
MIT Open Access Articles

Giant frequency-selective near-field energy 
transfer in active–passive structures

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Khandekar, Chinmay et al. “Giant Frequency-Selective near-Field Energy Transfer in 
Active–passive Structures.” Physical Review B 94.11 (2016): n. pag. ©2016 American Physical 
Society

As Published: http://dx.doi.org/10.1103/PhysRevB.94.115402

Publisher: American Physical Society

Persistent URL: http://hdl.handle.net/1721.1/110281

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/110281


PHYSICAL REVIEW B 94, 115402 (2016)

Giant frequency-selective near-field energy transfer in active–passive structures

Chinmay Khandekar,1 Weiliang Jin,1 Owen D. Miller,2 Adi Pick,3 and Alejandro W. Rodriguez1

1Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
2Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

3Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
(Received 13 November 2015; revised manuscript received 1 August 2016; published 1 September 2016)

We apply a fluctuation electrodynamics framework in combination with semianalytical (dipolar) approxima-
tions to study amplified spontaneous energy transfer (ASET) between active and passive bodies. We consider
near-field energy transfer between semi-infinite planar media and spherical structures (dimers and lattices)
subject to gain, and show that the combination of loss compensation and near-field enhancement (achieved by
the proximity, enhanced interactions, and tuning of subwavelength resonances) in these structures can result in
orders of magnitude ASET enhancements below the lasing threshold. We examine various possible geometric
configurations, including realistic materials, and describe optimal conditions for enhancing ASET, showing that
the latter depends sensitively on both geometry and gain, enabling efficient and tunable gain-assisted energy
extraction from structured surfaces.
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Radiative heat transfer between nearby objects can be
much larger in the near field (submicron separations) than
in the far field [1–3] due to coupling between evanescent
(surface-localized) waves [4,5]. In this paper we investigate
the possibility of exploiting both active materials and ge-
ometry to enhance and tune near-field energy transfer. In
particular, we study amplified spontaneous energy transfer
(ASET)—the amplified spontaneous emission (ASE) from a
gain medium that is absorbed by a nearby passive object—and
demonstrate orders of magnitude enhancements compared
to far-field emission or transfer between passive structures.
Our work extends previous work on heat transfer between
planar, passive media [6–9] to consider the possibility of
using gain as a mechanism of loss cancellation, leading
to further flux-rate enhancements under certain conditions
(diverging at the onset of lasing). Since planar structures are
known to be suboptimal near-field energy transmitters [10],
we also consider a more complicated geometry involving
subwavelength metallic dimers or lattices of spheres doped
with active emitters, and describe conditions under which
ASET � ASE below the lasing threshold (LT). Our analysis
of these spherical structures includes both semianalytical
calculations (for dimers) and dipolar approximations that
include first-order geometric modifications to the polarization
response of spheres (for lattices), revealing not only significant
potential enhancements but also strongly geometry-dependent
variations in ASET stemming from the presence of multiple
scattering, which suggests the possibility of using the near
field as a mechanism for tuning energy extraction. Similar to
our recent findings in the case of passive objects [11], we
find that energy exchange between lattice of spheres tends
to greatly outperform exchange between planar bodies as the
intrinsic loss rates of materials decrease, with gain contributing
additional enhancement.

Recent approaches to tailoring incoherent emission from
nanostructured surfaces have begun to explore situations that
deviate from the usual linear and passive materials [12–17],
with the majority of these works primarily focusing on ways
to control far-field emission, e.g., the lasing properties of
active materials [18]. Here we consider a different subset of

such systems: structured active–passive bodies that exchange
energy among one another more efficiently than they do into
the far field. Our predictions below extend recent progress in
understanding and tailoring energy exchange between struc-
tured materials, which thus far include doped semiconductors
[19], phase-change materials [20,21], and metallic gratings
[22–24]. Active control of near-field heat exchange offers a
growing number of applications, from heat flux control [25,26]
and solid-state cooling [26] to thermal diodes [27,28]. Our
work extends these recent ideas to situations involving systems
undergoing gain-induced amplification.

The starting point of our analysis is the well-known
linear fluctuational electrodynamics framework established by
Rytov, Polder, and van Hove [29,30]. In particular, given two
bodies held at temperatures T1 and T2, and separated by a
distance d, the power or heat transfer from 1 → 2 is given by
[4]

P (T1,T2) =
∫ ∞

0
[�(ω,T1) − �(ω,T2)]�12(ω)

dω

2π
, (1)

where �(ω,T ) is the mean energy of a Planck oscillator at fre-
quency ω and temperature T , and �12(ω) denotes the spectral
radiative heat flux, or the absorbed power in object 2 due to
spatially incoherent dipole currents in 1. Such an expression is
often derived by application of the fluctuation-dissipation the-
orem (FDT), which relates the spectral density of current fluc-
tuations in the system to dissipation [4], 〈Ji(x,ω),J ∗

j (x′,ω)〉 =
4
π
ωε0 Im ε(x,ω)δ(x − x′)�(ω,T )δij , where Ji denotes the

current density in the ith direction, ε0 and ε(x,ω) are the
vacuum and relative permittivities at x, and 〈· · · 〉 denotes a
thermodynamic ensemble average.

Extensions of the FDT above to situations involving active
media require macroscopic descriptions of their dielectric re-
sponse. Below we consider an atomically doped gain medium
that, ignoring stimulated emission or nonlinear effects arising
near the lasing threshold [31], can be accurately modeled
(under the stationary-inversion approximation) by a simple
two-level Lorentzian gain profile of the atomic populations n1
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and n2, resulting in the following effective permittivity [32]:

ε(ω) = εr (ω) + 4πg2

�γ⊥

γ⊥D0

ω − ω21 + iγ⊥︸ ︷︷ ︸
εG(ω)

, (2)

where εr denotes the permittivity of the background medium
and the second term describes the gain profile εG, which
depends on the “lasing” frequency ω21, polarization decay rate
γ⊥, coupling strength g, and population inversion D0 = n2 −
n1 associated with the 2 → 1 transition. Detailed-balance and
thermodynamic considerations lead to a modified version of
the FDT [31,33,34] involving an effective Planck distribution
�(ω21,TG) = −n2�ω21/D0, in which case the system exhibits
a negative effective or “dynamic” temperature under n2 > n1

[34]. Note that even though � < 0 under population inversion,
the radiative flux from such a medium is positive definitive:
because Im εG < 0, the spectral electric-current correlation
function associated with the active medium,

〈Ji(x,ω)J ∗
j (x′,ω)〉 = − 4

π
ωε0(Im εG) n2�ω21/D0︸ ︷︷ ︸

�(ω21,TG)

δ(x − x′)δij

(3)
is positive. As a consequence, the heat transfer originating from
atomic fluctuations in an active body to a passive body always
flows from the former to the latter, i.e., T < 0 reservoirs always
transfer energy [31]. Of course, in addition to fluctuations of
the polarization of the gain atoms, such a medium will also
exhibit fluctuations in the polarization of the host medium,
depending on its thermodynamic temperature and background
loss rate ∼ Im εr , as described by the standard FDT [4].
Although thermal flux rates can themselves be altered (e.g.,
enhanced) in the presence of gain through the dependence of
�12 on the overall permittivity, the flux rate from such an active
medium will tend to be dominated by the fluctuations of the
gain atoms, the focus of our work.

I. PLANAR MEDIA

We begin our analysis of ASET by first considering
an extensively studied geometry involving two semi-infinite
plates that exchange energy in the near field. Such a situation
has been thoroughly studied in the past in various contexts
[6–9], but with passive materials, whereas below we consider
the possibility of optical gain in one of the plates. For simplicity
we omit the frequency dependence in the complex dielectric
functions εj of the two plates (j = 1,2), shown schematically
in Fig. 1 along with our chosen coordinate convention. We
assume that one of the plates is doped with a gain medium, such
that ε1 = εr + εG, and consider only fluxes due to fluctuations
in the active constituents ∼ Im εG, as described by the modified
FDT above [4,35]. Due to the translational symmetry of the
system, it is natural to express the heat flux in a Fourier basis
of propagating transverse waves k‖ [4], in which case the flux
is given by an integral �(ω) = ∫

�(ω,k‖)k‖dk‖. In the near
field, k‖ > ω/c, the main contributions to the integrand come
from evanescent waves which exchange energy at a rate [5,29]

�12(ω,k‖) ≈
∑

q=s,p

Im(εG) Im
(
r

q

1

)
Im

(
r

q

2

)
e−2 Im(γ0)d

Im ε1

∣∣1 − r
q

1 r
q

2 e−2 Im(γ0)d
∣∣2 , (4)

ε2 T2

ε0 = 1

ε1 T1

γ0

k||

k0 d r

z

FIG. 1. Schematic of two semi-infinite plates of permittivities
ε1 and ε2, respectively, separated by a vacuum gap d . Fourier
decomposition of scattered waves with respect to parallel k‖ and
perpendicular γ wave vectors simplifies calculations of energy
transfer.

where rs
j = γ0−γj

γ0+γj
and r

p

j = εj γ0−γj

εj γ0+γj
are the Fresnel reflec-

tion coefficients at the interface between vacuum and the
dielectric media, for s and p polarizations, respectively,
defined in terms of the wave vectors kj = k‖r̂ + γj ẑ, with
|k0| = ω/c and |kj |2 = k2

‖ + γ 2
j = εjω

2/c2. Note that the
derivation of Fresnel coefficients requires special care since
when gain compensates loss, i.e., Im ε1 < 0, the sign of

the perpendicular wave vector γ1 = ±
√

ε1ω2/c2 − k2
‖ needs

to be chosen correctly inside the gain medium [36–38]. Here
we make the physically motivated choice that yields decaying
surface waves inside the semi-infinite gain medium. In the
case of evanescent waves k‖ � ω/c, γ0 ≈ γj ≈ ik‖, such

that rs
j → 0 and r

p

j = εj −1
εj +1 = |εj |2−1

|εj +1|2 + 2ε′′
j i

|εj +1|2 , where εj =
ε′
j + iε′′

j . Substituting e2k‖d = z and approximating the integral∫
zf (z)dz ≈ z0f (z), with z0 = k0d = ln |rp

1 r
p

2 | denoting the
wave vector that minimizes the denominator of (4), one obtains

�12(ω) = z0 Im(εG) Im
(
r

p

1

)
Im

(
r

p

2

)
4π2d2 Im ε1

×
∫ ∞

1

dz[
z − Re

(
r

p

1 r
p

2 )
]2 + [

Im
(
r

p

1 r
p

2

)]2 . (5)

It follows that the flux rate in the case of passive media
with small loss rates scales as �12 ≈ ln |rp

1 r
p

2 |/(4π2d2) ∼
1
d2 ln | ε1−1

Im ε1

ε2−1
Im ε2

| under the resonant condition Re εj = −1,
illustrating a slow, logarithmic dependence on the loss rates
and corresponding divergence as Im εj → 0, described in
Ref. [11]. However, ASET in the presence of gain, described
by (5), depends differently on the loss rates. On the one
hand, in situations where gain does not compensate for losses
(Im ε1 > 0), the integral can be further simplified to yield
�12 ≈ 1

d2
Im εG

Im ε1
ln | ε1−1

Im ε1

ε2−1
Im ε2

|, illustrating the same logarithmic
dependence on loss rates and resonant conditions, but with
the flux rate exhibiting an additional factor ∼ Im εG/ Im ε1.
On the other hand, when the active plate has overall gain, i.e.,
Im ε1 < 0, the integral diverges under the modified condition
Re(rp

1 r
p

2 ) > 1 and Im(rp

1 r
p

2 ) = 0, or alternatively,

(|ε1|2 − 1)(|ε2|2 − 1) − 4ε′′
1 ε′′

2 > |ε1 + 1|2|ε2 + 1|2, (6)

ε′′
2 (|ε1|2 − 1) + ε′′

1 (|ε2|2 − 1) = 0, (7)
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both of which cannot be simultaneously satisfied below
threshold. Note that in this regime, Re ε = −1 is no longer a
necessary condition for maximum heat transfer. In particular,
the divergence can occur at unequal values of Re εj and Im εj ,
in which case the linewidth ∼| Im(rp

1 r
p

2 )| and peak wave vector
∼ Re(rp

1 r
p

2 ) are decreased and increased, respectively, by
suitable choices of material parameters. Such a divergence is
of course indicative of a LT, at which point linear fluctuational
electrodynamics is no longer valid. Although semi-infinite
plates offer analytical insights and computational ease, their
closed nature and large effective loss rates make them far from
ideal for studying ASET. In what follows, we consider finite
and open geometries in which even larger ASET and tunability
can be attained.

II. SPHERE DIMERS AND LATTICES

A. Sphere dimers

Consider an illustrative open geometry consisting of two
spheres separated by vacuum, shown in Fig. 2. In addition to
material loss, such a system also suffers from radiative losses,
which we quantify (neglecting stimulated emission) from the
far-field flux �0. The calculation of heat transfer between two
spheres was only recently carried out using both semianalytical
[8] and brute-force methods [39]. Here we extend these studies
to consider far-field radiation from one of the spheres (in
the presence of the other) and the possibility of gain. In
particular, we analyze near-field energy exchange �12 and
far field emission �0 by exploiting a semianalytical method
(SA) based on Mie-series expansion of scattered waves, and
which follows from a recent study of heat transfer in a similar
but passive geometry [8].

Due to the spherical symmetry of each object, it is natural
to consider scattering in this system by employing field
expansions in terms of Mie series [40]. Figure 2 shows a
schematic of the system, consisting of two vacuum-separated
spheres of radii Rj and dielectric permittivities εj , separated
by surface–surface distance d, where one of the spheres
is doped with a gain medium, such that ε1 = εr + εG. We
compute the flux rates through a surface S in vacuum
from dipoles x′

1 ∈ V1 which is given by Re
∮
S
〈E∗ × H〉 =

ω2 Im εG

π
Im

∮
S

∫
V1

d3x′
1 G

∗ × (∇ × G) · dS, where G(x,x′
1) is

the Dyadic Green’s function (GF), or the electric field due
to a dipole source at x′

1 evaluated at a point x = x1 = x2 in
vacuum, with xj denoting the position relative to the center

d

x
x1 x2

R1

ε1

R2

ε2

FIG. 2. Schematic of dimer system consisting of two spheres
of permittivities ε1 and ε2 and radii R1 and R2, respectively, and
separated by a gap d . Mie-series decomposition of scattered fields
simplifies calculations of energy transfer; shown are a flux evaluation
point x = x1 = x2 in medium 0, with xi , denoting the position relative
to the center of sphere i.

of sphere j , and where we have employed the FDT above
to express the flux as a sum of contributions from individual
(spatially uncorrelated) dipoles.

When expressed in a basis of Mie modes, the GF from a
dipole at a position x′

1 ∈ V1 evaluated at x is given by [8]

G(x,x′
1) = ik0


,ν = N

m = N∑

,ν = (1,m)
m = −N

(−1)m
∑

q,q ′ = ±
M(1)q ′


,−m(k1x′
1)

⊗ [
C
qq ′

νm M(3)q
νm (k0x1) + D
qq ′

νm M(3)q
νm (k0x2)

]
, (8)

where kj = √
εjω/c, 
 ∈ Z+, |m| � 
, N denotes the max-

imum Mie order, C

qq ′
νm and D


qq ′
νm are standard Mie coeffi-

cients [40,41], M(p)±

m denote spherical vector waves, z

(p)

 are

spherical Bessel (p = 1) and Hankel (p = 3) functions of
order 
, ζ (p)


 (x) = 1
x

d
dx

[xz
(p)

 (x)], and V(p)


m are spherical vector
harmonics [42].

The advantages of employing spherical vector waves
comes from the useful orthogonality relations [8] described
in Appendix A, which greatly simplify the calculation of
fluxes, requiring integration over V1 and over either the surface
S : |x2| → R2 circumscribing sphere 2 (as derived previously
in Ref. [8]) or a far-away surface S : |x| → ∞, leading to the
following expressions:

�12(ω) = R1 Im εG

R2 Im ε1

∑
m,
,ν

q,p = ±

Im

(
1

x
q
ν (R2)

)
Im

(
1

x
p


 (R1)

)

×
∣∣∣∣z

(1)

 (k1R1)D
qp

νm

z
(1)
ν (k0R2)

∣∣∣∣
2∣∣xp


 (R2)
∣∣2

, (9)

�0(ω) = 2k3
0R

2
1 Im εG

π Im ε1

∑
m,l,ν

q,p = ±

y
p


 (R1)
(∣∣D
qp

νm

∣∣2 + ∣∣C
qp
νm

∣∣2)
,

(10)

where C

qq ′
νm and D


qq ′
νm are so-called Mie coefficients [40],

x+
ν (r) = k0rζ

(1)
ν (k1r)z(1)

ν (k0r) − k1rζ
(1)
ν (k0r)z(1)

ν (k1r)

y+
ν (r) = lim

R→∞
R2 Im

[
z(3)
ν (k0R)ζ (3)∗

ν (k0R)
]

× Im
[
z(1)
ν (k1r)ζ (1)∗

ν (k1r)
]
,

x−
ν (r) = x+

ν (r|ζ ↔ z), y−
ν (r) = y+

ν (r|ζ ↔ z), z
(p)

 are spher-

ical Bessel (p = 1) and Hankel (p = 3) functions of order

, ζ

(p)

 (x) = 1

x
d
dx

[xz
(p)

 (x)], and kj = ω

√
εj /c. We note that

(10) appears to be new, but we have checked its validity
against numerics [39] and also known expressions in the
limit (d → ∞) of an isolated sphere [40]. We also note that
the factors of Im εG/ Im ε1 in both flux expressions arise
because we only consider fluctuations arising from the active
constituents (same as in Eqs. (4) and (5) for plates).

We begin by describing a few of the most relevant radiative
features associated with this geometry, focusing on dimers
comprising spheres of constant (dispersionless) dielectric per-
mittivities ε1,2 and equal radii R, which very clearly delineate
the operating conditions needed to observe �12 � �0. We
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m
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FIG. 3. Far-field flux �0(ω) and flux-transfer �12(ω) associated
with a dimer of two spheres of equal radii R, permittivities ε1 =
εr + εG and ε2 = εr , with Im εr = 0.05, and separated by distance
of separation d , under various operating conditions. (a) Dependence
of �0(ω) and �12(ω) on Im ε1 < 0 (under gain) at fixed Re ε1,2 =
−1.522, and for either d → ∞ (left) or d/R = 0.3 (middle/right).
White circles indicate the lasing threshold of a few individual
modes while white dashed lines indicate operating parameters (cross
sections) for the plots in (b), which show �12 (solid lines) and �0

(dashed lines) at fixed Im ε1 = − Im ε2 = −0.05 and d/R = 0.3. The
plots compare the flux rates of gain–loss (GL) dimers (red lines)
against those of passive (LL) dimers (blue lines).

assume that one of the spheres (with dielectric ε1) is doped with
a gain medium such that Im ε1 < 0. The top contour in Fig. 3(a)
shows �0 from an isolated sphere of Re ε = −1.522 as a
function of gain permittivity Im ε1, illustrating the appearance
of Mie resonances and consequently, ASE peaks occurring
at k0R � 1. As expected, the LTs (white circles indicate a
select few) associated with each resonance occur at those
values of gain where (as in the planar case) �0 → ∞ and
the mode bandwidths → 0, decreasing with increasing k0R

(smaller radiative losses). Note that these divergences are
obscured in the contour plot by our finite numerical resolution,
which sets an upper bound on �0. The middle contour plot
in Fig. 3(a) shows that a passive sphere with Im ε2 = 0.05
in proximity to the gain sphere (d/R = 0.3) causes the Mie
resonances to couple and split, leading to dramatic changes
in the corresponding LTs. Noticeably, while the presence of
the lossy sphere introduces additional dissipative channels, in
some cases it can nevertheless enhance ASE (decreasing LTs)
by suppressing radiative losses [43]. These results are well
studied in the literature [18,43] but they are important here
because our linear FDT is only valid below LT. Another feature
associated with such dimers is the significant enhancement in
�12 compared to �0 in the subwavelength regime k0R � 1
[44,45], illustrated by the middle/right contours of Fig. 3(a).

Although such near-field enhancements have been studied
extensively in the context of passive bodies [4,7,45], as we
show here, the introduction of gain can lead to even further
enhancements. This is demonstrated by the flux spectra in
Fig. 3(b) (corresponding to slices of the contour maps, denoted
by white dashed lines), which compare the flux rates of both
active (red lines) and passive (blue lines) dimers. The spectra
indicate that, while the large radiative components of Mie
resonances at intermediate and large frequencies k0R � 1
lead to roughly equal enhancements in �12 and �0 ∼ �12,
the saturating and dominant contribution of evanescent fields
and the presence of surface–plasmon resonances in the long
wavelength regime cause �0 → 0 and �12 � 1 as ω → 0.
As expected, the existence and coupling of these resonances
depend sensitively on d/R, occurring at Re ε ≈ {−2, − 1} in
the limit d → {0,∞} of two semi-infinite plates or isolated
spheres, respectively.

B. Dipolar approximation

Since �12 � �0 in the subwavelength regime, we consider
a simple dipolar approximation (DA) [46,47] or quasistatic
analysis to understand these enhancements in more detail. In
the quasistatic regime, treating the spheres as point dipoles,
we find that the flux rates are given by

�12 = 12 Im εG

πL6 Im ε1
Im αeff

1 Im αeff
2 , (11)

�0 = 4 Im εG

π Im ε1
(k0R)3 Im αeff

1 , (12)

where αeff
i denote each spheres’ effective anisotropic polariz-

ability (computed by taking into account induced polarization
of the dipoles), with parallel (‖) and perpendicular (⊥)
components given by [48]

αeff
⊥,1/2 = α1/2

1 − α2/1

L3

1 − α1α2
L6

, αeff
‖,1/2 = α1/2

1 + 2α2/1

L3

1 − 4α1α2
L6

, (13)

with αi = εi−1
εi+2 denoting the vacuum polarizability of the

isolated spheres in units of 4πR3 and L = 2 + d
R

their center-
center distance in units of R.

It is well known that in the far-field dipolar limit d/R � 1,
both �12,�0 → ∞ under the resonance condition, Re ε = −2
and zero material loss Im ε → 0 [10,44,46]. At smaller sepa-
rations, these two conditions are modified to |L6 − α1α2| = 0
(‖ component) or |L6 − 4α1α2| = 0 (⊥ component) due to
changes in the effective polarizability of each sphere. Despite
such a modification, in the case of passive dimers, the
divergence can only be reached in the limit Im εi → 0. For
instance, in passive dimers with α = α1 = α2, Im αeff → ∞
at specific L3 = − Re α (⊥ component) and L3 = 2 Re α (‖
component) for Re ε close to −2 but only under the condition
of zero loss, illustrated in the top contour of Fig. 4(a) for
a small Im ε1,2 = 0.01. Ultimately, however, the zero-loss
quasistatic condition cannot generally be satisfied in finite,
passive geometries, resulting in finite flux rates (even in the
limit as Im ε → 0); essentially, two far-separated (d → ∞)
spheres will not behave as quasistatic dipoles owing to their
finite skin depth, except in the limit R → 0 in which case only

115402-4



GIANT FREQUENCY-SELECTIVE NEAR-FIELD ENERGY . . . PHYSICAL REVIEW B 94, 115402 (2016)

Frequency, ωR/c

(i)(ii)(iii)

|Φ12|
|Φ0|10-5

105

100

105

|Φ
(ω

)|

Frequency, ωR/c

D
is

ta
nc

e,
d/

R

log10|Φ|

-2

0

2

4

4

6

8

10

12

(i)(ii)(iii)

|Φ12|

0.28

0.3

0.32

0.34

ω0
(-)→0

ω0
(+)

|Φ0|

0.28

0.3

0.32

0.34

10-2 10-1

D
is

ta
nc

e,
d/

R

-25
-20
-15
-10
-5
0101

100

10-1

101

100

10-1 -10

10
6
2
-2
-6

log10|Φ12|

-3 -2.5 -2 -1.5 -1
Re ε

10-10

10-5

100

105

d/R

|Φ
(ω

)|

|Φ12| |Φ0|

SA

DA

10-1 100 101

(a)

10-2 10-1

(c)

(b) (d)

FIG. 4. (a) Flux-transfer rate �12 associated with the sphere dimer
system of Fig. 3 under a simple dipolar approximation (DA), in either
passive (Im ε1,2 = 0.01, top) or active (Im ε1 = − Im ε2 = −0.1,
bottom) regimes, as a function of Re ε1,2 and d/R. While the flux
rate diverges in the active case under total loss compensation, only
the rate per unit volume diverges in the case of finite, passive
spheres. The validity of the DA for large d > R is illustrated in
(b), which shows also results obtained using the semianalytical (SA)
equations [(9) and (10)]. (c) Flux rate spectra �0(ω) (top) and
�12(ω) (bottom) of the dimer system under the PT symmetry con-
dition, Re ε1,2 = −1.522 and Im ε1 = − Im ε2 = −0.05, illustrating
the splitting of a subwavelength dimer mode as d changes around a
critical dc ≈ 0.306R. The two branches include both quasistatic ω

(−)
0

and subwavelength ω
(+)
0 resonances. (d) Flux spectra at three different

separations d ≈ {0.3056,0.302,0.3017}R, marked by the white dots
(i), (ii), and (iii), respectively, in the bottom contour in (c).

the flux rates per unit volume rather than the absolute rates
diverge [10,49]. Gain–loss dimers, on the other hand, exhibit
diverging flux rates (i.e., they can lase) under finite material
gain and loss rates, as well as in finite geometries that lie
outside of the quasistatic regime. A clear and practical example
are objects satisfying the so-called parity-time (PT ) symmetry
condition, ε1 = ε∗

2 or α = α1 = α∗
2 (assuming equal radii). In

this case, the dipolar analysis above suggests a divergence at
the critical separation dc corresponding to L3 = {|α|,√2|α|},
illustrated in the bottom contour plot of Fig. 3(c), assuming
| Im ε1,2| = 0.1. It also follows that under finite loss rates, the
emission from gain–loss dimers can be made arbitrarily larger
than that of their passive counterparts. Note that in order to
capture the enhancement factor associated with active dimers,
the induced polarization effect (captured by our quasistatic
analysis to first order in d/R) must be included, emphasizing
the importance of geometry along with gain in realizing
maximum ASET; the former has a significantly smaller effect
on passive dimers.

Deviations from zero-loss conditions lead to different
scalings in active versus passive dimers: for small but fi-
nite Im α � | Re α|, the passive transfer rate �12 ∼ ( Re α

Im α
)2,

illustrating a significantly more dramatic increase in flux
rates with decreasing losses than is otherwise observed
in the planar geometry discussed above [11]. Additional
enhancements arise in active dimers. For instance, under an
equally small breaking ofPT symmetry in our example above,
i.e., α = α1 = α∗

2 + iδ, one finds that �12 ∼ ( Im α
Re α

)2( Im α
δ

)2.
Considering the typically large loss rates of metals near the
plasma frequency, i.e., Im α/ Re α ∼ 1, it is clear that in
practice, one can achieve larger enhancement factors in active
dimers as compared to passive dimers. Note that although we
focus here on a PT -symmetric configuration as a convenient
illustration of amplification phenomena, similar results arise
under different scenarios, as described by the divergence
condition above.

While the DA offers intuitive and analytical insights
into energy exchange in the subwavelength regime, it fails
to capture many important, finite-size effects that result
from second- and higher-order scattering artifacts, and must
therefore be supplemented by exact calculations if more
quantitative predictions are desired. Nevertheless, as shown
in Fig. 4(b), when compared against the SA above, with flux
rates given by (9) and (10), the DA and exact predictions
exhibit close agreement whenever d � R, suggesting that the
DA is sufficient to understand the main features of energy
transfer at intermediate to large separations. It is also evident
from the DA that the ratio of ASET to ASE, �12

�0
∼ (R/d)6

(k0R)3 ,
favoring absorption to radiation as k0R → 0, as illustrated in
Fig. 4. Furthermore, although our dipolar analysis suggests
a unique L at which �12 → ∞, finite geometries support
many such modes and there exists multiple critical separations
and quasistatic divergences, an example of which is shown
in Figs. 4(c) and 4(d), which delineate lasing transitions
and strong, distance-dependent enhancements at d � R not
predicted by DA. In particular, Fig. 4(c) shows the flux
rates under PT symmetry, corresponding to Re ε = −1.522
and Im ε1 = − Im ε2 = −0.05, illustrating the appearance of
a subwavelength resonance (otherwise absent at far-away
separations) at d ≈ 0.317R and ω0R/c ≈ 0.25 that splits
into two resonances at d/R ≈ 0.306R, whose frequencies ω±

0
move farther apart (white dashed lines in the top contour plot)
with decreasing d. Such a resonant coupling mechanism results
in an ultralarge redshift ω−

0 → 0 of one of the branches, as
d → dc, eventually leading to the quasistatic divergence and
better illustrated in the bottom figure of Fig. 4(c), which shows
the spectrum corresponding to three different separations,
denoted by white dots. While the DA does not predict such a
low-d divergence, which arises due to higher-order scattering
effects, it does predict the right scaling of �12/�0 with the
various parameters.

The analysis above suggests that a proper combination of
gain, geometry, and subwavelength operating conditions can
provide optimal conditions for achieving ASET � ASE below
the LT. In what follows, we consider a more practical and
interesting, extended geometry, involving lattices of spheres
that exchange energy among one another, where one can
potentially observe even larger enhancements, leaving open
the possibility of further improvements in other geometries
[9,50,51]. Because exact calculations of flux rates in such a
structure are far more complicated [52], we restrict ourselves
to quasistatic situations that lie within the scope of our DA.
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FIG. 5. (b) Flux transfer |�12|R2/A and (c) far-field flux |�0|R2/A associated with the system shown schematically in (a), involving an
infinite, two-dimensional lattices of gain and loss spheres of equal radii R and period t ≈ d , and separated by a (varying) vertical distance
d , for different choices of t/R � 1 and fixed values of Re ε = −1.95 and Im ε1 = − Im ε2 = −0.01. Also shown are the corresponding flux
rates obtained using a simple pairwise approximation (PA, dashed red lines) that ignores multiple scattering (see text), or associated with
either passive spheres (LL, black solid lines) or isolated dimers (blue lines, both DA and SA). The flux rates are normalized by either the
dimensionless unit areas A/R2 in the case of lattices, with A = (t + 2R)2, or A = 4πR2 in the case of an isolated dimer. (d) Compares the
maximum achievable flux rate |�12|R2/A in sphere lattice (solid lines) versus planar (dashed lines) geometries as a function of the ratio
Im ε1/ Im ε2 (relative overall permittivity of the gain spheres/plates) for two different choices of Im ε2 = {0.01,0.1} (red, blue) and fixed lattice
parameters d/R = t/R = 2.

C. Sphere lattices

The combination of reduced loss rates and resonant, near-
field enhancements potentially achievable in extended geome-
tries could lead to orders of magnitude larger heat flux rates
compared to planar geometries. In fact, as we showed recently
in Ref. [11], structures comprising tightly packed, pairwise-
additive dipolar radiators can approach the fundamental limits
of radiative energy exchange imposed by energy conservation.
In what follows, we analyze more realistic versions of such
structures, albeit under gain, demonstrating the possibility

of achieving significant and widely tunable near-field and
material flux enhancements.

We consider two vacuum-separated square lattices of gain–
loss nanospheres having equal radii R, lattice spacing t , and
surface–surface separation d, depicted in Fig. 5(a). As noted
above, the radiation between and from such structures will, to
lower order in {d,t}/R, depend on the local corrections to the
polarizabilities of each individual sphere. The generalization
of the DA to consider such a situation yields the following set
of equations for the effective polarizabilities of each sphere:

⎡
⎢⎢⎢⎣

1

α
(0)
G,z

− 1

(2 + t/R)3

∞∑
n1,n2 = 0

n1 + n2 �= 0

1(
n2

1 + n2
2

)3/2

⎤
⎥⎥⎥⎦αeff

G,z −
⎡
⎣ 1

(2 + t/R)3

∞∑
n1,n2 = 0

n2
1 + n2

2 − 2(d/t)2[
n2

1 + n2
2 + (d/t)2

]5/2

⎤
⎦αeff

L,z = 1, (14)

⎡
⎢⎢⎢⎣

1

α
(0)
G,‖

− 1

(2 + t/R)3

∞∑
n1 = 0,n2 = 0
n1 + n2 �= 0

n2
2 − 11n2

1(
n2

1 + n2
2

)5/2

⎤
⎥⎥⎥⎦αeff

G,‖ −
⎡
⎣ 1

(2 + t/R)3

∞∑
n1,n2 = 0

(d/t)2 + n2
2 − 11n2

1[
n2

1 + n2
2 + (d/t)2

]5/2

⎤
⎦αeff

L,‖ = 1, (15)

in terms of the bare polarizabilities α
(0)
G,L and structure

parameters. (Note that there are three additional equations,
which we have chosen to omit, obtained by letting G ↔ L.)

Figure 5 shows (b) �12 and (c) �0 in the subwavelength
regime k0R = 0.01, normalized by the dimensionless lat-
tice area A/R2 = (2 + t/R)2, assuming spheres of ε1,2 =
−1.95 ± 0.01i and for various t = {2,7}R. To understand
the range of validity of the DA with respect to d/R, we
once again compare its predictions against our semianalytical
formulas (SA) in the case of isolated dimers (dotted blue lines),
showing excellent agreement in the range d/R > 1; note,
however, the failure of DA to predict the additional peak at low
d/R ≈ 0.2. Restricting our analysis to large separations, one
finds that the presence of additional spheres causes significant
enhancements and modifications to the flux rates, leading

to complicated, nonmonotonic dependencies on geometric
parameters such as t . To illustrate the importance of multiple-
scattering among many particles, we also show results obtained
using a simple pairwise-additive (PA) approximation (dashed
lines), in which the flux rates associated with pairs of spheres
are individually summed.

Figure 5(d) compares the performance of sphere lattices
against that of parallel plates, showing the maximum achiev-
able |�12|/(A/R2) as a function of the relative gain/loss rate
Im ε1/ Im ε2 for fixed d/R = t/R = 2 and multiple loss rates
Im ε2 = {0.01,0.1} (red and blue lines), varying Re ε1,2 so
as to satisfy the resonant condition (obtained and verified
numerically). As noted above, whenever Im ε1 < 0 (loss
compensation), it is always possible to choose geometric
parameters under which the system undergoes lasing (gray
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shaded region), though this condition can only be obtained
analytically for simple structures such as the plates or
dipolar spheres above. Below the LT, it is evident that there
is significant enhancement in ASET compared to plates,
especially as the lattice system approaches the LT. Such an
enhancement depends crucially on the loss rates, decreasing
with increasing Im ε2, which can be explained by the weak,
logarithmic dependence of the planar flux rates on overall
loss compensation [11]. Note that as discussed above, at
finite R, the DA becomes increasingly inaccurate in the limit
Im ε1 → 0, owing to the finite skin depth effect [10,49]. Our
calculations therefore offer only a qualitative understanding
of the trade-offs in exploiting particle lattices as opposed
to plates. Under losses Im ε2 ≈ 0.1 typical of plasmonic
materials, we find that parallel plates exchange more energy
compared to sphere lattices for a wide range of gain parameters
(except close to the LT), while the latter dominate at smaller
Im ε2 and can be greatly enhanced by the presence of even
a small amount of gain. Note that while we have chosen
to investigate only the case {t,d}/R = 2 in order to ensure
the validity of the DA, potentially larger enhancements are
expected to arise at shorter distances or lattice separations, but
such an analysis requires a full treatment of ASET in these
extended systems, including both finite size and nonlinear
effects [35,53]. Nevertheless, our results provide a glimpse
of the opportunities for tuning ASET in structured materials.

D. Real materials

The ability to achieve gain at subwavelength frequencies is
highly constrained by size and material considerations. In what
follows, we describe ASET predictions in a potentially viable
material system. Consider a sphere dimer consisting of two
ion-doped metallic spheres, shown schematically in the inset
of Fig. 6. While there are many material candidates, including
various choices of metal-doped oxides and chalcogenides
[54], for illustration, we consider a medium consisting of
(2 wt. %) Ga-doped zinc oxide (GZO) that is further doped with
four-level chromium (Cr2+) ions, in which case the transition
wavelength lies in the near infrared. The permittivity and gain
profile of the ions and GZO are well described by (2), with
ω21 = 0.75 × 1015 rad/s, γ⊥ ≈ 0.02ω21, and [54–56]

εr (ω) = ε∞ − ω2
p

ω(ω + i�p)
+ f1ω

2
1

ω2
1 − ω2 − iω�1

, (16)

where ε∞ = 2.475, f1 = 0.866, ωp = 2.23ω21, �p =
0.0345ωp, ω1 = 9.82ω21, and �1 = 0.006ω1. These param-
eters dictate dimer sizes and configurations needed to operate
in the subwavelength regime.

Figure 6(a) shows �12 (red line) and �0 (blue line)
for one possible dimer configuration, corresponding to R =
0.2c/ω21 ≈ 80 nm, d/R = 0.5, and population inversion
D0 = 0.375(�γ⊥/4πg2), demonstrating orders of magnitude
larger ASET compared to ASE within the gain bandwidth.
Noticeably, the emission from an isolated sphere under the
same gain parameters (green line) is significantly larger,
evidence of an increased LT due to the presence of the lossy
sphere. The flux spectra of this system are explored in Fig. 6(b)
with respect to changes in D0, illustrating the appearance of the
subwavelength peak and large �12 � 1. As expected, the LT
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FIG. 6. (a) Far-field flux �0(ω) (blue line) and flux-transfer
�12(ω) (red line) spectra of a dimer consisting of two Ga-doped
zinc-oxide spheres of radii R = 0.2c/ω21, separated by a distance
d/R = 0.5. One of the spheres is doped with chromium (Cr2+)
ions having transition wavelength λ21 = 2.51 μm, and pumped to
a population inversion D0 = 0.375(�γ⊥/4π 2g2). Also shown is the
far-field emission �0(d → ∞) of the isolated gain sphere (green
line). The top inset shows the peak ratio �max

12 /�max
0 with respect to

changes in R, keeping d/R and D0 fixed. (b) Contour plots illustrating
variations in �0 (left/middle) and �12 (right) with respect to D0,
with the black dashed lines indicating operating parameters in (a).
(c) Maximum spectral flux rates |�12(ω)|R2/A (left) and
|�0(ω)|R2/A (right) for extended sphere lattices comprising GZO
gain–loss spheres operating at D0 = 0.3(�γ⊥/4π 2g2), well below the
LT, but of radii R ∼ 0.05c/ω21, as a function of d/R and for different
values of t/R. Also shown are the flux rates of passive lattices (LL,
black solid lines), obtained by letting D0 = 0.

corresponding to the first peak occurs slightly above Im εL ≈
0.37, which is the threshold gain needed to compensate
material loss, at which point Im ε1 < 0. The black dashed lines
in the contours denote the operating parameters of Fig. 6(a),
confirming that the system lies below the LT. As expected,
smaller dimers lead to larger �12

�0
∼ (k0R)−3, as illustrated by

the top inset of Fig. 6(a). Figure 6(c) shows the flux rates
(red and blue lines) corresponding to extended lattices of
spheres comprising the same GZO gain–loss profiles and with
radii R = 0.05c/ω21 ≈ 20 nm (in the highly subwavelength
regime), in a situation where the system is well below the LT,
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which occurs at D0 = 0.3(�γ⊥/4π2g2). Noticeably, the flux
rates are significantly larger than the rates achievable in passive
structures (green solid lines).

III. CONCLUDING REMARKS

Our predictions shed light on considerations needed to
achieve large ASET between structured active–passive ma-
terials, attained via a combination of loss compensation in
conjunction with near-field effects. While our work follows
closely well-known and related ideas in the areas of near-
field heat transport and nanoscale lasers (e.g., spasers), the
possibility of tuning and enhancing heat among active bodies
in the near field is only starting to be explored [26,57]. Our
analysis, while motivating and correct in regimes where ASE
dominates stimulated emission, ignores important nonlinear
and radiative-feedback effects present in gain media as the
LT is approached, nor have we considered specific pump
mechanisms which will necessarily affect power requirements
and ASET predictions [58,59], especially above threshold. To
answer such questions, future analyses based on full solution
of the Maxwell-Bloch equations [60,61] or variants thereof
[35,56] are needed.
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APPENDIX: VECTOR SPHERICAL HARMONICS

When deriving the flux rates associated with two
spheres, we employed the following spherical-vector

functions:

M(p)+

m (kx) = z

(p)

 (kr)V(2)


m(θ,φ), (A1)

M(p)−

m (kx) = ζ

(p)

 (kr)V(3)


m(θ,φ)

+ z
(p)

 (kr)

kr

√

(
 + 1)V(1)


m(θ,φ), (A2)

where z
(p)

 are spherical Bessel (p = 1) and Hankel (p = 3)

functions of order 
, ζ
(p)

 (x) = 1

x
d
dx

[xz
(p)

 (x)], and V(p)


m and
associated spherical vector harmonics [42]

V(1)

m(θ,φ) = r̂Y
m, (A3)

V(2)

m(θ,φ) = 1√


(
 + 1)

(
− φ̂

∂Y
m

∂θ
+ iθ̂

m

sin θ
Y
m

)
, (A4)

V(3)(θ,φ) = 1√

(
 + 1)

(
θ̂
∂Y
m

∂θ
+ iφ̂

m

sin θ
Y
m

)
, (A5)

which satisfy the following orthogonality relations:∮
S

V(p)

m · V(p′)∗


′m′ = δ

′δpp′δmm′ ,

∮
S

d� V(3)

m × V(2)∗


′m′ · r̂ = −
∮

S

d� V(2)

m × V(3)∗


′m′ · r̂

= −δ

′δmm′ ,∫
Vi

dx′ M(1)+

m (kx′) · M(1)+∗


′m′ (kx′)

= R2
i Im

[
k∗
i z

(1)

 (kiRi)ζ

(1)∗

 (kiRi)

]δ

′δmm′

k2
0 Im εi

,

∫
Vi

dx′ M(1)−

m (kx′) · M(1)−∗


′m′ (kx′)

= R2
i Im

[
k∗
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