have been

conserved for more than 2 billion years, throughout the entire history of eukaryotes.

DOI: 10.7554/eLife.19993.002
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Figure 1. Identification of the antigen recognized by GCNA1 and TRA98 antibodies. (A) Schematic illustration depicting isolation of a mouse

embryonic day 11.5 gonad. GCNA (white, pink in merge) is specifically expressed by germ cells (green) only after they enter the somatic gonad (G),

which is marked by its expression of GATA4 (blue). Dashed line indicates boundary of gonad. Oct4-EGFP transgene labels germ cells. (B) Mass

spectrometry indicates that GCNA1 and TRA98 antibodies immunoprecipitate the same protein. (C) GCNA coats condensed chromosomes during

meiotic prophase. One plane through a single nucleus of a male spermatocyte in the zygotene phase of Meiosis I is shown. (D) Mouse GCNA encodes

an acidic and repetitive protein that is predicted to be disordered. Intrinsically disordered regions (IDRs) are depicted in green; repeating units of the

indicated sequences are shown in dark green and non-repetitive disordered sequences are light green. Human GCNA shares a region with the same

acidic and repetitive character (green) and contains additional, ordered domains – a protease domain (blue), and a C2C2 zinc finger (purple). SUMO-

interacting motifs (SIMs) are indicated by black bars. (E) Bacterially expressed recombinant HIS-tagged mouse GCNA is recognized by both GCNA1

Figure 1 continued on next page
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Figure 1—source data 1). Mouse GCNA contains four distinct repeat classes that comprise the

majority of the protein, and its theoretical isoelectric point of 4.17 makes it more acidic than 98.9%

of all mouse proteins (Figure 1D, Figure 1—figure supplement 1) (Bjellqvist et al., 1993).

The developmental timing and cell type specificity of labeling with GCNA1 resembles that of

TRA98, a second antibody with an unknown antigen (Tanaka et al., 2000; Inoue et al., 2011). The

subcellular localization of GCNA1 and TRA98 also show striking similarities; we find that GCNA

forms a distinctive coating around condensed chromosomes in meiotic prophase (Figure 1C), and

TRA98 has been noted to have a similar reticular or netlike localization in the nucleus (Inoue et al.,

2011). Due to these parallels, we hypothesized that the TRA98 antibody recognized the same anti-

gen as GCNA1. Indeed, immunoprecipitation using TRA98 yielded 24% coverage of the GCNA pro-

tein (Figure 1B, Figure 1—source data 1). By expressing portions of mouse GCNA in bacteria, we

determined that both antibodies recognize a fragment containing a murine-specific 8-amino-acid

tandem GE(P/M/S)E(S/T)EAK repeat that occurs 25 times in the protein (Figure 1D,E). Additionally,

we disrupted the gene encoding GCNA in mouse embryonic stem (ES) cells (Figure 1—figure sup-

plement 2) and found that antigens recognized by both antibodies were depleted, confirming that

GCNA1 and TRA98 antibodies recognize the same protein (Figure 1F).

Mouse GCNA is predicted to be entirely disordered
The repetitive structure and biased amino acid composition of mouse GCNA is characteristic of

intrinsically disordered protein regions (IDRs). IDRs display conformational flexibility and have no sin-

gle, well-defined equilibrium structure, and yet carry out numerous biological activities (van der Lee

et al., 2014). IDRs have high absolute net charge due to enrichment for disorder-promoting

(charged and polar) amino acids, and low net hydrophobicity due to depletion of hydrophobic and

order-promoting amino acids, features that make it possible to predict disordered regions from pri-

mary amino acid sequence alone (Uversky et al., 2000; He et al., 2009). Based on its extreme nega-

tive charge and atypical amino acid composition, mouse GCNA is predicted to be entirely

disordered (Figure 1—figure supplement 1, Figure 2A).

GCNA orthologs containing an IDR and a unique combination of
conserved structured domains are present in every eukaryotic
superkingdom
Alignment-based searches using the amino acid sequence of mouse GCNA as bait failed to detect

significant similarity to any protein in any species, suggesting that GCNA might be unique to mice.

Alternatively, GCNA could be rapidly evolving, as is common for disordered proteins due to their

low level of structural constraint (Brown et al., 2010; Huntley and Golding, 2000; Tompa, 2003).

To distinguish between these scenarios, we sought to identify GCNA orthologs in other species.

Using a combination of methods that accommodate rapid evolution, we were able to identify

GCNA orthologs in a broad swath of organisms from human to the most primitive single-celled

eukaryotes. Because rapid evolution often renders IDRs un-alignable even among closely related

species (Brown et al., 2010), primary sequence cannot be used to establish orthology. Therefore,

starting with mouse GCNA, which is encoded by a gene on the X chromosome, we identified ortho-

logs in human and other vertebrates by synteny (Figure 3). We discovered that, whereas mouse

GCNA is predicted to be entirely disordered, many GCNA orthologs, including the human ortholog,

Figure 1 continued

and TRA98 antibodies. The antigen is located within a protein fragment containing the murine-specific GE(P/M/S)E(S/T)EAK repeat. (F) Western blot of

mouse XY embryonic stem cell lysate with a disruption in the identified locus demonstrates depletion of both GCNA1 and TRA98 antigens.

DOI: 10.7554/eLife.19993.003

The following source data and figure supplements are available for figure 1:

Source data 1. Mass spectrometry data.

DOI: 10.7554/eLife.19993.004

Figure supplement 1. Characterization of mouse Gcna transcript and protein.

DOI: 10.7554/eLife.19993.005

Figure supplement 2. Generation of Gcna-targeted ES cells and mice.

DOI: 10.7554/eLife.19993.006
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have well-conserved structured domains in addition to an IDR (Figure 1D, 2A). Specifically, we

deduced that three domains had been lost more than 25 million years ago in the rodent lineage (Fig-

ure 3—figure supplement 1). Non-transcribed pseudo-exons that previously encoded these

domains are found in the mouse genome, allowing us to confidently place mouse GCNA into this

larger family (Figure 3—figure supplement 1).

To explore the phylogenetic reach of the GCNA family, we used the conserved regions in a core

set of vertebrate GCNA proteins to identify more distant orthologs by sequence similarity. We cre-

ated statistical profiles (hidden Markov models or HMMs) of the sequence of each conserved region

(Figure 4—figure supplement 1). We found that each region has a unique signature found only in

Figure 2. GCNA proteins across eukarya are predicted to have large intrinsically disordered regions. (A) Disorder tendency of GCNA proteins from

mouse (navy), human (medium blue), Drosophila melanogaster (light blue), and Dictyostelium discoideum (gray). Residues above the dotted line are

predicted to be disordered. Folded domains are indicated by gray rectangle. (B) Charge-hydropathy analysis (mean scaled hydropathy, <H>, against

absolute mean net charge, <R>) predicts GCNA IDRs to be disordered by comparison to a set of known disordered proteins (orange squares) and

ordered proteins (blue triangles). IDRs of 114 GCNA proteins across eukarya (black circles) are plotted. The boundary between unfolded and folded

space is empirically defined by the equation <H>b = (<R> + 1.151)/2.785 (Uversky et al., 2000). (C) Amino acid composition of GCNA IDRs.

Enrichment or depletion is expressed as (Cx � Corder)/Corder, representing the normalized excess of a given residue’s content in a query dataset (Cx)

relative to the corresponding value in the dataset of ordered proteins (Corder). Error bars represent fractional differences of the standard deviations of

observed relative frequencies of bootstrapped samples of the datasets.

DOI: 10.7554/eLife.19993.007

The following source data is available for figure 2:

Source data 1. Charge/hydropathy analysis.

DOI: 10.7554/eLife.19993.008
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GCNA orthologs, allowing us to unambiguously identify such orthologs in a diverse array of eukary-

otic species, more than two hundred in all (Figure 4—source data 1).

Interestingly, even though we discovered GCNA orthologs using alignable structured domains,

our amino acid charge/hydropathy analysis reveals that, almost invariably, the proteins have a large

non-alignable IDR at their N-terminus (Figure 2A,B). Despite a lack of primary sequence conserva-

tion, the overall amino acid composition of IDRs is often conserved in orthologous disordered pro-

tein families, as it is not the exact sequence of amino acids, but the overall character of the IDR –

such as an abundance of residues that may be post-translationally modified, net charge, and amino

acid enrichments and depletions – that confers function (van der Lee et al., 2014). Indeed, a com-

parison of mouse and human GCNA proteins showed that, while they were not readily aligned using

conventional approaches, they do share highly repetitive and acidic IDRs (Figure 1D) (Nolte et al.,

2001). A survey of the IDR composition of over 100 GCNA proteins across eukarya revealed that

GCNA IDRs have characteristic amino acid enrichments and depletions – some shared with proteins

in a disordered dataset (DisProt) and others specific to the GCNA family (Figure 2C). In keeping

with another common IDR paradigm, GCNA proteins across species, including mouse and human,

share short, linear protein-protein interaction motifs embedded within a larger disordered context

(Figure 1D, Figure 3—figure supplement 2) (van der Lee et al., 2014; Davey et al., 2015).

GCNA orthologs are present in every eukaryotic superkingdom (Figure 4A) (Simpson and Roger,

2004). Although our gene discovery is enriched for animal and fungal orthologs due to the availabil-

ity of sequenced genomes and transcriptomes, GCNA orthologs are present in the deepest known

branches of eukaryotes. With certain exceptions including plants and protostomes such as drosophil-

ids, each species contains one Gcna gene. Our analyses of these orthologs allowed us to deduce

that a typical GCNA protein has four components: a large IDR, a zinc metalloprotease domain, a

C2C2 zinc finger, and a non-canonical two-helix HMG box (Figure 4B, Figure 4—figure supplement

1). This four-domain architecture is generally conserved in GCNA proteins, although in some

Figure 3. Synteny mapping of Gcna orthologs across vertebrates. Comparison of the genomic region containing Gcna in mouse (GRCm38/mm10) with

syntenic regions in human (GRCh38/hg38), rabbit (Broad/oryCun2), opossum (Broad/monDom5), chicken (ICGSC Gallus_gallus-4.0/galGal4), zebrafish

(Zv9/danRer7), and elephant shark (Callorinchus_milii-6.1.3/calMil1). Gcna orthologs are indicated in green.

DOI: 10.7554/eLife.19993.009

The following figure supplements are available for figure 3:

Figure supplement 1. Loss of structured domains in the murine lineage.

DOI: 10.7554/eLife.19993.010

Figure supplement 2. Alignment of vertebrate GCNA proteins.

DOI: 10.7554/eLife.19993.011
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Figure 4. GCNA proteins have origins in the earliest eukaryotes and are associated with reproduction. (A) Phylogenetic tree of eukaryotes (topology of

the tree is drawn as in [He et al., 2014], with estimated divergence times obtained from the TimeTree database [Hedges et al., 2006]). GCNA proteins

are present in all major groups of eukaryotes regardless of the nature of their sexual life cycle – whether haplontic (haploid with a diploid phase that

undergoes meiosis), diplontic (a diploid that undergoes meiosis to produce gametes), or haplodiplontic (alternates between haploid and diploid

phases of the life cycle). (B) Domain composition of GCNA orthologs. Of note, S. pombe does not have an IDR, but a related fission yeast, S. japonicus,

does (not shown). (C) Black circles indicate a given GCNA ortholog has enriched expression in reproductive cells or tissues or is upregulated during the

sexual cycle. Organisms for which expression data do not exist are indicated by UNK (unknown).

DOI: 10.7554/eLife.19993.012

The following source data and figure supplements are available for figure 4:

Source data 1. List of GCNA family members.

DOI: 10.7554/eLife.19993.013

Source data 2. Reproductive expression of GCNA family members.

DOI: 10.7554/eLife.19993.014

Figure supplement 1. Alignments and probabilistic hidden Markov models (HMMs) of structured domains found in GCNA family members.

DOI: 10.7554/eLife.19993.015

Figure supplement 1—source data 1. Hidden Markov models used to discover GCNA orthologs.

DOI: 10.7554/eLife.19993.016

Figure supplement 2. GCNA proteins in higher plants comprise the YABBY family.

DOI: 10.7554/eLife.19993.017

Figure supplement 3. GCNA and YABBY HMG boxes are more closely related to each other than they are to any other type of HMG box, either within

plants or across eukarya.

DOI: 10.7554/eLife.19993.018
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species, including mouse, one or more domains have been lost through modular protein evolution,

bringing remarkable variation to the GCNA family (Figure 4B, Figure 4—figure supplements 2 and

3) (Moore et al., 2013). Taken together, our analyses lead us to infer that GCNA proteins were pres-

ent in the common ancestor of eukaryotes, more than 2 billion years ago.

Of particular note are the GCNA proteins found in higher plants, where the protease domain has

been lost. The YABBY proteins, a higher-plant-specific family whose evolutionary origins have long

been sought (Bartholmes et al., 2012), share with other GCNA proteins the combination of a C2C2

zinc finger, an IDR, and a characteristic two-helix HMG box (Figure 4—figure supplement 2)

(Bowman and Smyth, 1999). Based on our phylogenetic analyses of HMG boxes (Figure 4—figure

supplement 3), we propose that YABBY proteins are GCNA family members that have diverged in

the 600 million years since the last common ancestor of algae (where canonical four-domain GCNA

proteins are still found) and higher plants.

Across eukarya, GCNA is enriched in cells carrying the heritable
genome
Since GCNA is a highly specific marker of both premeiotic and meiotic germ cells in the mouse, we

sought to determine whether GCNA is associated with cells carrying the heritable genome either

before or during the sexual cycle in other species by examining expression of GCNA homologs

across eukarya, including fungi, plants, and the most basal single-celled eukaryotes (Figure 4—

source data 2).

Gcna is expressed during the sexual cycle in single-celled haploid fungi and green algae, organ-

isms that are more than a billion years removed from each other but share a similar life cycle. In S.

pombe, transcription of Gcna is 17-fold upregulated during meiosis relative to vegetative cells

(Mata et al., 2002). Likewise, in Chlamydomonas, a single-celled green alga, Gcna is upregulated

17-fold in activated gametes relative to vegetative cells (Ning et al., 2013).

In animals that generate germ cells from adult multipotent cells, Gcna is expressed more broadly

in two cell types that have gametogenic potential and thus carry the heritable genome – the multi-

potent stem cells and the germ cells derived from them. In the cnidarian Hydra, germ cells are

derived from interstitial stem cells, where Gcna expression is upregulated compared with two exclu-

sively somatic stem cell lineages (Littlefield, 1985; Bosch et al., 2010; Hemmrich et al., 2012). In

the planarian flatworm Schmidtea mediterranea, and the acoel Hofstenia miamia, Gcna is upregu-

lated in neoblasts, the totipotent adult stem cell populations from which germ cells arise

(van Wolfswinkel et al., 2014; Srivastava et al., 2014). Transcripts of this gene are also enriched in

the testes in a sexual strain of Schmidtea (Figure 5A).

We also found enrichment of Gcna in germ cells of animals that specify their germline during

embryonic development (Extavour and Akam, 2003). Gcna is enriched in the germlines of animals

such as C. elegans, Drosophila, zebrafish, and frog, which segregate their germlines in the first cell

division of the embryo due to maternally inherited factors (Figure 5B,C, Figure 5—figure supple-

ment 1, Figure 4—source data 2) (Tomancak et al., 2002; Graveley et al., 2011; Reinke et al.,

2004; Robinson et al., 2013; Kohara and Shin-i, 1998). Likewise, mouse, which specifies germ cells

later in the embryo through inductive signals, shows a 13-fold upregulation of Gcna transcript in the

testis compared to somatic tissues (Figure 4—source data 2). Transcripts in somatic tissues are

apparently not translated, as mouse GCNA protein is germ-cell specific (Maatouk et al., 2006). An

array of other mammals shows similar upregulation in the testis (Figure 5—figure supplement 1).

Like mouse GCNA protein, the human ortholog is localized to the nucleus of germ cells (Figure 5D,

E).

In summary, we found that expression of Gcna genes is enriched in cells carrying a heritable

genome – either just prior to or during meiosis in single-celled eukaryotes, in stem cells and germ

cells of animals without a dedicated germline, and in germ cells of organisms with a dedicated germ-

line (Figure 4C, Figure 4—source data 2). Gcna expression across all of these modalities indicates

that Gcna was present, and was likely enriched in cells carrying a heritable genome, in the last com-

mon ancestor of all extant eukaryotes.
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C. elegans gcna-1 mutants present reproductive phenotypes
Given the extraordinary association of Gcna expression with reproductive cells and tissues across

eukarya, we set out to test whether this expression translates to conservation of reproductive func-

tion. The only GCNA family member whose function had been probed previously is the C. elegans

gene ZK328.4, which we have named gcna-1. C. elegans gcna-1 had been depleted as part of an

RNAi screen of germline-enriched genes (Colaiácovo et al., 2002). gcna-1 was reported to have a

low penetrance HIM (High Incidence of Males) phenotype, suggestive of a defect in meiotic chromo-

some segregation, as XO male progeny result from nondisjunction in XX hermaphrodites. We

decided to further investigate gcna-1 function in C. elegans by creating two independent mutant

alleles (Figure 6—figure supplement 1). Worms carrying either of the gcna-1 mutant alleles have

small but significant reductions in brood size at 25 degrees Celsius (Figure 6A). Additionally, both

alleles exhibit a significant HIM phenotype, substantiating a reproductive function for GCNA in C.

elegans (Figure 6B).

C. elegans gcna-1 encodes a canonical GCNA protein with an IDR, protease domain, zinc finger,

and HMG box. Even in the face of other domains being lost over evolutionary time, the large IDR is

retained in GCNA proteins almost without exception. To understand the persistence of this rapidly

evolving domain across billions of years, we sought to probe the functional role of the IDR in GCNA

proteins. Mouse GCNA presented us with the unique opportunity to probe the function of the IDR

in isolation, as it has an IDR that has existed for 25 million years in the absence of structured

domains.

Figure 5. GCNA RNA and protein are enriched in germ cells of a variety of model organisms. (A) Germ cells residing in testes (circled) of a sexual strain

of the planarian flatworm Schmidtea mediterranea are enriched for Gcna transcript (red), as well as that of germ cell marker Nanos (green). (B) Germ

cells in pachytene stage of meiosis in nematode C. elegans express GCNA protein (red). Nuclei stained with DAPI (blue). (C) Pole cells, the earliest

germ cells in a Drosophila melanogaster embryo, are enriched for transcript of Gcna ortholog CG14814. Image reproduced with permission

(Lécuyer et al., 2007). GCNA protein is expressed in germ cells in cross sections of mouse (D) and human (E) seminiferous tubules, the site of meiosis

and sperm production. (D) Pre-meiotic germ cells in testis of 1-day old mouse are labeled using antibodies recognizing GCNA (red) and DDX4/MVH

(green). (E) Antibody recognizing human GCNA labels nuclei of germ cells (brown). Red squares indicate origin of structures and/or cells depicted

below each diagram.

DOI: 10.7554/eLife.19993.019

The following figure supplement is available for figure 5:

Figure supplement 1. Enrichment of Gcna expression in reproductive tissues of vertebrates.

DOI: 10.7554/eLife.19993.020
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The entirely disordered mouse GCNA is required for male fertility
To this end, we created a targeted conditional allele of Gcna in the mouse (Figure 1—figure supple-

ment 2). We found that mutating Gcna dramatically impairs male fertility, a testament to the impor-

tance of the IDR; 10 of 11 Gcna-mutant males tested sired no offspring, while wild-type male

controls sired 5 to 24 offspring (Figure 7A). The epididymal duct, which contains copious amounts

of maturing sperm in wildtype mice, was nearly devoid of sperm in the mutant (Figure 7B). Gcna-

Figure 6. C. elegans gcna-1 mutants present reproductive phenotypes. (A) Two alleles of gcna-1 in C. elegans

exhibit significant reduction in brood size at 25 degrees Celsius. Twenty-four broods were counted for each allele

at each temperature. Each symbol represents the number of progeny derived from a single hermaphrodite.

Outliers are shown and no data was excluded. Bars indicate mean +/- standard deviation. P-values were calculated

with two-tailed non-parametric Mann-Whitney test. (B) gcna-1 mutants also exhibit a high incidence of male

progeny at both 20 and 25 degrees Celsius. Twenty-four broods were counted and scored for each allele at each

temperature. P-values were calculated using a chi-squared test with correction for multiple testing.

DOI: 10.7554/eLife.19993.021

The following figure supplement is available for figure 6:

Figure supplement 1. C. elegans gcna-1 alleles.

DOI: 10.7554/eLife.19993.022
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mutant female mice were fertile (data not shown). Sex-specific infertility is a common phenomenon

in mice, and is thought to be due to different levels of checkpoint control in males and females

(Matzuk and Lamb, 2002; Morelli and Cohen, 2005; Hunt and Hassold, 2002).

GCNA is homologous to two protein families involved in replication-
associated DNA repair
To gain insight into potential molecular functions of GCNA that might underlie these phenotypes,

we extended our molecular evolution analyses beyond the GCNA family to other proteins with simi-

lar domain composition. Through phylogenetic analysis as well as structural modeling, we deter-

mined that GCNA proteins are members of a small family of IDR-containing metalloproteases that

includes only two other members, Wss1 and Spartan, both of which have essential functions in DNA

repair coupled to DNA replication (Mosbech et al., 2012; Centore et al., 2012; Davis et al., 2012;

Juhasz et al., 2012; Machida et al., 2012; Kim et al., 2013; Stingele et al., 2014; Balakirev et al.,

2015). GCNA, Wss1, and Spartan proteins share three common elements: minigluzincin protease

Figure 7. Gcna is required for male fertility in mice. (A) Gcna-mutant male mice exhibit marked subfertility, and

most are sterile. Each datapoint represents the number of litters (A) and pups (B) sired by a single male (n=15 for

wildtype, n=11 for GcnaDeltaEx4/Y). P-values were calculated using a two-sided Wilcoxon rank sum test. (B)

Epididymal ducts in Gcna-mutant males are largely devoid of sperm in the lumen when compared to those of

wildtype mice.

DOI: 10.7554/eLife.19993.023
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domains, large intrinsically disordered regions (IDRs), and motifs for binding ubiquitin family proteins

(particularly SUMO interacting motifs, or SIMs).

Wss1 and Spartan proteins have recently been recognized as members of the same protease fam-

ily (Stingele et al., 2015). Our phylogenetic analyses based on amino acid sequence alignments of

Wss1, Spartan, and GCNA protease domains show that GCNA proteases are also part of this small

and distinctive group (Figure 8A). Secondary structure prediction and 3D modeling place all three

proteins within the minigluzincin protease family (Figure 8B) (Balakirev et al., 2015; López-

Pelegrı́n et al., 2013). We conducted HMM to HMM comparison across more than 14,800 PfamA

curated protein families, including over 200 protease families, using alignment and secondary struc-

ture scoring. We found that GCNA, Spartan, and Wss1 proteases are more closely related to each

other than they are to any other protein family (Figure 8—figure supplement 1).

Cementing the relationship between these three proteins is a second common element shared by

GCNA, Wss1, and Spartan – a large disordered domain. Like those in GCNA, the Wss1 and Spartan

IDRs are present across a large swath of eukarya (Figure 9A). IDRs are well known to function in the

flexible display of short linear motifs that are required for protein-protein interactions (van der Lee

et al., 2014). These short motifs represent small islands of conservation within IDRs. Among these

short motifs, SUMO interacting motifs (SIMs) constitute the third common element shared by

GCNA, Wss1, and Spartan (Figure 9B, Figure 3—figure supplement 2).

Discussion
In summary, we find that an antigen widely employed to identify germ cells in mice corresponds to a

protein that has been expressed for nearly 2 billion years in cells carrying a heritable genome –

whether single cells during meiosis, stem cells that give rise to germ cells, or germ cells themselves.

We provide evidence that GCNA functions in reproduction in two organisms – C. elegans and mouse

– whose last common ancestor lived about 600 million years ago (Cartwright and Collins, 2007;

Parfrey et al., 2011; Peterson et al., 2008), and suggest that GCNA may have a function in cells

carrying a heritable genome across eukarya.

The GCNA protein features, and in mice consists entirely of, an intrinsicially disordered region

with an unusual and rapidly evolving amino acid sequence that has kept this protein hidden from

researchers until now. Protein disorder is ubiquitously present in eukaryotic proteomes; greater than

30% of proteins have disordered segments of 30 or more consecutive residues (Dunker et al.,

2000). IDRs, rather than having a single, well-defined fold, dynamically interconvert between an

ensemble of conformations separated by low energy barriers (Chebaro et al., 2015). IDRs therefore

challenge the expectations set forth in the structure-function paradigm, which posits that the func-

tion of a protein is dependent upon its three-dimensional structure (Wright and Dyson, 1999). IDRs

have critical biological functions across a wide variety of cellular processes including transcription,

regulatory, and signaling pathways, and it has been proposed that IDRs support the processes that

underlie the development of multicellular organisms (Xie et al., 2007; Tantos et al., 2012;

Dunker et al., 2015).

Male sterility caused by mutation of the entirely disordered mouse GCNA indicates that the func-

tion of GCNA proteins lies at least in part in the disordered region. While the molecular functions of

GCNA IDRs remain to be elucidated, prior studies of other IDRs (van der Lee et al., 2014) and spe-

cifically the known roles of the IDRs in the homologous proteins Wss1 and Spartan inform our think-

ing about GCNA IDR functions. Homology with Wss1 and Spartan proteins suggests that GCNA

IDRs function in molecular recognition mediated by SUMO interacting motifs, thereby recruiting or

scaffolding larger protein complexes. GCNA IDRs may also contribute to nucleic acid binding, either

alone or in combination with the zinc finger and HMG box.

GCNA may be among the first of many disordered protein families to be implicated in reproduc-

tion, as sex chromosomes, which have been shown to be enriched for genes encoding germ cell

genes, are also enriched for disordered proteins (Mueller et al., 2013; Hegyi and Tompa, 2012).

Spermatogenesis and meiosis are in fact among the biological processes most strongly correlated

with predicted protein disorder (Dunker et al., 2015).

Conservation of structured domains in the GCNA family over a vast evolutionary timescale sug-

gests that significant function likely also derives from these domains. We have identified both

sequence and structural homology to Wss1 and Spartan, encompassing the protease domain, IDR,
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Figure 8. GCNA, Wss1, and Spartan proteins comprise a family of proteases. (A) Maximum likelihood phylogenetic tree showing relationships among

eukaryotic GCNA, Wss1, Spartan, and bacterial SprT protease domains. GCNA, Wss1, and Spartan are present across eukarya, including the most

primitive eukaryotes, except that Wss1 proteins have been lost in animals. Gray and black circles indicate nodes with bootstrap values greater than 600

and 900 (out of 1000), respectively. Tree is based on alignment of the protease domains and was created with PhyML. (B) Structural modeling of GCNA,

Figure 8 continued on next page
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Figure 8 continued

Wss1, and Spartan protease domains places GCNA in the minigluzincin family of proteases along with Wss1 and Spartan. Pairwise protein structure

comparison using FATCAT (Ye and Godzik, 2004) detected strong structural similarity, as evidenced by small root-mean-square deviations (RMSDs),

which are measures of the average distance (in Angstroms) between the carbon atoms of the superimposed proteins. All structures were found to be

significantly similar.

DOI: 10.7554/eLife.19993.024

The following figure supplement is available for figure 8:

Figure supplement 1. GCNA, Spartan, and Wss1 form a subgroup within the larger Peptidase Clan MA.

DOI: 10.7554/eLife.19993.025

Figure 9. GCNA, Wss1, and Spartan proteins have SUMO interacting motifs within large disordered regions. (A) Spartan and Wss1 have significant

disordered regions outside of their protease domains. Residues above the dotted line are predicted to be disordered. (B) GCNA proteins contain

conserved SUMO-interacting motifs (SIMs) that are homologous to those found in Spartan and Wss1 proteins. Residues are colored as follows: blue

(acidic), green (hydroxyl, sulfhydryl, amine), red (small and hydrophobic), pink (basic).

DOI: 10.7554/eLife.19993.026
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and SUMO interacting motifs. Wss1 and Spartan protease domains and SUMO interacting motifs are

essential for response to DNA damage caused by ionizing radiation, UV light, and chemical cross-

linkers (Centore et al., 2012; Stingele et al., 2014). GCNA shares these common elements. By

extrapolation, we propose that the GCNA protein family identified here may also function in mainte-

nance of genome integrity, and has become specialized for cells whose genomes will be passed to

the next generation. As such, GCNA may help cells cope with the additional DNA damage burden

that accompanies meiosis, a process that involves extensive, programmed DNA damage

(Keeney, 2008).

While at first glance the phenotypes of mouse and C. elegans Gcna mutants seem disparate, they

are consistent with defects in DNA damage repair in both organisms. The phenotype of Gcna

mutant mice is similar to those of other genes involved in DNA damage repair, including Rad18 and

Rad6, which function in the same DNA damage tolerance pathway as Spartan (Inagaki, 2011;

Roest et al., 1996; Hedglin and Benkovic, 2015). Likewise, the HIM phenotype in Gcna-deficient C.

elegans is consistent with a defect in genome maintenance (Billi et al., 2014); in C. elegans as well

as mammals, efficient and proper repair of meiotic double strand breaks is crucial for accurate chro-

mosome segregation (Baudat et al., 2013; Youds and Boulton, 2011).

GCNA joins a well studied cohort of genes, including Dazl/Boule, Vasa, Nanos, and Piwi, known

for their function in metazoan germ cells. Many of these genes are proposed to be part of a con-

served germline multipotency program (GMP) that functions in multipotent cells as well as in the

germline, where they have a broad role in establishing and maintaining pluripotency (Ewen-

Campen et al., 2010; Juliano et al., 2010). Unlike most of these genes (Eirı́n-López and Ausió,

2011; Kerner et al., 2011), GCNA arose prior to the divergence of the major eukaryotic lineages.

GCNA is more ancient than all but Piwi and associated proteins that function in small-RNA-mediated

genome defense (Kerner et al., 2011; Swarts et al., 2014), and predates the origin of a dedicated

metazoan germline by a billion years. We believe that GCNA’s presence in the last common ances-

tor of extant eukaryotes indicates that GCNA’s role is more fundamental than even the ancestral plu-

ripotency module and the GMP that arose from it. Like Piwi, GCNA proteins may perform a role that

is critical for reproductive cells by helping to maintain the integrity and stability of heritable genomes

across the generations.

Materials and methods

Whole-mount immunofluorescence
E11.5 mouse embryos that carried an Oct4-EGFP transgene (C57BL/6N;CBA-Tg(Pou5f1-EGFP)

2Mnn/J (RRID:MGI:3581420), backcrossed at least 7 generations onto C57BL/6N) were dissected to

remove heads, limbs, body walls, and internal organs. Whole-mount staining was carried out as

described (Hu et al., 2013). Briefly, embryos were fixed overnight and then blocked for another

night. After washes, embryos were incubated at 4˚C overnight with antibodies against GATA4 (sc-

25310, Santa Cruz Biotechnology, RRID:AB_627667), and GCNA1 (RRID:AB_2629436). After washes,

embryos were then incubated at 4˚C overnight with donkey secondary antibodies conjugated with

Rhodamine Red X, or DyLight 649 (Jackson ImmunoResearch). Oct4-EGFP expression marks germ

cells. All antibodies were diluted 1:100. After extensive washes, embryos were preserved in Slow-

Fade Gold Antifade reagent (Life Technologies). Stained embryos were imaged sagittally using an

LSM510 confocal microscope (Zeiss).

Immunoprecipitation and mass spectrometry
One wildtype adult testis per IP was dounced in 1 ml IP buffer. IP buffer: 50 mM HEPES pH 7.4,

140 mM NaCl, 10% glycerol, 0.5% NP-40, 0.25% Triton, 100 uM ZnCl2 plus EDTA-free Protease

Inhibitor Tabs (Roche). Samples were sonicated on ice 1 min at 30% amplitude using a Branson Soni-

fier and treated with 100 U/ml Benzonase (Millipore) for 20 min at room temperature on rocker.

Samples were spun down for 10 min at 16,000 G at 4˚C, and supernatant was used for immunopreci-

pitations. Ten milliliters of GCNA1 hybridoma (10D9G11) supernatant (RRID:AB_2629436) and 50 ug

of Rat IgM isotype control (Southern Biotech 0120-01, RRID: AB_2629437) were coupled to 50 ul

Goat-Anti-Rat IgM agarose (Open Biosystems, SAB1120) using dimethylpimelimidate (Sigma

D8388). 25 ul of beads were used per IP. TRA98 IPs were carried out using 5 ug/ml TRA98 antibody
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(Abcam, ab82527, RRID:AB_1659152) and 5 ug/ml Rat IgG isotype control (ChromPure Jackson

Immunoresearch, RRID:AB_2337136) using Protein G Agarose (Upstate). After extensive washing in

IP buffer, precipitated proteins were subjected to SDS–PAGE and silver staining. Samples were proc-

essed at the Whitehead Institute Proteomics Core Facility. For mass spectrometry analysis, bands

were excised from each lane of a gel encompassing the entire molecular weight range. Trypsin

digested samples were analyzed by reversed phase HPLC and a ThermoFisher LTQ linear ion trap

mass spectrometer. Peptides were identified from the MS data using SEQUEST (RRID:SCR_014594).

Isoelectric point calculations
Isoelectric points of all proteins in the mouse proteome (UniProtKB, version 2014-06-17, RRID:SCR_

004426) were calculated using the Henderson–Hasselbalch equation. EMBOSS (RRID:SCR_008493)

pK values were used to calculate isolectric points. Amino acid (pK): Amino (8.6), Carboxyl (3.6), C

(8.5), D (3.9), E (4.1), H (6.5), K (10.8), R (12.5), Y (10.1) (Rice et al., 2000). Perl code is provided in

Source code 1.

ES cell targeting
Targeting vector was designed and built as in the KOMP (RRID:SCR_007318) pipeline

(Skarnes et al., 2011) to ultimately generate an allele with Exon 4 of mouse Gcna flanked by LoxP

sites. Mouse embryonic stem cells (E14Tg2a.4 derived from 129P2/OlaHsd, UC Davis, RRID:

MMRRC_015890-UCD) were electroporated with the targeting vector and clones were selected

using Neomycin. Homologous recombinants were identified by Southern blotting to confirm correct

integration. Integration was evaluated after digestion with NheI and a probe generated with the pri-

mers 5’-TCAGTGCGGTGCAGTGATA-3’ and 5’-CCAAGTTCCCACACAGAACC-3’. The ‘knockout-

first’ allele contains an IRES:lacZ trapping cassette and a floxed promoter-driven neo cassette

inserted into the intron between Exons 4 and 5. ES cells were electroporated with FLPe plasmid

pCAGGS-FlpE-PURO (Akbudak and Srivastava, 2011) to convert the ‘knockout-first’ allele to a con-

ditional allele. Clones were selected after transient puromycin selection and screened by PCR for the

Flp event using the primers 5’-ATAAGAGAGGAAAGGTTGTGGCTT-3’ and 5’-TGATATCTCTATAG

TCGCAGTAGGC-3’. The same targeting vector was electroporated into JM8 ES cells (RRID:CVCL_

J957) to generate a Gcna targeted allele on a C57BL/6N background. Mice were bred to Ddx4/

Mouse vasa homolog cre mice (MvhCre-mOrange) (Hu et al., 2013) to delete exon 4 in vivo.

Evaluation of GCNA protein in mouse embryonic stem (ES) cells
GCNA conditional (Exon 4 floxed) ES cells were electroporated with a pCAGGS-CRE plasmid, plated

at clonal density, and clones screened by PCR for the Exon 4 deletion event. ES cells were harvested

using a cell scraper and RIPA lysis buffer. After lysing, debris was spun down and supernatant was

run on an SDS/PAGE gel. Western blots on Exon 4 floxed and deleted ES cells were carried out with

TRA98 (Abcam ab82527, 1:500, RRID:AB_1659152) and GCNA1 (Enders, 1:20, RRID:AB_2629436)

antibodies.

Bacterial expression of GCNA
GCNA cDNA was amplified from adult mouse testis RNA and cloned into pENTR-D/TOPO (Life

Technologies). Primer sequences for N-terminal portion of protein were: N-term-for (5’-CACCC

TGAACATGGATTCAGGC-3’) and N-term-rev (5’-GCTCAAGCTCACTTGATGT-3’). Primers for repet-

itive portion of the protein were: Repeats-for (5’-CACCACATCAAGTGAGCTTGAGC-3’) and

Repeats-rev (5’-TTTTTGGCTTCCTCAGCTGT-3’). N-terminal and GE(P/M/S)E(S/T)EAK repeat encod-

ing portions of the GCNA cDNA were transferred into pDEST17 Gateway vector containing an

N-terminal 6X HIS tag using LR Clonase enzyme (Thermo Fisher). Fusion proteins were expressed in

ROSETTA 2(DE3) pLysS bacteria (MerckMillipore). Bacteria were harvested 1 hr after induction with

1 mM IPTG, centrifuged, lysed in SDS-PAGE loading buffer, and sonicated before loading onto an

SDS/PAGE gel. Western blots were carried out with TRA98 (Abcam ab82527, 1:500, RRID:AB_

1659152), GCNA1 (Enders, 1:20, RRID:AB_2629436), and anti-penta-HIS (Qiagen, 1:5000, RRID:AB_

2619735) antibodies.
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Disorder plot
Disorder was predicted using the IUPRED web server (RRID:SCR_014632) with default parameters

(Dosztányi et al., 2005). Data was smoothed using exponential smoothing with a damping factor of

0.9 before plotting in Microsoft Excel.

Alignments
Alignments were carried out using MUSCLE (RRID:SCR_011812) (Edgar, 2004), manually adjusted in

Jalview (RRID:SCR_006459) (Waterhouse et al., 2009), and shaded using Boxshade (RRID:SCR_

011812) (http://www.ch.embnet.org/software/BOX_form.html).

GCNA protein identification
Profile HMMs for the protease domain, zinc finger, and HMG box were constructed using the

HMMbuild function of the command line version of the HMMER3 software suite (RRID:SCR_005305)

(Eddy, 2009) with default settings. GCNA proteins from the following species were used to con-

struct the protease domain and zinc finger HMMs: Homo sapiens (ACRC_HUMAN), Bos taurus

(XP_005228100.1), Gallus gallus (XP_420196.3), Danio rerio (AAI54363), Drosophila melanogaster

(CG14814), Caenorhabditis elegans (ZK328.4), Hydra vulgaris (T2M7F9_HYDVU), Monosiga brevicol-

lis (XP_001744295), Schizosaccharomyces pombe (YGM4_SCHPO), Schizosaccharomyces japonicus

(B6K1W0_SCHJY), Ostreococcus tauri (XP_003074438.1), Emiliania huxleyi (R1E9K5_EMIHU), Chla-

mydomonas reinhardtii (Cre01.g003700), and Dictyostelium discoideum (Q54JE2_DICDI). As human

GCNA has an in-frame stop codon before its HMG box, the HMG box of Tupaia chinensis, the mam-

mal closest to primates, was used in the HMG box HMM construction. HMM logos were generated

using the web server at http://skylign.org (RRID:SCR_001176) (Wheeler et al., 2014). HMMSearch

(Finn et al., 2015) was used to query the UniProt database (UniProtKB, version 2015_03, RRID:SCR_

004426) with the profile HMMs. Hits with an E-value smaller than <1E-05 were considered signifi-

cant. Duplicate UniProt entries were filtered out using reciprocal BLAST (RRID:SCR_004870). For

proteins with several predicted isoforms, the longest isoform was kept. For sequences from strains

of the same species, only one strain was included in the master list. Using these criteria, we identi-

fied 160 UniProt entries containing significant matches to HMMs from all three domains. This num-

ber of orthologs is likely to be an underestimate of the number of GCNA proteins across eukarya.

For example, we found an additional 136 UniProt entries that contained significant matches to only

the protease domain and zinc finger. This number includes primate GCNAs which have an in-frame

stop codon before the HMG box. It is unclear whether other species outside of primates are indeed

missing the HMG box, as many of these proteins are predictions that may suffer from poor annota-

tion. For those species not well-represented in UniProt, we searched the Joint Genome Institute’s

data by BLAST at http://genome.jgi.doe.gov/ (RRID:SCR_002383). A listing of GCNA proteins can

be found in Figure 4—source data 1.

Phylogenetic tree construction
Alignments were generated using MUSCLE (RRID:SCR_011812) (Edgar, 2004). ProtTest (RRID:SCR_

014628) was used to select the best-fit model for protein evolution (Abascal et al., 2005). PhyML

(RRID:SCR_014629) version 20111216 was used to create maximum likelihood trees (Guindon et al.,

2010). Command line used was as follows: phyml -i phylipalignment.txt -d aa -b 1000 -m LG -f m -v

e -a e -s BEST -o tlr.

Human immunohistochemistry
Normal human testis paraffin sections were purchased from IHC World, LLC (TS-H5023). After micro-

wave-assisted antigen retrieval in Antigen Retrieval Buffer 1 (Spring Bioscience PMB1-250), endoge-

nous peroxidases were quenched in 3% H2O2 for 10 min. Slides were blocked in 3% BSA and

incubated with anti-ACRC (human GCNA) antibody (HPA023476, RRID:AB_1844530) at 1:20 dilution

in 1% BSA in PBS. After washing in PBS, slides were incubated with ImmPress HRP Anti-Rabbit Ig

(RRID:AB_2336533) and developed using ImmPact DAB peroxidase substrate (Vector Laboratories).

Slides were stained with hematoxylin and mounted in Permount.
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Schmidtea in situ hybridization
Planarian FISH was performed as previously described (King and Newmark, 2013). Briefly, hatch-

lings of the S2 sexual strain were fixed in 4% formaldehyde, bleached in formamide bleaching solu-

tion (5% formamide, 0.5xSSC, 1.2% H2O2), and permeabilized by Proteinase K treatment (2 mg/ml in

PBS with 0.1% SDS). Riboprobes containing DIG-12-UTP (Roche) or DNP-11-UTP (PerkinElmer) were

generated by in vitro transcription from custom PCR products of the entire open reading frame with

an attached T7 promoter. Hybridizations were performed overnight at 56˚C in hybridization buffer

(50% formamide, 5xSSC, 5% dextran sulphate, 1% Tween-20, and 20 mg/ml yeast RNA). Probes

were detected with peroxidase-conjugated anti-DIG antibody (RRID:AB_514496, Roche/Sigma-

Aldrich) or anti-DNP (RRID:AB_2629439, PerkinElmer) and developed by Tyramide Signal Amplifica-

tion (TSA) in TSA buffer (100 mM borate pH 8.5, 2 M NaCl, 0.003% H2O2, and 20 mg/ml 4-iodophe-

nylboronic acid). Tyramide-conjugated fluorophores were generated from fluorescein and

rhodamine N-hydroxysuccinimide (NHS) esters (Pierce) as previously described (Hopman et al.,

1998). Between developments, residual peroxidase activity was quenched by incubation in 1%

sodium azide. Samples were counterstained with DAPI (Sigma; 1 mg/ml). Images were acquired on a

Zeiss LSM700 confocal microscope.

C. elegans antibody generation and immunohistochemistry
A rabbit polyclonal antibody against a peptide in the disordered region of C. elegans gcna-1

(ZK328.4) (YPEMFDSNQKPRQKPKE) was generated by Yenzym Antibodies, LLC. Antiserum was

affinity-purified using SulfoLink (Pierce) following the manufacturer’s instructions. Whole mount prep-

arations of dissected gonads, fixation, and immunostaining procedures were carried out as

described in (Colaiácovo et al., 2003). Primary antibody was used at 1:100 dilution. Images were

collected using a DeltaVision system (Applied Precision) and subjected to deconvolution and projec-

tion using the SoftWoRx 3.3.6 software (Applied Precision).

C. elegans strains and genetics
The N2 Bristol strain of C. elegans was cultured at 20˚C under standard conditions as described in

Brenner (Brenner, 1974). CRISPR alleles of gcna-1 were generated using a co-CRISPR strategy as

previously described (Kim et al., 2014), and outcrossed to N2. The nature of the alleles (on LGIII) is

as follows: ne4334: 6007556/6007557–6007558/6007559 (2-bp deletion, stop codon after seven

amino acids); ne4356: 6007278/6007279–6009026/6009027 (1748-bp deletion, removes ATG). The

ne4334 allele was amplified with primers zk328.4_F1 (5’-TTAGGACACCCTTGCTCTCG-3’) and

zk328.4_R1 (5’-GACGGTTCTGGTGTTTTGCT-3’) and sequenced with zk328.4_F1. The ne4356 allele

was amplified with zk328.4_F3 (5’-CCGCCAATCAAAAATTTCAA-3’) and zk328.4_R1, which gener-

ates a 2125-bp wildtype and 377-bp mutant band. Additionally, zk328.4_F1 and zk328.4_R1 are

used to confirm the absence of a 762-bp wildtype product.

C. elegans brood counts and male frequencies
Brood and male frequency counts were performed at 20 and 25˚C. Briefly, animals were single

picked at mid-L4 stage and followed with daily transfers until they produced no more progeny. Ani-

mals were counted and males were scored when the population on a progeny plate reached

adulthood.

Mice
All mouse studies were performed using a protocol approved by the Committee on Animal Care at

the Massachusetts Institute of Technology (Protocol number: 0714-074-17).

Mouse fertility testing
Six to eight week old male GcnaDeltaEx4 /Y mice on a C57BL/6N background were housed with a sin-

gle, wildtype C57BL/6N female of the same age for three months, and cages were monitored for

births. Control animals were wildtype C57BL/6N males. The number of litters born and number of

pups per litter were documented.
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Mouse epididymal histology
Mouse epididymal ducts were fixed overnight in Bouin’s fixative at 4˚C, then transferred to 70% eth-

anol before processing and embedding in paraffin. Five-micron sections were stained with hematox-

ylin and eosin before histological examination.

Charge-hydropathy plot
N-terminal IDRs of GCNA orthologs were analyzed as in (Uversky et al., 2000) to determine their

position in charge-hydropathy space relative to known disordered and ordered proteins. Briefly,

hydrophobicity was calculated by the Kyte and Doolittle approximation using a window size of 5

amino acids. The hydrophobicity of individual residues was normalized to a scale of 0 to 1 in these

calculations. The mean hydrophobicity is defined as the sum of the normalized hydrophobicities of

all residues divided by the number of residues in the polypeptide. The mean net charge is defined

as the net charge at pH 7.0, divided by the total number of residues.

Amino acid composition analysis
Amino acid compositional analysis was carried out using Composition Profiler (Vacic et al., 2007)

(RRID:SCR_014630, http://www.cprofiler.org) using the PDB Select 25 and the DisProt datasets as

reference for ordered and disordered proteins, respectively. Enrichment or depletion in each amino

acid type was expressed as (Cx� Corder)/Corder, i.e., the normalized excess of a given residue’s con-

tent in a query dataset (Cx) relative to the corresponding value in the dataset of ordered proteins

(Corder). Cx is either the GCNA ortholog dataset or the DisProt dataset, while Corder is the PDB Select

25 dataset. Error bars represent fractional differences of the standard deviations of observed relative

frequencies of bootstrapped samples of the datasets.

Protein structure prediction and comparison
Protein structures of human GCNA, human Spartan, and S. cerevisiae Wss1 protease domains were

predicted using I-TASSER (Yang et al., 2015) (RRID:SCR_014627, http://zhanglab.ccmb.med.umich.

edu/), along with that of pdb4jiu (a minigluzincin protease whose structure has been determined

[López-Pelegrı́n et al., 2013]). Model quality was evaluated using Swiss-model QMEAN model qual-

ity assessment (http://swissmodel.expasy.org/qmean, RRID:SCR_013032) (Benkert et al., 2011). The

QMEANscore/Z-scores of the models were as follows: GCNA (0.651/�0.84), Spartan (0.665/�0.69),

Wss1 (0.551/�1.56), and 4jiu (0.715/�0.24), where good quality models have a mean Z-score of -

0.65. Using SaliLab Model Evaluation (https://modbase.compbio.ucsf.edu/evaluation/, RRID:SCR_

004642) (Melo et al., 2002), the GCNA, Spartan, Wss1, and pdb4jiu models had GA341 reliability

scores of 1.00/1.00/0.925/1.00 respectively, where a model with a score of greater than 0.7 is con-

sidered reliable and to have a probability of a correct fold of greater than 95%. We used FATCAT

(Ye and Godzik, 2004) (RRID:SCR_014631, http://fatcat.burnham.org/) for pairwise protein structure

comparison and obtained root-mean-square deviations (RMSDs) between 1.06 and 1.65 Angstroms

as the average distance between the carbon atoms of the superimposed proteins. All structures

were found to be significantly similar. Pairwise RMSDs and p-values not listed in the main figure are

as follows: GCNA:Spartan (RMSD 1.65/p=7.81e-13), GCNA:Wss1 (RMSD 1.55/p=3.19e-9), Spartan:

Wss1 (RMSD 1.41/p=4.05e-10). PDB files of structure models are available on request.

Dendrogram of metalloprotease families
Multiple sequence alignments (in. a3m format) of the protease domains of GCNA, Spartan, and

Wss1 families were created using the HHpred web server (Söding et al., 2005) at http://hhpred.tue-

bingen.mpg.de (RRID:SCR_010276) by providing a seed alignment that was subsequently expanded

using HHblits with three iterations and an E-value inclusion threshold of 1E-30. The command line

version of HHsearch was used to build HMMs using the hhbuild function. HHsearch was used to

search a database of 14,837 PfamA curated protein families (RRID:SCR_004726) by comparing

HMMs to HMMs using alignment and secondary structure scoring. With one exception (Pfam09768),

the three HMMs significantly matched only metalloproteases within Peptidase Clan MA (as defined

by the MEROPS database of peptidases [https://merops.sanger.ac.uk, RRID:SCR_007777]). Based on

the probability score generated by HHsearch, a dissimilarity matrix of the proteins in the Clan MA

was constructed, where the (i, j)-th entry gave the negative log probability that proteins i and j are
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related. Probabilities of 0 were replaced with 0.001 to avoid infinity values when taking the loga-

rithm. The proteins were heirarchically clustered by average linkage on the basis of this dissimilarity

matrix using the ’linkage’ and ’dendrogram’ functions from the Python package SciPy (http://scipy.

org, RRID:SCR_008058).

SUMO interacting motif discovery
SUMO interacting motif discovery was carried out using the Eukaryotic Linear Motif resource (RRID:

SCR_003085) (Dinkel et al., 2016) where a SUMO interacting motif is defined as [DEST]{0,5}.

[VILPTM][VIL][DESTVILMA][VIL].{0,1}[DEST]{1,10}, representing a hydrophobic core surrounded by

acidic or phosphorylatable residues, with the C terminal residues having a longer acidic stretch.
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