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On Grids in Topological Graphs

Eyal Ackerman∗ Jacob Fox† János Pach‡ Andrew Suk§

Abstract

A topological graph is a graph drawn in the plane with vertices represented by points and edges
as arcs connecting its vertices. A k-grid in a topological graph is a pair of edge subsets, each of size
k, such that every edge in one subset crosses every edge in the other subset. It is known that for
a fixed constant k, every n-vertex topological graph with no k-grid has O(n) edges. We conjecture
that this remains true even when: (1) considering grids with distinct vertices ; or (2) all edges are
straight-line segments and the edges within each subset of the grid are required to be pairwise
disjoint. These conjectures are shown to be true apart from log∗ n and log2 n factors, respectively.
We also settle the conjectures for some special cases, including the second conjecture for convex
geometric graphs. This result follows from a stronger statement that generalizes the celebrated
Marcus-Tardos Theorem on excluded patterns in 0-1 matrices.

1 Introduction

The intersection graph of a set C of geometric objects has the members of C as its vertex set and an
edge between every pair of objects with a nonempty intersection. The problems of finding maximum
independent set and maximum clique in the intersection graph of geometric objects have received a
considerable amount of attention in the literature due to their applications in VLSI design [HM85],
map labeling [AKS98], frequency assignment in cellular networks [M97], and elsewhere. Here we study
the intersection graph of the edge set of graphs that are drawn in the plane. It is known that if this
intersection graph does not contain a large complete bipartite subgraph, then the number of edges in
the original graph is small. We show that this remains true even under some very restrictive conditions.

A topological graph is a graph drawn in the plane with points as vertices and edges as arcs connecting
its vertices. The arcs are allowed to cross, but they may not pass through vertices except for their
endpoints. We only consider graphs without parallel edges or self-loops. A topological graph is simple
if every pair of its edges intersect at most once. If the edges are drawn as straight-line segments, then
the graph is geometric. A geometric graph is convex if its vertices are in convex position, that is, they
are the vertices of a convex polygon.

Given a topological graph G, the intersection graph of E(G) has the edge set of G as its vertex set,
and an edge between every pair of crossing edges. Note that we consider the edges of G as open curves,
therefore, edges that intersect only at a common vertex are not adjacent in the intersection graph. A
complete bipartite subgraph in the intersection graph of E(G) corresponds to a grid structure in G.
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Figure 1: a “natural” grid

Definition 1.1 A (k, l)-grid in a topological graph is a pair of edge subsets E1, E2 such that |E1| = k,
|E2| = l, and every edge in E1 crosses every edge in E2. A k-grid is an abbreviation for a (k, k)-grid.

Theorem 1.2 ([PPST05]) Given fixed constants k, l ≥ 1 there exists another constant ck,l, such
that any topological graph on n vertices with no (k, l)-grid has at most ck,ln edges.

The proof of Theorem 1.2 in [PPST05] actually guarantees a grid in which all the edges of one
of the subsets are adjacent to a common vertex. For two recent and different proofs of Theorem 1.2
see [FPT08] and [FP08b]. Tardos and Tóth [TT07] extended the result in [PPST05] by showing that
there is a constant ck such that a topological graph on n vertices and at least ckn edges must contain
three subsets of k edges each, such that every pair of edges from different subsets cross, and for two
of the subsets all the edges within the subset are adjacent to a common vertex.

Note that according to Definition 1.1 the edges within each subset of the grid are allowed to cross
or share a common vertex, as is indeed required in the proofs of [PPST05] and [TT07]. However, a
drawing similar to Figure 1 usually comes to mind when one thinks of a “grid”. That is, we would
like every pair of edges within each subset of the grid to be disjoint, i.e., neither to share a common
vertex nor to cross. We say that a (k, l)-grid formed by edge subsets E1 and E2 is natural if the edges
within E1 are pairwise disjoint, and the edges within E2 are pairwise disjoint.

Conjecture 1.3 Given fixed constants k, l ≥ 1 there exists another constant ck,l, such that any simple
topological graph G on n vertices with no natural (k, l)-grid has at most ck,ln edges.

Note that it is already not trivial to show that an n-vertex geometric graph with no k pairwise
disjoint edges has O(n) edges (see [PT94] and [T00]). Moreover, it is an open question whether a
simple topological graph on n vertices and no k disjoint edges has O(n) edges (the best upper bound,
due to Pach and Tóth [PT05], is O(n log4k−8 n)). Therefore, a proof of Conjecture 1.3 is probably
hard to obtain. Here we prove the following bounds for geometric and simple topological graphs with
no natural k-grids.

Theorem 1.4

(i) An n-vertex geometric graph with no natural k-grid has O(k2n log2 n) edges.

(ii) An n-vertex simple topological graph with no natural k-grid has O(n log4k−6 n) edges.

We also settle Conjecture 1.3 for two special cases.

Theorem 1.5 An n-vertex simple topological graph with no natural (2, 1)-grid has O(n) edges.

Theorem 1.6 Given a fixed constant k ≥ 1 there exists another constant ck, such that any convex
geometric graph on n vertices with no natural k-grid has at most ckn edges.
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Note that Theorem 1.5 is the first nontrivial case since an n-vertex topological graph with no
(1, 1)-grid is planar and hence has at most 3n − 6 edges, for n > 2. Instead of Theorem 1.6 we
actually prove a stronger statement that generalizes the Marcus-Tardos Theorem. This theorem,
conjectured by Füredi and Hajnal [FH92] and later proved by Marcus and Trados [MT04], settled the
famous Stanley-Wilf Conjecture. See Section 4 for more details on the Marcus-Tardos Theorem and
its connection to convex geometric graphs.

Conjecture 1.3 is clearly false for (not necessarily simple) topological graphs: the complete graph
can be drawn as a topological graph in which every pair of edges intersect (at most twice [PT05]).
Therefore, for topological graphs we have to settle for only one of the components of “disjointness”.

Conjecture 1.7 Given fixed constants k, l ≥ 1 there exists another constant ck,l, such that any topo-
logical graph on n vertices with no (k, l)-grid with distinct vertices has at most ck,ln edges.

This conjecture is shown to be true for l = 1.

Theorem 1.8 An n-vertex topological graph with no (k, 1)-grid with distinct vertices has O(n) edges.

For the general case we provide a slightly superlinear upper bound.

Theorem 1.9 Every n-vertex topological graph with no k-grid with distinct vertices has at most
ckn log∗ n vertices, where ck = kO(log log k) and log∗ is the iterated logarithm function.

Note that ck is just barely superpolynomial in k.

Organization. The rest of this paper is organized as follows. We discuss topological graphs with no
grids with distinct vertices in Section 2. In Section 3 we prove the bounds for the number of edges in
simple topological graphs with no natural grids. Convex geometric graphs are considered in Section 4,
where we prove Theorem 1.6 as well as some tighter bounds for some special cases. We systematically
omit floor and ceiling signs whenever they are not crucial for the sake of clarity of presentation. We
also do not make any serious attempt to optimize absolute constants in our statements and proofs.
All logarithms in this paper are base 2. Due to space limitations, some of the proofs are omitted and
some appear in the appendix.

2 Grids on distinct vertices

In this section we prove Theorems 1.9 and 1.8.

2.1 Topological graphs with no k-grid with distinct vertices

Here we prove Theorem 1.9. We use the following three results from three different papers.

Lemma 2.1 ([FP08]) Every string graph with m vertices and ǫm2 edges contains the complete bi-
partite graph Kt,t as a subgraph with t ≥ ǫc1 m

log m , where c1 is an absolute constant.

The pair-crossing number pair-cr(G) of a graph G is the minimum possible number of unordered
pairs of crossing edges in a drawing of G. The bisection width, denoted by b(G), is defined for every
simple graph G with at least two vertices. It is the smallest nonnegative integer such that there is a
partition of the vertex set V = V1 ∪̇V2 with 1

3 · |V | ≤ Vi ≤ 2
3 · |V | for i = 1, 2, and |E(V1, V2)| = b(G).

We will use the following result of Kolman and Matoušek [KM04] which relates the pair-crossing
number and the bisection width of a graph.
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Lemma 2.2 ([KM04]) There is an absolute constant c2 such that if G is a graph with n vertices of
degrees d1, . . . , dn, then

b(G) ≤ c2 log n





√

pair-cr(G) +

√

√

√

√

n
∑

i=1

d2
i



 .

We use the following upper bound on the number of edges of a topological graph with no h pairwise
crossing edges.

Lemma 2.3 ([FP08a]) If a topological graph with n vertices has no h pairwise crossing edges, then
it has at most n(log n)c3 log h edges.

Let h(k) be the minimum h such that if a collection C of h pairwise intersecting curves is such that
each of the curves is partitioned into one or two subcurves, then there are k subcurves intersecting k
other subcurves, and these 2k subcurves come from distinct curves in C. Note that h(1) = 2.

Lemma 2.4 For k ≥ 2, we have h(k) ≤ c4k log k for some absolute constant c4.

Proof. Let h = c4k log k, where c4 = 16c1+1, where c1 is the absolute constant in Lemma 2.1. For
each curve γ ∈ C, randomly pick one of the at most two subcurves to keep. For each pair γ, γ′ ∈ C,
there is a probability at least 1/4 that the subcurve of γ we pick intersects the subcurve of γ′ we

pick. So the expected number of intersecting pairs of curves is at least 1
4

(

h
2

)

. So there is a collection
C ′ consisting of one subcurve of the at most two subcurves for each curve such that the number of
intersecting pairs of curves in C ′ is at least 1

4

(h
2

)

. Since C ′ has cardinality h and at least 1
4

(h
2

)

≥ 1
16h2

intersecting subcurves, then by Lemma 2.1, the intersection graph of C ′ contains a complete bipartite
graph with parts of size

(

1

16

)c1 h

log h
≥ k,

since we picked c4 sufficiently large. 2

Let fk(n) denote the maximum number of edges of a topological graph with n vertices and no
k-grid with distinct vertices. In Theorem 1.9, we prove the upper bound fk(n) ≤ ckn log∗ n. It will
be helpful to consider a related function. Let fk(n,∆) denote the maximum number of edges of a
topological graph with n vertices, maximum degree at most ∆, and no k-grid with distinct vertices.

We collect several useful lemmas before proving Theorem 1.9. For a graph G and vertex sets A
and B, let eG(A) denote the number of edges with both vertices in A and eG(A,B) denote the number
of pairs (a, b) ∈ A × B that are edges of G.

Lemma 2.5 There is an absolute constant c such that if ∆ = (log n)c log kkc log log k, then

fk(n) ≤ fk(n,∆) + kc log log kn.

Proof. See Appendix A. 2

Let dk(n) = maxn′≤n fk(n
′)/n′ and dk(n,∆) = maxn′≤n fk(n

′,∆)/n′. Lemma 2.5 demonstrates
that

dk(n) ≤ dk(n,∆) + kc log log k (1)
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where ∆ = kc log log k(log n)c log k. Note that a triangulated planar graph with n vertices has 3n − 6
edges, so d1(n) = 3 − 6

n for n ≥ 3, so dk(n) ≥ 1 for n ≥ 3. By Lemma 2.3, we have

dk(n) ≤ (log n)c3 log 2k (2)

since 2k pairwise crossing edges in a topological graph has a k-grid with distinct vertices. We will
improve this bound significantly.

Lemma 2.6 There are absolute constants c9 and c10 > 0 such that for each k, n and ∆ with ∆ ≥ k
and n ≥ ∆c9, there is n1 ≤ 2n/3 such that

dk(n1,∆) ≥ dk(n,∆)
(

1 − n−c10
)

.

Proof. Let G be a topological graph with at most n vertices, maximum degree at most ∆, and no
k-grid with distinct vertices which has maximum possible average degree among all such topological
graphs. Without loss of generality, we may suppose that the number of vertices of G is actually n, and
let m = fk(n,∆). Since each vertex has degree at most ∆, then G does not contain a k∆-grid. Let the
number of crossing pairs of edges of G be ǫm2, so the underlying graph of G has pair-crossing number
at most ǫm2. By Lemma 2.1, G has an ℓ-grid with ℓ ≥ ǫc1 m

log m . Therefore, we have the inequality

ǫc1 m
log m ≤ k∆, and we get ǫ ≤ m

− 2
3c1 , where we use k∆ ≤ m1/6 and log m ≤ m1/6. By Lemma 2.2,

there is an absolute constant c2 such that if d1, . . . , dn is the degree sequence of G, then

b(G) ≤ c2 log n





√

pair-cr(G) +

√

√

√

√

n
∑

i=1

d2
i



 ≤ c2 log n
(

ǫ1/2m + ∆
√

n
)

≤ c2 log n
(

m
1− 1

3c1 + ∆
√

n
)

≤ m1−c10

for some constant c10 > 0.
Therefore, there is a partition V (G) = V1 ∪ V2 such that |V1|, |V2| ≤ 2

3n and eG(V1, V2) ≤ m1−c10 .

Since G has m edges in total, there is i ∈ {1, 2} such that eG(Vi) ≥ |Vi|
n

(

m − m1−c10
)

. Therefore,
the subgraph of G induced by Vi has average degree at least a fraction 1 − m−c10 ≥ 1 − n−c10 of the
average degree of G. Letting n1 = |Vi|, we have n1 ≤ |Vi| and the subgraph of G induced by Vi also
has maximum degree at most ∆ and does not contain a k-grid with distinct vertices, completing the
proof. 2

Repeatedly applying Lemma 2.6, we obtain the following lemma.

Lemma 2.7 Let ∆ = (log n)c log kkc log log k as in Lemma 2.5. There is a constant c′ such that
dk(∆

c′) ≥ (1 − 1
∆)dk(n,∆) ≥ dk(n,∆) − 1.

Proof. Let n0 = n. After one application of Lemma 2.6, we get dk(n1,∆) ≥ dk(n,∆) (1 − n−c10) for

some n1 ≤ 2n/3. After j applications of Lemma 2.6, we get dk(nj,∆) ≥ dk(n,∆)
∏j

i=1

(

1 − n−c10
i−1

)

for some nj ≤ (2/3)jn. Let i0 be the first value such that ni0 ≤ ∆c′, where c′ is a sufficiently large
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constant. We have

dk(∆
c′) ≥ dk(∆

c′ ,∆) ≥ dk(ni0 ,∆) ≥ dk(n,∆)

i0
∏

i=1

(

1 − n−c10
i−1

)

≥ dk(n,∆)

(

1 −
i0
∑

i=1

n−c10
i−1

)

≥ dk(n,∆)

(

1 − n−c10
i0−1

∞
∑

i=0

(2/3)c10i

)

≥ dk(n,∆)

(

1 − n−c10
i0−1

1

1 − (2/3)c10

)

≥ dk(n,∆)

(

1 − (∆c′)c10
1

1 − (2/3)c10

)

≥ dk(n,∆)(1 − 1

∆
).

By (2), we have dk(n) ≤ (log n)c3 log 2k. Since c was chosen sufficiently large in Lemma 2.5, we have
dk(n,∆) ≤ dk(n) ≤ ∆. Summarizing,

dk(∆
c′) ≥ (1 − 1

∆
)dk(n,∆) ≥ dk(n,∆) − 1.

2

The last inequality in Lemma 2.7 follows from (2) and the fact that the constant c is chosen
sufficiently large.

Combining Lemma 2.5, which gives us inequality (1), and Lemma 2.7 we therefore get that there
is an absolute constant C such that

dk((log n)C log k) ≥ dk(n) − kC log log k if k ≤ log n, and (3)

dk(k
C log log k) ≥ dk(n) − kC log log k otherwise. (4)

Iterating (3) until n < log k, applying (4) if kC log log k < n < 2k, and finally applying the trivial
inequality dk(n) ≤ n/2 if n ≤ kC log log k, we get that dk(n) = O(kC log log k log∗ n), and hence

fk(n) = O(kC log log kn log∗ n),

completing the proof of Theorem 1.9. 2

2.2 Topological graphs with no (k, 1)-grid with distinct vertices

Let G = (V,E) be a topological graph. For every edge e ∈ E define X(e) = {f ∈ E | e crosses f}.
Given a set of edges E′ ⊂ E, the vertex cover number of E′ is the minimum size of a set of vertices
V ′ ⊂ V such that every edge in E′ has at least one of its endpoints in V ′. Theorem 1.8 will follow
from the next lemma, whose proof is due to Rom Pinchasi [P].

Lemma 2.8 Let k be a fixed integer and let G = (V,E) be a topological graph on n vertices, such that
for every e ∈ E the vertex cover number of X(e) is at most k. Then there is a constant ck, such that
G has at most ckn edges.

Proof. We use a standard sampling argument. Let m be the number of edges in G, and let 0 < q < 1
be a constant. Let G′ be the graph obtained from G by taking every vertex of G independently with
probability q. Call an edge in G′ good if it is not crossed by any other edge in G′. Denote by n∗

and m∗ the expected number of vertices and good edges in G′, respectively. Clearly, n∗ = qn. The
probability that an edge e is good is at least q2(1− q)k, thus m∗ ≥ q2(1− q)km. Since the good edges
form a planar graph we have q2(1 − q)km ≤ m∗ ≤ 3n∗ = 3qn. Thus, m ≤ 3

q(1−q)k n. 2
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Now let G be an n-vertex topological graph with no (k, 1)-grid with distinct vertices. We claim
that for every e ∈ E(G) the vertex cover number of X(e) is at most 2k. Assume not. Then there is an
edge e ∈ E(G) such that the vertex cover number of X(e) is at least 2k+1. Pick an edge (u, v) ∈ X(e)
and remove all the other edges in X(e) that are covered by v or u. This can be repeated k times, for
otherwise X(e) can be covered by at most 2k vertices. The edges we picked along with the edge e
form a (k, 1)-grid with distinct vertices. This proves Theorem 1.8.

3 Natural grids in geometric and simple topological graphs

In this section we consider natural grids in geometric and simple topological graphs and prove Theo-
rems 1.4 and 1.5.

3.1 Proof of Theorem 1.4

In this section we prove Theorem 1.4, which gives an upper bound on the number of edges of a
geometric graph or a simple topological graph without a natural k-grid.

We use the following three results from three different papers. Pach et al. [PSS96] proved the
following relationship between the crossing number and the bisection width of a graph.

Lemma 3.1 ([PSS96]) If G is a graph with n vertices of degrees d1, . . . , dn, then

b(G) ≤ 7cr(G)1/2 + 2

√

√

√

√

n
∑

i=1

d2
i .

Let m be the number of edges in G. Since
∑n

i=1 di = 2m and di ≤ n for every i, we have

b(G) ≤ 7cr(G)1/2 + 3
√

mn. (5)

The following lemma is tight apart from the constant factor.

Lemma 3.2 ([FP08b]) For each p there is a constant cp such that if H is a graph with n vertices,
at least cptn edges, and is an intersection graph of curves in the plane in which each pair of curves
intersect in at most p points, then H contains the complete bipartite graph Kt,t as a subgraph.

We will only need to use the case p = 1. The last tool we use is an upper bound on the number of
edges of a geometric graph with no k pairwise disjoint edges.

Lemma 3.3 ([T00]) Any geometric graph with n vertices and no k pairwise disjoint edges has at
most 29(k − 1)2n edges.

We now prove Theorem 1.4(i). As the proofs of (i) and (ii) are so similar, we only give the details
for (i) and discuss how to modify the proof to obtain (ii).

Proof of Theorem 1.4(i): Let gk(n) be the maximum number of edges of a geometric graph with
n vertices and no natural k-grid. Let G be a geometric graph on n vertices and m = gk(n) edges with
no natural k-grid. Let c = max(220c1, 144), where c1 is the constant with p = 1 from Lemma 3.2. We
prove by induction on n that gk(n) ≤ ck2n log2 n. Suppose for contradiction that gk(n) > ck2n log2 n.
Let ǫ = 10−3 log−2 n. The proof splits into two cases, depending on whether or not the number of
pairs of crossing edges of G is less than ǫm2.
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Case 1: The number of pairs of crossing edges is less than ǫm2. Then the crossing number of G is
less than ǫm2. By (5), there is a partition V (G) = V1 ∪ V2 with |V1|, |V2| ≤ 2n/3 and the number of
edges with one vertex in V1 and one vertex in V2 is at most

b(G) ≤ 7cr(G)1/2 + 3
√

mn ≤ 7ǫ1/2m + 3
√

mn = (7ǫ1/2 + 3
√

n/m)m.

Let n1 = |V1| and n2 = |V2|, so n = n1 + n2. Then we have

m = gk(n) ≤ gk(|V1|) + gk(|V2|) + b(G) ≤ gk(n1) + gk(n2) + (7ǫ1/2 + 3
√

n/m)m

≤ ck2n1 log n1 + ck2n2 log n2 + (7ǫ1/2 + 3
√

n/m)m ≤ ck2n log 2n/3 + (7ǫ1/2 + 3
√

n/m)m

≤ ck2n log n − ck2n log 3/2 + (7ǫ1/2 + 3
√

n/m)m.

This implies

gk(n) = m ≤ ck2n
log n − log 3/2

1 − 7ǫ1/2 − 3
√

n/m
< ck2n log n

1 − (log 3/2)(log n)−1

1 − (log−1 n)/4 − 3c−1/2k−1 log−1 n
< ck2n log n,

where we use 3c−1/2k−1 ≤ 1/4. This completes the proof in this case.
Case 2: The number of pairs of crossing edges is at least ǫm2. Consider the intersection graph of
the edges where two edges are adjacent if they cross. Since this intersection graph has m vertices and
at least ǫm2 edges and each pair of edges intersect at most once, Lemma 3.2 implies it contains a
complete bipartite graph with parts of size

t ≥ ǫm

c1
≥ log−2 nm

1000c1
>

c

1000c1
k2n > 29k2n,

where c1 is the constant with p = 1 from Lemma 3.2. Therefore, G contains edge subsets E1, E2

with |E1| = |E2| = t and every edge in E1 crosses every edge of E2, i.e., G contains a t-grid. Since
t > 29k2n, Lemma 3.3 implies that Ei contains k disjoint edges for i = 1, 2. These two subsets of k
disjoint edges cross each other and hence form a natural k-grid, completing the proof. 2

To prove Theorem 1.4(ii), essentially the same proof work as above, except replacing the bound
O(k2n) of Tóth [T00] on the number of edges of a geometric graph with no k disjoint edges by the
bound O(n log4k−8 n) of Pach and Tóth [PT05] on the number of edges of a simple topological graph
with no k disjoint edges.

3.2 Natural (2, 1)-grids: proof of Theorem 1.5

Let G = (V,E) be a simple topological graph on n vertices without a natural (2, 1)-grid. For every
e ∈ E assign e the color red if X(e) has vertex cover number at most 3, otherwise assign e the color
blue. It follows from Lemma 2.8 that G has at most 29n red edges (by picking q = 1/4).

The proof of the next lemma is omitted due to space limitations. For F ⊆ E denote by V (F ) the
set of vertices induced by F .

Lemma 3.4 Let e = (u, v) be a blue edge, and let f1 ∈ X(e). Then if there is an edge e′ = (u,w)
such that w /∈ V (X(e)) and e′ crosses f1, then e′ crosses every edge f ∈ X(e).

Next we remove all the red edges and process the blue edges in some arbitrary order. Let B be
the set of the currently unmarked and undeleted blue edges. Initially all the blue edges are in B.
Let e = (u, v) be the next edge in B. Delete all the edges that have one endpoint in V (X(e) ∩ B)
and the other endpoint in {u, v}. Let Eu be the edges (u, x) ∈ B such that x /∈ V (X(e) ∩ B) and
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v2
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v1

(a) Constructing G′ (b) G′ might contain parallel
edges

Figure 2: The graph G′

there is an edge e′ ∈ X(e) ∩ B that crosses (u, x). Similarly, let Ev be the edges (v, x) ∈ B such
that x /∈ V (X(e) ∩ B) and there is an edge e′ ∈ X(e) ∩ B that crosses (v, x). Assume, w.l.o.g., that
|Eu| ≥ |Ev| and remove the edges Ev. Recall that according to Lemma 3.4, if there is an edge (u, x)
such that x /∈ V (X(e)), and (u, x) crosses some edge in X(e), then (u, x) crosses every edge in X(e).

A thrackle is a simple topological graph in which every pair of edges meet exactly once, either
at a vertex or at a crossing point. It is known that a thrackle on n vertices has at most 3(n − 1)/2
edges [CN00] and it is a famous open problem (known as Conway’s Thrackle Conjecture) to show that
the tight bound is n. Set

thrackle(e) = B ∩
(

{e} ∪ X(e) ∪ {(u, x) | ∃e′ ∈ X(e) that crosses(u, v)}
)

Mark all the blue edges in thrackle(e), and continue to create thrackles as long as there are unmarked
blue edges. We omit the proofs of the next lemmas due to space limitations.

Lemma 3.5 thrackle(e) is a thrackle.

Lemma 3.6 If e1 ∈ thrackle(e) and e2 /∈ thrackle(e) then e1 and e2 do not cross.

Since any newly created thrackle contains no edges of a previous thrackle, we obtain a partition
of the edges that were not deleted into thrackles t1, t2, . . . , tj . Let ti = thrackle ((ui, vi)) and denote
by Vi the vertex set of ti. Recall that when ti was created at most 2|Vi| edges of the form (xi, yi) |
xi ∈ {ui, vi} ∧ yi ∈ V (X ((ui, vi))) and at most |Vi| edges of the form (xi, yi) | xi ∈ {ui, vi} ∧ yi /∈
V (X ((ui, vi))) were deleted. The number of edges in ti is at most 3|Vi|/2, thus, it remains to show

that
∑j

i=1 |Vi| = O(n).
To this end we draw a new graph G′ with the same vertex set V . For every thrackle ti =

thrackle ((xi, yi)) we draw a crossing-free tree Ti with |Vi| − 1 edges as follows. First, draw the
edge from xi from yi. Next, for every vertex v ∈ Vi \ Ti pick one edge e ∈ ti that has v as one of
its endpoints. Follow e from v until it either hits a vertex (necessarily xi or yi) or crosses an already
drawn edge e′. In the first case draw an edge identical to e. In the second case draw the segment of e
from v almost until the crossing point, then continue the edge very close to e′ (in one of the directions)
until a vertex is reached. See Figure 2(a) for an example.

It follows from Lemma 3.6 and the construction of G′ that G′ is planar. Note that it is possible
for G′ to contain parallel edges (see Figure 2(b) for an example). However, it can be shown that they
can be eliminated by removing at most half of the edges in G′. We omit the details here. Therefore,
G′ has at most 6n edges, and thus the number of edges in all the thrackles is at most 9n and the total
number of blue edges is at most 36n. We conclude that the original graph G has at most 65n edges.
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4 Natural grids in convex geometric graphs

In this section we first prove that an n-vertex convex geometric graph with no natural k-grid has O(n)
edges. Then, for convex geometric graphs avoiding natural (2, 1)-, (2, 2)-, or (k, 1)-grids we provide
tighter bounds in terms of the constant hiding in the big-O notation.

4.1 Proof of Theorem 1.6

We prove a stronger statement than Theorem 1.6, for which we need the following definition.

Definition 4.1 ([BKV03]) Given a convex geometric graph G, the cyclic chromatic number of G, is
the minimum number of colors needed for a proper coloring of G such that the vertices of every color
class form a consecutive interval. G is cyclic-bipartite if its cyclic chromatic number is at most 2.

Theorem 4.2 Let k be a constant integer and let D be a cyclic-bipartite convex geometric matching
with k edges. Then there is a constant ck such that any convex geometric graph on n vertices that
avoids D has at most ckn edges.

Clearly a natural k-grid is a cyclic-bipartite convex geometric graph, hence, Theorem 4.2 implies
Theorem 1.6. Moreover, Theorem 4.2 can be seen as a generalization of the Füredi-Hajnal Conjec-
ture [FH92], that was settled by Marcus and Tardos [MT04].

Theorem 4.3 (Marcus-Tardos) Let k be a constant. Then the number of 1-entries in any n × n
0-1 matrix that avoids a given k × k permutation matrix1 is O(n).

Indeed, a convex geometric graph is in fact a purely combinatorial object, since two edges cross if
and only if their endpoints alternate in the cyclic order of the vertices. Thus, a 0-1 matrix can be seen
as the adjacency matrix of a cyclic-bipartite convex geometric graph; and the Marcus-Tardos Theorem
is equivalent to saying that every cyclic-bipartite convex geometric graph on n vertices that avoids a
cyclic-bipartite convex geometric matching of constant size has O(n) edges. Therefore, Theorem 4.2
implies the Marcus-Tardos Theorem. We prove Theorem 4.2 by slightly modifying the proof of Marcus
and Tardos. For details, see Appendix B.

4.2 Tighter bounds for some special cases

For specific values of k or l we are able to provide tighter bounds in terms of the constant ck,l for the
number of edges in convex geometric graphs avoiding natural (k, l)-grids, than the ones guaranteed by
Theorems 1.5 and 1.6. For the proofs, see Appendix C.

Theorem 4.4 An n-vertex convex geometric graph with no natural (2, 1)-grid has less than 5n edges.

Theorem 4.5 An n-vertex convex geometric graph with no natural (2, 2)-grid has less than 8n edges.

Theorem 4.6 A convex geometric graph with n ≥ 3k vertices and no natural (k, 1)-grid has at most
6kn − 12k2 edges.

Acknowledgments. We thank Rom Pinchasi for helpful discussions and for his permission to in-
clude his proof for Lemma 2.8 in this paper. The first author would also like to thank Balázs Keszegh
for suggesting to consider 0-1 matrices for the proof of Theorem 1.6.

1A k × k 0-1 matrix is a permutation matrix if it contains exactly one 1-entry in each row and column. A 0-1 matrix
A contains a 0-1 matrix B if one can delete some of its rows and columns and obtain a matrix of the same dimensions
as B that has a 1-entry in every place B has a 1-entry. Otherwise, A avoids B.

10



References

[AKS98] P.K. Agarwal, M. van Kreveld, and S. Suri, Label placement by maximum independent set in rectan-
gles, Comput. Geom. Theory Appl. 11 (1998), 209–218.
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Figure 3: In (a) we have a vertex v adjacent to two vertices
a1, a2 which are not adjacent. In (b) we replace the edges
(a1, v) and (v, a2) by one edge (a1, a2) and split vertex v
into two vertices v1 and v2.

A Proof of Lemma 2.5

Proof. Let G = (V, E) be a topological graph with n
vertices, fk(n) edges, and no k-grid with distinct vertices.
Partition V = A∪B, where A consists of those vertices with
degree more than ∆. We construct a sequence of topological
graphs Gi and a sequence of vertex sets Bi such that the
vertex set of Gi is A ∪ Bi. Let B0 = B and G0 = G. In
graph Gi, if there is a vertex v ∈ Bi adjacent to two vertices
a1, a2 ∈ A which are not adjacent, then we replace the path
of length two with edges (a1, v) and (v, a2) by an edge from
a1 to a2, split the vertex v ∈ Bi into two vertices v1, v2,
set Bi+1 = {v1, v2}∪Bi \ {v} and let Gi+1 be the resulting
topological graph. See Figure 3 to see how v is split into two
vertices v1 and v2. We eventually stop at some step j and
we have a topological graph Gj with vertex set A∪Bj . For
each vertex v ∈ Bj , the set Av of vertices in A adjacent to v
form a clique in Gj , otherwise v is adjacent to two vertices
a1, a2 ∈ A that are not adjacent in Gj , which contradicts
that we stopped at step j. Since |Bi+1| = |Bi|+ 1 for all i,
we have |Bj | = |B|+ j. The number of edges of Gj is j less
than the number of edges of G since Gi+1 is formed from
Gi by replacing a path of length two by an edge. Note that
also the subgraph of Gj induced by A has j more edges
than the subgraph of G induced by A.

We first provide an upper bound on the number of
edges of Gj . Each edge in Gj corresponds to either an
edge or a path of length two in G. By construction, each
pair of edges in Gj that intersect come from two paths in
G (each path consisting of one or two edges) with distinct
vertices. So if there are h(k) pairwise intersecting edges in
the subgraph of Gj induced by A, then G contains a k-grid
with distinct vertices, a contradiction. By Lemmas 2.3 and
2.4, we have

eG(A) + j = eGj
(A) ≤ |A|(log |A|)c3 log h(k)

≤ |A|(log n)c3 log(c4k log k) ≤ |A|(log n)c6 log k

for some absolute constant c6. In particular, j ≤
|A|(log n)c6 log k.

As discussed above, for each vertex v ∈ Bj , the set
Av of vertices form a clique in Gj . This clique can not

have h(k) pairwise intersecting edges, otherwise it contains
a k-grid with distinct vertices. By Lemma 2.3, we have 

|Av|

2

!
≤ |Av|(log |Av|)

c3 log h(k),

so dividing both sides by |Av| we get

|Av| ≤ 2(log |Av|)
c3 log h(k) + 1

and finally

|Av| ≤ h(k)c7 log log h(k)

for some absolute constant c7. Also using Lemma 2.4, we
have

|Av| ≤ kc8 log log k

for some absolute constant c8. So the number of edges
eGj

(A,Bj) with one vertex in A and the other vertex in Bj

is X
v∈Bj

|Av| ≤ |Bj |k
c8 log log k.

Since each vertex in A has degree at least ∆ in G, the
number eG(A) + eG(A,B) of edges in G containing at least
one vertex in A is at least |A|∆/2. So

|A|∆/2 ≤ eG(A) + eG(A,B) = eGj
(A) + eGj

(A, B) + j

≤ |A|(log n)c6 log k + |Bj |k
c8 log log k + j

= |A|(log n)c6 log k + (|B| + j)kc8 log log k + j

≤ 2
�
|A|(log n)c6 log k + n

�
kc8 log log k

If n ≤ |A|(log n)c6 log k, then we get

∆ ≤ 8(log n)c6 log kkc8 log log k,

which contradicts ∆ = (log n)c log kkc log log k with c a suf-
ficiently large constant. So n > |A|(log n)c6 log k, and the
number of edges in G containing a vertex in A is at most
4kc8 log log kn ≤ kc log log kn. Note that every vertex in B in
G has degree at most ∆, so eG(B) ≤ fk(|B|, ∆) ≤ fk(n, ∆),
where the last inequality follows by adding isolated vertices
to B to get a set of n vertices. Therefore, the number fk(n)
of edges of G is at most fk(n, ∆) + kc log log kn. 2

B Proof of Theorem 4.2

Proof. We slightly modify the Marcus-Tardos
proof [MT04] of the Füredi-Hajnal conjecture.

Denote by f(n, D) the maximum number of edges in a
convex geometric graph that avoids D. Assume first that n
is divisible by k2, and partition V (G) into n/k2 consecutive
intervals, I1, I2, . . . , In/k2 , each of size k2. Denote by Ei,j

the set of edges between Ii and Ij , and by Ii(Ei,j) the set
of vertices in Ii that are endpoints of some edge in Ei,j .
For i 6= j, we say that Ii is dense with respect to Ij if
|Ii(Ei,j)| ≥ k.

Lemma B.1 Ii is dense with respect to less than k
�

k2

k

�
intervals.
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Ij2 Ij3

Ij4

Ii

Figure 4: An illustration for the proof of Lemma B.1:
realizing a natural (2, 2)-grid

Proof. Assume that Ii is dense with respect to at

least k
�

k2

k

�
intervals. Then, by the pigeonhole princi-

ple, there is a set of k of those intervals, Ij1 , Ij2 , . . . , Ijk
,

and a set of k vertices {vi1 , vi2 , . . . , vik
} ⊆ Ii, such that

{vi1 , vi2 , . . . , vik
} ⊆ Ii(Ei,j1)∩Ii(Ei,j2)∩· · ·∩Ii(Ei,jk

). The
set of edges Ei,j1 ∪Ei,j2 ∪· · ·∪Ei,jk

, reduced to the vertices
vi1 , vi2 , . . . , vik

, can be used to realize any cyclic-bipartite
convex geometric matching with k edges (see Figure 4 for
an example). 2

Construct a new convex geometric graph G′, by con-
tracting every interval Ii of G into a single vertex ui, and
drawing an edge between ui and uj if and only if there
are vertices vi ∈ Ii and vj ∈ Ij such that (vi, vj) ∈ E(G).
Observe that G′ avoids D, for otherwise G must contain D.

We can now upper-bound f(n, D) by the expression:X
i

|Ei,i| +
X
i6=j

Ii dense w.r.t. Ij

|Ei,j | +
X
i6=j

Ii not dense w.r.t. Ij

Ij not dense w.r.t. Ii

|Ei,j |

≤

 
k2

2

!
n

k2
+ k4 · k

 
k2

k

!
n

k2
+ (k − 1)2 · f

� n

k2
, D
�

≤ 2k3

 
k2

k

!
n + (k − 1)2 · f

� n

k2
, D
�

Using this recursive bound, Theorem 4.2 easily follows

by induction on n for k ≥ 2 with ck = 2k4
�

k2

k

�
(see [MT04,

Theorem 8]). 2

C Proofs of Theorems 4.4, 4.5,

and 4.6

We mention first some basic notions and facts before mov-
ing to the proofs. Let G be a convex geometric graph.
We denote by dG(v) the degree of a vertex v in G, and by
δ(G) the minimum degree in G. For u, v ∈ V (G), we say
that v and u are consecutive vertices if they appear next
to each other on the convex hull of the vertices of G. For
u, v ∈ V (G) we denote by R(u, v) ⊂ V (G) the set of ver-
tices from u to v in clockwise order, not including u and v.

A convex geometric graph G′ is a geometric minor of G if
G′ can be obtained from G by performing a finite number
of the following two operations:

1. Vertex deletion.

2. Consecutive vertex contraction, i.e., only consecutive
vertices can contract. Recall that the contraction of
two vertices x and y, replaces x and y in G with a
vertex v, such that v is adjacent to all the neighbors
of x and y.

Notice that if two edges e1 and e2 cross in G′, then they
cross in G. Likewise, if e1 and e2 are disjoint in G′, then
they are disjoint in G. Assume that G is a convex geometric
graph with n vertices and at least cn edges. Let G′ be a
minimal geometric-minor of G such that |E(G′)|/|V (G′)| ≥
c. Then we can conclude that:

1. δ(G′) ≥ c (otherwise vertex deletion can be applied);
and

2. every consecutive pair of vertices v and u must have
at least c − 1 common neighbors (otherwise consec-
utive vertex contraction can by applied).

Proof of Theorem 4.4: Suppose that |E(G)| ≥ 5n.
Let G′ be a minimal geometric-minor of G such that
|E(G′)|/|V (G′)| ≥ 5. Note that |V (G′)| ≥ 11. For a vertex
u ∈ V (G′) denote by u1, u2, . . . the neighbors of u in clock-
wise order. Note that u1 immediately follows u in clockwise
order, since a straight-line segment connecting two consec-
utive vertices in G cannot be crossed by any edge of G and
hence we can assume w.l.o.g. that it is an edge of G. Let
v ∈ V (G′) be the vertex such that:

|R(v3, v)| = min
u∈V (G′)

|R(u3, u)|

Since δ(G′) ≥ 5, u3 exists for every u. Since v1 and
v are consecutive vertices they share at least 4 common
neighbors. Hence v1 and v are both adjacent to a vertex
a ∈ V (G′), such that a /∈ {v2, vk−1, vk}, where k = dG′(v).
By minimality of |R(v3, v)|, vk has at least three neighbors
in R(vk, v3).Thus vk has a neighbor b ∈ R(vk, v3) other than
v and v1. Hence we have a natural (2, 1)-grid with edges
(v, vk−1), (v1, a), and (vk, b) in G′, and hence in G. 2

Proof of Theorem 4.5: Assume that |E(G)| ≥
8n. Let G′ be a minimal geometric-minor of G with
|E(G′)|/|V (G′)| ≥ 8. Note that |V (G′)| ≥ 17, δ(G′) ≥ 8,
and every pair of consecutive vertices in G′ share at least
7 common neighbors. Let (x, x′) and (y, y′) be a pair of
disjoint edges such that:

1. x and y are consecutive vertices with x following y
in clockwise order;

2. |R(x, x′)|, |R(y′, y)| ≥ 2; and

3. |R(y′, y)| is maximized subject to (1) and (2) above.

This is possible since consecutive vertices share at least
7 common neighbors. Now let u, v be the next two vertices
after x in clockwise order. Since u and v are consecutive,
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the proof of Proposi-
tion C.1

Figure 5: Illustrations for the proof of Theorem 4.6

we know that they share at least 7 common neighbors. Now
u and v can have at most 3 common neighbors in R(v, y′)∪
{y′}, since otherwise we would contradict the maximality of
|R(y′, y)|. Hence u and v must have two common neighbors
a, b ∈ R(y′, y). Hence (x, x′), (y, y′), (u, a), (v, b) forms a
natural (2, 2)-grid in G′, and hence in G. 2

Proof of Theorem 4.6: Our proof uses the technique
from [CP92]. Let k ≥ 1 be fixed. We will prove the theorem
by induction on the number of vertices n. For n = 3k we
need to show that |E(G)| ≤ 6k2, however, there are at most�
3k
2

�
≤ 9k2

2
edges. Assume now that the claim is true when

the number of vertices is smaller than n and let G be an n-
vertex convex geometric graph with no natural (k, 1)-grid.

If there is no edge whose endpoints are separated by
at least 2k vertices along (both arcs of) the boundary of
the n-gon, then |E(G)| ≤ 2kn ≤ 6kn − 12k2 since n ≥ 3k.
So we may assume that there exists such an edge e = ab.
Assume w.l.o.g. that e is vertical. Let pn1

, . . . , p1 denote the
vertices on the right-hand side of (a, b) and let q1, . . . , qn2

denote the vertices on its left-hand side, both in clockwise
order. Define a partial order ≺ on the set of edges that
cross (a, b) as follows: qipj ≺ qi′pj′ ⇔ i < i′ and j < j′ (see
Figure 5(a)). We denote by rank(qipj) the largest integer
r such that there is a sequence of edges qi1pj1 ≺ qi2pj2 ≺
· · · ≺ qir pjr = qipj .

Since G has no natural (k, 1)-grid, every edge that
crosses ab has rank at most k − 1. Next we define
a convex geometric graph G1 with n2 + k + 1 vertices
{a, p∗

k−1, . . . , p
∗
1, b, q1, . . . , qn2

} (in clockwise order). Let
G1 be the same as G when restricted to the vertices
{a, b, q1, . . . , qn2

}. Then let qip
∗
r be in E(G1) if and only if

there is an edge qipj ∈ E(G) whose rank is r. First we will
show that if there are t pairwise disjoint edges in G1 with
their left endpoints inside an interval (qi, qj), then there are
t pairwise disjoint edges in G with their left endpoints inside
the interval (qi, qj).

Proposition C.1 Let qi1p∗
r1

, . . . , qitp
∗
rt

be t pairwise dis-

joint edges in G1 that cross ab. Then there are t pairwise

disjoint edges qu1
pv1

, . . . , qutpvt such that

1. ut = it.

2. ux ≥ ix for x = 1, . . . , t − 1.

3. rank(quxpvx) = rx, for x = 1, . . . , t.

Proof. By reverse induction on x. In G we can pick the
edge qitpvt that has rank rt. We know one exists since
qitp

∗
rt

exists in G1. Assume that we have already found
the edges quxpvx for x = t, t − 1, . . . , s > 1 that satisfy
the above. Let qupv be an edge of rank rs−1 such that
qupv ≺ quspvs . If u ≥ is−1, then we can pick qupv as the
next edge. Otherwise, let e′ be an edge of rank rs−1 with
qis−1

as an endpoint. Since e′ and qupv have the same rank,
they must cross, which implies that e′ ≺ quspvs and so we
can pick e′ as the next edge. See Figure 5(b). 2

Proposition C.2 G1 does not contain a natural (k, 1)-
grid.

Proof. Assume that G1 contains a natural (k, 1)-grid.
Then by considering the possible edges involved in such a
grid and using Proposition C.1 above, one concludes that
there is a natural (k, 1)-grid in G, which is a contradiction.
2

We also define a convex geometric graph G2 with n1 +
k + 1 vertices {a, pn1

, . . . , p1, b, q
∗
1 , . . . , q∗k−1} (in clockwise

order). Let G2 be the same as G when restricted to the
vertices {a, pn1

, . . . , p1, b}. Then let (q∗r , pj) be in E(G2) if
and only if there is an edge (qi, pj) ∈ E(G) whose rank is
r. By the same arguments G2 does not contain a natural
(k, 1)-grid. Let Er denote the edges in G with rank r, 1 ≤
r ≤ k − 1.

Proposition C.3 |Er| ≤ dG1
(p∗

r) + dG2
(q∗r ) − 1.

Proof. The edges in Er cannot form a cycle. Indeed,
consider a path qi1pj1 , qi2pj1 , qi2pj2 , . . . and assume w.l.o.g.
that i1 < i2. Then j2 < j1 for otherwise qi1pj1 and qi2pj2

are disjoint. Similarly, we have il > il−1 and jl < jl−1, for
any l > 1, therefore the path can not form a cycle. Since
there are dG1

(p∗
r) + dG2

(q∗r ) vertices that are endpoints of
edges in Er, the claim follows. 2

Denote by E′
1 the edges in G1 that do not cross ab

and by E′
2 the edges in G2 that do not cross ab (note that

ab ∈ E′
i, i = 1, 2). Recall that ab has at least 2k vertices on

each of its sides, therefore, |V (G1)|, |V (G2)| ≥ 3k. Then:

|E(G)| = |E′
1| + |E′

2| − 1 +

k−1X
r=1

|Er|

= |E′
1| + |E′

2| − 1 +

k−1X
r=1

�
dG1

(p∗
r) + dG2

(q∗r ) − 1
�

= |E(G1)| + |E(G2)| − k

ind hyp

≤ (6k(n1 + k + 1) − 12k2)

+(6k(n2 + k + 1) − 12k2) − k

= 6kn − 12k2 − k ≤ 6kn − 12k2

This completes the proof of Theorem 4.6. 2
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