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Abstract

Using a DNA polymerase to record intracellular calcium levels has been proposed as a

novel neural recording technique, promising massive-scale, single-cell resolution monitoring

of large portions of the brain. This technique relies on local storage of neural activity in

strands of DNA, followed by offline analysis of that DNA. In simple implementations of this

scheme, the time when each nucleotide was written cannot be determined directly by post-

hoc DNA sequencing; the timing data must be estimated instead. Here, we use a Dynamic

Time Warping-based algorithm to perform this estimation, exploiting correlations between

neural activity and observed experimental variables to translate DNA-based signals to an

estimate of neural activity over time. This algorithm improves the parallelizability of tradi-

tional Dynamic Time Warping, allowing several-fold increases in computation speed. The

algorithm also provides a solution to several critical problems with the molecular recording

paradigm: determining recording start times and coping with DNA polymerase pausing. The

algorithm can generally locate DNA-based records to within <10% of a recording window,

allowing for the estimation of unobserved incorporation times and latent neural tunings. We

apply our technique to an in silico motor control neuroscience experiment, using the algo-

rithm to estimate both timings of DNA-based data and the directional tuning of motor cortical

cells during a center-out reaching task. We also use this algorithm to explore the impact of

polymerase characteristics on system performance, determining the precision of a molecu-

lar recorder as a function of its kinetic and error-generating properties. We find useful ranges

of properties for DNA polymerase-based recorders, providing guidance for future protein

engineering attempts. This work demonstrates a useful general extension to dynamic align-

ment algorithms, as well as direct applications of that extension toward the development of

molecular recorders, providing a necessary stepping stone for future biological work.
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Author summary

This work demonstrates a necessary computational tool for the development and imple-

mentation of molecular recorders, a promising potential technique for massive-scale neu-

roscience. Molecular recorders use proteins to encode levels of a substance we want to

measure (e.g. calcium in neural applications) as detectable changes in a linear cellular

structure, e.g. misincorporations in a strand of DNA, or fluorescent proteins traveling

down a microtubule. This encoding represents levels of the measured substance over

time, much like a ticker tape represents information linearly on a strip of paper. The

unique intracellular nature of this approach promises a significant scaling advantage over

current techniques. The molecular recording approach suffers a particular drawback

involving timing: unlike most methods of recording signals, in simple molecular record-

ing systems we do not observe when each data point was recorded. This timing informa-

tion is almost always required in order to make associations between our recorded data

and the rest of the experiment. In this work, we propose a method to estimate the timing

of these data points using easily-observable experimental measurements. We demonstrate

the application of this method in a simulated neuroscience paradigm, investigate the effect

of experimental design on this method, and determine protein properties that would be

desirable in molecular recorders. These findings are useful both as a computational proof-

of-concept, and as guidelines for current efforts to engineer proteins for molecular

recording.

Introduction

As we seek to understand complex questions in neuroscience, we are increasingly interested in

the feasibility of massive-scale methods for neural recording [1–5]. One such proposed method

is molecular recording, which uses engineered DNA polymerases (DNAPs) to encode infor-

mation about neural activity onto a newly synthesized DNA strand, such that the position in

the DNA sequence corresponds to the order and approximate timing of recorded events [6–8].

Rather than reading out neural activity from an electrode or photodiode during an experi-

ment, molecular recorders would store neural activity intracellularly. This information would

not be read out in real-time, but post-hoc using high-throughput DNA sequencing. The

recording DNAPs could be genetically encoded and selectively expressed in neurons, allowing

us to obtain activity records from large populations of cells. DNAP-based recording techniques

promise an inherently ultrahigh-scale neural recording technique, building off of advances in

biotechnology and computational power. However, significant hurdles remain in realizing

such a technology.

While molecular recorders promise massive-scale neural recording, they do not inherently

provide all the data obtained using current recording techniques. With current techniques, e.g.

electrical or optical recording, data about the timing of each sample is recorded alongside the

desired recording. With DNAP-based recorders, we sample data using DNA sequencing,

which occurs after an experiment has concluded. That is, without any inherent clocking mech-

anisms, the output from molecular recorders lacks any explicit timing information about what

it recorded. Without timing information, recorded neural activity cannot be interpreted in the

context of other signals observed during experiments, e.g. movement or delivered stimulus.

The central problem here is that we do not know which nucleotides were written at which

times, i.e. we cannot link our representation of neural activity to things we observe in the
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outside world. Thus, the timing of data from molecular recorders must be inferred or esti-

mated before it can be useful to understand the brain.

Due to the stochasticity inherent in DNAP activity (or that of any protein), it is difficult to

predict when a nucleotide was incorporated de novo. Uncertainty in timing estimates result in

uncertainty about the underlying signal; without timing information, signal estimates become

highly inaccurate, providing at most a few seconds of reliable recording under common condi-

tions [7]. However, if we observe experimental data that should be correlated with neural activ-

ity during our experiments, we can generate predictions of what possible patterns of neural

activity we might observe given that data. This, in turn, can provide some information about

the timing of nucleotide incorporations: if we see a particular pattern of activity in our DNA-

based record, the DNA was likely written by a neuron whose tuning would generate a similar

activity pattern in response to the experimental variables we observe, and at a time where the

neuron would have generated that pattern. If we enumerate the ways in which we believe a

neuron could respond to the observed experimental variables in question, we can search for

the most-likely response given the DNA-based record we observe. It is worth stating that this

type of approach is not model-free, and there are many situations where this assumption of a

tuning model is inappropriate, i.e. in areas of the nervous system that we either model poorly

or do not know what form a model would take. However, in areas where we have reliable

modeling approaches or seek to evaluate particular models, a model-based approach may be

able to provide considerable insight.

One way to utilize these models to estimate timing is the one we use here: generate predic-

tions of neural activity with known timing using observed experimental variables, then find

the globally most-similar alignment between those predictions and our recorded data. This

class of alignment problems is frequently found in the time series analysis domain, e.g. in

speech or signature recognition [9–11]. Dynamic time warping (DTW) is an efficient solution

to this class of alignment problems, determining the optimal alignment between the template

and signal using dynamic programming principles. With a probabilistic interpretation, DTW

allows us to infer the most likely timing of a signal with respect to a given template, as well as

determining the most likely template from a set of possible templates [12]. These properties

make DTW-class algorithms uniquely suited for the determination of signal timings for

molecular recorders.

Given that we are interested in applying this algorithm to massive-scale datasets, we are

immediately interested in algorithms that can efficiently harness large-scale computing

resources. As DTW is a dynamic algorithm, with successive steps depending on previous cal-

culations, it is difficult to apply asynchronous computing approaches, at least on an algorithm

level. Thus many, though not all, parallel approaches to DTW have largely focused on task-

level parallelism rather than parallelizing cost computation [13–18]. As a result, for computa-

tionally-intensive individual alignments, it tends to be difficult to fully utilize the massively

parallel computing resources that are becoming more common. A highly-parallelized dynamic

alignment algorithm would be useful for a number of reasons.

Here we describe a parallelized step-pattern variant of DTW with applications to the analy-

sis of molecular recorder output. We demonstrate the algorithm’s ability to accurately deter-

mine incorporation times for single DNA strands generated by a simulated molecular

recorder, compensating for the timing issues inherent in protein-based molecular recorders.

We demonstrate the utility of this algorithm in practice through simulated neuroscience appli-

cations, and use simple simulated experiments to explore how DNAP parameters such as

speed and error rate affect the accuracy of our timing estimates. Through proposal and appli-

cation of this algorithm, we present findings relevant for current biological research into

molecular recording.

Nucleotide-time alignment for molecular recorders
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Algorithm and experimental overview

Our algorithm solves a problem central to interpreting molecular recorder output in the con-

text of neural recording: it aligns a single DNA-based record to an estimate of neural activity.

We evaluate the local likelihood of each nucleotide being written at any time within some

recording window given some assumed neural and DNAP properties. Then, using a dynamic

programming-based technique, we attempt to find a global alignment given the local likeli-

hoods and a prior defined by the DNAP kinetics. This algorithm is similar in structure to

Dynamic Time Warping, utilizing a modified step pattern that reflects certain biological reali-

ties (See Algorithm Methods,S1 Fig). The step pattern limits the possible search space by

enforcing these constraints: 1) nucleotides cannot be aligned to the same time point, 2) nucleo-

tides can only be aligned to one time point, and 3) there can be a variable amount of time

between incorporation of two adjacent nucleotides. We weight the potential options from this

step pattern so that alignments made more likely by DNAP kinetics are favored. Notably, this

approach enables significant algorithm parallelism, emerging from the constraint that nucleo-

tides can only be aligned to one time point. As there are no dependencies between possible

alignments of a given nucleotide, we can calculate the costs of all possible alignments of a

given nucleotide concurrently.

In order to demonstrate the utility of this algorithm, we apply our technique to simulated

output of molecular recorders (Fig 1A), demonstrating various aspects of algorithm perfor-

mance as well as exploring the ability of DNAPs to encode neural information. The general

experimental pipeline consists of four parts: (1) simulation of a molecular recording experi-

ment (Fig 1B and 1C), (2) alignment of single recorder outputs to a set of time-indexed

expected DNAP error rates, which represent potential neural tunings to observed experimental

covariates, (3) selection of a template that best matches the molecular recorder output

(Fig 1D), and (4) inference of neural parameters using time-aligned DNA-based signals (see

Methods).

We simulate a biologically-inspired generative model with several parts: (1) an explicit

parameterized model of how neural activity either depends on a stimulus or results in

observed behavior (Neural Tuning), (2) how this neural activity modulates DNAP error

rate, via Ca2+ concentration or other mechanisms (DNAP Tuning), and (3) a probabilistic

description of DNAP kinetic properties, e.g. incorporation rate and pausing (DNAP Kinetics).

This generative model can be parametrized using existing knowledge about neural and poly-

merase properties where known. In this paper, we use DNAPs with optimistic DNAP error

tuning, i.e. maximum error rates higher than many DNAPs with incorporation rates suitable

for recording, but with otherwise-realistic properties [19–21]. We also assume knowledge of

these system characteristics (apart from neural tuning) in order to parametrize the alignment

algorithm.

Given simulated DNA output and a time-varying input to the system, we iterate over poten-

tial neural tunings to find a tuning that provides an alignment most consistent with the

observed DNA-based signal. We then use this maximum a posteriori alignment to generate a

time-indexed DNA signal, and use this signal to infer neural parameters. We evaluate algo-

rithm performance both by accuracy of timing estimation, i.e. how many seconds estimated

incorporation times differ from true incorporation times on average, and accuracy of inferred

neural tuning parameters, i.e. how the estimated behavior of a neuron differs from the true

neural behavior. Specifically, to evaluate accuracy of timing estimates, we examine the root-

mean square deviation (RMSD) between the estimated timings and the true incorporation

times for a given alignment.

Nucleotide-time alignment for molecular recorders
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There is a highly non-linear relationship between alignment “success” and timing accuracy,

as nearby alignments do not necessarily have similar likelihoods. Thus, we provide both a

mean and median value for timing accuracy when those values differ by a large amount. To

evaluate tuning accuracy, we estimate tuning parameters from the aligned DNA data and

examine the distance between the algorithm-estimated parameters and those derived directly

from the recorded neural data, which we treat as ground-truth for these studies.

Fig 1. Procedural overview. A) Molecular recording overview. A DNAP (green) copies a template DNA strand of known sequence.

It can incorporate the correct Watson-Crick paired nucleotide (blue) or make an error and incorporate a non-paired nucleotide

(orange). These incorporations and misincorporations can be read out via DNA sequencing. The time τ between these nucleotide

incorporations is variable and a function of DNAP kinetics. While these nucleotides have regular DNA-based indexing, they have

irregular indexing with respect to time. B) Examples of nucleotide-time mappings, simulated as described in Methods. Stochastic

DNAP kinetics produce non-linear nucleotide-time mappings. Further, diffusion and other biological processes can lead to non-

uniform recording start times. C) Generative model for DNA-based error signals. Neural spikes lead to elevated calcium levels in the

neuron. These changes in calcium alter the instantaneous error rate of a molecular recorder. These changes in error rate are only

recorded when nucleotides are incorporated into a DNA strand, causing the resulting DNA-based record to be a function of cellular

calcium and DNAP kinetics. D) Overview of alignment and inference. We begin with a set of potential neural tunings and a time-

varying stimulus. The stimulus is transformed by the neuron to neural activity, which is then recorded as errors in a DNA strand by a

molecular recorder. In parallel, we use the set of potential neural tunings in combination with the observed stimulus to generate

estimates of neural calcium and the resulting instantaneous DNAP error rate. We use our algorithm to align the DNA-based errors to

each of the estimated error-rate traces, then select the maximum-likelihood alignment. Dashed box indicate biological processes

that are simulated in parts of these analyses.

https://doi.org/10.1371/journal.pcbi.1005483.g001
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Results

Performance comparison to traditional DTW

Before exploring algorithm applications, it is worth exploring the performance implications of

this approach. It bears mentioning again that, while they do not calculate the same cost func-

tion, our algorithm and traditional DTW are closely related; both are dynamic programming

algorithms with effective worst-case complexity of O(NT) where N and T are the lengths of the

two inputs being aligned. As we have mentioned, our algorithm has significant differences in

implementation that allow it to be substantially parallelized; this allows for substantial perfor-

mance increases using modern computing devices (See Algorithm Methods). While a naïve

implementation of our algorithm performs more slowly than traditional DTW for a given set

of inputs, parallelized implementations substantially outperform traditional DTW (S1 Fig).

We observe up to a 16x speedup over traditional DTW when using a GPU-based implementa-

tion of our algorithm on a personal computer, and up to a 5x speedup when using a CPU-

based implementation.

Acceptable parameters for DNAP-based recorders

The feasibility of a “ticker tape” DNA-based recording scheme depends heavily on the proper-

ties of the DNAP used. For instance, the length of records (in base pairs) influences how much

information is contained about neural activity, and thus impacts algorithm performance. Simi-

larly, the speed, pausing, and fidelity properties of the DNAP used influence the information

about neural activity contained in a DNA-based record [7]. Here, we look to determine the

effect of these properties on the accuracy of our algorithm, and thus the expected performance

of a molecular recording setup. Determining these effects allow us to form guidelines as to

what kinds of DNAPs would be required for successful recording and alignment.

We use an entirely-simulated experiment here, i.e. we fully know the tuning linking stimu-

lus to neural activity. This allows us to isolate the effects of DNAP properties on alignment

from the effects of inaccurate neural activity estimates. We simulate a neuron with a linear

response to an artificial stimulus; we deliver random levels of stimulus in 5s blocks over the

course of 2000s (~30 minute recording window), and simulate the neuron’s spiking activity

and intracellular calcium. We then simulate the output of a molecular recording system during

that time period. We then align the molecular recorder output to the true stimulus signal.

Using this simulation, we can focus on error induced by the DNAP and alignment algorithm

in isolation.

We aim to estimate nucleotide incorporation timings, as well as the strength of the neuron’s

tuning to the stimulus, i.e. the slope of the neuron’s tuning curve. The best alignments possible

under this scheme have timing error up to the size of the stimulus features (5s); alignments

with timing error less than this are generally considered to be accurate. Error with respect to

tuning parameter is presented as a proportion of the true parameter. Except for the DNAP

parameter being varied, the simulated DNAPs are identical (~100 Hz, mean pause duration of

2s; see Methods).

As record length increases, finding a randomly generated pattern that resembles the record

becomes less likely, and alignment to a unique site should become easier. However, from a bio-

logical perspective, generating longer sequences may be more difficult, requiring polymerases

with specialized properties, e.g. high processivity, high activity, or strand-displacement activ-

ity. Thus, it is useful to know minimal record lengths for successful alignment. When we

increase record length in our simulations, we indeed find a resulting decreasing timing error.

Generally, we find that records with length longer than 2.5K basepairs align with<5s median

Nucleotide-time alignment for molecular recorders
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timing error (Fig 2A and 2B). Interestingly, we find that slope estimation is relatively constant

regardless of record length, suggesting that, while record length is crucial to timing estimation,

information about neural tuning in the record is not necessarily absent in shorter records

(Fig 2C).

DNAP speed effectively changes the sampling rate of our system; if we have a slow DNAP,

we can record for longer periods of time for a given strand length, but also record less informa-

tion about any given interval. If we are interested in longer time-scale phenomena (e.g. envi-

ronmental sensing, medical diagnostics) [22], we may wish to use slow DNAPs. However, due

to the low sampling rate, we may not be able to recover useful information about timing and

tuning in a neural paradigm. In our simulated stimulation paradigm, we find that slower

DNAPs in fact increase timing accuracy (Fig 2D). However, median timing error stays rela-

tively constant as speed decreases, implying that slow DNAPs simply decrease the amount of

extreme timing errors we observe (Fig 2E). This runs parallel to our observations about record

length; aligning to a longer time-indexed template is easier than aligning to a short one. How-

ever, our accuracy in determining tuning parameters decreases as we use slower DNAPs

Fig 2. Effect of DNAP parameters on alignment and tuning estimation. Examining alignment performance using simulated DNAPs with

varying parameters. Bootstrapped 95% confidence intervals of displayed values are indicated by blue silhouettes. A,B) The mean and

median timing RMSD of alignments for DNA-based records of increasing length. C) Error in slope estimation for DNA-based records of

increasing length. D,E) The mean and median timing RMSD of alignments for DNAPs with decreasing nucleotide incorporation rates. F)

Error in slope estimation for DNAPs with decreasing nucleotide incorporation rates. G,H) Mean and median timing RMSD of alignments for

DNAPs with increasing sensitivity to [Ca2+]. I) Error in slope estimation for DNAPs with increasing sensitivity to [Ca2+]. J,K) The mean and

median timing RMSD of alignments for DNAPs of increasing maximum error rate. L) Error in slope estimation for DNAPs with increasing

maximum error rate.

https://doi.org/10.1371/journal.pcbi.1005483.g002
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(Fig 2F). This indicates that we should, in general, be using fast DNAPs if we are interested in

recovering tunings [19]. Meanwhile, slower DNAPs can provide longer records for a given

strand length at the expense of diluting the information they carry about underlying

phenomena.

Another property of DNAPs that can affect the quality of recordings is the transfer function

relating analyte (e.g. calcium) concentration to error rate, f(�). We have modeled f(�) as a sig-

moid with three parameters:

f ðCÞ ¼ Rmax �
1

1þ exp½bðC � C0Þ�
ð1:1Þ

where C0 denotes the [Ca2+] that leads to half-maximum error rate, b denotes the steepness of

the response curve, and Rmax denotes the maximum error rate of the DNAP. When selecting

(or engineering) DNAPs to record with, we will need to optimize over these parameters. Here,

we analyze DNAPs with varying transfer function slopes b, i.e. varying sensitivities to [Ca2+],

ranging from step-like DNAPs to DNAPs with a wide dynamic range. We find that DNAPs

with moderate sensitivities to [Ca2+] provide the most accurate timings, while both step-like

and overly shallow transfer functions decrease alignment accuracy (Fig 2G and 2H). We find

similar results for parameter estimation (Fig 2I), where appropriately-sloped DNAP tunings

provide better estimates of neural parameters than DNAPs that are either too insensitive

(low |b|) or too step-like (high |b|) with respect to [Ca2+]. This adds evidence to an assumption

many investigating molecular recording techniques have been working under: DNAPs will

have to be tailored in order to achieve optimal recording of even simple signals.

We are also interested in how the maximum error rate Rmax affects alignment accuracy.

This is of particular interest from a biological perspective: many natural DNAPs with incorpo-

ration rates suitable for high-resolution recording have low error rates. It is useful to under-

stand what minimal error rates would be feasible for molecular recorders, as well as examine

system performance as Rmax scales. Here, we consider DNAPs that have near-zero error rates

at low [Ca2+], and increase to some maximum error rate Rmax under high [Ca2+] conditions.

We find that alignment accuracy increases as maximum error rate increases (Fig 2J and 2K), as

expected. Interestingly, we find that parameter estimation is relatively insensitive to Rmax.
Again, this seems to suggest that while timing accuracy tends to degrade with unfavorable

DNAP parameters, molecular recorder output tends to retain information about underlying

neural tuning.

Application to a center-out reaching task

Here, we demonstrate the feasibility of molecular recorders in a conventional neuroscience

experimental paradigm. We analyze single-unit neural data recorded from M1 and pre-motor

cortex during a center-out reaching task in a rhesus macaque, estimating the preferred move-

ment directions of recorded neurons (data obtained from the DREAM reaching experiment

database, see Flint 2012 for details [23–25]). We use the recorded spikes as the basis for simu-

lated calcium transients and molecular recorder output. We also generate a set of estimates of

neural activity from the kinematic data recorded during the task, with estimates representing

velocity-tuned neurons with preferred directions distributed uniformly on [0, 2π]. Here, we

use eight activity estimates as alignment templates. We apply our alignment algorithm to this

data, aligning the molecular recorder output to each of the estimates, then selecting the maxi-

mum-likelihood alignment. The result, an estimated mapping of nucleotides to time, allows us

to generate tuning curves for the recorded neurons. From this, we can estimate neural tuning

parameters and infer how neural activity is modulated with respect to the recorded kinematics

Nucleotide-time alignment for molecular recorders
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(details in Methods). The alignments here encounter alignment- and DNAP-based error, as in

the previous section, but also encounter biology-based error when estimating neural activity

from kinematic data. Thus, these experiments serve as an estimate of molecular recorder per-

formance in a real-world scenario.

Using a plausible set of DNAP parameters (~100 Hz incorporation rate, mean pause dura-

tion of 2s, ~17% of time spent paused; see Methods for further details), we find that we are gen-

erally able to recover rough timing estimates and accurate tuning parameters from the

simulated molecular recording experiment. As an initial demonstration, we examine several

neurons that exhibit high firing rates and significant directional tuning (Fig 3A). Under

these conditions, we are able to estimate nucleotide timings to within an average of ~15s (95%

confidence intervals for average trial RMSD: [10.0,16.5], [12.1,20.3], and [14.8,22.5] seconds,

Fig 3B). While timing accuracy is lower than desired, particularly for experiments that require

sub-second precision using current techniques, these alignments still allow us to generate the

estimated neural tuning direction θ� with error of ~10% (average errors of 0.5, 0.3, and 0.3

radians, Fig 3C). Median timings are substantially better than average timings across the board

(95% confidence intervals for median trial RMSD: [3.8,7.2], [3.1,8.7], and [6.5,13.7] seconds).

Fig 3. Determination of tuning parameters in neurons. Data for each of the three analyzed neurons are displayed as

columns. A) Neural activity plotted as a function of cursor velocity in 3 selected neurons from the Flint 2012 dataset. Points

represent neural spikes, locations indicate hand velocity during the spike time. B) Timing error (RMSD) as a function of

alignment likelihood for model-derived timings in 3 selected neurons. Each point represents the most-likely alignment of the

DNA-based record to one of eight activity estimates. Each point represents one of 100 trials. C) Estimated neural preferred

direction as a function of alignment likelihood for the 3 selected neurons. Each point represents the preferred reach

direction generated from the best alignment of the DNA-based record. Dashed lines indicate the preferred direction of the

neuron, estimated from neural activity data. Each point represents one of 100 trials.

https://doi.org/10.1371/journal.pcbi.1005483.g003
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Some of the error we encounter when generating alignment estimates may stem from our

discrete parametrization of neural tunings. That is, we may not provide an estimate of neural

activity similar enough to the true activity in order to generate accurate alignments. We can

examine the contributions of this effect to algorithm accuracy by supplying a neural activity

estimate generated using the neural tuning estimated from electrophysiology data, the best

possible estimate we can provide given a particular model. Indeed, if we supply a neural activ-

ity estimate generated using the ground-truth neural preferred direction in our motor control

experiment (rather than the 8 naïve preferred directions), we substantially reduce both timing

error and error in θ� (S2 Fig). While we do not know the true preferred direction a priori and

this kind of analysis could not be performed in practice, this suggests that a large portion of

observed error can be attributed to the discrete parametrization of the search space. Increasing

the resolution of the search space should improve alignment accuracy at the expense of execu-

tion time.

We apply our algorithm to each neuron in the dataset, examining aggregate performance

over a population of recorded neurons. We find that the technique has middling performance

on the whole dataset, only able to estimate timings to within 24s for 12% of neurons recorded

(S3 Fig). If we limit the set of analyzed neurons to those that have substantial reach-modulated

activity (model pseudo-R2 > 0.05, firing rate λ> 20 spikes/s), this improves to 47%. We are

able to estimate preferred direction to within ±0.2π (±36˚) for 39% of the dataset; this improves

to 59% of the reach-modulated neurons (S3 Fig). While this filtering does not explain all

observed error, it is useful when reconciling the results for individual neurons in Fig 3 with the

larger dataset. This improvement upon filtering for active, well-modeled neurons demon-

strates two things: 1) this method performs poorly on sparse-firing neurons, and 2) this

method performs poorly on neurons that are not well-described by the set of models we con-

sider. Both of these shortcomings are as expected given the algorithm. The former can be

addressed by evaluating average neural activity represented by a DNA-based record, which

can be done in a naïve, model-free manner. The latter, an inability to align signals that we can-

not already model accurately, remains a shortcoming of this approach when attempting the

interpretation of molecular recorder output.

We also analyze recording systems with a hypothetical DNAP that exhibits no pausing, but

is otherwise identical to the previous DNAPs (see Methods). When examining the same neu-

rons as above, we find drastically decreased timing errors (RMSD 95% CIs of [0.17,0.18],

[0.31,0.39], and [0.47,3.0] seconds) and parameter estimation errors (average errors of 0.1, 0.2,

and -0.04 radians, S4 Fig). Using these highly optimized DNAPs, we approach the timing reso-

lution that would seem to be useful for high-precision neuroscience experiments, and retain

high-accuracy prediction of neural tunings. A conclusion from this analysis is that much of the

error we observe with our technique resolves when DNAPs behave more regularly. These

results are of particular interest to us because of their biological implications: DNAP pausing

generally has both DNAP-based and sequence-dependent components, and can be ablated

using sequence context, chemical, or temperature-based means [19,26,27]. This significant

improvement in both timing accuracy and parameter estimation suggest that decreasing

DNAP pausing through these or other methods could be a useful approach to improve the

accuracy of molecular recording systems.

Influence of experimental design on algorithm performance

We observe that errors in tuning parameter estimation in our simulated reaching experiments

are not always normally distributed; rather, in a number of neurons, there appear to be several

preferred directions that alignments converge upon, including peaks at a neuron’s anti-tuned
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direction (Fig 3C). This effect persists, although less prominently, when using a non-pausing

DNAP (S4 Fig). This is useful to consider given the underlying center-out task in our experi-

ment, where subjects reach in a direction then immediately make a reach back to the center,

i.e. the opposite direction of the initial reach. It seemed possible that pathologic alignments

could arise from this repetitive temporal structure, where alignments to tuned and anti-tuned

templates are effectively identical save for a time-lag. Disrupting this structure through appro-

priate experimental design could lead to improved accuracy.

We generated a dataset composed of shuffled 2-second-long patches of neural and kinetics

data such that the temporal structure of the original dataset was disrupted. We find that shuf-

fling the data can both reduce selection of anti-tuned preferred directions (Fig 4A and 4B), as

Fig 4. Effects of shuffled dataset on alignment accuracy. Evaluation of synthetic shuffled dataset on alignment performance. Preferred

directions were determined using the best alignment to a set of 8 estimates of neural activity. True neural preferred directions were

determined using a generalized linear model trained on x- and y-direction hand velocity. A) Histograms of algorithm-determined preferred

directions of 4 selected neurons using the original dataset. Histograms represent relative frequencies over 100 simulated DNA-based

records. Dashed line indicates true neural preferred direction. B) Histograms of algorithm-determined preferred directions of 4 selected

neurons using a dataset consisting of random 2-second patches of the original dataset. Histograms represent relative frequencies over 100

simulated DNA-based records. Dashed line indicates true neural preferred direction. C) Average absolute error in estimating the preferred

directions of 4 selected neurons using either the original or shuffled dataset. Error bars represent bootstrapped 95% confidence intervals

over 100 trials.

https://doi.org/10.1371/journal.pcbi.1005483.g004
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well as decrease overall tuning estimation error (Fig 4C). However, it is important to note that

the shuffling scheme we describe here does not improve alignment for all neurons, and can

even disrupt alignment of neurons that are otherwise predicted correctly (S5 Fig). While this

argues against naïve shuffling as a universal strategy, it further demonstrates the effect of an

experiment’s temporal structure on alignment accuracy. These findings suggest that experi-

mental design cognizant of alignment-based analysis can improve robustness to pathologic

alignments, and thus the feasibility of molecular recording-type experiments.

Discussion

We describe an algorithm that generates estimates of nucleotide incorporation times for a

molecular recording system, along with estimates of parameters that characterize the underly-

ing recorded system. We improve upon naïve estimates of these values by incorporating

observed experimental data along with a probabilistic description of recorder properties. We

apply the algorithm to simulated neuroscience experiments, demonstrating the viability of this

algorithm (and the general molecular recording scheme) in a number of scenarios. Our find-

ings suggest that single-strand molecular recording is statistically feasible in neuroscience con-

texts. Further, by introducing experimental information into our estimation techniques, we

improve upon previously-understood limits on the technique. Single-strand recording prom-

ises to be a useful technique in neuroscience and biology in general for a number of reasons;

establishing a statistical framework for the interpretation of those signals is an important step

towards the realization of this technology.

This algorithm is computationally novel, as it incorporates dynamic programming, proba-

bilistic inference, and biologic constraints into a single framework. We modify existing DTW

approaches to signal alignment, constraining our action space to physiologically possible

actions (e.g. two nucleotides cannot be incorporated at the same time), as well as incorporating

beliefs about DNAP kinetics. These constraints have a convenient property in that they restrict

our action space to a set that can largely be calculated independently, allowing for paralleliza-

tion of a dynamic algorithm. While the algorithm maintains the same approximate time com-

plexity of traditional DTW (worst-case of O(NT)), its inherent parallelism can lead to

dramatically decreased runtime.

Further, while not discussed at length here, if recording start or end times are known, vari-

ance of incorporation times scale with
ffiffiffiffi
N
p

assuming a Poisson-like DNAP. Path-constraint

techniques could take advantage of this property, reducing effective worst-case time complex-

ity to O N1
2T

� �
and allowing further speed increases [10,28]. These speed improvements are of

particular importance due to the inherently large scale of molecular recording: if we want to

record from hundreds-of-thousands to millions of neurons, the computational techniques

necessary to interpret these signals should scale well.

To this end, there are a number of different biological methods that could be used to explic-

itly mark the start or end of molecular recorder output, e.g. by delivered analyte pulses or by

optogenetic manipulation. These methods could also be used to provide time-coding through-

out an experiment, making timing inference substantially easier. Similarly, designing behav-

ioral tasks to modulate neural activity at levels significant enough to be detected, but low

enough not to alter behavior, e.g. temporally modulating the brightness of visual stimuli, could

be used as an implicit time-coding technique. These experimental methods for encoding tim-

ing information into molecular records can work alongside algorithmic alignment methods to

improve both timing and parameter inference.

This work also has implications on current work in the biological space. It is useful to

understand the effects of DNAPs with different behaviors (e.g. speed, error rate) on the ability
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to record information, both for our application to molecular recorders, as well as for other

approaches that aim to record continuous signals intracellularly. Understanding the general

space where recorders work (or fail) is useful not only for determining what kinds of DNAPs

we need to find or design, but also for determining which kinds of phenomena might be ame-

nable to study using molecular recorders.

Biological feasibility and implementation

There are many ways in which existing DNAPs already satisfy the requirements necessary for

a single-strand biological recorder, e.g. processivity, speed, calcium-sensitive error rates, and

pausing kinetics [19,26,29]. The one property that we have not observed in DNAPs is a cal-

cium-sensitive error rate at physiological concentrations [20]. Further, natural DNAPs tend to

be either fast or error-prone, but not generally both; the highest error rates we see in high-

incorporation-rate DNAPs are at the low end of what we simulate here [21,30]. In order to

develop practical molecular recorders, we will both need to understand how to substantially

increase DNAP error rates in processive, high-speed DNAPs, as well as develop a scheme to

make DNAP error rates calcium-sensitive at physiologically relevant scales. Alternatively,

schemes that do not rely on calcium-tuned error rates, but rather modulate other DNAP prop-

erties via calcium, may provide an easier way forward.

Caveats

Need for good predictive models. The success of alignment approaches in this context is

dependent on having estimates of neural activity that span the classes of neurons we are inter-

ested in recording. That is, we generally have to know the class of phenomenon we are looking

for before we are able to look for it. For the recording of more well-characterized brain areas,

e.g. V1 or M1, we have at least a general knowledge of the neural response to stimulus or

behavior. In these systems, molecular recording would allow for characterization of large pop-

ulations of neurons based on existing models of neural behavior. Further, ongoing refinement

of these models promises to more accurately model neural activity in more areas of the brain,

which in turn will increase the applicability of these model-based alignment approaches. For

less-well understood tasks however, we run the risk of biasing our recordings toward currently

understood neuronal behaviors. While our approach is useful in neuroscience paradigms

where we are seeking to classify neurons according to known models or learn their tunings

under an assumed model, it does not obviate the need for prior-free exploration of unknown

behaviors. This technique will not necessarily allow us to discover unheard-of neural behav-

iors; rather, it allows us to sense neural activity from neurons we already somewhat understand

while greatly increasing the scale at which we study them.

Need for tailored experimental design. We have also shown that the success of temporal

alignment for molecular recording relies heavily on experimental design. That is, many experi-

mental paradigms may need to be reworked in order to be compatible with this type of analy-

sis, and some may be entirely incompatible with these techniques. Our work provides some

general guidelines for experimental design for experiments that utilize molecular recorders. In

particular, it suggests that experiments can be manipulated to create unique signatures in their

resulting records, given some set of likely neural tunings. As a quality control mechanism,

stimulus delivery (or subject activity) should be designed so as not to induce oscillation or

other regularities. In addition to designing experiments to avoid pathologic sequences, these

experiments could be actively designed to provide unique patterns or time-codes in order to

intentionally improve alignment accuracy. Through engineering input data in this way, we can
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increase the accuracy of this type of alignment algorithm, allowing for more accurate experi-

ments using molecular recorders.

Implications of work

While many caveats apply to this work, and to the prospect of molecular recorders in general,

the results described here are helpful on a number of fronts. On a technical side, we describe a

DTW-class algorithm that applies generally to point processes with variable temporal index-

ing. The algorithm is designed to allow probabilistic interpretation of its output, and can be

used to find maximum a posteriori alignments to a set of known templates. We provide a

highly-parallelized implementation of this algorithm which leverages advances in asynchro-

nous computing techniques. With respect to molecular recorders, we provide a framework for

interpretation of recorder output in the face of uncertain recording times. We also provide

guidance to the ongoing research that looks to engineer DNAPs for this kind of recording. Per-

haps most importantly, we have shown that, should a DNAP with certain properties be devel-

oped, we can provide temporal indexing to its output and capture neural behaviors using a

molecular recording approach. While this is purely a simulation study, our work sets con-

straints and goals for the development of DNAPs for massive-scale neural data recording, and

outlines experimental scenarios for their successful use.

Methods

Algorithm methods

This technique is intended to align a DNA-based recording with no temporal indexing to a

longer, time-indexed estimation of calcium activity, a template. It assumes the DNA sequence

as a binary “error”/”no error” code, then assesses the similarity of that sequence to a discrete-

time continuously-valued estimate of neural activity, the template, via alignment. We use a

novel DTW-class algorithm to perform this alignment, incorporating beliefs about DNAP

kinetics to limit the space of potential actions.

Generative model. We assume some unknown discrete calcium signal, C = c1,. . .,cT,

where ct 2 [cmin, cmax] is the local calcium concentration at some time t, and T is the number

of time-indexed samples included in the recording window. We also have a sequence of

correctly- and incorrectly-copied nucleotides, D = d1,. . .,dN, dn 2 {0,1}, where N is the number

of nucleotides, dn = 1 denotes a mismatch (error) at position n, and dn = 0 denotes a nucleotide

with a correct Watson-Crick basepair.

The individual elements of D have incorporation times T = τ1,. . .,τN where τn 2 {1,. . .,T}

and τn< τn+1 (Fig 5A). We can impose a prior over recording start times P(τ1 = t) = πt; we use

a uniform prior over an interval 0; T
4

� �
here to generate data. For 1< n� N, τn = τn-1 + U,

where U is drawn from a distribution representative of polymerase kinetics. That is, the distri-

bution of U is the distribution of times between nucleotide incorporations. dn is then drawn

from a distribution Pðdn ¼ 1Þ ¼ f ðctn
Þ, where f(�) is the calcium-dependent error function of

the polymerase, and ctn
is the calcium concentration at incorporation time τn (Fig 5B).

Of C, D, and T, we only observe D. We wish to infer C and T using the strand D and

observed experimental data. To do this, we generate an approximation of C, C
�
¼ c�

1
; . . . ; c�T ,

using a model of neural activity that estimates neural calcium response from observed experi-

mental data. We use C� as a template for the alignment of D. This alignment allows us to esti-

mate the temporal indexing T, which can be used to estimate C along with underlying system

parameters.
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Creation of similarity matrix. We generate a similarity matrix A between C� and D such

that An;t ¼ lnPðdnjc�t ; tn ¼ tÞ. That is, An,t is the log-likelihood of dn being written at time t
given the estimated calcium concentration c�t and DNAP error tuning f(�). Thus, A represents

local similarity between each element of D and C�.

Matrix traversal. After we have generated a local similarity matrix A, we then want to

find the path T�, an estimate of T. To generate this estimate, we find a T� which traverses A

with maximum likelihood, visiting each n 2 {1,. . .,N} only once, given A and the distribution

of U. We utilize a dynamic programming approach to estimate the likelihoods of paths

through A, utilizing the physical requirement τn< τn+1 to constrain our step pattern, i.e. a

nucleotide cannot be incorporated earlier in time than its predecessor on the strand, and the

Markov assumption P(τn|τn−1,. . .,τ1) = P(τn|τn−1). This approach, similar to other dynamic

time warping algorithms, determines the most-likely path from some starting point to position

An,t by calculating the most-likely paths to some set of penultimate positions An−1,. . . and the

accumulated likelihood of those paths, then selecting the path from An−1,. . . to An,t that gives

the highest accumulated likelihood [9,31].

We initialize with log P(τ1 = t) = A1,t. At this step, a prior representing knowledge of when

reactions likely begin can be incorporated, but is not used here. We then evaluate a likelihood

function of some sequence τ1,. . .,τn that resembles traditional dynamic alignment cost

Fig 5. Overview of data generative model. A) Stochastic generation of T. The incorporation time of a nucleotide,

τn, is defined as τn-1 + U where U is a random variable with a distribution that describes the kinetics of the DNAP

being used. B) Stochastic generation of errors. At each incorporation time τn, an error is generated with probability

fðCtn
Þ. Errors in the nucleotide strand are represented by blue regions, correct incorporations are represented by

orange regions.

https://doi.org/10.1371/journal.pcbi.1005483.g005
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functions such that:

lnPðtn ¼ tÞ ¼ An;t þmaxt02t� k;...;t½ð1 � oÞlnPðtn� 1 ¼ t0Þ þ o � lnPðU ¼ t � t0Þ� ð1:2Þ

t0n;t ¼ argmaxt02t� k;...;t½ð1 � oÞ lnPðtn� 1 ¼ t0Þ þ o � ln ðPðU ¼ t � t0ÞÞ� ð1:3Þ

where t0n;t is the most likely time dn−1 was written given τn = t, ω is a parameter that adjusts the

relative strength of local similarity, previous similarity, and polymerase kinetics on likelihood,

and k defines how “far back” we choose to look for the best previous step. Effectively, for

any (n, τn), we calculate the most likely ðn � 1; t0n;tnÞ. We evaluate P(τn = t) for all pairs (n, τn),
n 2 {1,. . .,N} and τn 2 {1,. . .,T}. For each possible (n,t), we store P(τn = t) and t0n;t .

Once P(τn = t) has been calculated for each (n,t), we can reconstruct the most likely align-

ment T�. We find the most likely end point τN = argmaxt20,. . .,T P(τN = t), i.e. we select the path

T� that ends at the most likely τN. We then set tN� 1 ¼ t0N;tN and so on for τN−2,. . .,τ1. This algo-

rithm is implemented in pseudocode in Fig 6.

Fig 6. Pseudocode for alignment algorithm.

https://doi.org/10.1371/journal.pcbi.1005483.g006
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It is useful to note here a structural relationship between our algorithm and a DTW step-

pattern variant proposed by Itakura [32,33]. Both algorithms only use data from An−1,1. . .T to

calculate An,t, which implies that the calculations for any two elements in a row are indepen-

dent; we extend the Itakura action space and remove several other restrictions from potential

paths. The Itakura step pattern is intended as a path-bounding scheme; while we do not imple-

ment bounding explicitly here, it is performed implicitly with our choice of k. Thus, the algo-

rithm as described is an approximation of the true maximum a posteriori solution, as we do

not evaluate the entire solution space. We also inherit several attractive attributes with respect

to parallelism from Itakura, which we discuss later.

Parallelization of alignment algorithm. We have described an algorithm with worst-case

time complexity O(NTk) and k threads that can be operated on concurrently, i.e. all operations

in the vector addition (1 − ω)p + ωq can be performed independently. In comparison, tradi-

tional DTW is worst-case time complexity O(NT) for our purposes, and has 3 threads that can

be operated on concurrently. To calculate an element Sn,t using our algorithm, we only require

values from row n − 1, indicating that the computations for Sn,t, t ∊ 1,. . ., T are independent. It

follows that that we actually have Tk threads that can be operated on concurrently, i.e. the

operation (1 − ω)p + ωq for each Sn,t, rather than k. To implement this, we pre-generate q and

p for each t ∊ 1,. . ., T; the algorithm can then be carried out for each t concurrently for a given

n. While algorithm complexity does not change, we improve runtime by a factor of up to T via

parallelization.

Maximum-likelihood template selection. In order to generate an accurate estimate C�,

we need to know how a neuron is tuned to its inputs. As we do not know this a priori, we

instead generate multiple candidates C
y

m from some set of possible neural tunings and let C�

be the estimate C
y

m with the most-likely alignment to the data D. There are time-indexed

experimental variables X = x1, . . ., xT, and a set of tunings Θ = {g1(�), . . ., gM(�)}, where

C
y

m
¼ gmðXÞ. Simply, Θ enumerates the possible ways we believe a neuron transforms experi-

mental covariates (e.g. movement, delivered stimuli) into activity. We now select the tuning

gm(�) that provides the most likely alignment to our observed data D. We do this by aligning

the observed D with each C
y

m
, selecting C

�
¼ argmaxCy2fg1ðXÞ;...;gM ðXÞg

PðT�jD;CyÞ, the intui-

tion being that D should most closely resemble the signal that generated it. Once we have

selected a most-likely tuning from the ensemble Θ and alignment T�, we then estimate actual

neural tuning directly from aligned DNA.

Approximations. We significantly reduce the computational requirements of the algo-

rithm by using downsampled approximations of D and C
y

m
. To abstract our data, we first deci-

mate C†, effectively taking a binned average with bin size LC. We then bin D into bins of size

LD, letting dn0 ¼
XDðiþ1Þ

n¼Di

dn be the total number of errors in bin n0.

We then align the downsampled C
y

m
and D using the algorithm described above, altering

the cost-function for An,t:

An0 ;t0 ¼ logPðdn0 jc
y

m;t0 ; tn0 ¼ t0Þ ð1:4Þ

where dn0 � BinomialðLD; feðc
y

m;t0 ÞÞ. Through this, we generate an approximate most-likely

alignment T0a. Ta is a low-resolution alignment; we recover a full-nucleotide alignment T0 by

interpolating between points on T�a.
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Experimental methods

DNAP parameter evaluation. We generated an initial stimulation trace I by concatenat-

ing 400 periods of stimulation, length 5s with intensity Ie ~ Uniform(0, 1). We then simulate

neural firing rate λ, λt =mIt + λmin, with m = 0.05 spikes �ms−1 � unit of stim−1 and λmin = 0

spikes �ms−1, and generated spiking activity st ~ Bernoulli(λt). We then generate a calcium

trace C by convolving spikes with an exponential filter with decay τ = 200 ms. We can then cal-

culate the effective relationship C/mcaI. We also generate an accurate estimate of calcium,

C�, by convolving λ with the same exponential filter.

DNAP kinetic parameters were chosen to reflect DNAP extension and pausing behavior

used to generate the data. These parameters, other than calcium response, are generally reflec-

tive of known DNAPs [19,34]. We generate a DNA-based record D from C as above, using the

“Base Parameter Evaluation DNAP” in Table 1. We then align D to C� using the algorithm

parameters for “Parameter Evaluation Experiments” in Table 2. Timing accuracy for each

alignment is evaluated as above. Slope accuracy is evaluated by first calculating the error-tun-

ing curve over the range of C, transforming the error-tuning curve with f−1(�), then calculating

the slope of the resulting calcium-tuning curve, m�ca. We report the ratio
m�ca
mca

. 95% confidence

intervals were generated by bootstrapping over alignment results for 50 DNA strands at each

reported point.

Center-Out reaching experiments. We obtained kinetic and neural activity records from

Flint 2012 via the DREAM database, using data from Subject 1 [25]. We preprocess the data by

concatenating all 194 trials, discarding data where hand velocity either exceeded 0.4 m/s or fell

below 0.05 m/s, and truncating traces to 260 seconds. We generated a calcium trace C by

convolving spikes with an exponential filter with decay τ = 200 ms. To generate DNA-based

Table 1. DNAP simulation parameters.

Center-Out DNAP “Optimized” Center-Out

DNAP

Base Parameter Evaluation DNAP

Error function and

parameters

f(�) Rmax �
1

1þexp½bðC� C0Þ�
Rmax �

1

1þexp½bðC� C0Þ�
Rmax �

1

1þexp½bðC� C0Þ�

Rmax 0.5 0.5 0.5

b 1 1 1

C0 0 0 0

Kinetic distribution and

parameters

U (Distribution) pause� Exp(λp) + (1 − pause)

Gamma(α, β)

Gamma(α, β) pause� Exp(λp) + (1 − pause)

Gamma(α, β)

Pause

(Distribution)

Binomial(ppause) N/A Binomial(ppause)

λp 2s N/A 2s

α 1 1 1

β 10ms 10ms 10ms

ppause 0.001 N/A 0.01

# of basepairs 12,000 12,000 10,000

https://doi.org/10.1371/journal.pcbi.1005483.t001

Table 2. Default alignment parameters.

k (ms) ω Ca2+ downsample rate (ms/sample) DNA downsample rate (nt/sample)

Parameter Evaluation Experiments 2000 1

100
50 100

Center-Out Experiments 2000 1

240
50 25

https://doi.org/10.1371/journal.pcbi.1005483.t002
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signals, we first determine incorporation times T by drawing nucleotide incorporation times

from distribution U as described in Table 1, using either the “Center-Out” or “Optimized

Center-Out” parameters. We then determine whether each nucleotide was a correct or incor-

rect incorporation as dn � Bernoulliðf ðCtn
ÞÞ, using the f(�) described in Table 1.

We select 8 candidate preferred directions, evenly spaced on [0, 2π], as the parametrization

Θ for our estimates of neural activity. We calculate expected firing rates λ0m for each of these

candidate preferred directions, using recorded hand velocities and a cosine-tuning model, set-

ting minimum and maximum firing rates to values representative of the recorded population;

we set λmin = 10 spikes � s−1 and λmax = 150 spikes � s−1, which generally represents the observed

neural population. We convolve λ0m with an exponential kernel described above to generate

estimated calcium C
y

m.

The generated DNA strand D is aligned to each estimated calcium trace C
y

m, using algo-

rithm parameters (ω, k, and downsample rates) as described in Table 2. The most likely align-

ment from these is selected for analysis. We calculate RMSD for a given alignment as

1

N

XN

n¼1

ðTn � T�nÞ
2

" #1=2

. We evaluate the preferred reach direction of the neuron directly from

neural data using standard generalized linear modeling techniques, fitting x- and y-

components of reach velocity to 1ms-binned spike counts. We use this direct preferred direc-

tion as a ground truth for evaluating algorithm performance. For the aligned DNA-based rec-

ords, we evaluate the estimated preferred direction of the neuron using a generalized linear

model, fitting reach instantaneous velocity to error counts at each nucleotide incorporation

time.

For each analyzed neuron, we generate 100 DNA-based records, align each record to each

estimated calcium trace, and evaluate timing and parameter estimates using the maximum-

likelihood alignment for each record. Confidence intervals for error estimates are generated by

bootstrap.

For all-neuron analysis, 100 strands were generated and aligned as above. Neurons were fil-

tered based on average firing rate> 20 spikes/s and a McFadden’s pseudo-R2 > 0.05, calcu-

lated for a Poisson generalized linear model fitting x- and y- hand velocities to spike rate.

Timing data. For each trial, a strand of given length is aligned to a 2,000s calcium trace

without downsampling. The total time elapsed for each alignment was recorded. 10 trials were

performed for each data point, averages are presented. Algorithms were implemented in

MATLAB (MathWorks Inc.), and evaluated on an Intel i7-3520M 2.9GHz CPU and an NVidia

NVS 5200M discrete graphics card.

Supporting information

S1 Fig. Relative algorithm performance. A) Schematic of considered algorithms. Dark purple

elements indicate the current element being calculated, light purple elements are elements still

to be computed. Grey elements represent previously computed results needed to evaluate the

current element. Traditional DTW consists of element-wise computation of an accumulated

cost function, iterated over both dimensions of the cost matrix. The looped version of our algo-

rithm implements element-wise computation of our modified accumulated cost function, also

iterated over both dimensions of the cost matrix. Our vectorized algorithm calculates the accu-

mulated cost functions of all elements along a given dimension, and iterates over the other

dimension. B) Computational speed of the GPU-implemented algorithm relative to other

implementations. We compare to a looped implementation of our algorithm, an implementa-

tion of traditional DTW, and our optimized algorithm using on a single CPU core. We
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evaluate computation time during the alignment of a single DNA input of a given length to a

constant-length (2,000 second) template; values plotted represent average over ten trials.

Dashed line indicates GPU-implemented performance.

(DOCX)

S2 Fig. Using optimal templates for alignment. Timing and neural parameter estimation

when using either the best alignment from a set of 8 templates generated from potential neural

preferred directions on [0,2π] (blue), or from a template generated using the true neural pre-

ferred direction (orange). Results are shown for each of the three individual neurons analyzed

in the main text. Histograms represent distribution over 100 trials. A) Distribution of timing

errors for DNA-based records when aligned to the indicated template. B) Distribution of esti-

mated neural preferred directions when aligned to the indicated template. Dashed lines indi-

cate the true neural preferred direction, estimated from neural data.

(DOCX)

S3 Fig. Alignment accuracy over a neural population. Cumulative fractions of the neural

population that have alignment statistics at or below a given cutoff. Traces are provided for

both the entire dataset (blue) and a subset of neurons with average firing rate greater than 20

spikes/s and a model McFadden’s pseudo-R2 > 0.05 (purple). A) Proportion of population

with average trial RMSD less than indicated value. B) Proportion of population with median

trial RMSD less than indicated value. C) Proportion of population with absolute error in esti-

mated preferred direction |θ – θ�| less than indicated value.

(DOCX)

S4 Fig. Plausible vs. optimal DNAPs in alignment. Timing and neural parameter estimation

when using “natural” (blue) or “optimized” (orange) pausing DNAPs (see Methods). Results

are shown for each of the three individual neurons analyzed in the main text. DNA-based rec-

ords were generated using the indicated DNAP and aligned to a set of 8 templates generated

from potential neural preferred directions on [0,2π]; most-likely alignments were used to gen-

erate timing and tuning error. Histograms represent distribution of values over 100 trials. A)

Distribution of timing errors for DNA-based records generated using the indicated DNAP. B)

Distribution of estimated neural preferred direction for DNA-based records generated using

the indicated DNAP. Dashed lines indicate the true neural preferred direction, estimated

directly from neural data.

(DOCX)

S5 Fig. Shuffled datasets offer heterogeneous effects for alignment accuracy. Evaluation of

synthetic shuffled dataset on alignment performance for a set of neurons that do not exhibit

improvement using a shuffled dataset. Preferred directions were determined using the best

alignment to a set of 8 estimates of neural activity. True neural preferred directions were deter-

mined using a generalized linear model trained on x- and y-direction hand velocity. A) Histo-

grams of algorithm-determined preferred directions of 5 selected neurons using the original

dataset. Histograms represent relative frequencies over 100 simulated DNA-based records.

Dashed line indicates true neural preferred direction. B) Histograms of algorithm-determined

preferred directions of 5 selected neurons using a dataset consisting of random 2-second

patches of the original dataset. Histograms represent relative frequencies over 100 simulated

DNA-based records. Dashed line indicates true neural preferred direction. C) Absolute error

in estimating the preferred directions of 5 selected neurons using either the original or shuffled

dataset. Error bars represent bootstrapped 95% confidence intervals.

(DOCX)
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