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Abstract

We study the problem of optimal auction design in a valuation model, explicitly motivated by online
ad auctions, in which there is two-way informational asymmetry, in the sense that private information
is available to both the seller (the item type) and the bidders (their type), and the value of each bidder
for the item depends both on his own and the item’s type. Importantly, we allow arbitrary auction
formats involving, potentially, several rounds of signaling from the seller and decisions by the bidders,
and seek to find the optimum co-design of signaling and auction (we call this optimum the “optimum
augmented auction”). We characterize exactly the optimum augmented auction for our valuation model
by establishing its equivalence with a multi-item Bayesian auction with additive bidders. Surprisingly, in
the optimum augmented auction there is no signaling whatsoever, and in fact the seller need not access
the available information about the item type until after the bidder chooses his bid. Suboptimal solutions
to this problem, which have appeared in the recent literature, are shown to correspond to well-studied
ways to approximate multi-item auctions by simpler formats, such as grand-bundling (this corresponds
to Myerson’s auction without any information revelation), selling items separately (this corresponds to
Myerson’s auction preceded by full information revelation as in [FJM+12]), and fractional partitioning
(this corresponds to Myerson’s auction preceded by optimal signaling). Consequently, all these solutions
are separated by large approximation gaps from the optimum revenue.

This work was supported by ONR grant N00014-12-1-0999, NSF Awards CCF-0953960 (CAREER), CCF-1551875
and CCF-1408635, and a Simons Award for Graduate Students in Theoretical Computer Science.
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1 Introduction

Ad auctions — the allocation, through competitive bidding, of the attention of worldwide web users to ad-
vertisers in the context of keywords by search engines, or in web documents by publishers — are paramount.
They are the lifeblood of the Information Economy, one of the most striking, innovative, and technically in-
triguing economic phenomena to emerge in recent decades, let alone one of the defining problems of the
field of Algorithmic Game Theory.

Naturally, auctions have been studied intensely and brilliantly in Economics for half a century. However,
ad auctions differ in important aspects, to be articulated below, from the traditional auction paradigms,
inspired by auctions for art objects, mining rights, or broadcast frequencies. In particular, the important
papers by Myerson [Mye81] on optimal auction design, and by Milgrom and Weber [MW82] on the role of
signaling in auctions, which have been shining lights of auction theory since the early 1980s, do not capture
ad auctions well.

Myerson’s work models the uncertainty in the bidders’ valuations in a Bayesian manner, assuming that
a distribution from which the bidders’ valuations are drawn is known to all — the auctioneer and all bidders.
If independence is assumed, a remarkably elegant mathematical analysis yields a revenue-optimal auction.1

In contrast with the standard Bayesian model, in ad auctions the value of each bidder (advertiser) for an item
(user) depends in intriguing ways on the advertiser’s precise business model, but also on detailed information
about the user that is available, typically through cookies, to the auctioneer; that is to say, there is significant
information asymmetry in ad auctions. This is more pronounced in display ads than in search ads, since in
the latter the auctioneer and the bidder do share at least one important piece of information: the keyword.

Information asymmetry in auctions is tackled head on in the paper by Milgrom and Weber [MW82].
They assume that the auctioneer as well as each agent receive real-valued signals, which together with some
extra signals not observed by anyone determine the value of each agent for the item. Everyone is assumed
to have consistent priors about all signals that he does not observe, and each bidder’s value is the same, non-
decreasing function of his own signal, the set of all other bidders’ signals, and the signals observed by the
auctioneer and by nobody. The signals are also subtly correlated, in that their joint distribution is assumed
to be affiliated, satisfying an FKG-type technical condition. Intuitively, this condition ensures that larger
values for some signals render more likely larger values for other signals. Hence, a larger value for one
agent renders more likely larger values for the others. Milgrom and Weber analyze in this model the four
common auction types, and order them with respect to expected auctioneer revenue: The English auction
fares best, followed by the second-price auction, with the Dutch auction and the first-price auction trailing;
reserve prices and entry fees are also considered. Then they prove that in all these auctions, the auctioneer
can increase the expected revenue by adopting a policy of always revealing all available information, i.e.
the signals he observes and any other affiliated signal he can obtain. This remarkable result, compatible
with age old practices by auction houses, is known as the linkage principle, mathematical articulation of the
intuition that more information means that all bidders are subject to less risk and information costs, and can
therefore be a little bolder in their bidding.

Note that Milgrom and Weber do not address the combined problem: What is the optimum augmented
auction? By “augmented auction” we mean here a design that specifies both a signaling and an allocation
policy (potentially multi-round) to be used by the auctioneer. In optimization, it is well known that sepa-
rately optimizing two aspects of a design can result in gross suboptimalities. Hence, finding the optimum
augmented auction requires an optimal co-design of the signaling and the allocation rule of the auction. The
motivation of Milgrom and Weber was different. They aimed to understand the role of signaling in the most

1Auctioneer revenue is our main objective in this paper.
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commonly used single-item auction formats, and they established linkage in a general model of affiliation.
In contrast, we aim to identify the optimal augmented auction: Here we consider a simple model of bidder
valuations explicitly motivated by ad auctions and identify the optimum augmented auction. Importantly,
our results apply to settings without affiliation, involving multiple items, and not single-dimensional bidders.
Our main result is that the optimal augmented auction requires no information revelation by the auctioneer,
and corresponds to the optimal auction of a related multi-item additive bidder setting.

We proceed to explain our model and results, after providing some additional context. Signaling in
auctions has reemerged in the study of ad auctions in three recent papers [EFG+14, BMS12, FJM+12]. All
three papers have a valuation model close to ours, explained shortly, which is not surprising as they focus
on ad auctions. In [EFG+14, BMS12], each bidder’s valuation is a function of the bidder’s and the item’s
type, both types being discrete. The assumption is that the auctioneer knows the realized item type, each
bidder knows his own type, and everyone knows the joint distribution of types of all bidders and the item.
Given this distribution, the authors seek to optimize the signaling by the auctioneer preceding a second-price
auction, and conclude that designing the optimal signaling scheme is computationally highly non-trivial in
general. Similarly, in [FJM+12], every bidder b has a valuation function vb(tb, ti), which depends on the
item type ti and the bidder type tb. Importantly, the bidder type tb is assumed scalar (i.e. the bidder is
single-dimensional) and the function vb(·, ti) is increasing for all ti. Each bidder knows his own type, the
auctioneer knows the item types, and all types are assumed independent from distributions known to every-
body. Following the formulations of [EFG+14, BMS12], which have their roots in the signaling literature,
they consider signaling schemes where the auctioneer commits to sending some (potentially randomized)
signal σ(ti) drawn from a distribution Q(ti) ∈ ∆(Σ) that depends on the realized item type ti, where Σ is
some signal alphabet. Upon receiving the signal, the bidders are expected to update their beliefs about the
item type. Hence, the auctioneer should run Myerson’s optimal auction for the distributions reflecting the
bidders’ updated expectations for the item value, conditioning on the signal. For this two-stage format, they
show that full revelation of information by the auctioneer, namely using σ(ti) = ti, is optimal, i.e. linkage
holds. It is quite subtle and surprising this mechanism (of optimal signaling followed by Myerson) is a
suboptimal solution of the signaling and auction co-design problem that we consider here, as the following
example suggests.

Example 1. We have a single bidder and a single item. There are two possible item types, H and L, and
three possible bidder types A, B and C; both item and bidder types are uniformly random. The bidder’s
value for the item as a function of the item and the bidder types is shown in this table:

Item Types
H L

Bidder Types
A 6 6
B 10 6
C 20 16

Notice that the valuation defined by the table is non-decreasing in the bidder’s type, for each item type.
Hence, as implied by [FJM+12], the optimal signaling followed by Myerson’s auction is to perfectly reveal
the item type and charge 10 for item H and 6 for item L. The resulting revenue is 6 + 1

3 ≈ 6.333. In this
auction, we “go after” types B and C for item H, and all three types for item L. In particular, type C always
has a surplus of at least 10. How can we get some of that surplus? Can we target C, without losing revenue
from types A and B?

Here is how: Before revealing the item type, we announce the prices (10 for H and 6 for L) and then ask
the bidder either to choose now one of the two item types foregoing his right to buy the other, or pay 5 for
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the privilege of postponing this choice until after the item type is revealed. Then we reveal the item type, and
sell it — provided the bidder has not lost his right to buy it. It is easy to see that, in this protocol, a bidder
of type A will waive his right to H, and will therefore pay 3 in expectation. A bidder of type B will waive his
right to L, thereby paying 5 in expectation. However, a bidder of type C will prefer to pay 5 upfront, and
then pay another 8 in expectation, for a total of 13. Notice that even though the new auction decreased the
expected payment of type B from 8 to 5, the expected payment of type C increased from 8 to 13. This auction,
by deviating from [FJM+12]’s optimal signaling followed by Myerson, managed to “target” a particular
bidder type and thus achieve a better expected revenue of 72. Therefore, full information disclosure and the
linkage principle may not hold — even when the distributions are affiliated — when followed by auction
formats other than the four classical ones considered by Milgrom and Weber. This concludes Example 1.

In further recent work on signaling, [DIR14] study the optimum signaling scheme to precede a second-
price auction under restrictions on the signals that can be sent, while [CCD+15] develop algorithmic tools
for optimum signaling under general objectives and constraints. Besides the works on signaling in auctions
outlined so far, there are several other papers addressing the problems of “matching” and “targeting” [Boa09,
AABG13, GMMV15, BHV14, HM15], variants of the information disclosure conundrum, in various models
which yield interesting results. Linkage—that is, advantage of disclosure by the auctioneer—sometimes
prevails, under assumptions, and sometimes does not. None of the papers in the literature solves or considers
what we call “the augmented auction design problem,” the problem of co-designing the optimal signaling
and allocation rule.

Finally, an interesting precursor of our result is the work in [BP07]. They study a problem conceptually
quite close to ours involving the simultaneous optimization over both information structure and allocation
policy, in a setting where the bidder has no private information and the seller can directly reveal to the bidder
what the value is without observing that value; interestingly, the optimal combined mechanism involves a
coarse revelation followed by a Myerson auction. [ES07] and [BW15]) extend that model to allow private
information to the bidders and study more general sequential auctions. In contrast, in our model multiple
rounds of interaction cannot improve revenue (Theorem 1).

Our Model and Results In our model, an auctioneer is selling a single item,3 which may be of n possible
types and whose realized type ti is drawn from a publicly known distribution ~π. There are also m bidders
interested in the item, who receive types independently from publicly known distributions D1, . . . , Dm.
Each distribution Di is an n-dimensional distribution. Every vector in the support of Di is a possible type
for bidder i and specifies the bidder’s value for each type of item. An important special case of our problem
is when there is a single bidder, i.e. m = 1. In this case, the setting can be summarized in a table Vij ,
whose rows and columns correspond respectively to possible types of the bidder and the item, together with
a distribution over rows (bidder types) and a distribution over columns (item types). In this language, the
following example discusses crucial aspects of ad auctions missed by many of the current auction models.

Example 2.
Item Types

young professional (user) executive (user)

Bidder Types
sportscar ad 30 20

business jet ad 10 50

2An equivalent implementation of this auction is through discount: Announce the prices to be 20 and 16 and give the bidder a
10-off discount coupon to be applied to an item type of his choice prior to the realization of the item type.

3All our results extend to multi-item settings, as discussed in Section 6, but we focus our discussion to single-item settings for
simplicity of the exposition.
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Notice the cycle in the graph with table entries as nodes, and an edge from (i, j) to (i, k) if Vij > Vik,
or from (i, j) to (`, j) if Vij < V`j . We believe that such cycles are the signature of ad auctions, the distin-
guishing feature that differentiates them from other auction paradigms. In the setting studied by [FJM+12],
the rows (bidder types) can be permuted so that every column is non-decreasing: no cycles are possible.
Linear order of rows or columns is evidence of a model’s single-dimensionality. The assumption of affiliated
signal distributions also imputes a kind of monotonicity and one-dimensionality, this time on the item types.
The augmented auction problem with cyclic tables “feels” inherently multi-dimensional, and, as we shall
see, this multi-dimensional nature is amply reflected in its optimal solution.

Let us consider another example.

Example 3. There are two item types, uniformly distributed in {red, blue}, and one buyer with 25 possible
types, uniformly distributed on the set {0, 1, 2, 3, 4}×{0, 1, 2, 3, 4}. In Section 3.2, we show that the optimal
signaling-followed-by-Myerson auction achieves revenue 1.2. In fact, as we show in Section 3.1, just the
plain old Myerson auction without any information revelation achieves revenue of 1.2. Nevertheless, as we
show in Section 3.3, the optimal revenue is 1.28. One way to achieve this revenue is to give the bidder the
following options, before revealing the item type:

• Pay 1.5 upfront for the option of getting the item if it is blue;

• Pay 1.5 upfront for the option of getting the item if it is red;

• Pay 2.5 upfront to get the item independently of its color.

It is easy to see that a buyer of types (3, 0), (3, 1), (4, 0) or (4, 1) will purchase the “red” option, and
similarly for the “blue” option. In contrast, a buyer of type (2, 3), (2, 4), (3, 2), (3, 3), (3, 4), (4, 2)(4, 3) or
(4, 4) will for the last option, paying 2.5. Hence, the revenue equals 8

25 · 1.5 + 8
25 · 2.5 = 1.28.

Another way to get the optimal revenue does not even require the auctioneer to learn the item type. Here
is the auction: The auctioneer offers the buyer two options:

• Pay 2.5 to get the item;

• Pay 3 to get the item, with the additional option of returning it for full refund.

It is easy to check that the types who went after the third option in the previous implementation, will go
for the first option now. Intuitively, these types are strong and they are seeking a “discount.” The weaker
types, who went for the first two options in the previous implementation, will go after the second option now,
as it represents “insurance.” This insurance stratagem for increasing revenue is reminiscent of the role of
warranties for avoiding collapse in Akelrof’s work on informationally problematic markets [Ake70].

The optimal augmented auctions obtained in Examples 1 and 3 with their nonstandard design princi-
ples — targeting, discounts, insurance, etc. — are manifestations of our main theorem, relating optimal
augmented auction design with the well known multidimensional problem of optimal multi-item auctions.

Informal Theorem 1 (See Theorem 1). The optimal augmented auction design for a single item of n
possible types and m bidders is equivalent to an optimal multi-item auction design with n items and m
additive bidders. Moreover, there is an implementation of the optimal augmented auction in which the
auctioneer reveals no information about the item type to the bidder prior to bidding.
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Thus our main contribution is the observation that the augmented auction problem (finding the best
co-design of signaling and auction format) is an inherently multi-dimensional problem, and all the phe-
nomena/pathologies/nonstandard design principles identified in the examples above are manifestations of
this multi-dimensional nature of the problem. The intuition for our theorem is simple: an auctioneer who
auctions a pen that is 50% red and 50% blue, as per Example 3, is in fact auctioning, to additive bidders,
two items: One item that is a blue pen with probability 50% and nothing otherwise; and another item that
is a red pen with probability 50% and nothing otherwise. Hence, the optimum solution to the augmented
auction problem maps to the optimum two-item auction with additive bidders. If in the latter some bidder
pays p for the (fractional) red pen, this means that in the former the same bidder pays p for the option of
getting the red pen, if the pen is red. Importantly, the optimum augmented auction has an implementation
where the auctioneer reveals no information about the item type to the bidder. That is, when both auction
format and signaling are optimized simultaneously, the optimal signaling is the null signaling. Hence, the
linkage principle does not prevail. Stronger than null signaling, sometimes the optimal augmented auction
can be turned into a no peeking auction: in Example 3, the auctioneer can derive maximum revenue from
the item without ever finding out if it is blue or red.

We also show that the above statements on auction optimality are more than academic curiosities: We
can leverage the connection to multi-item auctions with additive bidders to show that the optimum aug-
mented auction may result in dramatically more revenue than the suboptimal auction paradigms currently in
use. Theorem 2 fleshes out the connections between augmented auctions and multi-item auctions, relating
different signaling-auction formats to well-studied multi-item auction formats. Pushing the connection to
the multi-item setting even further, Tables 1 and 2 provide a revenue comparison between the following
auction formats for single and multi-bidder settings respectively and for different kinds of item/bidder type
distributions: (a) running Myerson’s auction with no information revelation by the auctioneer, (b) running
Myerson’s auction preceded by the optimal information revelation by the auctioneer, and (c) running the
optimal augmented auction. We show that the approximation gaps between (c) and (b) may be unbounded.

One could object that we have not solved the problem of optimal augmented auctions, but instead we
have reduced it to multi-item auctions with additive bidders, an important open problem in auction the-
ory, notorious for its analytical difficulty. This is all true, and yet our reduction has many and potent
consequences. First, it is important to know the nature of the true optimum, to which an auction de-
signer should aspire, because this way one understands better how existing solutions are in reality com-
promises to the true goal, and one can start exploring ways to improve. Second, there is recent progress
in multi-item auctions; for example, there are novel and promising linear characterizations of the problem
[AFH+12, AFHH13, CDW12a, CDW12b, CDW13, HH15] and the one-bidder case is by now reasonably
well understood [DDT13, GK14, DDT16]. Hence our reduction opens new avenues for improving on the
status quo.

Another possible objection is that even the one-bidder solution of the multi-dimensional problem is in
general quite complicated and of a stochastic nature, and therefore awkward to use in practice (the bidder
chooses among a possibly long menu of complex lotteries involving subsets of the items). However, one
can interpret the one-bidder optimal solution as a set of possible contracts offered by the auction designer,
as an alternative to the auction. In a situation where there are millions of items of each type, and thousands
of bidders of each type — not an unrealistic assumption for a day of ad auctions, assuming some coarse
enough clustering of both sides — the probabilities of both kinds of types, as well as the probabilities in
the lotteries, are multiplied by large enough numbers and are realized as magnitudes that are reasonably
accurately known a priori. Such large market interpretation of the one-bidder solution may provide a new
basis for understanding how ad contracts should be designed.
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2 Preliminaries

We consider an auction setting with a single item for sale4. The item can be of one of n different types, and
there is a publicly known prior probability distribution ~π on which type it is. There are m buyers interested
in the item and every buyer i has an n-dimensional distributionDi which is independent5 of the distributions
of other buyers. Each vector in the support of Di corresponds to a possible type of bidder i, specifying his
value for each item type.

The seller is running an auction for the item, seeking to maximize revenue. Neither the seller nor the
buyers know anything about the item type, other than its prior probability distribution.

2.1 Signaling Schemes

The seller may commit to a policy of revealing, prior to the auction, certain information about the item type
to the buyers with the goal of increasing revenue. A signaling scheme Q : [n]→ ∆(S) maps each item type
to a distribution over a set of signals S. Upon receiving a signal s ∈ S, each buyer updates his prior for the
item ~π to a distribution ~Π(s), where

~Πj(s) =
Prob[signal is s|item is j] · Prob[item is j]

Prob[signal is s]
=

Qs(j)πj∑
j′ Qs(j

′)πj′
.

Therefore, each signal s ∈ S gives an updated prior ~Π(s). Given a collection of vectors ~Π(s) and their
corresponding probabilities P (s) = Prob[signal is s] =

∑
j′ Qs(j

′)πj′ , they satisfy
∑

s∈S P (s)~Π(s) = ~π.
Conversely, given a collection of vectors ~Π(s) with corresponding probabilities P (s), there exists a

signaling scheme Q producing these belief vectors with these probabilities if the above equality holds. This

is easy to see by setting Qj(s) = P (s)
~Πj(s)
πj

.

We can thus write an alternative parametrization of a signaling scheme in terms of ~Π and P .

2.2 Auction Formats

We consider the following three auction formats and information structures.

Myerson (No Information Revelation) Neither the buyer nor the seller has any information about the item
type. Every buyer i with value vector ~vi ∼ Di has value ~vi · ~π for the item and the setting becomes single
dimensional. Here. the standard Myerson auction gives us the revenue-optimal mechanism.

Myerson with Signaling [FJM+12] The seller can observe the item type and may engage in signaling,
which may cause the buyers to update their prior about the item. Then the seller is restricted to run a
Myerson auction.

Optimal Augmented Auction The seller can observe the item type, engage in signaling to the buyer (in fact,
in our result we will allow more general signaling schemes than the kind defined above), and then proceed
to auction the item, so that the choice of the combination of signaling scheme and auction optimizes revenue
and is implementable either as an ex-post or a Bayes-Nash equilibrium.

Notice, in particular, that the optimal mechanisms in Examples 1 and 3 were not expressible in the Myerson-
with-Signaling auction format.

4Multiple items can be dealt with similarly, see the discussion in Section 6.
5For an extension of the model allowing correlations, see the discussion in Section 6.
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3 Optimal Auctions

3.1 Myerson (No Information Revelation)

When no information is available about the item type, the setting becomes one dimensional with bidder
value distributions ~π ·Di. By ~π ·Di we denote the distribution obtained by first sampling a vector ~vi ∼ Di

and then computing the inner product with the prior belief vector ~π. Myerson gives us the optimal auction
in this one dimensional setting which we denote by MYERSON(~π).

Recall example 3, where there are two item types (n = 2) and one buyer (m = 1) with D1 being
the uniform distribution over {0, 1, 2, 3, 4} × {0, 1, 2, 3, 4}. The belief about the item type is uniform, i.e.
~π = (0.5, 0.5). If no information about the item type is revealed, the buyer can be collapsed to single-
dimensional with value distribution ~π ·D1, which takes values in the set {0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4}. The
optimal mechanism offers the item at a price of 2 which is accepted with probability 60%. This gives a
revenue of 1.20.

3.2 Myerson with Signaling

Let us denote by MSIGNALING(~π) the maximum revenue the seller can achieve by fixing a signaling scheme
and then running Myerson, where beliefs ~Π(s) occur with probability P (s), i.e.:

MSIGNALING(~π) = max
(~Π,P )

∑
s

P (s) ·MYERSON(~Π(s))

where the maximum is computed over signaling schemes such that
∑

s∈S p(s)
~Π(s) = ~π.

We can show that, without loss of generality, we can restrict ourselves to signaling schemes with at most
n signals (this is a fairly common phenomenon in the signaling literature).

Lemma 1. Consider a signaling scheme (~Π, P ). There exists a signaling scheme (~Π′, P ′) that achieves at
least as much revenue in the Myerson with Signaling setting which uses at most n signals.

Proof. By reverse induction. Assume there exists a signaling scheme with |S| > n signals. We will
construct a signaling scheme with |S| − 1 signals achieving the same revenue. Consider the vectors ~Π(s)
for all s ∈ S. Since |S| > n the vectors are not linearly independent. Thus, there exist constants αs which
are not all 0 such that

∑
s αs

~Π(s) = ~0. Splitting the summation terms into positive and negative we get that∑
s:αs>0 |αs|~Π(s) =

∑
s:αs<0 |αs|~Π(s).

Now consider the corresponding difference in the revenue between the positive and negative sides, i.e.∑
s αsMYERSON(~Π(s)). Without loss of generality, we can assume that this quantity is non-negative, since

otherwise we can pick a new vector ~α′ = −~α. Furthermore, let λ = mins:αs<0

(
P (s)
|αs|

)
and s∗ be the

corresponding index where this is minimized.
We create a new signaling scheme with corresponding probabilities P ′(s) = P (s) + λαs. This makes

the generated revenue at least as much as it was before:∑
s

(P (s) + λαs)MYERSON(~Π(s)) ≥
∑
s

P (s)MYERSON(~Π(s)) + λ
∑
s

αsMYERSON(~Π(s))

≥
∑
s

P (s)MYERSON(~Π(s))
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Moreover, P ′(s∗) = 0 since P (s∗)+ P (s∗)
|αs∗ |

αs∗ = 0 which means that the new signaling scheme uses at most
|S|− 1 signals. By induction, we conclude that repeating this process we can obtain a signaling scheme that
uses at most n signals which achieves at least as much revenue as the original signaling scheme.

We can also show an upper bound on the revenue of the optimal Myerson auction with signaling as
follows:

Lemma 2. The maximum revenue achievable in the Myerson with Signaling setting is at most

MSIGNALING(~π) ≤ max
~p≥0:|~p|=1

MYERSON(~p)

Moreover, the above holds with equality if all distributions are item-symmetric and the prior probabilities ~π
are uniform.

Proof. For any signaling scheme (~Π, P ) it holds that:

MSIGNALING(~π) = max
(~Π,P )

∑
s

P (s)MYERSON(~Π(s)) ≤ max
(~Π,P )

max
s

MYERSON(~Π(s))

≤ max
~p≥0:|~p|=1

MYERSON(~p)

Now, let ~p∗ be the vector that maximizes the right-hand side. In an item-symmetric setting with uniform
prior probabilities on the item types, we can construct a feasible signaling scheme (~Π, P ) by considering all
cyclic rotations of the vector ~p∗ with equal probability. Since, all distributions are item symmetric, all cyclic
rotations give revenue as MYERSON(~p). This proves that in the symmetric setting, the inequality shown
above is tight.

We revisit Example 3. Applying Lemma 2, we get the optimal revenue obtainable in the Myerson with
signaling setting is upper bounded by

max
0≤p≤1

MYERSON(p, 1− p)

which is maximized without loss of generality for some

p ∈
{a
b
| 0 ≤ a ≤ b ≤ 4 for a, b ∈ Z

}
Checking each of these values separately we see that the revenue is at most 1.2. This upper bound can be
achieved by always revealing the item type to the buyer. Once the item type is revealed, the buyer’s value
is known to be distributed uniformly in {0, 1, 2, 3, 4} and the optimal auction is to set a single price p that
maximizes the expected revenue against this distribution. This is achieved by selling the item at 2 which
is accepted with 60% probability. The same revenue can also achieved by giving no information as in the
previous section. We conclude that both signaling schemes are optimal.

3.3 Optimal Augmented Auction

We now study the problem of designing the combination of signaling scheme and subsequent auction that
maximizes revenue and is either ex-post or Bayes-Nash implementable. We show that this is equivalent to
the following multidimensional mechanism design problem:
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Definition 1 (Optimal Multi-Item Auction). We have m additive bidders and n items. Bidder i’s value
for item j is equal to vijπj where the vector ~vi comes from bidder distribution Di and ~π is a common
parameter for all agents. We denote by REV(~π) the optimal revenue achievable by any incentive-compatible
mechanism, given the parameter ~π.

Theorem 1. The optimal augmented auction for a given ~π and D1, . . . , Dm is equivalent to a multi-item
auction with n items and m additive bidders as specified in Definition 1. In particular, for any ex-post
implementable augmented auction, there exists an incentive-compatible multi-item auction that achieves the
same revenue. Similarly, for any Bayes-Nash implementable augmented auction, there exists a Bayesian
incentive-compatible multi-item auction that achieves the same revenue.

Moreover, there is an implementation of the optimal augmented auction in which the auctioneer reveals
no information about the item type to the bidder prior to bidding.

The proof of the theorem is quite simple, following by (i) observing that the revelation principle holds
in settings with information asymmetry on both sides, and (ii) characterizing the auctions resulting from the
revelation principle. What is subtle and noteworthy here is that the optimum is not a Myerson-with-signaling
auction, even in the case of a single-dimensional bidder considered in [FJM+12]. Still, the optimum auction
can be expressed succinctly through a one-to-one correspondence with a related multi-item auction with
additive bidders.

Proof. Consider a mechanism M that is ex-post implementable. The mechanism M may use multiple rounds
of communication and information revelation to the buyers. For each i ∈ [m], let Ai(~vi) be the (possibly
randomized) equilibrium strategy of buyer i when his type is ~vi, i.e. his value for every item type j is vij .
Each strategy Ai(~vi) specifies the actions that bidder i takes in the mechanism M given information about
the item type and the actions of other buyers, in order to maximize buyer i’s expected payoff.

Let Xi(j, ~A) be an indicator random variable that indicates whether buyer i gets the item when buyers
choose strategies ~A = (A1, , ..., Am) and the realized item type is j ∈ [n]. Aimilarly, let Ci(j, ~A) denote
the price buyer i is asked to pay. The expected utility of buyer i is then equal to

Ej∼π[E[Xi(j, ~A)vij − Ci(j, ~A)]]

where the first expectation is with respect to the randomness of the item type, while the second expectation
is with respect to the randomness in the choices of the mechanism, the information revealed and the actions
of the buyers under the mixed strategies ~A.

We now examine the equilibrium conditions for the buyer strategies. For all possible types ~V =
(~v1, ..., ~vm) and all possible misreports ~v′i for buyer i, we let ~A(~V ) = (A1(~v1), ..., Am(~vm)) and ~A(~v′i,

~V−i) =

(A1(~v1), ..., Ai(~v
′
i), ..., Am(~vm)). The equilibrium conditions for the strategy profile ~A(~V ) imply that:

Ej∼π[E[Xi(j, ~A(~V ))vij − Ci(j, ~A(~V ))]] ≥
Ej∼π[E[Xi(j, ~A(~v′i, ~V−i))vij − Ci(j, ~A(~v′i, ~V−i))]]

Now set the variables xij(~V ) = E[Xi(j, ~A(~V ))] and ci(~V ) = Ej∼π[E[Ci(j, ~A(~V ))]]. The equation above
can be rewritten for all i, ~V and potential misreports v′i as:

n∑
j=1

xij(~V )πjvij − ci(~V ) ≥
n∑
j=1

xij(~v
′
i, ~V−i)πjvij − ci(~v′i, ~V−i) (IC)
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Moreover, the mechanism must satisfy the individual rationality constraint in order for the bidders to partic-
ipate

n∑
j=1

xij(~V )πjvij − ci(~V ) ≥ 0 (IR)

and that for all j ∈ [n]:
∑m

i=1 xij(
~V ) ≤ 1. A mechanism that satisfies all these constraints and achieves

expected revenue

E~V∼D1×...×Dm

[
m∑
i=1

ci(~V )

]
can be viewed as a multi-item direct auction for m additive bidders with n items where item j is simply πj
units of item type j as in Definition 1. The direct mechanism allocates the item j to bidder i with probability
xij(~V ) when all bidders have types ~V . The (IC) constraint implies that the auction is incentive compatible
while the (IR) constraint ensures bidder participation. Any direct mechanism M for the multi-item setting
is a feasible augmented auction since the seller can use M to presell all item types before observing the real
item type and then decide on the final allocation after the type is observed.

The same reduction goes through for converting any Bayes-Nash equilibrium to an equivalent Bayesian
incentive-compatible direct mechanism that presells all the items. The difference is that in the (IC) and (IR)
constraints above for bidder i, we take an expectation over all bidder types ~V−i other than i.

Therefore, the optimal augmented auction achieves revenue REV(~π), as defined in Definition 1, when
the prior on the items is ~π.

Remark. One way to convince somebody that no information revelation before running the optimal aug-
mented auction can possibly increase revenue is to notice that the function REV(·) is concave.

Lemma 3. The optimal revenue function REV(~x), as per Definition 1, is concave.

Proof. We must have that for all x, y ∈ Rn+, 1
2 REV(~x) + 1

2 REV(~y) ≤ REV
(
~x+~y

2

)
. Since the revenue

function is homogeneous, this is equivalent to showing that REV(~x)+ REV(~y) ≤ REV (~x+ ~y). Let Mx and
My be the optimal mechanisms that achieve REV(~x) and REV(~y). We can show that REV (~x+ ~y) achieves
higher revenue by constructing a mechanism that sells to the buyers a fraction of the items using mechanism
Mx and the rest using My. In particular, in Mx, we sell xj

xj+yj
units of every item j while in My, we sell

yj
xj+yj

. This achieves revenue REV(~x) + REV(~y).

So what if we sent a signal and then run an optimal augmented auction for the posterior of the item type?
Suppose (~Π, P ) is a signaling scheme, as per Section 2.1. This signaling followed by the optimal augmented
auction would result in revenue

∑
s P (s)REV(~Π(s)) ≤ REV(

∑
s P (s)~Π(s)) = REV(~π). The inequality

follows from Jensen’s inequality and Lemma 3. This confirms that no signaling scheme can preface running
the optimal augmented auction on the posterior to increase revenue (which of course we knew already from
optimality, but the concavity illustrates one reason why it happens). This concludes Remark 3.3. �

We now revisit Example 3 to compute the optimal augmented auction. It follows from Theorem 1 that
this can be computed by solving an associated multi-item auction problem. The result6 is the auction that

6The optimality of the mechanism was verified by solving a small linear program that encodes all the incentive compatibility
constraints. For an analytical derivation in a similar setting with item values distributed uniformly in [0,1], we refer the reader
to [DDT16].
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gives the following choices to the buyer:7

• Buy one item at price 1.5.

• Buy both items at price 2.5.

We can see that if the buyer has values (3, 0), (3, 1), (4, 0) or (4, 1), he purchases only item 1 and
similarly for item 2. The bundle of both items is bought by types (2, 3), (2, 4), (3, 2), (3, 3), (3, 4), (4, 2),
(4, 3) and (4, 4). This means that the revenue is equal to 8

25 · 1.5 + 8
25 · 2.5 = 1.28. This is strictly better

than the revenue achievable by running Myerson with signaling.

4 Connections of Signaling to Multi-Item Mechanism Design

In Theorem 1, we showed that the combined problem of designing a signaling scheme together with an
optimal mechanism to sell the item to the bidders is equivalent to the multi-item mechanism design problem
in Definition 1. In particular, we showed that no signaling is required and that the seller can treat the
mechanism design problem as a multi-item auction where all types of items are available but their values are
discounted according to the prior probability vector. Then, it becomes clear that the seller should not reveal
any information but instead run an auction preselling each of the item types. The auction format should be
the one that maximizes revenue in the equivalent multi-item setting.

It is interesting to consider how the restricted formats of auctions we studied above translate to the
multi-item setting.

We first look at the case where no information is given to the buyers and a simple Myerson auction is
run for the item. In this setting, the item is given to the winner of the auction no matter what type it is.
This is equivalent to a multi-item mechanism for the setting of Definition 1 that bundles all items together
and sells the bundle as one. This bundling mechanism is a well-studied simple mechanism in the multi-item
auction literature, denoted as BREV. It performs quite well compared to the optimal mechanism in cases
where the bidder values for the bundle of all items are well-concentrated. One important case where this
happens is when items are identical and the value distributions for every item are identical and independent.
We consider such settings in the Section 5 where we make a detailed comparison of how well the optimal
augmented auction is approximated by simple signaling schemes.

We now consider the case of running a simple Myerson auction but using signaling to increase revenue.
In this restricted auction format, we can see that the optimal revenue can be written as

MSIGNALING(~π) = max
(~Π,P )

∑
s

P (s) ·MYERSON(~Π(s)) = max
(~Π,P )

∑
s

MYERSON(P (s) · ~Π(s))

= max
~x1+···+~xn=~π
~xj∈Rn

≥0

n∑
j=1

MYERSON(~xj) (1)

This partitions the items into at most n groups according to the vectors ~xj . In the full information setting
where the item type is always revealed to the buyers, we have that ~xj = πj~ej , where ~e1, ..., ~en are the stan-
dard basis vectors. When viewed as a multi-item auction as in Definition 1, this corresponds to selling each
item separately, by running separate Myerson auctions. This is an important mechanism, denoted by SREV,
which is studied in the multi-item literature since it is simple and can achieve significant fraction of the

7We state the solution to the associated multi-item problem here. In Section 1, we have already described what this auction
corresponds to for the optimal augmented problem, and gave two possible implementations of the optimal augmented auction.
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revenue in many cases. A notable such case is when the value distributions for every item are independent.
It was shown in [BILW14] that in such a case, this simple mechanism can achieve an O(log n) fraction of
the optimal revenue, i.e. REV = O(log n) · SREV. It was also shown there, that max{SREV,BREV} can
perform even better achieving a constant fraction approximation for the previous case when there is only
one bidder. Translating this result to signaling, this immediately implies that in many situations a significant
fraction of the optimal revenue can be achieved by the extreme cases of giving full-information to the buyers
or no information at all.

Other than these two extreme cases, we can achieve even higher revenue in the Myerson with signaling
auction by partitioning items with more general vectors ~xj . We can partition items into arbitrary disjoint
groups and sell each group of items separately, a case studied in the multi-item literature and denoted as
PREV. In the most general form, we are allowed to make arbitrary fractional partitions of the items, which
we denote by FPREV.

We summarize these connections in the following theorem:

Theorem 2. The problem of selling a single item whose type is one of n different types occurring with some
prior probability ~π is equivalent to a multi-item auction setting where there are n different items for sale as
in Definition 1. Moreover, different signaling mechanisms are equivalent to particular multi-item auctions:

• Myerson without Information Revelation is equivalent to Grand-Bundling auctions that sell all items
as one (BREV).

• Myerson with Full Information Revelation is equivalent to Selling-Separately (SREV).

• Myerson with Arbitrary Signaling Schemes is equivalent to Fractional-Partition mechanisms (FPREV).

• The optimal Augmented Auction is equivalent to the Revenue-Optimal multi-item mechanism (REV).

The following section studies how each of these restricted auction forms compare to the optimal achiev-
able revenue.

5 Revenue Comparison

In this section, we explore the gaps in revenue achievable in each of the signaling auction formats, i.e. My-
erson with no information revelation, Myerson with optimal signaling and the optimal augmented auction.
To do this, we exploit the connections to well-studied auction formats in multi-item auction theory presented
in Theorem 2.

Using our understanding from Section 4, we can immediately get the following relation between the
achievable revenue in each of the auction formats:

MYERSON = BREV ≤ PREV ≤ FPREV = MSIGNALING ≤ REV

We study how large the gap in revenue can get between different auction formats. We examine three
different cases that are of particular interest:

• i.i.d case - A case where all item types are equally likely and every distribution Di is product with
i.i.d. marginals.

• independent case - A case where each Di is a product distribution with independent (but not neces-
sarily identical) marginals.

• general case - A case with arbitrary distributions Di and ~π.
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Myerson (No Information Revelation) Myerson with Optimal Signaling

vs Myerson with Optimal Signaling vs Optimal Augmented Auction

i.i.d. O(1) [Lemma 4] O(1) [Lemma 4]

~π uniform Ω(1) [Trivial] Ω(1) [Trivial]

independent O(n) [Lemma 5] O(1) [Lemma 7]

~π arbitrary Ω(n) [Lemma 6] Ω(1) [Trivial]

general O(n) [Lemma 5] ≤ ∞ [Trivial]

~π arbitrary Ω(n) [Lemma 6] ≥ ∞ [Lemma 8]

Table 1: Comparison of the worst-case approximation gap among the different auction formats for the case
of a single bidder.

5.1 Single Bidder

We will show a series of lemmas that bound the worst case revenue gap between different auction formats.
The results are summarized in Table 1.

Lemma 4. In a single bidder setting where D1 is a product distribution with identical marginals and the
prior distribution on item types ~π is uniform, we have that REV(~π) = O(1) ·MYERSON(~π).

Proof. Since D1 is a product distribution with identical marginals and the prior distribution on item types
~π is uniform, the corresponding multi-item auction of Definition 1 is a setting with n items and i.i.d. dis-
tributions. This case has been studied in [LY13] where it was shown that for a single bidder, bundling can
achieve at least a constant fraction of the optimal revenue. This immediately implies that for the optimal
augmented auction REV(~π) = O(1) ·MYERSON(~π).

Lemma 5. For any number of bidders, arbitrary distributions Di and arbitrary prior distribution on item
types ~π, we have that MSIGNALING(~π) = O(n) ·MYERSON(~π).

Proof. As shown in Lemma 1, the optimal signaling scheme uses at most n signals. Using Equation 1, we
get:

MSIGNALING(~π) = max
~x1+···+~xn=~π
~xj∈Rn

≥0

n∑
j=1

MYERSON(~xj) ≤ n ·MYERSON(~π)

The inequality follows by noting that MYERSON(~xj) ≤ MYERSON(~π) since ~xj ≤ ~π.

Lemma 6. There is a single-bidder instance with a product distribution D1, such that MSIGNALING(~π) =
Ω(n) ·MYERSON(~π).

Proof. To show the lemma, we use a lower bound from [HN12] (Example 15). Consider a uniform prior
distribution on item types. Take a large M and let D1 have support 0,M i with Pr(M i) = M−i. The
revenue achieved by MYERSON (i.e. BREV) is at most 1

n(1 + 1
M−1). In contrast, by always revealing the

item type to the buyer, we can sell every item type i at a price M i getting revenue 1 in expectation. This
proves that MSIGNALING(~π) = Ω(n) ·MYERSON(~π).
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Myerson (No Information Revelation) Myerson with Optimal Signaling

vs Myerson with Optimal Signaling vs Optimal Augmented Auction

i.i.d. O(n) [Lemma 5] O(log n) [Lemma 10]

~π uniform Ω( n
logn) [Lemma 9] Ω( logn

log logn) [Lemma 11]

independent O(n) [Lemma 5] O(log n) [Lemma 10]

~π arbitrary Ω(n) [Lemma 6] Ω( logn
log logn) [Lemma 11]

general O(n) [Lemma 5] ≤ ∞ [Trivial]

~π arbitrary Ω(n) [Lemma 6] ≥ ∞ [Lemma 8]

Table 2: Comparison of the worst-case approximation gap among the different auction formats for the case
of many bidders.

Lemma 7. In the case of a single bidder with a product distribution D1, we have that REV(~π) = O(1) ·
MSIGNALING(~π).

Proof. As shown in Theorem 2, Myerson with Signaling can achieve revenue at least SREV by full informa-
tion revelation and BREV by providing no information about the item type. For a single additive bidder with
independent distributions, it is shown in [BILW14], that REV ≤ 6 ·max{SREV,BREV}. This immediately
implies that REV(~π) = O(1) ·MSIGNALING(~π).

Lemma 8. For any a ≥ 1, there exists a single-bidder instance with n = 2 item types such that:

REV(~π) ≥ a ·MSIGNALING(~π)

Proof. In Lemma 5, we showed that MSIGNALING(~π) = O(n)·MYERSON(~π). Since MYERSON = BREV,
we get that for two items MSIGNALING = O(1) · BREV. The lemma follows since BREV and REV can
have an arbitrary gap in revenue even for two items as shown in [HN13].

5.2 Multiple Bidders

Working similarly for multiple bidders as in the case of one bidder, we show a series of lemmas that bound
the worst case revenue gap between different auction formats. The results are summarized in Table 2.

Lemma 9. There exists an instance where every Di is a product distribution with identical marginals and
the prior distribution on item types ~π is uniform, such that MSIGNALING(~π) = Ω( n

logn) ·MYERSON(~π).

Proof. Consider an instance with m = n bidders such that each bidder has value 1 for item type j with
probability 1

n and 0 otherwise. The distribution over item types is uniform. By a simple tail bound for
the Binomial distribution, we can see that a single bidder has non-zero value for Ω(log n) items types with
probability at most 1

n2 . Taking a union bound over all bidders, we get that with probability 1 − 1
n , every

bidder has at most O(log n) non-zero values and thus the maximum revenue achievable in this case by
MYERSON is O( logn

n ) (recall that each type appears with probability 1
n ). In contrast, if the seller always

reveals the type of the item, the achieved revenue is O(1), since he can sell the item at price 1 which is
bought with constant probability ≈ 1− 1

e .
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Lemma 10. In the case where all distributionsDi are identical product distributions, we have that REV(~π) =
O(log n) ·MSIGNALING(~π).

Proof. In this setting (independent case), [BILW14] show that REV ≤ (lnn + 6) · SREV. The lemma
immediately follows as for the Myerson with Signaling auction, we have MSIGNALING ≥ SREV.

Lemma 11. There exists an instance where every Di is a product distribution with identical marginals and
the prior distribution on item types ~π is uniform, such that REV(~π) = Ω( logn

log logn) ·MSIGNALING(~π).

Proof. To show the lower bound on optimal revenue, we will construct an example where the optimal multi-
item auction gets revenue REV = Ω(nlog n), while the optimal fractional partition mechanism FPREV that
corresponds to MSIGNALING, as shown in Theorem 2, gets revenue revenue FPREV = O(n log logn).

The example is the same as in [BILW14] (Proposition 8), where it was used to show that REV =
Ω(log n)PREV. There are n items and

√
n bidders and the value of each bidder for each item is sampled

with probability 1√
n

from a distribution F with CDF8

F (x) =

{
1− x−1 if x ∈ [1, n1/8]

1 if x > n1/8

and with the remaining probability it is 0. In [BILW14], it is shown that REV = Ω(nlog n). We will show
that FPREV = O(n log log n) by showing that for any fractional bundle ~f that contains fj units of item j,
selling the bundle gives revenue BREV(~f) = O(log log n) ·

∑n
j=1 fj .

Without loss of generality, assume that maxj fj = 1. Now consider the fractional bundle ~f ′ by rounding
up all values of ~f to the smallest value 2−a for a in the set {0, 1, ..., log n}. It is clear that the revenue from
the fractional bundle ~f ′ is at least as much as the revenue from the fractional bundle ~f since all fractional
values increased. Moreover, we have that

∑
j f
′
j =

∑
j:fj>n−1 f ′j +

∑
j:fj≤n−1 f ′j ≤

∑
j:fj>n−1 2fj + 1. So∑

j f
′
j = O(1) ·

∑
j fj .

We now bound the revenue of the fractional bundle ~f ′. The vector ~f ′ consists of at most log n different
values. For every such value a ∈ {0, 1, ..., log n}, we let Sa be the set of all items j with f ′j = 2−a. We
now consider a different setting with log n items, where item a corresponds to 2−a units of the items in
Sa. In this setting, there are log n items and we know that selling the items separately is a O(log log n)
approximation to the optimal revenue and in particular a O(log log n) approximation to selling the grand
bundle which corresponds to the revenue achieved by the fractional bundle ~f ′ in the original setting.

This implies that BREV(~f ′) ≤ O(log log n)
∑logn

a=0 2−aBREV(Sa) where BREV(Sa) is the revenue
achievable by selling the bundle of items in Sa. As shown in [BILW14] (Proposition 8), BREV(Sa) ≤
O(1)|Sa|which implies that BREV(~f) ≤ BREV(~f ′) ≤ O(log log n)|~f ′| = O(log log n)|~f | as required.

6 Discussion and Extensions

Our work studies the problem of signaling through the lens of multidimensional mechanism design in a
model of valuations inspired by ad auctions. We show that the optimal co-design of signaling and auction
maps to an optimal multi-item auction design in an associated multi-item setting with additive bidders, as
specified in Definition 1. Our reduction allows us to leverage our understanding of multi-item auctions
to (i) design optimal augmented auctions; (ii) understand how stratagems such as targeting, discount and

8F is an Equal-Revenue distribution with all mass above n1/8 moved to an atom at n1/8.
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insurance can be used to increase revenue; and (iii) quantify the suboptimality of signaling schemes studied
in the literature by relating them to suboptimal multi-item auction designs in the associated multi-item
setting. In the rest of the section we discuss additional benefits from our reduction, relating to multi-item
extensions, computation and structure.

Multiple-Items Since our mapping to multi-item auctions is already multi-dimensional, we can easily
accommodate multiple items in our framework for augmented auction design as follows: in a setting with
m bidders, k items with n types each, the optimal augmented auction design reduces to a multi-item auction
design problem with m additive bidders and k ·n items. (The proof of this is identical to that of Theorem 1.)
Multi-item settings are important in applications of online ads where there are several ad-slots on a webpage
and advertisers may have different values for each of these slots, which may also depend on the type of user
that visits the page. For example, an advertiser can have values (5, 3) for the slots on the top and the bottom
of the page if the user is under 25 years old and values (8, 2) otherwise.

Structure and Computation By reducing the augmented auction design problem to that of revenue-
optimal multi-item auctions, we get immediate implications about the structure of the problem and its com-
putational complexity. The results of [AFH+12, CDW12a, CDW12b] imply that finding the optimal BIC
augmented auction can be done in time polynomial in the support size of all bidder distributions Di. At
the same time, when the distributions Di are product distributions and are given implicitly by listing their
marginals (as in the i.i.d. and independent settings discussed in Section 5) the support size becomes expo-
nential in the number of item types, and we can leverage our reduction to the multi-item case and the results
of [DDT14] to show that the problem is #P-hard. Similarly, our connection to the multi-item case (in par-
ticular Theorem 2) and the results of [DDT12] imply that Myerson with No Information Revelation is also
#P-hard. Still, when the distributions Di are i.i.d. or independent across item types, we can leverage recent
work of [BILW14, Yao15] for approximately optimal multi-item auctions to obtain an augmented auction
achieving a constant fraction of the optimal revenue. Lastly, there has been much recent effort in charac-
terizing the structure of the optimal multi-item auction in the single-bidder case [DDT13, GK14, DDT16].
We can leverage these results to immediately get structural characterizations for the optimal single-bidder
augmented auction.

Correlation among bidder values and item types Throughout the paper, we have assumed that the bidder
values are independent and that the prior on the item types is the same for all bidders. Following the work
of Milgrom and Weber, a more general model, that does not make any independence assumptions, allows
correlation of the item types and bidder values. Our reduction can be easily extended to capture such
situations by reducing the problem again to a multi-item auction where bidders have correlated values. See
the full version for a more detailed discussion. See Appendix A for a more detailed discussion.
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A Correlated Bidder values and Item Types

Throughout the paper, we have assumed that the bidder values are independent and that the prior on the item
types is the same for all bidders. Following the work of Milgrom and Weber, a more general model, that
does not make any independence assumptions, allows correlation of the item types and bidder values. In par-
ticular, we can have an arbitrarily correlated distribution D ∈ ∆([n]× Rnm) over vectors (j, ~v1, ~v2, ..., ~vm)
that specifies how the item type j and the bidder values ~v1, ~v2, ..., ~vm are distributed. Observe that the prior
of the seller for the item type is simply the marginal of the distribution D with respect to the item type.
On the other hand, every bidder has a potentially different prior about item types that captures his private
information about the item and corresponds to the marginal of the distribution given his realized type. Let
again ~π be the seller’s prior and ~πi(~vi) be bidder i’s prior when his value is ~vi.

Similar to Theorem 1, this setting is equivalent to a full-information multi-item auction setting with
additive bidders whose values come from a correlated distribution. A bidder i with type ~vi in the original
setting has value πij(~vi)vij for every item j in the multi-item auction. The proof of this equivalence uses
the revelation principle and is identical to the proof of Theorem 1. We repeat it here with the appropriate
changes for completeness.

Proof. Consider a mechanism M that is ex-post implementable. The mechanism M may use multiple rounds
of communication and information revelation to the buyers. For each i ∈ [m], let Ai(~vi) be the (possibly
randomized) equilibrium strategy of buyer i when his type is ~vi, i.e. his value for every item type j is vij .
Each strategy Ai(~vi) specifies the actions that bidder i takes in the mechanism M given information about
the item type and the actions of other buyers, in order to maximize buyer i’s expected payoff.

Let Xi(j, ~A) be an indicator random variable that indicates whether buyer i gets the item when buyers
choose strategies ~A = (A1, , ..., Am) and the realized item type is j ∈ [n]. Aimilarly, let Ci(j, ~A) denote
the price buyer i is asked to pay. The expected utility of buyer i is then equal to

Ej∼πi(~vi)[E[Xi(j, ~A)vij − Ci(j, ~A)]]

where the first expectation is with respect to the randomness of the item type according to bidder i, while
the second expectation is with respect to the randomness in the choices of the mechanism, the information
revealed and the actions of the buyers under the mixed strategies ~A.
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We now examine the equilibrium conditions for the buyer strategies. For all possible types ~V =
(~v1, ..., ~vm) and all possible misreports ~v′i for buyer i, we let ~A(~V ) = (A1(~v1), ..., Am(~vm)) and ~A(~v′i,

~V−i) =

(A1(~v1), ..., Ai(~v
′
i), ..., Am(~vm)). The equilibrium conditions for the strategy profile ~A(~V ) imply that:

Ej∼πi(~vi)[E[Xi(j, ~A(~V ))vij − Ci(j, ~A(~V ))]] ≥

Ej∼πi(~vi)[E[Xi(j, ~A(~v′i, ~V−i))vij − Ci(j, ~A(~v′i,
~V−i))]]

Now set the variables xij(~V ) = E[Xi(j, ~A(~V ))] and ci(~V ) = Ej∼πi(~vi)[E[Ci(j, ~A(~V ))]]. The equation
above can be rewritten for all i, ~V and potential misreports v′i as:

n∑
j=1

xij(~V )πij(~vi)vij − ci(~V ) ≥
n∑
j=1

xij(~v
′
i,
~V−i)πij(~vi)vij − ci(~v′i, ~V−i) (IC)

Moreover, the mechanism must satisfy the individual rationality constraint in order for the bidders to partic-
ipate

n∑
j=1

xij(~V )πij(~vi)vij − ci(~V ) ≥ 0 (IR)

and that for all j ∈ [n]:
∑m

i=1 xij(
~V ) ≤ 1. A mechanism that satisfies all these constraints and achieves

expected revenue

E(j,~V )∼D

[
m∑
i=1

ci(~V )

]
can be viewed as a multi-item direct auction for m additive bidders with n items where the value of a
bidder with type ~i for item j is simply πij(~vi)vij . The direct mechanism allocates the item j to bidder
i with probability xij(~V ) when all bidders have types ~V . The (IC) constraint implies that the auction is
incentive compatible while the (IR) constraint ensures bidder participation. Any direct mechanism M for
the multi-item setting is a feasible augmented auction since the seller can use M to presell all item types
before observing the real item type and then decide on the final allocation after the type is observed.

The same reduction goes through for converting any Bayes-Nash equilibrium to an equivalent Bayesian
incentive-compatible direct mechanism that presells all the items. The difference is that in the (IC) and (IR)
constraints above for bidder i, we take an expectation over all bidder types ~V−i other than i.

A further extension to the model could allow for a bidder’s value for each item type to depend on
the other bidder values for the item types as well. The revelation principle is applicable to this setting to
show that direct mechanisms which don’t reveal any information to the bidders are optimal. However, the
resulting mechanism is equivalent to a more complicated multi-item auction with interdependent values
among bidders for the items.
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