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The free vibrations of a flexible circular cylinder

inclined at 80◦ within a uniform current are

investigated by means of direct numerical simulation,

at Reynolds number 500 based on the body diameter

and inflow velocity. In spite of the large inclination

angle, the cylinder exhibits regular in-line and cross-

flow vibrations excited by the flow through the lock-

in mechanism, i.e. synchronization of body motion

and vortex formation. A profound reconfiguration

of the wake is observed compared to the stationary

body case. The vortex-induced vibrations are found to

occur under parallel but also oblique vortex shedding

where the spanwise wavenumbers of the wake and

structural response coincide. The shedding angle and

frequency increase with the spanwise wavenumber.

The cylinder vibrations and fluid forces present a

persistent spanwise asymmetry which relates to the

asymmetry of the local current relative to the body

axis, due to its in-line bending. In particular, the

asymmetrical trend of flow-body energy transfer

results in a monotonic orientation of the structural

waves. Clockwise and counter-clockwise figure eight

orbits of the body alternate along the span but the

latter are found to be more favorable to structure

excitation. Additional simulations at normal incidence

highlight a dramatic deviation from the independence

principle, which states that the system behavior is

essentially driven by the normal component of the

inflow velocity.

1. Introduction
Flow-induced vibrations (FIV) of flexible bodies with

bluff cross-section are encountered in a great variety of

physical systems, from the oscillations of plants in wind

to the vibrations of risers and mooring lines immersed in

ocean currents. Such vibrations cause amplification of

c© The Author(s) Published by the Royal Society. All rights reserved.
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mean drag forces, increased fatigue damage and sometimes failure of the structures.

Their prediction and the development of vibration reduction techniques require a detailed

understanding of the underlying flow-structure interaction mechanisms. The impact of FIV in

several civil, wind, offshore and nuclear engineering applications has motivated a number of

studies, as collected in [1–3].

Vortex formation downstream of a bluff structure induces unsteady forces on the body which

can lead to structural vibrations if the body is flexible. Vortex-induced vibrations (VIV) of slender

deformable structures placed in flow are a common type of FIV in ocean engineering. In practical

applications, the flexible structures (e.g. marine risers, towing cables) are often inclined with

respect to the direction of the oncoming current, sometimes at large angles. The VIV that may

appear in such configurations are the object of the present work.

The canonical problem of a rigid cylinder forced or free to oscillate in the cross-flow direction

within a current perpendicular to its axis has helped clarifying the fundamental phenomena

of VIV [4–13]. VIV occur when the frequency of vortex formation and the frequency of body

oscillation coincide; this condition of wake-body synchronization is referred to as lock-in. Under

lock-in, the vortex shedding frequency can substantially depart from the Strouhal frequency, i.e.

the shedding frequency downstream of a stationary body; also, the vibration frequency can shift

considerably away from the structure natural frequency. The typical amplitude of VIV responses

is of the order of one cylinder diameter in the cross-flow direction. When the rigid body is also

allowed to oscillate in the in-line direction, vibrations of smaller amplitudes occur in this direction

with a frequency ratio of 2 compared to the cross-flow response [14–16]. The VIV a long flexible

cylinder placed in flow at normal incidence have also been well documented [17–22]. The lock-in

mechanism results in oscillations of the slender deformable body with similar amplitudes as those

noted in the rigid body case and a frequency ratio of 2 can generally be established between the in-

line and cross-flow vibration components. However, the flexibility of the body and its distributed

interaction with the flow may lead to an increased complexity of the responses, as for instance the

occurrence of mixed standing-traveling structural waves or multi-frequency vibrations [23–27]. A

notable feature related to the structure flexibility is the possible variability of the phase difference

between the in-line and cross-flow vibrations along the cylinder; previous works have shown that

the phase difference angle may drift along the span but remains locked to a specific range in the

regions where the flow excites the flexible body [28,29].

Several studies concerning rigid cylinders, either fixed or forced to oscillate in the cross-

flow direction, have emphasized that body inclination may have a considerable impact on flow

patterns and fluid forcing [30–35]; yet vortex-induced excitation of the rigid body through lock-

in still occurs in this context, even at inclination angles larger than 70◦ [36–40]. In the above

mentioned studies, the angle of inclination (α) is defined as the angle between the oncoming flow

velocity direction and the plane perpendicular to the rigid cylinder axis, i.e. α= 0◦ corresponds

to the normal incidence configuration; this definition is adopted in the present work based on the

position of the flexible cylinder in quiescent fluid. Previous works have examined the possibility

of likening the inclined body case to the normal incidence case. The independence principle

(IP) or cosine law assumes that the flow dynamics is essentially determined by the component

of the oncoming flow velocity perpendicular to the cylinder and that the component aligned

with the cylinder axis, the axial component, has a negligble influence. According to the IP, the

system behaviors in the inclined and normal configurations should thus match once the physical

quantities (e.g. fluid forces, vortex shedding and body oscillation frequencies) are normalized

by the inflow normal component; hence the response of the system in the inclined case could

be directly predicted based on the normal incidence case results. A remarkable effect of body

inclination is the possible occurrence of oblique vortex shedding where the spanwise vortex rows

forming downstream of the cylinder are not parallel to its axis. Oblique vortex shedding results in

deviation from the IP [31]; the frequency of vortex formation under oblique shedding is usually

larger than the frequency predicted by the IP [32,35]. In the fixed rigid cylinder case, the IP was

shown to provide accurate predictions of the flow physics for α< 40◦ approximately. A transverse
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oscillation of the body tends to force parallel shedding [31,35,37]. This suggests an extended range

of validity of the IP for a flexibly-mounted rigid cylinder subjected to VIV; however, parallel

shedding does not necessarily ensure validity of the IP [40].

In spite of its implications in engineering applications, the case of a slender flexible body

inclined in flow has received much less attention. In a previous work [41], a flexible cylinder

inclined at 60◦ within a uniform current was shown to exhibit VIV associated with parallel vortex

shedding, while an oblique shedding pattern was observed in the stationary body case. The IP

was found to provide an accurate prediction of the structural responses and fluid forces, as long

as the in-line bending of the cylinder was small. A significant in-line bending induces a strong

shear of the inflow velocity profile locally normal to the body, which may lead to multi-frequency

vibrations and thus to a deviation from the IP; even in this case, the predominant vibration

frequency was found to be in agreement with the IP.

When the flexible cylinder is placed at a larger inclination angle, the behavior of the flow-

structure system remains to be investigated. The occurrence of VIV and the possible application

of the IP in this case still need to be elucidated. Previous studies concerning rigid cylinders

indicate that the fluid loading caused by the slanted vortex formation in the case of oblique

shedding would not lead to excitation of the body, due to the alternating sign of the fluctuating

forces along the span [35,42]. For a flexible body at a large inclination angle, the question arises

whether such oblique shedding may induce vibrations (i.e. far from IP validity conditions),

and, if the lock-in condition is established, what will be the reciprocal influence of the flexible

structure oscillations on the slanted shedding pattern. To address these aspects, a combined wake-

body analysis is presented on the basis of high-resolution simulation results issued from direct

numerical simulations of the flow past a flexible circular cylinder of length to diameter aspect

ratio 50, placed at 80◦ of inclination in a uniform current at Reynolds number 500, based on the

inflow velocity and cylinder diameter. The flexible cylinder is modeled as a tension-dominated

structure and different values of the tension are selected in order to explore a range of the system

typical responses.

The paper is organized as follows. The fluid-structure model and the numerical method

are described in §2. The fixed rigid cylinder case, which represents a baseline configuration to

quantify the modifications associated with body oscillations in the following, is briefly considered

in §3. The flexible cylinder case is examined in §4. The main findings of the present study are

summarized in §5.

2. Formulation and numerical method
The physical configuration is similar to that considered in a previous work concerning the VIV

of a flexible cylinder at lower inclination angle [41]. The cylinder has a circular cross-section

and a length (L) to diameter (D) aspect ratio L/D= 50; it is pinned at both ends and free to

oscillate in the in-line (x axis) and cross-flow (y axis) directions. The cylinder is inclined at

α= 80◦ within a uniform flow of velocity magnitude U . The Reynolds number based on U and D,

Re = ρfUD/µ, where ρf and µ denote the fluid density and viscosity, is set equal to 500. Similarly

to the inclination angle α, the axial and normal components of the oncoming flow are defined

based on the position of the cylinder in quiescent fluid. The inflow axial component refers to the

component parallel to the cylinder in a fluid at rest (z axis) and the inflow normal component

designates the component aligned with the x axis. The velocity magnitude of the inflow normal

component is Un =U cos(α) and the associated Reynolds number Ren = Re cos(α) = 86.8. The

physical quantities normalized by Un are denoted by the subscript ( )n in the following. For

comparison purpose, a normal incidence configuration where the inflow axial component is

removed is also considered. Previous works, e.g. [34], suggested that application of the IP should

also include an appropriate scaling of the Reynolds number, i.e. the Reynolds number selected in

the normal incidence case should match the Reynolds number based on Un in the inclined body

case, instead of U . In order to assess the validity of the IP, both values of the Reynolds number

(Ren = 500 and Ren = 86.8) are considered in the present normal incidence configuration.
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The physical variables are non-dimensionalized by ρf , D and U . The cylinder mass ratio,

defined as m= ρc/ρfD
2, where ρc is the cylinder mass per unit length, is set to 6. The constant

tension and damping of the structure are designated by τ and η. The non-dimensional tension

is defined as T = τ/ρfD
2U2 and the non-dimensional damping as K = η/ρfDU . The non-

dimensional displacements of the cylinder in the in-line and cross-flow directions are denoted by

ζx and ζy . The sectional in-line and cross-flow force coefficients are defined as Cx = 2Fx/ρfDU2

and Cy = 2Fy/ρfDU2, where Fx and Fy are the in-line and cross-flow dimensional sectional fluid

forces. The structural dynamics are governed by forced vibrating string equations which can be

expressed as follows [23]:

mζ̈{x,y} − Tζ
′′

{x,y} +Kζ̇{x,y} =
C{x,y}

2
, (2.1)

where ˙ and
′

denote the time and space derivatives. The string non-dimensional phase velocity

is ω=
√

T/m. In order to cover a range of structural responses, three values of T , 54, 37.5 and 13.5,

are selected. The structural damping is set equal to zero (K = 0) to allow maximum amplitude

oscillations. As a preliminary step of the study, the case of a fixed rigid cylinder aligned with the

z axis (ζ{x,y} = 0) is also considered.

The flow past the cylinder is predicted using direct numerical simulation of the three-

dimensional incompressible Navier-Stokes equations. The parallelized code Nektar, based on the

spectral/hp element method [43], is used to solve the coupled flow-structure system. The version

of the code employs a Jacobi-Galerkin formulation in the (x, y) plane and a Fourier expansion in

the spanwise (z) direction. A boundary-fitted coordinate formulation is used to take into account

the cylinder unsteady deformation. Details concerning the numerical method and its validation

have been reported in [44] and [45] for similar configurations. The computational domain (50D

downstream and 20D in front, above, and below the cylinder), boundary conditions (no-slip

condition on the cylinder surface, flow periodicity on the side boundaries) and discretization

(2175 elements with polynomial order p= 7 in the (x, y) plane and 512 complex Fourier modes

in the z direction) are the same as in [22,41]. The present analysis is based on time series of more

than 800 time units. Convergence of each simulation is established by monitoring the mean and

root mean square (RMS) values of the fluid force coefficients and body displacements.

3. Fixed rigid cylinder
Before investigating the behavior of the coupled flow-structure system, the case of a fixed rigid

cylinder is briefly considered in this section. The objective is to characterize the main features of

the flow and of the fluid forces in the absence of body motion, and to assess the validity of the IP

in this context.

An overview of the flow past the inclined stationary cylinder is presented in figure 1(a) by

means of instantaneous iso-surfaces of the spanwise vorticity (z component); the vorticity is non-

dimensionalized using Un. For comparison purpose, the flow past the fixed rigid cylinder at

normal incidence (Ren = 500) is visualized in figure 1(b). As also reported in previous studies

concerning rigid cylinders at similar inclination angles [35,37], the wake of the inclined stationary

body is composed of obliquely shed vortex rows, contrary to the normal incidence case where

the vortex rows are parallel to the cylinder axis. The vortices are peeling off from the cylinder

with an angle approximately equal to 16◦ with respect to the cylinder axis; their inclination

increases in the near region and the angle of the straight slanted vortex rows observed in the

wake is equal to 66◦ approximately, i.e. relatively close but not equal to the body inclination

angle. In spite of its oblique orientation, the wake structure resembles the 2S pattern [6] occurring

at normal incidence: at each spanwise location, two counter-rotating vortices form per shedding

period. The frequency of vortex shedding, established from the time series of the cross-flow

component of the flow velocity 10D downstream of the cylinder, and non-dimensionalized using

Un is reported in table 1 (fvn) , for the inclined body and the normal incidence configurations. As

previously mentioned, two values of the Reynolds number are considered at normal incidence:
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Figure 1. Instantaneous iso-surfaces of the spanwise vorticity in the (a) inclined (Re = 500, ωzn =±0.48) and (b)

normal (Ren = 500, ωzn =±1.73) fixed rigid cylinder configurations. Arrows represent the oncoming flow. Part of the

computational domain is shown.

Ren = 500 and Ren = 86.8, which correspond to the values of Re and Ren in the inclined body

case. Regardless of the Reynolds number value selected in the normal incidence configuration, the

frequency of vortex formation is substantially larger for the oblique shedding pattern observed

downstream of the inclined cylinder.

The fluid forces exhibit temporal fluctuations at each spanwise location, but the alternation of

positive and negative oblique vortices forming continuously along the inclined cylinder results in

constant values of the span-averaged forces (〈Cx〉= 〈Cx〉 and 〈Cy〉= 0, where and 〈 〉 denote

the time- and span-averaging operators), as also mentioned by [42]. The absence of temporal

fluctuations of the span-averaged forces suggests that the slanted shedding pattern would not

excite the rigid cylinder if it was free to oscillate. However, vortex-induced excitation remains

possible for a flexible structure; this aspect will be studied in the next section. The span-averaged

values of the mean in-line force coefficient, RMS in-line force coefficient fluctuation and RMS

cross-flow force coefficient exerted on the stationary cylinder are presented in table 1; in this table

and in the following, the fluctuations are denoted by ˜. The fluid forces are non-dimensionalized

by Un. Clear differences can be noted between the inclined and normal body configurations. In

particular, the mean in-line force is significantly larger in the inclined cylinder case.

The physical quantities in the inclined and normal body cases do not match after normalization

by Un; therefore, the IP is not valid for the stationary cylinder, in agreement with previous

works. It can be noted that the shedding frequency and fluid forces in the inclined and normal

configurations differ even if the magnitude of the inflow velocity component normal to the vortex

rows is used in the normalization.

Table 1. Vortex shedding frequency and span-averaged values of the mean in-line force coefficient, RMS in-line force

coefficient fluctuation and RMS cross-flow force coefficient, in the inclined and normal fixed rigid cylinder configurations.

fvn 〈Cxn〉 〈(C̃xn)rms〉 〈(Cyn)rms〉

Inclined cylinder, Re = 500, Ren = 86.8 0.593 1.618 0.031 0.675
Normal cylinder, Ren = 500 0.208 1.141 0.043 0.250
Normal cylinder, Ren = 86.8 0.159 1.362 0.004 0.194
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Figure 2. (a-c) Mean in-line diplacement of the cylinder and (d-f) inflow velocity component locally normal to the cylinder,

along the span, for (a,d) T = 54, (b,e) T = 37.5 and (c,f) T = 13.5.

The case of the fixed rigid cylinder at 80◦ is thus characterized by a strongly inclined vortex

shedding pattern and a clear departure from the IP. The flexible body configuration is addressed

in the following.

4. Flexible cylinder
The behavior of the flow-structure system and the validity of the IP are investigated in this section

for three values of the flexible cylinder tension. The flexible body responses are quantified in §4(a).

The flow patterns and the occurrence of wake-body synchronization are examined in §4(b). The

fluid forces and flow-structure energy transfer are analyzed in §4(c).

(a) Structural responses

The mean in-line displacement of the inclined cylinder along its span is plotted in figure 2(a-c) for

each value of the tension. The in-line bending of the cylinder increases as T decreases but remains

lower than 1.5% of the body length. The in-line curvature induces an asymmetry of the inflow

velocity profiles locally normal and parallel to the inclined cylinder along its span; an asymmetry

may thus be expected in the flow-structure system behavior. In particular, due to the large angle

of inclination, a small in-line bending results in a significant shear of the current velocity locally

normal to the body; its magnitude, which increases with z, is equal to U cos(α+ θ), where θ is the

local angle between the z axis and the cylinder axis in its mean position. The magnitude of the

locally normal velocity, non-dimensionalized by U , is presented in figure 2(d-f); it ranges from

0.16 (z = 0) to 0.19 (z = 50), for T = 54, and from 0.13 (z = 0) to 0.24 (z = 50), for T = 13.5. It can

be observed that the point of maximum mean displacement tends to shift towards z = 50, i.e. the

region of large magnitude of the locally normal current.

As in the fixed rigid cylinder case, the normal incidence results for Ren = 500 and Ren = 86.8

are also reported in order to quantify the impact of the inflow axial component and assess the IP

validity. In general, it can be noted that the amplitude ot the in-line bending differs between the



7

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..................................................................

tn

z

T = 54

0 10 20 30
0

10

20

30

40

50
ζ̃x

−0.05

0

0.05

(a)

0 0.05 0.1
0

10

20

30

40

50

( ζ̃x) rm s
z

T = 54

I n c l in ed

Norm al
R e n = 500

Norm al
R e n = 86 .8

(d)

tn

z

T = 54

0 10 20 30
0

10

20

30

40

50
ζy

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

(g)

0 0.2 0.4
0

10

20

30

40

50

(ζy) rm s

z

T = 54( j)

tn

z

T = 37.5

0 10 20 30
0

10

20

30

40

50
ζ̃x

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

(b)

0 0.005 0.01
0

10

20

30

40

50

( ζ̃x) rm s

z

T = 37.5(e)

tn

z

T = 37.5

0 10 20 30
0

10

20

30

40

50
ζy

−0.5

0

0.5

(h)

0 0.2 0.4
0

10

20

30

40

50

(ζy) rm s

z

T = 37.5(k)

tn

z

T = 13.5

0 10 20 30
0

10

20

30

40

50
ζ̃x

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

(c)

0 0.01 0.02 0.03
0

10

20

30

40

50

( ζ̃x) rm s

z

T = 13.5( f )

tn

z

T = 13.5

0 10 20 30
0

10

20

30

40

50
ζy

−0.5

0

0.5

( i)

0 0.2 0.4
0

10

20

30

40

50

(ζy) rm s

z

T = 13.5( l)

Figure 3. (a-c) Selected time series of the inclined cylinder in-line displacement fluctuation, (d-f) RMS in-line diplacement

fluctuation, (g-i) selected time series of the inclined cylinder cross-flow displacement, (j-l) RMS cross-flow displacement,

along the span, for (a,d,g,j) T = 54, (b,e,h,k) T = 37.5 and (c,f,i,l) T = 13.5.

inclined and normal cylinder cases (figure 2(a-c)). The body curvature remains symmetrical about

the mid-span point in the latter case. Contrary to the inclined body configuration, the profile of

the inflow velocity locally perpendicular to the cylinder at normal incidence (Un cos(θ)) is very

close to uniform, as shown in figure 2(d-f).

Selected time series of the in-line and cross-flow displacements of the inclined cylinder and

associated RMS values are plotted along the span in figure 3. In these plots, the fluctuation of the

in-line displacement about the body mean position is considered and the non-dimensional time

variable t is normalized using Un (tn). In all studied cases, the inclined cylinder exhibits regular

oscillations in both directions. The structural responses consist of mixed standing-traveling wave

vibrations with a predominant standing wave nature. The vibration amplitudes are comparable

to those reported in previous studies concerning flexible cylinders at normal incidence [17,20,22]

or lower inclination angle [41] and the smaller amplitudes of the in-line responses, compared

to the cross-flow oscillations, were also noted in these works. The vibrations generally present

a spanwise asymmetry, as expected due to the asymmetry of the local inflow velocity profiles

induced by the in-line bending. The inclined body responses are dominated by a single frequency

and a single structural wavenumber in each direction. A ratio of 2 can be established between

the in-line and cross-flow vibration frequencies, as also observed in the above mentioned studies.
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Table 2. Cross-flow vibration frequency, spatial wavenumber, structural mode and natural frequency associated with

the excited wavenumber in the inclined cylinder configuration and cross-flow vibration frequency in the normal cylinder

configuration, as functions of the tension/phase velocity.

Inclined cylinder Normal cylinder
Re = 500, Ren = 86.8 Ren = 500 Ren = 86.8

T ω fyn ky ny fnatn (ky) fyn fyn

54 3 0.165 0.01 1 0.162 0.171 0.168
37.5 2.5 0.262 0.02 2 0.271 0.143 0.143
13.5 1.5 0.318 0.04 4 0.325 0.167 0.167

The excited structural wavenumbers increase as T decreases. In all cases, the in-line and cross-

flow vibration wavenumbers exhibit a ratio of 2; the linear dispersion relation of a string in

vaccum and the frequency ratio of 2 suggest such ratio between the excited wavenumbers. The

principal characteristics of the structural response are presented in table 2; because of the above

mentioned ratio between the in-line and cross-flow frequencies/wavenumbers, only the cross-

flow response properties are reported. The vibration frequency is non-dimensionalized by Un

(fyn). The sine Fourier mode number ny (nth mode defined as sin(πnzD/L)) associated with

the excited wavenumber ky (ny = 2kyL/D) is also reported. The following dispersion relation is

used to estimate the natural frequency fnat associated with the structural wavenumber k when

the body is immersed in fluid:

fnat (k) = kω

√

m

m+
π

4
Cm

, (4.1)

where Cm is the added mass coefficient induced by the fluid forces in phase with the cylinder

acceleration. The natural frequencies normalized by Un (fnatn), and associated with the excited

wavenumbers, for Cm = 1, are indicated in table 2. The actual vibration frequencies remain close

to the natural frequencies predicted by the above dispersion relation.

The RMS values of the displacement amplitudes and the cross-flow vibration frequencies in

the normal incidence configuration are also presented in figure 3 and table 2, for Ren = 500 and

Ren = 86.8. Although the responses of the inclined and normal cylinders appear relatively close in

some specific cases, e.g. cross-flow displacement at T = 54 (figure 3(j)), it can be observed that they

do not match in general. The normal cylinder responses remain essentially symmetrical, which is

not the case for the inclined body. As a consequence, at the present large inclination angle, the IP

which was found to fail for a stationary cylinder, also fails when the cylinder is subjected to free

vibrations. In a previous work concerning a flexible cylinder at lower inclination angle (α= 60◦)

[41], the deviation from the IP was attributed to the in-line bending of the structure; among others,

the IP does not take into account the shear of the current locally perpendicular to the body due to

its curvature. In this previous study, it was shown that introducing, in the normal incidence case, a

sheared velocity profile matching the locally perpendicular inflow component, leads to responses

comparable to those occurring in the inclined body configuration. Additional simulations with

modified inflow profiles indicate that this result cannot be extended to the present inclination

angle: even if the locally perpendicular velocity profile is the same, the responses of the inclined

and normal cylinders still differ. This shows that the system behavior is not only driven by the

locally normal inflow component and that the locally parallel component may also become a

crucial element at large inclination angle.

The cross-flow vibration frequency of the inclined cylinder is close to the normal case

oscillation frequency for T = 54 but clearly deviates when the tension is reduced. Such deviation

of the vibration frequency was not observed at lower inclination angle [41]. The inclined body

vibration frequency increases as T decreases and it reaches high values compared to the typical

frequencies reported in the literature on flexible cylinder VIV [17,18,44]. The broad range of
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response frequencies raises the question of the nature of the interaction between the flexible

structure and the flow, and more precisely the possible occurrence of wake-body synchronization

in this context. This question is clarified in the next subsection.

For a better analysis of the mixed standing-traveling wave nature of the inclined cylinder

responses, the displacements can be approximated as follows, using N + 1 temporal Fourier

modes:

ζ{x,y} (z, t)≈
N/2
∑

s=−N/2

as{x,y} (z) exp
(

2πifst
)

=

N/2
∑

s=−N/2

|as{x,y}| (z) exp
(

i
(

2πfst+ Ψs
{x,y} (z)

))

(4.2)

where fs = s/T and T is the sampling period. The complex modal coefficients asx and asy are

written in terms of their moduli and their spatial phases Ψs
x and Ψs

y . The spanwise evolutions of

the unwrapped spatial phases associated with the in-line and cross-flow vibration frequencies (for

s > 0) are plotted in figure 4(a-c), for each value of the tension. The strong standing wave nature

of the responses is confirmed by the zigzagging trends of the phases. It can also be noted that for

all cases, the value of the phase tends to increase with z along the span. Therefore, the structural

vibrations of the inclined cylinder present a slight traveling wave behavior oriented from z = 50 to

z = 0 (decreasing z). The structural waves thus follow the shear of the inflow velocity component

locally normal to the cylinder, i.e. they travel from the region of large normal flow velocity to

the region of low normal velocity. The preferential orientation of the waves will be connected to

the fluid forcing in §4(c). Such systematic orientation of the structural waves is not observed at

normal incidence.

The frequency ratio of 2 identified between the in-line and cross-flow vibrations results in

figure eight trajectories of the cylinder in the plane perpendicular to the span, as illustrated

in figure 4(d-i). The phase difference between the in-line and cross-flow vibration components

occurring at frequencies 2fs and fs respectively, is evaluated as follows:

Φs
xy = Ψ2s

x − 2Ψs
y . (4.3)

In the present case where a single frequency is excited in each direction, the shape and orientation

of the cylinder trajectory is determined, at each spanwise location, by a single phase difference

Φs
xy . Values of this phase difference in the range 0◦ − 180◦ (180◦ − 360◦ respectively) correspond

to figure eight orbits where the body moves upstream (downstream respectively) when reaching

the cross-flow oscillation maxima; these two types of trajectories are referred to as counter-

clockwise and clockwise, respectively [46]. The spanwise evolution of the phase difference in the

inclined body case is plotted in figure 4(j-l) for each value of the tension; the locations of the points

selected in figure 4(d-i) are indicated by dashed lines and the limit between counter-clockwise and

clockwise orbits (180◦) is denoted by a plain line. The spanwise patterns of the in-line/cross-flow

response synchronization differ in the normal incidence cases, as expected due to the differences

pointed out previously in the structural vibrations; they are not presented here. As detailed in a

prior work concerning flexible cylinders at normal incidence [29], the strong standing wave nature

of the inclined cylinder vibrations results in a well-defined alternation of counter-clockwise and

clockwise orbits along the span; the transition between the two types of orbits occurs near the

minima of the in-line response amplitude. Previous studies have emphasized that the orientation

of the trajectory is closely related to the transfer of energy between the flow and the flexible

body [28,29]; this aspect, which remains to be investigated in the inclined cylinder case, will be

addressed in §4(c).

The above analysis shows that the flexible cylinder inclined at 80◦ is subjected to regular free

oscillations but that the IP is not valid for the prediction of the structural responses. In the next

subsection, the inclined body vibrations are connected to the flow patterns occurring in its wake.
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Figure 4. (a-c) Unwrapped spatial phases of the in-line and cross-flow displacements along the span. (d-i) Typical

trajectories at selected spanwise locations. (j-l) Spanwise evolution of the phase difference between the in-line and

cross-flow displacements. The reported results concern the inclined cylinder configuration for (a,d,e,j) T = 54, (b,f,g,k)

T = 37.5 and (c,h,i,l) T = 13.5. The locations of the monitoring points in (d-i) are indicated by dashed lines in (j-l) and

the limit between counter-clockwise and clockwise trajectories (180◦) is denoted by a plain line.

(b) Flow patterns and wake-body synchronization

The flow past the freely-vibrating inclined cylinder is visualized in figure 5(a-c) through

instantaneous iso-surfaces of the spanwise vorticity, for the three values of the tension. A striking

feature is that each case exhibits a different angle of inclination of the vortex rows occurring in

the wake. For T = 54, the vortices are found to be essentially parallel to the cylinder, as in the

normal incidence configuration where parallel shedding is noted for all simulated cases. Such

transition from oblique to parallel shedding once the body oscillates was also reported in previous

studies for a flexible cylinder at 60◦ [41] and a rigid cylinder up to 70◦ [37,40]; the present results

indicate that this phenomenon persists in the case of a flexible cylinder inclined at 80◦. In contrast,

oblique shedding is observed for the lower values of the tension; the angle between the vortex

rows and the z axis is approximately equal to 7◦ for T = 37.5 and 20◦ for T = 13.5, versus 66◦ in

the stationary body case. The vortices present slightly lower slant angles as they are peeling off

from the cylinder and a small bending of the vortex rows can be noted in the near wake region,

as also observed in the fixed rigid cylinder case (§3); the above mentioned values correspond to

the inclination angles of the developed straight vortex rows. Instantaneous iso-contours of the
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Figure 5. Instantaneous (a-c) iso-surfaces (ωzn =±0.58) and (d-f) iso-contours in the (x, y) plane (ωzn ∈

[−1.04, 1.04]) of the spanwise vorticity in the inclined cylinder configuration, for (a,d) T = 54, (b,e) T = 37.5 and (c,f)

T = 13.5. In (a-c), arrows represent the oncoming flow and the spanwise locations selected in (d-f) are indicated by

dashed lines. Part of the computational domain is shown.

spanwise vorticity in the (x,y) plane, at selected locations indicated by dashed lines in figure 5(a-

c), are presented in figure 5(d-f). As in the fixed rigid cylinder case, the wake is characterized by

the formation of two counter-rotating vortices per shedding cycle, i.e. the 2S pattern.

In order to quantify the spatio-temporal properties of the wake and connect them to the

structural responses, a detailed analysis of the cross-flow component of the flow velocity (v),

along a line parallel to the z axis and located 10D downstream of the cylinder, is reported in

the following. Selected time series of v are plotted in figure 6(a-c), for the three values of the

tension. The parallel or oblique nature of the wake pattern as a function of T can be clearly

identified in these plots. The power spectral density (PSD) of v, presented in figure 6(d-f), is used

to determine the vortex shedding frequency at each point of the body length. In these plots, the

PSD is normalized by its largest magnitude and the frequency is non-dimensionalized by Un

(fn). For each value of the tension, the vortex shedding frequency is constant along the span and

matches the cross-flow vibration frequency (indicated by a black dashed line). Therefore, the lock-

in condition is established along the entire cylinder length, as also observed at normal incidence.

To the authors’ knowledge, the appearance of the lock-in condition for a flexible cylinder at such

large inclination angle was not previously reported. In all studied cases, independently of the

slant angle of the vortex rows, the excitation of the inclined flexible cylinder by the flow thus

occurs through synchronization between the body oscillation and the vortex formation; that is

why the responses of the inclined cylinder are referred to as VIV.

The vortex shedding frequency downstream of the vibrating cylinder is considerably reduced

compared to the frequency observed in the absence of structural oscillation, which is denoted by a

white dashed-dotted line in figure 6(d-f). Since the lock-in condition is established in all cases, the
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Figure 6. (a-c) Selected time series of the cross-flow component of flow velocity 10D downstream of the inclined cylinder

(positive/negative values in yellow/blue) and associated (d-f) PSD and (g-i) unwrapped spatial phase, along the span, for

(a,d,g) T = 54, (b,e,h) T = 37.5 and (c,f,i) T = 13.5. In (d-f), the PSD is normalized by the magnitude of the largest peak

at each spanwise location and the colorbar levels range from 0 (blue) to 1 (yellow); the cross-flow vibration frequency is

indicated by a black dashed line and the vortex shedding frequency observed in the absence of structural oscillation by a

white dashed-dotted line. In (h,i) dashed-dotted lines denote the minima of the cross-flow vibration envelope.

vibration frequencies reported in table 2 correspond to the vortex shedding frequencies. When the

vortex rows are parallel to the inclined body (T = 54), the shedding frequency remains close to the

frequency identified at normal incidence; yet this does not imply validity of the IP, as shown in

§4(a) (e.g. figure 3(d)). As also noted by [37] and [35] for fixed rigid cylinders inclined in flow, the

vortices exhibit larger formation frequency under oblique shedding than under parallel shedding.

In the oblique pattern case, the IP substantially underestimates the shedding (and vibration)

frequency.

For flexible cylinders subjected to VIV under parallel shedding, previous works have shown

that the alternating regions of positive and negative transverse displacement along the span

are associated with the simultaneous formation of vortex rows of opposite vorticity signs

along the cylinder length [41,44]; this observation suggests a coincidence between the spanwise

wavenumber of the wake pattern and the excited structural wavenumber. To clarify this aspect

in the present configuration, the cross-flow velocity component v is approximated by a Fourier

expansion similar to (4.2) and the unwrapped spatial phase Ψs
v associated with the predominant
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frequency of v (for s > 0) is plotted along the span in figure 6(g-i), for each value of the tension. For

T = 54, under parallel shedding, the phase remains relatively constant along the cylinder length.

In contrast, the phase regularly decreases along the span for T = 37.5 and T = 13.5, in agreement

with the inclination of the wake. The locations of the minima of the cross-flow vibration are

indicated by dashed-dotted lines in figure 6(h-i); they essentially correspond to the nodes of the

associated sine Fourier mode (ny) and the distance between two successive minima is equal to

1/2ky . It appears that the phase of v exhibits variations of approximately −180◦ between each

minimum of the cross-flow vibration. The spanwise wavenumber of the oblique wake pattern

thus matches the excited structural wavenumber (0.02 for T = 37.5 and 0.04 for T = 13.5); hence,

the cylinder vibration and the wake pattern are found to be spatially locked. As also observed in

the absence of vibration in [35], the slant angle and shedding frequency tend to increase with the

spanwise wavenumber, which increases when the tension is reduced in the flexible body case.

The present observations show that the vibrations of the inclined flexible cylinder occur under

the lock-in condition and that this state of wake-body synchronization is accompanied by a

profound reconfiguration of the flow pattern compared to the fixed rigid cylinder case, both

temporally, with a substantial alteration of the vortex formation frequency, and spatially, with

a modification of the shedding angle. The forcing exerted by the flow on the vibrating inclined

body is examined in the following.

(c) Fluid forces and flow-structure energy transfer

The spanwise evolutions of the mean in-line force coefficient and of the RMS in-line and cross-

flow force coefficients are plotted in figure 7(a-i), for the three values of the tension; in figure 7(d-f),

the fluctuation of the in-line force coefficient about its mean value is considered. For comparison

purpose, the fluid forces are non-dimensionalized by Un and the normal incidence results for

Ren = 500 and Ren = 86.8 are also reported in these plots. As mentioned in previous studies

concerning rigid and flexible cylinders at lower incidence [14,39,41], a considerable amplification

of the force fluctuations and mean in-line force generally occurs once the body oscillates. The

magnitudes and spanwise patterns of the fluid forces clearly differ between the inclined and

normal body configurations; hence the IP is not valid. A notable feature in the inclined cylinder

case is the spanwise asymmetry of the fluid forces, whereas the forces remain mainly symmetrical

at normal incidence. In the inclined body case, as discussed in §4(a), the structure in-line bending

causes an asymmetry of the local inflow velocity profiles and in particular a large shear of

the current locally normal to the cylinder. It appears that the mean in-line force exhibits larger

magnitudes for z > 25, i.e. in the spanwise region associated with large values of the locally

normal current velocity (figure 2(d-f)); this phenomenon is accompanied by an asymmetrical

bending of the structure, as shown in figure 2(a-c). It is recalled that additional simulations have

been performed at normal incidence with a sheared current in order to match the velocity profile

locally perpendicular to the inclined body; as expected, the sheared profile induces asymmetrical

distributions of the forces, yet their spanwise evolutions and amplitudes still significantly depart

from the inclined cylinder results.

The effective in-line and cross-flow added mass coefficients due to the fluid forces in phase

with the cylinder acceleration are determined as follows:

Cmx =− 2

π

Cxζ̈x

ζ̈2x
, Cmy =− 2

π

Cy ζ̈y

ζ̈2y
. (4.4)

The evolutions of the effective added mass coefficients along the inclined cylinder span are plotted

in figure 7(j-l). It appears that Cmx and Cmy substantially differ from the potential flow value

of 1 (dotted line) and exhibit large spanwise modulations with spikes near the minima of the

structural response amplitude (dashed-dotted lines). In spite of the variability of the effective

added mass coefficients, it was noted in §4(a) that the actual vibration frequencies are close to the

natural frequencies predicted by the dispersion relation (4.1), in which the potential flow value of

the added mass coefficient is considered; such behavior is also observed at normal incidence.
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Figure 7. Spanwise evolution of the (a-c) mean in-line force coefficient, (d-f) RMS in-line force coefficient fluctuation, (g-i)

RMS cross-flow force coefficient, (j-l) effective added mass coefficients, (m-o) mean fluid force coefficients in phase with

velocity, for (a,d,g,j,m) T = 54, (b,e,h,k,n) T = 37.5 and (c,f,i,l,o) T = 13.5. Inclined and normal cylinder configuration

results are reported in (a-i). The results in (j-o) concern the inclined body configuration. In (j-l) the potential flow value

of the added mass coefficient (1) and the minima of the structural response envelope are indicated by dotted and

dashed-dotted lines respectively. In (m-o) the white/grey areas denote the regions of the span characterized by counter-

clockwise/clockwise trajectories and the linear approximations of Cvx and Cvy are represented by circles and triangles,

respectively.

The transfer of energy between the flow and the vibrating cylinder is quantified, in each

direction, through the mean fluid force coefficient in phase with the body velocity:

Cvx =
√
2
Cxnζ̇x
√

ζ̇2x

, Cvy =
√
2
Cynζ̇y
√

ζ̇2y

. (4.5)

In the above definitions, the fluid forces are non-dimensionalized by Un. Positive values of these

coefficients indicate that the flow provides energy to excite the structural vibrations and negative

values indicate that the body oscillations are damped by the flow. The spanwise distributions

of Cvx and Cvy along the inclined cylinder are presented in figure 7(m-o). For each value of

the tension, a regular alternation of excitation and damping regions can be observed along the

span and it appears that the excitation/damping zones of the in-line and cross-flow responses

coincide. In the following, the spatial pattern of energy transfer is studied in relation with the
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spanwise evolution of the cylinder trajectory orientation. For a flexible cylinder placed at normal

incidence in sheared current, the lock-in condition is preferentially established through counter-

clockwise figure eight trajectories of the body; as a result, the excitation of the structure by the

flow mainly occurs through this type of orbits [28,29]. In the present case of a flexible cylinder

inclined in uniform current, the lock-in condition is established along the entire body length

but the energy transfer is still closely connected to the orientation of the body trajectory. To

clarify this connection, the orbit orientation determined from the in-line/cross-flow response

phase difference (figure 4(j-l)) is specified in figure 7(m-o); white and grey background colors

denote counter-clockwise and clockwise orbits respectively. In all cases, it appears that the body

is excited in spanwise regions where it exhibits counter-clockwise trajectories, while clockwise

orbits are essentially associated with vibration damping. Therefore, an orientation more favorable

to positive energy transfer also exists at large inclination angle. The selection of the counter-

clockwise orientation for body excitation is expected to be driven by similar mechanisms as

those previously described in the normal incidence case, under parallel vortex shedding (closer

proximity of the cylinder and the recently shed vortices, specific phasing between body motion

and vortex suction forces [16,46]). The inclined body results show that the link between energy

transfer and orbit orientation persists over a range of wake configurations, i.e. parallel shedding

but also oblique shedding patterns with different slant angles.

The structural responses of the inclined cylinder were all shown to exhibit a slight traveling

wave behavior, oriented towards decreasing z (§4(a)). This trend was observed under both

parallel shedding and oblique shedding, where the vortex rows are moving towards increasing

z; in the latter case, the structural waves and the vortices thus travel in opposite directions.

This apparently paradoxical phenomenon can be elucidated in light of the spanwise pattern of

energy transfer. The largest peaks of positive energy input occur for z > 25 and the magnitude of

these peaks tends to decrease along the span. The global decreasing trend of Cvx and Cvy as z

decreases is illustrated by the linear approximations of these coefficients, represented by circles

and triangles in figure 7(m-o). The space averaged values of Cvx and Cvy are positive over the

second half of the cylinder and negative over the first half; hence, the span may be separated

into a global region of excitation (z > 25) and a global region of damping (z < 25). It can be noted

that the region which includes the largest peaks of Cvx and Cvy corresponds to the region where

the in-line bending results in the largest magnitudes of the inflow velocity locally normal to the

cylinder (figure 2(d-f)) and the global direction of decreasing energy transfer coincides with the

direction of decreasing magnitude of the locally normal velocity. As also reported in prior works

concerning VIV of flexible cylinders exposed to normal sheared currents [26,44], the orientation

of the structural waves is determined by the energy input/output pattern: the waves follow the

global direction of decreasing energy transfer, oriented from the region of large locally normal

inflow velocity to the region of low locally normal velocity in the present case, and thus travel

towards z = 0. Contrary to the inclined cylinder configuration, no monotonic orientation of the

structural waves can be identified at normal incidence; this is in agreement with the absence of

systematic trend of energy transfer along the span.

The analysis of the fluid forces confirms a substantial deviation from the IP at large inclination

angle and emphasizes persistent features of the flow-structure system, which occur for all

studied cases, i.e. regardless of the excited wavenumbers and wake configuration. In particular,

a connection is established between energy transfer and some characteristics of the inclined body

responses, such as the orbit orientation and the traveling wave nature of the structural vibrations.

5. Conclusions
The free vibrations of a flexible cylinder inclined at 80◦ within a uniform current at Re = 500

have been examined on the basis of direct numerical simulation results. A normal incidence

configuration was also considered to assess the validity of the IP which states that the inclined

and normal incidence body configurations are comparable if the normal component of the inflow

velocity (Un) is used to scale the physical quantities. The flexible cylinder was modeled as a
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tension-dominated structure and three values of the tension were selected in order to cover a

range of the system typical responses. As a preliminary step, a brief overview of the fixed rigid

cylinder case was presented: in the absence of body motion, the wake of the inclined cylinder

is characterized by an oblique vortex shedding pattern with a large slant angle and the IP is

not valid, as previously reported in the literature. The principal findings of this work can be

summarized as follows.

In-line and cross-flow vibrations at large inclination angle. In all studied cases, the inclined flexible

cylinder is found to exhibit regular oscillations in the in-line and cross-flow directions. The

structural responses consist of mixed standing-traveling wave vibrations with a predominant

standing wave nature. For each value of the tension, a single frequency associated with a single

structural wavenumber is excited in each direction and a ratio of 2 is observed between the

in-line and cross-flow response frequencies/wavenumbers. In spite of a substantial variability

of the effective added mass coefficients along the span, the vibration frequencies remain close

to the structure natural frequencies. The cylinder oscillations are generally accompanied by a

considerable amplification of the mean and fluctuating components of the fluid forces, compared

to the stationary body case.

Wake-body synchronization under parallel and oblique vortex shedding. The vibrations of the

inclined flexible cylinder are excited through synchronization between the body oscillation and

the vortex formation, i.e. the lock-in condition; that is why the present structural responses are

referred to as VIV. It is found that, depending on the tension, the lock-in condition may involve

either parallel or oblique vortex shedding patterns. In the latter case, the structural response and

the wake pattern are shown to remain spatially locked, i.e. their spanwise wavenumbers coincide.

In all cases, the occurrence of wake-body synchronization induces a dramatic reconfiguration of

the flow pattern compared to the stationary cylinder case, with a notable reduction of the vortex

shedding angle and frequency. As a general trend, the shedding angle and frequency tend to

increase with the spanwise wavenumber, which increases when the tension is reduced. Regardless

of the shedding angle, the wake structure resembles the 2S pattern, with the formation of two

counter-rotating vortices per cycle. Due to the frequency ratio of 2 identified between the in-line

and cross-flow vibrations and to their predominant standing wave nature, the inclined cylinder

presents an alternation of clockwise and counter-clockwise figure eight orbits along its length.

Wake-body synchronization occurs along the entire span, independently of the orbit orientation.

However, for all the observed wake patterns, i.e. parallel shedding but also oblique shedding with

different slant angles, the counter-clockwise trajectories are found to be more favorable to body

excitation, while clockwise orbits are mainly associated with vibration damping.

Deviation from the independence principle. Comparison of the vibrations and fluid forces in

the inclined and normal body configurations shows that the behavior of the system generally

departs from the IP. The frequencies of the VIV occurring under oblique shedding are found to

be considerably underestimated by the IP. Under parallel shedding, the response frequency of

the inclined cylinder is close to the frequency identified at normal incidence, after normalization

by Un; yet this does not imply validity of the IP, since even in this case, major differences are

noted in the oscillation and force amplitudes between the two configurations. In the inclined

body configuration, the flow-structure system exhibits a persistent spanwise asymmetry. Such

asymmetry of the vibration and force patterns is expected because the structure in-line bending

results in asymmetrical profiles of the inflow velocity components locally normal and parallel to

the body; at large inclination angle, the locally perpendicular current presents a significant shear.

This source of asymmetry is not captured by the IP and it appears that the response of the system

remains essentially symmetrical at normal incidence. Along the inclined cylinder span, the global

direction of decreasing flow-structure energy transfer is found to coincide with the direction of

decreasing magnitude of the locally perpendicular velocity; this spanwise trend of energy transfer

induces a monotonic orientation of the slight traveling wave behavior of the structural vibrations,

which does not exist at normal incidence.
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