
MIT Open Access Articles

A Lockdown Technique to Prevent Machine
Learning on PUFs for Lightweight Authentication

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Yu, Meng-Day, et al. “A Lockdown Technique to Prevent Machine Learning on PUFs for
Lightweight Authentication.” IEEE Transactions on Multi-Scale Computing Systems 2, 3 (July
2016): 146–159 © 2016 Institute of Electrical and Electronics Engineers (IEEE)

As Published: http://dx.doi.org/10.1109/TMSCS.2016.2553027

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: http://hdl.handle.net/1721.1/110985

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/110985
http://creativecommons.org/licenses/by-nc-sa/4.0/

1

A Lockdown Technique to Prevent Machine
Learning on PUFs for Lightweight Authentication

Meng-Day (Mandel) Yu1,3,5, Matthias Hiller2, Jeroen Delvaux3,4, Richard Sowell1,
Srinivas Devadas5, Ingrid Verbauwhede3

1Verayo, Inc., USA {myu,rsowell}@verayo.com
2Institute for Security in Information Technology at Technische Universität München, Germany matthias.hiller@tum.de

3Computer Security & Industrial Cryptography (COSIC) lab at KU Leuven and iMinds, Belgium {jeroen.delvaux,ingrid.verbauwhede}@esat.kuleuven.be
4Information Security Lab at Shanghai Jiao Tong University, China

5Computer Science & Artificial Intelligence Lab (CSAIL) at MIT, USA devadas@mit.edu

Abstract. We present a lightweight PUF-based authentication approach
that is practical in settings where a server authenticates a device, and for
use cases where the number of authentications is limited over a device’s
lifetime. Our scheme uses a server-managed challenge/response pair
(CRP) lockdown protocol: unlike prior approaches, an adaptive chosen-
challenge adversary with machine learning capabilities cannot obtain
new CRPs without the server’s implicit permission. The adversary is
faced with the problem of deriving a PUF model with a limited amount
of machine learning training data. Our system-level approach allows
a so-called strong PUF to be used for lightweight authentication in a
manner that is heuristically secure against today’s best machine learning
methods through a worst-case CRP exposure algorithmic validation. We
also present a degenerate instantiation using a weak PUF that is se-
cure against computationally unrestricted adversaries, which includes any
learning adversary, for practical device lifetimes and read-out rates. We
validate our approach using silicon PUF data, and demonstrate the feasi-
bility of supporting 10, 1000, and 1M authentications, including practical
configurations that are not learnable with polynomial resources, e.g.,
the number of CRPs and the attack runtime, using recent results based
on the probably-approximately-correct (PAC) complexity-theoretic frame-
work.

Keywords: Physical Unclonable Function, Authentication, Machine
Learning, Heuristic Security, Computationally Unrestricted Adversary,
Probably Approximately Correct (PAC) Learning

1 INTRODUCTION

We consider a common authentication scenario between
a low-cost resource-constrained device and resource-rich
server, in which secret keys typically form the backbone and
must be stored securely. Unfortunately, non-volatile memory
(NVM) tends to be vulnerable to physical attacks. Cast in
silicon by MIT in the early 2000s [1], [2], [3], physically un-
clonable functions (PUFs) were envisioned to offer improved
physical security by not requiring static (always present)

Copyright c©2016 IEEE. Personal use of this material is permitted. However,
permission to use this material for any other purposes must be obtained from
the IEEE by sending an email to pubs-permissions@ieee.org.

M. Yu, M. Hiller, J. Delvaux, R. Sowell, S. Devadas, I. Verbauwhede, ”A
Lockdown Technique to Prevent Machine Learning on PUFs for Lightweight
Authentication,” in IEEE Transactions on Multi-Scale Computing
Systems, http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7450665.
DOI: 10.1109/TMSCS.2016.2553027.

secret keys on the device. Silicon PUFs harvest manufac-
turing variability to produce device-unique but noisy bits.
These bits, which are generated dynamically (present only
when needed) may be error-corrected and hashed into a
secret key that is subsequently used with a cryptographic
algorithm such as a block cipher or a keyed hash function
for authentication purposes.

Nevertheless, PUF-based key generation may be too
heavyweight for some use cases. In a recent survey of nine-
teen PUF-based entity authentication protocols [4], only
two finalists [5], [6] require neither an error-correction code
nor a cryptographic algorithm. However, these rely on a
true random number generator (TRNG) instead and offer a
form of heuristic security against so-called modeling attacks
that is difficult to validate – the adversary’s capability in
terms of available challenge/response pair (CRP) machine
learning training material is difficult to upper-bound. Also the
non-surveyed super-high information-content (SHIC) pro-
tocol [7], although secure against computationally unrestricted
adversaries, has practical limitations (cf. Sec. 2.3).

Indeed, without a cryptographic algorithm and a se-
cret or private key, it is difficult to derive an exponential
number of CRPs from a linearly-sized circuit. Early MIT
PUF researchers [1] envisioned lightweight authentication
to be performed using a threshold-based comparison where
no error correction – and by extension no cryptographic al-
gorithm – is required. Unfortunately, arbitrary logical or
arithmetic post-processing cannot be applied to the silicon
manufacturing variation since the physical noise would be
amplified. As a result, popular PUF authentication circuits
are evaluated in a mostly linear fashion, with limited non-
linear mixing, and are therefore prone to modeling attacks.
A decade after the initial MIT results, in his PhD thesis,
Maes regarded a practical instantiation of the envisioned
PUF authentication circuit as an open problem [8].

1.1 Contribution

We continue the pursuit for true lightweight entity authen-
tication. We observe that prior approaches have an “open

myu
Line

2

interface” that can be freely queried by the adversary to
obtain new CRPs. We do not attempt to create a new
challenge/response PUF circuit and argue security in the
face of arbitrary CRP exposure, which is emblematic of prior
approaches [5], [6], [9], [10]. Instead, we take a practical
protocol-level approach to limit the availability CRP material that
an adaptive chosen-challenge machine-learning-equipped
adversary may obtain. The trade-off is that we can support
only a limited number of authentications for the verifier,
e.g., 10, 1000, or 106, pre-specified depending on the use
case. We emphasize that the adversary can still make arbi-
trary adaptive chosen-challenge queries against the device,
but no new CRPs are obtained by the adversary unless
implicitly permitted by the verifier/server.

Our basic lockdown protocol requires neither error-
correction nor a cryptographic algorithm nor a TRNG on
the device. Even without TRNG, we are still heuristically
secure against today’s best modeling attacks based on a
direct heuristic validation in terms of the worst-case CRP ex-
posure; without lockdown, it is difficult to upper-bound the
adversary’s capability in terms of available CRP material.
Also, we present a PRNG design of which the security can
be guaranteed in advance via an exhaustive check. Further-
more, our approach is compatible with almost every PUF.
We eliminate SHIC limitations, while maintaining security
against computationally unrestricted adversaries.

Our extended protocol, despite introducing a TRNG,
offers three benefits: i) The authentication is mutual rather
than unilateral; ii) We improve resistance against recent
machine learning attacks exploiting noise side-channel in-
formation; iii) Our protocol may inherit the benefits of
prior protocols such as slender PUF [5], i.e., obfuscation
techniques to further improve the modeling robustness.

We also present practically realizable PUF instantiations
that cannot be learned with resources polynomial with
respect to the circuit size based on recent PUF learning
results [11] using probably-approximately-correct (PAC) the-
ory [12]. Previously, non-PAC-learnable instantiations were
thought to be infeasible. Our extended protocol (cf. Sec. 4)
plus our improved noise equation (cf. Eqn. 6) and response
lengthening analysis (cf. Sec. 9.3) that were missing in [11]
make this result possible, and we include silicon validation
(cf. Sec 7.1, Sec. 7.2) to demonstrate practical feasibility.

Our main contributions are summarized below.

• We propose the first strong PUF authentication
scheme where the adversary’s power is upper-
bounded in terms of available CRPs (cf. Sec. 3.2.1).

• We propose the first weak PUF authentication
scheme using SRAM that is secure against computa-
tionally unrestricted adversaries (cf. Sec. 8.2).

• We are the first to confirm the existence of an ex-
ponentially hard-to-learn PUF system-level instanti-
ation that is practically realizable, with the hardness
based on PAC learning theory [11] (cf. Sec. 9.3).

1.2 Outline
Section 2 contains preliminaries. Section 3 introduces the
lockdown protocol and Section 4 describes an extension to
prevent attacks requiring repeated measurements. Section 5
elaborates the PRNG design. Section 6 describes protocol

instantiation values. Section 7 validates our approach with
silicon data and presents an analysis of machine learning
attack results. Section 8 presents architecture examples. Sec-
tion 9 makes comparisons against prior proposals and theo-
retical learning results. We conclude the work in Section 10.

2 PRELIMINARIES

2.1 Notation
Binary vectors are denoted with a bold character, e.g., r.
Concatenation and bit-wise XORing are denoted with ‖ and
⊕ respectively. Functions are printed in a sans-serif font,
e.g., Hamming weight HW(r) counts the number of 1’s in
vector r. Let L(r) denote the length of r, as used in, e.g., the
fractional Hamming distance FHD(r̃, r) = HW(r̃⊕ r)/L(r).

We use angle brackets 〈.〉 to denote an indexed list. We
use round brackets to denote a tuple, e.g., (c, r) refers to a
challenge c and the response bits r that are derived from
it. Let L(〈c〉) denote the number of sub-challenges derived
from the starting challenge c.

2.2 Strong and Weak PUFs
Silicon PUFs can be divided into two categories: strong PUFs
and weak PUFs. Both derive their functional behavior from
a limited number of circuit components, all prone to silicon
manufacturing variation. A weak PUF derives a small number
of CRPs, scaling linearly with circuit size.

The goal of an ideal strong PUF [13], [14] is lofty. It
attempts to produce an exponential number of CRPs from
a linear number of circuit components where the response
bits are difficult to predict. Practical strong PUFs are com-
posed of linear circuits in order to prevent physical noise
amplification and are therefore prone to modeling attacks,
e.g., using machine learning [14], [15], [16], [17], [18].

While a practical instantiation of a strong PUF circuit
has been declared as an open problem [8], an ideal weak
PUF might be approximated well in practice. E.g., using an
SRAM PUF [13], where each PUF bit is derived from a phys-
ically distinct component thereby offering an opportunity
for any bit correlations to be minimized via careful layout.

2.3 Super High Information Content (SHIC)
A Super High Information Content (SHIC) PUF consists of
an extreme large memory (e.g., > 1010 bits) with extremely
slow read-out (e.g., 100 bits/second). The corresponding
CRP protocol is secure against computationally unrestricted
adversaries [7]. The SHIC system takes a “brute-force” ap-
proach to behave like an ideal strong PUF: it is not feasible
for an adversary to read a sufficiently large subset of the
memory locations (response bits) in a practical amount of
time. This is despite adversarial computational power. The
authors of [7] argue that their system can be implemented
using emerging high-density crossbar memory, which does
not integrate well with conventional CMOS designs.

2.4 Machine Learning and Side-Channel Attacks
Machine learning attacks on strong PUFs were proposed
in [19], [20] and certain constructs broken in [14], [17], [18],
[21], [22], [23]. Recent machine learning attacks exploited

3

PUF noise measurements as side-channel information [18],
[24], [25] or performed noise filtering to improve the signal-
to-noise ratio [23], [26], [27]. These recently published results
use repeated measurements to obtain PUF noise information.

Our extended protocol provides resistance against
attacks that require repeated measurements in gen-
eral. This also includes a recent backside photonic attack [28]
that requires millions of repeated measurements. This attack
requires challenges with low pair-wise Hamming distances
which may not be present in practice. The recent lattice basis
reduction attack [29] removes the low Hamming distance
constraint but still requires backside photonic access.

We shall demonstrate how we can take an XOR PUF
circuit that is learnable, and still instantiate it at a system
level and use it in a manner that is heuristically secure
against the best published machine learning attacks to date
(cf. Sec. 7.3).

2.5 Machine Learning Complexity Theory Results
In Valiant’s seminal work [12], a framework was created to
relate machine learning to complexity theory. Recent theo-
retical machine learning results from [11] based on Valient’s
PAC theory concluded certain XOR PUF constructions to be
learnable in polynomial time given a polynomial number of
CRPs; other constructions were declared non-PAC-learnable
and it was also suggested that these were also infeasible in
practice due to PUF noise.

A natural question arises as to whether there exists a PUF
instantiation that is exponentially difficult to learn according
to [11] and yet is practically realizable. We are the first to
provide an answer in the affirmative.

2.6 Adversary Model
The enrollment occurs in a secure environment. Afterwards,
the adversary has access to the device’s interface and is free
to brute-force query it, with challenges possibly adaptively
chosen. The obtained CRP information is used for algorith-
mic machine learning attacks. Eavesdropping, manipulation
and replay of protocol traffic are all deemed possible. The
server has secure storage available and its computations
are shielded from the outside world. Despite introducing
a general-purpose countermeasure against repeated mea-
surements, side-channel attacks that rely on more specific
implementation aspects [30] are outside our scope of work.

2.7 Basic Strong PUF Authentication Protocol
For the basic strong PUF authentication protocol [9], each
device embeds a strong PUF (SPUF) that is used for d
unilateral authentication events. In Fig. 1, we look at device
i (prover) and the server (verifier). A challenge c is applied,
and a list of sub-challenges 〈c〉 is derived on the device
using a PRNG, where each sub-challenge is used to evaluate
the device-unique manufacturing variation associated with
SPUF to generate a single response bit; these single bit
values are concatenated together to form r̃. During an initial
one-time enrollment, the server collects a database compris-
ing of d securely stored (cij , rij) entries associated with d
authentication events. A device identifier idi, e.g., a serial
number, is stored on chip in an one-time programmable

Device i

Enrollment (1×)

OTP-S: id← idi

Authentication (d×)

〈c〉 ← PRNG(c)

r̃← SPUF(〈c〉)

idi

init

id

c

r̃

Server

idi ← SerialNumber()

(cij , rij) with j ∈ [1, d]

and cij ← TRNG()

ji ← 0

Abort if ∀i : id 6= idi

ji ← ji + 1

Abort if ji > d

(c, r)← (cij , rij)

with j = ji

Abort if FHD(r̃, r) > τ

Fig. 1. The basic strong PUF authentication protocol. For the SHIC ver-
sion, r̃← SPUF(PRNG(c)) is replaced by r̃← SHIC(c). Unfortunately,
the latter has a high area footprint and a substantial read-out latency.

storage (OTP-S) that is publicly readable and does not need
to be kept secret; e-fuse technology can be used.

For each authentication event, a single tuple (c, r̃) is
transferred in the clear and subsequently removed from the
server’s list, so that the same challenge c is not used by
the server for a future authentication event where the previ-
ously obtained response r̃ can be replayed by the adversary.
Counter ji on the server implements this functionality. As
a result, for a strong PUF with an ideal behavior, every
authentication event is unique, and the adversary with
knowledge of previously exposed tuples (c, r̃) cannot pre-
dict the response r for a not-yet-seen challenge c. Further, if
the same challenge is applied to a different PUF device, an
unpredictable response is produced, since CRPs from one
device do not reveal CRPs for another device due to chip-
unique manufacturing variation. Each cij is derived from a
true random number generator (TRNG) during enrollment so
that it is unpredictable; else the adversary can pre-apply a
challenge ahead of a genuine authentication event and spoof
the response. A device identifier id is sent by the device so
the server knows which not-yet-used challenge c to issue;
this allows for protocol scalability. Authentication fails if the
device responds with an r̃ that has a fractional Hamming
distance (FHD) that exceeds an authentication threshold
τ w.r.t. the enrolled response r. The server initiates the
protocol run to avoid a denial-of-service (DoS) via device-
side-initiated (cij , rij) depletion.1

1. For scenarios where the device initiates, the server needs to im-
plement extra intelligence to detect a potential DoS attack through
abnormal activity monitoring and implement countermeasures such as
a timeout mechanism. There is no init packet and the transaction starts
with a device-initiated id packet.

4

3 LOCKDOWN PROTOCOL I
In the basic authentication protocol of Fig. 1, the interface
is open: the adversary is free to perform (c, r̃) queries,
and apply an increasing number of CRPs as the training
set input for a machine learning modeling attack, with
challenges possibly adaptively chosen. This is problematic
since the capability of the adversary in terms of available
CRPs is difficult to upper-bound. In the context of a heuristic
security validation against a machine learning algorithm, it
is difficult to determine the size of the CRP training set and
thus attack vulnerability.

To address this problem, we lockdown the interface as
shown in Fig. 2. The server implicitly regulates the availabil-
ity of CRP machine learning training material at the protocol
level.

We note that the open interface protocol of Fig. 1 also
faces fundamental issues: an SPUF physical circuit that can
securely instantiate the protocol in Fig. 1 may not exist in
practice [8]. Our practical system-level approach circum-
vents this circuit-level problem.

3.1 Protocol I Description
3.1.1 Enrollment
During enrollment, a one-time event that occurs at a trusted
location, the server issues a deterministic challenge c and
obtains a response that is split into r1 and r2. Specifically,
from a starting challenge c, response r1 is first generated.
Without resetting or reseeding the challenge expansion
schedule, response r2 is then generated. The tuple (r1, r2) is
stored securely for future use. This procedure is repeated d
times in order to support d authentication events.

3.1.2 Authentication
During an authentication event, the server receives a device
identifier id, and then sends a packet comprising of c and
r1. The device receives this information, and then compares
the incoming r1 against a physically regenerated response
r̃1. If FHD is beyond a preset threshold τ , the processing
aborts since the server is regarded as not authentic. Else,
the remaining response bits r̃2 are generated by the PUF
and released outside of the device. The server completes
authentication of the device by comparing r̃2 against its
enrolled version r2.

3.2 Remarks
3.2.1 Worst-Case CRP Exposure Heuristic Validation
By moving from an open interface [5], [6], [9], [10] to an in-
terface that is locked down, we upper-bound the adversary’s
capability in terms of available CRP material. For a strong
PUF, a heuristic machine learning validation based on the
worst-case CRP training-set size can now be performed.

3.2.2 Challenge Using a Counter Value
Due to the lockdown, the adversary cannot issue a not-yet-
seen packet c ‖ r1 (not-yet-released by the server) and get
the corresponding returning response packet r̃2; as a result,
the challenges can be deterministically generated, e.g., using
a counter. Every authentication is unique since the challenge
is non-repeating, based on a server-side counter.

Device i

Enrollment (1×)

OTP-S: id← idi

Authentication (d×)

r̃1‖r̃2 ←WPUF(c)

Abort if FHD(r̃1, r1) > τ

idi

init

id

c‖r1

r̃2

Server

idi ← SerialNumber()

(r1, r2)ij with j ∈ [1, d]

ji ← 0

Abort if ∀i : id 6= idi

c← ji

ji ← ji + 1

Abort if ji > d

(r1, r2)← (r1, r2)ij

with j = ji

Abort if FHD(r̃2, r2) > τ

Fig. 2. Lockdown protocol I, providing unilateral authentication with a
weak PUF. A strong PUF could also be used by replacing r̃1‖r̃2 ←
WPUF(c) with r̃1‖r̃2 ← SPUF(PRNG(c)).

3.2.3 Support for Weak PUFs
We allow an SRAM PUF [31] to be used for lightweight
entity authentication in a manner that is secure against com-
putationally unrestricted adversaries (cf. Sec. 9.2), assuming
each SRAM cell is physically distinct and the SRAM bits are
uncorrelated. The deterministic challenge counter value can
be readily mapped into an SRAM memory address.

3.2.4 No Device-Side Monotonic Counter
We note that a conventional lockdown approach using a
device-side monotonic counter is less compelling than our
protocol-level lockdown approach in the following respects:
i) there is extra device-side complexity associated with a sili-
con monotonic counter that requires on-chip programmable
tamper-proof storage; ii) a device-side monotonic counter is
more susceptible to denial-of-service attacks for an adver-
sary with uninterrupted interface access.

3.2.5 Relationship to Mutual Authentication
We emphasize that protocol I does not perform full mutual
authentication, due to a lack of device-generated “fresh-
ness”. The lockdown still occurs because r1 and r2 are
“locked” to each other by design; they are both generated
from the same starting challenge, and challenge replay does
not produce new response bits.

4 LOCKDOWN PROTOCOL II
4.1 Preventing Repeated Measurements

We introduce a protocol extension to prevent PUF noise
side-channel information extraction [18], [24], [25]. We note
that while protocol I in Fig. 2 prevents the adversary from

5

obtaining new CRPs without the server’s permission, it does
not prevent repeated measurements using the same challenge.

Our protocol extension requires the use of a strong PUF
that supports model-based authentication,2 meaning that the
strong PUF circuit supports a mode of operation available
only during enrollment where a linear amount of manu-
facturing variation information can be extracted so that an
authentication verification model (not to be confused with an
adversary’s attack model) can be trained, and later used on
the server to synthesize any CRP [5], [6], [32]. During en-
rollment, instead of storing explicit tuples (cf. Fig. 1, Fig. 2)
for each device, a single authentication verification model
ŜPUFi is stored instead (Fig. 3).

4.2 XOR PUF with Bypass
Here, we describe a PUF circuit with a bypass mechanism
where the PUF is trivially easy to learn during enrollment
but not so once the device is deployed.

The original XOR arbiter PUF construction as described
in [33] takes k copies of the basic arbiter PUF and merges the
k output bits using bit-wise XOR, with the same challenge
applied to each copy. It is well known that while the basic
arbiter PUF can be learned with relative ease, the XORing
produces output bits that are more difficult to learn [14]. We
take advantage thereof by making the easier-to-learn variant
available during enrollment, i.e., bypassing the XORs. After-
wards, the XORs are no longer bypassed, increasing the
machine learning difficulty for the adversary.

4.3 Protocol II Description
4.3.1 Enrollment
During enrollment, instead of securely storing explicit tu-
ples (r1, r2)ij as before (cf. Fig. 2), i.e., one for each authen-
tication event supported, a single authentication verification
model ŜPUFi per device is stored for all future authentica-
tion events for PUF device i (Fig. 3). When implemented
using an XOR PUF, the XORs are bypassed (cf. Sec. 4.2) so
that the basic PUFs are each individually easy to learn [6],
[23]. The enrollment interface is then disabled; we note that
this requires an irreversible fuse or tamper-proof (public)
storage of some sort.

4.3.2 Authentication
During an authentication event, the server obtains a device
identifier id packet which now also includes a challenge
cD from the device; the device-side challenge is to allow
a challenge exchange, so neither the device nor the server
can unilaterally determine all the bits of 〈c〉. The server
then sends cS and r1, the latter software-emulated using
ŜPUFi with 〈c〉 that is a function of both cS and cD .
The device then authenticates the server by comparing the
incoming r1 against a physically regenerated response r̃1.
If the fractional Hamming distance FHD is beyond τ , the
process aborts since the server is regarded as not authentic.
Else, the remaining response bits r̃2 are generated by the
PUF and released outside of the device. Finally, the server
completes the authentication of the device by comparing the
incoming r̃2 against the r2 emulated using ŜPUFi.

2. Please refer to [6] for more details, where the scheme is referred to
as parameter-based authentication.

Device i

Enrollment (1×)

OTP-S: id← idi

Authentication (d×)

cD ← TRNG()

〈c〉 ← PRNG(c)

with c = cS‖cD
r̃1‖r̃2 ← SPUF(〈c〉)
Abort if FHD(r̃1 r1) > τ

idi

init

id‖cD

cS‖r1

r̃2

Server

idi ← SerialNumber()

Train model ŜPUFi
ci ← 0

Abort if ∀i : id 6= idi
cS ← ci

ci ← ci + 1

Abort if ci > d

〈c〉 ← PRNG(c)

with c = cS‖cD
r1‖r2 ← ŜPUFi(〈c〉)

Abort if FHD(r̃2, r2) > τ

Fig. 3. Lockdown protocol II, providing mutual authentication. A device-
side nonce cD enables a noise side-channel countermeasure.

4.4 Remarks

4.4.1 Device-Side Nonce for “Freshness”

Recent PUF attacks used repeated measurements to i) ex-
ploit PUF noise as side-channel information [18], [24], [25];
ii) perform noise filtering [23], [26], [27]; iii) obtain back-
side photonic information [28], [29]. These attacks can be
prevented by using a device-side nonce in the form of cD ,
similar to how nonces are used generally to prevent replay
attacks. As a by-product, an added device-side nonce also
enhances protocol I to support full mutual authentication.

4.4.2 Model-Based Authentication Required

For protocol II (Fig. 3), collecting explicit tuples during en-
rollment time is not practical since cD cannot be anticipated
as it is determined at run-time; this makes the use of ŜPUFi
a requirement. Although an enrollment disabling mecha-
nism is needed to prevent unauthorized ŜPUFi extraction
once the device is deployed, there are practical advantages.
The database size per device on the server is constant, vs.
being linear to the number of authentication events supported.
For the basic strong PUF authentication protocol (Fig. 1)
as well as protocol I (Fig. 2), collecting explicit tuples is
practical only in cases where the number of authentication
events is relatively small. Else, server database size and
enrollment time would increase dramatically.

6

5 PRNG DESIGN

5.1 Design Philosophy

The PRNG is an often overlooked security bottleneck in
many lightweight authentication protocols. Linear Feed-
back Shift Registers (LFSRs) are popular due to their low
hardware footprint and nearly-uniform run statistics. Other
less beneficial properties, however, are not always taken
into account properly. This includes circularity, linearity,
predictability and fixed points. For example, as pointed out
in [32], the first reverse fuzzy extractor protocol [34] was
broken due to LFSR circularity. Furthermore, both slender
PUF versions [5] were broken due to LFSR linearity. Of
course, the aforementioned protocols could be repaired eas-
ily via PRNG redesign.

We take it one step further. The architecture of our
protocols largely facilitates the PRNG design. This substan-
tially differs from the traditional approach in which the
PRNG is considered to be an implementation matter only.
In particular, counter-based server challenge cS is the main
benefactor. Due to its short length, i.e., L(cS) = dlog2(d)e,
the adversary has restricted freedom in mounting a chal-
lenge manipulation attack.3

5.2 Our High-Level Design

For both protocols, the PRNG consists of a maximum-length
LFSR, having state s. The feedback polynomial, as extended
over the finite field GF (2), is required to be primitive.
Initialized with a given seed value, the LFSR starts cycling
through a subset out of 2L(s) − 1 states. In each protocol
run, the LFSR should produce L(〈c〉) bits, hereby enabling
the PUF to generate r̃1‖r̃2. For this purpose, in each cycle,
the last bit of s is appended to the challenge stream. The
all-zeros state s = 0 is a fixed point, avoided by design.

For protocol I, the seed is defined as s0 = iv‖c, and
we evaluate PRNG(c) = LFSR(s0). For protocol II, the
seed is defined as s0 = iv‖cS‖cD, and PRNG(cS‖cD) =
LFSR(s0) is evaluated similarly. The initialization vector
iv is hardcoded and identical for all fabricated devices.
Figure 4 illustrates the working principles. Points via which
the circular stream can be entered are indicated by an
arrow. These comprise only a very small fraction of the total
number of states, restricting capabilities of the adversary.

The main danger is that state segments, i.e., gray-
colored arcs in Fig. 4, might overlap. An adversary that
eavesdropped on prior protocol runs is hereby facilitated.
Especially if the corresponding state segment offset turns
out to be an integer multiple of L(s), in which case part of a
previous response string r̃1‖r̃2 could be replayed. We avoid
all forms of state segment overlap.

5.3 Security Analysis for Lockdown Protocol I

We consider a protocol I scenario using a strong PUF and
challenge expansion. For a given iv, we suggest to run an
exhaustive check during the early design phase for detecting
potential overlap. Only L(c) = dlog2(d)e bits can be set. This
requires d ·L(〈c〉) comparisons to detect re-appearance of iv
in the course of the LFSR run. If, after the seed s0 = iv‖c is

3. For protocol I, cS is just c

cS

s

(a) Lockdown protocol I.

cS‖cD

s

(b) Lockdown protocol II.

Fig. 4. The LFSR-based PRNG of (a) lockdown protocol I and (b) lock-
down protocol II. The circle represents the collection of 2L(s) − 1 states,
traversed through in clockwise direction. Gray-colored arcs represent
sets of sub-challenges 〈c〉 as they occur during genuine authentication
runs. For protocol I, these segments are enrolled in advance by the
server. For protocol II, these are determined at runtime, based on cD .

applied, a state that begins with iv reappears, that particular
LFSR design is disqualified. This can be remedied by an
alternate iv value, a different feedback polynomial, etc.
Candidate iv values can be generated arbitrarily during
the early design phase, and an iv value that passes the
exhaustive check is hard-coded into the LFSR reset value.

We impose the constraint iv 6= 0, hereby disabling fixed
point attacks. For a fixed point, all bits in r̃1‖r̃2 are expected
to be equal, apart from potential noisiness. The success rate
for impersonating a PUF device is only 1/2 then, which
is obviously to be avoided. Furthermore, iv should not be
instantiated with a repetitive pattern, such as alternating
ones and zeros. This could induce overlap, as the exhaustive
check may point out.

5.4 Security Analysis for Lockdown Protocol II
For protocol II, an exhaustive check for overlap during the
design phase is no longer feasible, but we can use a run-time
check instead. From a given seed s0, in the course of iterating
though L(〈c〉) LFSR states, if a state that begins with iv
reappears, the authentication process should be aborted.
This run-time check can be implemented on the device by
comparing L(iv) LFSR state bits against the hardwired iv.
Implementation on the server-side can be done in software.

We consider the probability that iv reappears under
normal operations. While the LFSR has 2L(s) − 1 states,
there are only 2L(s)−L(iv) entry points. If cD is randomly
chosen and cS uniformly chosen (it is a counter value), the
probability that iv reappears one or more times over L(〈c〉)
sub-challenges is shown in Eqn. (1). For each sub-challenge,
there is a 1−0.5L(iv) probability that a re-appearance did not
occur. Each authentication event uses L(〈c〉) sub-challenges.
Fig. 5 shows consistency with simulated data. The equation
assumes the sequence of LFSR states to be representable as
a random permutation.

Piv reappear = 1− [1− 0.5L(iv)]L(〈c〉). (1)

With an active adversary, cD may be chosen adaptively
while aiming to impersonate a device. The same holds for

7

0 5 10 15 20 25 30
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

re
-a

p
p
e
a
ra

n
c
e
 p

ro
b
a
b
ili

ty

 iv length

Calculated from Eqn. (1)

Simulated

Fig. 5. Probability of initial value re-appearance. Eqn. (1) matches
closely with simulated data points, obtained using a 256-bit LFSR,
L(〈c〉) = 1024, and 1.2M simulation runs.

cS while aiming to impersonate the server. The probability
that iv reappears might hence be more than what is given
in Eqn. (1). However, these events can be 100% reliably
detected if a simple run-time check is implemented. Eqn. (1)
may be viewed as a “reliability” measure under normal op-
erations without malicious challenge modifications, and re-
flects the probability that an authentication retry is needed.

6 PROTOCOL INSTANTIATION

Several protocol instantiation values need to be selected
in order to realize our scheme. This includes L(cS), L(r1),
L(r2), L(iv) and τ for protocol I and additionally L(cD) for
protocol II. We discuss the general properties and specify
the selection procedures for a given set of constraints.

6.1 Constraints
6.1.1 Reliability
For a given use case, a target failure rate Pfail is imposed
on each failure mechanism. This is the probability that a
genuine protocol run fails due to excessive PUF noisiness,
or in the case of protocol II, also due to iv re-appearance
(cf. Eqn. 1) for a randomly generated cD and a counter-
based cS value. In our example, we assign the same Pfail to
both failure mechanisms. A typical specification thereof is
10−6, in line with failure (retry) rates of human biometrics
applications, or 10−9, in line with failure rates of silicon
devices fabricated using state-of-the-art process nodes. The
average bit error rate of PUF response bits is denoted as Pe.
It is strongly influenced by environmental conditions tied to
a specific use case.

6.1.2 Number of Genuine Authentications
The number d of genuine authentication events4 supported
is specified based on a given use case, e.g., 10 authentica-
tions for supply chain tracking where there are no more

4. Authentications made by the server/verifier, not by the adversary.
The latter is allowed to make more than d queries.

than 10 supply chain checkpoints. Alternatively, 1,000 au-
thentications for a disposable NFC wristband for a multi-
day conference. The number d is set high enough such
that depletion almost never occurs. In certain use cases
such as multi-day conference, in the exceptional event that
depletion does occur, a new band containing a different PUF
device can be issued. The system is designed such that the
adversary cannot obtain CRPs associated with more than
d authentication events per PUF device; with lockdown,
this is possible even for an adversary that can make a very
large number of queries since availability of r1 is implicitly
regulated by the server.

6.1.3 Security
Finally, the adversary’s success probability Padv is assigned
to different events. In our scheme, the adversary can breach
the threshold comparison in the “reverse” direction, e.g.,
by guessing r1 to be within τ of r̃1 in terms of fractional
Hamming distance; or in the “forward” direction, e.g., by
guessing r̃2 to be within τ of r2. We consider the system
to be compromised if authentication in either direction is
breached, i.e., there is a false acceptance in either direction.
The adversary can also repeatedly query the device to cause
a cD from a prior genuine authentication to reappear, in a
replay attack. We assign the same Padv to all these events.

A typical specification of 10−9 more than covers ap-
plications that require human biometrics false acceptance
rates; alternatively, 10−20 and 10−40 targets 64-bit and 128-
bit security levels respectively. When a strong PUF is used
with protocol II, Padv is influenced by the machine learning
classification error. A classification error ε = 0 means that
a particular learning algorithm run can predict the PUF
response with zero error, i.e., complete certainty. An ε =
0.5 means that a particular learning algorithm run cannot
predict the PUF response better than random guessing. We
choose a conservative d value so that even with a CRP
training-set size associated with d−1 authentication events,
the machine learning classification error rate remains close
to the ideal value of 0.5 based on a heuristic validation
using today’s best machine learning algorithms. In partic-
ular, we want to lower d such that the distribution of ε
from multiple machine learning runs (with the worst case
CRP training-set size) looks similar to a classification error
distribution obtained through random guessing. When a
properly implemented weak PUF, which uses a physically
distinct component to derive each response bit, is used with
protocol I, there is no machine learning attack uncertainty.

6.2 Response Lengths L(r1) and L(r2)

6.2.1 False Rejection Rate
Threshold τ is applied to responses r̃1 and r̃2, each of which
may induce a failure due to PUF noisiness. The correspond-
ing probability is often referred to as the false rejection rate. In
our example, we use L(r1) = L(r2) and the same threshold
τ for both, which simplifies the equations. We note that the
equations can be adapted for different response lengths or
thresholds in the reverse and forward directions, which we
do not explicitly consider here. Fbino denotes the cumulative
distribution function of a binomial distribution. When each
direction is treated in isolation, the probability that the noise

8

Pe does not induce bit flips that exceed the threshold τ over
L(r1) bits is given by

Fbino

(
bτ · L(r1)c; L(r1),Pe

)
=

bτ ·L(r1)c∑
b = 0

(
L(r1)

b

)
· (Pe)

b · (1− Pe)
L(r1)−b. (2)

The false rejection rate accounting for both the reverse
and forward directions is given below based on the union
bound. The square term in the equation accounts for the fact
that if either direction fails, e.g., due to excessive PUF noise,
the protocol run is considered to have failed.

Pfail = 1−
(
Fbino

(
bτ · L(r1)c; L(r1),Pe

))2

. (3)

6.2.2 False Acceptance Rate
Furthermore, guessing attacks should be excluded. We as-
sume the adversary knows the systematic bias β of the PUF
population, i.e., the averaged probability that a given re-
sponse bit evaluates to 1. The probability that the adversary
guesses a particular “1” bit correctly is β2, and for “0” bit
it is (1 − β)2, thus the 1 − (β2 + (1 − β)2) = 2β(1 − β)
argument in the false acceptance rate computation in Eqn. (4).
We want the false acceptance rate in either direction to be
sufficiently low. In our example, we assign both to Padv . In
PUF designs with a fully symmetrical layout, β ≈ 0.5 can
typically be achieved [35].

Padv = Pguess = Fbino

(
dτ · L(r1)e; L(r1), 2β(1− β)

)
. (4)

This equation gives the probability of the adversary guess-
ing L(r1) response bits to be within threshold τ , where
2β(1 − β) represents the success probability of guessing a
single response bit correctly given the systematic bias β.

If a strong PUF is used with protocol II, the effects
of machine learning can be accounted for in Eqn. (4) by
substituting 2β(1− β) with ε (cf. Sec. 6.1.3).

6.3 Challenge Lengths L(cS) and L(cD)

The server challenge is dimensioned based on the number of
genuine authentications supported, i.e., L(cS) = dlog2(d)e.
For protocol II, there is also a device challenge cD . Its length
is chosen to counteract server impersonation via replay.
In particular, the adversary that eavesdropped on d − 1
genuine protocol runs may subsequently query the device
until a previously used cD appears, and then maliciously
apply the corresponding cS and r1. The probability that a
cD value generated from an ideal on-chip TRNG overlaps
with a particular single past value is 2−L(cD). There are a
maximum of d− 1 prior cD values that were used for prior
genuine authentication runs. Eqn. (5) expresses the success
probability of the above replay attack.

Padv = Preplay = 2−L(cD) · (d− 1). (5)

In the event of a successful replay, a previously used set
of sub-challenges 〈c〉 would be repeated on a malicious run,
allowing for noise side-channel information extraction for
potentially L(r2) bits.

6.4 Initialization Vector Length L(iv)

For protocol I, the length of the initialization vector iv may
be chosen arbitrarily, given that the exhaustive check ex-
cludes overlap. For protocol II, we make use of Eqn. (1), i.e.,
let Piv reappear = Pfail and solve for L(iv) for a particular
choice of L(〈c〉).

7 EXPERIMENTAL VALIDATION

7.1 Proof-of-Concept PUF ASIC Implementation
Our proof-of-concept implementation targets a lightweight
RFID/NFC use case, and was manufactured with a low-
cost 0.18µm silicon fabrication process. As shown in Fig. 6,
a silicon die contains four chains each comprising of a basic
64-stage PUF (k = 4, n = 64); there is a configurable m value
(using a combination of fuse and software programming) for
serially merging groups ofm 4-XORed response bits to form
a composite output response bit r̃. Each composite response
bit is a function of the manufacturing variation of the four
64-stage cross-bar chains, as well as an input challenge bit
applied to each one of the stages that is fed from a challenge
schedule output denoted as 〈c〉. In our design, each 64-
stage chain receives different challenge bits, in contrast with
the original XOR approach of [33] that applied the same
64-bit challenge to each chain. In terms of PUF area, each
64-stage structure contains 64 cross-bar multiplexer stages,
which requires 260 NAND-2 gate equivalent (GE), with an
arbiter at the end of the last stage formed using a cross-
coupled NAND latch. In particular, our silicon design used
a compact 4 GE for each of the 64 cross-bar multiplexer
stage, and a 4 GE estimate accounts an arbiter latch. With
four 64-stage chains, there are 1040 GEs total for the PUF
manufacturing variation circuit.

A

[0:63]

〈c〉

A

[64:127]

A

[128:191]

A

[192:255]

Pa
ra

lle
lk

-X
O

R

Serial
m-XOR r̃

Fig. 6. XOR arbiter PUF silicon implementation.

Our implementation also has XOR bypass support (not
explicitly shown in the figure) so that the authentication
verification model ŜPUFi can be easily derived during

9

enrollment time, allowing the server to later predict the
response to any challenge.

7.2 Viability of Model-Based Authentication

We validated the model training approach for enrollment as
was shown in Fig. 3, where ŜPUFi is stored on the server
for each device instead of storing explicit tuples. During
enrollment, the XORs are bypassed, so that the model for
each basic 64-stage PUF can be easily derived.

We achieved an average noise level for a basic 64-
stage PUF of 4.3% when the authentication is performed
using a model that was learned with no more than 8192
response bits during enrollment, and where the PUF model
resolution for each modeling stage used a floating point
(full-resolution) representation. Using a decimated 7-bit rep-
resentation, the average noise level for a basic 64-stage PUF
increased marginally to 4.5%. These noise levels are for an
operating temperature span of -25◦C to 85◦C ambient, and
supporting enrollment nominally at 25◦C.

We note that the noise level for a basic arbiter PUF imple-
mentation in [35] was shown to be 4% for an environmental
variation between -40◦C and 85◦C. We achieved similar
noise levels while validating against a model (of the basic
64-stage PUF) derived using machine learning techniques.

7.3 Heuristic Evaluation: Protecting Against Today’s
Best Machine Learning Attacks

Fig. 7 shows the best learning attack results for the k-XOR
arbiter PUF to date that is pertinent to our discussion.

• Line width indicates whether noise side-channel infor-
mation is exploited (thin line) or not (thick line).

• Line dash-style indicates either same challenges are
applied to each of the k PUF chains (dashed line) or
different challenges (solid line).

7.3.1 Ruhr-University Bochum Attacks (2015)
The most recent results are from Ruhr-University Bochum,
shown in red (circles). These include the best attack re-
sults for XOR PUFs to date, which exploits noise side-
channel (s.c.) information to perform reliability-based ma-
chine learning [18], as shown by red-thin lines. This class
of s.c. attack can be eliminated by preventing repeated
challenges [18]. If so, the red-thin results are no longer
relevant, and the Bochum red-thick results now apply [17].

It is possible to create a heuristically-secure lightweight
PUF authentication scheme against these recent Bochum
attacks through a lockdown of CRP exposure. If protocol I
is used (no countermeasure applied), a k=8-XOR n=128-
stage PUF requires 300,000 CRPs to break using the red-thin
results from [18]. In Fig. 7, the x-axis represents k, the num-
ber of n-stage PUFs whose output response bits are XORed
together, and y-axis represents number of CRPs where each
response is a single bit. In this case, Rlimit < 300, 000. If
1,000 bits are used per authentication for each of r1 and r2,
d = Rlimit/(L(r1)+ L(r2)) < 150 can be supported. A more
exact number would require more experiment runs, to lower
the CRPs until the machine learning algorithm has trouble
converging.

4 5 6 7 8 9 10

10
4

10
5

10
6

10
7

10
8

10
9

10
10

 k, number of XORs

C
R

P
s

 n = 64, same chal. [17]

 n = 128, same chal., noise s.c. [18]

 n = 64, same chal. [14] [23]

 n = 64, diff. chal. [14] [23]

 n = 64, diff. chal. [current work]

Fig. 7. Heuristic machine learning results for k-XOR PUF. Red (circles)
are from Ruhr-University Bochum (2015), and black (triangles) are from
Technical University Munich (2010-2014). The most difficult XOR PUF
configuration to attack is one i) without benefit of noise side-channel
(s.c.) information; and ii) using different challenges for each of the k PUF
chains. We confirmed and extended these results in blue (squares).

Now we analyze the Bochum results with respect to our
protocol II, which contains a noise s.c. attack countermea-
sure. The results that apply are no longer those from [18]
(which requires noise s.c. information), but the ones in [17],
which are shown as red-thick lines. For an 8-XOR PUF,
4·107 CRPs were used, which supports 1·104 authentication
events. For 10-XOR PUF, 3 · 109 CRPs are required for the
attack, which supports 1 · 106 authentication events.

7.3.2 Technical University Munich Attacks (2010, 2013)
Shown in black (triangles) in Fig. 7 are several recent attacks
by Technical University Munich [14], [23]. The black-solid
line indicates results for “lightweight” PUFs, which cor-
responds to applying different challenges to each of the k
PUF chains. The black-dashed line represents same challenges
applied to each chain, which is easier to attack (requires
less CRPs to learn, given the same n and same k). We note
that the dashed thick results from Munich and Bochum look
consistent, representing attacks without the benefit of noise
s.c. information and with same challenges for each chain.

7.3.3 Our Confirmation Attacks
In our case, we want to find an XOR PUF configuration that
the data have shown to be the most difficult to attack, and
construct / hardwire our PUF instantiation. From Fig. 7, we
make the following observations.

i) Without the benefit of noise s.c. information, the num-
ber of CRPs required to learn a k-XOR PUF is no longer
flat (thin line) but grows with k (thick lines) – achievable
using a noise s.c. countermeasure (cf. Sec. 4).

10

TABLE 1
m-way serial XOR merge (using k=4-XOR n=64-stage PUF)

m=4 (from ([18]) m=2 m=4
(uses (with (with

noise s.c.) countermeasure) countermeasure)
CRPs 40,000 ≥ 12,000,000 >> 12,000,000

ii) We can get an additional improvement by using dif-
ferent challenges per chain (solid lines) vs. same chal-
lenges (dashed lines), the former having a steeper slope
in Fig. 7 – achievable by not replicating PRNG bits across
multiple chains (i.e., avoid the original XOR PUF [33]).

Our confirmation attacks are shown in blue (square),
where we obtained successful modeling for 4-XOR at 9000
CRPs, 5-XOR at 200,000 CRPs. This is consistent with the re-
sults by the Munich group (solid black). We then proceeded
to lower the CRPs until the machine learning algorithm
had trouble converging.5 We were unable to model a 4-
XOR at 8500 CRPs, a 5-XOR at 100,000 CRPs, and a 6-
XOR at 16,000,000 CRPs, after over 100 days of attack in
aggregate. On a logarithmic scale, the difference between
the “successful attack” point and “unable to model” point
is very small. We use the RPROP algorithm [14], [16], which
has been the most effective algorithm to date to attack an
k-XOR n-stage PUF with no noise s.c. information.

We also performed attacks where we serially merged m
k-XOR results. Table 1 shows results for k=4, n=64, and
compares against results from [18], the latter taking advan-
tage of noise side-channel information. All results here are
for different challenges applied to each chain. Reliability-
based machine learning in [18] successfully attacked a k=4-
XOR PUF with m=4 using 40,000 CRPs. Our experiment to
date with only m=2 and a countermeasure shows that using
12,000,000 CRPs, them=2 case cannot be modeled after 100+
days. If m=4, much greater than 12,000,000 CRPs can be
supported, with a more precise (higher) CRP number to be
determined based on future results.

7.4 Remarks

We note that without CRP lockdown, all the attack points
shown in Fig. 7 and Table 1 are likely to be broken from
an analytical attack standpoint, since even in a few days
or weeks time it may be feasible to obtain millions of
CRPs. With lockdown, the server implicitly restricts the CRP
exposure such that authentication can be performed.

8 ENVISIONED ARCHITECTURE

8.1 Strong PUF Instantiation

Fig. 8 shows an envisioned lockdown architecture using a
strong PUF, e.g., the XOR PUF in Fig. 6. We use an LFSR de-
sign that detects re-appearance of the iv at run-time, which
prevents response overlaps with 100% certainty. Using the
XOR PUF in Fig. 6 as an example, which has challenge input
bits of [0:63], [64:127], [128:191], and [192:255] for the four

5. E.g., with the machine learning classification error ε vacillating
around 0.50 with a normal distribution.

XORPUF

TRNG

LFSR

= iv?

φ = 1
∧
FHD ≤ τ

OTP-S

cS

cD

r̃2

r1
id

idi

〈c〉

r̃1

Fig. 8. Envisioned architecture for a strong PUF instantiation, using an
XOR PUF (cf. Fig. 6) and lockdown protocol II. Multi-bit and single-bit
data flows are drawn thick and thin respectively. On-chip storage for idi

only needs to be one-time programmable.

64-stage cross-bar chains, a 256-bit LFSR provides the nec-
essary challenge expansion. This LFSR can have L(cS) = 20,
L(cD) = 172, and L(iv) = 64, where the initial value iv
is present in the LFSR reset state. To detect re-appearance
of the initial value, L(iv) bits of the LFSR corresponding
to the iv can be compared with a hardwired comparator
comprising of a series of AND gates tapping either the true
or the complement output of the LFSR flip-flops.

The authentication occurs in two phases. During the
“reverse” authentication phase, i.e., φ = 0, the incoming r1
is compared against the physically regenerated r̃1 from the
PUF. Only if the comparison passes the τ threshold test
are the remaining PUF response bits r̃2 released outside
the device during the “forward” authentication phase, i.e.,
φ = 1. This functionality is captured by the switch in the
figure where the bottom path is taken only if the control
condition is true. This instantiation uses lockdown protocol
II to prevent noise side-channel information extraction and
other attacks that require repeated measurements. A TRNG
allows the device to generate a part of the starting challenge.

8.2 Weak PUF Instantiation

SRAM PUF

address

dataout

ω‖c‖φ c

r̃2

φ = 1
∧
FHD ≤ τ
r̃1

r1

OTP-S idi

id

Fig. 9. Envisioned architecture for a weak PUF instantiation, using an
SRAM PUF and lockdown protocol I.

Fig. 9 shows the envisioned architecture for a weak
PUF instantiation, using an SRAM PUF [31]. By using
lockdown protocol I, the adversary can no longer arbitrarily

11

TABLE 2
Lockdown with SRAM PUF and with XOR PUF. Supporting up to
d=1,000 authentications. False acceptance rate ≈ 2−128. False

rejection rate ≤ 10−6

SRAM PUF XOR PUF
Noise 7.0% 4.3%

(using [35])
Response Size L(r1) = L(r2) = 320 L(r1) = L(r2) = 1280

Threshold τ = 48
320

τ = 407
1280

Manufacturing 6 Transistor 16 Stacked Transistor
Variation Unit SRAM Cell Delay Stage

(1.5 GE) (4 GE)
Size for d=1,000 640,000 6T Cells 4 · 64 delay stages
authentication (960,000 GE) (1,024 GE)

from 80 KByte SRAM
If only d=10 6,400 6T Cells 4 · 64 delay stages

authentications (9,600 GE) (1,024 GE)
from 800 Byte SRAM

Protocol Lockdown Protocol I Lockdown Protocol II
Security w.r.t. Secure Against Any Heuristic

Learning Learner
CRPs exposable = d· 320 ·2 ≥ 12, 000, 000

(see Table 1)

read the memory contents (corresponding to the response bits),
thereby addressing practical limitations associated with the
SHIC approach; an extremely large memory array with
an extremely slow read-out rates is no longer necessary
to prevent exhaustive read-out by the adversary. We also
preserve the main security property of SHIC, which is secure
against computationally unrestricted adversaries, but do so
for a practically instantiable SRAM PUF.

The SRAM PUF comprises of cross-coupled inverters
and two access transistors, corresponding to a 6T (six tran-
sistor) memory cell, whose initial power-up value is subject
to manufacturing variation and is used as a PUF response
bit. There is address decode logic to determine which mem-
ory address word to output at the dataout port. To support
protocol I, the memory space is divided into even entries,
and odd entries, controlled by φ. A φ = 0 indicates that
the “reverse” authentication phase is active, and φ = 1
indicates that the “forward” authentication phase is active.
The device outputs the SRAM PUF contents for the odd
addresses (for the “forward” authentication) only if the
“reverse” authentication succeeds, i.e., the incoming r1 is
within τ of r̃1 in terms of fractional Hamming distance. In
terms of address generation, the least significant bit is φ,
followed by the incoming challenge c in the middle bits,
followed by the word address ω in the upper bits; the
response length, e.g. L(r1), is a multiple of the memory
word size (e.g., 32 bits) in this architecture.

8.3 Comparison Against Strong PUF Instantiation

Table 2 compares the weak PUF lockdown instantiation of
the prior section against a strong PUF instantiation to sup-
port d = 1,000 authentications; the latter instantiation uses
protocol II with k=4-XOR and m=2. To normalize compari-
son, we use noise results from [35] that covers a temperature
range from -40◦C to 85◦C, with enrolled reference at 25◦C.
The memory PUF noise was 7.0% and arbiter PUF was 4.0%.
For loss associated with using model-derived values (vs.
explicit tuples) as reference, we add 0.3% more noise (cf.

Sec. 7.2). From the noise level, we derive response size and
threshold value for achieving a false acceptance rate≈ 2−128

and false rejection rate below ppm (part-per-million) levels
using both Eqns. (4) and (3). Next, the NAND-2 Gate-
Equivalent (GE) area for the basic manufacturing variation
unit is described (1 NAND2 = 4 transistors). Following that,
size of the manufacturing variation portion of circuit for
d=1,000 authentications is shown; for comparison, GE for d
= 10 authentications is also shown.

Note: The k-XOR construction has a noise level for the
false rejection rate computation that grows with k ·m, which
is the total number of bits XORed together. This is similar
to the “k-XOR noise” equation in [6], where the binomial
distribution is used. This usage is justifiable assuming that
the PUF noise affects each of the k response bits from their
respective PUF chain in an independent fashion. This holds
true if each PUF chain is physically distinct, and random
challenges are applied to each chain (e.g., from a PRNG).
We adapt the equation for the k ·m case. If the noise level
for a single n-stage PUF is Pe(1), then the extrapolated noise
level for k ·m bits XORed together is6

Pe(k·m) = 1−
b k·m

2 c∑
b = 0

(
k ·m
2b

)
·Pe(1)

2b·(1−Pe(1))
k·m−2b.

(6)

When k ·m bits are XORed together, we get the correct result
when all k · m bits match (between the enrollment and a
later authentication query), or when an even number of bits
mismatch. Pe(1) is the 4.3% value for arbiter PUF. At m=1
and k=4, the extrapolated post-XOR noise level is Pe(4 ·1) =
0.1511 (vs. 0.1499 from silicon); at m = 2, extrapolated Pe(4 ·
2) = 0.2565 (vs. 0.2548 from silicon). The latter extrapolation
is used as Pe in Eqn. (3) to compute the response length to
achieve a false rejection rate below 1 part per million while
also satisfying the false acceptance rate requirement.

9 COMPARISONS

9.1 Against Survey Results From [4]

Table 3 compares our approach against the finalists of a
recent survey on PUF-based authentication protocols [4].
Most of these require either a cryptographic algorithm or
an error correction code.7 For example, a controlled PUF [2]
applies hashing to a PUF’s challenge/response behavior,
which requires error correction since the noisy response
bits are hashed. In terms of implementation complexity, our
approach has a relative advantage in that we do not require
on-chip error correction / cryptography; we also do not
need to be concerned about the handling of error correction
helper data in terms of where to store them and how to
protect their integrity to prevent helper data manipulation
attacks [38]. However, our lockdown approach requires the
number of genuine authentication events to be limited based
on a given use case.

6. Pe(1) denotes noise level without XORs, and Pe(k ·m) is the noise
level for k ·m PUF bits bit-wise XORed together.

7. An example PUF with error correction requires 5,200 or more
GE [36], and an AES block cipher requires an additional 2,400 GE [37].

12

TABLE 3
Comparing Lockdown with protocol finalists from [4] and SHIC from [7].

Lockdown Ia uses a strong PUF, and Lockdown Ib a weak PUF.
Lockdown IIa uses a PAC-learnable configuration but with restricted

CRP exposure. Lockdown IIb uses a non-PAC-learnable [11]
configuration, with CRP exposure also restricted.

.

Protocol C
ry

pt
o

al
go

ri
th

m

Er
ro

r
co

rr
ec

ti
on

TR
N

G

Ex
ha

us
ti

ve

M
ut

ua
la

ut
h.

N
um

be
r

of
au

th
.

Sc
al

ab
le

Pr
iv

ac
y

PU
F-

in
de

pe
nd

en
t

M
od

el
in

g
ro

bu
st

Heavyweight
Ref. II-A X X × × × ∞ X × X X
Sadeghi X X X × × ∞ × X X X

Controlled X X × × × ∞ X × × X
Rever. FE I X ∼ X × X ∞ X × × X

Rever. FE II X ∼ X × X ∞ X × X X
SHIC × × × X × ∞ X × × X

Lightweight
Slender × × X × × ∞ X × × ∼

Noise bifur. × × X × × ∞ X × × ∼
Lockdown Ia × × × × × d X × ∼
Lockdown Ib × × × × × d X ×

X
X

Lockdown IIa × × X × X d X × ∼
Lockdown IIb × × X × X d X × X

Among the surveyed finalists, only the slender PUF [5]
and noise bifurcation [6] protocols require neither an error-
correction code nor a cryptographic algorithm. However,
their PRNG, a critical lightweight building block, was re-
spectively broken and unspecified; we made advances in
this area (cf. Sec. 5). More significantly, both have an open
interface, allowing the adversary to arbitrarily obtain infor-
mation associated with new CRPs so long as access to the
device’s interface is maintained. With lockdown, the adver-
sary can no longer obtain a new response r̃2 without already
knowing r1, and the release of r1 is implicitly enforced by
the server. There is, however, a small incremental overhead
for maintaining a counter state for each device on the server-
side.8 In exchange for this incremental complexity on the
server, we upper bound the power of the adaptive chosen-
challenge machine-learning-equipped adversary in terms of
the worst-case CRP training-set size. Our lockdown scheme
can be also viewed as a generic security notion that can
complement prior approaches such as slender PUF [5] so
that a heuristic machine-learning-based validation based on
the worst-case CRP exposure becomes feasible to perform.
Slender PUF also requires server-side storage of an authen-
tication verification model for each PUF device, so only an
additional server-side counter state needs to be added for
each slender device in order to incorporate lockdown.

Our lockdown approach also exhibits PUF independence
(works with both strong and weak PUFs). In fact, our SRAM
instantiation is the first practically realizable lightweight
authentication scheme that is secure against computationally
unrestricted adversaries (cf. Sec. 9.2), which includes any
learner; this is a strong security guarantee not possible with
any of the nineteen surveyed approaches in [4].

8. There is no counter state on the device-side, which would be more
complex to implement. E.g., requiring an on-chip monotonic counter.

9.2 Against Super High Information Content (SHIC)
The main security property of SHIC (cf. Sec. 2.3) is that it
is secure against computationally unrestricted adversaries.
We achieve that goal but do not require the “brute-force”
SHIC approach of using an extremely large memory and
extremely slow read-out speeds (cf. Sec. 8.2), and can use
SRAM vs. experimental memory.

9.3 Against Theoretical Machine Learning Results
According to recent theoretical machine learning results
from Ganji et al. [11], certain practically realizable k-XOR
PUF constructs were mathematically shown to be learnable
under the celebrated PAC framework [12], which links
learning with computational complexity theory: these con-
structs can be learned with a polynomial number of CRPs
and in polynomial time. Notably, polynomial in PUF circuit
size. This same work also declared certain k-XOR PUF con-
structs as not PAC-learnable; they cannot be learned with a
polynomial number of CRPs and in polynomial time, pro-
vided that the Vapnik-Chervonenkis (VC) dimension [39]
of a k-XOR n-stage PUF is linear to (n + 1)k. The results
from [11] assume that there are no repeated challenges. The
challenge-exchange from our protocol II satisfies this condi-
tion. To date, there are no machine learning representations
of a k-XOR n-stage PUF with no repeated challenges where
the representation is logarithmic to (n+ 1)k.

Recall that k is the number of PUF chains, n is the
number of stages per chain, and k · n is the circuit size.
According to [11], if the number of chains is much greater
than the natural log of the number of stages per chain,
such an XOR PUF theoretically requires an exponential
effort to learn; specifically, with a linear increase in circuit
size (number of chains), there is an exponential increase
in the attack effort in terms of both CRPs and run-time.
The authors of [11] concluded that with n=64-stages, if the
number of chains ≥ 5, the configuration is operating in the
exponential region of the learning difficulty curve; this is
consistent with the fact that for n=64, k ≥ ln(64) = 4.17.
We note that this result is in agreement with the thick-lined
exponential curves in Fig. 7 (y-axis reflects an exponential
CRP requirement in k). However, [11] wrongly implied that
it is practically infeasible to operate in the part of the curve
where the learning difficulty is exponential in the circuit
size (i.e., in k), due to additive response noise. Their result
presumes that in practice, k cannot exceed the bound dln(n)e;
and ideally (with practicality aside), k cannot exceed 12-XOR
for a presumed noise level of 4% due to a 50% noise limit.

Our silicon PUF noise level was Pe(1) = 4.3% (cf.
Sec. 7.2). Unlike what [11] was implying, the effect of
XORing is not a strict arithmetic summation, and is more
precisely given by Eqn. (6). For example, for 12-XOR, the
noise level based on an “arithmetic sum” extrapolation is
4.3% · 12 = 51.6%, which [11] implied is unusable as
majority voting cannot even help. Based on our more precise
equation, the 12-XOR noise level is instead 33%. Fig. 10
contains a comparison of the two approaches, showing
that the “arithmetic sum” extrapolation is less accurate. We
further note that [11] did not explicitly consider increasing
the response length to compensate for an increase in noise
level due to XORing. For 12-XOR, with a response length

13

5 6 7 8 9 10 11 12
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

total number of XORs

a
v
e
ra

g
e
 n

o
is

e
 l
e
v
e
l
(p

o
s
t-

X
O

R
)

P

e
(1) = 0.05

P
e
(1) = 0.04

P
e
(1) = 0.03

Fig. 10. XOR Noise Extrapolation: “Arithmetic Sum” vs. Eqn. (6). Ex-
trapolated XOR noise for Pe(1) = 0.05, 0.04, and 0.03 are shown with
solid lines, dashed lines, and dotted lines, respectively, where the thin-
line variant is a strict arithmetic sum extrapolation, and the thick-line
variant uses Eqn. (6). The latter extrapolation more accurately matches
the simulated noise results, shown as stars, obtained by injecting noise
to each simulated PUF stage for the k chains (m = 1); k response bits
are XORed to obtain the simulated post-XORed noise level.

of 3072 and a threshold of 1143
3072 , the false rejection and

false acceptance rates of our prior examples are met. The
theoretical results from [11] clearly concluded that 12-XOR
is exponentially difficult to learn. We have shown that it is in
fact feasible to operate in a region where k exceeds the bound
dln(n)e, and even at k=12-XOR, by using a more precise
noise equation, lengthening the response to preserve the
false positive and false negative rates, and using our silicon
data, all in the context of our protocol II. In this regime, a
learning attack effort that is less than exponential (in terms
of CRPs and runtime) is theoretically not possible based on
the PAC learning results of [11].

10 CONCLUSION

Entity authentication is normally implemented with a cryp-
tographic algorithm (e.g., AES, HMAC) and a secret key, to
allow an exponential number CRPs to be derived from a
linearly-sized circuit. For over a decade, there were several
proposals to replicate such a behavior in a lightweight fash-
ion using PUFs and without the aid of an error correction
code or a cryptographic algorithm [4], [8], [32]. From a
machine learning attack standpoint, these proposals either
i) were broken; or ii) were difficult to heuristically validate
on a worst case CRP basis due to an “open” interface.

Using our lockdown approach, we presented i) the first
strong PUF scheme without error-correction where a ma-
chine learning validation run based on a worst-case CRP
training-set size is possible; ii) first weak PUF protocol using
SRAM that is secure against computationally unrestricted
adversaries, including any learner. Finally, we are the first
to confirm the existence of a PUF system level instantiation
that is exponentially difficult to learn based on recent re-
sults [11] using PAC learning but is yet practically realizable,
backed by an improved XOR noise equation, a response
lengthening analysis, and our silicon data, and using our

extended protocol. This final result hinges on the inability
to find an k-XOR n-stage PUF representation having a VC
dimension that is logarithmic to (n + 1)k without using
repeated challenges, which is an area of future research.

Our lockdown approach can be also viewed as a generic
security notion applicable to other lightweight authenti-
cation schemes, to upper-bound the power of a learning
adversary in terms of CRP training-set size, making security
easier to justify and validate.

ACKNOWLEDGEMENT

This work was partly funded by the Bavaria California
Technology Center (BaCaTeC) through grant number 2014-
1/9.

REFERENCES

[1] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Silicon
Physical Random Functions,” in Proc. 9th ACM Conference on
Computer and Communications Security (CCS), 2002, pp. 148–160.

[2] ——, “Controlled Physical Random Functions,” in Proc. 18th An-
nual Computer Security Applications Conference (ACSAC), 2002, pp.
149–160.

[3] B. Gassend, “Physical Random Functions,” in Master’s Thesis, Dept.
EECS, Massachusetts Institute of Technology, 2003.

[4] J. Delvaux, R. Peeters, D. Gu, and I. Verbauwhede, “A Survey
on Lightweight Entity Authentication with Strong PUFs,” ACM
Computing Surveys, vol. 48, no. 2, pp. 26:1–26:42, 2015.

[5] M. Majzoobi, M. Rostami, F. Koushanfar, D. Wallach, and S. De-
vadas, “Slender PUF Protocol: A Lightweight, Robust, and Secure
Authentication by Substring Matching,” in Proc. IEEE Symposium
on Security and Privacy Workshops, 2012, pp. 33–44.

[6] M. Yu, D. M’Raı̈hi, I. Verbauwhede, and S. Devadas, “A Noise
Bifurcation Architecture for Linear Additive Physical Functions,”
in Proc. IEEE Int’l Symposium on Hardware-Oriented Security and
Trust, HOST, 2014, pp. 124–129.

[7] U. Rührmair, C. Jaeger, M. Bator, M. Stutzmann, P. Lugli, and
G. Csaba, “Applications of High-Capacity Crossbar Memories in
Cryptography,” IEEE Transactions on Nanotechnology, vol. 10, no. 3,
pp. 489–498, 2011.

[8] R. Maes, “Physically Unclonable Functions: Constructions, Prop-
erties and Applications,” in PhD Thesis, Dept. Electrical Engineering
(ESAT), Katholieke Universiteit Leuven (KU Leuven), 2012.

[9] S. Devadas, E. Suh, S. Paral, R. Sowell, T. Ziola, and V. Khandelwal,
“Design and Implementation of PUF-Based Unclonable RFID ICs
for Anti-Counterfeiting and Security Applications,” in Proc. 2nd
IEEE Int’l Conference on RFID, 2008, pp. 58–64.

[10] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Lightweight
Secure PUFs,” in Proc. Int’l Conference on Computer-Aided Design
(ICCAD), 2008, pp. 670–673.

[11] F. Ganji, S. Tajik, and J.-P. Seifert, “Why Attackers Win: On the
Learnability of XOR arbiter PUFs,” in Proc. Int’l Conference on Trust
and Trustworhty Computing (TRUST), 2015, pp. 22–39.

[12] L. Valiant, “A Theory of the Learnable,” Communications of the
ACM, vol. 27, no. 11, pp. 1134–1142, 1984.

[13] J. Guajardo, S. Kumar, G. J. Schrijen, and P. Tuyls, “FPGA Intrinsic
PUFs and Their use for IP Protection,” in Proc. 9th Int’l Workshop
on Cryptographic Hardware and Embedded Systems (CHES), 2007, pp.
63–80.

[14] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and
J. Schmidhuber, “Modeling Attacks on Physical Unclonable Func-
tions,” in Proc. 17th ACM Conference on Computer and Communica-
tions Security (CCS), 2010, pp. 237–249.

[15] C. Bishop, “Pattern Recognition and Machine Learning,” Springer,
2007.

[16] M. Riedmiller and H. Braun, “A Direct Adaptive Method for
Faster Backpropagation Learning: the RPROP Algorithm,” in Proc.
IEEE Int’l Conference on Neural Networks, 1993, pp. 586–591.

[17] J. Tobisch and G. Becker, “On the Scaling of Machine Learning
Attacks on PUFs with Application to Noise Bifurcation,” in Proc.
Int’l Workshop on Radio Frequency Identification, Security and Privacy
Issues. (RFIDSec), 2015, pp. 17–31.

14

[18] G. Becker, “The Gap Between Promise and Reality: On the In-
security of XOR Arbiter PUFs,” in Proc. 17th Int’l Workshop on
Cryptographic Hardware and Embedded Systems (CHES), 2015, pp.
535–555.

[19] D. Lim, “Extracting Secret Keys from Integrated Circuits,” in
Master’s Thesis, Dept. EECS, Massachusetts Institute of Technology,
2004.

[20] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Testing Tech-
niques for Hardware Security,” in Proc. IEEE Int’l Test Conference
(ITC), 2008, pp. 1–10.

[21] F. Sehnke, C. Osendorfer, J. Sölter, J. Schmidhuber, and
U. Rührmair, “Policy Gradients for Cryptanalysis,” in Proc. 20th
Int’l Conference on Artificial Neural Networks, 2010, pp. 168–177.

[22] G. Hospodar, R. Maes, and I. Verbauwhede, “Machine Learning
Attacks on 65nm Arbiter PUFs: Accurate Modeling Poses Strict
Bounds on Usability,” in Proc. IEEE Int’l Workshop on Information
Forensics and Security, 2012, pp. 37–42.

[23] U. Rührmair, J. Sölter, F. Sehnke, X. Xu, A. Mahmoud, V. Stoy-
anova, G. Dror, J. Schmidhuber, W. Burleson, and S. Devadas,
“PUF Modeling Attacks on Simulated and Silicon Data,” IEEE
Transactions on Information Forensics and Security, vol. 8, no. 11, pp.
1876–1891, 2013.

[24] J. Delvaux and I. Verbauwhede, “Side Channel Modeling At-
tacks on 65nm Arbiter PUFs Exploiting CMOS Device Noise,” in
Proc. IEEE Int’l Symposium on Hardware-Oriented Security and Trust
(HOST), 2013, pp. 137–142.

[25] ——, “Fault Injection Modeling Attacks on 65 nm Arbiter and
RO Sum PUFs via Environmental Changes,” IEEE Transactions on
Circuits and Systems, vol. 61-I, no. 6, pp. 1701–1713, 2014.

[26] U. Rührmair, X. Xu, J. Sölter, A. Mahmoud, M. Majzoobi,
F. Koushanfar, and W. Burleson, “Efficient Power and Timing Side
Channels for Physical Unclonable Functions,” in Proc. 16th Int’l
Workshop on Cryptographic Hardware and Embedded Systems (CHES),
2014, pp. 476–492.

[27] G. Becker and R. Kumar, “Active and Passive Side-Channel
Attacks on Delay Based PUF Designs,” IACR Cryptology ePrint
Archive, Report 2014/287, 2014.

[28] S. Tajik, E. Dietz, S. Frohmann, J. Seifert, D. Nedospasov,
C. Helfmeier, C. Boit, and H. Dittrich, “Physical Characterization
of Arbiter PUFs,” in Proc. 16th Int’l Workshop on Cryptographic
Hardware and Embedded Systems (CHES), 2014, pp. 493–509.

[29] F. Ganji, J. Krämer, J.-P. Seifert, and S. Tajik, “Lattice Basis Re-
duction Attack Against Physically Unclonable Functions,” in Proc.
22th ACM Conference on Computer and Communications Security
(CCS), 2015, pp. 1070–1080.

[30] P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” in Pro-
ceedings on the 19th Annual Int’l Cryptology Conference (CRYPTO),
1999, pp. 388–397.

[31] D. Holcomb, W. Burleson, and K. Fu, “Power-Up SRAM State as
an Identifying Fingerprint and Source of True Random Numbers,”
IEEE Transactions on Computers, vol. 58, no. 9, pp. 1198–1210, 2009.

[32] J. Delvaux, D. Gu, D. Schellekens, and I. Verbauwhede, “Secure
Lightweight Entity Authentication with Strong PUFs: Mission
Impossible?” in Proc. 16th Int’l Workshop on Cryptographic Hardware
and Embedded Systems (CHES), 2014, pp. 451–475.

[33] G. Suh and S. Devadas, “Physical Unclonable Functions for Device
Authentication and Secret Key Generation,” in Proc. 44th Design
Automation Conference (DAC), pp. 9–14.

[34] A. Van Herrewege, S. Katzenbeisser, R. Maes, R. Peeters,
A. Sadeghi, I. Verbauwhede, and C. Wachsmann, “Reverse Fuzzy
Extractors: Enabling Lightweight Mutual Authentication for PUF-
Enabled RFIDs,” in Proc. 16th Int’l Conference on Financial Cryptog-
raphy (FC) and Data Security, 2012, pp. 374–389.

[35] S. Katzenbeisser, Ü. Koçabas, V. Rozic, A. Sadeghi, I. Ver-
bauwhede, and C. Wachsmann, “PUFs: Myth, Fact or Busted? A
Security Evaluation of Physically Unclonable Functions (PUFs)
Cast in Silicon,” in Proc. 14th Int’l Workshop on Cryptographic
Hardware and Embedded Systems (CHES), 2012, pp. 283–301.

[36] V. van der Leest, B. Preneel, and E. van der Sluis, “Soft Decision
Error Correction for Compact Memory-Based PUFs Using a Single
Enrollment,” in Proc. 14th Int’l Workshop on Cryptographic Hardware
and Embedded Systems (CHES), 2012, pp. 268–282.

[37] A. Moradi, A. Poschmann, S. Ling, C. Paar, and H. Wang, “Pushing
the Limits: A Very Compact and a Threshold Implementation
of AES,” in Proc. 30th Annual Int’l Conference on the Theory and
Applications of Cryptographic Techniques (EUROCRYPT), 2011, pp.
69–88.

[38] J. Delvaux, D. Gu, D. Schellekens, and I. Verbauwhede, “Helper
Data Algorithms for PUF-Based Key Generation: Overview and
Analysis,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 34, no. 6, pp. 889–902, 2015.

[39] A. Blumer, A. Ehrenfeuct, D. Haussler, and M. Warmuth, “Learn-
ability and the Vapnik-Chervonenkis Dimension,” Journal of the
ACM (JACM), vol. 36, no. 4, pp. 929–965, 1989.

