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Model-Independent Evidence for J=ψp Contributions to Λ0
b → J=ψpK− Decays

R. Aaij et al.*

(LHCb Collaboration)
(Received 19 April 2016; published 18 August 2016)

The data sample of Λ0
b → J=ψpK− decays acquired with the LHCb detector from 7 and 8 TeV pp

collisions, corresponding to an integrated luminosity of 3 fb−1, is inspected for the presence of J=ψp or
J=ψK− contributions with minimal assumptions about K−p contributions. It is demonstrated at more than
nine standard deviations that Λ0

b → J=ψpK− decays cannot be described with K−p contributions alone,
and that J=ψp contributions play a dominant role in this incompatibility. These model-independent results
support the previously obtained model-dependent evidence for Pþ

c → J=ψp charmonium-pentaquark
states in the same data sample.

DOI: 10.1103/PhysRevLett.117.082002

From the birth of the quark model, it has been anticipated
that baryons could be constructed not only from three quarks,
but also from four quarks and an antiquark [1,2], hereafter
referred to as pentaquarks. The distribution of J=ψp mass
(mJ=ψp) in Λ0

b→J=ψpK−, J=ψ→μþμ− decays observed
with the LHCb detector at the LHC shows a narrow peak
suggestive of uudcc̄ pentaquark formation, amidst the
dominant formation of various excitations of the Λ ½uds�
baryon (Λ�) decaying to K−p [3]. (The inclusion of charge
conjugate states is implied in this Letter.)Amplitude analyses
were performed on all relevant masses and decay angles of
the six-dimensional (6D) data, using the helicity formalism
and Breit-Wigner amplitudes to describe all resonances. In
addition to the previously well established Λ� resonances,
two pentaquark resonancesPcð4380Þþ (9σ significance) and
Pcð4450Þþ (12σ) were required in the model for a good
description of the data. The mass, width, and fit fractions
were determined to be 4380�8�29MeV, 205�18�
86MeV, 8.4%�0.7%�4.3%, and 4450�2�3MeV,
39�5�19MeV, 4.1%�0.5%�1.1%, respectively. The
Cabibbo suppressed Λ0

b → J=ψpπ− decays are consistent
with the presence of these resonances [4].
The addition of further Λ� states beyond the well-

established ones, and of nonresonant contributions, did
not remove the need for two pentaquark states in the model
to describe the data. Yet Λ� spectroscopy is a complex
problem, as pointed out in a recent reanalysis of K̄N
scattering data [5], in which the well-established Λð1800Þ
state was not seen, and evidence for a few previously
unidentified states was obtained. Theoretical models of Λ�
baryons [6–11] predict a much larger number of higher mass

excitations than is established experimentally [12]. The high
density of predicted states, presumably with large widths,
would make it difficult to identify them experimentally.
Nonresonant contributions with nontrivial K−p mass
dependence may also be present. Therefore, it is worth
inspecting the Λ0

b → J=ψpK− data with an approach that is
model independent with respect toK−p contributions. Such
a method was introduced by the BABAR Collaboration [13]
and later improved upon by the LHCb Collaboration [14].
There it was used to examine B̄0 → ψð2SÞπþK− decays,
which are dominated by kaon excitations decaying toK−πþ,
in order to understand whether the data require the presence
of the tetraquark candidate decay,Zð4430Þþ → ψð2SÞπþ. In
this Letter, thismethod is applied to the sameΛ0

b → J=ψpK−

sample previously analyzed in the amplitude analysis [3].
The sensitivity of the model-independent approach to exotic
resonances is investigated with simulation studies.
The LHCb detector is a single-arm forward spectrometer

covering the pseudorapidity range 2 < η < 5, described in
detail in Ref. [15]. The data selection is described in
Ref. [3]. A mass window of �2σ (σ ¼ 7.5 MeV) around
the Λ0

b mass peak is selected, leaving nsigcand ¼ 27469 Λ0
b

candidates for further analysis, with background fraction
(β) equal to 5.4%. The background is subtracted using
nsidecand ¼ 10 259 candidates from the Λ0

b sidebands, which
extend from �38 to �140 MeV from the peak (see the
Supplemental Material [16]).
The aim of this analysis is to assess the level of

consistency of the data with the hypothesis that all Λ0
b →

J=ψpK− decays proceed via Λ0
b → J=ψΛ�, Λ� → pK−,

with minimal assumptions about the spin and line shape of
possible Λ� contributions. This will be referred to as the
null hypothesis H0. Here, Λ� denotes not only excitations
of the Λ baryon, but also nonresonant K−p contributions or
excitations of the Σ baryon. The latter contributions are
expected to be small [17]. The analysis method is two
dimensional and uses the information contained in the
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Dalitz variables, ðm2
Kp;m

2
J=ψpÞ, or equivalently, in

ðmKp; cos θΛ� Þ, where θΛ� is the helicity angle of the
K−p system, defined as the angle between the ~pK and
−~pΛ0

b
(or −~pJ=ψ ) directions in the K−p rest frame.

The ðmKp; cos θΛ� Þ plane is particularly suited for
implementing constraints stemming from the H0 hypoth-
esis by expanding the cos θΛ� angular distribution in
Legendre polynomials Pl,

dN=d cos θΛ� ¼
Xlmax

l¼0

hPU
l iPlðcos θΛ� Þ;

where N is the efficiency-corrected and background-
subtracted signal yield, and hPU

l i is an unnormalized
Legendre moment of rank l,

hPU
l i ¼

Z þ1

−1
d cos θΛ�Plðcos θΛ� ÞdN=d cos θΛ� :

Under the H0 hypothesis, K−p components cannot con-
tribute to moments of rank higher than 2Jmax, where Jmax is
the highest spin of any K−p contribution at the given mKp

value. This requirement sets the appropriate lmax value,
which can be deduced from the lightest experimentally
known Λ� resonances for each J, or from the quark model,
as in Fig. 1. An lmaxðmKpÞ function is formed, guided by
the values of resonance masses (M0) lowered by two units
of their widths (Γ0): lmax ¼ 3 for mKp up to 1.64 GeV, 5 up
to 1.70 GeV, 7 up to 2.05 GeV, and 9 for higher masses as
visualized in Fig. 1.
Reflections from other channels, Λ0

b → Pþ
c K−, Pþ

c →
J=ψp or Λ0

b → Z−
csp, Z−

cs → J=ψK−, would introduce both
low and high rank moments (see the Supplemental Material
[16] for an illustration). The narrower the resonance,
the narrower the reflection, and the higher the rank l of
Legendre polynomials required to describe such a structure.
Selection criteria and backgrounds can also produce

high-l structures in the cos θΛ� distribution. Therefore, the
data are efficiency corrected and the background is sub-
tracted. Even though testing the H0 hypothesis involves
only two dimensions, the selection efficiency has some
dependence on the other phase-space dimensions, namely
the Λ0

b and J=ψ helicity angles, as well as angles between
the Λ0

b decay plane and the J=ψ and Λ� decay planes.
Averaging the efficiency over these additional dimensions
(Ωa) would introduce biases dependent on the exact
dynamics of the Λ� decays. Therefore, a six-dimensional
efficiency correction is used. The efficiency parametriza-
tion, ϵðmKp; cos θΛ� ;ΩaÞ, is the same as that used in the
amplitude analysis and is described in Sec. V of the
supplement of Ref. [3].
In order to make the analysis as model independent as

possible, no interpretations are imposed on the mKp
distribution. Instead, the observed efficiency-corrected

and background-subtracted histogram of mKp is used.
To obtain a continuous probability density function,
F ðmKpjH0Þ, a quadratic interpolation of the histogram
is performed, as shown in Fig. 2. The essential part of
this analysis method is to incorporate the l≤lmaxðmKpÞ
constraint on the Λ� helicity angle distribution:
F ðmKp; cos θΛ� jH0Þ ¼ F ðmKpjH0ÞF ðcos θΛ� jH0; mKpÞ,
where F ðcosθΛ� jH0;mKpÞ is obtained via linear inter-
polation between neighboring mKp bins of

F ðcos θΛ� jH0; mKp
kÞ ¼

XlmaxðmKp
kÞ

l¼0

hPN
l ikPlðcos θΛ� Þ;

where k is the bin index. Here, the Legendre moments hPN
l ik

are normalized by the yield in the corresponding mKp bin,
since the overall normalization ofF ðcos θΛ� jH0; mKpÞ to the
data is already contained in the F ðmKpjH0Þ definition. The
data are used to determine

hPU
l ik ¼

Xncandk

i¼1

ðwi=ϵiÞPlðcos θiΛ� Þ:

Here, the index i runs over selected J=ψpK− candidates in
the signal and sideband regions for the kth bin of mKp
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FIG. 1. Excitations of the Λ baryon. States predicted in Ref. [8]
are shown as short horizontal bars (black) and experimentally
well-established Λ� states are shown as green boxes covering the
mass ranges from M0 − Γ0 to M0 þ Γ0. The mKp mass range
probed in Λ0

b → J=ψpK− decays is shown by long horizontal
lines (blue). The lmaxðmKpÞ filter is shown as a stepped line (red).
All contributions from Λ� states with JP values to the left of the
red line are accepted by the filter. The filter works well also for
the excitations of the Σ baryon [8,12] (not shown).
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(ncandk is their total number), ϵi ¼ ϵðmKp
i; cos θΛ� i;Ωa

iÞ is
the efficiency correction, and wi is the background sub-
traction weight, which equals 1 for events in the signal
region and −βnsigcand=nsidecand for events in the sideband region.
Values of hPU

l ik are shown in Fig. 3.
Instead of using the two-dimensional (2D) distribution of

ðmKp; cos θΛ� Þ to evaluate the consistency of the data with
the H0 hypothesis, now expressed by the l ≤ lmaxðmKpÞ
requirement, it is more effective to use the mJ=ψp (mJ=ψK)
distribution, as any deviations fromH0 should appear in the

mass region of potential pentaquark (tetraquark) resonan-
ces. The projection of F ðmKp; cos θΛ� jH0Þ onto mJ=ψp

involves replacing cos θΛ� with mJ=ψp and integrating over
mKp. This integration is carried out numerically, by
generating large numbers of simulated events uniformly
distributed in mKp and cos θΛ� , calculating the correspond-
ing value of mJ=ψp, and then filling a histogram with
F ðmKp; cos θΛ� jH0Þ as a weight. In Fig. 4, F ðmJ=ψpjH0Þ is
compared to the directly obtained efficiency-corrected and
background-subtracted mJ=ψp distribution in the data.
To probe the compatibility of F ðmJ=ψpjH0Þ with the

data, a sensitive test can be constructed by making a
specific alternative hypothesis (H1). Following the method
discussed in Ref. [14], H1 is defined as l ≤ llarge, where
llarge is not dependent on mKp and large enough to
reproduce structures induced by J=ψp or J=ψK contribu-
tions. The significance of the lmaxðmKpÞ ≤ l ≤ llarge
Legendre moments is probed using the likelihood ratio
test,

Δð−2 lnLÞ ¼
Xnsigcandþnsidecand

i¼1

wi ln
F ðmJ=ψp

ijH0Þ=IH0

F ðmJ=ψp
ijH1Þ=IH1

;

with normalizations IH0;1
determined via Monte Carlo

integration. Note that the explicit event-by-event efficiency
factor cancels in the likelihood ratio, but enters the like-
lihood normalizations. In order for the test to have optimal
sensitivity, the value llarge should be set such that the
statistically significant features of the data are properly
described. Beyond that the power of the test deteriorates.
The limit llarge → ∞ would result in a perfect description of
the data, but a weak test since then the test statistic would
pick up the fluctuations in the data. For the same reason,
it is also important to choose llarge independently of the
actual data. Here, llarge ¼ 31 is taken, one unit larger
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FIG. 2. Efficiency-corrected and background-subtracted mKp
distribution of the data (black points with error bars), with
F ðmKpjH0Þ superimposed (solid blue line). F ðmKpjH0Þ fits
the data by construction.
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the data. Regions excluded by the l ≤ lmaxðmKpÞ filter are shaded.
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line) superimposed.
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than the value used in the model-independent analysis of
B̄0 → ψð2SÞπþK− [14], as baryons have half-integer spins.
The result for F ðmJ=ψpjH1Þ is shown in Fig. 4, where it is
seen that llarge ¼ 31 is sufficient. To make F ðmJ=ψpjH0;1Þ
continuous, quadratic splines are used to interpolate
between nearby mJ=ψp bins.
The numerical representations ofH0 and ofH1 contain a

large number of parameters, requiring extensive statistical
simulations to determine the distribution of the test variable
for the H0 hypothesis: F t½Δð−2 lnLÞjH0�. A large number
of pseudoexperiments are generated with nsigcand and nsidecand
equal to those obtained in the data. The signal events,
contributing a fraction ð1 − βÞ to the signal region sample,
are generated according to the F ðmKp; cos θΛ� jH0Þ func-
tion with parameters determined from the data. They are
then shaped according to the ϵðmKp; cos θΛ� ;ΩaÞ function,
with the Ωa angles generated uniformly in phase space.
The latter is an approximation, whose possible impact is
discussed later. Background events in sideband and signal
regions are generated according to the 6D background
parametrization previously developed in the amplitude
analysis of the same data (Ref. [3] supplement). The
pseudoexperiments are subject to the same analysis pro-
cedure as the data. The distribution of values of Δð−2 lnLÞ
over more than 10 000 pseudoexperiments determines the
form of F t½Δð−2 lnLÞjH0�, which can then be used to
convert the Δð−2 lnLÞ value obtained from data into a
corresponding p value. A small p value indicates non-Λ�
contributions in the data. A large p value means that the
data are consistent with the Λ�-only hypothesis, but does
not rule out other contributions.
Before applying this method to the data, it is useful to

study its sensitivity with the help of amplitude models.
Pseudoexperiments are generated according to the 6D
amplitude model containing only Λ� resonances (the
reduced model in Table 1 of Ref. [3]), along with efficiency
effects. The distribution of Δð−2 lnLÞ values is close to
that expected from F t½Δð−2 lnLÞjH0� (black open and red
falling hatched histograms in Fig. 5), thus verifying the 2D
model-independent procedure on one example of the Λ�
model. They also indicate that the nonuniformities in
ϵðΩaÞ are small enough not to significantly bias the
F t½Δð−2 lnLÞjH0� distribution when approximating the
Ωa probability density via a uniform distribution. To test
the sensitivity of the method to an exotic Pþ

c → J=ψp
resonance, the amplitude model described in Ref. [3] is
used, but with the Pcð4450Þþ contribution removed.
Generating many pseudoexperiments from this amplitude
model produces a distribution of Δð−2 lnLÞ, which is
almost indistinguishable from the F t½Δð−2 lnLÞjH0� dis-
tribution (blue dotted and red falling hatched histograms in
Fig. 5), thus predicting that for such a broad Pcð4380Þþ
resonance (Γ0 ¼ 205 MeV), the false H0 hypothesis is
expected to be accepted (type II error), because the
Pcð4380Þþ contribution inevitably feeds into the numerical

representation of H0. Simulations are then repeated while
reducing the Pcð4380Þþ width by subsequent factors
of 2, showing a dramatic increase in the power of the
test (histograms peaking at 60 and 300). Figure 5 also
shows the Δð−2 lnLÞ distribution obtained with the
narrow Pcð4450Þþ state restored in the amplitude model
and Pcð4380Þþ at its nominal 205 MeV width (black
rising hatched histogram). The separation from
F t½Δð−2 lnLÞjH0� is smaller than that of the simulation
with a Pcð4380Þþ of comparable width (51 MeV) due to
the smaller Pcð4450Þþ fit fraction. Nevertheless, the
separation from F t½Δð−2 lnLÞjH0� is clear; thus, if this
amplitude model is a good representation of the data,
the H0 hypothesis is expected to essentially always be
rejected.
The value of the Δð−2 lnLÞ test variable obtained from

the data is significantly above the F t½Δð−2 lnLÞjH0�
distribution (see the inset of Fig. 5). To estimate a p value
the simulated F t½Δð−2 lnLÞjH0� distribution is fitted
with a bifurcated Gaussian function (asymmetric widths);
the significance of the H0 rejection is 10.1σ standard
deviations.
To test the sensitivity of the result to possible biases

from the background subtraction, either the left or the right
sideband is exclusively used, and the weakest obtained
rejection of H0 is 9.8σ. As a further check, the sideband
subtraction is performed with the sPlot technique [18],
in which the wi weights are obtained from the fit to the
mJ=ψpK distribution for candidates in the entire fit range.
This increases the significance of theH0 rejection to 10.4σ.
Loosening the cut on the boosted decision tree variable
discussed in Ref. [3] increases the signal efficiency by 14%,
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while doubling the background fraction β, and causes the
significance of the H0 rejection to increase to 11.1σ.
Replacing the uniform generation of the Ωa angles in
theH0 pseudoexperiments with that of the amplitude model
without the Pcð4380Þþ and Pcð4450Þþ states, but generat-
ing ðmKp; cos θΛ�Þ in the model-independent way, results in
a 9.9σ H0 rejection.
Figure 4 indicates that the rejection of the H0 hypothesis

has to do with a narrow peak in the data near 4450 MeV.
Determination of anyPþ

c parameters is not possiblewithout a
model-dependent analysis, because Pþ

c states feed into the
numerical representation of H0 in an intractable manner.
The H0 testing is repeated using mJ=ψK instead of

mJ=ψp. The mJ=ψK distribution, with F ðmJ=ψKjH0Þ and
F ðmJ=ψKjH1Þ superimposed, is shown in Fig. 6. The
Δð−2 lnLÞ test gives a 5.3σ rejection of H0, which is
lower than the rejection obtained using mJ=ψp, thus
providing model-independent evidence that non-Λ� con-
tributions are more likely of the Pþ

c → J=ψp type. Further,
in the model-dependent amplitude analysis [3], it was seen
that the Pc states reflected into themJ=ψK distribution in the
region in which F ðmJ=ψKjH0Þ disagrees with the data.
In summary, it has been demonstrated at more than nine

standard deviations that the Λ0
b → J=ψpK− decays cannot

all be attributed to K−p resonant or nonresonant contri-
butions. The analysis requires only minimal assumptions
on the mass and spin of the K−p contributions; no
assumptions on their number, their resonant, or nonreso-
nant nature, or their line shapes have been made. Non-K−p
contributions, which must be present in the data, can be
either of the exotic hadron type, or due to rescattering
effects among ordinary hadrons. This result supports the
amplitude model-dependent observation of the J=ψp
resonances presented previously [3].
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