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Experimental fast quantum random number generation using high-dimensional entanglement
with entropy monitoring

Feihu Xu,1, ∗ Jeffrey H. Shapiro,1 and Franco N. C. Wong1

1Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

A quantum random number generator (QRNG) generates genuine randomness from the intrinsic probabilistic
nature of quantum mechanics. The central problems for most QRNGs are estimating the entropy of the genuine
randomness and producing such randomness at high rates. Here we propose and demonstrate a proof-of-concept
QRNG that operates at a high rate of 24 Mbit/s by means of a high-dimensional entanglement system, in which
the user monitors the entropy in real time via the observation of a nonlocal quantum interference, without a
detailed characterization of the devices. Our work provides an important approach to a robust QRNG with
trusted but error-prone devices.

I. INTRODUCTION

Randomness is indispensable for a wide range of applica-
tions, ranging from Monte Carlo simulations to cryptography.
Quantum random number generators (QRNGs) can generate
true randomness by exploiting the fundamental indeterminism
of quantum mechanics [1]. Most current QRNGs are pho-
tonic systems built with trusted and calibrated devices [2–6]
that provide Gbit/s generation speeds at relatively low cost.
However, a central issue for these QRNGs is how to certify
and quantify the entropy of the genuine randomness, i.e., the
randomness that originates from the intrinsic unpredictabil-
ity of quantum-mechanical measurements. Entropy estimates
for specific setups were recently proposed using sophisticated
theoretical models [8–10]. Nevertheless, these techniques re-
quire complicated device characterization that may be difficult
to accurately assess in practice.

A solution to estimating the entropy is the device-
independent (DI) or self-testing QRNG [11–13], but its
practical implementation is challenging because it requires
loophole-free violation of Bell’s inequality, resulting in low
generation rates of ∼1 bit/s [12, 13]. Recently, Lunghi et al.
proposed a more practical solution that is based on a dimen-
sion witness [14], in which the randomness can be guaranteed
based on a few general assumptions that do not require de-
tailed device characterization. This scheme is highly desirable
as it focuses on real-world implementations with trusted but
error-prone devices, although its implementation with a two-
dimensional (qubit) system still suffers from low generation
rates of 10’s of bits/s [14].

In this paper, we propose and experimentally demonstrate
a fast QRNG operating at a rate of 24 Mbits/s, in which we
can quantify and monitor, in real time, the entropy of genuine
randomness without a detailed characterization of the trusted
but error-prone devices. Our approach uses time-energy en-
tangled photon pairs with high-dimensional temporal encod-
ing [15]. High-dimensional temporal encoding is advanta-
geous when the average interval between photon detection
events is much longer than a time-bin duration set by the de-
tector timing resolution. Such situations arise in typical quan-
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tum information processing tasks when single-photon detec-
tors have long recovery times or when the pair generation
rate must be kept low to minimize multi-pair events [13, 14].
The amount of genuine quantum randomness is quantified and
monitored directly from observation of a nonlocal interfer-
ence [16], and it is separated from other sources of random-
ness such as technical noise with a randomness extractor. We
achieved the high generation rate by virtue of three experi-
mental features: a high-dimensional time-energy entangled-
photon source capable of producing multiple random bits per
photon, a high-visibility Franson interferometer for evaluating
entanglement, and high-efficiency superconducting nanowire
single-photon detectors (SNSPDs). As a consequence, we are
able to demonstrate a high-performance QRNG with a toler-
ance of device imperfections.

II. PROTOCOL

Table I summarizes our protocol. An entanglement source
generates high-dimensional entangled photon pairs. As an ex-
ample, in the ideal case, the Nd-dimensional biphoton entan-
gled state can be written as |ψ〉 = 1√

Nd

∑Nd−1
i=0 |i〉A

⊗
|i〉B ,

where |i〉 represents a single photon at a discretized time in-
terval i. This state is observed by two measurement systems,
one for random number generation (RNG) and the other for
testing. Randomness is generated in the RNG mode from the
state held by system A, ρA, which we assume is not pure and
is correlated with environmental noise that models device im-
perfections. In the testing mode, the joint state is measured.

A key assumption of our approach is that the devices in the
protocol are trusted, namely they are not deliberately designed
to fool the user, but the implementation may be imperfect. The
central task is to estimate and monitor the amount of genuine
randomness based only on measurements. This is a nontrivial
task as the observed randomness can have different origins. If
the state ρA is a superposition of high-dimensional states, then
the outcome Ri cannot be predicted with certainty, even if the
internal state is known, thus resulting in genuine quantum ran-
domness. On the other hand, the randomness may be due to
technical imperfections such as detector noise and tempera-
ture fluctuations, whose randomness clearly has no quantum
origin, since the outcome Ri can be perfectly guessed if the
imperfections were well quantified.
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1. There are N measurement rounds. The entanglement
source generates a high-dimensional entangled photon
pair in each round. Bits g1, g2, . . . , gN with values 0
or 1 are independently chosen at random according to a
(q, 1− q) distribution.

2. For each round i ∈ [N ], if gi = 0, it is a generation
round, then device A performs a time measurement in the
‘RNG’ basis and outputs a random number Ri. If gi = 1,
it is a testing round, then devices A and B perform a joint
frequency measurement in the ‘Test’ basis.

3. From the results in the ‘Test’ basis, calculate the testing
value V . If V exceeds a pre-set value V0, then the protocol
succeeds. Otherwise, it aborts.

4. If the protocol succeeds, the randomness throughput is
evaluated from V and a randomness extraction is applied
to {Ri} to produce the genuine random numbers.

TABLE I: Protocol for quantum random number generation.

In our approach, the amount of genuine randomness is mon-
itored from the Franson visibility V [16]. In particular, classi-
cal fields result in V that is no greater than 50%. For a maxi-
mally entangled state, V would be 100% in the ideal case [19].
Conceptually, V > 50% guarantees that the source’s output is
entangled and thus contains genuine randomness. Rigorously,
Ref. [20] has proven that, if we assume the biphoton wave
function is Gaussian, V provides an explicit bound for the
correlations in frequency measurement, which in turn upper-
bounds the conditional maximum entropy (given system B)
via the theory developed in [17]. By using the entropic uncer-
tainty relation for smooth entropies [18], we can determine the
conditional min-entropy given the environmental noise and
thus the guessing probability, i.e., the amount of genuine ran-
domness (see Appendix A).

Our approach is different from Ref. [14] that is based on
a dimension witness and was restricted to a two-dimensional
system. Our system allows a much higher dimensionality that
can be chosen in the post-processing step [15], which was
Nd = 2048 dimensions in our experiment (see below). Our
protocol provides self-monitoring because measurements of
V directly quantify the amount of genuine randomness in the
observed data. A threshold value V0 is pre-selected and the
randomness can be generated only when the observation sat-
isfies V > V0. Two particular advantages of this approach
are: (i) the observation of V does not rely on detailed mod-
els of the devices that are employed; and (ii) no loophole-free
Bell inequality violation is required.

 

 

 

C 
HWP PBS Diode Laser 

PPKTP 

DM 

BPF 

PBS 

PC 
PZT 

Heater 

SNSPD 

T
D

C
 

T~0.7 K 

Monitor 

OL 

90/10 BS 

50/50 BS 

B 

A 

Heater 

r 

C OL 

PC 

HWP C 

  

FIG. 1: Experimental setup. A cw diode laser pumps a PPKTP
waveguide to generate time-energy entangled photon pairs. The
orthogonally polarized signal and idler photons are coupled into a
single-mode fiber, separated, and directed to A and B, respectively.
The signal photons in A are passively selected by a 90/10-ratio beam
splitter for time-of-arrival measurement to generate random numbers
or Franson measurement to check entanglement quality. HWP: half
wave plate; PBS: polarization beam splitter; C: coupler; OL: ob-
jective lens; DM: dichroic mirror; BPF: band-pass filter; PC: polar-
ization controller; BS: beam splitter; PZT: piezoelectric transducer;
SNSPD: superconducting nanowire single-photon detector; TDC:
time-to-digital converter.

III. EXPERIMENT

Figure 1 shows the experimental setup. Time-energy
entangled photon pairs were generated via spontaneous
parametric down-conversion (SPDC) in a periodically-poled
KTiOPO4 (PPKTP) waveguide [21] that outputs multiple
spatial modes at telecom wavelengths. The 46.1µm grat-
ing period was designed for type-II quasi-phase-matched
wavelength-degenerate outputs at 1560 nm in the fundamen-
tal modes of the signal and idler fields. The phase-matching
bandwidth was 1.6 nm with a corresponding biphoton corre-
lation time of 2 ps. The pump was a 780-nm continuous-wave
(cw) diode laser with a measured coherence time of 2.2µs
and the pump power coupled into the waveguide was moni-
tored by a power meter. We extracted the fundamental sig-
nal and idler modes using a dichroic mirror to remove the
pump and a 10-nm band-pass filter to spectrally remove the
higher-order SPDC spatial modes. The fundamental modes
were coupled into a standard single-mode fiber, achieving a
∼81% waveguide-to-fiber coupling efficiency. We used a po-
larization beam splitter to separate the orthogonally polarized
signal and idler photons and send them to devices A and B,
respectively. Losses in the waveguide and from the waveguide
to the fiber were ∼15% and ∼12%, respectively. Overall, we
measured a system efficiency of ∼50% including the single-
photon detector efficiency.
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A Franson interferometer is ideally suited for measuring
the entanglement quality of a cw-pumped source of time-
energy entangled light [15, 20]. We set up a Franson inter-
ferometer with local dispersion cancellation that was com-
prised of two identical unbalanced Mach-Zehnder interferom-
eters (MZIs), in which the long arm was made of standard
single-mode fiber and low-dispersion LEAF fiber, such that
the differential group delay (due to dispersion) between the
long and short arms was zero [19]. To achieve long-term sta-
bility, the MZIs were enclosed in a multilayered thermally in-
sulated box, whose temperature was actively stabilized. The
long-short path mismatch of each MZI was measured to be
∆T = 3.2 ns. We coiled the long-path fiber of each MZI
on a closed-loop temperature-controlled heater to precisely
match the ∆T of the two MZIs. The variable relative phase
shift between the two MZIs was set by a piezoelectric trans-
ducer fiber stretcher. By carefully fine-tuning the input polar-
izations and the temperatures, our time-energy entanglement
source was found to have a Franson interference visibility V
of 98.8± 0.3%, as shown in Fig. 2.

We performed a proof-of-concept implementation for the
random basis choice, passively with a 90/10 beam splitter,
i.e., q = 0.9 in Table I. The photon arrival times were mea-
sured by WSi SNSPDs [22] that were placed in a closed-
cycle cryogenic system with sub-Kelvin operating tempera-
tures (see Fig. 1). The SNSPDs were measured to have detec-
tion efficiencies of ∼85%, dark-count rates of ∼400/s, timing
jitters of∼250 ps, and maximum count rates of∼2 MHz with-
out detector saturation. To mitigate the long reset times of the
SNSPDs and to achieve a higher generation rate, system A
used a passive 50/50 beam splitter to distribute incident pho-
tons equally between two WSi SNSPDs and their data were
interleaved. Hence, a total of four WSi SNSPDs were used
and their detection-time outputs were recorded by time-to-
digital converters.

In the experiment, both the time-bin duration δ and the
frame size (dimensionality) Nd were chosen in the data post-
processing step by parsing the raw timing records into the de-
sired symbol length. As long as the frame duration Ndδ is
smaller than the pump coherence time, we can precisely char-
acterize the dimensionality. For experimental simplicity, we
set δ equal to the detector timing jitter. Nd was optimized to
be 2048 in order to produce the maximal genuine randomness
per photon (Appendix A).

In our proof-of-principle experiment, we recorded data for
a maximum duration of 60 s. We monitored the Franson vis-
ibility before and after data recording to ensure that the ex-
perimental V exceeded the preset threshold V0 in order to ex-
tract nonzero random bits from the data. We set V0 = 98.5%
because it was the lower bound in most of the measurement
runs in our experiment. We note that the amount of genuine
randomness increases monotonically with increasing V0, as
shown in Fig. 3, and therefore it is desirable to use high-
quality devices in order to achieve high Franson visibility
V > V0.

We evaluated the auto-correlation of the raw generation-
round data to be ∼0.001, which satisfies the independent,
identically distributed (iid) assumption made in our analy-
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FIG. 2: Franson interference. (a) Typical distribution of signal and
idler arrival-time difference in coincidence measurements. (b) Ob-
served interference fringe at the central peak of (a) versus relative
phase shift (proportional to PZT voltage). The observed raw visibil-
ity (without any subtraction) is 98.8± 0.3%.

sis. Using the theory developed in Appendix A, we obtain
6.0 bits/photon genuine randomness at Nd = 2048. After
considering the unpaired-to-paired ratio of the SPDC output
that we measured to be 1.8% (see Appendix B), we extracted
about 5.9 bits per log2(2048)-bit sample. We implemented a
Toeplitz-hashing extractor [8] to extract genuine random num-
bers. A Toeplitz-hashing extractor extracts a random bit-string
m by multiplying the raw sequence n with the Toeplitz matrix
(n-by-m matrix, random seed). The seed length of random
bits required to construct the Toeplitz matrix is d = n+m−1.
In our implementation with Matlab on a standard desktop
computer, we chose the input and output bit-string lengths to
be n = 4096 and m = 4096 × 5.9/11 ≥ 2196. Hence, a
4096-by-2196 Toeplitz matrix was generated in constructing
the Toeplitz-hashing extractor. The output random bits suc-
cessfully passed all the tests in the DIEHARD test suite (see
Appendix Table III).

Figure 3 shows the experimental results for QRNG through-
put for different running times. A longer running time pro-
duces more data, thus minimizing the finite-data effect and
yielding more randomness from the raw data. The results
show that a continuous running time of ∼60 s can already
produce randomness that is close to the asymptotic case of
infinitely long operation. The measured count rates of the
two SNSPDs for signal photon arrival times were 1.8 and 2.3
Mcounts/s. Hence, the final QRNG rate is 5.9 × 4.1 = 24.2
Mbit/s, which is many orders of magnitude higher than previ-
ous experiments based on self-testing [12, 13] or a dimension
witness [14]. This dramatically faster rate benefits from the
following factors: high-dimensional entanglement system that
generates multiple bits per photon, high-efficiency SNSPDs,
high-quality PPKTP waveguide SPDC source with high fiber-
coupling efficiency, and high-visibility Franson interferome-
try.

IV. CONCLUSION

To sum up, we have demonstrated a QRNG based on
high-dimensional entanglement with a rate over 24 Mbit/s.
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FIG. 3: QRNG throughput versus data collection running time. Solid
red circles are experimental rates with V0 = 98.5%. The three curves
are numerically evaluated results with different V0 values, showing
that a higher V0 yields a higher throughput. For running times below
10 s, the finite-data effect reduces the QRNG throughput substan-
tially, whereas for a running time over 50 seconds, the throughput is
already close to its asymptotic limit of 24.2 Mbit/s at V0 = 98.5%.

Compared to the standard device-dependent approaches with
fully calibrated devices, our QRNG delivers a stronger form
of security requiring less characterization of the physical
implementation. The performance is close to commercial
QRNGs [23]. Though our approach offers a weaker form of
security than self-testing QRNG, it focuses on a scenario with
trusted but error-prone devices. Together with other types of
QRNGs demonstrated very recently in [24, 25], we believe
that our results constitute an important step towards generat-
ing truly random numbers for practical applications.

Our proof-of-principle experiment can be further improved
in the following directions. First, the Franson visibility was
mainly limited by temperature fluctuations. Integrated pho-
tonics can improve the temperature stability, thus leading to
higher interference visibility, as demonstrated recently in [26].
Second, the system can be operated at a different wavelength
such as the visible or near-IR region, where inexpensive high-
efficiency Si single-photon detectors can be used to replace
the SNSPDs and potentially allow the system to be integrated
with silicon photonics technology. Third, the randomness ex-
traction was processed off-line by software, which can be im-
proved with a field-programmable gate array implementation
for real-time extraction. Fourth, the monitoring of the visi-
bility can be done in real time by continuously observing the
Franson measurement. Lastly, to increase the security of the
QRNG protocol, we note that a loophole-free Bell’s inequal-
ity test has been proposed for time-energy entanglement [27],
thus making it possible to extend our high-dimensional en-
tanglement system to function as a self-testing QRNG. Our
QRNG is just one example of high-dimensional quantum in-
formation processing that we believe is an important area for
future study and practical applications.
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Appendix A: Quantification of genuine randomness

The amount of genuine randomness is quantified from a
pair of incompatible quantum measurements, namely time
measurement T and frequency measurement W. We take T
and W to be positive-operator valued measures (POVMs) on
A with elements {M̂t} and {N̂w}, and random outcomes
T and W . Given an Nd-bin state observed by A, the num-
ber of true random bits that can be extracted from T that
are independent of the environment system E is given by the
conditional min-entropy Hmin(T |E). Specifically, the prob-
ability of guessing T by holding the system E is given by
pguess(T |E) = 2−Hmin(T |E) [12]. Hence, Hmin(T |E) quanti-
fies the genuine randomness. We bound Hmin(T |E) based on
the uncertainty relation [17, 28], as proposed in [18]. While
Ref. [18] demonstrated a QRNG with a maximal dimension-
ality of Nd = 4, our system is capable for a much higher
dimensionality, i.e., Nd > 2000.

Consider three quantum systems A, B, and E and the tri-
partite state ρABE . The uncertainty relation can be written
as [28]

Hmin(T |E) ≥ − log2 c−Hmax(W |B), (A1)

where Hmax(W |B) denotes the maximum entropy for W
given system B, and c is the maximum “overlap” between
the two POVMs [17, 28]. By assuming that M̂t and N̂w are
projective measurements corresponding to mutually-unbiased
Nd-dimensional bases, then c = 1/Nd. Based on [17], we
bound the maximum entropy as follows:

Hmax(W |B) ≤ log2 γ(dL1
w + λ), (A2)

where dL1
w is the L1 distance for correlations in the W basis,

γ(x) = (x+
√

1 + x2)
( x√

1 + x2 − 1

)x
, (A3)

and

λ ≈ Nd

√
1

q(1− q)nT
ln

1

ε1/4− 2f(pα, nT)
, (A4)

which quantifies the statistical fluctuations in the measure-
ments. In Eq. (A4): nT is the total number of detections in
the T measurements; f(pα, nT) =

√
2(1− (1− pα)nT); pα
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is the probability of a biphoton’s signal photon arriving out-
side a frame; and ε1 is the failure probability for the finite-data
analysis, which was set to ε1 = 10−10 in our experiment.

The L1 distance dL1
w can be bounded from the time-

frequency uncertainty relation, as we now explain. The vari-
ances of the signal-idler time and frequency differences can
be written as [20]

〈(∆t)2〉 =
e−2β

w2
0

, (A5)

〈(∆w)2〉 = e−2βw2
0 .

Here β is a squeezing parameter, w0 is

w0 =
1√

2σcohσcor
, (A6)

with σcoh being the pump coherence time and σcor the bipho-
ton correlation time.

We have assumed that the biphoton state has a Gaussian
wave function. Reference [20] has proven that the variance
of the frequency difference can be upper bounded from the
Franson visibility via

〈(∆w)2〉 ≤ 2(1− V0)

∆T 2
. (A7)

Note that this bound applies only to high Franson visibilities,
i.e., satisfying the assumptions made in [20]. By combining
Eqs. (A5)–(A7), we arrive at the following upper bound of dL1

w

dL1
w =

√
2

π

| 〈(∆t)〉 |
δ

≤ σcohσcor

δ∆T

√
16(1− V0)

π
, (A8)

where δ is the time-bin duration selected in the protocol.
In the experiment, both the time-bin duration δ and the

frame size (dimensionality) Nd were chosen in the data post-
processing step by parsing the raw timing records into the
desired symbol length. Nd was optimized to produce the
maximal bits per photon: a larger Nd can produce more
raw bits per sample, i.e., − log2 c in Eq. A1, but it also in-
creases Hmax(W |B); hence, Nd was optimized to maximize
Hmin(T |E).

Appendix B: Quantification of accidental counts

In the RNG round, the detections made by system A can
be due to either SPDC signal photons or be accidental counts.
Given our SNSPDs’ low dark-count rates, accidental counts
are mainly due to the fluorescence (unpaired) photons in
the SPDC’s output. Here we quantify the SPDC output’s
unpaired-to-paired ratio.

The total number of photons/s NS generated in the signal
field by SPDC can be written as a sum of paired photons/s
NSPDC and fluorescence photons/s NF:

NS = NSPDC +NF. (B1)

Given the overall detection efficiencies for the signal (ηS) and
idler (ηI) photons, the singles rate (CS) and coincidence rate
(CSI) can be written as

CSI = NSPDCηSηI, (B2)
CS = NSηS.

In characterizing our entanglement source, a typical set of
measurements yields the following values for the singles rate,
coincidence rate, and efficiencies shown in Table II, and we
obtain the unpaired-to-paired ratio for the signal field of the
SPDC output

NF

NSPDC
= 1.8%. (B3)

This result is consistent with reported ratios of 2% in previous
measurements of PPKTP waveguide and PPKTP bulk crystal
at the telecom wavelengths [21].

CSI CS ηS ηI

420 kcoinc/s 850 kcounts/s 49.4% 50.3%

TABLE II: Experimental values of singles rate, coincidence rate, and
efficiencies.

Statistical test P -value Result
Birthday Spacings [KS] 0.680563 success

Overlapping permutations 0.308246 success
Ranks of 31x31 matrices 0.450693 success
Ranks of 31x32 matrices 0.591037 success

Ranks of 6x8 matrices [KS] 0.448596 success
Bit stream test 0.06551 success

Monkey test OPSO 0.015300 success
Monkey test OQSO 0.098700 success
Monkey test DNA 0.098000 success

Count 1’s in stream of bytes 0.461867 success
Count 1’s in specific bytes 0.031698 success

Parking lot test [KS] 0.809513 success
Minimum distance test [KS] 0.915470 success
Random spheres test [KS] 0.902702 success

Squeeze test 0.350940 success
Overlapping sums test [KS] 0.795741 success

Runs test (up) [KS] 0.569616 success
Runs test (down) [KS] 0.248829 success
Craps test No. of wins 0.259975 success
Craps test throws/game 0.643893 success

TABLE III: DIEHARD. Data size is about 104 Mbits. For the cases
of multiple P -values, a Kolmogorov-Smirnov (KS) test is used to
obtain a final P -value, which measures the uniformity of the multiple
P -values. The test is successful if all final P -values satisfy 0.01 ≤
P ≤ 0.99.
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