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Abstract
Constructing an accurate model for the thermally accessible states of an Intrinsically Disordered
Protein (IDP) is a fundamental problem in structural biology. This problem requires one to
consider a large number of conformations in order to ensure that the model adequately represents
the range of structures that the protein can adopt. Typically, one samples a wide range of
structures in an attempt to obtain an ensemble that agrees with some pre-specified set of
experimental data. However, models that contain more structures than the available experimental
restraints are problematic as the large number of degrees of freedom in the ensemble leads to
considerable uncertainty in the final model. We introduce a computationally efficient algorithm
called Variational Bayesian Weighting with Structure Selection (VBWSS) for constructing a
model for the ensemble of an IDP that contains a minimal number of conformations and,
simultaneously, provides estimates for the uncertainty in properties calculated from the model.
The algorithm is validated using reference ensembles and applied to construct an ensemble for the
140-residue IDP, monomeric α-synuclein.

1. Introduction
Intrinsically Disordered Proteins (IDPs) are a class of polypeptides that populate diverse
ensembles of conformations under physiological conditions.1, 2 It is believed that a number
of IDPs play a critical role in the development of neurodegenerative disorders including
Alzheimer’s and Parkinson’s – diseases that affect millions of people each year.3, 4 As a
result, gaining an understanding of the conformational properties of these proteins is an
important task, which could pave the way for the discovery of new therapeutics through
structure based drug design.5

A model for the ensemble of an IDP consists of a set of structures S = {s1,…, sn} and a set
of weights w⃗ = {w1,…, wn}, where wi corresponds to the equilibrium probability of
conformation si. Typically, these structures and weights are chosen so that averages
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calculated from the ensemble agree with experimental observations;2, 6, 7 for example, so
that the radius of gyration calculated from the ensemble is similar to its experimentally
determined value. Previous studies have shown that agreement with experimental
observations is not sufficient to ensure that an ensemble is accurate, because there may be
many different ways of choosing the structures and weights to achieve a good fit to the
experimental data.8, 9 Therefore, it is important to develop methods that can quantify the
amount of uncertainty associated with a model of an IDP ensemble.

We previously developed an algorithm, called Bayesian Weighting (BW), that uses
Bayesian inference to construct an ensemble for an IDP that agrees with experimental
observations, while simultaneously estimating the uncertainty associated with this model.8

The BW method calculates a ‘posterior’ probability distribution over all ways of weighting
the structures in a pre-specified conformational library. Point estimates and error bars for
various properties of the ensemble can be computed by calculating an average over this
probability distribution. An important feature of the algorithm is that it provides a built-in
error check in the form of an uncertainty parameter, or posterior uncertainty, which is
related to the error in the estimated population weights. Our previous study suggests that this
uncertainty parameter is a metric that assesses model correctness.8 When the uncertainty
parameter is 0, one can be relatively sure that the model is correct. By contrast, a value of 1
suggests that the ensemble is inaccurate and values calculated from the ensemble will be
associated with very large confidence intervals.

Of course, the quality of the structural library will also affect the accuracy of the resulting
ensemble. The structural library must be diverse enough to capture the states populated by
the IDP, but if it is too large then the problem will be under-restrained, leading to a large
posterior uncertainty. One way to overcome this problem is to use variable selection
techniques to identify an optimal subset of conformations from within a larger structural
library.10 Such an algorithm might begin by estimating the population weights using a large
conformational library and iteratively discarding lowly weighted conformations to improve
the ensemble. In practice, performing this type of structure selection algorithm within a fully
Bayesian framework would be computationally intractable because BW uses Monte Carlo
methods to estimate the weights, and these calculations can take a long time to converge;
therefore, we introduce an approximate algorithm called Variational Bayesian Weighting
and Structure Selection (VBWSS) that can perform the calculations quite rapidly –
providing a decrease in computational time of roughly 4 orders of magnitude compared to
BW. In this work we describe the VBWSS method and validate the approach using
‘reference’ ensembles. Lastly we use the method to characterize the ensemble of the
intrinsically disordered protein, α-synuclein (αS).

2. Theory
2.1. Optimal Structure Selection

When constructing an ensemble for an IDP, it is necessary to use a structural library that is
diverse enough to cover the entire range of accessible conformations. However, increasing
the size of this library adds degrees of freedom to the model making the problem more
underdetermined. In our prior work, we described a method for calculating a posterior
distribution that assigns a probability to each possible choice of weights as a way of
quantifying uncertainty in the ensemble.8 The posterior probability density function (PDF) is
calculated using Bayes’ theorem:8
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(1)

where  denotes the set of structures,  denotes the set of population

weights,  denotes the set of k experimental measurements. To calculate eq. (1) we
must specify a likelihood function, fM⃗|W⃗, S (m⃗|w⃗, S), and a prior distribution, fW⃗|S (w⃗|S). The
normalizing constant, or marginal likelihood (ML), is given by fM⃗|S (m⃗|S) = ∫ fM⃗|W⃗,S (m⃗|
w⃗,S) fW⃗|S (w⃗|S) dw⃗. The specific forms for each of these terms will be given in section 2.2.
Using eq. (1), the Bayesian estimate for the weight of structure si is:

(2)

It may be possible to obtain a diverse ensemble that has a low uncertainty by considering
different subsets, S ⊆ ℤ, of a heterogeneous structural library, ℤ, with n conformations.

In order to use Bayesian variable selection techniques to identify an optimal set of
conformations, S* ⊆ ℤ, we have to specify an a priori probability for each subset of
structures. If we do not have a priori knowledge to guide this choice, it is reasonable to
assume that every possible subset is equally probable; i.e., fS (S) ∝ 1, where fS (S) is the
probability of subset S. In this case, the posterior probability for a subset of conformations
is:

(3)

where  is the vector of weights for the subset S ⊆ ℤ that contains l ≤ n structures.
Therefore, the optimal subset of structures is obtained by maximizing the ML, fM⃗|S (m⃗|S).
Note that it is usually not tractable to search through all subsets of structures, because the
number of possibilities may very large. Instead, we begin with the entire structural library,
where the weights are estimated using eq. (2) and the ML is calculated. Then, the lowest
weighted structure is thrown out if its estimated weight is below a cutoff, wcut. The weights
of the remaining structures are then recalculated along with the new value of the ML and,
again, the lowest weighted structure is discarded if its weight is below wcut. The algorithm
repeats this process until either the ML converges or all of the weights are greater than wcut.
The set of structures that had the largest value of the ML is chosen for the final ensemble. In
what follows, we develop a variational BW, or VBW, method to facilitate efficient
calculation of the weights at each step.

2.2. Variational Bayesian Weighting
At each iteration of the algorithm, after a set of structures has been chosen, an
approximation to the ML can be calculated efficiently using ‘variational’ Bayesian
inference.11 As stated above, the ML is proportional to the criterion for selecting a set of
structures. In addition, by maximizing an approximate form of the ML we can arrive at an
optimal set of weights for the structural subset under consideration. In variational Bayesian
inference, the posterior PDF given by eq. (1) is approximated with a simpler PDF that
allows one to easily calculate quantities of interest.11 Since we are interested in vectors of
weights that are positive and sum to one, we choose our simple distribution to be a Dirichlet
distribution with PDF:12
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(4)

where Г(·) is the gamma function,  are parameters of the distribution and

 . Using this distribution, we can calculate a lower bound on the logarithm of the
ML as follows:13

(5)

We note that our overall goal is to maximize the ML; however, since equation (5) provides a
lower bound for the ML, we instead maximize −L(α⃗|S), or equivalently minimize L(α⃗|S).
Furthermore, it is easy to show that L(α⃗|S) is equal (up to an additive constant) to the
Kullback-Leibler (KL) distance14 between g (w⃗|α⃗, S) and fW⃗|M⃗, S (w⃗|m⃗, S). Therefore, by
finding the set of parameters that minimizes L(α⃗|S) we also obtain an approximation to
fW⃗|M⃗, S (w⃗|m⃗, S).

The feature that makes the VBW algorithm computationally efficient is that the objective
function can be obtained in closed-form for a suitable choice of prior distribution. Thus, one
can apply a standard minimization protocol to find the set of parameters that minimize L(α⃗|
S). Before sketching the derivation, we need to define all of the terms in eq. (1).

We denote the current set of structures under consideration as  and presume that we

have a set of experimental measurements,  , which have experimental errors

 . We assume that it is possible to calculate the ith experimental observable in the jth

conformation, denoted as m̂ij, with an accuracy  . For example, if the Cα chemical shift

for the first structure is calculated using SHIFTX, then  denotes the error reported for the
calculation of a Cα chemical shift using SHIFTX, which is approximately 0.98 ppm.15 The
total uncertainty that results from experimental error and inaccurate prediction algorithms is

defined as  . We assume that the likelihood function for each
experimental measurement follows a Gaussian distribution, such that the total likelihood
function (assuming that the measurements are independent) can be written as follows:

(6)

Finally, for the prior distribution, fW⃗|S (w⃗|S), we choose a Dirichlet distribution with PDF:

(7)

This choice of prior is a type of Jeffreys’ distribution – a class of non-informative prior
distributions that are widely used in Bayesian inference.16

Beginning with the definition of L(α⃗|S) in eq. (5), we can rewrite the objective function as:
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(8)

The first term is the KL distance between two Dirichlet distributions, i.e. the variational and
the prior distributions, and has been previously reported.17 The second term is given by:

(9)

where C is a constant that depends on the experimental errors. The integral in eq. (9) can be
calculated exactly giving an analytical expression for eq. (8):

(10)

where δij is the Kronecker delta function, ψ (·) is the digamma function and the constant
from eq. (9) has been neglected because constant terms do not play a role in function
minimization.

Finally, suppose that we have used an optimization algorithm to identify the set of

parameters,  , that minimizes L(α⃗|S) for the current set of conformations. The

estimates for the population weights are given by the simple formula  .

2.3. Variational Bayes with Structure Selection
The Variational Bayesian Weighting with Structure Selection (VBWSS) algorithm is:

1. Initialize the set of conformations to the entire structural library, i.e. set S = ℤ.

2. Use simulated annealing to find the set of parameters that minimizes L(α⃗|S).

3. Remove the lowest weighted structure if it has  and go to step 4, else go to
step 5.

4. If L(α⃗|S) has not improved for 10 iterations go to step 5, else return to step 2.

5. Exit the algorithm and return the set of structures and parameters that produced the
smallest value of L(α⃗|S).

The simulated annealing algorithm in step 2 used a Gaussian cooling schedule T(t) =
T(0)exp(−(5t)2), where t is the fraction of steps completed. For the first iteration with the
entire structural library, the number of steps was set to 100 · n and the initial temperature
was set to T(0) = 2. Since each iteration of the structure selection algorithm involves
throwing out a lowly weighted structure, we reasoned that the set of parameters identified in
iteration j should be reasonable guess for the parameters for iteration j+1. Thus, each
iteration after the first was initialized using the parameters identified in the previous iteration
and run for 50 · l steps beginning from a temperature of T(0) = 1. The step size was
optimized during a short equilibration period at the start of each iteration to target a 50%
acceptance ratio at T = 1.
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2.3. Approximate Confidence Intervals
The variational approximation to the posterior PDF can be used to calculate confidence
intervals (CI) for parameters of the ensemble using a simple analytical approximation. Here,

we suppose that our final set of conformations is  and the corresponding set of

variational parameters is  . Again, we define  . As an example, suppose that
we are interested in estimating the ensemble average distance between two atoms in the
protein. The distance between the two atoms in the ith structure is Di. The Bayesian point

estimate for the ensemble averaged distance is  and the variance in the

ensemble averaged distance is  , which
comes from the formula for the variance of a linear combination and the covariance matrix
of a Dirichlet distribution.12 Thus, an approximate 95% CI can be calculated using

 ; the 1.96 is the number of standard deviations of a Gaussian distribution
that corresponds to a 95% CI.12

3. Results and Discussion
3.1. Validation with Reference Ensembles

The ultimate goal of the VBWSS algorithm is to construct an accurate, parsimonious
representation for the conformational ensemble of an IDP using a minimum amount of
computational effort while, simultaneously, estimating the uncertainty in the resulting
model. Thus, there are a number of criteria by which the algorithm must be judged. First, we
will address the 2 most important criteria: that the algorithm provides a means for accurately
modeling conformational ensembles and for estimating their uncertainties. To address these
questions, and to choose the weight threshold for structure selection, we used the method of
reference ensembles.

A reference ensemble is a pre-defined ‘truth’ for which both the set of conformations and
their weights are known. The same 20 reference ensembles that were used to validate the
previously reported BW algorithm were also used in this study to facilitate a comparison
between BW and the new VBWSS algorithm.8 To review, each of the reference ensembles
consisted of a set of 95 conformations for the small peptide, met-enkephalin, and a set of
weights. The different sets of weights were chosen so that the reference ensembles had
different amounts of entropy. Backbone NMR chemical shifts were calculated for each
reference ensemble using SHIFTX and were randomly perturbed by 0.1 ppm to model
experimental uncertainty.15

The ensembles were compared by measuring the distances between the vectors of weights.
For the measure of distance, we used the Jensen-Shannon divergence (JSD), which ranges
from 0 to 1 for identical and maximally different vectors of weights, respectively, and is
given by:18, 19

(11)

For VBWSS, if a structure was not included in the ensemble then its weight was set equal to
zero. The square root of the JSD can also be used to quantify the uncertainty in an ensemble
by calculating the expected distance from the point estimate for the weights.8 It was shown
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previously that such an estimate  , was strongly
correlated to the distance between the ‘true’ weights of a reference ensemble and the
estimated weights, w⃗B. This is an important feature of BW because it provides a built-in
error check on the accuracy of the ensemble. To ensure that this feature was preserved in
VBWSS, the weight cutoff for structure selection was chosen to maximize the correlation
between σw⃗B and Ω(w⃗T, w⃗B) for the 20 reference ensembles, yielding a value of wcut =
0.004; this value of wcut was used throughout the rest of the analysis.

A comparison of the accuracy of the VBWSS and BW algorithms on the 20 reference
ensembles is shown in Fig. 1. As shown in Fig. 1A, the estimates for the weights obtained
from the VBWSS algorithm are similar in accuracy to those obtained from BW. In addition,
the correlation between the uncertainty estimate, σw⃗B, and the actual error in the estimated
weights, Ω(w⃗T, w⃗B), obtained from VBWSS is R = 0.9. The error in the weights is related to
σw⃗B by Ω(w⃗T, w⃗B) ≈ 1.54 · σw⃗B Thus, VBWSS obtained a similar level of accuracy as BW
and maintained the ability to quantify the uncertainty in the ensemble.

It is also important to ensure that CIs calculated from VBWSS provide reasonable estimates
of the errors in parameters of the ensemble. We assessed this feature of the algorithm by
comparing ensemble averaged inter-atomic distances calculated from the VBWSS
ensembles to their corresponding values in the reference ensembles. The approximate
formula for a CI defined in section 2.4 should be fairly accurate if, on average, (〈D〉 − Dref)2

≈ var[D]; here, Dref is the ensemble average value of the distance calculated from the
reference ensemble. In practice, we found that the standard deviation, calculated using
VBWSS was too small, which is a problem that is known to affect variational
approximations in Bayesian inference. To correct for the bias in the estimation of the
standard deviations from VBWSS, we determined an empirical equation,

 , that gave the CIs for the inter-atomic distances approximately
95% coverage frequency of their reference ensemble values. The best fit value was λ ≈
1.54, which was used for subsequent calculations of CIs.

3.2. α-Synuclein Ensemble
αS is one of the most studied members of the IDP family. This 140 residue protein has been
implicated in the pathology of a family of diseases known as synuclepathies.20 The most
common among these is Parkinson’s disease, a neurodegenerative disorder characterized by
intracellular aggregates known as Lewy bodies and the loss of dopaminergic neurons.21

While the exact relation between the aggregates and neuronal death remains a subject of
debate, understanding the nature of the unfolded protein and its ability to aggregate may
prove crucial to the design of new therapies. Furthermore, although it has been suggested
that αS adopts a tetrameric structure with considerable helical content in the native cell
environment22, the formation of aggregates likely involves the dissociation of these
tetramers into disordered monomers that can form aggregates rich in cross-beta structure22.
Consequently, there is still a need to understand the structure of the unfolded form of the
disordered monomeric form of αS because such data may provide insights into the
aggregation process.

We applied the VBWSS algorithm to a previously generated structural library of αS that
was created by pruning a large sample of ~105 structures to a representative library of 299
conformations. The exact same set of experimental measurements which was used to
generate the BW ensemble was used here to generate the VBWSS ensemble. More
specifically, we used C, Cα, Cβ and N chemical shifts,23 N-H RDCs24 and the radius of
gyration from SAXS experiments25 along with the calculated values of chemical shifts using
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SHIFTX,15 RDC using PALES26 and radius of gyration through CHARMM.27 RDCs
predicted from PALES are frequently scaled to account for uncertainty in predicting the
magnitude of alignment.8 Here, the predicted RDCs were scaled by 0.25, which was found
using a simple grid search to minimize the VBW objective function.

We found that the VBW algorithm was extremely efficient compared to the BW algorithm.
The VBW algorithm (without structure selection) took less than 30 seconds, compared to
approximately 2 weeks for BW, running in parallel on eight 2.4 GHz Intel Xeon processors
– a decrease in computational time of roughly 4 orders of magnitude. The increased
computational efficiency of the variational approximation more than made up for the
increase in computational effort due to structure selection, with the total VBWSS algorithm
taking less than 30 minutes.

Structure selection reduced the ensemble size from 299 to 78 non-zero weighted
conformations, as shown in Fig 2A. The VBWSS ensemble also fits the experimental data
well (Figs. 2B–C). In addition, the calculated ensemble average value of the radius of
gyration was 40.4Å with a 95% CI of [39.2–41.6]Å compared to the experimental value of
40±2Å.25

We cross validated our ensemble by comparing inter-residue distances obtained from a
recently published FRET experiment described in Grupi et al28 (Table 1). Our calculated
95% CIs for the ensemble average distances, measured between the Cα atoms, are in good
agreement with the corresponding experimentally determined values. It is important to note,
that we made no explicit use of any inter-residue distance data in the ensemble generation
procedure.

One of the most interesting features of αS is its ability to form aggregates that contain cross-
beta structure under the right set of experimental conditions.29 Because the formation of αS
aggregates was shown to be involved in the pathology of Parkinson’s disease, it is of great
interest to gain further knowledge about aggregation prone conformations within the
disordered state. It was previously found that the minimal toxic aggregating segment is
located in the NAC region of the protein, residues 68–78 or in reference to the NAC,
NAC(8–18).30 Therefore, we focused on assessing regions with aggregation propensity
within the ensemble. Because structures that place the segment in an extended and solvent
exposed orientation may be aggregation-prone, we calculated the percentage solvent
accessible surface area (%SASA) of the NAC(8–18) segment using CHARMM27 and the
secondary structure content of each structure in the ensemble. Percentage solvent accessible
surface area was calculated by dividing the SASA values for N-C-Cα atoms by the SASA
values of these atoms in a fully extended conformation. Results of this analysis are shown in
Fig 4. Similar analysis can be found in Ullman & Stultz.31

We found that approximately 12% (8–15% is the 95% CI) of the structures have the
NAC(8–18) segment in an extended (more than 3 extended residues) and solvent exposed
(%SASA>40) orientation. These results are similar to those found using the BW algorithm31

and suggest that the ensemble of αS contains conformations that can readily form toxic,
beta-sheet rich aggregates.

4. Conclusions
Constructing an ensemble for an IDP is a difficult task that requires reliable methods for
estimating parameters from the ensemble and their associated uncertainties. Here, we
introduced an algorithm for selecting an optimal set of conformations and implemented a
variational approximation to the BW algorithm that provides a decrease in computational
time of roughly 4 orders of magnitude. The two methods were combined in the VBWSS
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algorithm, which provides a computationally efficient method for constructing IDP
ensembles. The VBWSS algorithm was validated using reference ensembles, and was found
to produce a similar level of accuracy as the BW algorithm. In addition, accurate estimates
for the uncertainties in characteristics of the ensemble can be calculated from VBWSS using
simple formulas.

In general, proteins with a larger amount of disorder result in VBWSS ensembles with a
larger amount of uncertainty, all other things being equal. Nevertheless, certain
characteristics of the ensemble may be well defined even when the other aspects are highly
uncertain. This highlights the importance of using confidence intervals to make inferences
about ensemble characteristics.

We applied the VBWSS algorithm to construct an ensemble for αS and found that the
ensemble agrees very well with experimental data. In addition to a dramatic decrease in
computational time over BW, the VBWSS resulted in an improved fit to some experimental
data. The BW algorithm obtains optimal structure weights for a given set of conformations
while VBWSS obtains an optimal set of weights as well as an optimal set of conformations
that fit the existing set of experimental data. Given this extra degree of freedom, it is not
surprising that, at least in the case of α-synuclein, VBWSS obtains slightly better fits to the
experimental data. In addition, we were able to reproduce experimentally measured inter-
residue distances that were not included as restraints in the algorithm. The ensemble
suggests that αS populates aggregation prone conformations in the disordered state. These
results illustrate that the VBWSS algorithm provides an efficient, and accurate, method for
constructing models of IDP ensembles.
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Figure 1.
(A) The error between the true and estimated weights for the 20 reference ensembles. The
solid and dashed lines indicate VBWSS and BW, respectively. The ensembles are ordered
by increasing entropy. (B) The correlation (R = 0.9) between σw⃗B and Ω(w⃗T, w⃗B) obtained
from VBWSS. The best fit, y = 1.54 x, is shown as a dashed line.
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Figure 2.
αS VBWSS algorithm. (A) Alignment of non-zero weighted structures. (B) Agreement of
calculated and experimental Cα chemical shifts. (C) Agreement of calculated and
experimental RDCs.
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Figure 4.
Aggregation propensity in the ensemble. Colors represent the weight of each of structure.
The star denotes a structure, shown to the right, with a relatively high weight.
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Table 1

Cross validation through inter-residue distances

Probe pair Experiment [Å] Ensemble [Å]

18,26 15.1 16.5–17.8

26,39 21.8 20.2–22.7

4,18 16.9 17.9–19.9

18,39 29.4 30.0–33.6

4,26 33.6 27.9–31.2

66,90 29.6 36.5–40.1

39,66 40.1 40.2–44.5

4,39 43.0 39.5–44.3
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