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Abstract. The theory of complex dimensions of fractal strings developed by
Lapidus and van Frankenhuijsen has proven to be a powerful tool for the s-

tudy of Minkowski measurability of fractal subsets of the real line. In a very

general setting, the Minkowski measurability of such sets is characterized by
the structure of corresponding complex dimensions. Also, this tool is particu-

larly effective in the setting of self-similar fractal subsets of R which have been

shown to be Minkowski measurable if and only if they are nonlattice. This
paper features a survey on the pertinent results of Lapidus and van Franken-

huijsen and a preliminary extension of the theory of complex dimensions to

subsets of Euclidean space, with an emphasis on self-similar sets that satisfy
various separation conditions. This extension is developed in the context of box-

counting measurability, an analog of Minkowski measurability, which is shown
to be characterized by complex dimensions under certain mild conditions.

1. Introduction. Let A be a bounded set in Euclidean space Rm. We address the
box-counting content of A (see Definition 2.7), an analog of Minkowski content (see
Definition 2.2) given by

B(A) := lim
ε→0+

NB(A, ε−1)

ε−D
,

where D is the box-counting dimension of A and NB(A, ε−1) is the maximum num-
ber of disjoint closed balls with centers a ∈ A and radii ε > 0. If B(A) exists in
(0,∞), then A is said to be box-counting measurable; see Definition 2.7.

Self-similar sets in Rm provide the key setting for this paper. Let Φ = {ϕj}Nj=1

denote a self-similar system, an iterated function system in which each ϕj is a
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contracting similarity acting on Rm. Also, let F denote the unique nonempty
compact set satisfying F = ∪Nj=1ϕj(F ), i.e., F is a self-similar set; see [7] as well
as Definition 2.10. If the scaling ratio of ϕj is denoted by rj and there are some
positive real number r and positive integers kj such that rj = rkj , then Φ and F are
said to be lattice. Otherwise, Φ and F are nonlattice; see Definition 2.26. Although
the terminology is not used by Lalley in [9], the box-counting measurability of self-
similar sets is studied therein. Also, some of the results in [9] are used in [20], the
new results of which are presented for the first time in Section 4 of this paper.

A conjecture of Lapidus made in the early 1990s claims that, under appropriate
conditions, a self-similar set is Minkowski measurable if and only if it is nonlattice.
Such a conjecture was proven for subsets of the real line, under assumptions in-
cluding that the self-similar system in question satisfies the open set condition (see
Definition 2.16 as well as [3,7,21]) and the Minkowski dimension D of the attractor
satisfies 0 < D < 1 (see the work of Falconer in [2] and Lapidus and van Frankenhui-
jsen in [17], as well as Theorem 3.26 in the present text). The conjecture of Lapidus
asserts that the statement holds in Rm for m ≥ 2 and self-similar sets of Minkowski
dimension D where m− 1 < D < m. Gatzouras was able to prove that if a set F is
a nonlattice self-similar set then F is Minkowski measurable; see [6]. The converse
remains an open problem from which a substantial amount of active research has
stemmed. For instance, see [8, 12, 13, 19]. An analog of Gatzouras’ result in terms
of box-counting measurability for self-similar subsets of Rm with m ≥ 1 is provided
by Theorem 2.28 (a restatement of Theorem 1 in [9]). This theorem is also a key
motivation for Corollary 5.5 below and other results of this paper.

Minkowski content has attracted attention due in part to its connection with
the (modified) Weyl-Berry conjecture as proven in the context of subsets of R by
Lapidus and Pomerance in [14]. This result establishes a relationship between the
Minkowski content of the boundary of a bounded open set in R and the spectral
asymptotics of the corresponding Laplacian. In turn this led to a reformulation
of the Riemann hypothesis as an inverse spectral problem associated with bounded
open subsets of R (see [11]) and the development of the theory of complex dimensions
of fractal strings; see [17] as well as Section 3 below.

Also in [17], Lapidus and van Frankenhuijsen use complex dimensions to ex-
pand upon the lattice/nonlattice dichotomy of certain self-similar sets in R beyond
Minkowski measurability. A fractal string is a nonincreasing sequence L = (`j)

∞
j=1

of positive real numbers which tend to zero; see Definition 3.1. The set of complex
dimensions of L, denoted by DL(W ), is the set of poles of a meromorphic extension
of the Dirichlet series

∑∞
j=1 `

s
j defined for suitable region W ⊆ C; see Definition 3.3.

This Dirichlet series is called the geometric zeta function of L, and its meromorphic
extension to any suitable region W is denoted by ζL.

Given a bounded open subset of R denoted by Ω with infinitely many connect-
ed components, the lengths of these components constitute a fractal string. The
complex dimensions of this fractal string are used, for instance, to characterize the
Minkowski measurability of ∂Ω, the boundary of Ω; see Theorem 3.11 and [17]. In
the case where ∂Ω is a self-similar set, the complex dimensions are given by the
complex solutions of the corresponding Moran equation (as in (1) below). That is,

DL ⊆ Sr :=
{
s ∈ C : 1−

∑N
j=1rj

s = 0
}
,

where the scaling ratios of the self-similar system that define ∂Ω are given by
the scaling vector r = (rj)

N
j=1. Note that, by Moran’s Theorem (Theorem 2.22,
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see also [3, 7]), the Minkowski dimension of ∂Ω in this case is the unique posi-
tive real number in Sr. Moreover, deep connections between the structure of the
complex dimensions of lattice and nonlattice self-similar sets in R, expanding the
lattice/nonlattice dichotomy in this setting, are developed in [17, Chapter 3]. In
particular, simultaneous Diophantine approximation is used therein to tremendous
effect to explore the intricate structure of such complex dimensions.

In the present paper, we make use of many of the results of Lapidus and van
Frankenhuijsen in [17] in terms of the complex dimensions associated with NB(A, ·),
the box-counting function of a given bounded set A in Rm (not just R). In partic-
ular, by making use of the box-counting fractal strings and developed by Lapidus,
Žubrinić, and Rock in [16] (see Definition 4.1), we show that the box-counting
measurability of A is characterized by the structure of the corresponding complex
dimensions. This result is presented in Corollary 5.5 as an analog of [17, Theorem
8.15] (which appears as Theorem 3.11 below). Additionally, we show that under
mild conditions the box-counting content is given by

B(A) =
res(ζL(s);D)

D
,

where D is the box-counting dimension of A (see Definition 2.5), L is the box-
counting fractal string constructed using NB(A, ·), and res(ζL(s);ω) is the residue
of ζL at ω ∈ W for a suitably defined W . Also, in terms of self-similar sets in
Rm that are either strongly separated or satisfy either the open set condition (see
Definitions 2.19 or 2.16, respectively), we show that the corresponding complex
dimensions are often given by elements of Sr; see Corollaries 4.10 and 4.15.

Various attempts to extend the theory of complex dimensions to sets in Rm have
been made. For instance, the approach taken in [12, 13] involves similarly defined
complex dimensions and the Minkowski measurability and tilings of self-similar sets
that satisfy the open set condition along with certain a nontriviality condition, but
this approach does not extend to other types of bounded sets in Rm. In [15], a
theory of complex dimensions is developed in the context of distance and tube zeta
functions associated with arbitrary bounded sets in Rm. However, at the time of
writing this paper, the results presented therein have not been used to provide an
extension of lattice/nonlattice dichotomy to self-similar sets in Rm.

The structure of the paper is as follows. In Section 2, we summarize many
of the classical results on Minkowski/box-counting dimension and self-similar sets,
including a discussion of simultaneous Diophantine approximation and its connec-
tion to the lattice/nonlattice dichotomy. In Section 3, we summarize the results
on fractal strings and complex dimensions of [17] that motivate and are used to
prove the new results presented in later sections. In Section 4, the new results of
master’s thesis [20] pertaining to box-counting fractal strings of self-similar sets in
Rm under various separation conditions are presented along with a couple of key
examples. Section 5 concludes the paper with a discussion of a few results from the
master’s thesis [18], an application of which includes the criterion for box-counting
measurability presented in Corollary 5.5.

2. Preliminaries.

2.1. Dimensions and contents. The following notation and terminology are well-
known in the literature on fractal geometry.
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Notation 2.1. Let A ⊆ Rm and x ∈ Rm. Let d(x, A) denote the distance between
x and A given by d(x, A) := inf{||x − a||m : a ∈ A}, where || · ||m denotes the
usual m-dimensional Euclidean norm. The notation dm denotes the m-dimensional
Euclidean metric. For ε > 0, the open ε-neighborhood of A, denoted by Aε, is the
set of points in Rm within ε of A given by Aε := {x ∈ Rm : d(x, A) < ε}. Also,
m-dimensional Lebesgue measure is denoted by volm.

Definition 2.2. The upper and lower Minkowski dimensions of a bounded set
A ⊆ Rm are respectively defined by

dimMA := m− lim inf
ε→0+

log volm(Aε)

log ε
, and dimMA := m− lim sup

ε→0+

log volm(Aε)

log ε
.

When dimMA = dimMA, the corresponding limit exists and the common value,
denoted by dimM A, is called the Minkowski dimension of A. In the case where
DM = dimM A exists, the upper and lower Minkowski contents of A are respectively
defined by

M ∗(A) := lim sup
ε→0+

volm(Aε)

εm−DM
, and M∗(A) := lim inf

ε→0+

volm(Aε)

εm−DM
.

If M ∗(A) = M∗(A), the corresponding limit exists and the common value, denoted
by M (A), is called the Minkowski content of A. If 0 < M∗(A) = M ∗(A) < ∞,
then A is said to be Minkowski measurable.

A well-known equivalent formulation of Minkowski dimension is box-counting
dimension. As noted in [3] and elsewhere, the types of “boxes” used in the compu-
tation of box-counting dimension can vary. However, in this paper (as in [16, 20]),
only the specific notion of box-counting function defined below is considered.

Definition 2.3. Let A be a bounded subset of Rm. The box-counting function of A
is the function NB(A, ·) : (0,∞)→ N ∪ {0} where NB(A, x) denotes the maximum
number of disjoint closed balls with centers a ∈ A and radii x−1 > 0.

Remark 2.4. Note that for ε > 0, NB(A, ε−1) denotes the maximum number
of disjoint closed balls with centers a ∈ A and radii ε. Although it may seem
unnatural to define the box-counting function in terms of x = ε−1, this notation is
used throughout [16] and [20] in order to make use of the results of [17], as done in
Section 4 below. Hence, the convention is adopted here as well.

Definition 2.5. For a bounded set A ⊆ Rm, the lower and upper box-counting
dimensions of A, denoted by dimBA and dimBA, respectively, are given by

dimBA := lim inf
x→∞

logNB(A, x)

log x
and dimBA := lim sup

x→∞

logNB(A, x)

log x
.

When dimBA = dimBA, the corresponding limit exists and the common value,
denoted by dimB A, is called the box-counting dimension of A.

The following theorem is a classic result in dimension theory.

Theorem 2.6. Let A ⊆ Rm. Then, when either exists, dimM A = dimB A.

The terminology box-counting content does not seem to be used elsewhere in the
literature. However, the concept (see Definition 2.7) is a key component of [9] and
allows for content to be studied in the context of box-counting functions. Such an
approach is central to [20], the new results of which are presented and expanded
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upon in Section 4 of this paper. Note that, at least intuitively, for a bounded set
A ⊆ Rm we have for some positive constant c that

volm(Aε) ≈ cεmNB(A, ε−1),

which is to say that the volume of the open ε-neighborhood of a set A is approx-
imately equal to the product of the maximum number of disjoint closed balls of
radius ε with centers in A and the “size” of each ball given by cεm.

Definition 2.7. Let A ⊆ Rm be such that DB := dimB A exists. The upper and
lower box-counting contents of A are respectively defined by

B∗(A) := lim sup
x→∞

NB(A, x)

xDB
and B∗(A) := lim inf

x→∞

NB(A, x)

xDB
.

If B∗(A) = B∗(A), the corresponding limit exists and the common value, denoted
by B(A), is called the box-counting content of A. If 0 < B∗(A) = B∗(A) < ∞,
then A is said to be box-counting measurable.

Example 2.8. For the closed unit interval [0, 1], it is readily shown that dimB [0, 1]
= dimM [0, 1] = 1 and that [0, 1] is Minkowski measurable with M ([0, 1]) = 1. It is
also true that [0, 1] is box-counting measurable. In this case, NB([0, 1], x) = [x/2]+1
where [y] denotes the integer part of y ∈ R and, hence, B([0, 1]) = 1/2.

2.2. The Hausdorff metric and self-similar sets. Self-similar sets can be con-
structed as fixed points of self-similar systems, as described in the next two defini-
tions. Let K denote the set of nonempty compact subsets of a Euclidean space Rm
equipped with dm.

Definition 2.9. Let A,B ∈ K. The Hausdorff metric dH is defined by

dH(A,B) := inf{ε > 0 : A ⊆ [B]ε and B ⊆ [A]ε},

where [A]ε denotes the closed ε-neighborhood of A.

It is a well-known fact that K equipped with the Hausdorff metric is a complete
metric space (see [4, 2.10.21]). Thus, Banach’s Fixed-Point Theorem applies and
establishes the existence of a unique attractor for Φ, see [5, §10.3].

Definition 2.10. A function ϕ : Rm → Rm is a contracting similarity on Rm if for
all x,y ∈ Rm and some 0 < r < 1, called the scaling ratio of ϕ, we have

dm(ϕ(x), ϕ(y)) = rdm(x,y).

A self-similar system on Rm is a finite collection Φ = {ϕj}Nj=1 of N ≥ 2 contracting
similarities on Rm. By a mild abuse of notation, a self-similar system Φ may be

interpreted as a map Φ : K → K defined by Φ(·) :=
⋃N
j=1 ϕj(·). The scaling

vector of Φ is given by r = (rj)
N
j=1 where, for each j = 1, 2, . . . , N , the contracting

similarity ϕj has scaling ratio rj . The attractor of Φ is the unique nonempty
compact set F ∈ K such that Φ(F ) = F . Also, a self-similar set is the attractor of
a self-similar system.

Contracting similarities have the following characterization (see Proposition 2.3.1
of [7]) which is used in the proof of Theorems 2.33 and 4.12 below.

Proposition 2.11. A function ϕ is a contracting similarity on Rm with scaling
ratio r if and only if ϕ(·) = rT (·) + t, where T is an orthonormal transformation,
t is a fixed translation vector, and 0 < r < 1.
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Figure 1. On the left, an approximation of the Sierpiński gasket
SG discussed in Example 2.14. On the right, an approximation of
the Quarter Fractal Q discussed in Example 2.15.

The following examples are revisited throughout the paper.

Example 2.12. The Cantor set C is the attractor of the self-similar system ΦC

on R given by the following pair of contracting similarities:

ϕ1(x) =
x

3
, and ϕ2(x) =

x

3
+

2

3
.

The scaling vector of ΦC is given by rC = (1/3, 1/3).

Example 2.13. Consider the self-similar system Φφ on R given by

ϕ1(x) =
x

2
+

1

2
, and ϕ2(x) =

x

2φ
,

where φ = (1 +
√

5)/2 (the Golden Ratio). The attractor of this self-similar system
is a Cantor-like set denoted by Aφ and its scaling vector is given by rφ = (1/2, 1/2φ).

Example 2.14. The Sierpiński gasket SG is the attractor of the self-similar system
ΦS on R2 given by the following three contracting similarities:

ϕ1(x) =
1

2
x, ϕ2(x) =

1

2
x +

(
1

2
, 0

)
, and ϕ3(x) =

1

2
x +

(
1

4
,

√
3

4

)
.

The scaling vector of ΦS is rS = (1/2, 1/2, 1/2). See Figure 1.

Example 2.15. Consider the self-similar set given by the attractor Q of the self-
similar system ΦQ = {ϕj}4j=1 on R2 given by

ϕ1(x) =
1

4
x, ϕ2(x) =

1

4
x +

(
3

4
, 0

)
, ϕ3(x) =

1

4
x +

(
3

4
,

3

4

)
, and

ϕ4(x) =
1

4
x +

(
0,

3

4

)
.

The scaling vector of ΦQ is r1 = (1/4, 1/4, 1/4, 1/4). The set Q is called the Quarter
Fractal. See Figure 1.

2.3. Separation conditions and Moran’s theorem. The open set condition
and the strong open set condition are common in the literature on self-similar sets.
For instance, see [3, 6–9,12,13,17,20,21].
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Definition 2.16. A self-similar system Φ = {ϕj}Nj=1 is said to satisfy the open set
condition if there exists a nonempty open set V ⊆ Rm such that ϕj(V ) ⊆ V for
each j and the images ϕj(V ) are pairwise disjoint. If, in addition, V ∩F 6= ∅ where
F is the attractor of Φ, then Φ is said to satisfy the strong open set condition.

The open set condition implies the strong open set condition, as shown in [21].

Theorem 2.17. A self-similar system satisfies the open set condition if and only
if it satisfies the strong open set condition.

Thus, it is sufficient to assume the open set condition holds in order to apply a
result of Lalley (which uses the strong open set condition, see [9, 10]), allowing for
the result obtained in Proposition 4.13.

Example 2.18. Each of the self-similar systems in Examples 2.12, 2.13, 2.14, and
2.15 satisfy the (strong) open set condition. Note, however, that an open set may
satisfy the open set condition but not the strong open set condition.

An even stronger separation condition is used to generate some of the results
presented in Sections 4 and 5.

Definition 2.19. Let Φ = {ϕj}Nj=1 be a self-similar system with attractor F . Then
Φ and F are said to be strongly separated if the images of F under the contracting
similarities ϕj are pairwise disjoint. If, in addition,

δ := sup{α : d(x,y) > α ∀x ∈ ϕj(F ),y ∈ ϕk(F ), j 6= k, j, k = 1, . . . , N}

is positive and finite, then Φ and F are said to be δ-disjoint.

Remark 2.20. Note that strongly separated self-similar systems satisfy the (strong)
open set condition and their attractors are always totally disconnected. Also, ΦC ,
Φφ, and ΦQ are strongly separated, but ΦS is not.

Definition 2.21. Let Φ be a self-similar system that satisfies the open set condition
with attractor F and scaling vector (rj)

N
j=1 where N ≥ 2. The similarity dimension

of F , denoted by Dr, is the unique nonnegative real solution of the Moran equation

N∑
j=1

rσj = 1, σ ∈ R. (1)

Theorem 2.22 (Moran’s Theorem). Let Φ be a self-similar system that satisfies
the open set condition with attractor F and scaling vector r = (rj)

N
j=1 where N ≥ 2.

Then dimM F = dimB F = Dr.

Remark 2.23. Given a scaling vector r = (rj)
N
j=1, we are also interested in the set

of complex solutions of (1) denoted by

Sr :=
{
ω ∈ C :

∑N
j=1r

ω
j = 1

}
. (2)

In particular, these values provide the complex dimensions associated with many of
the self-similar sets studied throughout this paper.

Example 2.24. By Theorem 2.22, the self-similar sets C, Aφ, SG and Q in Exam-
ples 2.12, 2.13, 2.14, and 2.15 have the following box-counting dimensions:

dimB C = log3 2, dimB Aφ = logφ 2, dimB SG = log2 3, and dimB Q = 1.
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In particular, the box-counting dimension of Aφ is given by the unique positive real
number Dφ = dimB Aφ = logφ 2 that satisfies the following equation:

1/2Dφ + (1/2φ)Dφ = 1,

where φ is the Golden Ratio. The approximation Dφ ≈ .77921 follows from Lemma
3.29 of [17] and serves as an application of the simultaneous Diophantine approxi-
mation provided by Lemma 3.16 of [17]. See Section 2.5 below.

Remark 2.25. The subset of K, defined just above Definition 2.9, comprising finite
sets of points with rational components is countable and dense in K (which shows
that K is separable). Hence, in the Hausdorff metric, any A ∈ K can be approxi-
mated as closely as one would like by a finite set. However, such an approximation
does not correspond to a satisfactory notion of approximation for the dimensions of
the corresponding sets. Indeed, finite sets are 0-dimensional, but a compact subset
of Rm can have Minkowski dimension anywhere in [0,m].

As discussed in Theorems 2.33 and 4.12, the approximation of a nonlattice self-
similar set by a sequence of lattice self-similar sets in the Hausdorff metric, as well
as the convergence of their box-counting complex dimensions in the sense described
in Remark 3.28, follow from the simultaneous Diophantine approximation of the
corresponding scaling vectors described in the next section.

2.4. Lattice/nonlattice dichotomy and measurability. Much of the remain-
der of this paper focuses on the lattice/nonlattice dichotomy for self-similar sets
in Euclidean space, an introduction to which is provided in this section. For the
purposes of this paper, the dichotomy is studied in the context of (inner) Minkows-
ki dimension on the real line in Section 3.2 and in the context of box-counting
dimension in Sections 4 and 5).

Definition 2.26. Let Φ be a self-similar system with scaling vector r = (rj)
N
j=1 and

attractor F . Then Φ, its scaling vector r, and its attractor F are said to be lattice
if there exist 0 < r < 1 and N positive integers kj such that gcd(k1, . . . , kN ) = 1
and rj = rkj for j = 1, 2, . . . , N . Otherwise Φ, r, and F are said to be nonlattice.

Example 2.27. The self-similar systems ΦC , ΦS , and ΦQ in Examples 2.12, 2.14,
and 2.15, respectively, are lattice. On the other hand, the self-similar system Φφ in

Example 2.13 is nonlattice since rφ = (1/2, 1/2φ) and φ = (1 +
√

5)/2 is irrational.
See Example 2.32 below for a discussion on the componentwise lattice approximation
of rφ and see Remark 3.28 for a discussion regarding the “quasiperiodic” structure
of the complex dimensions of the Golden string Ωφ = [0, 1]\Aφ.

In the sequel, we write f(x) ∼ g(x) as x→ a when limx→a f(x)/g(x) = 1.

Theorem 2.28. Let Φ be a self-similar system that satisfies the open set condition
with attractor F and scaling vector r. Let D := dimB F = Dr.

(a) [Nonlattice] If the additive group generated by {log rj} is dense in R, then
there exists C > 0 such that

NB(F, x) ∼ CxD, as x→∞.

(b) [Lattice] If the additive group generated by {log rj} is hZ for some h > 0, then
for each β ∈ [0, h) there exists Cβ > 0 such that

NB(F, enh−β) ∼ CβeD(nh−β), as n→∞.
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Remark 2.29. Part (a) of Theorem 2.28 says that nonlattice sets are box-counting
measurable (see Definition 2.7) and part (b) says that lattice sets exhibit a log-
periodic structure. Additionally, if for some lattice set F there exist β1, β2 ∈ [0, h)
such that Cβ1

6= Cβ2
, then F is not box-counting measurable and F is said to

exhibit geometric oscillations of order D = dimB F = Dr. This is the case for
the 1-dimensional Quarter Fractal Q and the Sierpiński gasket SG with D = 1 and
D = log2 3, respectively. See Examples 2.14, 2.15, 4.16, and 4.17.

Example 2.30. The closed unit interval [0, 1] is a self-similar set generated by
both lattice and nonlattice self-similar systems. For instance, a corresponding lat-
tice scaling vector is (1/2, 1/2) and a corresponding nonlattice scaling vector is
(1/2, 1/3, 1/6). As noted in Example 2.8, [0, 1] is both Minkowski measurable and
box-counting measurable. Part (a) of Theorem 2.28 also implies that [0, 1] is box-
counting measurable. Part (b) of Theorem 2.28 applies as well, but in this case
Cβ = B([0, 1]) = 1/2 for all β ∈ [0, h).

2.5. Simultaneous Diophantine approximation. The simultaneous Diophan-
tine approximation provided by Lemma 3.16 of [17] says that if at least one of a
finite set of real numbers α1, . . . , αN is irrational, then these numbers can be ap-
proximated by rational numbers with a common denominator. Thus, one can find
integers q such that for each j = 1, . . . , N , the product qαj is within a small dis-
tance to the nearest integer. Of course, the statement holds trivially if none of the
real numbers are irrational, and as such this case is ignored. This leads to Lem-
ma 2.31. Note that this simultaneous Diophantine approximation also leads to the
convergence of a sequence of lattice sets to a given nonlattice set in the Hausdorff
metric (as in Theorem 2.33) as well as the convergence of corresponding complex
dimensions (as in Theorem 4.12 below and described heuristically in Remark 3.28).

Lemma 2.31. Let r = (rj)
N
j=1 be a nonlattice scaling vector. Then there exists a

sequence (rM )
∞
M=1 of lattice scaling vectors, each of order N , such that rM → r

componentwise as M →∞.

Example 2.32. A simple yet illustrative example of the convergence described in
Lemma 2.31 stems from the nonlattice setAφ in Examples 2.13 and 2.27 (see [17]). It
is well known that φ is approximated by ratios of consecutive terms of the Fibonacci
sequence (fM )∞M=0 (using the convention f0 = 0 and f1 = 1), i.e. fM+1/fM → φ
as M →∞. Thus, rφ is approximated by

rM =

(
1

2
,

1

2fM+1/fM

)
,

where M ≥ 1. Then with r = 1/21/fM , k1 = fM , and k2 = fM+1 we have

rM =
(
rk1 , rk2

)
=

((
1

21/fM

)fM
,

(
1

21/fM

)fM+1
)

=

(
1

2
,

1

2fM+1/fM

)
and hence rM → rφ as M → ∞. In Figure 3, φ approximated by fM+1/fM for
M = 2, . . . , 9.

The sequence of lattice scaling vectors in the Lemma 2.31 give rise to a sequence
of lattice sets which converge to a given nonlattice set.

Theorem 2.33. Let Φ = {ϕj}Nj=1 be a nonlattice self-similar system on Rm with
attractor F and scaling vector r. Then there exists a sequence of lattice self-similar
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systems (ΦM )∞M=1 with scaling vector rM and attractor FM for each M ∈ N such
that each of the following statements holds as M →∞:

(i) rM → r componentwise; and
(ii) FM → F in the Hausdorff metric.

If, in addition, Φ is δ-disjoint, then

(iii) for large enough M , ΦM is δM -disjoint for some δM > 0 and δM → δ.

Proof. The key to the construction of the lattice sets FM lies in replacing the scaling
ratios of a given nonlattice system Φ by those of the lattice scaling ratios stemming
from an application of Lemma 2.31 as follows:

(i) For each j = 1, · · · , N we have ϕj(·) = rjTj(·) + tj by Proposition 2.11.
(ii) For each j = 1, . . . , N and each M ∈ N, define rM,j using the simultaneous

Diophantine approximation provided by Lemma 2.31.
(iii) For each M ∈ N, define ΦM = {ϕM,j}Nj=1 by

ϕM,j(·) := rM,jTj(·) + tj

for each j = 1, · · · , N . Also, define FM to be the attractor of ΦM .

By Theorem 11.1 in Chapter III of [1], which (for our purposes) says that attractors
of self-similar systems depend continuously on the scaling vectors, we have FM → F
since rM → r as M → ∞. Therefore, (ΦM )∞M=1 is a sufficient sequence of lattice
self-similar systems.

If Φ is strongly separated, then it readily follows from Definitions 2.9 and 2.19
that, for large enough M , ΦM is strongly separated. Also, assuming δM does not
tend to δ yields a contradiction in light of the fact that FM → F .

3. The theory of complex dimensions of fractal strings.

3.1. Fractal strings, complex dimensions, and zeta functions. This section
provides a summary of some of the results from the theory of fractal strings, complex
dimensions, and zeta functions, with a focus on Minkowski measurability (in terms
of inner Minkowski content and dimension) of certain subsets of the real line. See
[17] for a full and thorough introduction to the theory of complex dimensions of
fractal strings. These results both motivate and provide a foundation for the new
results explored in Sections 4 and 5 below.

Definition 3.1. An ordinary fractal string Ω is a bounded open subset of the
real line. A fractal string L = (`j)

∞
j=1 is a nonincreasing sequence of positive real

numbers such that limj→∞ `j = 0. By a mild abuse of notation, one may think of
a fractal string L as the multiset

L = {ln : ln has multiplicity mn, n ∈ N},

where (ln)n∈N is the strictly decreasing sequence of distinct lengths `j = ln and the
multiplicity mn is the number indeces j such that `j = ln.

Remark 3.2. An ordinary fractal string Ω can be expressed as the countable union
of pairwise disjoint open intervals. Throughout this work, as in [17], we assume an
ordinary fractal string Ω comprises infinitely many connected components with
lengths determining a fractal string L.
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Definition 3.3. Let L = (`j)
∞
j=1 be a fractal string. The abscissa of convergence

of the Dirichlet series
∑∞
j=1 `

s
j where s ∈ C is defined by

σ := inf
{
α ∈ R :

∑∞
j=1`

α
j <∞

}
.

The dimension of a fractal string L, denoted by DL, is defined by DL = σ. The
geometric zeta function of L, denoted by ζL, is defined by

ζL(s) :=

∞∑
j=1

`sj =

∞∑
n=1

mnl
s
n,

where s ∈ C such that Re(s) > DL and the lengths ln and multiplicities mn are
as in Definition 3.1. Note that ζL is holomorphic on the half-plane Re(s) > DL
(see [22, §VI.2]).

The following theorem is a restatement of Theorem 1.10 of [17] and justifies the
notion of referring to DL as a dimension.

Theorem 3.4. Let Ω be an ordinary fractal string comprising infinitely many con-
nected components such that vol1(Ω) = sup Ω−inf Ω. Then DL = dimM (∂Ω), where
∂Ω denotes the boundary of Ω.

Remark 3.5. We are also interested in the inner Minkowski content, dimension,
and measurability of subsets of R. In Definition 2.2, setting m = 1 and replacing
volm with the inner volume of an ordinary fractal string Ω, given by

V (ε) := vol1(Ω ∩ (∂Ω)ε),

yields inner Minkowski content, dimension, and measurability (and the upper and
lower counterparts) which we denote by iM ,dimiM , etc., respectively. In this set-
ting, an analog of Theorem 3.4 holds: If Ω is an ordinary fractal string comprising
infinitely many connected components, then DL = dimiM (∂Ω).

Note that the assumption vol1(Ω) = sup Ω − inf Ω in Theorem 3.4 ensures that
dimM (∂Ω) = dimiM (∂Ω). This condition is not always satisfied.

Example 3.6. There are ordinary fractal strings for which vol1(Ω) 6= sup Ω− inf Ω
and the conclusion of Theorem 3.4 does not hold. For instance, complements of
certain Smith-Volterra-Cantor sets (some of which are also called fat Cantor sets)
have this property. To construct a particular example, mimic the “middle-third
removal” construction of the Cantor set C as follows: Remove an open interval
of length 1/4 centered at 1/2 from the unit interval [0, 1], leaving a compact set
comprising the disjoint union of two closed intervals. Repeat the process in a
recursive fashion for each positive integer n ≥ 1 by removing an interval of length
1/4n from the center of the 2n−1 connected components at that stage, leaving a
compact set comprising 2n connected components of equal length. Define C4 to be
the intersection of all the (nonempty) compact sets that remain after each step.

The set C4 is a nonempty, compact, perfect, nowhere dense subset of [0, 1] with
positive 1-dimensional Lebesgue measure. The open set Ω4 := [0, 1]\C4 is an ordi-
nary fractal string with ∂Ω4 = C4 and lengths given by

L4 = {1/4n : 1/4n occurs with multiplicity 2n−1, n ∈ N}.

As such, the Dirichlet series
∑∞
n=1 2n−14−nα is a geometric series that converges to

4−α/(1 − 2 · 4−α) for α > 1/2. Hence, DL4 = 1/2. On the other hand, the length
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of C4 is given by

vol1(C4) = 1−
∞∑
n=1

2n−1

4n
= 1− 1/4

1− (2/4)
=

1

2
.

Therefore, dimM C4 = 1 6= 1/2 = DL4
. Furthermore, as explained in Example

3.13, C4 is not inner Minkowski measurable with respect to its inner Minkowski
dimension given by dimiM C4 = DL4

= 1/2. This fact is closely tied to the structure
of the complex dimensions of L4, as indicated in Theorem 3.11.

Additionally, it turns out that L4 happens to be equal to set of lengths of a self-
similar string (see Definition 3.19 and Example 3.24), but C4 is not a self-similar
set. Indeed, the scaling ratios implied by the above construction vary from one step
to the next and as such C4 cannot be the attractor of a self-similar system (it is not
the fixed point of a self-similar system).

The complex dimensions of a fractal string are defined as the poles of a mero-
morphic extension of its geometric zeta function.

Definition 3.7. Let L be a fractal string. A screen S is a contour

S := {f(t) + it ∈ C : t ∈ R},
where f : R → [−∞, DL] is a continuous function. A window W ⊆ C is the set of
points which lie to the right of a screen S given by

W := {s ∈ C : Re(s) ≥ f(Im(s))},
where f defines S. Let W ⊆ C be a window contained in an open connected
neighborhood on which ζL has a meromorphic extension but such that ζL does not
have a pole on the corresponding screen S. The set of visible complex dimensions
of L is the set DL(W ) given by

DL(W ) := {ω ∈W : ζL has a pole at ω} .
If W = C, (i.e., if ζL has a meromorphic extension to all of C), then

DL := DL(C) = {ω ∈ C : ζL has a pole at ω}
is called the set of complex dimensions of L.

By a mild abuse of notation, both the geometric zeta function of L and its
meromorphic extension to some window are denoted by ζL.

One of the key results in the theory of complex dimensions for ordinary fractal
strings is the criterion for Minkowski measurability provided by Theorem 3.11 below.
This result involves the following counting function.

Definition 3.8. Let L be a fractal string. The geometric counting function of L,
denoted by NL, if defined for x > 0 by

NL(x) := #{j ∈ N : `−1j ≤ x} =
∑

n∈N, l−1
n ≤ x

mn.

Theorem 3.9 is a partial restatement of Theorem 1.17 of [17].

Theorem 3.9. Let L be a fractal string of dimension DL and assume that ζL has
a meromorphic extension to a neighborhood of DL. If

NL(xDL) = O(xDL) as x→∞,
then ζL has a simple pole at DL.
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The following lemma is partially a restatement of Lemma 13.110 of [17], and
a more general result is Proposition 5.2 below. A much stronger result, which
is beyond the scope of this paper, holds in the setting of Mellin transforms and
generalized fractal strings (viewed as measures) as described in [17].

Lemma 3.10. Let L be a fractal string. Then

ζL(s) = s

∫ ∞
0

NL(x)x−s−1dx

and, moreover, the integral converges (and hence, the equation holds) if and only if∑∞
j=1 `

s
j converges, i.e., if and only if Re(s) > DL = σ.

In [17, §5.3], the terms languid and strongly languid describe the growth of a
geometric zeta function ζL in terms of three technical conditions called L1, L2, and
L2′. L1 is a polynomial growth condition along horizontal lines (in the complex
plane) necessarily avoiding the poles of ζL, L2 is a polynomial growth condition
along the vertical direction of a corresponding screen, and L2′ is a stronger version
of L2. A fractal string L is languid if ζL satisfies L1 and L2, and is strongly languid
if ζL satisfies L1 and L2′. These conditions allow for some of the key results in [17]
to hold, such as Theorem 8.15 therein, which appears here as Theorem 3.11. This
theorem is a primary motivation behind the new results presented in Section 4 and
especially Corollary 5.5 and Proposition 5.7. (See also [15,16,18,20].)

Theorem 3.11. Let Ω be an ordinary fractal string, with lengths L, comprising
infinitely connected components such that vol1(Ω) = sup Ω − inf Ω. Suppose L is
languid for a screen passing between the vertical line Re(s) = DL and all of the
complex dimensions of L with real part strictly less than DL and not passing through
zero. Then the following are equivalent:

(i) DL is the only complex dimension with real part DL, and it is simple.
(ii) NL(x) = E · xDL + o(xDL) for some positive constant E.

(iii) ∂Ω, the boundary of Ω, is Minkowski measurable.

Moreover, if any of these conditions is satisfied, then

M (∂Ω) = 21−DL
E

1−DL
= 21−DL

res(ζL(s);DL)

DL(1−DL)
. (3)

Remark 3.12. In Theorem 3.11, if the hypothesis vol1(Ω) = sup Ω − inf Ω is
dropped, the results still hold but with inner Minkowski measurability in part (iii)
and (3) gives the inner Minkowski content iM (∂Ω).

Example 3.13. By Example 3.6, we have

ζL4
(s) =

∞∑
n=1

2n−14−ns =
4−s

1− 2 · 4−s
, (4)

for Re(s) > DL4
= 1/2. The closed form on the right-hand side of this equation

allows for a meromorphic extension of ζL4
to all of C and it is used to verify that L4

is strongly languid. Also, this geometric zeta function is identical to the geometric
zeta function of a self-similar string, see Definition 3.19 and Example 3.24 below.
It follows that

DL4
:= DL4

(C) =

{
1

2
+ i

2π

log 4
z : z ∈ Z

}
. (5)
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Note that DL4 = 1/2 is not the only complex dimension with real part equal to 1/2,
so by Theorem 3.11, the fat Cantor set C4 is not inner Minkowski measurable. (See
Definition 2.2 and Remark 3.5.) On the other hand, C4 is Minkowski measurable
and it can be shown to have Minkowski content M (C4) = 1/2.

Example 3.14. The Cantor string is the ordinary fractal string given by ΩCS :=
[0, 1]\C where C is the Cantor set. The corresponding fractal string LCS (also
referred to as the Cantor string) is given by

LCS = {1/3n : 1/3n has multiplicity 2n−1, n ∈ N}.

The geometric zeta function of the Cantor string, denoted by ζCS , is given by

ζCS(s) := ζLCS (s) =

∞∑
n=1

2n−13−ns =
3−s

1− 2 · 3−s
,

for Re(s) > DLCS = dimM C = log3 2. The closed form on the right-hand side of
this equation allows for a meromorphic extension of ζCS to all of C and it is used
to show that LCS is strongly languid. It follows that the set of complex dimensions
of the Cantor string is given by

DCS := DLCS (C) =

{
log3 2 + i

2π

log 3
z : z ∈ Z

}
.

We have that DCS := DLCS = log3 2 = dimB C. Moreover, DCS is not the only
complex dimension with real part equal to DCS , so by Theorem 3.11, the Cantor set
C is not Minkowski measurable. This fact was established in [14] via the equivalence
of (ii) and (iii) and showing that (ii) does not hold. Actually, in [14], M ∗ and M∗
are explicitly computed and shown to be different (with 0 < M∗ < M ∗ <∞).

Note that in part (i) of Theorem 3.11, the only complex dimensions of interest are
the ones which have real part equal to DL. This motivates the following definition,
which agrees in spirit with the definition of principal complex dimensions of [15].

Definition 3.15. Let L be a fractal string with dimension DL and visible complex
dimensions DL(W ) associated with a window W . The principal complex dimensions
of L, denoted by dimPC L, is given by

dimPC L := {ω ∈ DL(W ) ⊆ C : Re(ω) = DL}.

Remark 3.16. Note that the principal complex dimensions dimPC L are indepen-
dent of the choice of window W . For the Cantor string LCS and the fractal string
L4 we have dimPC LCS = DCS and dimPC L4 = DL4 , respectively.

For an ordinary fractal string Ω with lengths L, the complex dimensions of L
provide more than just a criterion for the Minkowski measurability of the boundary
∂Ω. In particular, if L is strongly languid, the geometric counting function NL can
be written as a sum over the complex dimensions of the residues of ζL as in the
following theorem, a special case of Theorem 5.14 in [17].

Theorem 3.17. Let L be a strongly languid fractal string. Then, for some a > 0
and all x > a, the pointwise explicit formula for NL is given by

NL(x) =
∑

ω∈DL(W )

res

(
xsζL(s)

s
;ω

)
+ {ζL(0)},
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Figure 2. The geometric oscillations of the Cantor string ΩCS
seen in the plot and semilog plot of NCS(x)/xD, on the left and
right, respectively. Here, NCS is the geometric counting function
of the Cantor string and D = dimB C = log3 2. See Example 3.18.
(The function is discontinuous, the vertical line segments are an
artifact of the program used to generate the images.)

where the term in braces is included only if 0 ∈ W\DL(W ). If, in addition, all of
the principal complex dimensions of L are simple, then for x > a we have

NL(x) =
∑

ω∈dimPC L

xω

ω
res (ζL(s);ω) + o(xDL). (6)

Example 3.18. As determined in [17, p.23], the geometric counting function of
the Cantor string ΩCS , denoted by NCS , is given by

NCS(x) = 2n − 1 =
1

2 log 3

∑
k∈Z

xD+ikp

D + ikp
− 1, (7)

where D = DCS = log3 2, p = 2π/ log 3, and n = [log3 x] where [y] denotes the
integer part of y ∈ R. Note that in [17], this formula is derived directly using a
particular Fourier series. Nonetheless, the formula for NCS provided in (7) also
follows from an application of Theorem 3.17 since each complex dimension ω =
D+ ikp ∈ DCS is simple and the residue of ζCS at each ω is independent of k ∈ Z.
The common value of these residues is given by

res(ζCS(s);D + ikp) =
1

2 log 3
.

Now, consider Figure 2. The (nearly) log-periodic structure of NCS(x)/xD can
be seen in this figure, which is indicated by the geometric oscillations of order D
inherent to ΩCS . Also, the fact that the Cantor set C is not Minkowski measurable
(as discussed above in Example 3.14) can be inferred from this figure. In this case,
Minkowski content and inner Minkowski content coincide (as defined in Remark
3.5.) Since vol1(C) = 0, M ∗(C) = iM ∗(C) and M∗(C) = iM∗(C). As shown
in [14], we have

M ∗(C) = iM
∗(C) = 22−D ≈ 2.5830, and

M∗(C) = iM∗(C) = 21−DD1−D(1−D)1−D ≈ 2.4950.
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In light of Theorem 3.17 and the fact that

V (ε) := vol1(Ω ∩ (∂Ω)ε) = 2ε ·NL(1/2ε) +
∑

j:`j<2ε

`j ,

(7) indicates that the complex dimensions in DCS encode the geometric oscillations
which force C to fail to be Minkowski measurable.

Similar results hold for Ω4, the fat Cantor set C4, and the lattice set F0 de-
fined in Example 3.24 in the context of inner Minkowski content, dimension, and
measurability. Also see Examples 3.6, 3.13, and 3.23.

3.2. Lattice/nonlattice dichotomy of self-similar strings. Many results re-
garding the special case of the lattice/nonlattice dichotomy for (nontrivial) self-
similar subsets of the real line have been established. See [17].

Definition 3.19. Let Φ = {ϕj}Nj=1 be a self-similar system on R that satisfies the

open set condition with attractor F and scaling vector r = (rj)
N
j=1 where N ≥ 2.

Let I = [inf F, supF ] and L = supF − inf F . If
∑N
j=1 rj < 1, then the nonempty

ordinary fractal string Ω = I\F is called a self-similar string. If Φ is lattice (or
nonlattice), then Ω is a lattice (or nonlattice) string.

Remark 3.20. Let Ω = I\F be a self-similar string. Let K denote the positive
number of connected components in I\(∪jϕj(I)) which have positive length, and let
gkL denote the length of the kth connected component for k = 1, . . . ,K arranged

so that 0 < g1 ≤ · · · ≤ gK < 1 and
∑K
k=1 gk +

∑N
j=1 rj = 1. The gk are called the

gaps of Ω. (See [17, Chapter 2].) Note that ∂Ω = F in this case.

Theorem 3.21. Let Ω be a self-similar string (as in Definition 3.19) with lengths
L. Then the geometric zeta function ζL has a meromorphic extension to the whole
complex plane given by

ζL(s) =
Ls
∑K
k=1g

s
k

1−
∑N
j=1r

s
j

, s ∈ C.

Here, ζL(1) = L is the total length of Ω as well as the length of the interval I.

Corollary 3.22. Let Ω be a self-similar string (as in Definition 3.19) with lengths
L. Then the set of complex dimensions DL is a subset of Sr, the complex solutions
of the Moran equation (1) given by (2). Also, each complex dimension has a mul-
tiplicity at most that of the corresponding solution. If, in addition, Ω has a single
value for the gaps g1 = · · · = gK , then DL = Sr.

Example 3.23. The Cantor string ΩCS and the Golden string Ωφ := [0, 1]\Aφ
are self-similar strings, each with a single gap. So, Corollary 3.22 applies to ΩCS
and Ωφ, and the complex dimensions are given by SrC and Srφ , accordingly. The
set of complex dimensions DCS of the Cantor string ΩCS (or LCS) is determined
in Example 3.14. The complex dimensions DLφ of the Golden string Ωφ are the
solutions of the transcendental equation

2−ω + 2−φω = 1, ω ∈ C. (8)

See Figure 3 for images of successive approximations of the complex dimensions of
the Golden string. These images were not obtained through solving (8) directly but
rather through the approximation of the complex dimensions, stated in terms of
the structure of roots of Dirichlet polynomials, as detailed in Chapter 3 of [17] and
described heuristically in Remark 3.28.
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Example 3.24. Note that Ω4 is not a self-similar string since C4 is not a self-
similar set, as discussed in Example 3.6. Nonetheless, the fractal string L4 is the
set of lengths of a self-similar string. Consider the lattice self-similar system Φ0 on
the interval [0, 1/2] comprising ϕ1(x) = x/4 and ϕ2(x) = x/4 + 3/8 with attractor
F0. The corresponding lattice string Ω0 = [0, 1/2]\F0 has a single gap g1 = 1/2
(note that g1L = (1/2)2 = 1/4 is the length of the the open interval (1/8, 3/8))
and a pair of scaling ratios equal to 1/4. Moreover, the fractal string L0 comprising
the lengths of Ω0 is exactly given by L4. Thus, the geometric zeta functions and
complex dimensions coincide, respectively. That is, ζL0

= ζL4
and DL0

= DL4
. (See

(4) and (5).)
As indicated in Example 3.13, C4 is Minkowski measurable but it is not inner

Minkowski measurable. However, as is the case for the Cantor set C, Theorem
3.11 and Remark 3.12 imply that F0 is neither Minkowski measurable nor inner
Minkowski measurable. (See Theorem 3.26 below.)

The complex dimensions of self-similar strings and the box-counting complex
dimensions of many self-similar subsets of some Euclidean space (see Section 4) are
often given by the set of complex solutions of Moran equations of the form (1).
These sets are denoted by Sr and defined in (2).

The following theorem is a small part of Theorems 3.6 and 3.23 in [17] which
provides a wealth of information regarding the structure of the set Sr.

Theorem 3.25. Let r = (r1, . . . , rN ) be a scaling vector. If r is lattice, then the
elements of Sr are obtained by finding the complex solutions z of the equation

N∑
j=1

rωj =

M∑
=1

muz
ku = 1,

where z = e−ω log r−1

, mu is the number of j such that rj = rku , and M is the
number of distinct values among the rj. Hence there exist finitely many solutions
ω1, . . . , ωq such that

Sr = {ωt + inp : n ∈ Z, t = 1, . . . , q} ,

where p = 2π/ log r−1.
If r is nonlattice, then ω = Dr is the only element of Sr with real part equal

to Dr and all others have real part less than Dr. Also, there exists a sequence of
elements of Sr approaching Re(s) = Dr from the left.

The Minkowski measurability of the boundary of a self-similar string is directly
related to whether the string is lattice or nonlattice. The following theorem is a
combination of the results stated in Theorem 8.23 and 8.36 from [17].

Theorem 3.26. The boundary of a self-similar string is Minkowski measurable if
and only it is nonlattice.

Example 3.27. The Golden string is nonlattice, and as such Theorem 3.26 implies
that Aφ in Minkowski measurable. Thus, Theorem 3.25 implies that set of principal
complex dimensions of the Golden string is a singleton comprising DLφ ≈ .77921.
That is, dimPC Lφ = {DLφ}. Moreover, Dφ is a simple pole of ζLφ , so Theorem
3.11 applies and the (inner) Minkowski content of Aφ is given by (3).
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Figure 3. A lattice approximation of DLφ , the complex dimen-
sions of the Golden string Ωφ with lengths Lφ. The plots show
the complex dimensions DM = {z ∈ C : 2−z + 2−zφM = 1} where
φM = fM+1/fM approximates φ for M = 2, . . . , 9. In each case,
the point D denotes the Minkowski dimension of the approximat-
ing attractor, and the figure repeats with period p. Note, however,
that DLφ itself is not periodic. See Examples 2.13, 2.32, and 3.23
as well as Theorem 3.25 and Remark 3.28.

Remark 3.28. Chapter 3 of [17] provides a thorough description of the manner in
which the set of roots of a nonlattice Dirichlet polynomial are approximated by the
set of roots of a lattice Dirichlet polynomial. In this paper, this approximation is
discussed in terms of sequences with convergence denoted by SrM → Sr as M →∞
and loosely described as follows: Given a nonlattice scaling vector r and any fixed
T > 0, there is a lattice scaling vector rM (constructed through Lemma 2.31)
such that each of the roots in Sr with imaginary part less than T (in absolute
value) is approximated in a uniform manner by a root in SrM and the multiplicity
of the corresponding roots coincide. Moreover, the oscillatory period p (i.e., the
period in the imaginary direction) of the roots in SrM with maximal real part D
is much smaller than T . See Figure 3 for a collection of images which show the
approximation of the roots in Srφ associated with the nonlattice scaling vector rφ.
By Corollary 3.22, we have Srφ = DLφ .

The approximations seen in Figure 3 are given by a sequence of roots stemming
from lattice scaling vectors whose components depend directly on the ratios of
Fibonacci numbers, see Example 2.32. Note that, by Corollary 3.22, the convergence
SrM → Sr as M →∞ described above also describes the “quasiperiodic” behavior
of the structure of the complex dimensions of a self-similar string.

As noted above, the approximation used in the proof of Theorem 2.33 makes
explicit use of Lemma 2.31 which, in turn, brings along the convergence of com-
plex dimensions in the context of self-similar strings as described in Remark 3.28
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and Figure 3. This begs the question as to whether the convergence of complex
dimensions also holds in suitable context for self-similar subsets of any Euclidean
space and not just subsets of R (as is the case for self-similar strings). A poten-
tially suitable context is described in the remainder of the paper by making use
of the results presented in this section. In particular, one of the goals of studying
box-counting zeta functions in Sections 4 and 5 is to find a framework in which
the lattice/nonlattice dichotomy can be discussed in terms box-counting complex
dimensions.

4. Box-counting zeta functions of self-similar sets.

4.1. Box-counting fractal strings and zeta functions. The material presented
in this section follows from the results of Lalley in [9] as discussed in Sections 2.4
and 2.5, along with those determined by Knox in [20]. The work done in [20]
was motivated by that of Lapidus and van Frankenhuisjen in [17] (as outlined in
Section 3) and the box-counting fractal strings and zeta functions introduced by
Lapidus, Žubrinić, and Rock in [16].

Definition 4.1. Let A ⊆ Rm be a bounded infinite set and let NB(A, ·) denote the
box-counting function of A given in Definition 2.3. Let the range of NB(A, ·) be
denoted by (Mn)n∈N, a strictly increasing sequence of positive integers. For each
n ∈ N, let ln be the scale given by

l−1n = sup{x ∈ (0,∞) : NB(A, x) = Mn}.

That is, l−1n is the positive real number where NB jumps from Mn to Mn+1. Now,
let m1 = M2, and let mn = Mn+1 − Mn, for n ≥ 2. The box-counting fractal
string of A, denoted by LB , is the fractal string with distinct lengths (ln)n∈N and
corresponding multiplicities (mn)n∈N.

The following technical proposition and lemma were introduced in [16] as part
of the development of a theory of box-counting fractal strings, zeta functions, and
complex dimensions. In particular, they allow one to make use of the results of
Lapidus and van Frankenhuijsen in [17] (as outlined in Section 3) in the context of
box-counting functions, dimension, and content.

Proposition 4.2. Let A ⊆ Rm be a bounded infinite set. For each n ∈ N, let
xn = l−1n where ln is as defined in Definition 4.1. Then limn→∞ xn = ∞. Also
x1 > 0, NB(A, x1) = 1, the union of NB(A, xn) is the range of NB(A, ·), and for
xn−1 < x ≤ xn we have that NB(A, xn−1) < NB(A, x) = NB(A, xn).

Lemma 4.3. For a bounded infinite set A ⊆ Rm and any x ∈ (x1,∞)\(xn)n∈N,

NB(A, x) = NLB (x).

Also, for x ∈ (0, x1], NB(A, x) = 1 while NLB (x) = 0.

The following is one of the key results of [16] and, in part, motivates the definition
of box-counting zeta function given just below.

Theorem 4.4. Let A ⊆ Rm be a bounded infinite set. Then

DLB = dimBA.
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Definition 4.5. The box-counting zeta function of bounded infinite set A ⊆ Rm,
denoted by ζB , is the geometric zeta function of LB . That is,

ζB(s) := ζLB (s) =

∞∑
n=1

mnl
s
n,

where Re(s) > DLB = dimBA. The (box-counting) complex dimensions of A on a
suitably defined window, denoted by DB(W ), is given by DB(W ) := DLB (W ). If
W = C, then DB(C) is denoted by DB .

Example 4.6. Consider the unit interval [0, 1]. Then NB([0, 1], x) = [x/2] + 1 and
hence we have ln = x−1n = 2n, m1 = 2, and mn = 1 for each n ≥ 2. So,

ζB(s) =
2

2s
+

∞∑
n=2

1

(2n)s
=

1

2s
+

1

2s
ζ(s),

where Re(s) > 1 and ζ(s) denotes the Riemann zeta function. It is well-known that
ζ converges for Re(s) > 1 and has a simple pole at s = 1, so DLB = dimB [0, 1] = 1.

4.2. Self-similar sets under separation conditions. This section focuses on
some the results of [20] which, in part, follow from results of [9]. All of the re-
sults presented here make use of either the (strong) open set condition or strongly
separated self-similar systems.

Lemma 4.7. Let Φ be a δ-disjoint self-similar system with attractor F and scaling

vector r = (rj)
N
j=1. If x > δ−1, then NB(F, x) =

∑N
j=1NB(F, rjx). Moreover, for

any x > 0,

NB(F, x) =

N∑
j=1

NB(F, rjx) + L(x) (9)

where L(x) is a nonpositive, nondecreasing integer valued step function with a finite
number of steps that is bounded below by 1−N and vanishes for x > δ−1.

Proof. A ball with radius x−1 ≤ δ and center in ϕj(F ) does not intersect any other
ϕk(F ) for k 6= j. This fact, combined with the self-similarity of F , imply that

NB(F, x) = NB (Φ(F ), x) =

N∑
j=1

NB(ϕj(F ), x) =

N∑
j=1

NB(F, rjx).

The properties of L(x) follow readily from Lemma 4.2.

The following theorem provides a (nearly) closed form for the box-counting zeta
function of a self-similar set whose counting function satisfies a renewal equation of
the form (9).

Theorem 4.8. Let Φ be a self-similar system that satisfies the open set condition
with attractor F and scaling vector r = (rj)

N
j=1. Let LB be the box-counting fractal

string of F . Suppose NB(F, x) =
∑N
j=1NB(F, rjx)+L(x) where s

∫∞
x1
L(x)x−s−1dx

converges for Re(s) > Dr = dimB F . Then the box-counting zeta function of F is
given by

ζB(s) = (x−11 )s +
(N − 1)(x−11 )s + E(s)

1−
∑N
j=1r

s
j

(10)

where Re(s) > Dr = dimB F and E(s) := s
∫∞
x1
L(x)x−s−1dx.
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Proof. Temporarily let s ∈ R such that s > Dr = dimB F . By Lemma 4.3,
NB(F, x) = NLB (x) for x ∈ (x1,∞)\(xn)n∈N. Since NB(F, x) 6= NLB (x) for an
at most countable number of values x ≥ x1 and NLB(x) = 0 for x < x1, applying
Lemma 3.10 along with (9) yields

ζB(s) =

N∑
j=1

s

∫ ∞
x1

NB(F, rjx)x−s−1dx+ s

∫ ∞
x1

L(x)x−s−1dx. (11)

Let E(s) = s
∫∞
x1
L(x)x−s−1dx and apply the substitution u = rjx to get

N∑
j=1

s

∫ ∞
x1

NB(F, rjx)x−s−1dx =

N∑
j=1

rsjs

∫ ∞
rjx1

NB(F, u)u−s−1du. (12)

Since 0 < rj < 1 implies rjx1 < x1 and we have NB(F, u) = 1 for u < x1. Also,

s

∫ ∞
rjx1

NB(F, u)u−s−1du = s

∫ x1

rjx1

u−s−1du+ s

∫ ∞
x1

NB(F, u)u−s−1du

= (x−11 r−1j )s − (x−11 )s + ζB(s). (13)

By combining (11), (12), and (13) we get

ζB(s) =

N∑
j=1

rsj
(
(x−11 r−1j )s − (x−11 )s + ζB(s)

)
+ E(s)

= (x−11 )s
N∑
j=1

(1− rsj ) + ζB(s)

N∑
j=1

rsj + E(s).

Solving for ζB(s) and simplifying yields (10). Hence, the Principal of Analytic
Continuation allows ζB to extend so as to be holomorphic on the half-plane Re(s) >
Dr = dimB F (see [22, §VI.2]).

The following corollary is a key step in the development of a lattice/nonlattice
dichotomy from the perspective of the theory of (box-counting) complex dimensions
associated with strongly separated self-similar systems.

Corollary 4.9. Let Φ be a δ-disjoint self-similar system with attractor F and
scaling vector r = (rj)

N
j=1, and let LB be the box-counting fractal string of F . Then

the box-counting zeta function of F has a closed form given by

ζB(s) = (x1
−1)s +

(N + em − 1)(x1
−1)s +

∑n−1
k=m(ek+1 − ek)(yk

−1)s − enδs

1−
∑N
j=1rj

s
, (14)

where Re(s) > Dr = dimB F and the values of m,n, the ek and the yk satisfy the
following properties: m,n ∈ N with m ≤ n; with 1 − N = e1 < · · · < en < 0 with
ek ∈ Z; 0 < y1 < · · · < yn ≤ δ−1; and m ∈ N is the smallest number such that
ym > x1.

The proof is omitted but can be found in [20]. Essentially, it follows from a careful
decomposition of renewal equation of (9) and the evaluation of the integral defining
E(s) in Theorem 4.8. The values of ek and yk are determined by the structure of
L(x), which is a step function for 0 < x ≤ δ−1, as provided by Lemma 4.7.

Corollary 4.10 provides a couple of results regarding the complex dimensions
of a strongly separated self-similar set. In this corollary and Theorem 4.12, the
numerator on the right-hand side of (14) plays a role in determining the structure
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of these complex dimensions of strongly separated self-similar sets. So, given a
δ-disjoint self-similar set F , let h denote the numerator of (14) given by

h(s) := (N + em − 1)(x1
−1)s +

n−1∑
k=m

(ek+1 − ek)(yk
−1)s − enδs, (15)

where s ∈ C has large enough real part.

Corollary 4.10. Let Φ be a strongly separated self-similar system with attractor F
and scaling vector r = (rj)

N
j=1. Then

DB = DLB ⊆ Sr =
{
s ∈ C : 1−

∑N
j=1rj

s = 0
}
.

Additionally, equality holds if we have h(s) = 0 if and only if s /∈ Sr.

Remark 4.11. Note that in the strongly separated case, the box-counting fractal
string LB of a self-similar set is strongly languid. This fact follows from an argument
similar to that made for geometric zeta functions of self-similar strings in [17, §6.4].
Hence, Theorem 3.17 applies and yields a formula for the box-counting function
NB(A, x) over the box-counting complex dimensions DB for large enough x.

Under certain conditions, the box-counting complex dimensions of a strongly
separated nonlattice set are approximated by those of lattice sets.

Theorem 4.12. Suppose Φ is a δ-disjoint nonlattice self-similar system on Rm with
attractor F , scaling vector r, and box-counting complex dimensions D. Additionally,
suppose h(s) = 0 if and only if s /∈ Sr. Then there exists a sequence of lattice
self-similar systems (ΦM )∞M=1 with scaling vectors rM , attractors FM , and box-
counting complex dimensions DM for each M ∈ N, respectively, such that each of
the following holds as M →∞:

(i) rM → r componentwise;
(ii) FM → F in the Hausdorff metric;
(iii) for large enough M , FM is δM -disjoint for some δM > 0 and δM → δ; and
(iv) D = Sr and SrM → D in the sense described in Remark 3.28 or, more specif-

ically, in Chapter 3 of [17].

Let hM denote the numerator determined by FM and δM given by (15), accordingly.
If, in addition to the hypotheses above, we have hM (s) = 0 if and only if s /∈ SrM
for all M ≥M0 where M0 is some positive integer, then

(v) DM = SrM for M ≥M0 and DM → D in the sense described in Remark 3.28.

Proof. Theorem 2.33 immediately yields parts (i), (ii), and (iii). Parts (iv) and (v)
follow immediately from the application of Corollary 4.10 to Φ and ΦM for large
enough M , accordingly.

Similar but more limited results hold for a self-similar set that satisfies the open
set condition (and, equivalently by Theorem 2.17, the strong open set condition).
The following restatement of Proposition 1 of [9] follows from renewal theory.

Proposition 4.13. Let Φ be a self-similar system that satisfies the open set condi-
tion with attractor F and scaling vector r = (rj)

N
j=1. Then, with D = dimB F = Dr,

we have NB(F, x) =
∑N
j=1NB(F, rjx) + L(x) where

|L(x)| ≤ γxD−ε

for some constants γ, ε > 0.
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The next proposition makes use of the previous one to show that self-similar sets
satisfying the open set condition have box-counting zeta functions of a certain form.
It is the result of personal communication between Lapidus and Rock.

Proposition 4.14. Let Φ be a self-similar system that satisfies the open set condi-
tion with attractor F and scaling vector r = (rj)

N
j=1. Also, let LB be the box-counting

fractal string of F and D := dimB F = Dr. Then there exists some ε > 0 such that
E(s) := s

∫∞
x1
L(x)x−s−1dx converges for Re(s) > D − ε.

Proof. By Proposition 4.13, we have NB(F, x) =
∑N
j=1NB(F, rjx) + L(x) where

|L(x)| ≤ γxD−ε for some constants γ, ε > 0. Now, temporarily let s denote a real
number such that s > D − ε. Since D − ε− s < 0, we have −γs

D−ε−s > 0. Therefore,

since lima→∞ aD−ε−s = 0, we have

|E(s)| ≤ s
∫ ∞
x1

γxD−εx−s−1dx ≤ lim
a→∞

γs

∫ a

x1

xD−ε−s−1dx =
−γsxD−ε−s1

D − ε− s
.

Thus, by allowing s ∈ C we have that E(s) converges for Re(s) > D − ε.

Under the hypotheses of Proposition 4.14 and Theorem 4.8, the principal complex
dimensions are solutions of the corresponding Moran equation.

Corollary 4.15. Let Φ be a self-similar system that satisfies the open set condition
with attractor F and scaling vector r = (rj)

N
j=1. Then dimPC LB ⊆ Sr.

Proof. Since Φ satisfies the open set condition, by Proposition 4.14 there exists some
ε > 0 such that E(s) = s

∫∞
x1
L(x)x−s−1dx converges for Re(s) > Dr − ε where Dr.

So, by Theorem 4.8 the poles of ζB with real part equal to Dr (i.e., principal complex

dimensions) must be roots of the Dirichlet polynomial 1−
∑N
j=1rj

s.

4.3. Examples of box-counting zeta functions of self-similar sets. Theorem
4.8 and Corollary 4.9 allow one to calculate the box-counting zeta functions of the
Sierpiński gasket SG and the totally disconnected Quarter Fractal Q, as done here.
See Examples 2.14, 2.15, and 2.24 above, as well as Examples 4.16 and 4.17 in
this section. In both cases, ΦQ and ΦS satisfy the (strong) open set condition, so
Theorem 4.8, Proposition 4.14, and Corollary 4.15 apply, accordingly.

Example 4.16. The Quarter Fractal Q from Example 2.15 is a lattice set that
stems from the δ-disjoint self-similar system ΦQ (with δ = 1/2)). The box-counting
function of Q is determined in [16]. For 0 < x ≤ 2, we have

NB(Q, x) =


1, 0 < x ≤ 2/

√
2,

2, 2/
√

2 < x ≤ 8/
√

17,

3, 8/
√

17 < x ≤ 2.

Hence, M1 = 1,M2 = 2, and M3 = 3. See Figure 1. For x > 2 and n ∈ N we have

NB(Q, x) =


4n, 2 · 4n−1 < x ≤ 2/

√
2 · 4n,

2 · 4n, 2/
√

2 · 4n < x ≤ 8/
√

17 · 4n,
3 · 4n, 8/

√
17 · 4n < x ≤ 2 · 4n.

(16)

It follows that the Quarter Fractal Q is not box-counting measurable. We have
that dimB Q = 1 by Moran’s Theorem (Theorem 2.22). So, considering that the
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extreme behavior of NB(Q, x)/x occurs at the endpoints of the intervals defined in
(16), we also have

B∗(Q) = lim sup
x→∞

NB(Q, x)

x1
= lim
n→∞

4n

2 · 4n−1
= 2, and

B∗(Q) = lim inf
x→∞

NB(Q, x)

x1
= lim
n→∞

4n

(2/
√

2) · 4n
=

√
2

2
.

Hence, Q exhibits geometric oscillations of order dimB Q = 1.
Since ΦQ is δ-disjoint with δ = 1/2, Lemma 4.7 implies that the box-counting

function of Q satisfies the renewal equation

NB(Q, x) = 4NB(Q, x/4) + L(x).

Moreover, L(x) is explicitly given by

L(x) =


−3, 0 < x ≤ 2/

√
2,

−2, 2/
√

2 < x ≤ 8/
√

17,

−1, 8/
√

17 < x ≤ 2,

0, x > 2.

So, by Corollary 4.9 (and in agreement with the results of [16]),

ζB(s) = (
√

2/2)s +
(
√

2/2)s + (
√

17/8)s + (1/2)s

1− 4 · 4−s
.

It follows that the box-counting complex dimensions of the Quarter Fractal Q (and
the principal complex dimensions) are given by

DLB = dimPC LB = Sr1 =

{
1 + i

2π

log 4
k : k ∈ Z

}
.

Additionally, each of these complex dimensions is a simple pole, so Theorem 3.17
applies and a pointwise explicit formula for NB(Q, x) is given by (6).

Example 4.17. The Sierpiński gasket SG is the attractor of the lattice self-similar
system ΦS . This system satisfies the open set condition but is not strongly separated
(see Examples 2.14 and 2.18). The box-counting function of SG is given by

NB(SG, x) =

1, 0 < x ≤ 2,
3n + 3

2
, 2n < x ≤ 2n+1 for n ≥ 1.

(17)

As in the case of the Quarter Fractal Q, the Sierpiński gasket SG is not box-
counting measurable. We have that dimB SG = log2 3 =: D. So, considering that
the extreme behavior of NB(SG, x)/xD occurs at the endpoints of the intervals
defined in (17), we also have

B∗(SG) = lim sup
x→∞

NB(SG, x)

xD
= lim
n→∞

(3n + 3)/2

2n log2 3
=

1

2
, and

B∗(SG) = lim inf
x→∞

NB(SG, x)

xD
= lim
n→∞

(3n + 3)/2

2(n+1) log2 3
=

1

6
.

Hence, SG exhibits geometric oscillations of order dimB SG = log2 3.
Note that the box-counting function of SG satisfies the renewal equation

NB(SG, x) = 3NB(SG, x/2) + L(x).
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Observe that for 0 < x ≤ 2, L(x) = −2, and for 2 < x ≤ 4, L(x) = 0. Now suppose
that 2n < x ≤ 2n+1 for n ≥ 2. Then N(SG, x) = (3n+3)/2. Since 2n−1 < x/2 ≤ 2n,
N(SG, x/2) = (3n−1 + 3)/2. So, for x > 4 we have that

L(x) = NB(SG, x)− 3NB(SG, x/2) = −3.

Applying Theorem 4.8 and evaluating E(s) = s
∫∞
x1
L(x)x−s−1dx = −3(1/4)s yields

ζB(s) = (1/2)s +
2(1/2)s − 3(1/4)s

1− 3 · 2−s
,

for Re(s) > dimB SG = log23. Note that if ω ∈ C is a root of 1 − 3 · 2−s, then
(1/2)ω = 1/3 and the numerator of ζB equals 2(1/3)− 3(1/3)2 = 1/3. Thus, there
is no cancellation of the solutions of the Moran equation 1− 3 · 2−s = 0. Hence, the
principal (box-counting) complex dimensions of the Sierpiński gasket are given by

dimPC LB = SrS =

{
log2 3 + i

2π

log 2
k : k ∈ Z

}
.

Additionally, each of the principal complex dimensions is a simple pole, so Theorem
3.17 applies and a pointwise explicit formula for NB(SG, x) is given by (6).

5. Related results and future work.

5.1. Generalized content and zeta function. This section provides a prelimi-
nary framework for the study of complex dimensions in the setting of a simple class
of Dirichlet type integrals (see [15] and references therein) as developed in [18]. Note
that in the setting developed here there is no underlying geometry.

Definition 5.1. Let f : (0,∞)→ [0,∞). The exponent of f is defined by

αf := inf{α ≥ 0 : f(x) = O(xα) as x→∞}.

Let f : (0,∞) → [0,∞) and assume there exists an xo > 0 such that f(x) = 0 for
all x ∈ (0, xo). Then the dimension of f , Df , is defined by

Df := inf

{
t ∈ R :

∫ ∞
0

f(x)x−t−1dx <∞
}
.

Additionally, the zeta function of f , denoted by ζf , is given by

ζf (s) := s

∫ ∞
0

f(x)x−s−1dx,

for s ∈ C such that Re(s) > Df . Let W ⊆ C be a window containing an open
connected neighborhood on which ζf has a meromorphic extension. The set of
(visible) complex dimensions of f is defined as

Df (W ) := {w ∈W : ζf has a pole at w}.

If ζf has a meromorphic extension to all of C, then Df := Df (C) denotes the set of
complex dimensions of f .

The following theorem is essentially an analog of Lemma 13.110 of [17] (Lemma
3.10 in this paper), Theorem 13.111 of [17], and Lemma 3.13 of [16].

Proposition 5.2. Let f : (0,∞)→ [0,∞). Suppose there exists an xo > 0 such that
f(x) = 0 for all x ∈ (0, xo) and suppose f is nondecreasing with limx→∞ f(x) =∞.
Then αf = Df .
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Definition 5.3. Let f : (0,∞) → [0,∞) be nondecreasing. The upper and lower
content of f are defined, respectively, by

C ∗ := lim sup
x→∞

f(x)

xDf
, and C∗ := lim inf

x→∞

f(x)

xDf
.

If C ∗ = C∗, then the content of f , denoted by C , is defined to be this common
value. Additionally, if 0 < C ∗ = C∗ <∞, then f is said to be steady.

The following theorem is a type of generalization of Theorem 3.11 stated in terms
of steady functions, but without any geometric context such as Minkowski or box-
counting measurability. The proof is omitted since it follows that of Theorem 8.15
in [17], mutatis mutandis.

Theorem 5.4. Let f be such that ζf is languid for a screen passing between the
vertical line Re(s) = Df and all the complex dimensions of f with real part strictly
less than Df and not passing through zero. Then the following are equivalent:

(i) Df is the only complex dimension with real part Df , and it is simple.
(ii) f(x) = E · xDf + o(xDf ) for some positive constant E.
(iii) f is steady.

Theorems 3.17 and 5.4 combine to yield the following corollary.

Corollary 5.5. Let A be a subset of Rm such that its box-counting zeta function
ζB is strongly languid for a screen passing between the vertical line Re(s) = DLB
and all the (box-counting) complex dimensions of A with real part strictly less than
DLB and not passing through zero. Then the following are equivalent:

(i) DLB is the only complex dimension with real part DLB , and it is simple.
(ii) NB(A, x) = B · xDLB + o(xDLB ) for some positive constant B.

(iii) A is box-counting measurable with box-counting content B.

If (i), (ii), or (iii) holds, then

B = B(A) =
res(ζB(A, s);DLB )

DLB
. (18)

Remark 5.6. Note that the unit interval [0, 1] has a box-counting zeta function
that satisfies the hypotheses of Corollary 5.5 applies, but the Sierpiński gasket SG
and the Quarter Fractal Q do not. As in Example 4.6, we have

ζB(s) =
1

2s
+

1

2s
ζ(s),

where Re(s) > 1 and ζ(s) denotes the Riemann zeta function. It is well-known that
ζ has a simple pole at s = 1 with res(ζ(s); 1) = 1 and its meromorphic extension to
C does not have any other pole with positive real part. Hence, (18) yields

B([0, 1]) =
res(ζB(s); 1)

1
=

1

2
,

which is in agreement with Example 2.8. Also see Examples 2.30, 4.16, and 4.17.

Proposititon 5.7 closes the paper and adds to the lattice/nonlattice dichotomy
of self-similar sets from the perspective of box-counting measurability.

Proposition 5.7. Suppose Φ is a nonlattice strongly separated self-similar system
with scaling vector r, attractor F , and dimB F = Dr. Further, suppose h(s) = 0 if
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and only if s /∈ Sr. Then F is box-counting measurable and

B(F ) =
h(Dr)

Dr

∑N
j=1 r

Dr
j log r−1j

, (19)

where h(s) is given by (15).

Proof. By Theorem 2.28(a), F is box-counting measurable since Φ is nonlattice.
Also, Theorem 3.9 applies and we have that Dr is a simple pole of ζB . Since

Dr ∈ Sr, we have h(Dr) 6= 0 and the residue of ζB at Dr is readily given by

res(ζB ;Dr) =
h(Dr)∑N

j=1 r
Dr
j log r−1j

. (20)

Finally, Corollary 5.5 combines with (20) to yield (19).
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