Search for a low-mass neutral Higgs boson with suppressed couplings to fermions using events with multiphoton final states

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Table:

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevD.93.112010</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://hdl.handle.net/1721.1/110399</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.</td>
</tr>
</tbody>
</table>
A search for a Higgs boson with suppressed couplings to fermions, h_f, assumed to be the neutral, lower-mass partner of the Higgs boson discovered at the Large Hadron Collider, is reported. Such a Higgs boson could exist in extensions of the standard model with two Higgs doublets, and could be produced via $p\bar{p} \rightarrow H^+/C_6 h_f \rightarrow W^+ h_f h_f \rightarrow 4\gamma + X$, where H^+ is a charged Higgs boson. This analysis uses all events with...
In the standard model (SM) of particle physics, the masses of elementary particles are generated by the spontaneous breaking of the electroweak gauge symmetry \cite{1}, which predicts the existence of the Higgs boson. In 2012, the ATLAS and CMS experiments at CERN’s Large Hadron Collider (LHC) discovered a scalar boson with mass of approximately 125 GeV/c^2 and properties consistent with those expected for the SM Higgs boson \cite{2,3}. Some evidence for such a boson had also been presented by the Tevatron experiments \cite{4}. The detailed phenomenology of the Higgs boson is, however, yet to be investigated. The possibility that the recently observed Higgs boson is part of an extended Higgs sector is attractive because it would address some relevant open questions about the SM such as the generation of matter-antimatter asymmetry in the Universe \cite{5} and it is not ruled out experimentally.

A minimal extension, the “two-Higgs-doublet model” (2HDM) \cite{6}, assumes two doublets of Higgs fields. The resulting particle spectrum for the CP-conserving case consists of three electrically neutral Higgs bosons, \(h^0, H^0 \) and \(A^0 \), and two charged Higgs bosons, \(H^+, H^- \), where \(h^0 \) is less massive than \(H^0 \). The acronym CP represents the combined operations of charge-conjugation and parity transformation. An important parameter for predictions from the model is the ratio \(\tan \beta \) of the two vacuum-expectation values for the neutral components of the two Higgs doublets. Assuming that the boson discovered recently at the LHC is the \(h^0 \), searches for additional, more-massive neutral Higgs bosons were performed \cite{7,8}, yielding exclusion limits on production cross sections.

In this paper, we consider an alternative case in which the newly discovered boson corresponds to the high-mass \(H^0 \) and the lower-mass \(h^0 \) is yet to be observed. This scenario is poorly constrained experimentally if \(\tan \beta \) is large and \(h^0 \) has suppressed couplings to fermions at leading order. The \(h^0 \) is referred to as the fermiophobic Higgs boson (\(h_f \)). Searches performed at various experiments \cite{9,10,11} have set lower bounds of its mass, \(m_{h_f} \), at 100–150 GeV/c^2. These mass limits, however, were obtained assuming simplified models in which the couplings between the \(h_f \) and electroweak-gauge bosons are of the same strength as those in the SM, which is not necessarily true in the 2HDM, as they may be strongly suppressed when \(\tan \beta \) is large \cite{12}, by a factor of approximately \(10^{-2} \) when \(\tan \beta = 10 \), for example. A low-mass \(h_f \) (\(m_{h_f} \gtrsim 100 \text{ GeV}/c^2 \)), therefore, could have eluded the previous searches if \(\tan \beta \) is large. To fill this gap in exploring the Higgs sector, we focus on the process \(q\bar{q}' \rightarrow W^+ h_f \rightarrow h_f H^\pm \), followed by the decay \(H^\pm \rightarrow h_f W^\mp \), where \(q \) and \(\bar{q}' \) are quarks and antiquarks in the colliding protons and anti-protons taking part in the hard interaction, and \(W^\pm \) represents a virtual W boson. This process, involving \(H^\pm \), has enhanced production rates for large \(\tan \beta \) \cite{13}. By assuming no couplings to fermions, the branching fraction (B) of \(h_f \) decays to two photons, \(h_f \rightarrow \gamma\gamma \), is near 100% for \(m_{h_f} \lesssim 95 \text{ GeV}/c^2 \) \cite{13,14}. The production of two \(h_f \) particles could result in a distinctive multiphoton topology with small background rates. The couplings of the \(H^0 \) to SM particles in this scenario are similar to those of the SM Higgs boson \cite{13} and we perform the analysis assuming that its mass, \(m_{H^0} \), is 125 GeV/c^2. The decay of \(H^0 \rightarrow h_f h_f \), when it is kinematically allowed and when the coupling is sizable, can also lead to multiphoton final states. We conservatively neglect this contribution to the expected signal. We also assume the \(A^0 \) mass, \(m_{A^0} \), to be 350 GeV/c^2, large enough so as not to contribute to \(H^\pm \) decays—the specific choice of \(m_{A^0} \) has little effect on the final result, and we take \(\tan \beta = 10 \). The expected production cross section multiplied by the appropriate branching fractions ranges approximately from 100 pb to 10 fb for the explored \(m_{h_f} \) and the \(H^\pm \) mass (\(m_{H^\pm} \)) values, from 10 to 105 GeV/c^2 and from 30 to 300 GeV/c^2, respectively.

This analysis is based on the entire data set of proton-antiproton collisions at a center-of-mass energy of 1.96 TeV collected with the Collider Detector at Fermilab (CDF II) between February 2002 and September 2011, corresponding to an integrated luminosity of 9.2 fb^{-1}. We select events with multiple photon candidates by applying criteria optimized for achieving the best sensitivity. We compare the observed event yields with background expectations, which are evaluated using a combination of Monte Carlo (MC) simulation and experimental data. A challenge is to estimate the contribution from background events containing clusters of particles (jets) misidentified as photons.

CDF II is a general-purpose detector consisting of tracking devices in a 1.4 T axial magnetic field, surrounded by calorimeters with a projective-tower geometry, and muon detectors surrounding the calorimeters. Gas proportional wire chambers with cathode strips (shower-maximum strip detectors) are located at a depth approximately corresponding to the maximum development of typical electromagnetic (EM) showers to measure precisely...
their centroid position and shape in the plane transverse to the shower development. Detailed descriptions of the
CDF II detector are in Ref. [15].

The initial data sample is obtained using a real-time event-selection system (trigger) that requires either two EM-energy clusters in the calorimeter, each with \(E_T = E \sin \theta > 12 \text{ GeV}\), or three clusters, each with \(E_T > 10 \text{ GeV}\), where \(E\) is the cluster energy measured with the calorimeter, \(\theta\) is the polar angle, and \(E_T\) is the transverse energy [16]. In the analysis, we select events with at least three EM-energy clusters with \(E_T > 15 \text{ GeV}\). They must be located in the central detector (pseudorapidity magnitude \(|\eta| < 1.1\)) [16], where reliable tracking of charged particles is available [17]. The photons are also required to be isolated: additional calorimeter \(E_T\) in a cone of angular radius \(R = \sqrt{\Delta \eta^2 + \Delta \phi^2} = 0.4\) [16] around the photon candidate must be less than 2 GeV, and the scalar sum of transverse momenta of charged particles in the same cone must be less than 2 GeV/c. We then apply photon-identification criteria based on the EM-shower profile, which must be consistent with the expectation for an isolated photon [18]. For photons with \(E_T > 15 \text{ GeV}\) in a fiducial region of the central detector, the probability to pass all selections is 80\%−90\%.

We estimate the reconstruction efficiency for signal events as a function of \(m_{h_j}\) and \(m_{\mu \mu}\) using PYTHIA (version 6.4) MC simulation [19]. The generated events are passed through the full detector simulation based on GEANT [20]. The simulation of the EM response of the detector is calibrated by matching the observed energies in samples of \(Z \rightarrow e^+e^-\) events in the data and the MC simulation [18]. The fractions of generated signal events to pass all event selections are in the range 1\%−10\% depending on \(m_{h_j}\) and \(m_{\mu \mu}\).

Direct triphoton production is a major source of background events. We predict the kinematic distributions from simulated data generated with MADGRAPH (version 5) interfaced with MADEVENT [21] and combined with parton showering from PYTHIA. MADGRAPH provides direct triphoton production with up to two additional jets. The renormalization and factorization scales are set to the sum of the squares of the photons’ transverse momenta. The generated events are passed through the full detector simulation and we apply the same photon selection as that used for data.

Another source of background is the production of events with jets misidentified as photons. This background includes photons produced in the fragmentation process of quarks or gluons to hadrons. For estimating this contribution, we introduce a loose photon selection which simply collects EM-energy clusters without any associated tracks. In a sample of three-photon candidates selected with the loose selection, there are eight possible combinations of \(E_T\)-ordered photons and EM-like jets, \(\gamma\gamma\gamma, \gamma\gamma j, \ldots\), where \(j\) represents an EM-like jet. The numbers of these events are unknown and we express them by a vector \(n^*\) of event counts \((n^*_\gamma\gamma, n^*_\gamma j, \ldots)\). By applying the full set of criteria for the photon selection, we categorize the events in eight classes depending on whether each of the photon candidates in a given event passes \((p)\) or fails \((f)\) the full photon selection \((n_{\gamma\gamma\gamma}, n_{\gamma j}, \ldots)\), denoted by \(n\). The components of \(n^*\) are obtained by solving eight linear equations \(n = En^*\), where \(E\) is an \(8 \times 8\) matrix, the elements of which are calculated from the probability for a genuine photon or jet that meets the loose selection to also meet the full photon selection. Once \(n^*\) is obtained by inverting the matrix \(E\), we estimate the misidentified-jet contribution to \(n_{\gamma\gamma\gamma}\) using \(E\) and the calculated elements of \(n^*\) except \(n^*_\gamma\gamma\). Statistical uncertainties are propagated to \(n^*\). The photon efficiencies are measured with the PYTHIA MC and detector simulation, with a final calibration derived by comparing unbiased electrons in \(Z \rightarrow e^+e^-\) events in the data and the MC simulation. We estimate the probability for misidentifying jets as photons as a function of \(E_T\) using isolated jets in data samples collected with inclusive jet triggers. We correct for contributions of genuine photons to the set of objects passing the photon selection in the jet samples based on the differences in the expected distributions of isolation and shower shape variables [18]. Genuine photons tend to be isolated and to have good \(\chi^2\) values for the comparison of the observed and expected shower shapes, while misidentified jets show broad distributions in both quantities. These differences enable us to extrapolate the amount of misidentified jets from regions of larger isolation and \(\chi^2\) values to the region selected by the photon identification. The fraction of misidentified jets is then estimated to be approximately 30\% using the calorimetry-based isolation. The misidentification probability varies from a few percent to 25\% depending on the \(E_T\).

A third source of background events arises from electroweak processes containing \(Z(\rightarrow e\nu\gamma), W(\rightarrow e\nu\gamma), Z(\rightarrow \tau\tau\gamma),\) or \(W(\rightarrow \tau\nu\gamma)\) decays with additional misidentified jets or other photonlike particles that result in the \(\gamma\gamma\gamma\) signature. We predict these backgrounds using PYTHIA MC and detector simulation, after normalizing the cross sections to observed \(W\) and \(Z\) yields in the data.

The total expected number of background events at this stage is \(10.3 \pm 0.2\), where the uncertainty is statistical. We observe ten events in the data, which is consistent with the background expectation. None of the observed events contains four or more photons.

In order to further improve the search sensitivity, we apply an additional criterion on the summed \(E_T\) of the two highest-\(E_T\) photons, \(E_T^{\gamma}\). To quantify the search sensitivity, we calculate Bayesian [22] expected limits on the product of the cross section and the branching fraction,

\[
\sigma(p\bar{p} \rightarrow h_j H^\pm) \times B(H^\pm \rightarrow h_j W^\mp) \times [B(h_j \rightarrow \gamma\gamma)]^2,
\]

with respect to theoretical predictions by integrating posterior probability density functions based on

The main systematic uncertainty on the signal efficiency comes from that on the estimation of the identification efficiency for three photons, which is 8% of the total efficiency based on studies comparing $Z \rightarrow e^+e^-$ in data and simulation [18] by assuming full correlation among three photons. Other sources of systematic uncertainties include those on the parton momentum distributions in the colliding hadrons, the initial- and final-state radiation of a gluon, and the renormalization scale, which are each found to contribute less than 3% of the total efficiency [18].

We compare the MADGRAPH cross section with MCFM [25] calculations that take into account different higher-order contributions and take the resulting difference of 0.83 events as a systematic uncertainty on the yield of direct triphoton events. The systematic uncertainty from the renormalization scale, that from the initial- and final-state radiation, and that from the luminosity measurement [26] range from 0.16 to 0.21 events. We estimate the total systematic uncertainty on the expected yield of events with misidentified jets to be 0.17 events, which includes the contribution from the measurement of the misidentified-jet probability and that from the possible difference of the probabilities between jets originating from quarks and gluons. The dominant uncertainty on the electroweak contribution originates from the limited size of the simulated event samples used to estimate the small probability to find an extra photonlike particle in the $W(\rightarrow e\nu\gamma\gamma)$ events.

Table I shows the expected number of background events and the number of events found in data after the final selection. We find five candidate events in data, which is consistent with the expected number of background events.

We check the background predictions using background-rich control samples. In events containing one lower-quality photon candidate that passes the loose selection but fails the full selection, the predicted and observed numbers of events are 372 ± 68 and 370, respectively. In events with $E_γ^2 + E_γ^3 > 90$ GeV, 6.6 ± 1.7 events are predicted and five events observed. The observed agreement supports the reliability of the background estimation.

We perform a Bayesian limit calculation restricted to events observed in the signal region, $E_γ^2 + E_γ^3 > 90$ GeV, for

<table>
<thead>
<tr>
<th>TABLE I.</th>
<th>Expected number of background events compared to the observed number of events after the final event selection. The first contribution to the uncertainty is statistical and the second is systematic.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Events in signal region $(E_γ^2 + E_γ^3 > 90$ GeV)</td>
<td></td>
</tr>
<tr>
<td>Direct triphoton</td>
<td>$2.60 \pm 0.04 \pm 0.93$</td>
</tr>
<tr>
<td>Misidentified jets</td>
<td>$0.32 \pm 0.07 \pm 0.17$</td>
</tr>
<tr>
<td>Electroweak</td>
<td>$0.04 \pm 0.01 \pm 0.03$</td>
</tr>
<tr>
<td>Total</td>
<td>$2.96 \pm 0.08 \pm 0.94$</td>
</tr>
<tr>
<td>Data</td>
<td>5</td>
</tr>
</tbody>
</table>
as a function of \(m_{h_f} \), ranging from 10 to 105 \(\text{GeV}/c^2 \), and \(m_{H^+} \), ranging from 30 to 300 \(\text{GeV}/c^2 \). We include systematic uncertainties due to the signal efficiency, the predicted number of background events, and the luminosity, as well as the theoretical uncertainty of 20% on the cross section of Higgs boson production [23]. Figure 2 shows the expected and the observed cross section limits at 95% credibility for a particular choice of \(m_{h_f} \) and \(m_{H^+} \), with possible variations of the expected limits obtained by assuming 68% or 95% of Poisson fluctuations of the number of background events. From Fig. 2, the \(m_{h_f} \) region between 14 and 62 \(\text{GeV}/c^2 \) is excluded for \(m_{H^+} = 75 \text{ GeV}/c^2 \). Connecting the boundary regions of the excluded \(m_{h_f} \) region for various values of \(m_{H^+} \) in the \(m_{h_f} \) vs \(m_{H^+} \) plane, we form contours of the excluded mass regions and present them in Fig. 3. The region of parameters given by \(m_{h_f} \) between 10 and 100 \(\text{GeV}/c^2 \) and \(m_{H^+} \) between 30 and 170 \(\text{GeV}/c^2 \) is excluded. The result does not change significantly if we repeat the analysis by assuming \(\tan \beta = 30 \), while the excluded region shrinks by approximately 20 \(\text{GeV}/c^2 \) for both \(m_{h_f} \) and \(m_{H^+} \) for \(\tan \beta = 3 \).

In conclusion, we report on a search for the fermiophobic Higgs boson in the two-Higgs-doublet model using events with at least three photons in the final state, resulting from the hypothetical process \(p\bar{p} \rightarrow h_f H^\pm \) followed by \(H^\pm \rightarrow h_f W^\pm \) and \(h_f \rightarrow \gamma \gamma \). The observed number of signal candidate events in data is consistent with the expected number of background events. We calculate the upper limit on the product of the cross section and the branching fraction at 95% Bayesian credibility for \(m_{h_f} \) values ranging from 10 to 105 \(\text{GeV}/c^2 \) and for \(m_{H^+} \) values ranging from 30 to 300 \(\text{GeV}/c^2 \), and then translate these limits into an excluded region in the \(m_{h_f} \) vs \(m_{H^+} \) plane, shown in Fig. 3. The region of parameters given by \(m_{h_f} \) between 10 and 100 \(\text{GeV}/c^2 \) and \(m_{H^+} \) between 30 and 170 \(\text{GeV}/c^2 \) is excluded for \(\tan \beta = 10 \). This is the first search for a fermiophobic neutral Higgs boson with mass smaller than the boson discovered at the LHC in the two-Higgs-doublet model.

ACKNOWLEDGMENTS

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, United Kingdom; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; the Academy of Finland; the Australian Research Council (ARC); and the EU community Marie Curie Fellowship Contract No. 302103.
[16] CDF uses a cylindrical coordinate system with +z in the proton beam direction, θ and φ are the polar and azimuthal angles, respectively, and η is the pseudorapidity defined by η = −ln(tan(θ/2)).