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Abstract
Most popular Web applications rely on persistent databases based
on languages like SQL for declarative specification of data mod-
els and the operations that read and modify them. As applications
scale up in user base, they often face challenges responding quickly
enough to the high volume of requests. A common aid is caching of
database results in the application’s memory space, taking advantage
of program-specific knowledge of which caching schemes are sound
and useful, embodied in handwritten modifications that make the
program less maintainable. These modifications also require nontriv-
ial reasoning about the read-write dependencies across operations.
In this paper, we present a compiler optimization that automatically
adds sound SQL caching to Web applications coded in the Ur/Web
domain-specific functional language, with no modifications required
to source code. We use a custom cache implementation that sup-
ports concurrent operations without compromising the transactional
semantics of the database abstraction. Through experiments with
microbenchmarks and production Ur/Web applications, we show
that our optimization in many cases enables an easy doubling or
more of an application’s throughput, requiring nothing more than
passing an extra command-line flag to the compiler.

1. Introduction
Most of today’s most popular Web applications are built on top of
database systems that provide persistent storage of state. Databases
present a high-level view of data, allowing a wide variety of read
and write operations through an expressive query language like SQL.
Many databases maintain transactional semantics, meaning that a
database client can ensure that a sequence of queries appears to
execute in isolation from any other client’s queries, which makes it
simple to maintain invariants in concurrent applications. In short,
databases abstract away tricky low-level details of data structures,
concurrency, and fault tolerance, freeing programmers to focus on
application logic without sacrificing much performance.

Database engines have evolved to fit their nontrivial specification
extremely well. Nevertheless, in practice, programmers do not im-
plement entire applications using just a database’s query language.
Instead, applications are generally clients of external databases. For
some of these applications, interacting with the database is a per-

formance bottleneck, even with the maturity of today’s database
systems. Several pathologies are common. Database queries may
incur significant latency by themselves, on top of the cost of interpro-
cess communication and network round trips, exacerbated by high
load. Applications may also perform complicated postprocessing of
query results.

One principled mitigation is caching of query results. Today’s
most-used Web applications often include handwritten code to main-
tain data structures that cache computations on query results, keyed
off of the inputs to those queries. Many frameworks are used widely
in this space, including Memcached1 and Redis2. Frameworks han-
dle the data-structure management and persistence, but they leave
some thorny challenges for programmers. Certain modifications to
the database should invalidate some cache entries, but the mapping
from modifications to cache keys is entirely application-specific. In
mainstream practice, programmers are forced to insert manual inval-
idations at every update, reasoning through which cache keys should
be invalidated. This analysis is difficult enough for a single-threaded
server, and it gets even more onerous for a multithreaded server
meant to expose transactional semantics. An alternative approach
is to present a restricted database interface to most of the program,
using caches as part of that interface’s implementation. This limits
how much manual invalidation analysis is needed, but it also limits
the expressiveness of database operations throughout the program.

Past work (Ports et al. 2010) has shown how to implement
caching for SQL-based applications automatically, using dynamic
analysis in a modified database engine, based on trusted annotations
that programmers write to clarify the semantics of their database
operations. One might prefer to avoid both the runtime overhead
and the annotation burden by using static analysis and compiler
optimization to instrument a program to use caches in the battle-
tested standard way, inferring the code that programmers are asked
to write today. To that end, we present Sqlcache, the first auto-
matic compiler optimization that introduces caching soundly,
preserving transactional semantics and requiring no program
annotations.

That specification would be a tall order in most widely used Web-
application frameworks, where SQL queries are written as strings
that can be constructed in arbitrary ways. To do sound caching,
it becomes necessary to employ program analysis to understand
the ways in which applications manipulate strings. The general
problem is clearly undecidable, as programs may build query strings
with sophisticated loops and recursion that need not even respect
the natural nesting structure of the SQL grammar. One framework
alternative is to use object-relational database interfaces, where the
database is presented in a more conventional object-oriented way. In

1 http://memcached.org/
2 http://redis.io/
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this case, we run squarely into the usual challenges of aliasing for
pointers and references to mutable data. Furthermore, to reconstruct
the higher-level understanding that underlies sound caching, we
need to analyze the loops that connect together object-relational
operations, in effect reconstructing (Cheung et al. 2013) high-level
concepts like joins that relational databases support natively.

For these reasons, we chose to implement our optimization for
Ur/Web (Chlipala 2015b), a domain-specific functional program-
ming language for Web applications. A key distinguishing feature
of Ur/Web is that its compiler does parsing and type checking of
SQL syntax, guaranteeing that the queries and updates generated
by the application follow the database schema. Moreover, queries
are constructed as first-class abstract syntax trees, so that even pro-
grammatically constructed queries are forced to follow the gram-
matical structure of SQL. As a result, we need no sophisticated
program analysis to find the structure of queries within a program.
The most we need is to inline function definitions and partially eval-
uate query-producing expressions until we arrive at query templates
with program variables spliced into positions for SQL literals. We
have found that programs in this form are an excellent starting point
for a surprisingly simple yet effective program analysis and transfor-
mation to support automatic caching. We expect that our approach
could also be applied to other languages and frameworks sharing
this criterion, like SML# (Ohori and Ueno 2011), Links (Cooper
et al. 2006), and LINQ (Meijer et al. 2006).

The core of Sqlcache is a program analysis, demonstrated by
example in Section 2, that checks compatibility between queries and
updates, but that analysis is joined by a crucial supporting cast of
other components. In summary, Sqlcache

• computes conditions for irrelevance (Blakeley et al. 1989)
between queries and updates, using the analysis to instrument
updates with cache invalidations automatically (Section 3);

• employs a cache implementation that supports the required oper-
ations in time constant in the number of entries (Section 4.1)...

• ...while maintaining transactional semantics in the face of con-
current accesses (Section 4.2);

• monitors cache activity at runtime, automatically deactivating
caches that are invalidated too frequently (Section 4.3);

• heuristically selects program fragments to cache, often realizing
opportunities to cache spans of HTML code based on multiple
queries, yielding faster responses on cache hits (Section 5);

• and, with no changes to application source code required, im-
proves the throughput of existing Ur/Web applications by factors
of two or more (Section 6), even without accounting for network
latency.

The current implementation is sound when the optimized application
is run on a single server. While this is certainly a limitation (albeit
one shared with certain features of Ur/Web itself), our benchmarks
demonstrate that a single server with automatic caching is enough to
run all but the very busiest Web applications. Our analysis currently
handles a substantial but incomplete subset of the SQL features
supported by Ur/Web (Section 3.3).

The rest of the paper explains and evaluates our approach, which
we try to highlight as appealingly straightforward to understand and
implement, thanks in large part to the choice of a source language
that presents SQL access at just the right level of abstraction.

Sqlcache is now packaged with the main open-source distribution
of Ur/Web3, and instructions for running our benchmarks are
available in the artifact accompanying this paper4.

3 http://www.impredicative.com/ur/
4 https://github.com/vizziv/sqlcache-bench

table paper : { Title : string, FirstAuthor : string,
Year : int }

fun allPapers () =
theList <- queryX1 (SELECT *

FROM paper
ORDER BY paper.Year, paper.Title)

(fn r => <xml><tr>
<td>{[r.Year]}</td>
<td>{[r.Title]}</td>
<td>{[r.FirstAuthor]}</td>

</tr></xml>);
return <xml><body>

<table>
<tr> <th>Year</th> <th>Title</th>

<th>First Author</th> </tr>
{theList}

</table>
</body></xml>

fun fromYear year =
theList <- queryX1 (SELECT paper.Title, paper.FirstAuthor

FROM paper
WHERE paper.Year = {[year]}
ORDER BY paper.Title)

(fn r => <xml><tr>
<td>{[r.Title]}</td>
<td>{[r.FirstAuthor]}</td>

</tr></xml>);
return <xml><body>

<h2>From the year {[year]}</h2>
<table>

<tr> <th>Title</th> <th>First Author</th> </tr>
{theList}

</table>
</body></xml>

fun addPaper title author year =
dml (INSERT INTO paper(Title, FirstAuthor, Year)

VALUES ({[title]}, {[author]}, {[year]}));
return <xml><body>

OK, I inserted it.
</body></xml>

fun changeYear title oldYear newYear =
dml (UPDATE paper

SET Year = {[newYear]}
WHERE Title = {[title]} AND Year = {[oldYear]});

return <xml><body>
OK, I changed it.

</body></xml>

Figure 1. An example Ur/Web program to optimize

2. Analysis and Transformation by Example
Figure 1 shows an example Ur/Web program that we would like to
optimize by inserting caching. The underlying database contains one
table, declared in the first line of the program: a table of all papers
published to date at POPL, with their titles, first authors, and years
of publication. Each of the four functions that follows is callable via
Web URLs, and each generates an HTML page to return to the user.
The four functions are:

• allPapers returns a rendering of the full database table as an
HTML table, sorted by year and title.

• fromYear builds a similar HTML table just for those papers
published in a particular year, which is passed as a parameter to
the function.

• addPaper inserts a new row into the table.
• changeYear adjusts the year of an existing paper, given its title

and old year.

The code uses two library functions for accessing the SQL
database. Function queryX1 is for running a query over one table
(hence the “1”) to generate XML (hence the “X”): we run a provided
function on every result row, concatenating together the resulting
XML fragments. Function dml is the primitive for executing an

http://www.impredicative.com/ur/
https://github.com/vizziv/sqlcache-bench


update command for its side effects, and the function is named after
SQL’s Data Manipulation Language.

Though we do not have space for a full tutorial introduction to the
Ur/Web language, we will highlight a property essential to enabling
Sqlcache. The program contains quoted fragments of HTML and
SQL code, including antiquoting (written with curly braces) to inject
values from the host programming language. The compiler parses
and type-checks these embedded fragments statically and adds
appropriate escaping automatically, precluding the possibility of
code-injection attacks. The compiler can analyze such fragments
nicely as abstract syntax trees instead of unstructured code that
produces strings, which has benefits beyond just blocking code
injections: it also helps the compiler do static analysis of semantic
properties of queries. We need no pointer or string analysis to
reconstruct which SQL queries appear in a program. While Ur/Web
does allow the use of arbitrary programmatic query generation, most
queries appear as simply as the ones in the figure, and our analysis
soundly overapproximates the ones whose programmatic generation
is too complex.

Ur/Web programs contain two fundamental kinds of SQL opera-
tions. First, we have queries. These appear in the example program
as arguments to the queryX1 function, which computes an HTML
fragment by folding over the rows returned by the query. In general,
query results in Ur/Web are always processed using some sort of
folding function. We also have updates, all of the SQL commands
that modify the database. These appear as arguments to the dml func-
tion, which runs its given SQL command. (Ur/Web distinguishes
between the SQL fragment specifying the update and the actual
database-updating action.) We want to add caching of query results,
not just remembering which lists of rows the database returned to us,
but also remembering everything computed based on those results.
Each cache is associated with one or more queries, and the keys of a
cache are the free Ur/Web variables that appear in the code it caches,
whether those variables appear antiquoted in the SQL queries or
in the later Ur/Web looping code. Updates can invalidate some but
not all cache entries, and we are after a precise characterization of
which updates invalidate which cache entries. The central program-
analysis task is to compute for each update operation, a sound
mapping from its Ur/Web variables to the Ur/Web variables of
queries whose caches it invalidates. We now explain by working
through analysis and transformation of Figure 1’s program.

First, let us consider which caches should exist. We would like
to have one cache for the entire body of allPapers, and that
expression contains no free Ur/Web variables. Therefore, the unit
type is suitable as the cache key, and we effectively use a dedicated
global variable for the output of allPapers. The case for fromYear
is more complex. The function body has parameter variable year
appearing free, so a whole-function cache should be keyed on
the year. It is not always wise or even possible to achieve whole-
function caching, such as when a function contains multiple queries
of different tables or both a query and an update. As we discuss in
Section 5, Sqlcache starts with query-level caching—in this example,
this means caching the output of each queryX1 invocation—then
attempts to cache progressively larger subexpressions.

We have learned that our compiled program should effectively
have two caches of these high-level types:

cache_allPapers : ( ) -> string
cache_fromYear : (int) -> string

(Note that it is just a coincidence here that the caches match up with
the functions, as our optimization supports finer-grained caches.)
Now we must figure out how to invalidate those caches on the
different update operations.

When addPaper runs, we need to clear cache allPapers,
as we must regenerate the HTML table to include the new pa-

per. In contrast, since addPaper is passed the year of the paper,
we only need to clear the cache fromYear entry correspond-
ing to that year. The changeYear function has the same broad
effect on cache allPapers, but a more interesting effect on
cache fromYear: that cache should be cleared for both the old
and new year values, but it is safe to leave entries for all other years
in place.

2.1 Invalidation Justified Formally
How can a compiler discover these invalidation rules on its own,
proving to itself that they are sound?

For each pair of a query and an update, we solve a satisfiability
problem to find if the latter should invalidate the former’s cache.
We think of the query as having run in the past, and we think of
the update as happening in the present. Each query or update runs
in some context with certain values of free Ur/Web variables. For
instance, the body of fromYear runs with some value of year in
scope, and we will denote that value more simply as yQ below.
When addPaper runs, it also has some local value of a variable
year, which we will write yU, to indicate that this is a variable at the
update site. We examine each query-update pair in turn to determine
which conflicts may exist.

The easiest case is allPapers vs. addPaper. When can an
INSERT operation affect the result of a query? The query results
change only when the new row meets the filter condition given
by its WHERE clause. This filter condition F is a predicate over
the column values. The query in allPapers has a trivial filter
condition: F (t, a, y) , >. The update in addPaper inserts the row
(tU, aU, yU), whose elements refer respectively to the free Ur/Web
variables title, author, and year at the update site. Therefore,
the conflict check is for satisfiability of F (tU, aU, yU). Of course that
formula simplifies down to >, which is trivially satisfiable, so the
insertion must clear the allPapers cache.

Now, for a harder case, consider fromYear vs. addPaper. The
filter condition of fromYear is F (t, a, y) , y=yQ, where yQ refers
to the free Ur/Web variable year at the query site. The conflict
check is against F (tU, aU, yU), which simplifies to yU = yQ, which
is trivially satisfiable when local variable year is equal between
the query and update sites. In every such match, we need to derive
the values of the query-site local variables from the values of the
update-site locals. For this simple example, we just recover yQ as
literally equal to yU. In other words, this update, run with year
value yU, needs to invalidate the query cache with key yU.

Next we analyze interactions with changeYear, which uses an
SQL UPDATE statement and takes a bit more work to model. Under
what conditions does an UPDATE affect the results of a query? There
are three cases: (1) changing a row so that the filter condition applies
when it did not before; (2) changing a row so that the filter condition
stops applying when it did before; or (3) modifying the column
values of a row that is selected both before and after. For interaction
between changeYear and allPapers, this analysis still reduces
to the trivial conclusion that the full cache of allPapers must be
invalidated.

The analysis is more interesting for changeYear vs. fromYear.
The filter condition of the query is still F (t, a, y) , y = yQ. The
update has filter condition G(t, a, y) , t=tU ∧ y=oU, where tU is
the value of Ur/Web variable title and oU the value of oldYear,
at the update point. The effect of the update is to modify an old
row (t, a, y) to a new row V , which is a function of the old row:
V (t, a, y) , (t, a, nU), where nU is the value of newYear.

With those preliminaries out of the way, we formalize the
three scenarios for how the update might change the query result.
Instead of predicates on the column values of one row, these are
predicates on the column values for a pair of rows. We consider
a row (t, a, y) that is modified to (t′, a′, y′) by the update. We



know that such a modification will occur when the update filter
condition holds, and we know the relationship between the old
and new rows, so every case below will include the conjunct
G(t, a, y) ∧ (t′, a′, y′)=V (t, a, y).

Modifying a row so that the query selects it when it was not
selected before. We start with the general formula, plug in the
conditions for our particular query and update, and then simplify
further, choosing a shorter formula that is implied, for reasons that
we will get to shortly.

¬F (t, a, y) ∧ F (t′, a′, y′)

∧ G(t, a, y) ∧ (t′, a′, y′) = V (t, a, y)

⇔ y 6= yQ ∧ y′ = yQ

∧ t = tU ∧ y = oU ∧ t′ = t ∧ a′ = a ∧ y′ = nU

⇒ yQ = nU

Modifying a row so that the the query stops selecting it when it
did before.

F (t, a, y) ∧ ¬F (t′, a′, y′)

∧ G(t, a, y) ∧ (t′, a′, y′) = V (t, a, y)

⇔ y = yQ ∧ y′ 6= yQ

∧ t = tU ∧ y = oU ∧ t′ = t ∧ a′ = a ∧ y′ = nU

⇒ yQ = oU

Modifying a column selected by the query. In addition to check-
ing that both the old and new row satisfy the filter condition of the
query, we need to check that columns selected by the query are
modified, which amounts to checking (t′, a′) 6= (t, a). The result-
ing formula turns out to be unsatisfiable, reflecting the fact that the
update does not modify any columns selected by the query.

F (t, a, y) ∧ F (t′, a′, y′) ∧ (t′, a′) 6= (t, a)

∧ G(t, a, y) ∧ (t′, a′, y′) = V (t, a, y)

⇔ y = yQ ∧ y′ = yQ ∧ (t′ 6= t ∨ a′ 6= a)

∧ t = tU ∧ y = oU ∧ t′ = t ∧ a′ = a ∧ y′ = nU

⇒ (t 6= t ∨ a 6= a) ⇒ ⊥
These three cases cover all possible invalidations of the query

by the update, so we may express the full space of possibilities as
a disjunction of the three formulas. Applying the implications we
calculated above, we find that, in case of an invalidation, the formula
yQ = nU ∨ yQ = oU ∨ ⊥ must be true. Notice how this formula has
reverse-engineered the affected key values yQ for the query cache!
As a result, it is sound to invalidate the cache entries for the keys nU
and oU. These values can be computed at the update site, since they
refer only to its Ur/Web variables.

2.2 The High-Level Recipe for Invalidation Analysis
To summarize the informal analysis we just carried out, here is a
procedure to determine what invalidations must be performed with
some update, to the cache of some other query.

1. Apply a general recipe (based on the kind of update) to generate a
formula of quantifier-free first-order logic, containing variables
x for column values before the update, x′ for column values
after the update, yQ for Ur/Web variables at the query, and yU for
Ur/Web variables at the update. In general, there may be many
variables in each category.

2. Apply logical simplification, similarly to how SMT solvers work,
to derive an implied formula in disjunctive normal form (DNF),
where each literal equates some yQ variable with an expression
whose only Ur/Web variables are the yU variables. (In some

cases, these expressions might even be simpler than those in
our example, e.g. constants, or more complex than those in our
example, e.g. combining multiple yU variables.)

3. Interpret each clause of the DNF formula as a cache-invalidation
recipe. Namely, each clause invalidates all cache entries whose
keys match the equalities from that clause. By construction,
when executing the update, we have in scope all variables needed
to compute those keys.

This recipe leaves open many questions.

• What are the general recipes for the first step that work for broad
classes of queries and updates? (See Section 3.)

• Algorithmically, how do we go from the first step to the second,
in reasonable time? (See Section 3.2.)

• How do we represent caches in memory so that the high-level
invalidation logic is efficient to execute? (See Section 4.1.)

• How do we make all this work when several cache-enabled
transactions may run at once while preserving transactional
semantics? (See Section 4.2.)

The following sections go into these questions in detail.

3. SQL Analysis
Throughout the rest of this paper, we use the term query to refer to
an SQL SELECT statement and update to refer to an SQL UPDATE,
INSERT, or DELETE statement.

Both queries and updates may contain injected Ur/Web variables.
As mentioned previously, Ur/Web variables in a query are the keys
of that query’s cache: at runtime, if the result of running the query
with the same variable values is stored in the cache, we can reuse the
result. The central program-analysis problem is the following: given
a query and an update, at which keys does the query’s cache need to
be invalidated? The answer is given in terms of the update’s Ur/Web
variables, reflecting the fact that which entries are invalidated may
depend on those variables’ values.

Our approach to this question is to reduce the problem to finding
solutions to a quantifier-free first-order logic formula, which we do
by applying a well-known database technique. We first describe this
process for a class of simple queries, namely those without UNIONs
or JOINs. After demonstrating the process on some examples,
we conclude the section by addressing generalization to arbitrary
queries.

3.1 Analyzing Simple Queries
We consider the following query Q and update U , which are
assumed to operate on the same table and written in abbreviated
notation, explained below.

Q : SELECT x̃ WHERE F (x)

U : UPDATE SET x := V (x) WHERE G(x).

In the abbreviated notation,

• x is a vector of all SQL fields in the table,
• x̃ is a vector of the fields selected by the query (and is therefore

a subset of x),
• F and G are SQL predicates in terms of x,
• and V is a vector of SQL expressions in terms of x describing

the effect of the update.

There are two subtleties to the notation. First, though an UPDATE
statement need not set every field in a table, we can always rewrite
one such that unchanged fields are explicitly set to their old values,
which we assume is done here in V . Second, each of F , G, and V



may depend not just on fields in x but also on Ur/Web variables yQ
(at the query site) and yU (at the update site), which will be crucial
for the final step of the analysis that extracts the set of invalidations.

A set of invalidations happens when the update executes. For
every row x in the table, the update may change it to a row
x′, which in turn may require invalidating caches that contain
query results based on either x or x′. There are three scenarios
in which invalidation is necessary, outlined initially in Section 2.1:
an unselected (by the query) x can become a selected x′, a selected x
can become an unselected x′, or a selected x can become a selected
x′ with different values for the selected fields. We can write this
condition as a first-order logic formula ϕQ:

ϕQ , (F (x) ∧ ¬F (x′))

∨ (¬F (x) ∧ F (x′))

∨ (F (x) ∧ F (x′) ∧ x̃ 6= x̃′).

(1)

(Notation: x̃′ is to x′ as x̃ is to x.) We can also express the update
effect as a formula ϕU . In order for x to be updated to x′, x must
satisfy the update’s filter, and x′ must be defined as specified by the
update:

ϕU , G(x) ∧ x′=V (x). (2)
The conjunction of formulas (1) and (2),

ϕ(Q,U) , ϕQ ∧ ϕU ,

is satisfied if and only if x is updated to x′ such that the query’s
cache requires invalidation.

There is another perspective we can take on this analysis: the
formula ψ(Q,U) , ∀x, x′ : ¬ϕ(Q,U) is true if and only if U is
an irrelevant update (Blakeley et al. 1989) for Q, meaning that
U ’s action does not change Q’s result. Modulo details in the atoms
of the Boolean expressions, ψ(Q,U) is equivalent to the formula
in Theorem 3.3 of Blakeley et al. (1989); the theorem proves that
ψ(Q,U) is a necessary and sufficient condition for the irrelevance
of U to Q. For our purposes, because it is sound to unnecessarily
invalidate caches, a strengthening of ψ(Q,U) that detected some
but not all irrelevancies would suffice. This means, conversely, that
we may soundly weaken ϕ(Q,U).

The next step is to extract from ϕ(Q,U) a concrete list of key
sets at which to invalidate the query’s cache. We start by rewriting
ϕ(Q,U) in disjunctive normal form (DNF). After dropping clauses
with contradictions, each clause in the DNF formula implies a
(possibly empty) conjunction of equalities, each with an Ur/Web
variable of the query on one side and either a constant or an Ur/Web
variable of the update on the other. (As discussed above, replacing a
clause with an implied conjunction—a weakening—is sound.) The
invalidations occur with the update, so both constants and Ur/Web
variables in the update are known at invalidation time. This means
that, at invalidation time, such a conjunction of equalities gives
concrete values for a subset of the query’s cache’s keys, which is
meant to be interpreted as “invalidate all cache entries matching
these values on this subset of keys.” As we will see in Section 4, our
cache implementation supports a conservative approximation of this
operation in time constant in the number of cache entries.

How do we automate the simplification of formulas to conjunc-
tions with properly shaped literals? First, it is easy to flatten each
initial formula to DNF in the standard way. We then separately sim-
plify each clause, which is a conjunction of literals. Each literal is
an equality or inequality, each side of which is either an Ur/Web
variable (from either the query or update site), SQL field, or constant.
(Any literals that are not equalities or inequalities can be approxi-
mated soundly as>.) We apply a small subset of the technology that
has become standard in SMT solvers, starting with Simplify (Detlefs
et al. 2005). Specifically, we perform a congruence-closure com-
putation, building a data structure summarizing all of the known

equalities between terms in the clause. For every inequality in the
clause, between two terms, we query this data structure to see if we
have learned that the terms are actually equal. In that case, the clause
is contradictory, and we output ⊥ as the simplification. Otherwise,
we need to find equations for the yQ variables, standing for cache
keys. For each such variable that appears in the clause, we query the
congruence-closure data structure, looking for some equated term
that only uses yU variables, which are in scope at the update. The
simplified formula includes one equality for each yQ variable where
we find a matching yU term. The next subsection includes a more
concrete example of this reasoning.

The derivation of ϕ when the update is an INSERT or DELETE is
similar but much simpler. Consider the updates

D : DELETE WHERE H(x)

I : INSERT VALUES x :=W,

where H is a predicate and W is a vector of values. (Because there
is no previous row to refer to, W cannot depend on any fields.) For
the DELETE, invalidation is needed if and only if a row selected by
the query is deleted, so

ϕ(Q,D) , F (x) ∧H(x).

For the INSERT, invalidation is needed if and only if the inserted
row would be selected by the query, so

ϕ(Q, I) , F (x) ∧ x=W.

Like the previous UPDATE case, we extract cache invalidations
using congruence closure. Versions of these formulas also appear in
Blakeley et al. (1989).

3.2 Extracting Invalidations from Analysis by Example
Consider the following queries and updates, where a and b are fields
and bQ, kU, and vU are Ur/Web variables injected into the queries
and updates:

Qa : SELECT a WHERE b = bQ

Qb : SELECT b WHERE b = bQ

Ua : UPDATE SET a := vU WHERE b = kU

Ub : UPDATE SET b := vU WHERE b = kU.

We will investigate how the analysis in the previous subsection
handles each of the four possible query-update pairs.

Starting with the formula for when Ua invalidates Qa, we
compute

ϕ(Qa, Ua) , ((b = bQ ∧ b′ 6= bQ)

∨ (b 6= bQ ∧ b′ = bQ)

∨ (b = bQ ∧ b′ = bQ ∧ a 6= a′))

∧ (b = kU ∧ a′ = vU ∧ b′ = b)

(We have expanded the vector equality involving (a′, b′) into a
conjunction of equalities.) To determine the invalidations, we put the
above formula in disjunctive normal form, obtaining the following
clauses:

• b = bQ ∧ b′ 6= bQ ∧ b = kU ∧ a′ = vU ∧ b′ = b,
• b 6= bQ ∧ b′ = bQ ∧ b = kU ∧ a′ = vU ∧ b′ = b,
• b = bQ ∧ b′ = bQ ∧ a 6= a′ ∧ b = kU ∧ a′ = vU ∧ b′ = b.

The first two clauses are contradictory: the first two terms of each
imply b 6= b′, but the update does not affect b, as reflected in the
b′ = b term of every clause. We should expect as much: these
clauses correspond to the cases where the update changes whether
or not a row is selected, which never happens for Qa and Ua. The
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Figure 2. Congruence-closure data structure for example

third clause implies bQ = kU, meaning we should invalidate the
cache entry with key kU.

To see how we infer bQ = kU as the answer, consider Figure 2,
which shows the congruence-closure data structure built during
this simplification. We use graphs where nodes are labeled with
expressions that appeared as operands of equalities or inequalities in
the original formula. In general, we follow the union-find approach:
we draw a directed edge from a node u to a node v to indicate that
expressions u and v must be equal. Each node u has a representative
node w, which is the end of the maximal path starting at u. Two
nodes have the same representative if and only if they are in the
same equivalence class.

Iterating through the equalities in the clause, for each one we look
up the representatives of its two operands and draw an edge from one
to the other. In Figure 2, we only need paths of length 1. Expressions
bQ, b′, and kU all have length-1 paths to b, the representative of their
equivalence class. Expression vU also has a path to its representative
a′. Altogether, we know that the different variables can between
them contain at most 3 different values, since the graph is partitioned
into 3 connected components.

We also iterate through the inequalities to check for contradic-
tions. The formula includes a clause a 6= a′. We look up the rep-
resentatives of a and a′ by path-following, and we find a and a′,
which are not the same node, so there is no contradiction.

Since the formula is not contradictory, we must produce a
simplified version of it. The only key variable that appears in the
formula is bQ, so we look for a suitable equality with bQ. To do that,
we search bQ’s equivalence class for either a constant or some yU
variable (an Ur/Web variable in scope at the update). The unique
candidate we find here is kU, so we output bQ = kU as the result.

The calculation for other query-update pairs is nearly identical,
the only difference being how each of the clauses is interpreted as a
validation, so we briefly summarize the results.

• Qb and Ua: As with Qa above, Ua does not affect whether Qb

selects a row, so the first two DNF clauses are contradictions. The
last clause contains both b 6= b′, because it checks that the field
selected by Qb changes, and b = b′, because b is not changed
by Ua, meaning it is also a contradiction, so no invalidations are
required for this pair.

• Qa and Ub: Unlike the previous cases, Ub can alter whether Qa

selects a row, so the first two clauses are not contradictions. The
first clause is

b = bQ ∧ b′ 6= bQ ∧ b = kU ∧ a′ = a ∧ b′ = vU,

which implies bQ = b = kU. Similarly, the second clause
(which is the same with the first two terms negated) implies
bQ = b′ = vU. The last clause contains contradictory terms
a 6= a′ and a′ = a, so we must invalidate the entries at keys kU
and vU.

• Qb and Ub: The first two clauses are the same as in the previous
case, and the last clause contains contradictory terms b = bQ,
b′ = bQ, and b 6= b′, so we must invalidate the entries at keys kU
and vU.

3.3 Generalization to Compound Queries
Sqlcache handles queries with three additional constructs: JOIN,
UNION, and nested queries in FROM (but not SELECT or WHERE)
clauses. The problem of “flattening” such a compound query into a
union of simple queries is that of reducing from an SPJRU algebra
(select, project, join, rename, union) to a normal-form SPCU algebra
(select, project, cross product, union). The procedure to do so is
straightforward; we refer the reader to Abiteboul et al. (1995) for
details.

Sqlcache also handles a variety of other SQL features whose
subtleties are orthogonal to the static analysis. For instance, grouping
(GROUP BY) and aggregation (e.g., SUM) are safe to view as queries
without grouping, with some postprocessing that could just as well
happen in the Ur/Web code, whose precise behavior we already
do not model statically. The same is true for sorting query results
(ORDER BY) and choosing to return only certain subsequences of
the results (OFFSET and LIMIT). A finer-grained analysis could in
theory avoid some unnecessary invalidations by understanding those
constructions (e.g., a cache computing a sum may remain valid
when a new row is added with a zero value), but it is sound to
overapproximate them.

The most important feature not yet modeled by Sqlcache is
cascading triggers. We expect we can add clauses to ϕ(Q,U) that
model intertable constraints and their associated cascading effects.

4. Cache Implementation
Each cache C is parameterized by a vector of n keys and needs to
support the following operations. (Unlike previous sections, here
we view a vector-valued key as a vector of keys.) We write tn for
the type of tuples with n components of type t, key for the type of
cache keys, and val for the type of stored values.

• checkC : keyn → option val, which retrieves the value with
the given keys if it exists.

• storeC : keyn × val→ unit, which stores a value at the given
keys.

• invalidateC : (option key)n → unit, which invalidates values
at all keys that match the keys specified in the argument by Some,
without regard for the values of keys corresponding to None.
For example, invalidate (Some k1,None, Some k3) invalidates
values with key vectors in the set {k1} ×K × {k3}, where K
is the set of all possible keys.

We leave out the subscript C when discussing a single cache, and
we disregard the simple special case of n = 0.

The cache also needs to support concurrent operations while
maintaining Ur/Web’s transactional semantics and having an ap-
proximate least-recently-used (LRU) replacement policy. Our im-
plementation supports check and store as described and supports
a conservative approximation of invalidate, meaning that it may
invalidate more values than necessary.

The implementation is written in C, which is the last intermediate
language of the Ur/Web compiler (Chlipala 2015a).

4.1 Basic Implementation
Each cache is logically arranged as a prefix tree. However, to allow
random access and garbage collection of individual nodes of the tree,
we store the prefix-tree nodes in a hash table with entries connected
in a doubly linked list. There are no direct pointers between nodes.

A single cache item is associated with a leaf of the prefix tree.
The index of a leaf in the hash table is the concatenation of its keys,
and the leaf holds both a cached value and a storage timestamp,
which records when the cached value was inserted. (We intersperse
a special separating character between concatenated keys.) Interme-
diate nodes, hereafter called simply “nodes,” correspond to possible



fun fromYearAndTitle year title =
firstAuthor <- oneRowE1 (SELECT (paper.FirstAuthor)

FROM paper
WHERE paper.Title = {[title]}

AND paper.Year = {[year]});
return <xml><body>

The first author is {[firstAuthor]}.
</body></xml>

Figure 3. Another function that gets a more interesting cache

prefixes of the vector of cache keys. The index of a node in the
hash table is the concatenation of this prefix of keys, and the node
holds an invalidation timestamp. The cached value at a leaf is valid
if the leaf’s storage timestamp is greater than all of its ancestors’
invalidation timestamps. Both timestamps are implemented using
atomically updated global counters instead of actual clock times.

This scheme helps implement both lookups and invalidations
efficiently. An invalidation needs only one hash-table lookup to mark
all affected children as invalid, so it happens in constant time. A
check must look up a leaf and all of its ancestor nodes to see whether
the data at the leaf is valid. This requires a number of hash-table
lookups linear in the number of cache keys. Crucially, the time is
constant in the number of cache entries, which can grow large at
runtime. In contrast, the number of cache keys is set at compile time
and small in practice. We will soon see that stores require the same
number of lookups as checks.

The prefix-tree arrangement works well for invalidations as long
as a prefix of the cache keys is known, but when other subsets of
keys are known, we have to make a tradeoff. We prioritize efficiency
over granularity and interpret invalidations as if all keys after the
known prefix are unknown, which invalidates more cache entries
than necessary. Our compiler pass uses (quite simple, for now)
heuristics to infer a key ordering that reduces the frequency of
invalidations that invalidate more keys than necessary.

Disregarding concurrency and LRU replacement, the operations
follow straightforwardly from this structure. Recall that there are no
pointers between leaves or nodes in the prefix tree, with all accesses
done by lookups in the hash table.

• check ks looks up each of the n indices formed by concatenating
the initial segments of ks. It returns Some v if the nth index
has a node with value v and storage timestamp later than all
invalidation timestamps encountered among nodes, and it returns
None otherwise.

• store ks v stores v in a leaf at the index formed by concatenating
ks, and it records the current time as the leaf’s storage timestamp.
If a value exists at that leaf already, it is freed.

• invalidate oks looks up the index formed by concatenating the
keys of the longest all-Some initial segment of oks, creates a
node at the index if one does not already exist, and records the
current time as the node’s invalidation timestamp. If all the keys
match Some k, we delete from the table and free the leaf rather
than set its timestamp.

Supporting LRU replacement requires small additions to check
and store. Both operations “bump” all leaves and nodes found to
the head of the doubly linked list of hash-table entries and delete
the tail of the list if the hash table exceeds its size threshold. The
only complication is that nodes holding invalidation timestamps
relevant to a leaf may be removed before the leaf in some corner
cases. Therefore, store creates any missing nodes and gives them
invalidation timestamp−∞, and check conservatively returns None
if any node it needs an invalidation timestamp from is missing.

To make those details concrete, consider the additional function
from Figure 3, which we could add to the original example of

Figure 1. We use another standard-library function oneRowE1 to run
a query meant to return a single row (hence the “1”) containing a
single computed expression (hence the “E”). This function’s query
has two free Ur/Web variables, year and title, which we use
to look up a paper uniquely. Our program analysis assigns it a
cache with those two Ur/Web variables as keys. In the associated in-
memory hash table, we look up string keys computed by serializing
the underlying keys and concatenating them with a separator. For
instance, the paper with year 1930 and title “Lambda Calculus”
would be mapped to a hash-table key like “1930/Lambda Calculus.”

The cache is structured as a tree, using one shared hash table for
efficient lookup of children from internal nodes. After several store
operations, we might wind up with this tree.

(−∞)

1930 (−∞) 2017 (−∞)

1930/A (1) 1930/B (2) 2017/C (3)

The three keys at the leaves of the tree were inserted respectively
at times 1, 2, and 3, and those nodes are tagged with their storage
timestamps. Each leaf has attached to it the cached value of running
fromYearAndTitle on its key. Interior nodes (including the root)
are tagged with invalidation timestamps, which here are all −∞
because no invalidate calls have happened yet.

From this state, every concrete check operation will traverse
the tree from root to leaf, following the edge for each successive
prefix of the key sequence. If the process ends at an extant leaf, we
return the associated result. Otherwise, we return None. We see that
lookups are constant-time in the number of cache entries.

Now imagine an update runs, where our analysis said that it must
invalidate all cache entries associated with 1930 and “B.” The result
is simply to delete the associated leaf of the tree.

Alternatively, a more interesting invalidation would apply only
to the year 1930, as might changeYear from Figure 1. Imagine that
we run this invalidate operation at time 4, followed by store for a
new 1930 paper called “D” at time 5.

(−∞)

1930 (4) 2017 (−∞)

1930/D (5) 1930/A (1) 1930/B (2) 2017/C (3)

Now any check for one of the original 1930 papers will fail, because,
on its path to a leaf with some storage timestamp, it encounters node
1930, with a higher invalidation timestamp. However, a check on
new paper D will succeed, because its storage timestamp is greater
than all of its ancestors’ invalidation timestamps. Note again that
invalidate runs in constant time, while setting the stage for the
constant-time (in the size of the cache) behavior of check.

Some query-update pairs may be analyzed coarsely enough that
their invalidation formulas are just >, in which case, when running
that update, we replace the invalidation timestamp of the root with
the current time, implicitly invalidating the whole tree. In scenarios
at these different levels of coarseness, the tree can end up with
entries that will not be used again. No dedicated garbage collection
is necessary; such entries naturally rotate out through the LRU policy
as new entries are stored.

4.2 Concurrency
Request handlers in an Ur/Web application are atomic transactions
with respect to its database. That is, given a handler involving several



database queries and updates, it appears as if its queries and updates
occur in sequence without in-between updates from concurrently ex-
ecuting handlers. This means there are two concurrency challenges
our caches must address: preserving transactional semantics and, as
usual, preventing data races. We address these concerns separately
with two readers-writer locks per cache: a transaction lock ensures
transactional semantics, and a data lock prevents data races. We take
advantage of the transactional semantics and storage timestamps to
reduce contention on the data lock.

Transaction locks are held by request handlers for the entire
duration of their execution. A handler takes the transaction lock
with write permissions for every cache it may invalidate and the
transaction lock with read permissions for every other cache it may
check and store to. This is determined by a syntactic static analysis
that checks each handler (and, transitively, functions it may call) for
instances of checkC , storeC , and invalidateC . All such transaction
locks are released when the transaction terminates, whether or not
it successfully commits. (If the transaction is restarted, it will take
the locks again.) Because invalidations need write permissions, only
one transaction that may invalidate any particular cache executes
at a time. It is clearly sound for checks to execute concurrently
with each other, but, less obviously, it is also sound for stores to
execute concurrently with checks. This is because any concurrently
executing stores are storing values that are a pure function of the
keys and the database state, so in the absence of relevant database
modifications, concurrent stores with identical keys will be storing
the same value. Asking whether a handler changes the database
state in a way that might affect cache C is a question we have
already answered with the analysis in Section 3: those that do
make C-relevant changes must call invalidateC . Thanks to the
transaction lock, no such handlers execute concurrently with stores
and invalidations to C.

It is not safe for store to modify the cache immediately, because
any Ur/Web transaction must be prepared to abort and restart, say
because the database reports a deadlock. Instead, store maintains
a queue of insertions to perform if the transaction terminates
successfully. The insertions happen before the transaction locks
are released.

It remains only to prevent data races. This is done by simply
having each of the cache operations take read or write permissions
on the cache’s data lock whenever they read or write, respectively,
the hash table. Unlike transaction locks, no thread holds more than
one data lock at once. There are two subtleties. First, LRU “bumps”
require write permissions, so to avoid excessive read serialization,
check does the LRU “bump” with low but nonzero probability.
Second, to reduce contention on the data lock, check releases it
before returning its result. However, because store frees any value it
overwrites in the cache, this enables the following three-thread race
condition:

1. Thread 1 calls check ks, which returns None, so it begins
computing the value to store in the cache;

2. Thread 2 calls check ks, which also returns None, so it also
begins computing the value to store in the cache;

3. Thread 1 computes v and calls store ks v;

4. Thread 2 computes w and calls store ks w;

5. Thread 1 commits, putting v in the cache;

6. Thread 3 calls check, which returns Some v;

7. Thread 2 commits, putting w in the cache and freeing v;

8. Thread 3 tries to access v and segfaults.

Fortunately, v and w are computed by the same pure function of
ks and the database state, so they are equivalent. We therefore use

timestamps to prevent the insertion and freeing in step 7. Specifically,
when we push v and w onto store queues in steps 3 and 4, we mark
the insertions with timestamps. When v is inserted into the cache in
step 6, its storage timestamp is recorded. In step 7, we observe that
the insertion timestamp for w is earlier than the storage time for v,
which means they are equivalent and the insertion is unnecessary.

4.3 Runtime Monitoring
It is common for request handlers to perform both queries and
updates involving the same tables, which often results in caches that
are always invalidated immediately before or after they are checked,
making it impossible to get a cache hit. In such cases, Sqlcache
causes a performance regression, somewhat because of data-copying
overhead but mostly due to contention on the transaction locks
described in the previous section. It is in theory possible to determine
such cases statically, but it is simpler to catch badly performing
caches at runtime, deactivating those with hit-to-invalidation ratios
that are too low.

Using runtime information has the added benefit of deactivating
caches that perform badly due to reasons that would be impossible
to determine statically. For example, an admin page for a busy
interactive website might be accessed infrequently enough relative
to user actions that, in practice, all of its caches get invalidated
between page loads. A purely compile-time solution would require
either past runtime statistics or manual annotations on queries to
reach the same domain-specific conclusion.

In more detail, the runtime monitoring works as follows. Each
cache maintains a hit-to-invalidation ratio using exponential smooth-
ing on the series of hits (value 1) and invalidations (value 0). When
the smoothed value crosses below a threshold, the cache deactivates:
checks automatically miss, stores and invalidations become no-ops,
and, most importantly, the transaction locks for the cache do not
need to be taken out. Cache deactivation always occurs during an
invalidation, which means the deactivating thread holds that cache’s
transaction lock, so there are never concurrently executing requests
relying on data from the cache being deactivated.

In the event that a cache has a temporary unsuccessful spell but
is in general useful, the runtime monitoring provides a glimmer of
hope for cache reactivation. A small fraction (< 0.1%) of checks,
stores, and invalidations are simulated to keep track of a hit ratio
estimate. If the ratio becomes high enough, the cache is reactivated.
To preserve transactional semantics without requiring a lock for
checking cache deactivation, checks and stores treat the cache as
deactivated for a few wall-clock seconds following reactivation.
This potential compromise of transactional semantics, which can be
made arbitrarily improbable by tuning the time delay, is well worth
it for the performance of transaction-lock-free operation while the
cache is deactivated.

5. Program Instrumentation
Rather than caching query results directly, Sqlcache infers which
query-dependent computations are possible to cache and inserts
unified caching code around their expressions. This step often
identifies large computations, such as entire pages, as cacheable,
which can be a great boon for performance.

When caching an expression E with cache C, where ks are the
values of the cache keys, Sqlcache replaces E with

case checkC ks of

Some v ⇒ v

| None ⇒ let val v = E in storeC (ks, v); v end

Although the Ur/Web source language is purely functional, the
intermediate representation used during Sqlcache is an effectful
functional language. If we read the result of evaluating an expression



from a cache, we must also reproduce any effects the expression
may have had. That is, we have to cache both values and effects.
Currently, we support caching Ur/Web’s primary effect: writing
response text. This applies to both HTML pages and other responses,
such as those used for remote procedure calls (Ur/Web’s interface
to AJAX). To capture output, checkC sets a pointer to the tail of
the current output, and storeC finds the output to be cached by
copying the string from that pointer to the new output tail. We do
not currently support caching effects other than writing output; our
analysis conservatively refuses to cache computations that might
have other effects, which notably include SQL updates.

As a baseline, Sqlcache attempts to cache every SQL query in
an Ur/Web program aside from those that use certain advanced SQL
features that are not yet supported. Ur/Web’s primitive for queries
is to loop over their result rows, maintaining an accumulator and
possibly causing other side effects. When the effects go beyond
writing to the page, we refrain from inserting a cache. Those with
no effects other than writing output, however, are guaranteed to
be cached in the instrumented program. In an effort to reduce the
number of cache lookups that need to occur when handling a request,
Sqlcache consolidates multiple caches into one when possible. For
instance, two caches for two queries parameterized by the same
Ur/Web variable have the same key, so we can store both results in
the same cache.

Sqlcache performs this cache consolidation by analyzing nodes
of the intermediate language’s AST for effectfulness and caching
the maximal subexpressions such that

1. there are no effects other than SQL queries and writing output;

2. at least one query is in the subexpression;

3. Sqlcache can “easily compute” from the free Ur/Web variables
in the subexpression all Ur/Web variables that appear in query
strings, some of which may be bound by inner let expressions;

4. and all free Ur/Web variables in the subexpression appear in the
query subexpression, either directly or through an intermediate
bound variable.

We distinguish between two similar but different notions. The query
string is an expression of type string that represents the actual query
to be sent to the database. The query subexpression includes both
the query string and an iterator that is applied to each row of the
result, accumulating a value and emitting response output along the
way. Variables in the subexpression are, in some sense, the “most
entangled” with the query results; the current implementation has
no way to cache queries without including such variables as cache
keys.

In the current implementation, “easy computation” includes
record projection and Ur/Web’s several SQL-injection functions.
It is in principle possible to support any injective function, but these
two are the most common in Web applications that provide relatively
shallow interfaces atop databases. The last condition is a heuristic
that reduces the key space of caches from what they might otherwise
be, which results in fewer cache misses after an invalidation. This is
because no invalidation formula will specify anything about keys
that do not appear in any query, so the corresponding invalidation
component will always be None, likely invalidating many entries.
One can imagine tweaking these conditions to get a variety of cache-
consolidation heuristics, which may be a direction for future research
in a context more general than Sqlcache’s.

Once this cache consolidation is complete, instrumentation
of update sites is straightforward: we simply execute any cache
invalidations needed for that update immediately after the update.
(Transactional semantics preclude the race condition of a cache hit
between an update and its associated invalidations.) The invalidation
analysis works on a single query-update pair, but cache consolidation

can cause a cache to depend on multiple queries. In these cases,
we turn invalidations of the hypothetical single-query cache into
invalidations of the multiple-query cache by adding None as the
argument for any keys not present in the analysis for the single
query.

6. Performance-Benchmark Results
To evaluate the effectiveness of Sqlcache, we measured its impact
on several applications. All experiments were run an Intel Xeon
E5620 workstation, with a 2.4 GHz processor providing 8 hardware
threads. The machine had 12 GB of RAM, which did not come near
to being the bottleneck here. We use version 9.3.1 of the PostgreSQL
database server and C client libraries.

6.1 Dyncache: a Dynamic Sqlcache Alternative
To provide a fair comparison with other caching techniques, we
also measure an Ur/Web strategy called Dyncache. Dyncache is
a straightforward cache mapping query text to the list of rows
returned directly by the database engine as the query result. Each
update invalidates cache entries of queries that reference the table
it modifies. Dyncache prioritizes speed of the cache operations
over maintaining transactional semantics, with minimal locking to
maintain concurrent memory safety. The most important differences
between Dyncache and Sqlcache are lack of fine-grained invalidation
and lack of caching for values computed from the raw database
results, both features that depend on Sqlcache’s compile-time
analysis.

Dyncache works using two global hash tables: Stores and
Flushes. Each entry in Stores has a storage timestamp, and each en-
try in Flushes has an invalidation timestamp. Each time a cacheable
query runs, Dyncache puts its results in the Stores table, keyed by
the query text, and sets its entry’s storage timestamp to the current
time. Each time an update runs, its table name is looked up in
Flushes and given the current time as an invalidation timestamp.
To check if a query has a cached value, we look up the query text
in Stores and look up each of the tables the query references in
Flushes; the check is a hit if the retrieved storage timestamp is more
recent than all retrieved invalidation timestamps.

There are two details elided in the previous paragraph. First, we
avoid doing many hash-table lookups when checking the cache by
doing lookups in Flushes only once per new entry in Stores, keeping
pointers to the relevant Flushes entries. Second, to maintain memory
safety without using locks, we delay freeing the memory of replaced
query results for a few seconds to give in-flight requests a chance to
finish using them. This requires a simple garbage-collection system.
As we will show, Dyncache’s performance is generally robust to the
rate of cache invalidations encountered in our benchmarks, and no
garbage collection is required in the read-only benchmarks, so we
will not elaborate further on this detail.

Despite its suggestive name, Dyncache is not completely dy-
namic. It uses compile-time analysis to determine which queries
are cacheable (namely, which queries do not contain RANDOM or
CURRENT TIMESTAMP), which tables are read by each cacheable
query, and which tables are modified by each update. This gives
Dyncache a mild edge over completely dynamic proxies that must
parse and analyze query syntax at runtime, so using it to stand in for
more dynamic methods is a conservative choice.

6.2 TechEmpower Web Framework Benchmarks
We started by measuring the effect of Sqlcache on the Ur/Web im-
plementation of the TechEmpower Web Framework Benchmarks5,
which had previously been used to evaluate the effectiveness of

5 https://www.techempower.com/benchmarks/

https://www.techempower.com/benchmarks/
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Figure 4. Effect of Sqlcache on TechEmpower benchmarks

Ur/Web’s baseline compiler (Chlipala 2015a). These benchmarks
are attractive as a way of grounding our baseline in comparison to
other frameworks. For instance, in the most recent official bench-
marks run, Round 12, on a high-capacity server with 40 hardware
threads, Ur/Web dominates the results for the default test called
Fortunes, achieving almost 300,000 requests per second, with the
second-place finisher achieving only a little more than half as much
throughput. 145 different Web-framework configurations are repre-
sented, including all of the most popular real-world options. As a
result, in experimenting with optimizing this baseline implementa-
tion, we need not worry about seeing improvements only because
the original implementation had missed some standard optimization
trick.

Each benchmarking run uses the wrk program6, opening 12
connections to the server and saturating them for 10 seconds, where
the server has also spawned 12 worker threads. We also do a
2-second warm-up run for each test, before starting to measure
timing. This is roughly the official benchmark methodology, but
with fewer threads. Our experiments also only run SQL servers on
the same physical machines as the Web servers; Sqlcache would
bring additional benefits if the two were physically separated.

Figure 4 shows the results for the four TechEmpower test cases
that use the database. They are:

• Fortunes, which runs a parameter-free query and renders the
results as an HTML table. Throughput increases to over 5X the
original for Sqlcache and almost 4X for Dyncache. (Note that the
baseline is lower here than in the official TechEmpower results
because we benchmark with a lower-capacity machine.)

• Single query, where each Web request looks up a random
database row by key and returns the result as JSON. Sqlcache
and Dyncache score similarly, increasing throughput by almost
4X. It makes sense that Sqlcache’s gain would be lower here
than in the last case, because different requests access different
cache keys at random.

• Multiple queries, which makes 20 different random lookups in
the same table, again returning the full set of results as JSON.
Throughput increases to more than 8X for Sqlcache and 6X for
Dyncache.

• Data updates, the only test with database write operations,
and one where Ur/Web’s original performance was poor, since,
unlike almost all other frameworks compared in the benchmarks,
Ur/Web enforces transactional semantics and incurs significant
synchronization overhead. Either caching strategy performs
poorly in this case where caches are constantly being invalidated,
but runtime monitoring deactivates the caches and leaves both
Sqlcache and Dyncache performing about as well as the baseline.

6 https://github.com/wg/wrk
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Figure 5. Concurrency scaling for Dinners

6.3 Macrobenchmarks
We also evaluated Sqlcache’s effectiveness on two production ap-
plications built with the Ur/Web People Organizer7 library. Appli-
cations in that library wind up with surprisingly write-heavy page-
handler code, because of the machinery for live updating of data in
browsers as the server receives changes. The server needs to store
information on which clients are waiting for which sorts of updates,
which means that every time a new page is loaded, several SQL
INSERT commands run to record the new session’s subscriptions
to data. Moreover, the Ur/Web runtime system spends significant
time garbage-collecting sessions that have timed out, which adds
up to significant overhead with hundreds of requests per second or
more, each starting a new session. For that reason, we disabled the
live-updating machinery for these experiments. We also removed
use of cookies for authentication, instead hard-coding a username
for each experiment, because our analysis does not yet track cookies
as an external program input.

In the performance experiments that follow, for each set of server
parameters, we average throughput over a 10-second trial, using
as many client threads as server threads, after a 2-second warm-up
period in the same mode.

The first application we looked at, Dinners, helps groups of
people coordinate to vote on times and places to go to dinner.
Users can add and remove restaurants and times, vote on their
favorites, and maintain the list of past dinners, with comments
annotated on them. We modified this application to be something of
a best case for Sqlcache, by removing a few places where the code
accesses the current time, which tends to thwart caching. The result
retains complex and varied functionality while still offering many
opportunities for sound caching. We benchmarked the performance
of the main page of this application, which is the only page that
most users see directly, containing different tabs for all of the above
activities. None of the caches here depend on any particular keys.

We have preserved the code we benchmarked in the main
UPO repository, branch sqlcache–experiments, in the example
program in examples/jfac.urp.

We measured how performance of each server scales with num-
ber of server threads, in each experiment running N benchmarking
threads against a server with N worker threads. Figure 5 shows
the results, which confirm that this is indeed a very compelling
use case for Sqlcache, as it consistently increases throughout by
about 30X over the baseline. Dyncache also improves performance
significantly, but its 2X improvement is much less than Sqlcache’s.

We also experimented with another, more complex application,
Course Management, which is used in production to manage a
university course. It supports distributing assignments and collecting
student solutions, collecting grades for assignments, summarizing

7 https://github.com/achlipala/upo

https://github.com/wg/wrk
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Figure 6. Concurrency scaling for Course Management

grades for students, announcing news items, maintaining a calendar,
taking a poll on preferences for office-hours times, and, most
importantly for us, one global message forum and one dedicated
forum per lecture, assignment, etc. Sqlcache infers that it should
create a cache keyed on the lecture number, to record current forum
contents. This cache coexists with many others, as well as several
queries that are not cached, for instance because they use SQL
subquery expressions, which Sqlcache does not yet model in detail.
Another important source of uncacheability is fundamental: some
queries use the current time, for instance to look up which lecture
happened most recently and dedicate a tab to it, including a listing
of the associated forum. However, all is not lost in those parts of the
code, which is structured as queries to look up most-recent entities
using the current time, followed by further lookups directly on the
entity names. The second category is very well-suited to caching by
entity name.

This application displays a few main pages, including those
for students and instructors. We found that our analysis gets over-
whelmed when run against the full application; it seems clear that a
future extension of the system should use dynamic profiling data to
limit which queries are cached, unless authors of large applications
do not mind running the optimization for an hour. We decided to
limit our experiment to the student page only, which still leaves us
with about 150 distinct SQL queries in the application, and which
takes a few seconds to compile with Sqlcache activated.

We preserved the reduced version of the application in branch
sqlcache–experiments of its main repository8.

Figure 6 shows the results of a concurrency-scaling experiment
for the Course Management app. Dyncache never manages to
diverge very far from the baseline. Sqlcache starts out with only
a slight throughput advantage over the baseline, but its advantage
grows to about 2X as we increase concurrency. Examining the
database-server logs, we confirmed that, in the cache-enabled
version, only two sorts of queries are executed in steady state: those
that use SQL features not yet modeled in detail by Sqlcache, and
those that depend on the current time and thus cannot be cached.

Those last results consider a read-only workload. We only expect
caching to pay off for read-dominated workloads, but some writes
should be expected in a real deployment. Figure 7 shows how
performance degrades as we increase the number of write operations
in parallel from 0 per second up to 100 per second, for a 4-thread
server. Each operation picks a random lecture and posts a message in
its forum. Since the front page only depends on the forum contents
for the most recent lecture, so long as write requests only post to
other lectures, the Sqlcache application is able to reuse all its caches.
The baseline and Dyncache are nearly unfazed by this level of write
activity, while Sqlcache gradually degrades down to about 90% of its
peak performance, maintaining its solid lead over the other variants.

8 https://github.com/achlipala/frapapp
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Higher write ratios could significantly hurt the performance of all
variants, but only very popular Web applications receive more than
100 write requests per second in practice.

We were also pleasantly surprised to find another place that
Sqlcache brings a big win for this application. Many different
modules of the application call a common access-control library,
to determine if the user is authorized to perform particular actions.
In the baseline application, the student page runs about 20 SQL
queries to answer questions about access control. These queries
are all redundant with each other, following from one access level
that could be read from the database once, but there are software-
engineering advantages to not forcing the application code to
maintain its own explicit cache of the result. Indeed, Sqlcache
correctly adds caches for each of the forms of queries, so that no
access-control queries run in steady state.

7. Related Work
Our optimization caches the output of database-backed Web ap-
plications. There is a conceptual connection to the classic idea of
materialized views in databases (Larson and Yang 1985), where ex-
tra logical tables are maintained as caches of the results of particular
queries over primary tables. Much past work has studied how to use
materialized views to answer queries efficiently (Goldstein and Lar-
son 2001) and how to update materialized views as the underlying
tables are modified (Blakeley et al. 1986). Here views are generally
used to cache the direct results of SQL queries, rather than full ap-
plication outputs that combine query results with computation in a
Turing-complete language. An advantage of the classic materialized-
views approach is that sophisticated analysis finds ways to use a
single set of views to answer many different queries efficiently. On
the other hand, each of our caches can be more efficient for its spe-
cific purpose, as it saves all results needed to respond to part of a
client request. We also generate the caching structure automatically
from unannotated application code, rather than requiring careful
crafting of an explicit database schema with views.

Past work has considered how to do mostly automatic caching
of database-dependent application results. One established database-
level technique is semantic caching (Dar et al. 1996), which replaces
client-side caching schemes that work just at the level of, e.g.,
numbered pages in the on-disk database (much as an OS file-system
cache generally works). Instead, semantic caching associates each
saved set of rows with a semantic condition, based on which sorts
of filtering conditions appear in queries. MtCache (Guo et al. 2004)
uses runtime analysis of queries to decide whether a local replica of
portions of a database can answer a query. Application servers must
run their own database-server replicas to employ either scheme.

The TxCache (Ports et al. 2010) system is much closer to our
goals and techniques in this work. Through modification of an
off-the-shelf relational database server, they support caching of ap-

https://github.com/achlipala/frapapp


plication outputs while preserving a transactional semantics for
database accesses. While TxCache depends on the presence of
trusted semantic program annotations to drive caching, our opti-
mization guarantees soundness despite analyzing and transforming
programs automatically. We also maintain compatibility with widely
used, unmodified database servers. However, the more dynamic
approach of TxCache may detect optimization opportunities that
our program analysis is not sophisticated enough to notice; and,
in making caching choices, they may take advantage of runtime
information like statistical properties of current table contents.

CachePortal (Li et al. 2001), another dynamic caching system,
can be fully automatic but has design goals very different from Sql-
cache’s. Like Sqlcache, CachePortal caches dynamic page output,
saving time not just on database queries but also on page generation.
A CachePortal cache is automatically invalidated when relevant
updates occur, with analysis occurring at runtime, and extensive run-
time monitoring drives decisions about which pages to cache. All
of CachePortal’s components live entirely outside the application
and database servers, inferring information at runtime by examin-
ing server logs and occasionally sending queries of their own to
the database. While this separation fulfills CachePortal’s goal of
compatibility with off-the-shelf software, it means a lot of work
in CachePortal goes into reconstructing information that is easily
available at compile time, such as which queries execute to respond
to a given URL. Relative to CachePortal, one might view Sqlcache
as a demonstration of how much simpler automatic invalidation can
be when compile-time analysis is an option!

Sync Kit (Benson et al. 2010) is a Web application toolkit
employing client-side caching to reduce server load. It dodges the
issue of supporting full semantic caching by restricting supported
queries to a few efficiently cacheable patterns, such as key-value
lookups, and automatically maintaining fresh client-side caches
for those queries. Sqlcache places no such restriction on queries.
Sqlcache’s SQL analysis is already well-suited to fine-grained
invalidation of key-value-like queries; intelligent invalidation of
other common patterns, such as ordered lists with filters (Sync Kit’s
other wheelhouse), is a possible direction for future work.

Our optimization moves computation work from the database
server to the application server via caching. A complementary
approach moves work from application to database through the
stored procedures support offered by most database engines. Here
the motivation is to avoid the cost of extra round trips between
application and database, by pushing into the database the logic
that glues together several dependent queries. Pyxis (Cheung et al.
2012) automatically moves application code into stored procedures,
combining static and dynamic analysis in an attempt to minimize
round trips. Automatic compiler-based partitioning has also been
used to support security policies in applications. For instance,
Swift (Chong et al. 2007) guarantees that information-flow policies
are respected in an automatic partitioning, and SELinks (Corcoran
et al. 2009) generates stored procedures that help enforce policies
associated with a broad range of custom executable checkers.

Another approach to optimizing database-backed applications is
to schedule work more efficiently, cutting down on dead time while
the application is waiting for the database server to respond to a
query. Query prefetching (Ramachandra and Sudarshan 2012) relies
on program analysis and transformation to take a program written in
a natural style and replace it with one that executes several queries
at once, reducing the number of database round trips. The Sloth
system (Cheung et al. 2014) adopts a more dynamic approach. It
treats query statements lazily in the sense of functional languages
like Haskell, only executing queries when their results are needed
to generate output. Several suspended queries may then be sent to
the server simultaneously, realizing benefits similar to prefetching
without requiring sophisticated static analysis.

Query synthesis (Cheung et al. 2013) is a further compiler-
based approach to automatic, sound optimization of database-backed
application code. Popular high-level database libraries in languages
like Java encourage coding in an idiomatic object-oriented style,
as if the database were a collection of heap-allocated objects.
The library mediates between this perspective and standard SQL,
sending queries and updates to the server as needed. It is easy
for programmers, especially unsophisticated ones, to write rather
inefficient code in this style, leading to surprisingly many database
round trips or surprisingly inefficient filtering code within the
application. Query synthesis analyzes code patterns and deduces
opportunities to replace pieces of Java code with equivalent SQL
syntax, which is then executed more efficiently at the database, using
index structures and the usual optimizations.

Compared to our work, one distinguishing feature of the last
few techniques is that, while they reduce the number of database
round trips, they always contact the database when running any
application code containing database operations. Database servers
are often physically distinct from application servers, so even a
single round trip may impose a significant latency cost. Our compiler
optimization avoids contacting the database server altogether for
a wide variety of read-only transactions and imposes reasonable
overhead in workloads with moderate shares of write operations.

Recent work has used the Scala Lightweight Modular Stag-
ing system to generate efficient in-memory database servers au-
tomatically from high-level code, using compile-time metaprogram-
ming (Klonatos et al. 2014; Rompf and Amin 2015). Our work
is complementary to theirs, which provides compilation of query
and update operations in a novel way. We expect that our caching
optimization would be fruitful to apply in their setting, where, as in
Ur/Web, we have the advantage of a high-level, non-string-based
representation of query code amenable to automated analysis.

The database-caching problem is closely related to the classic
programming-languages area of incremental computation (Rama-
lingam and Reps 1993), which finds opportunities to reuse com-
putational work across different executions of an algorithm. For
instance, the Ditto system (Shankar and Bodı́k 2007) improves the
efficiency of Java data-structure invariant checks through sound
and automatic caching of method-call results across invocations.
Self-adjusting computation (Acar et al. 2008; Hammer et al. 2009)
is another approach that saves computation histories at runtime, as
suitably annotated dependency trees, and looks for opportunities
to reuse subtrees in new computations. These systems work with
traditional functional and object-oriented programs, whose structure
is relatively challenging for static analysis. By instead analyzing
high-level SQL operations, we are able to generate more specialized,
efficient caching that avoids the broad runtime instrumentation of
general-purpose incremental-computation systems.

We implemented our optimization for the Ur/Web language (Chli-
pala 2015b), where a key feature is integrated parsing and static type
checking of SQL syntax, so that we do not need to do string or ref-
erence analysis to recover the database operations within a program.
Ur/Web’s whole-program compiler (Chlipala 2015a) already applied
some SQL-specific optimizations, but it previously maintained the
one-to-one mapping between SQL calls in source code and runtime
round trips with the database server. The high-level treatment of SQL
code had previously been exploited to statically check declarative
access-control and information-flow policies (Chlipala 2010).

8. Conclusion
Database access is a great example of the classic tradeoff between
performance and programmer effort. By writing code that queries
the database directly, programmers avoid cluttering that code with
explicit caching of results. However, caching can bring dramatic
performance benefits. The most difficult aspect of its implementation



is invalidation, where cache entries need to be removed as data
updates modify their dependencies. We presented Sqlcache, the
first static analysis and transformation that automatically modifies
applications to use sound caching.

Our analysis applies to the Ur/Web programming language, in
which the structure of SQL queries is exposed quite explicitly,
thanks to explicit parsing and type checking of SQL code by the
Ur/Web compiler. Each eligible SQL query is assigned a cache
keyed off of the free Ur/Web variables that appear in the query.
We compare each pair of an SQL query and an SQL update
in a whole program, reducing the question “which keys in the
query’s caches are invalidated by this update?” to a problem of
simplifying a formula of first-order logic. The simplified formula
has a computational reading as a set of cache-invalidation operations.
Each cache operation is performed in constant time against a simple
in-memory data structure, and a further stage of our transformation
adds automatic locking, to preserve ACID transaction semantics for
multithreaded workloads.

We plan several future-work directions to improve Sqlcache’s
effectiveness. First, we would like to extend our modeling of SQL
features to include subquery expressions, data constraints that
trigger cascading effects when changes happen, and other syntactic
constructs that are currently approximated very conservatively.
Second, we would like to investigate other cache-concurrency-
control strategies beyond the lock-based one described in Section 4.2.
We might consider using optimistic concurrency control, logging
cache-relevant operations without locking, being prepared to roll
back a transaction if we find inconsistencies at the transaction
commit point. It would likely also help to use more in-depth dynamic
profiling data to control which queries are worth caching, and,
as for improving compile-time performance, it could be fruitful
to investigate better data structures for quickly winnowing down
the full set of query-update pairs to those that might conflict. We
would also like to extend our analysis to facilitate other kinds of
optimization on SQL-based code, for instance to infer opportunities
for transaction chopping (Shasha et al. 1995), which soundly breaks
one transaction into several that can execute in parallel.

Another natural direction for future work is applying the tech-
niques used in Sqlcache to other programming languages and system
architectures. It is likely that with a sufficiently disciplined database
interface, compile-time SQL analysis can be made simple in a wide
array of languages. Relaxing Sqlcache’s single-server restriction
would involve implementing a more sophisticated distributed sys-
tem. One approach might be to use a distributed cache instead of an
in-memory hash table to store the nodes of our cache data structure.
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