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on January 15, 1986 in partial fulfillment of the requirements for
the degree of Master of Science in Aeronautics and Astronautics.

ABSTRACT

A numerical solution to the classic wavy wall problem using the Euler equations
has been explored. The solutions are obtained from a cell centered finite volume formu-
lation using explicit time integration. Particular attention is paid to the formulation of
consistent boundary conditions, and the solutions are made using at least three different
boundary formulations. In addition to a boundary condition that is periodic in the flow
direction, solutions are also made by enforcing the classical potential solution on all
or part of the outer boundary and by solving a formulation consisting of one or more
bumps in the flow direction. The latter formulation led to the discovery that specifi-
cation of the downstream static pressure is not always the most consistent condition
and can lead to convergence problems for some flows. This led to an investigation of
the relative merits of using linearized characteristic boundary conditions with pressure
specified at the outflow as oppossed to Riemann invariant boundary conditions.

In addition to the boundary condition comparison, results have been obtained for
a number of different configurations covering subsonic, transonic, and supersonic flow.
The comparison of the pressure outflow condition to the Riemann invariant condition
demonstrates, that the Riemann invariant boundary condition is generally superior from
a convergence standpoint. In addition, the pressure boundary condition leads to un-
acceptable transients for low Mach number flows. These transients are illustrated and
discussed. The subsonic results demonstrate that periodic solutions can be obtained
using either a series of bumps, a periodic boundary condition or by imposing the po-
tential solution on the boundary. The latter solution is the most cost effective, but the
periodic solution has the larger range of applicability. This is illustrated by computing
a transonic result using a periodic boundary and comparing it to the multiple bump
solution of the same problem. The difference in computation time for the two transonic
solutions is found to be a factor of 25. Finally, it is demonstrated that, except for certain
special cases, the supersonic problem can not be solved using the techniques presented.
The inablility of the solver to perform these computations is traced to the boundary
conditions, and illustrative examples are provided.

Thesis Supervisor: Dr. Earll M. Murman
Title: Professor of Aeronautics and Astronautics
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NOMENCLATURE

Variables:

A Cell area.

A Natural Euler operator.

A Riemann Euler operator.

a Sound speed.

B(x, y) Wavy wall parametric equation

C Linearized characteristic invariants.

C Riemann characteristic invariants.

D{W} Dissipation operator.

D Intrinsic derivative along characteristics.

E Energy per unit mass.

F Numerical volume flux.

K Transonic similarity parameter, K = 2-QO

.3 M,,

I Identity matrix.

M Mach number.

m Similarity parameter, m = 1- Mci.

R CFL number.

P Pressure.

P{W} Numerical flux operator.

<q Velocity vector.

R Radius of curvature.

R Far field boundary functional.

S Linearized similarity transformation.

S Riemann similarity transformation.

t time.

U Free stream velocity.

u', v' Perturbation velocities.

W Conservation variables.

W Natural primitive variables.

W Riemann primitive variables.

X, y Spatial coordinates.

X x component of the flux vector.

Y y component of the flux vector.

-7 Ratio of specific heats ; 1.4 for air.
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6,83 Difference operators.

A Increment or change.

E Wavy wall amplitude.

E Pressure Switch.

Transformed space coordinate.

r7 Transformed space coordinate,
also, Surface normal vector.

E Curvature.

S2, c4 Dissipation constants.

A Wavy wall wavelength.

also, Characteristrics.

A Characteristic matrix.

vi,, Normalized second difference of pressure.

p Density.

a- Control volume.

0 Perturbation velocity potential.

Subscripts:

body At the wall.

c Corrected boundary value.

ff Far field value.

i, jCell and node indices.

k Face index.

p Predicted interior boundary value.

ti Normal to grid boundaries.

Tangential to grid boundaries.

!a Periodic face index.

o Freestream or reference state.

Superscripts:

n Time step index.

+ Nondimensional.

* Stage increment.

Linearized or Natural system.

Riemann system.
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Chapter 1

INTRODUCTION

The steady inviscid irrotational flow of a compressible fluid past a small amplitude

sinusoidally varying wavy wall has been well explained using small perturbation the-

ory[1] [2]. For the subsonic and supersonic cases, the solutions are obtained by neglecting

higher order terms in the perturbation equations. The resulting linearized perturbation

potential equations can then be solved analytically[1]. For the case of transonic or

hypersonic flow the small perturbation equations contain additional nonlinear terms

which may not be neglected. In this case, the equations must be solved numerically.

Chang and Kwon[3] have performed the calculation for transonic flows using the tech-

niques originally developed by Murman and Cole[4] and subsequently expanded upon

by others [5] [6] [7] [8].

Solutions to the wavy wall problem obtained using the classic approximations are,

as a consequence of Crocco's relation, isentropic. The validity of using this model

to compute a transonic flow with shocks must be questioned. The transonic cases

studied by Chang and Kwon result in shocks with a total pressure loss of at most

0.4 percent. Consequently, the isentropic flow assumption may be satisfactory for these

cases. However, for flows with stronger shocks the Euler equations would clearly provide
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a better model of the flow nonlinearities. Relaxation of the isentropic flow restrictions,

however, introduces other issues which must be addressed.

For wavy walls with larger amplitudes or higher flow velocities, the shock strength

may increase dramatically. The resulting entropy increase and total pressure loss would

then be convected downstream. Any subsequent shocks would therefore be weakened

by the aggregate total pressure loss of the preceding shock(s). Since this flow must

have an intial shock followed by a series of weaker shocks, the implication is that the

problem may no longer be a boundary value problem but rather it may be an initial

value problem. Eventually the flow field may reach a condition where it is periodic in

space, however, there is no guarantee that this is going to be the case. If the problem

is truly an initial value problem, then it will not be possible to use periodic boundary

conditions for computing the flow field.

The problem of interest is the time accurate computation of an inviscid compress-

ible flow past a sinusoidally varying wall of arbitrary amplitude. The wall may or

may not have a flat region upstream and downstream of the bumps, and the bound-

ary condition to be applied may or may not be periodic. Since the solution can be

highly nonlinear, the Euler equations must be solved numerically. Because time accu-

racy may be important, it will be judicious to choose a numerical algorithm which is

time accurate. For the results presented herein, the finite volume technique developed

by Jameson, Schmdit, and Turkel[9] has been used. Time accuracy was maintained by

integrating with an explicit four stage Runge-Kutta scheme. The implementation is

12



such that the algorithm may be run using either a fixed CFL condition or a fixed time

step. The fixed CFL condition allows for faster convergence of those solutions which

have steady state solutions that do not have to be computed time accurately.

The solutions to be presented cover a wide variety of classic wavy wall and sine

bump problems. For all three regimes of flow (subsonic, transonic, and supersonic)

the problem has been solved as an initial value problem using multiple bumps. This

problem is very similar to the Ni bump problem[10]. The main differences between

the Ni problem and the one presented are the possibility of multiple bumps and the

inclusion of a free upper boundary instead of a solid wall. For small amplitude waves

both the subsonic and supersonic classic wavy wall problems were tried by imposing the

small perturbation solution at the boundary of the computational domain. In addition,

solutions in all three regimes were attempted using a formulation consisting of boundary

conditions that were periodic in the flow direction.

During the course of the investigation it was discovered that the implementation

of the boundary conditions seriously impacted on the flow computation. Numerous

implementations of the boundary conditions were tried with varying degrees of success.

As mentioned previously the problem was attempted using three formulations, (periodic,

imposed potential, and multiple bump). In each case there is at least one boundary

which may be considered free or open. Along these bounadaries the boundary conditions

were implemented using both linearized invariant and Riemann invariant formulations.

Because the solutions for the multiple bump flows were expected to be computationally

13



expensive an investigation into the relative merit of the two approaches was undertaken.

Using a Ni bump type formulation, a single sine bump along a flat wall with a free top

boundary was examined in both subsonic and transonic flow using both the linearized

and Riemann invariants.

The results of the comparison between the linearized invariant and Riemann in-

variant boundary conditions provided some surprises. The expected result that the

Riemann conditions generally lead to faster convergence was verified. The unexpected

result was that for low Mach number flows the linearized boundary conditions resulted

in a transient phenomena that prevented convergence. The reasons for this are not

conclusive and more research is required in this area. However, based on observations

of the solution details, some conjectures will be put forth.

The results of the numerical evaluations of the subsonic wavy wall problem show

that the Euler flow appears to be periodic and that it may be obtained using any of

the formulations described. It is found that the multiple bump method is the most

expensive and the imposed potential method is the least expensive.

The transonic problem can be solved either as a multiple bump problem or as a

periodic problem. In this case it is found that the problem is best described as an initial

value problem. The solution consists of a series of shocks that become progressively

weaker as the fluid flows over each successive wave crest. The weakening process con-

tinues until the flow reaches a condition where the stagnation pressure loss is sufficiently

high enough to result in waves with a single sonic point. From this point on the solution

14



appears to be periodic in space.

The supersonic results show that unless very specific criteria are met the problem

can not be solved using the boundary conditions outlined above. In particular, it will

be shown that both the linearized and Riemann invariant boundary conditions reflect

waves incident on the outflow boundary unless the far field information provided to the

boundary conditions correctly sets the two dimensional supersonic characteristics.

15



Chapter 2

THE POTENTIAL WAVY WALL

The wavy wall problem is the classic example of an application of the linearized

small perturbation equations to the solution of a fluid flow problem. To provide an

adequate base from which to consider the Euler solution to the same problem, it will

be instructive to first outline this solution. The first step will be to state the linearized

small perturbation equations and their associated boundary conditions. The solution

for subsonic flow over a sinusoidally varying wavy wall will then be presented. This will

be followed by the solution for the supersonic case. Finally, the non-linear transonic

case, will be discussed.

2.1 Small Perturbation Equations

Consider a flow field where the velocity, q', may be represented as the sum of a

uniform far field velocity and a small perturbation to that field. In two dimensions, for

a uniform far field flow in the x direction, this statement takes the form

qi = U + u' (2.1a)

q2 = V' (2.1b)

16



Here, u' and v' are the peturbation velocities and U is the uniform far field velocity.

These velocities may be substituted into the equations of motion for the steady, inviscid,

isentropic, flow of a compressible fluid [1],

o&qi 2 aqkq ,qj -- = a . (2.2)

Here a2 is the square of the local speed of sound which is obtained from the energy

equation for a perfect gas,

a2 =a, - (2u'U + u,2 + V, 2 ). (2.3)
00 2

Perfoming the indicated substitutions and neglecting small terms, yields the two-

dimensional small perturbation equation,

(1 - M2) 8 U+ = M2(+ 1) . (2.4)0 0 dx 8 y U ax

As developed, equation (2.4) is valid for subsonic, transonic, and supersonic flow. By

restricting the fields of interest to those which are either subsonic or supersonic the

terms on the right hand side can be dropped. The result is the classic small perturbation

equation.

(1- M2 + 0 (2.5)
ax 09y

Introducing the additional assumption that the flow field is irrotational, implies that a

velocity potential, 0, exists and may be defined,

Ua - 1 -. (2.6)
4X' 9y

17



Substituting equations (2.6) into the small perturbation equation (2.6) yields a result

for the perturbation potential,

( -)20. (2.7)

The result is a second order linear partial differential equation whose type is dependent

on the sign of the leading coefficient. For subsonic flow the equation is elliptic and is

easily solved by separation of variables. For supersonic flow the equation reduces to a

simple wave equation (hyperbolic type) and is solved by characteristic methods.

2.2 Perturbation Boundary Conditions

The solution of the governing equation for some arbitrary flow field and geometry

requires that certain boundary conditions be specified. In particular, it is necessary to

specify a condition for all solid boundaries as well as a far field condition. The condition

at impermeable boundaries ensures that flow does not pass through that boundary. The

far field condition generally takes the form of a restriction on unbounded growth of the

perturbations. These conditions are detailed below.

2.2.1 Solid Boundary Condition

At the surface of an impermeable solid boundary it will be necessary to impose the

so called tangency condition. This states that at the solid surfaces the velocity vector

must be at right angles to the surface normal vector. If the geometry of the surface is

18



described by the parametric equation,

B(x, y) = 0, (2.8)

then the boundary condition takes the form,

q - VB(x, y) = 0. (2.9)

Introducing the perturbation velocities from equations (2.1) into the above result yields

, + B(x, y) ,8B(x, y) -0. (2.10)
(ax ay

Recalling that the perturbation velocity is much smaller than the far field velocity,

u' < U, it is possible to neglect the term involving u'. If this can be done, then the

boundary condition at a solid wall can be approximated by

U aB(x, y) ,8B(x, y) 0. (2.11)

This result may be rearranged to show that on the body

V'(X, Y)body = U (-) . (2.12)

If the flow field contains purely small perturbations, one further simplification can be

made. It is clear that the geometry must consist of small deviations from some neutral

locus. This implies that the geometry must be thin and that it deviates very little from

y = 0. Within the framework of small perturbation theory the boundary condition can

therefore be imposed at y = 0, where it becomes

v'(x, 0) = U ( ) . (2.13)
dx body

19



Finally, recall the definition of the perturbation potential given by equation (2.6). Sub-

stituting into eqaution (2.13) it can seen that

a =(x) '(x, 0) = U dy) (2.14)
9y bdx ody

is the solid surface boundary condition for the perturbation potential equation.

2.2.2 Far Field Condition

In addition to applying the flow tangency condition at solid surfaces, it will be

necessary to say something about the nature of the flow at the far field. The exact

nature of this specification is problem dependent. It generally takes the form of a

statement that at the far field the velocity perturbations are either zero or finite. A

mathematical statement of this condition would take the form

ad(9Xff),ff) = (2.15a)
09 X

8#(xff, yff) = R2 (2.15b)
ay

where R1 and R2 are finite and the subscript ff indicates the far field location. The

parameters, R, and R2 may be constant or they may be functions of xff and/or yff.

20



2.3 Flow Past a Wavy Wall

Consider the flow past a sinusoidally varying wall, such as the one shown in Figure

2.1. The boundary equation for this wall takes the form

y - esin A x (2.16)

where E is the amplitude of the wall bump, and A is its wavelength.

A
C

x

Figure 2.1: A Sinusoidally Varying Wavy Wall

For either subsonic or supersonic flow the solution may be found by solving equation

(2.7) subject to the boundary conditions that,

84(x, co)
ax

ao(x, oo) are bounded
ay (2.17)

and along the wall, y = 0,

a4 (x,O ) = U E2 r C ( 2 x )

aA . (2.18)

21
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The latter is a statement of the flow tangency condition derived from equations

(2.14) and (2.16). The first condition ensures that the peturbation velocities do not

grow at large distances from the wall.

2.3.1 Subsonic Wavy Wall Solution

Start by considering flow over the wavy wall when the free stream Mach number

is subsonic, and there is no transonic flow at any point along the wall. For this flow

1 _ M, is greater than zero and the governing equation, (2.7), is clearly elliptic

in nature. The solution is obtained by rewriting the equation as,

a 20 1 a 2 0
2  - = 0 (2.19)

and then looking for a solution of the form,

4(x, y) = P(x)Q (y). (2.20)

Substituting the assumed solution into the governing partial differential equation yields

"+ 1 9" = 0. (2.21)
P m2

The first term of this result is a function of x alone while the second term is strictly a

function of y. The equation is therefore separable, and may be written as the system,

1
-"= -2(2.22a)P

1 I
Q" = k2  (2.22b)

m2 Q
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where k is a real constant. The general solution to these equations is given by,

P(x) = c1 sin(kx) + c 2 cos(kx) (2.23a)

Q(y) = c3e-mk + c4emkv. (2.23b)

Application of the far field boundary condition, equation (2.17), implies that c4 = 0.

The boundary condition along the wall, equation (2.18) can be easily satified by selecting

c1 = 0 and k = f with

C2C3 = U2r (2.24)
Amk

Collecting the various terms and substituting into equation (2.20) the perturbation

potential is found to be

-UEcos (xr)
O(x,y) 2 e-Y l . (2.25)

V/1 - Mo

The velocity at any point in the field is found by combining equations (2.1) and

(2.6) with the result just determined. The resulting field is then given by

Uc27r sin (X2) -21
qi(x, y) = U + ' '1 l-c2 e- ~A (2.26)

-UE27 cos (x!) 2r
q2 (X)Y) = A je1 /3A 1 (2.27)

The solution for the subsonic flow case indicates that the largest perturbations

occur near the wall. The magnitude of the perturbations decays exponentially above

the wall and the perturbations are periodic in the x direction. The exponential decay

away from the wall is attenuated by the factor V1- M20I so, as the Mach number

increases, the attenuation becomes slower. An example of the solution is shown in

23
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Figure 2.2: Subsonic Flow, M = 0.5, Over a Wavy Wall, E = 0.01

2.3.2 Supersonic Wavy Wall Solution

Consider now the case in which the flow over the wavy wall occurs at supersonic

velocities. For this case, m 1 - M. is less than zero so that the governing equation

is now hyperbolic. Introducing the change of variables A2 = -M 2 = M2 - 1, the

governing equation may be written as

a20 1 a20 = 0. (2.28)
1X 2  A 2 8;2

This equation is a simple wave equation, which can be solved by looking for a solution

of the form,

O(x, y) = F(z - Ay) + G(x + Ay). (2.29)

The boundary conditions are identical to those given for the subsonic case, equations

(2.17) and (2.18).
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The solution proposed above is characteristic in nature. Along the lines x - Ay,

the solution has F = const., and along the lines x + Ay, the solution has G = const..

Considering only the upper half plane for left to right flow, it is clear that the funtion F

holds along downstream inclined characteristics that originate at the wall. On the other

hand, the function G holds along the upstream running characteristics that originate at

infinity. To prevent the influence of the wall from progating upstream in a supersonic

flow, a physical impossibility, it is necessary that the function G be identically zero.

Therefore, the solution is of the form

O(x, y) = F(x - Ay) (2.30)

Substituting this form of the solution into the equation for the solid wall boundary

condition, equation (2.18) it is seen that

Ue2ir /2~x
AF'(x) = - A cos ) (2.31)

Here F' denotes the derivative of F with respect to x - Ay. Integrating this result, and

noting that constant can be set to zero with no loss of generality, the solution becomes,

F(x) = sin (27x) (2.32)

and thus the perturbation potential is

Ue 27r
O(Xy=- sin 0 i (2.33)

S) VM-02- 1 (A0
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Figure 2.3: Supersonic Flow, M = 1.5, Over a Wavy Wall, E = 0.01

As before, the velocity at any point in the field can be determined from equations

(2.1) and (2.6). For the supersonic case the result takes the form

q1(x,y) = U - U c2,r Cos (2 - M-- 1" (2.34)

q2 (X, Y) = C22os X - yIVM2-1 .(.5
A'AL00'(2.3L5J

The solution for the supersonic case, like the subsonic case, is periodic in the

x direction. Unlike the subsonic case, however, the supersonic solution contains no

exponential decay. Instead the perturbations are constant along the characteristic lines.

This case is an example of a far field which is finite but periodic in x. An example of

this flow is shown in Figure 2.3.
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2.3.3 Transonic Wavy Wall Solutions

Finally, consider the case of flow over the wavy wall when the free steam Mach

number is sufficiently high to allow the field to accelerate through the sonic conditions

over a portion of the boundary. For this transonic flow, it is necessary to retain the

nonlinear terms on the right hand side of equation (2.4). Consequently, there is no

simple analytical solution for this case. The problem can be solved numerically, and

such a computation has been performed by Chang and Kwon [3].

The computations by Chang and Kwon are reported in terms of the transonic

similarity parameter,

1 -M2
K = 2M0 (2.36)

C3 moo

The parameter is such that the value K = 0 represents the boundary between subsonic

and supersonic free stream Mach numbers. By performing numerical experiments the

authors found that the flow becomes supercritical for transonic similarity parameters of

K < 7.03. The computed results indicate that solutions to equation (2.4) are periodic in

the x direction. For flow fields in which 0 < K < 7.3 (the transonic regime) the results

consist of a subsonic flow field with an embedded supersonic region which generally

terminates in a shock. At the value of K = 0 there a pure sonic point on the crest of

the wave. As the free stream Mach number is increased (K dropping) the sonic point

moves forward on the wave and a terminating shock occurs on the rearward face. As

the value of K is dropped further the shock strengthens and moves further aft of the

wave crest.
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Chapter 3

EULER FORMULATION

The formulation of the wavy wall problem assuming two-dimensional, inviscid com-

pressible fluid flow is somewhat different than that for potential flow. In particular, the

governing equations must allow for solutions which may be unsteady and which may

have entropy generation. The governing Euler equations for such flows will be sum-

marized below. The non-dimensional form of the governing equations will be outlined.

Finally, the physical boundary conditions will be developed.

3.1 2-D Euler Equations

The flow of a compressible inviscid fluid is governed by the Euler equations. For a

two-dimensional flow, if we let p, u, v, P, and E denote the density, Cartesian velocity

components, pressure and energy per unit mass, then for a perfect gas the equation of

state becomes

E = + U2 + (3.1)
p(Y - 1) 2

where -y is the ratio of the specific heats. The unsteady Euler equations, representing
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conservation of mass, momentum, and energy, may then be written in integral form as

a IfWdx dy + (Xdy - Ydx) = 0, (3.2)

where the integral is evaluated over the control volume a bounded by the closed curve

au. The conservation variables W and the flux quantities, X and Y, are given by the

relations
P Pu Pv

pu pu2 + P puv
W ,X= Y= (3.3)

pv puv PV 2 + P

pE pEu+Pu pEv+Pv

If steady state solutions to these equations are desired, it is possible to reduce the

system to a three equation model. This is done by noting that in the steady state, the

total enthalpy is constant. The system can then be reduced to the isoenergetic Euler

equations [11]. For the wavy wall flows under consideration it is not clear that the

solutions will be steady. For this reason, the complete system of equations obtained

above will be retained and the four equation model will be used throughout.

3.2 Nondimensionalization

To simplify the implementation of the numerical algorithm, it is recommended

that the governing equations be nondimensionalized. The effect of the transformation

is transparent to the governing equations while, at the same time, it simplifies the

boundary conditions. Since the form of the Euler equations does not change under the

transformation, any choice of consistent nondimensional parameters may be used.
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In the algorithm developed below, the flow variables have been nondimensionalized

by the far field static density and velocity. For the purposes of this report, the far field

is defined as the region y = +oo. In addition, the Cartesian coordinates have been

nondimensionalized to obtain a unit wavelength for the wall. Denoting nondimensional

values by ()+, and denoting the far field quantities by ()ff the flow variables become

U+= U = _V
Uff Uff (3.4)

p+ P 2 p= + =
PffUf P ff Uff

From this point on however, the superscript notation will be dropped and all quantities

will be interpreted as being nondimensional.

3.3 Boundary Conditions

The Euler equations alone are insufficient to uniquely determine a fluid flow field.

It is necessary to close the system by introducing appropriate boundary conditions. The

boundary condition formulation developed below is purely analytic. The specific details

for a wavy wall and the implemention of the boundary conditions in the numerical

algorithm will be discussed later.

3.3.1 Solid Boundary Condition

Looking first at the physical boundary conditions, note that solid surfaces will be

considered impermeable. If the fluid velocity vector is q' and the outward unit normal

vector to the surface is j, then the no flux condition is simply

p -=(3.5)
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If the Euler equations are written in natural coordinates,

pu pq -*nu + Pr7x

fI Pu dzdy+> ds = 0, (3.6)
pv pq -77v + Prjy

pE, pq - ij(E + P)

then from equation (3.5) it is clear that the no mass flow condition eliminates all wall

fluxes except the pressure flux in the two momentum equations.

3.3.2 Far Field Condition

A unique solution to the Euler equations requires the specification of a far field

condition. The usual approach is to specify the free stream flow condition. This condi-

tion should be specified at an infinite distance from the body. From a practical point

of view, this boundary condition is of no use in a numerical algorithm where the com-

putational boundary does not occur at infinity. Thus, the numerical scheme generally

employs some other boundary condition at the edge of the domain. For the algorithm

used herein a number of different numerical boundary conditions have been tried. A

complete derivation of each will be presented after the interior algorithm is described.
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Chapter 4

INTERIOR NUMERICAL ALGORITHM

Determination of the flow field over a wavy wall using the Euler equations requires

the development of a discrete approximation to the governing equations. The discretized

system must then be integrated in time to determine the solution. In this work, the

finite volume multistage scheme developed by Jameson, Schmidt, and Turkel[9] has been

used. This method has the advantage of being able to accurately march forward in time.

The spatial discretization and time marching techniques are outlined below along with

a discussion of the grids used. Because it was found that the boundary conditions had

a large impact on solution convergence, the discussion of their implementation will be

deferred.

4.1 Finite Volume Formulation

The multistage scheme developed by Jameson, Schmidt, and Turkel assumes a

solution that is spatially discrete. This discrete approximation to the spatial derivatives

yields a large coupled set of ordinary differential equations which are integrated in time

using a Runge-Kutta formulation. By fixing the time step it is possible, if certain

criteria are met, to accurately march forward in time. It is also possible, under the
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assumption that there is a steady state solution, to march forward at an accelerated

rate to an asymptotic time-invariant state.

4.1.1 Grid Generation

The problems to be considered herein are such that the displacement of the elevated

or wavy region of the solid wall is a sine wave of the form

y = esin(22rx), (4.1)

where it has been assumed that the wavelength, A, is 1. The problems considered,

however, are not restricted to the classical wavy wall problem which is infinite in x.

Thus, some of the solutions consist of one or more sinusoidal bumps with a flat upstream

and downstream region.

Solutions to the Euler equation are to be found in a rectangular region surrounding

the wave(s), see Figure 4.1. Since application of the solid wall boundary conditions

is simplified for an orthogonal grid, the following grid generation technique has been

used. For a given rectangular region, the upper constant y surface and the lower solid

boundary surface are defined such that the points in the x direction have a constant

Ax. The inflow and outflow boundary points are defined at constant x locations with

the y points distributed using an exponential stretch.

It is then assumed that in some transformed space, (g, 17), the grid satisfies the

Laplacians

a 2Y a2y

+ = 0 (4.2a)
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+ =0. (4.2b)
a?2 a 2O + a7

The grid is developed by first solving equation (4.2a) for the y coordinates interior to

the domain. This is done by applying a straight forward Gauss-Seidel technique, with

= A17 = 1,

y l = 0.25(yn++j + + ,!-1 + Yn+ii + Y,+i) (4.3)

to an initial grid obtained by scaling the y coordinates at each x location to those at

the inflow.

The solution for the x coordinates could be found by developing an equation similar

to that for the y direction. Unfortunately, this would result in a series of constant x

lines that would not be orthogonal to the lines found previously. This occurs because

the system (4.2), does not necessarily imply that the Cauchy-Riemann condition

ax ay ax _ dy
- - - -- -(4.4)09 a a an

is satisfied. This condition is enforced by first writing equation (4.2b) as

xn+1 = 0.25(n++1 + t l + Xn+1,j + Xn ). (4.5)

Recalling that the the y points have already been fixed, the Cauchy-Riemann condition

then becomes,

xj ' = x~t' - (yi+1,j - yi-ij). (4.6)
1,3+1 2,3-1

Substituting this result into equation (4.5) yields the grid generation scheme for the x

points,

ztl = 25(Xn+ + 2x 1 + +1,j - yi,+,j + yi-1,j). (4.7)
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It is worth noting that the imposition of the first of equations (4.4) in (4.2b), guarantees

that the second equation is satisfied to within a constant, which is set to zero by selecting

a rectangular transform space.

Grid generation using the technique implied by equations (4.3) and (4.7) works well

as long has the wave amplitude is not too high. The method is easy to code, converges

rapidly, and because it does not use the node j + 1, it can be used to automatically

redistribute the x points along the upper surface. For cases where the wave amplitude

is too large the method can be modified to solve the two equations simultaneously.

Examples of the grids obtained using this technique are shown in Figure 4.2.

4.1.2 Spatial Discretization

To visualize the spatial discretization, consider some representative cell within the

grid, Figure 4.3. The coordinates are stored at the cell nodes while the conservation

variables, W in equation (3.3), are stored at the cell centers. Assuming the conservation

variables are constant over the cell, then for each cell in the domain equation (3.2) may

be replaced by the system

' p Fkpk

a PU 4 Fk(pU)k + AYkPk

at A + F = 0. (4.8)
pv k=1 Fk(pv)k - AxkPk

pE Fk (pE)k+ FkPk

Here, A is the cell area, and k is the subscript for the cell face. In addition, Fk is the
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volume flux of the kth cell face, which is given by

FA = AYkuk -AXkVk. (4.9)

The values of the conservation quantities at each face in equation (4.8) are obtained by

averaging the values of the appropriate conservation variables on either side of the face.

The value for the pressure is obtained by averaging the two pressures implied by the

conservation variables on either side of the face. It is clear from equation (4.8) that the

scheme is conservative and should, therefore, correctly predict the shock location and

jump relations.

4.1.3 Artificial Dissipation

The finite difference scheme outlined above is equivalent, on a Cartesian grid,

to a second order central difference scheme. Unfortunately, this makes the technique

susceptible to odd-even decoupling. It is therefore necessary to add artificial viscosity

to the scheme.

To reduce the occurence of odd-even decoupling a fourth difference smoothing op-

erator is applied to each cell. In addition, a second difference smoothing operator is used

to smear the shocks over a few cells, thereby allowing the algorithm to properly capture

the shocks. This treatment at the shocks retains the correct shock jump relations[12].

The discrete approximation for the Euler system, equation (4.8), may be written

in the alternative form,

d-{AW} + P{W} = 0. (4.10)
dt
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Here P{W} is the operator,

Fkpk

4

P{W} = E<
k=1

Dissipation is added to the scheme by modifying equation (4.11) to be of the form,

4

k=1

FkPk

Fk( PU)k + yk Pk

Fk(PV)k - D}XkPk

Fk(pE)k + FkPk

(4.12)

where D{W} is the dissipation operator which is a blend of second and fourth differences.

The dissipation operator used for this work closely follows the development given

by Jameson, Schmidt, Turkel[9]. The operator may be written as

(4.13)D{W} = (A) [E 2 Sk{W} -4){W}]
k=1

where the difference operators, Sk{W} and 83{W}, are, for the face k = 2, of the form

bk{W} = Wi+l,j - Wj (4.14a)

(4.14b)63{W} Wi+2,j - 3Wi+ 1 ,j + 3Wi,j - Wi-ij.

The second difference pressure switch, 4 2), at the face (i + , j) is given by

(2) 2
ek =I MAX{vi+1,j , v;,j} (4.15)
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with similar representations for the other faces. Here v is defined for each cell as

V.j .= Pi+1,j - 2P,j + Pi- 1,,j (4.16)
Pi+,j + 2Pi,j + Pi 1 ,41

The fourth difference pressure switch is of the form

- = MAX{0, r4 - e2) (4.17)

and is defined so the second and fourth difference operators are mutually exclusive.

The constants 2 and K4 are user input parameters that set the dissipation level.

The constant 2 controls the smearing of shocks. For the solutions reported here it has

been set to 2 = 0.25 for all fields characterized by supersonic flow. For all subsonic

cases it has been set to zero. The constant 4 adjusts the background dissipation level

for the scheme. A value of 0& = 0.0075 has been used for the results reported.

At the boundaries of the domain, the dissipation scheme must be modified to

maintain global consevation. Eriksson[13] has shown that setting the dissipation flux

on a boundary face to zero, results in a globally dissipative smoothing operator that is

also globally conservative. The algorithm used herein uses this approach in applying

the artificial viscosity.

4.2 Time Integration Schemes

Applying the spatial discretization to each cell in the domain results in a large

system of coupled ordinary differential equations which are to be marched forward in

time. If a time accurate solution to the problem is desired, it will be necessary to march
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in time using a fixed At at each cell. The At so choosen must be governed by the At

for the most restrictive cell in the domain. This can lead to rather lengthy computation

times but it is unavoidable for time accurate solutions using an explicit method. On

the other hand, if only the steady state solution is desired, then it is possible to march

using the maximum allowable time step at each cell. This is called local time stepping.

Both of these techniques are described below.

4.2.1 Time Marching Scheme

Assuming the grid within the domain remains fixed, then the Euler operator may

be written in the form

d
-{AW} + P{W} = 0, (4.18)
dt

where P{W} is the combined spatial and dissipation operator. Time marching of the

result is obtained by using a multistage Runge-Kutta type technique. The first stage is

an Euler predictor half step,

Wn+* = Wn - At(P{Wn}). (4.19a)
2 A

This stage is followed by a backward Euler corrector half step,

R At
Wn+** = W" - A(P{Wn+*}). (4.19b)2 A

The third stage is a full step midpoint rule predictor,

Wn+*** = W" - A(P{Wn+**}). (4.19c)A
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Finally, the next time step is obtained from a full step Simpson's rule corrector,

Wn+l = W 6A (P{W"} + 2P{Wn+* } + 2P{Wn+**} + P{Wn+***}). (4.19d)
6A

Here, N is the CFL number, which for stability reasons must be less than 2V'2. The

time step for each cell is given by,

At = AJ + A (4.20)

where a is the local sound speed and Ai and Az are the minimum cell dimensions.

4.2.2 Time Accurate Solutions

The mulitstage technique described above can be used to obtain fourth order ac-

curate time integration. This is done by setting the CFL number to unity, (1 = 1), and

using a time step that is less than the most restrictive cell step,

At ; MIN {[Ju a+ v+a]-1}. (4.21)
LAzi Ay ;,j

Since the dissipation is a spurious factor it is not necessary to recompute it at each

stage of the Runge-Kutta scheme. This allows for less computational effort while still

maintaining time accuracy.

The solution is marched forward in time from some starting solution, which should

be physically accurate. For flows which are perturbations to a steady state the starting

solution can be the steady state solution. For other flows, however, the starting solution

might be the stagnation condition. The latter case is unfortunate because it leads to

lengthy and expensive computational runs.
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4.2.3 Asymptotic Steady State

For flows where it is suspected that there is a steady state solution, it is possible to

accelerate the scheme. For this case the largest possible CFL number is chosen and each

cell is advanced at its maximum time step. As in the previous case, the computational

effort can be decreased by freezing the dissipation to the first stage value. For the

majority of cases to be presented here, the algorithm was run in this fashion.

EXTERIOR DOMAIN

INTERIOR DOMAIN

Figure 4.1: Solution Domain for a Wavy Wall
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Figure 4.2: Sample Grids Using Equation (4.7)
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Figure 4.3: Representative Cell
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Chapter 5

NUMERICAL BOUNDARY CONDITIONS

To obtain a unique solution to the wavy wall problem using the numerical algo-

rithm described previously it is necessary to add numerical boundary conditions. These

conditions are applied at some arbitrary grid boundary, see Figure 5.1. Unfortunately,

the analytic boundary conditions are not always defined at the same location. There-

fore, great care must be exercised when implementing certain boundary conditions,

particularly inflow and outflow conditions. Thankfully, solid wall and periodic bound-

ary conditions are not as difficult. These conditions will be described first. The general

formulation for one dimensional characteristic boundaries will then be reviewed. This

is followed by a description of the linearized conditions and the Riemann invariant

formulation. Finally, application of the boundary conditions will be discussed.

5.1 Solid Wall Boundary Conditions

For those cells which have faces on the wavy wall it will be necessary to apply the

solid wall boundary conditions given by equations (3.5) and (3.6). As shown previously,

this implies that the pressure on the face is known. The pressure on these faces is
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obtained from the normal momentum equation

- - (5.1)
('(9 /j body R}body

where R is the local wall curvature. Here the velocity at the wall, Figure 5.2, can either

be obtained by taking the cell center value or it may be extrapolated from the interior

using a second order Taylor expansion,

(pq 2)body (pq 2 )1A17 2 - (pq 2) 2 A?71 (5.2)
A 172 - A1

For the cases reported here the choice made little difference to the final solution. In

general, however, the latter choice is superior and is used for the results presented.

The radius of curavture is determined by noting that for any surface described by

y = B(x), the curvature, E = }, is given by

B" (x) (5.3)
(1 + B'(z2

Substituting equation (4.1) into this result yields

1 -47r 2E sin(27rx) (54)
R (1 + [2re cos(27rx)]2)2

as the radius of curvature for the wavy wall.

Once a normal pressure gradient has been determined from equations (5.1) through

(5.4), the pressure at the wall is found from the discretization

Pbody = P1 - A?1 .bo (5.5)
191 body

This technique gives a second order accurate computation for the pressure at a solid

wall face. 45



5.2 Periodic or Repeating Conditions

It has been shown previously that the small perturbation solution to the wavy wall

problem is periodic in space. While it seems unlikely that periodic flow will correctly

represent the solutions for transonic and supersonic Euler wavy walls, it is possible that

such solutions may exist for the subsonic case. Consequently, it will be informative to

develop a periodic boundary condition for the algorithm.

Consider a grid, Figure 5.3, characterized by left and right boundaries which are

displaced by exactly one wavelength, A, of the wavy wall. If, as expected, the solution

is periodic in the x direction, then it must be that

W(x + A) = W(x) (5.6)

Implementation of periodicity on the indicated grid implies that the left faces of the

inflow cells must have the opposite flux values as the right faces of the outflow cells.

Because a finite volume formulation with integration around the cell faces has been

used, the periodic boundary condition is easily enforced. In particular, the averaging

for the those faces, k, which are periodic, k = a, is obtained from

1
Wa = - (Wi, + Wimaz,j). (5.7)

2

With this definition the flow that exits the right boundary will be convected back in the

left boundary. It should be clear that this formulation has the distinct disadvantage of

slow convergence. This is because the top boundary in now the only boundary through

which spurious waves may escape the solution.
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5.3 Characteristic Boundary Conditions

Application of the far field boundary conditions to an arbitrary grid boundary must

be done with great care. It is necessary that any numerical boundary condition allow

for both the correct solution near the wall and the nonreflection of spurious waves in the

domain. It has been shown by Enquist and Majda[14] that this is easily accomplished

by a one dimensional characteristic analysis. The analysis yields a set of invariant rela-

tionships for each of the characteristics. The number of boundary conditions specified

at each numerical interface is then determined by the number of characteristics entering

the numerical domain.

The linearized invariants to be outlined below have been derived in more detail

by numerous authors[15][16][17]. Depending upon their implementation, the linearized

equations have the disadvantage of being slightly reflective to spurious pressure waves.

Improvement of this situation can be obtained by using the Riemann invariants instead.

A derivation of this boundary condition will also be presented.

5.3.1 Linearized Invariants

The linearized characteristic equations are found by considering the one-dimensional

Euler equations. Written in a natural coordinate system aligned with the boundary the

primitive variable form of the Euler equations becomes,

aw ~ a@
+ A =0 (5.8)

at ax
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where,
p q,7  p 0 0

qn . 0 q, 0 1

A- (5.9)
q 0 0 q,7  0

P 0 pa2  0 qy,

Here, q,7 and q. are the normal and tangential velocities at the boundary. They are

defined such that postive values correspond to inflow.

The characteristic form of the Euler equations is obtained by diagonalization of the

primative variable form. Introducing a similarity matrix, S, equation (5.8) is written

as

-1at + ~ 91 3 W -0. (5.10)
at Ox

Equation (5.10) is next linearized by assuming that the similarity matrix is frozen and

may be moved into and out of the derivatives. The resulting system has the form

+c A =a , 5.1
at ax

where A is a diagonal matrix composed of the A matrix eigenvalues and 5 is the vector

of characteristic invariants for the Euler equations. If the eigenvalues of the matrix A

are given by, An, then the diagonal matrix is found from the similarity martix using

A = Diag(A1 , A2 , A3 , A4 ) = S'AS. (5.12)

The vector of boundary compatibility relations then follows from

1 = C ~-4I. (5.13)
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The eigenvalues of the matrix A are given by the roots of the characteristic equation

I(A - AI)I= 0, (5.14)

where I is the identity matrix. Performing the indicated operations it can be shown

that the eigenvalues are
A1 q

A2 = qt
(5.15)

A3 = qq + a

A 4 = q, - a

The similarity matrix is easily determined from this result by constructing the eigen-

vector for each eigenvalue. The inverse similarity matrix then follows, and can be used

in equation (5.13) to determine the linearized compatibility equations,

P

q.
(q7 = <(5.16)

Here, the barred quantities are values from the S- matrix that are frozen quantities.

From equation (5.11) it is clear that 5 is a vector of equations whose intrinsic

derivatives along each characteristic are zero. These linearized compatibility relations

are therefore invariant along the characteristics and are used to determine the linearized

boundary conditions. Since derivation of the Riemann invariant form of the character-

istic boundary conditions closely follows the presentation above, it will be presented

before continuing with a discussion of how the characteristic boundary conditions are

applied.
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5.3.2 Riemann Invariants

The Riemann invariant form of the characteristic boundary conditions can be de-

rived by considering a somewhat different form of the one dimensional Euler equations.

Following the example of Moretti[18] and Zannetti[19], consider a locally isentropic

formulation of the governing equations

+-A = 0 (5.17)at ax

where,
ln(P) q,7 -y 0 0

.. 7 In .. q 0 0
W=<A = .(5.18)

q 0 0 q,7 0

s 0 0 0 qq,

Here, s is the entropy of the flow, and the continuity equation has been written in terms

of pressure by employing the isentropic flow relationship

dP dp (5.19)
- .y - = 0. (.9

P p

The Riemann invariants are found, as before, by diagonalization of the governing

equation,

5~1aW+ a - 0. (5.20)
nt a x

Instead of linearizing the result, however, the actual similarity transformation is found.
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Observe from equations (5.14) and (5.18) that the Riemann form has the same

eigenvalues as the linearized form. If equation (5.20) is rewritten as

-1a + AS- -=0, (5.21)
at ax

where for convienence A is defined as[20],

A = S-1AS = Diag(A4, A 3 , A 2 , A 1 ) (5.22)

then the similarity matrix takes the simple form

- 7- 0 0'

1 a 0 0
T2-< > (5.23)

0 0 1 0

0 0 0 1

Finally the diagonalized system is obtained by taking the matrix inverse,

-a 1 0 0'

. It 0 0
-2 a2 

(5.24)

0 0 1 0

0 0 0 1

and substituting it into equation (5.21), yielding

1 aq A aq, a aln(P) aaln(P) -
+a t - A 4 7  0 (5.25a)

1 -y aq, + 8q+ aln(P) + Bln(P) 0(s2)
+ A3 + + A3 = 0o (5.25b)

a at a ax at ax 

aq+ A2 L = 0 (5.25c)
at ax

as+ A as 0 . (5.25d)
at + x
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The compatibility relationships are determined from the preceeding system by

introducing the intrinsic derivative along the characteristic,

b -a a- =- + A - (5.26)
bt at 8x

In addition, it will be useful to note that for isentropic flow of a perfect gas,

abln(P) 2 ba
(5.27)

I Dt -Y-1D

Multiplying the first of equations (5.25) by the v/2, the second by a , and finally

introducing equations (5.26) and (5.27) yields,

Dq,7  2 Da
bt (5.28a)

Dq 2 Da(52b
~ -+ = (5.28b)
Dt -Y - 1 Dt

Dq = 0 (5.28c)
Dt

= -0 
(5.28d)

=t 0Dt

This system of equations may be written as

- 2a

2a

-- 0, (5.29)
Dt Dt q

where C is a vector containing the characteristic variables, which are invariant along

the characteristics.
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5.3.3 Applying Characteristic Conditions

The linearized and Riemann characteristic boundary conditions were previously

derived. In each case, it was found that certain invariants or compatibility relationships

were constant along the characateristic lines. The important results may be summarized

in terms of those characteristics and their associated invariants,

P
q, P - s

qri q q
A = <> = C = (5.30)

1 ( P 2 a

-a2= Mp 1__

q, - a -1 qt + P qr7 -2_1a

Application of the boundary conditions using these results depends on whether the

boundary has incoming or outgoing characteristics. Figure 5.4 illustrates the form of

the characteristics for a boundary where q,7 > 0 implies inflow. From the figure, it is

seen that at a supersonic inflow boundary all the characteristics originate outside the

numerical domain. For a supersonic outflow boundary, the reverse is true, and all the

characteristics originate from within the boundary. If the inflow boundary is subsonic,

then three of the characteristics originate exterior to the domain. At a subsonic outflow

boundary, only one characteristic originates outside the domain and three originate

within the domain.

Application of the boundary condition is performed by enforcing the correct con-

ditions along the appropriate invariants. This means that the values of the primitive

variables are to be determined by attaching the invariant equations to their originating

locus and freezing the values there. Thus, if oc or oC are the boundary values of the
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invariants for implementing the boundary conditions and C, is the originating locus of

the applicable characteristic for each invariant equation, then the boundary values of

the primitive variables are obtained by simultaneous solution of the system

cc = Co or Cc =C0  . (5.31)

For supersonic flow the solution of (5.31) is straightforward. For subsonic flow,

however, certain problems arise when trying to solve the equation set. Consequently,

many authors implement the latter case by taking additional liberties with equations

(5.30). This is particularly true, as will be discussed shortly, at the outflow, where one

of the invariants is often replaced to simplify the implementation.

{1,JMAX} OPEN BOUNDARY {IMAX,JMAX}

OPEN or PERIODIC

BOUNDARIES

{1,11 SOLID WALL BOUNDARY {IMAx,1}

Figure 5.1: Grid Boundaries for the Numerical Scheme
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x

(1)
A~772

X- T

Figure 5.2: Pressure Extrapolation to the Wavy Wall

OPEN BOUNDARY

PERIODIC BOUNDARY

{1,i}

PERIODIC BOUNDARY

{IMAX, i}

A

SOLID WALL BOUNDARY

Figure 5.3: Boundaries for the Implementation of Periodicty
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Interior
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1,2 4
3:
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qn < O, |qn| < c

Figure 5.4: Characteristic Directions for 1-D Euler Equations
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Chapter 6

IMPLEMENTING BOUNDARY

CONDITIONS

The details of implementing the characteristic boundary conditions at those faces

which lie along the open region of the grid are discussed. The formulation for supersonic

cases is presented first. This is followed by a discussion of the simplifications often used

for the subsonic case. The modified subsonic boundary conditions are then developed.

This is followed by a discussion of the many options that can be used at the boundaries

for the far field and frozen values. Finally, a discussion of how inflow and outflow

boundaries are determined is presented.

6.1 Supersonic Boundaries

Consider a flow field where the velocity normal to the grid boundary is greater than

the speed of sound, q,7 > a. From the characteristics and invariants derived earlier

qp-s ' s '

A C =C (6.1)

-27
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it can be seen that if the boundary is an inflow boundary then all four characteristics

originate at the far field. Consequently, all invariants should be fixed at their far field

values. If the boundary is an outflow boundary then the four characteristics originate

within the computational domain. For this case the invariants should be fixed at their

interior values. An important point to be noted is that it is the normal velocity that

must be supersonic. This is an important distinction for the supersonic wavy wall,

where along the top boundary a subsonic boundary condition is used because the normal

velocity is subsonic even though the total velocity is supersonic.

6.1.1 Supersonic Inflow and Outflow

For a supersonic inflow boundary all the characteristics enter the computational

domain. Implementation of the boundary condition is performed by fixing the invariants

at their far field values and then solving the set of simultaneous equations

Cc = Cff or oc = Cff. (6.2)

Here, Cc, are the boundary values and Cff are the far field values. Fortunately, there

is no need to perform this algebra. By setting the four primitive variables to their far

field values the invariants for both forms are automatically satisfied.

Supersonic outflow is analogous to the inflow case. The only difference is that the

invariants now originate within the domain. Consequently, the boundary condition is

implemented by fixing the invariants at their interior values,

Cc = C, or Cc = C,. (6.3)
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Here the subscript, p, indicates values obtained by extrapolating the primitive variables

from the previous Runge-Kutta stage to the appropriate boundary face.

6.2 Subsonic Boundaries

Consider now a boundary where the normal (positive for inflow) velocity is sub-

sonic, Iq I < a. The system of linearized equations obtained at the outflow boundary for

this case contains some terms that are indeterminant. In addition, the Riemann equa-

tions contain a primitive variable not used by the numerical algorithm. To overcome

these difficulties many authors[9][16][17][21] use the following modified set of equations

P- P

qn q q

q,7+ a -L(q,+Q or P qp+

1 P q 2a
-a (_ -(6.4)

Here, the constant entropy condition in the Riemann equations has been replaced by an

equivalent statement that L is a constant. In the linearized equations, an alternative

third invariant has been introduced. The significance of the alternative choice, which

will be used for the outflow boundary, will be explained shortly.

6.2.1 Linearized Inflow and Outflow

For an inflow boundary which has a subsonic normal velocity, three of the char-

acteristics, (A 1 , A 2 , and A 3), originate exterior to the computational domain. The re-
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maining characteristic originates from within the domain. Correct determination of the

primitive variables requires that those invariants originating from the exterior be fixed

at their far field values. The remaining invariant is fixed by the interior values at the

boundary face. The resulting set of simultaneous equations is

Pcd2 = Pff -

9c= P11f

ql 1 0 + -~ff pa(6.5)

A pa

Here the subscript, c, indicates the boundary value to be determined , the subscript,

ff, indicates far field values, and the subscript, p, indicates interior values. For the

results reported, the interior values were obtained by first order extrapolation, to the

cell face, of those values found at the previous stage of the Runge-Kutta time stepping.

Discussion of possible far field values and frozen field values will be given shortly.

Simultaneous solution of equations (6.5) yields the primitive variables to be used

by the numerical algorithm at the boundary faces

q , = qff (6.6a)

11
PC = {Pff + Pp +~p-a(qt~f - qnp)} (6.6b)

Pc = pff + I (PC - Pff) (6.6c)

1
qtc= q7f - -- (PC - Pff) (6.6d)

pa

Since this implementation of the boundary conditions is consistent with the invariants,

the boundary should be nonreflective to plane pressure waves parallel to the boundary.
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The subsonic outflow boundary is not as easy to implement as the inflow boundary.

For this boundary there is one characteristic originating from the exterior region and

three originating from within. Correct application of the boundary condition implies

that the condition be implemented by solving the equation set

PC - Z1 P - C

% ~ + ~ =q f - (6 .7)

for the primitive variables at the boundary faces. Unfortunately, because the far field

value of q 7 is not easily determined, this system of equations is difficult to implement. To

overcome this problem, many authors replace this system with a modified set, obtained

by discarding the third invariant

PC - 12- = PP - a12

(6.8)

= Pff

The usual arguement provided for making this modification is; Since there is one in-

coming characteristic then one primitive variable can be specifed. The modified set of

equations is much easier to implement and yields the result

q =qer (6.9a)

P= Pff (6.9b)

1
Pc = p+ (PC - P,) (6.9c)
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1
gy, = qq + (PC - PP) (6.9d)

pa

This boundary condition modification works quite well in practice, and it is not

inconsistent with the steady state solution[22]. It is, however, physically inconsistent

with the invariant approach. Consequently, there is no guarantee that this implementa-

tion is nonreflecting. In fact, the method at least partially reflects some of the spurious

plane pressure waves. Because the reflected wave must exit some other boundary, the

convergence rate of steady state runs using this technique will be adversely impacted.

In addition, it is clearly not the best choice of a boundary condition for a time accurate

computations.

6.2.2 Riemann Inflow and Outflow

Implementation of the boundary conditions using the Riemann invariants formally

follows the same procedure decribed for the linearized invariants. At a subsonic inflow

boundary, the primitive variables are obtained by simultaneous solution of the equation

set

c qff

c + 2a, qff + 2 
(6.10)

- a = t~ - 2ap
qy0c - -- 1 -1p --

given by attaching the appropriate invariants to the values for their originating locus.

The solution of equation set (6.10) is made easier by introducing the definition of the
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sound speed for an ideal gas

2 l . (6.11)
p

With the aid of the sound speed, the solution for the primitive variables then takes the

form,

q , = qff (6.12a)

1 2
qy7= 1(qrlff + o,+ _ [af5 - ap]) (6.12b)

a 4 I(qff - q,1 + [aff + ap]) (6.12c)

1

PC = c (6.12d)
I Pff

P P = =(ac)
2pe (6.12e)

Pff

The implementation for subsonic outflow is virtually identical. For this case the

Riemann invariants take the form

= ) (P )p

q7c+2, qff+
2 aff (6.13)

q7c- 2a, =r~ _ 2ap

The primitive variables at the boundary faces are then determined from

q c = qr, (6.14a)

1 2
qt- 1 (qtnff + q[af+ 2 -a,]) (6.14b)

2 -Y - 2

ac= 1 (qgf - ,+ 2 [aff + ap]) (6.14c)
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PC= f (6.14d)

Pp fa)p
PC _ It (a)p (6.14e)

p 7

For both the inflow and the outflow results derived above, the equations for the

primitive variables are consistent with the Riemann invariants. Consequently, correctly

implemented boundary conditions using equations (6.12) or (6.14) will not reflect a plane

pressure wave incident on the boundary. Assuming that all incident waves are parallel

to the boundary, this implementation is much better for time accurate computations.

However, this boundary condition will reflect an incident plane entropy wave[20] at the

boundary if the interior solution is not isentropic. Fortunately, entropy reflections tend

to settle down faster than pressure reflections.

6.2.3 The Far Field

In the foregoing analysis, the primitive variables for both the linearized and Rie-

mann invariants are determined in terms of the far field values. What constitutes the

far field values has not yet been addressed. In general, the far field may be described

as that region exterior to the computational domain. Whether exterior to the computa-

tional domain means immediately exterior to it or infinitely far away form it is subject

to interpretation. For the results presented below, two different interpretations of the

far field values have been used.

Consider the case of flow past a wall consisting of one or more waves with a flat
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region upstream and downstream, as shown in Figure 6.1. This configuration is very

similar to that used by Ni[10], except that for this case the top boundary will be taken as

being open, (i.e. it is an inflow - outflow boundary). For a case such as this, the far field

will be interpreted as being the region infinitely far from the boundary. Conseqently,

the nondimensionalized far field boundary conditions will be determined from

U" = 1

V0 0 = 0
(6.15)

Po = 1

It is important to note that the above far field implies that for the left and right

boundaries,
q7f= 1

(6.16)
qgff = 0

while for the top boundary it implies,

f= 0 
(6.17)

q~ff =1

The important point of this implementation occurs with the Riemann invariant bound-

ary conditions at the outflow face. If the flow upstream of an outflow boundary contains

a significant amount of total pressure loss then the boundary condition is wrong. This

will result, as indicated before, in the reflection of an entropy wave from this bounadary.

In this event, the time accuracy of a solution must be questioned.

An alternative far field definition is available if there is no flat region upstream and

downstream of the waves. The idea is very similar to the compressible vortex correction

used by some authors[15][16] to compute flow past an airfoil. For these cases the far
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field conditions are computed from the potential wavy wall solution at the boundary.

This boundary condition will be referred to as the near field condition. The velocities

follow immediately from the boundary coordinates and equations (2.26) and (2.27) or

(2.34) and (2.35). Densities and pressures are computed, assuming constant stagnation

pressure and density, from the infinite far field values. The alternative approach can

also be used along the top boundary when periodicity has been imposed on the left and

right boundaries.

6.2.4 Selecting Frozen Values

For the boundary conditions implemented by using the equations which were lin-

earized by freezing the similarity transformation, it is necessary to decide how the frozen

field values will be obtained. There are numerous possibilities for obtaining these frozen

field values. For example, they could be obtained from the infinite far field, or they

could be taken as near field values computed from the potential solution. Other possi-

bilities include using the values from the previous Runge-Kutta stage or those from the

previous time step, (n - 1).

Since no choice is clearly superior, a numerical investigation was undertaken to see

if any possibilty should be favored. For those cases tried, all the choices led to the same

steady state result. Using the previous Runge-Kutta stage or the previous time step,

resulted in slower convergence for some of the transonic cases. For this reason those

two possibilities were eliminated.
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For the linearized results reported herein, the frozen field values were taken to be

the infinite far field values. The justification for this selection is that they needed to

be computed only once, and therefore resulted in the least computational effort. In

addition, this selection is consistent with the idea that the invariants are linearized

about the freestream flow field.

6.3 Determining Inflow and Outflow

While it seems ludicrous to undertake a discussion of how to determine if a bound-

ary is inflow or outflow, it turns out that this can have a large impact on the solution.

There are three basic ways to determine which boundaries are inflow and which are out-

flow. The first method is to arrange the grid so that a given boundary is guaranteed to

be of a certain type. The second method is to use some knowledge of what the solution

is supposed to be to prescribe the boundary type. The final method is to allow the code

to determine which boundaries are inflow and which are outflow.

An application of the first technique is the classic Ni[10 bump problem. In this

problem the upper wall is a solid surface. This guarantees, for left to right flow, that

the right face is an outflow boundary and the left face is an inflow boundary.

Application of the second method can be demonstrated by the wavy wall problem

to be presented. For this problem only a portion of the top boundary is inflow. By

knowing the potential solution, it is therefore possible to determine which portions are

inflow and outflow. Observe that the full potential solution and not some guess is
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required. This can be made clear by considering a guess like: the first half is outflow

and the second half inflow. While this guess might work for the subsonic case it will not

work for the supersonic case because the streamline crests at the top boundary may be

out of phase with the solid wall wave crests.

Suppose that it is not possible to guarantee the boundary type and that no conve-

nient guess for the solution exists. It will then be necessary to determine the boundary

type from the flow velocites in the computational cells adjacent to the boundary. In

fact, it would seem that this method is preferable, since the algorithm would then be

self contained. However, as will be demonstrated below, this technique does not always

work with the modified linearized invariants for very low Mach number flows. The cause

appears to be related to a transient inconsistency between a wave reflecting off the out-

flow boundary and the method used to compute inflow and outflow along an adjacent

boundary normal to the latter.
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Figure 6.1: Flow Past a Ni Type Configuration.
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Chapter 7

RESULTS

The results to be presented were selected to cover a range of possible flows over

the wavy wall. For subsonic flows, the problem consists of a Mach 0.3 flow over a wave

of amplitude, E = 0.01. The transonic solutions are obtained by using a Mach 0.775

flow past an E = 0.025 amplitude wave. The supersonic results are obtained for Mach

1.5 flow past waves of amplitude E = 0.001 and E = 0.01

The first solutions presented below are the results of the investigation into the

differences between the linearized boundary condition with the modified outflow and

the Riemann invariant boundary condition. These results confirm that in general the

Riemann invariant conditions are a better boundary condition for the flows to be ex-

amined. Following the boundary condition investigation, the solutions to the multiple

bump flows are presented. The multiple bump results demonstrate that for some flows

the solution is not periodic in space over the entire domain. The multiple bump solu-

tions are followed by the results obtained for subsonic flow by imposing the near field

potential solution and by using periodic boundaries. These solutions are followed by the

result obtained by using periodic boundaries to compute the transonic flow case. Finally,

the results obtained while trying to compute the supersonic flow field are presented.
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7.1 Invariant Boundary Condition Investigation

A comparison of the linearized invariant and Riemann invariant boundary condi-

tions was performed to determine the relative merits of the two choices. The comparision

examines the differences in convergence history and final solutions for a number of ex-

ample computations. The comparisons are made using subsonic and transonic flows

over a single wave with three free or open boundaries.

7.1.1 Convergence Comparison

Figure 7.1 shows the results of a comparison between the two boundary conditions

obtained on a isolated transonic bump along a flat wall. The bump consists of a unit

wavelength sine wave with an amplitude of E = 0.025. The maximum height of the bump

relative to the flat wall is therefore, Aymaz = 0.05. The solution is obtained on the grid

shown using a free stream Mach number of Mo = 0.775. As has been noted previously,

because there is about a two percent total pressure loss in the solution there must be

a reflected pressure wave in the linearized invariant result and a reflected entropy wave

for the Riemann invariant result. The comparison shows that while the steady state

solution is identical for both boundary conditions the convergence of the linearized case

is much slower. This is consistent with previous comments about the reflectivity of the

pressure waves for the linearized equations vs the reflectivity of the entropy waves for

the Riemann equations. Finally, note that although the outflow far field characteristic

is being set incorrectly the solution is identical to the result obtained using the pressure

condition. Figure 7.2 demonstrates that a similar result can be expected for the subsonic
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cases. In this figure the subsonic flow over a sine bump of amplitude C = 0.01 (total

displacement of Ayma = 0.02), and free stream Mach number Moo = 0.3 is shown. In

addition, this flow has been computed by modifying the algorithm so that along the top

boundary the first half is outflow and the second half is inflow. The reason for making

this change, which was previously discouraged, will become clear in the next section.

7.1.2 Transient Phenomena

While examining the differences between the two boundary conditions, certain

transient phenomena were observed along the upper boundary. The phenomena im-

pacted the computations only for low speed subsonic flow employing the linearized

invariants when the inflow - outflow condition was determined from the interior values.

Figures 7.3 and 7.4 illustrate two of the transients that were observed.

In Figure 7.3 the convergence history is shown for the same case given in Figure 7.2

with the exception that inflow and outflow are now determined from the cell center values

and not the guess. Observe that while the computed Mach number contours appear to be

acceptable the solution will not converge to the desired convergence criteria. Attempts

to change the damping and time stepping resulted in much the same situation, although

the number of iterations is somewhat different. Examination of the detailed output for

this run shows that some of the velocity vectors along the portion of the top boundary

that should be outflow are oscillating. This results in the algorithm alternately treating

those faces first as inflow and then outflow. If the inflow - outflow condition for the top

boundary is presumed to be known, as was done in Figure 7.2, then the transient can
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be eliminated.

Figure 7.4 shows the result of the computation for the same geometry as the previ-

ous case with an elogated upstream and downstream region. As in the previous compu-

tation the linearized boundary condition with the modified outflow is being used. Unlike

the previous example, the Mach number contours for this computation are clearly unac-

ceptable. Again the algorithm is having convergence problems along the top boundary.

For this computation, in addition to the problem noted previously, the detailed output

also shows that near the downstream boundary, where the flow should be inflow, the

algorithm is employing the outflow boundary condition. For this solution, however,

there is no oscillation and the faces in this region retain there outflow orientation. This

results in the apparent expansion that is occuring at the upper right corner.

For these computations it is conjectured that the reflection of a spurious pressure

wave off the downstream boundary moves upstream in the flow field causing a small

perturbation of the v component of the velocity. For very low Mach numbers the pertur-

bation is sometimes large enough to change the sign of the normal velocity component

at the cells immediately adjacent to the boundary. If the algorithm employs cell center

values to determine which faces are inflow and which are outflow, the perturbations can

cause the algorithm to ascribe the wrong boundary condition to some of the cells along

the top boundary. Depending on the size of the transient, the algorithm either oscillates

or remains in the incorrect orientation. In either event, the algorithm does not recover

the correct boundary condition after the wave has passed. This results in additional
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perturbations and the algorithm quickly reaches a condition where it will converge no

further. If a potential solution or a valid guess is used to determine which cells are in-

flow and which are outflow the algorithm as no convergence problems, and no transient

is observed in the solution. As noted before, it was this guessing that resulted in the

linearized solution obtained in Figure 7.2, which is otherwise identical to the solution

in Figure 7.3. In addition, Figure 7.2 also demonstrates that the Riemann invariant

boundary condition, with cell center determination of inflow - outflow, does not suffer

from the transient problem.

7.1.3 Discussion of the Comparison

Based on the foregoing results it is concluded that in general the Riemann invariant

boundary conditions are the better choice for the problem under consideration. While

these boundary conditions do reflect entropy waves, the entropy of the solution settles

down more quickly than the pressure. Consequently, the solution using the Reimann

invariants converges faster. Since the convergence rate is an important factor for the

periodic and multiple bump problems, this information is very useful. In addition, the

Riemann conditions were not sensitive to transients at the boundary cells. The reason

for this can be seen by comparing equations (6.12) and (6.14). From these equations it

is clear that for both inflow and outflow, the normal velocity at the boundary face is

determined by exactly the same relationship. This is not true for the linearized equa-

tions, and may in part contribute to the observed transients or at least be responsible

for the algorithms inability to recover. The exact nature of these transients, however, is
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not known and further research is required to determine the validity of the conjecture.

As a consequence of the preceding discussion, all further computations, with one

exception, will be performed using the Riemann boundary conditions. The one exception

is a supersonic example for which neither of the boundary conditions is valid. This case

will be presented in the discussion of the supersonic wavy wall results.

7.2 Multiple Bump Flows

Since it was suspected that some transonic and supersonic flows might not be

periodic in space, a series of multiple bump solutions was attempted. For these solutions

an initial flat wall is followed by twelve or more sinusoidally varying waves. The objective

of these computations, which are computer intensive, is to determine if the flows do

become periodic in space and if so, over what region of the domain are the flows periodic.

The results to be presented include computations for flows which are subsonic, transonic,

and supersonic. All the computations are performed using the Riemann boundary

conditions, with the far field values corresponding to a uniform free stream flow. In

addition, all grids are of the same density per unit wavelength as the grids to be used

for the imposed near field and periodic results to be presented later.

7.2.1 Subsonic Result

Figure 7.5 illustrates the result obtained for the M, = 0.3 subsonic wavy wall.

The computation is performed on a grid which has a density of i x j = 30 x 20 per
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wavelength over 12 waves with an upstream and downstream flat wall that are each 1.5

wavelengths long. The computation required 25.25 hours of CPU time on VAX 11/785.

The top half of this figure illustrates the Mach number contours and the wall Mach

number for the entire solution. The bottom half of the figure is a view expanded about

waves 5 to 8 from the central region of the solution. The computation demonstrates

that for subsonic flow, the solution is periodic over a wide range of the computational

domain. Observe that the flow is not periodic over the first or last two waves of this

solution. This is not to be expected since for these waves the flow is responding to the

influence of the adjacent flat wall region. In addition, the solution in the central region

shows good comparison to the potential solution for the same case.

Based on this result, at least two other solutions for the subsonic case will be tried.

Because the solution compares to the potential result, a solution will be attempted using

a single wave with the potential near field applied at the boundaries. In addition, the

figure illustrates the solution is essentialy periodic for those waves aft of the second

crest. Based on this observation, a solution with periodic boundary conditions will be

attempted. The computation will be run long enough to allow the flow to be convected

through the domain at least three times.

7.2.2 Transonic Result

Figure 7.6 illustrates the results obatined for the transonic computation. This

computation is performed on a grid which has a density of 30 x 20 per wavelength

over a domain consisting of 30 waves. Again an initial and terminating flat wall of 1.5
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wavelengths has been added to the domain. The computation is done at a free stream

Mach number of Mo = 0.775 with a wave amplitude of e = 0.025, and required 53 hours

of VAX 11/785 CPU time. In terms of the Chang and Kwon[3] transonic similarity

parameter this represents a flow for K = 6.027. The solution shows that initially the

flow over the waves is not periodic. The first wave has a weak shock which generates

some small total pressure loss. The flow over the next wave crest then produces a second

but even weaker shock which adds an additional but smaller increment of total pressure

loss. Succeeding wave crests also have shocks which become successively weaker and

consequently generate less and less additional pressure loss. This decaying of the shocks

and incrementing of total pressure loss continues until about the 2 2 nd wave crest, after

which the flow is barely transonic (there is a sonic point on each crest). Further aft

of this wave crest, as illustrated by the expanded view of wave crests 22 through 25 in

Figure 7.7, the flow appears to be periodic in space. Over the first twenty two waves

the solution has acquired an aggragate total pressure loss of about 3.0 percent. Again,

the influence of the downstream flat wall can be seen on the last two waves. Based on

this result, the transonic flow will be attempted using the periodic boundary conditions.

For this computation the flow will be required to reenter the domain at least twenty-two

times.

7.2.3 Supersonic Result

Figure 7.8 shows the solution past 12 sinusoidally varying waves of amplitudes

E = 0.001 and E = 0.01, for a supersonic free stream of M0 = 1.5. Note, that for
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illustrative purposes only the first 8 waves are shown in each figure. The grid density

for these computations is 30 x 30 per wavelength with no exponential stretching of the

grid in the y direction. The choice of a uniform grid for this computation was dictated

by the potential solution which indicates perturbations which do not decay in the y

direction. In each case the computation required aproximately 30 hours of VAX 11/785

CPU time. In both cases, the computed solution is not periodic in the flow direction.

For the larger amplitude waves there is a significantly stronger compression than the

potential solution predicts. Consequently, the total pressure is decreasing in the flow

direction, and this may be causing the nonperiodicity. For the smaller waves, however,

there is practically no total pressure loss, yet the flow is not periodic.

The results obtained for this case are somewhat inconclusive. The nonperiodicity

of the larger wave could be caused by the entropy generation, but this does not explain

the remaining result. Because of this conflict, both cases will be tried using the imposed

and periodic boundary conditons. However, as will be explained later, neither solution

is valid, because in both cases there is an inconsistency between the local flow field near

the boundary and the form of the boundary conditions applied there.

7.3 Subsonic Wavy Wall Results

The subsonic wavy wall problem has been solved by two additional methods which

offer an improvement in the computational effort. In the first method the linearized

potential solution is used as a boundary condition. This method results in the fastest
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time to convergence but is limited to solutions that are nearly potential and of small

amplitude. The second method is to impose periodic boundaries in the flow direction.

This technique is slower than the first technique, but it allows for flows which contain

larger perturbations and/or entropy generation.

7.3.1 Imposed Near Field Result

The effects of imposing the potential solution on the boundary of the computa-

tional domain was studied to determine the validity of using this procedure to reduce

the computational time requirements. The results to be presented are obtained by com-

puting the near field values of the potential solution at the boundary face and then

using these values as the far field values for the Riemann invariants.

The solution for the subsonic flow is compared to the potential flow solution in Fig-

ure 7.9. In this computation the potential solution has been applied using the technique

described above for the three free boundaries surrounding the 0.01 amplitude wave. The

free stream Mach number has been set to Moo = 0.3. The figure shows the convergence

history, grid, and Mach number contours obtained for this solution. From the figure it

can be seen that the result is obtained with minimal computational effort, (15 minutes

of CPU time on a VAX 11/750). The obtained solution is very close to that for the

potential flow, and compares fairly well to the solution obtained using multiple bumps.

7.3.2 Periodic Boundary Condition Results

The solution for the subsonic wavy wall with periodicity imposed between the left
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and right boundaries has been obtained using two different top boundary conditions.

Figure 7.10 illustrates and compares the Mach number contours and convergence histo-

ries for solutions obtained by imposing the potential result along the boundary and by

allowing that boundary to be a free stream boundary. In both cases the solutions have

been iterated a sufficient number of times to allow the flow to be convected through the

domain at least three times. To be sure that the solution obtained is directly related

to a true time scale, all periodic runs were performed by running the algorithm in its

time accurate mode. The solutions are obtained on a VAX 11/750 and each required

approximately 1 hour of CPU time. These solutions compare quite favorably to all the

previous results for this same case.

7.4 Transonic Wavy Wall Results

For transonic flow along a wavy wall the solution has been obtained by imposing

periodicity in the flow direction while allowing the upper boundary to be a Riemann

free stream far field boundary. For this case it was felt that imposition of the poten-

tial solution, either on all three boundaries or along the top boundary, would not be

accurate. The solution is obtained for a transonic low past a sinsusoidally varying wall

of amplitude, E = 0.025, with free stream Mach number of Mo, = 0.775, is shown in

Figures 7.11 and 7.12. Figure 7.11 illustrates the convergence history and compares

the Mach number contours for this case with those obtained for the multiple bump

solution. The comparison in Figure 7.11 illustrates that the solution to the periodic

problem compares quite well to that for the multiple bump case. Figure 7.12 shows the
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grid and the comparison of the stagnation pressure loss for this case and the multiple

bump case. The plot of stagnation pressure loss indicates that the 3.0 percent loss is

being convected through the domain. The plots also show that there is a small numer-

ical error near the wall. This error accounts for the variation seen in Figure 7.6. While

the computational effort was moderate, (2.2 hours of CPU time on a VAX 11/785), it

is still far less than the 53 hour effort required for the multiple bump solution to which

it corresponds.

There is a rather subtle point that should be made about both this computation

and the subsonic computation. In both cases the computations were iterated a fixed to-

tal time that was determined from the results of the multiple bump solutions. While the

convergence histories, for these cases and the supersonic ones to be presented shortly,

appear to level out as the solutions approach the periodic region, this is not a gener-

alizable statement. This is because the solutions, by the very nature of the boundary

conditions, must contain both left and right running vertical waves. These waves are

associated with background dissipation and account for the oscillations seen in the con-

vergence history. A more lengthy computation would show that the peak levels of these

oscillations are converging. The solutions obtained are therefore essentially periodic.

For these reasons it is clear that when computing a more general flow which is periodic

in the flow direction it is necessary to consider not only the convergence history but also

the time invariance of the solution at each iteration. Keeping this in mind, however,

the above results illustrate that a cell centered finite volume formulation can be used

to compute such flows.
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7.5 Supersonic Wavy Wall Results

The solutions for the supersonic, Moo = 1.5, flow past a wavy wall are presented

next. Recall that in computing this flow with multiple bumps the result was not periodic.

The reason for this, however, was not clear. Because of this a number of attempts at

computing the field were made using both the imposed near field boundary conditions

and the periodic boundary conditions.

7.5.1 Imposed Near Field Results

The first set of computations has been performed by imposing the near field poten-

tial solution on two of the boundaries. For these computations the boundary condition

has been imposed on the left and top boundaries only. The top boundary is subsonic,

in the normal direction, and like the subsonic case is treated by using the near field

results as the far field values in the Riemann boundary conditions. The left boundary

is a supersonic inflow, for this boundary all the primitive variables can and have been

set to the potential values. Finally, the right boundary is the usual supersonic outflow

boundary, where all the values are extrapolated from the interior of the domain. The

objective in treating the right boundary in this manner is to determine if the computed

solution will result in a flow field that is periodic.

Figure 7.13 illustrates the Mach number contours, grid, and convergence history

obtained by the above technique for the 0.001 amplitude wall. It is seen that the result

is very close to being periodic and compares well to the potential solution. It does not,
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however, compare to the result obtained for the multiple bump solution.

While the result for the 0.001 amplitude wall is encouraging, there appears to be

a limit to the extent over which the technique is applicable. This is seen in Figure

7.14 where the supersonic results for a wall amplitude of 0.01 are presented. The

free stream Mach number is the same as that used for Figure 7.13. The upper half

of this figure illustrates the Mach number contours obtained for this solution using

both the Riemann invariants and the linearized invariant boundary conditions. The

corresponding potential solution was given in Figure 2.3. Observe, that neither solution

is periodic and that in addition both solutions are reflecting the expansion wave off

the top boundary. In particular, the reflection is occuring only in that region of the

boundary which is an outflow face. The predicted compression is much stronger than

the potential solution indicates and a plot of the total pressure loss would confirm this.

The strong compression that occurs in the computation indicates that, unlike the

potential solution, the Euler solution is nonlinear. This fact can be used to explain the

reflection along the top boundary. Recall, that in computing the supersonic potential

solution, the function, G(x - Ay), which corresponded to the upstream running charac-

teristics was set to zero. This implies that the value of the upstream (or left) running

supersonic characteristic is everywhere equal to a constant. The value of this supersonic

characteristic is plotted in the lower half of Figure 7.14. The contours indicate that the

fields possess as much as a 10 percent variation in this characteristic. A similar plot of

the result for the 0.001 amplitude wave shows less than a 0.1 percent variation.
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For the larger amplitude wave the error in the supersonic characteristics is actually

being introduced by the potential solution, which itself has more implied variation in

the supersonic characteristics than is probably acceptable for the underlying asssump-

tions in its derivation. The reflection occurs because of the inconsistency that arises

when the wrong two dimensional supersonic characteristic is enforced by a boundary

condition which assumes one dimensional linear flow. The reason that the reflection

from the Riemann invariant boundary condition appears to be weaker is probably due

to either one or both of the following reasons. First, the Riemann boundary condition

reflects entropy waves, while the linearized boundary condition reflects pressure waves.

Secondly, the Riemann condition sets the characteristic to the potential value which

is only slightly incorrect. The linearized boundary condition introduces an additional

error by only setting the pressure.

7.5.2 Periodic Results

While the above result explains why the larger amplitude result is not periodic it

does not necessarily explain the multiple bump solution for the small amplitude wave.

In fact the problem is exactly the same. This can be verified by attempting a periodic

solution of the small amplitude wavy wall problem to see if the result obtained for the

multiple bump case can be reproduced. For this case the computation has been done

for two different implementations of the Reimann boundary conditions along the top

surface.

In Figure 7.15 the result obtained by using the linearized potential solution as the
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far field values in the Riemann invariants along the top boundary is shown. This figure

shows the iteration history and Mach number contours obtained. For this computation

the variation in the upstream running characteristic implied by the potential solution is

negligible. Consequently, the supersonic characteristics are set to their correct values.

Thus, the solution does not exhibit any reflections and compares almost exactly to the

potential solution.

Figure 7.16 illustrates the computed result for the same flow with the infinite

far field values used in the Riemann boundary condition along the top wall. For this

case there is an inconsistency between the correct supersonic characteristics and those

implied by the boundary conditions. In this case a reflection of exactly the same form

observed in the multiple bump solution, which uses this boundary condition, is observed.

It is concluded that use of either the pressure or Riemann invariant boundary condition

is not valid if the flow in the edge region is nonlinear, unless the two dimensional

supersonic characteristics are known and can be supplied.
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Figure 7.1: Transonic Flow Comparison, Free Boundaries.
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Chapter 8

CONCLUSIONS

A number of computations of the Euler flow past a wavy wall have been ob-

tained. In so doing, an investigation of the differences between the linearized invariant

boundary conditions with a modified outflow specification and the Riemann invariant

boundary conditions was performed. It is concluded that in general the Riemann in-

variant boundary conditions are superior. While the Riemann conditions will reflect

entropy waves, these tend to settle down faster than the pressure waves reflected by

the linearized condition. This results in a faster convergence time and the ability to

do time accurate computations provided that no total pressure loss is convected into

an outflow boundary. Based on this conclusion, a series of solutions to the wavy wall

problem were performed for subsonic, transonic and supersonic flow using the Riemann

invariant boundary conditions in conjunction with three problem formulations.

Solutions for the subsonic Euler flow past a wavy wall were attempted by imposing

the potential solution, by assuming periodicity in the flow direction, and by arranging

a series of waves along a flat wall. It was found that regardles of the formulation the

Euler flow past a wavy wall is periodic. The imposed potential solution resulted in the

least amount of computational effort while the multiple wave solution resulted in the
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largest effort.

The transonic solutions were obtained by the multiple wave formulation and by

enforcing periodicity in the flow direction. For this regime the Euler computations

predict that the flow starts out as a series of decreasing strength shocks. This results

in an aggregate total presure loss within the solution. The flow eventually becomes

periodic in space with a sonic point located at the top of each wave crest.

Based on the subsonic and transonic solutions it was concluded that the Euler

flow past a wavy wall does result in a periodic solution for some flows. In addition,

boundary conditions which are periodic in the flow direction can be used and provided

good flexibility for a moderate cost.

The supersonic results were not periodic as expected and additional investigations

were performed. By examining two different wave heights it was found that both the

Riemann invariant and linearized invariant boundary conditions are not generally appli-

cable to the problem under consideration. Both boundary conditions were found to be

reflective in the outflow region unless the correct supersonic characteristics were implied

by the far field values being used.
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