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Abstract

In an attribute-based encryption (ABE) scheme, a ciphertext is associated with an `-bit
public index ind and a message m, and a secret key is associated with a Boolean predicate P .
The secret key allows to decrypt the ciphertext and learn m iff P (ind) = 1. Moreover, the
scheme should be secure against collusions of users, namely, given secret keys for polynomially
many predicates, an adversary learns nothing about the message if none of the secret keys can
individually decrypt the ciphertext.

We present attribute-based encryption schemes for circuits of any arbitrary polynomial
size, where the public parameters and the ciphertext grow linearly with the depth of the
circuit. Our construction is secure under the standard learning with errors (LWE) assumption.
Previous constructions of attribute-based encryption were for Boolean formulas, captured by
the complexity class NC1.

In the course of our construction, we present a new framework for constructing ABE
schemes. As a by-product of our framework, we obtain ABE schemes for polynomial-size
branching programs, corresponding to the complexity class LOGSPACE, under quantitatively
better assumptions.
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1 Introduction

Attribute-based encryption [SW05, GPSW06] is an emerging paradigm for public-key encryption
which enables fine-grained control of access to encrypted data. In traditional public-key encryption,
access to the encrypted data is all or nothing: given the secret key, one can decrypt and read the
entire message, but without it, nothing about the message is revealed (other than its length). In
attribute-based encryption, an encryption of a message m is labeled with a public attribute vector
ind (also called the “index”), and secret keys are associated with predicates P . A secret key skP
decrypts the ciphertext and recovers the message m if and only if ind satisfies the predicate, namely
if and only if P (ind) = 1.

Attribute-based encryption captures as a special case previous cryptographic notions such as
identity-based encryption (IBE) [Sha84, BF01, Coc01] and fuzzy IBE [SW05]. It has also found
applications in scenarios that demand complex policies to control access to encrypted data, as well
as in designing cryptographic protocols for verifiably outsourcing computations [PRV12].

The crucial component in the security requirement for attribute-based encryption stipulates
that it resists collusion attacks, namely any group of users collectively learns nothing about the
message m if none of them is individually authorized to decrypt the ciphertext.

In the past few years, there has been significant progress in attribute-based encryption in terms
of efficiency, security guarantees, and diversifying security assumptions [GPSW06, Wat09, LW10,
LOS+10, CHKP12, ABB10a, OT10]. On the other hand, little progress has been made in terms
of supporting larger classes of predicates. The state of the art is Boolean formulas [GPSW06,
LOS+10, OT10], which is a subclass of log-space computations. Constructing a secure attribute-
based encryption for all polynomial-time predicates was posed as a central challenge by Boneh,
Sahai and Waters [BSW11]. We resolve this problem affirmatively in this work.

2 Our Contributions

We construct attribute-based encryption schemes for circuits of every a-priori bounded depth, based
on the learning with errors (LWE) assumption. In the course of our construction, we present a
new framework for constructing attribute-based encryption schemes, based on a primitive that we
call “two-to-one recoding” (TOR). Our methodology departs significantly from the current line of
work on attribute-based encryption [GPSW06, LOS+10] and instead, builds upon the connection
to garbled circuits developed in the context of bounded collusions [SS10b, GVW12]. Along the way,
we make the first substantial progress towards the 25-year-old open problem of constructing (fully)
reusable garbled circuits. In a follow-up work, Goldwasser et al. [GKP+13] completely resolved this
open problem; moreover, their construction relies crucially on our ABE scheme as an intermediate
building block. More details follow.

2.1 Attribute-based encryption

For every class of predicate circuits with depth bounded by a polynomial function d = d(λ) (where
λ is the security parameter), we construct an ABE scheme that supports this class of circuits, under
the learning with errors (LWE) assumption. Informally, the (decisional) LWE problem [Reg09] asks
to distinguish between “noisy” random linear combinations of n numbers s = (s1, . . . , sn) ∈ Znq from
uniformly random numbers over Zq.
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Regev [Reg09] showed that solving the LWE problem on the average is as hard as (quantumly)
solving several notoriously difficult lattice problems in the worst case. Since then, the LWE
assumption has become a central fixture in cryptography. We now have a large body of work
building cryptographic schemes under the LWE assumption, culminating in the construction of a
fully homomorphic encryption scheme [BV11].

The key parameter that determines the hardness of LWE is the ratio between the modulus q
and the maximum absolute value of the noise B; as such, we refer to q/B as the hardness factor
of LWE. The problem becomes easier as this ratio grows, but is believed to be hard for 2n

ε
-time

algorithms when q/B = 2O(nε), where 0 < ε < 1/2. Our results will hold as long as the latter holds
for some constant ε.

In particular, we show:

Theorem 2.1 (informal). Assume that there is a constant 0 < ε < 1 for which the LWE problem
is hard for a exp(nε) factor in dimension n, for all large enough n. Then, for any polynomial d,
there is a selectively secure attribute encryption scheme for general circuits of depth d.

Moreover, our scheme has succinct ciphertexts, in the sense that the ciphertext size depends
polynomially on the depth d and the length ` of the attribute vector ind, but not on the size of the
circuits in the class. The construction as stated achieves the weaker notion of selective security, but
we can easily obtain a fully secure scheme following [BB04] (but using sub-exponential hardness in
a crucial way):

Corollary 2.2. Assume that there is a constant 0 < ε < 1/2 such that the LWE problem with a
factor of exp(nε) is hard in dimension n for exp(nε)-time algorithms. Then, for any polynomial d,
there is a fully secure attribute-based encryption scheme for general circuits of depth d.

We also obtain a new ABE scheme for branching programs (which correspond to the complexity
class LOGSPACE) under the weaker quasi-polynomial hardness of LWE:

Theorem 2.3 (informal). There exist attribute-based encryption schemes for the class of branching
programs under either (1) the hardness of the LWE problem with an nω(1) factor, or (2) the bilinear
decisional Diffie-Hellman assumption.

Here, there is no a-prori bound on the size or the depth of the branching program. In addition,
we achieve succinct ciphertexts of size O(`) where ` is the number of bits in the index. Prior to this
work, we only knew how to realize IBE and inner product encryption under nω(1)-hardness of LWE
[CHKP12, ABB10a, AFV11], whereas our bilinear construction is a different way to achieve the
results of Goyal et al. [GPSW06] which uses secret-sharing for general access structures. Our
construction exploits a combinatorial property of branching programs to overcome limitations
of previous approaches based on secret sharing for monotone formulas (c.f. [ABV+12]). The
construction is inspired by a pairings-based scheme for regular languages in [Wat12].

We now move on to provide a technical roadmap of our construction: first, we define a new
primitive that we call a two-to-one recoding (TOR) scheme; we then show how TOR gives us an
attribute-based encryption scheme for circuits, and how to construct a TOR scheme from the LWE
assumption.
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2.2 New Framework: TOR

A Two-to-One Recoding (TOR) scheme is a family of (probabilistic) functions {Encode(pk, ·)}
indexed by pk, together with a “two-to-one” recoding mechanism. The basic computational security
guarantee for Encode(pk, ·) is that of (correlated) pseudorandomness [RS10]: Encode(pk, s) should
be pseudorandom given Encode(pki, s) for polynomially many pki’s, where s is a uniformly random
“seed”.

The recoding mechanism guaratees that given any triple of public keys (pk0, pk1, pktgt), there
is a recoding key rk that allows us to perform the transformation

(Encode(pk0, s),Encode(pk1, s)) 7→ Encode(pktgt, s).

Such a recoding key rk can be generated using either of the two secret keys sk0 or sk1. Furthermore,
the recoding mechanism must satisfy a natural simulation requirement: namely, we can generate rk
given just pk0, pk1 (and neither of the two secret keys), if we are allowed to “program” pktgt. That
is, there are three ways of generating the pair (pktgt, rk) that are (statistically) indistinguishable:
(1) given pktgt, generate rk using the secret key sk0; (2) given pktgt, generate rk using the secret key
sk1; and (3) generate rk without either secret key, by “programming” the output public key pktgt.

This requirement demonstrates the intuitive guarantee that we expect from a two-to-one
recoding mechanism: namely, the recoding key is “useless” given only one encoding, but not both
encodings. For example, it is easy to see that given Encode(pk0, s) and rk (but not Encode(pk1, s)),
the output Encode(pktgt, s) is pseudorandom. Indeed, this is because rk could as well have been
“simulated” using sk1, in which case it is of no help in the distinguishing task.

The simulation requirement also rules out the trivial construction from trapdoor functions where
rk is a trapdoor for inverting Encode(pk0, ·) or Encode(pk1, ·).

From TOR to Garbled Circuits. We start from the observation that our TOR primitive
implies a form of reusable garbled circuits with no input or circuit privacy, but instead, with a form
of authenticity guarantee. As we will see, this leads directly into our attribute-based encryption
scheme.

Consider a two-input boolean gate with input wires u, v and output wire w, computing a function
G : {0, 1} × {0, 1} → {0, 1}. In Yao’s garbled circuit construction, we associate each wire with a
pair of strings (called “labels”), and we provide a translation table comprising of four values vb,c
where vb,c allows us to perform the transformation:

Lu,b, Lv,c 7→ Lw,G(b,c)

The garbled circuits construction guarantees that given the translation table and labels Lu,b∗ and
Lv,c∗ for specific input bits b∗ and c∗, we can obtain Lw,G(b∗,c∗); however, the other label at the
output, namely Lw,1−G(b∗,c∗) remains hidden.

In our setting, we replace labels with public keys, so that each wire is associated with a pair of
public keys. As before, we also provide a translation table comprising four values rkb,c where the
recoding key rkb,c allows us to perform the transformation

Encode(pku,b, s),Encode(pkv,c, s) 7→ Encode(pkw,G(b,c), s)

The security properties of the TOR scheme then give us the following guarantee: Given the
translation table and encodings of s corresponding to b∗, c∗, we clearly compute the encoding
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of s corresponding to G(b∗, c∗). However, the encoding corresponding to 1 − G(b∗, c∗) remains
pseudorandom.

Moreover, crucially, the translation table is independent of s, so we can now “reuse” the
translation table by providing fresh encodings with different choices of s. In a sentence, replacing
strings by functions gives us the power of reusability.

In the garbled circuits construction, the four entries of the table are permuted and thus, one can
perform the translation even without knowing what the input bits b∗ and c∗ are. This is possible
because there is an efficient way to verify when the “correct” translation key is being used. In
contrast, in the reusable construction above, one has to know exactly which of the recoding keys to
use. This is part of the reason why we are unable to provide circuit or input privacy, but instead,
only guarantee authenticity, namely that an adversary can obtain only one of the two possible
encodings at the output wire.

This construction forms the cornerstone of the subsequent work of Goldwasser, Kalai, Popa,
Vaikuntanathan and Zeldovich [GKP+13] who construct reusable garbled circuits with input and
circuit privacy, by additionally leveraging the power of fully homomorphic encryption [Gen09,
BV11].

From TOR to Attribute-Based Encryption. How is all this related to attribute-based
encryption? In our attribute-based encryption scheme for circuits, the encodings of s are provided
in the ciphertext, and the translation tables are provided in the secret key. More precisely, each
wire is associated with two TOR public keys, and the encryption of a message m under an index
ind is obtained by computing Encode(pki,indi , s) for every input wire i. The output encoding
Encode(pkout, s) is then used to mask the message. We obtain the secret key corresponding to
a circuit C by “stitching” multiple translation tables together, where the public keys for the input
and output wires are provided in the public parameters, and we pick fresh public keys for the
internal wires during key generation. In a nutshell, this gives us the guarantee that given a secret
key skC and an encryption Enc(ind,m) such that C(ind) = 1, we can compute Encode(pkout, s) and
thus recover the message. On the other hand, this value looks pseudorandom if C(ind) = 0.

In our outline of reusable garbled circuits with authenticity, we wanted to reuse the garbled
circuit G(C) across multiple encryptions with indices ind1, ind2, . . . on which C always evaluates to
0. In attribute-based encryption, we also want reusability across multiple circuits C1, C2, . . . all of
which evaluate to 0 on a fixed index ind (in addition to multiple indices). Fortunately, the strong
security properties of the TOR primitive provide us with this guarantee.

To obtain attribute-based encryption for branching programs, we are able to support a different
notion of translation tables, which we can realize using a slightly weaker notion of TOR. In
branching programs, the transition function depends on an input variable and the current state.
The fact that one of these two values is always an input variable makes things simpler; in circuits,
both of the input values to a gate could be internal wires.

TOR from LWE. We show how to instantiate TOR from LWE, building upon previous lattice-
based IBE techniques in [GPV08, CHKP12, ABB10a, ABB10b]. The public key is given by a
matrix A ∈ Zn×mq , and

Encode(A, s) = AT s + e
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where s ∈ Znq , e ∈ Zmq is an error vector, and AT denotes the transpose of the matrix A.
(Correlated) pseudorandomness follows directly from the LWE assumption. Given A0,A1,Atgt ∈
Zn×mq , the recoding key rk is given by a low-norm matrix R ∈ Z2m×m

q such that

[ A0 ‖ A1 ] R = Atgt

Note that

RT

[
AT

0 s + e0

AT
1 s + e1

]
≈ AT

tgts

which gives us the recoding mechanism. There are three ways of generating the public key Atgt

together with the recoding key R: (1) using the trapdoor for A0, (2) using the trapdoor for A1,
or (3) first generating R and then “programming” Atgt := [A0||A1] R. These three ways are
statistically indistinguishable by the “bonsai trick” of [CHKP12]. In fact, our recoding mechanism
is very similar to the lattice delegation mechanism introduced in [ABB10b], which also uses random
low norm matrices to move from one lattice to another.

The multiplicative mechanism for recoding means that the noise grows exponentially with the
number of sequential recodings. This, in turn, limits the depth of the circuits we can handle. In
particular, the noise grows by a multiplicative poly(n) factor on each recoding, which means that
after depth d, it becomes nO(d). Since nO(d) < q/4 < 2n

ε
, we can handle circuits of depth Õ(nε)

(here, the first inequality is for correctness and the second for security). Viewed differently, setting
the LWE dimension n = d1/ε lets us handle circuits of maximum depth d = d(`).

Our weak TOR for branching programs uses an additive mechanism, namely the recoding
key is given by a low-norm matrix R ∈ Zm×mq such that A0R = Atgt − A1. Note that

RT (AT
0 s+e0)+(AT

1 s+e1) ≈ AT
tgts which gives us our recoding mechanism. Since in our branching

program construction, AT
0 s + e0 will always be a fresh encoding provided in the ciphertext, the

noise accumulation is additive rather than multiplicative.

2.3 Applications

Let us now explain the application of our result to the problem of publicly verifiable delegation of
computation without input privacy.

A verifiable delegation scheme allows a computationally weak client to delegate expensive
computations to the cloud, with the assurance that a malicious cloud cannot convince the client
to accept an incorrect computation [Mic00, GKR08, GGP10, CKV10, AIK10]. Recent work of
Parno, Raykova and Vaikuntanathan [PRV12] showed that any attribute-based encryption scheme
for a class of circuits with encryption time at most linear in the length of the index immediately
yields a two-message delegation scheme for the class in the pre-processing model. Namely, there
is an initial pre-processing phase which fixes the circuit C the client wishes to compute, produces
a circuit key and sends it to the server. Afterwards, to delegate computation on an input x, the
client only needs to send a single message. Moreover, the ensuing delegation scheme satisfies public
delegatability, namely anyone can delegate computations to the cloud; as well as public verifiability,
namely anyone can check the cloud’s work (given a “verification” key published by the client). The
previous delegation schemes that satisfy both these properties (secure in the standard model)
supported the class NC1 [PRV12, GPSW06, LW12]. Our attribute-based encryption schemes for
circuits gives us a verifiable delegation scheme for all circuits, where the computation time of the
client in the online phase is polynomial in the length of its input and the depth of the circuit, but
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is otherwise independent of the circuit size. We note that this scheme does not guarantee privacy
of the input. Building on this work, Goldwasser et al. [GKP+13] show how to achieve a publicly
verifiable delegation scheme with input privacy.

2.4 Related Work

Prior to this work, the state-of-art for lattice-based predicate encryption was threshold and inner
product predicates [ABV+12, AFV11]; realizing Boolean formula was itself an open problem. A
different line of work considers definitional issues in the more general realm of functional encryption
[BSW11, O’N10], for which general feasibility results are known for the restricted setting of a-
priori bounded collusions developed from classical “one-time” garbled circuits [SS10a, GVW12] (the
ciphertext size grows with both the circuit size and the collusion bound). Our methodology takes a
fresh perspective on how to achieve reusability of garbled circuits with respect to authenticity. Our
primitive (TOR) can be thought of as a generalization of the notion of proxy re-encryption [BBS98,
AFGH06, HRSV11] which can be thought of as a one-to-one re-encryption mechanism.

Independent work. Boyen [Boy13] gave a construction of an ABE scheme for Boolean formulas
based on LWE; our result for LWE-based branching program subsumes the result since Boolean
formulas are a subclass of branching programs. Garg, Gentry, Halevi, Sahai and Waters [GGH+13]
gave a construction of attribute-based encryption for general circuits under a DBDH-like assumption
in multi-linear groups (unfortunately, there is no known candidate for realizing such an assumption),
as well as a non-standard assumption in ideal lattices [GGH12]. The public parameters in the
construction also grow with the depth of the circuit.

Subsequent Work. Our attribute-based encryption scheme has been used as the crucial
component in the subsequent work of [GKP+13] to construct a (private index) functional encryption
scheme with succinct ciphertexts. They also show a number of applications of their construction,
including reusable garbled circuits with input and circuit privacy.

Organization. We present our TOR framework and its instantiation in Sections 4 and 5. We
present our ABE scheme in Section 6. We present the scheme for branching programs in Section 7.

3 Preliminaries

Notation. Let PPT denote probabilistic polynomial-time. For any integer q ≥ 2, we let Zq
denote the ring of integers modulo q and we represent Zq as integers in (−q/2, q/2]. We let Zn×mq

denote the set of n×m matrices with entries in Zq. We use bold capital letters (e.g. A) to denote
matrices, bold lowercase letters (e.g. x) to denote vectors. The notation AT denotes the transpose
of the matrix A.

If A1 is an n×m matrix and A2 is an n×m′ matrix, then [A1‖A2] denotes the n× (m+m′)
matrix formed by concatenating A1 and A2. A similar notation applies to vectors. When doing
matrix-vector multiplication we always view vectors as column vectors.

We say a function f(n) is negligible if it is O(n−c) for all c > 0, and we use negl(n) to denote a
negligible function of n. We say f(n) is polynomial if it is O(nc) for some c > 0, and we use poly(n)
to denote a polynomial function of n. We say an event occurs with overwhelming probability if its
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probability is 1−negl(n). The function lg x is the base 2 logarithm of x. The notation bxe denotes
the nearest integer to x, rounding towards 0 for half-integers.

3.1 Attribute-Based Encryption

We define attribute-based encryption (ABE), following [GPSW06].An ABE scheme for a class
of predicate circuits C (namely, circuits with a single bit output) consists of four algorithms
(Setup,Enc,KeyGen,Dec):

Setup(1λ, 1`)→ (pp,mpk,msk) : The setup algorithm gets as input the security parameter λ, the
length ` of the index, and outputs the public parameter (pp,mpk), and the master key msk. All
the other algorithms get pp as part of its input.

Enc(mpk, ind,m)→ ctind : The encryption algorithm gets as input mpk, an index ind ∈ {0, 1}` and
a message m ∈M. It outputs a ciphertext ctind. Note that ind is public given ctind.

KeyGen(msk, C)→ skC : The key generation algorithm gets as input msk and a predicate specified
by C ∈ C. It outputs a secret key skC (where C is also public).

Dec(skC , ctind)→ m : The decryption algorithm gets as input skC and ctind, and outputs either ⊥
or a message m ∈M.

We require that for all (ind, C) such that C(ind) = 1, all m ∈ M and ctind ← Enc(mpk, ind,m),
Dec(skC , ctind) = m.

Security Definition. For a stateful adversary A, we define the advantage function AdvpeA (λ) to
be

Pr


b = b′ :

ind← A(1λ, 1`);
(mpk,msk)← Setup(1λ, 1`);

(m0,m1)← AKeyGen(msk,·)(mpk), |m0| = |m1|;
b

$← {0, 1};
ctind ← Enc(mpk, ind,mb);

b′ ← AKeyGen(msk,·)(ctind)


− 1

2

with the restriction that all queries C that A makes to KeyGen(msk, ·) satisfies C(ind) = 0 (that
is, skC does not decrypt ctind). an attribute-based encryption scheme is selectively secure if for all
PPT adversaries A, the advantage AdvpeA (λ) is a negligible function in λ. We call an attribute-based
encryption scheme fully secure if the adversary A is allowed to choose the challenge index ind after
seeing secret keys, namely, along with choosing (m0,m1).

3.2 Learning With Errors (LWE) Assumption

The LWE problem was introduced by Regev [Reg09], who showed that solving it on the average is
as hard as (quantumly) solving several standard lattice problems in the worst case.
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Definition 3.1 (LWE). For an integer q = q(n) ≥ 2 and an error distribution χ = χ(n) over
Zq, the learning with errors problem dLWEn,m,q,χ is to distinguish between the following pairs of
distributions:

{A,As + x} and {A,u}

where A
$← Zn×mq , s

$← Znq ,x
$← χm,u

$← Zmq .

Connection to lattices. Let B = B(n) ∈ N. A family of distributions χ = {χn}n∈N is called
B-bounded if

Pr[χ ∈ {−B, . . . , B − 1, B}] = 1.

There are known quantum [Reg09] and classical [Pei09] reductions between dLWEn,m,q,χ and
approximating short vector problems in lattices in the worst case, where χ is a B-bounded
(truncated) discretized Gaussian for some appropriate B. The state-of-the-art algorithms for these
lattice problems run in time nearly exponential in the dimension n [AKS01, MV10]; more generally,

we can get a 2k-approximation in time 2Õ(n/k). Combined with the connection to LWE, this means
that the dLWEn,m,q,χ assumption is quite plausible for a poly(n)-bounded distribution χ and q as
large as 2n

ε
(for any constant 0 < ε < 1). Throughout this paper, the parameter m = poly(n), in

which case we will shorten the notation slightly to LWEn,q,χ.

3.3 Trapdoors for Lattices and LWE

Gaussian distributions. Let DZm,σ be the truncated discrete Gaussian distribution over Zm
with parameter σ, that is, we replace the output by 0 whenever the || · ||∞ norm exceeds

√
m · σ.

Note that DZm,σ is
√
m · σ-bounded.

Lemma 3.1 (Lattice Trapdoors [Ajt99, GPV08, MP12]). There is an efficient randomized
algorithm TrapSamp(1n, 1m, q) that, given any integers n ≥ 1, q ≥ 2, and sufficiently large
m = Ω(n log q), outputs a parity check matrix A ∈ Zn×mq and a ‘trapdoor’ matrix T ∈ Zm×m
such that the distribution of A is negl(n)-close to uniform.

Moreover, there is an efficient algorithm SampleD that with overwhelming probability over all
random choices, does the following: For any u ∈ Znq , and large enough s = Ω(

√
n log q), the

randomized algorithm SampleD(A,T,u, s) outputs a vector r ∈ Zm with norm ||r||∞ ≤ ||r||2 ≤ s
√
n

(with probability 1). Furthermore, the following distributions of the tuple (A,T,U,R) are within
negl(n) statistical distance of each other for any polynomial k ∈ N:

• (A,T)← TrapSamp(1n, 1m, q); U← Zn×kq ; R← SampleD(A,T,U, s).

• (A,T)← TrapSamp(1n, 1m, q); R← (DZm,s)
k; U := AR (mod q).

4 Two-to-One Recoding Schemes

An overview is provided in Section 2.2.
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Symmetric encryption. In our construction, we will use Encode(pk, s) as a one-time key for a
symmetric-key encryption scheme (E,D). If Encode is deterministic, then we could simply use a one-
time pad. However, since Encode is probabilistic, the one-time pad will not guarantee correctness.
Instead, we require (E,D) to satisfy a stronger correctness guarantee, namely for all messages m
and for all ψ,ψ′ in the support Encode(pk, s), D(ψ′,E(ψ,m)) = m.

Allowing degradation. With each recoding operation, the “quality” of encoding potentially
degrades. In order to formalize this, we allow the initial global public parameters to depend on
dmax, an a-prior upper bound on the number of nested recoding operations. We then require that
given any encodings ψ and ψ′ that are a result of at most dmax nested recodings, D(ψ′,E(ψ,m)) = m.
We stress that we allow dmax to be super-polynomial, and in fact, provide such instantiations for a
relaxed notion of TOR.

4.1 Definition of TOR

Formally, a TOR scheme over the input space S = {Sλ} consists of six polynomial-time algorithms
(Params,Keygen,Encode,ReKeyGen,SimReKeyGen,Recode) and a symmetric-key encryption scheme
(E,D) with the following properties:

• Params(1λ, dmax) is a probabilistic algorithm that takes as input the security parameter λ and
an upper bound dmax on the number of nested recoding operations (written in binary), outputs
“global” public parameters pp.

• Keygen(pp) is a probabilistic algorithm that outputs a public/secret key pair (pk, sk).

• Encode(pk, s) is a probabilistic algorithm that takes pk and an input s ∈ S, and outputs an
encoding ψ.

In addition, there is a recoding mechanism together with two ways to generate recoding keys: given
one of the two secret keys, or by programming the output public key.

• ReKeyGen(pk0, pk1, sk0, pktgt) is a probabilistic algorithm that takes a key pair (pk0, sk0),
another public key pk1, a “target” public key pktgt, and outputs a recoding key rk.

• SimReKeyGen(pk0, pk1) is a probabilistic algorithm that takes two public keys pk0, pk1 and
outputs a recoding key rk together with a “target” public key pktgt.

• Recode(rk, ψ0, ψ1) is a deterministic algorithm that takes the recoding key rk, two encodings ψ0

and ψ1, and outputs an encoding ψtgt.

Remark 4.1. For our instantiation from lattices, we can in fact invert Encode(pk, s) to recover s
using the corresponding sk. However, we will not require this property in our generic constructions
from TOR. Indeed, realizing this property over bilinear groups would be hard, since s is typically
encoded in the exponent.
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Correctness. Correctness of a TOR scheme requires two things. First, for every pk and s ∈ S,
there exists a family of sets Ψpk,s,j , j = 0, 1, . . . , dmax:

• Pr[Encode(pk, s) ∈ Ψpk,s,0] = 1, where the probability is taken over the coin tosses of Encode;

• Ψpk,s,0 ⊆ Ψpk,s,1 ⊆ · · · ⊆ Ψpk,s,dmax .

• for all ψ,ψ′ ∈ Ψpk,s,dmax and all m ∈M, D(ψ′,E(ψ,m)) = m.

Note that these properties hold trivially if Encode is deterministic and (E,D) is the one-
time pad. Secondly, the correctness of recoding requires that for any triple of key pairs
(pk0, sk0), (pk1, sk1), (pktgt, sktgt), and any encodings ψ0 ∈ Ψpk0,s,j0 and ψ1 ∈ Ψpk1,s,j1 ,

Recode(rk, ψ0, ψ1) ∈ Ψpktgt,s,max(j0,j1)+1

Statistical Security Properties. Note that we have three ways of sampling recoding keys: using
ReKeyGen along with one of two secret keys sk0 or sk1; using SimReKeyGen while programming pktgt.
We require that all three ways lead to the same distribution of recoding keys, up to some statistical
error.

(Key Indistinguishability) : Let (pkb, skb) ← Keygen(pp) for b = 0, 1 and (pktgt, sktgt) ←
Keygen(pp).

The following two ensembles must be statistically indistinguishable:[
Aux,ReKeyGen(pk0, pk1, sk0 , pktgt)

]
s
≈[

Aux,ReKeyGen(pk1, pk0, sk1 , pktgt)
]

where Aux = ((pk0, sk0), (pk1, sk1), (pktgt, sktgt)). Informally, this says that sampling recoding
keys using sk0 or sk1 yields the same distribution.

(Recoding Simulation) : Let (pkb, skb)← Keygen(pp) for b = 0, 1. Then, the following two ways
of sampling the tuple

[
(pk0, sk0), (pk1, sk1), pktgt, rk

]
must be statistically indistinguishable:[

(pk0, sk0), (pk1, sk1), pktgt, rk : (pktgt, sktgt)← Keygen(pp); rk← ReKeyGen(pk0, pk1, sk0, pktgt)
]

s
≈[

(pk0, sk0), (pk1, sk1), pktgt, rk : (pktgt, rk)← SimReKeyGen(pk0, pk1)
]

In addition, we require one-time semantic security for (E,D):

(One-time Semantic Security) : For all m0,m1 ∈ M, the following two distributions must be
statistically indistinguishable:[

E(ψ,m0) : ψ
$← K

]
s
≈
[
E(ψ,m1) : ψ

$← K
]

For all three properies, computational indistinguishability is sufficient for our applications, but we
will achieve the stronger statistical indistinguishability in our instantiations.
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Computational Security Property. We require that given the encoding of a random s on
` = poly(λ) keys, the evaluation at a fresh key is pseudorandom.

(Correlated Pseudorandomness) : For every polynomial ` = `(λ), let (pki, ski)← Keygen(pp)

for i ∈ [`+ 1]. Let s
$← S, and let ψi ← Encode(pki, s) for i ∈ [`+ 1]. Then, the following two

ensembles must be computationally indistinguishable:[
(pki, ψi)i∈[`], pk`+1, ψ`+1

]
c
≈[

(pki, ψi)i∈[`], pk`+1, ψ : ψ
$← K

]
That is, we define the advantage function AdvcpA (λ) to be:

Pr

b = b′ :

pp← Setup(1λ); s← S;
(pki, ski)← Keygen(pp),
ψi ← Encode(pki, s), i = 1, . . . , `;
ψ′0 ← Encode(pk`+1, s);

b
$← {0, 1};ψ′1

$← K
b′ ← A(pk1, . . . , pk`+1, ψ1, . . . , ψ`, ψ

′
b)

−
1

2

and we require that for all PPT A, the advantage function AdvcpA (λ) is a negligible function in λ.

4.2 Simple Applications of TOR

First example. We revisit the example from Section 2.2. Consider a two-input boolean gate
g with input wires u, v and output wire w, computing a function G : {0, 1} × {0, 1} → {0, 1}.
Analogous to Yao’s garbled circuit, we provide a translation table Γ comprising four values

Γ := ( rkb,c : b, c ∈ {0, 1} )

where rkb,c allows us to perform the transformation

Encode(pku,b, s),Encode(pkv,c, s) 7→ Encode(pkw,G(b,c), s)

Now, fix b∗, c∗ and d∗ := G(b∗, c∗). Given an encoding of s corresponding to b∗ and c∗, we can
compute that under for d∗ using the recoding key rkb∗,c∗ ; in addition, we claim that the encoding
corresponding to 1 − d∗ remains pseudorandom. To prove this, it suffices to simulate Γ given
pku,b∗ , pkv,c∗ , pkw,1−d∗ as follows:

• we sample (pkw,d∗ , rkb∗,c∗) using SimReKeyGen;

• we sample pku,1−b∗ and pkv,1−c∗ along with the corresponding secret keys; using these secret
keys, we can sample the other three recoding keys rk1−b∗,c∗ , rkb∗,1−c∗ , rk1−b∗,1−c∗ .
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IBE from TOR. As a warm-up, we show how to build a selectively secure IBE for identity space
{0, 1}`.

mpk :=

(
pk1,0 pk2,0 . . . pk`,0 pkstart

pk1,1 pk2,1 . . . pk`,1 pkout

)
The ciphertext for identity ind and message m is given by:(

Encode(pk1,ind1 , s), . . . ,Encode(pk`,ind` , s),Encode(pkstart, s),E(Encode(pkout, s),m)
)

The secret key for identity ind is given by (rk1, . . . , rk`) where we first sample

(pk′1, sk
′
1), . . . , (pk′`−1, sk

′
`−1)← Keygen(pp)

and then sample

rk1← ReKeyGen(pkstart, pk1,ind1 , skstart, pk
′
1)

rk2← ReKeyGen(pk′1, pk2,ind2 , sk
′
1, pk′2)

...
rk`← ReKeyGen(pk′`−1, pk`,ind` , sk

′
`−1, pkout)

To prove selective security, we need to generate secret keys for any ind 6= ind∗, given sk1,1−ind∗1 , . . . , sk`,1−ind∗`
but not skstart or skout. We can achieve this as follows: pick an i for which indi 6= ind∗i ;

• pick (rk1, pk
′
1), . . . , (rki−1, pk

′
i−1) using SimReKeyGen;

• pick (pk′i, sk
′
i), . . . , (pk

′
`−1, sk

′
`−1) using Keygen;

• pick rki, rki+1, . . . , rk` using ReKeyGen with secret keys sk1−ind∗i , sk
′
i, . . . , sk

′
`−1 respectively.

5 TOR from LWE

In this section, we present an instantiation of TOR from LWE, building upon ideas previously
introduced in [GPV08, CHKP12, ABB10a, ABB10b].

Lemma 5.1. Assuming dLWEn,q,χ where q = nΘ(dmax), there is a TOR scheme that is correct up
to dmax levels.

• Params(1λ, dmax): First choose the LWE dimension n = n(λ). Let the error distribution χ =
χ(n) = DZ,

√
n, the error boundB = B(n) = O(n), the modulus q = q(n) = Õ(n2dmax)dmaxn, the

number of samples m = m(n) = O(n log q) and the Gaussian parameter s = s(n) = O(
√
n log q).

Output the global public parameters pp = (n, χ,B, q,m, s). Define the domain S of the encoding
scheme to be Znq .

• Keygen(pp): Run the trapdoor generation algorithm TrapGen(1n, 1m, q) to obtain a matrix
A ∈ Zn×mq together with the trapdoor matrix T ∈ Zm×m. Output pk := A and sk := T.

• Encode(pk, s): Sample an error vector e← χm and output the encoding ψ := AT s + e ∈ Znq .
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The recoding algorithms work as follows:

• ReKeyGen(pk0, pk1, skb, pktgt): Let pk0 = A0, pk1 = A1, skb = Tb and pktgt = Atgt. Compute
the matrix R ∈ Z2m×m in the following way:

– Choose a discrete Gaussian matrix R1−b ← (DZ,s)
m×m. Namely, each entry of the matrix

is an independent sample from the discrete Gaussian distribution DZ,s.

– Compute U := Atgt −A1−bR1−b ∈ Zn×mq .

– Compute the matrix Rb by running the algorithm SampleD to compute a matrix Rb ∈ Zm×m
as follows:

Rb ← SampleD(Ab,Tb,U)

Output

rktgt
0,1 :=

[
R0

R1

]
∈ Z2m×m

(We remark that AbRb = U = Atgt −A1−bR1−b, and thus, A0R0 + A1R1 = Atgt).

• SimReKeyGen(pk0, pk1): Let pk0 = A0 and pk1 = A1.

– Sample a matrix R ← (DZ,s)
2m×m by sampling each entry from the discrete Gaussian

distribution DZ,s.

– Define
Atgt := [A0 || A1] R ∈ Zn×mq

Output the pair (pktgt := Atgt, rk
tgt
0,1 := R).

• Recode(rktgt
0,1,ψ0,ψ1): Let rktgt

0,1 = R. Compute the recoded ciphertext

ψtgt = [ψT0 || ψT1 ] R

We also need a one-time symmetric encryption scheme (E,D) which we will instantiate as an
error-tolerant version of the one-time pad with K = Znq ,M = {0, 1}n, as follows:

• E(ψ,µ) takes as input a vector ψ ∈ Znq and a bit string µ ∈M and outputs the encryption

γ := ψ + dq/2e µ (mod q)

• D(ψ′,γ) takes as input a vector ψ′ = (ψ′1, . . . , ψ
′
n) ∈ Znq , an encryption γ = (γ1, . . . , γn) ∈ Znq

and does the following. Define a function Round(x) where x ∈ [−(q − 1)/2, . . . , (q − 1)/2] as:

Round(x) =

{
0 if |x| < q/4
1 otherwise

The decryption algorithm outputs a vector µ = (Round(γ1 − ψ′1), . . . ,Round(γn − ψ′n)).

We defer the analysis of (E,D) to the full version.
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5.1 Analysis

Correctness. We define the sets ΨA,s,j for pk := A ∈ Zn×mq , s ∈ Znq and j ∈ [1 . . . dmax] as
follows:

ΨA,s,j =
{
AT s + e : ||e||∞ ≤ B · (2sm

√
m)j

}
Given this definition:

• Observe that when e ← χm, ||e||∞ ≤ B by the definition of χ and B. Pr[Encode(A, s) ∈
ΨA,s,0] = 1.

• ΨA,s,0 ⊆ ΨA,s,1 ⊆ . . . ⊆ ΨA,s,dmax , by definition of the sets above.

• For any two encodings ψ = AT s + e,ψ′ = AT s + e′ ∈ ΨA,s,dmax ,

||ψ −ψ′||∞ = ||e− e′||∞ ≤ 2 ·B · (2sm
√
m)dmax < q/4,

which holds as long as n · O(n2 log q)dmax < q/4. Thus, ψ and ψ′ are “close”, and
by the correctness property of the symmetric encryption scheme (E,D) described above,
D(ψ′,E(ψ,µ)) = µ for any µ ∈ {0, 1}n.

• Consider two encodings ψ0 ∈ ΨA0,s,j0 and ψ1 ∈ ΨA1,s,j1 for any j0, j1 ∈ N, any A0,A1 ∈ Zn×mq

and s ∈ Znq . Then, ψ0 = AT
0 s + e0 and ψ1 := AT

1 s + e1 where ||e0||∞ ≤ B · (2sm
√
m)j0 and

||e1||∞ ≤ B · (2sm
√
m)j1 .

Then, the recoded ciphertext ψtgt is computed as follows:

ψTtgt :=
[
ψT0 || ψT1

]
Rtgt

0,1

=
[
sTA0 + eT0 || sTA1 + eT1

]
Rtgt

0,1

= sT
[
A0 || A1

]
Rtgt

0,1 +
[
eT0 || eT1 ] Rtgt

0,1

= sTAtgt + etgt

where the last equation is because Atgt =
[
A0 || A1

]
Rtgt

0,1 and we define etgt :=
[
eT0 || eT1 ] Rtgt

0,1.
Thus,

||etgt||∞ ≤ m · ||Rtgt
0,1||∞ · (||e0||∞ + ||e1||∞)

≤ m · s
√
m · (B · (2sm

√
m)j0 +B · (2sm

√
m)j1)

≤ B · (2sm
√
m)max(j0,j1)+1

exactly as required. Here, the second inequality is because ||Rtgt
0,1||∞ ≤ s

√
m by Lemma 3.1.

This finishes our proof of correctness.

Key Indistinguishability. Recall that in ReKeyGen, we given sampling (R0,R1) satisfying
A0R0 +A1R1 = Atgt. Key indistinguishability basically says that we obtain the same distribution
whether we use a trapdoor for A0 or that for A1. Indeed, this follows directly from the following
statement in [CHKP12, GPV08] (see also [CHK09, Theorem 3.4]): for every (A0,T0), (A1,T1)
generated by TrapSamp(1n, 1m, q), every matrix V ∈ Zn×mq , and any s = Ω(

√
n log q), the following

two experiments generate distributions with negl(n) statistical distance:
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• Sample R0 ← (DZm,s)
m, compute U := V −A0R0 ∈ Zn×mq and R1 ← SampleD(A1,T1,U, s).

Output (R0,R1).

• Sample R1 ← (DZm,s)
m, compute U := V −A1R1 ∈ Zn×mq and R0 ← SampleD(A0,T0,U, s).

Output (R0,R1).

The recoding simulation property follows readily from Lemma 3.1, as is done in [CHKP12].
Correlated pseudorandomness directly from the decisional LWE assumption dLWEn,(`+1)·m,q,χ where

q = nΘ(dmax).

6 Attribute-Based Encryption for Circuits

In this section, we show how to construct attribute-based encryption for circuits from any TOR
scheme. Let TOR be the scheme consisting of algorithms (Params,Keygen,Encode) with the “two-
to-one” recoding mechanism (Recode,ReKeyGen,SimReKeyGen) with input space S. For every dmax,
let dmax-TOR denote a secure “two-to-one” recoding scheme that is correct for dmax recoding levels.

Theorem 6.1. For every ` and polynomial dmax = dmax(λ), let C`,dmax denote a family of
polynomial-size circuits of depth at most dmax that take ` bits of input. Assuming the existence
of a dmax-TOR scheme, there exists a selectively secure attribute-based encryption scheme ABE for
C.

Combining Theorem 6.1 and Lemma 5.1, we obtain a selectively secure attribute-based
encryption scheme from LWE. Furthermore, invoking an argument from [BB04, Theorem 7.1] and
using subexponential hardness of LWE, we obtain a fully secure scheme:

Corollary 6.2. For all ` and polynomial dmax = dmax(`), there exists a selectively secure attribute-
based encryption scheme ABE for any family of polynomial-size circuits with ` inputs and depth at
most dmax, assuming the hardness of dLWEn,q,χ for sufficiently large n = poly(λ, dmax), q = nO(dmax)

and some poly(n)-bounded error distribution χ.
Moreover, assuming 2O(`)-hardness of dLWEn,q,χ for parameters n = poly(λ, dmax, `), and q and

χ as above, the attribute-based encryption scheme ABE is fully secure.

The reader is referred to the text after the construction for further explanation of how to choose
the LWE parameters.

Observe that if we start with a TOR scheme that supports dmax = `ω(1), then our construction
immediately yields an attribute-based encryption scheme for arbitrary polynomial-size circuit
families (without any restriction on the depth). This can be achieved if, for example, we had
an LWE-based TOR scheme where q grows polynomially instead of exponentially in dmax as in our
LWE-based weak TOR.

We now prove Theorem 6.1.

Circuit Representation. Let Cλ be a collection of circuits each having ` = `(λ) input wires
and one output wire. Define a collection C = {Cλ}λ∈N. For each C ∈ Cλ, we index the wires
of C in the following way. The input wires are indexed 1 to `, the internal wires have indices
`+ 1, `+ 2, . . . , |C|−1 and the output wire has index |C|, which also denotes the size of the circuit.
We assume that the circuit is composed of arbitrary two-to-one gates. Each gate g is indexed as
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a tuple (u, v, w) where u and v are the incoming wire indices, and w > max{u, v} is the outgoing
wire index. The gate computes the function gw : {0, 1} × {0, 1} → {0, 1}. The “fan-out wires” in
the circuit are given a single number. That is, if the outgoing wire of a gate feeds into the input of
multiple gates, then all these wires are indexed the same. (See e.g. [BHR12, Fig 4].)

6.1 Construction from TOR

The ABE scheme ABE = (Setup,Enc,KeyGen,Dec) is defined as follows.

Setup(1λ, 1`, dmax) : For each of the ` input wires, generate two public/secret key pairs. Also,
generate an additional public/secret key pair:

(pki,b, ski,b)← Keygen(pp) for i ∈ [`], b ∈ {0, 1}
(pkout, skout)← Keygen(pp)

Output

mpk :=

(
pk1,0 pk2,0 . . . pk`,0
pk1,1 pk2,1 . . . pk`,1 pkout

)
msk :=

(
sk1,0 sk2,0 . . . sk`,0
sk1,1 sk2,1 . . . sk`,1

)

Enc(mpk, ind,m) : For ind ∈ {0, 1}`, choose a uniformly random s
$← S and encode it under the

public keys specified by the index bits:

ψi ← Encode(pki,indi , s) for all i ∈ [`]

Encrypt the message m:
τ ← E(Encode(pkout, s),m)

Output the ciphertext
ctind :=

(
ψ1, ψ2, . . . , ψ`, τ

)
KeyGen(msk, C) :

1. For every non-input wire w = `+ 1, . . . , |C| of the circuit C, and every b ∈ {0, 1}, generate
public/secret key pairs:

(pkw,b, skw,b)← Keygen(pp) if w < |C| or b = 0

and set pk|C|,1 := pkout.

2. For the gate g = (u, v, w) with outgoing wire w, compute the four recoding keys rkwb,c (for
b, c ∈ {0, 1}):

rkwb,c ← ReKeyGen
(
pku,b, pkv,c, sku,b, pkw,gw(b,c)

)
Output the secret key which is a collection of 4(|C| − `) recoding keys

skC :=
(
rkwb,c : w ∈

[
`+ 1, |C|

]
, b, c ∈ {0, 1}

)

16



Dec(skC , ctind) : We tacitly assume that ctind contains the index ind. For w = ` + 1, . . . , |C|, let
g = (u, v, w) denote the gate with outgoing wire w. Suppose wires u and v carry the values b∗

and c∗, so that wire w carries the value d∗ := gw(b∗, c∗). Compute

ψw,d∗ ← Recode
(
rkwb∗,c∗ , ψu,b∗ , ψv,c∗

)
If C(ind) = 1, then we would have computed ψ|C|,1. Output the message

m← D
(
ψ|C|,1, τ

)
If C(ind) = 0, output ⊥.

LWE Parameters. Fix ` = `(λ) and dmax = dmax(`), and suppose the dLWEn,m,q,χ assumption
holds for q = 2n

ε
for some 0 < ε < 1. Then, in our LWE-based TOR, we will set:

n = Θ̃(d1/ε
max) and q = nΘ(dmax)

By Corollary 6.2, we get security under 2n
ε
-LWE.

6.2 Correctness

Lemma 6.3 (correctness). Let C = {Cλ}λ∈N be family where each Cλ is a finite collection
of polynomial-size circuits each of depth at most dmax. Let TOR be a correct “two-to-one”
recoding scheme for dmax levels. Then, the construction presented above is a correct attribute-based
encryption scheme.

Proof. Fix a circuit C of depth at most dmax and an input ind such that C(ind) = 1. Informally,
we rely on recoding correctness for dmax recodings to show that w = 1, . . . , |C|, we have

ψw,d∗ = Encode(pkw,d∗ , s),

where d∗ is the value carried by the wire w and ψw,d∗ is computed as in Dec. Formally, we proceed
via induction on w to show that

ψw,d∗ ∈ Ψpkw,d∗ ,s,j .

where j is the depth of wire w. The base case w = 1, . . . , ` follows immediately from correctness
of Encode. For the inductive step, consider a wire w at depth j for some gate g = (u, v, w) where
u, v < w. By the induction hypothesis,

ψu,b∗ ∈ Ψpku,b∗ ,s,j0 , ψu,c∗ ∈ Ψpkv,c∗ ,s,j1

where j0, j1 < j denote the depths of wires u and v respectively. It follows immediately from the
correctness of Recode that

ψw,d∗ ∈ Ψpkw,d∗ ,s,max(i0,i1)+1 ⊆ Ψpkw,d∗ ,s,j

which completes the inductive proof. Since C(ind) = 1 and pk|C|,1 = pkout, we have ψ|C|,1 ∈
Ψpkout,s,dmax . Finally, by the correctness of (E,D), D(ψ|C|,1, τ) = m.
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6.3 Security

Lemma 6.4 (selective security). For any adversary A against selective security of the attribute-
based encryption scheme, there exist an adversary B against correlated pseudorandomness of TOR
whose running time is essentially the same as that of A, such that

AdvpeA (λ) ≤ AdvcpB (λ) + negl(λ)

where negl(λ) captures the statistical security terms in TOR.

We begin by describing alternative algorithms, which would be useful later for constructing the
adversary B for the correlated pseudorandomness security game.

Alternative algorithms. Fix the selective challenge ind. We get from the “outside” the challenge
pp, (pki, ψi)i∈[`+1] for correlated pseudorandomness, The main challenge is to design an alternative
algorithm KeyGen∗ for answering secret key queries without knowing sk1,ind1 , . . . , sk`,ind` or skout.
The algorithm KeyGen∗ will maintain the following invariant: on input C with C(ind) = 0,

• for every non-output wire w = 1, . . . , |C| − 1 carrying the value b∗, we will know skw,1−b∗ but
not skw,b∗ .

Moreover, we do not know sk|C|,0 or sk|C|,1 = skout.

Setup∗(ind, 1λ, 1`, dmax) : Let

(pki,1−indi , ski,1−indi) ← Keygen(pp) for i ∈ [`]

pkout := pk`+1

pki,indi := pki for i ∈ [`]

Output mpk =

(
pk1,0 pk2,0 . . . pk`,0
pk1,1 pk2,1 . . . pk`,1 pkout

)
Enc∗(mpk, ind,m) : Set τ ← E(ψ`+1,m) and output the ciphertext

ctind =
(
ψ1, ψ2, . . . , ψ`, τ

)
where ψ1, . . . , ψ`+1 are provided in the challenge.

KeyGen∗(ind,msk, C) : where C(ind) = 0,

1. For each internal wire w ∈ [` + 1, |C| − 1] of the circuit C carrying the value b∗ for input
ind, generate public/secret key pairs:

(pkw,1−b∗ , skw,1−b∗)← Keygen(pp)

We will generate pkw,b∗ using SimReKeyGen as described next.
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2. For w = ` + 1, . . . , |C|, let g = (u, v, w) denote the gate for which w is the outgoing
wire. Suppose wires u and v carry the values b∗ and c∗, so that wire w carries the value
d∗ := gw(b∗, c∗). By the invariant above, we know sku,1−b∗ and skv,1−c∗ but not sku,b∗ and
skv,c∗ . We start by generating

(pkw,d∗ , rk
w
b∗,c∗)← SimReKeyGen(pku,b∗ , pkv,c∗)

We generate the other three recoding keys using ReKeyGen as follows:

rkw1−b∗,c∗ ← ReKeyGen
(
pku,1−b∗ , pkv,c∗ , sku,1−b∗ , pkw,gw(1−b∗,c∗)

)
rkwb∗,1−c∗ ← ReKeyGen

(
pkv,1−c∗ , pku,b∗ , skv,1−c∗ , pkw,gw(b∗,1−c∗)

)
rkw1−b∗,1−c∗ ← ReKeyGen

(
pku,1−b∗ , pkv,1−c∗ , sku,1−b∗ , pkw,gw(1−b∗,1−c∗)

)
Note that rkw1−b∗,c∗, rk

w
1−b∗,1−c∗ are generated the same way in both KeyGen and KeyGen∗

using sku,1−b∗ .

Output the secret key

skC :=
(
rkwb,c : w ∈

[
`+ 1, |C|

]
, b, c ∈ {0, 1}

)
Informally, the recoding key rkwb∗,1−c∗ looks the same as in Keygen because of key indistinguisha-

bility, and rkwb∗,c∗ (together with the simulated pkw,d∗) looks the same as in Keygen because of the
recoding simulation property.

Game sequence. Next, consider the following sequence of games. We use Adv0,Adv1, . . . to
denote the advantage of the adversary A in Games 0, 1, etc. Game 0 is the real experiment.

Game i for i = 1, 2, . . . , q. As in Game 0, except the challenger answers the first i− 1 key queries
using KeyGen∗ and the remaining q− i key queries using KeyGen. For the i’th key query Ci, we
consider sub-Games i.w as follows:

Game i.w, for w = `+ 1, . . . , |Ci|. The challenger switches (rkwb,c : b, c ∈ {0, 1}) from KeyGen
to KeyGen∗. More precisely:

• First, we switch (pkw,d∗ , rk
w
b∗,c∗) from KeyGen to KeyGen∗. This relies on recoding

simulation.

• Next, we switch rkwb∗,1−c∗ from KeyGen to KeyGen∗. This relies on key indistinguishabil-
ity, w.r.t. skb∗ and sk1−c∗ .

• The other two keys rkw1−b∗,c∗, rk
w
1−b∗,1−c∗ are generated the same way in both KeyGen and

KeyGen∗.

By key indistinguishability and recoding simulation, we have

|Advi,w − Advi,w+1| ≤ negl(λ) for all i, w

Note that in Game q, the challenger runs Setup∗ and answers all key queries using KeyGen∗

with the selective challenge ind and generates the challenge ciphertext using Enc.
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Game q + 1. Same as Game q, except the challenger generates the challenge ciphertext using Enc∗

with ψ`+1 = Encode(pk`+1, s). Clearly,

Advq+1 = Advq

Game q + 2. Same as Game q + 1, except ψ`+1
$← K. It is straight-forward to construct an

adversary B such that
|Advq+1 − Advq+2| ≤ AdvcpB (λ)

Finally, Advq+2 ≤ negl(λ) by the one-time semantic security of (E,D). The lemma then follows
readily.

7 Attribute-Based Encryption for Branching Programs

In this section, we present weak TOR and attribute-based encryption for branching programs,
which capture the complexity class log-space. As noted in Section 2.2, we exploit the fact that in
branching programs, the transition function depends on an input variable and the current state;
this means that one of the two input encodings during recoding is always a “depth 0” encoding.

Branching programs. Recall that a branching program Γ is a directed acyclic graph in which
every nonterminal node has exactly two outgoing edges labeled (i, 0) and (i, 1) for some i ∈ [`].
Moreover, there is a distinguished terminal accept node. Every input x ∈ {0, 1}` naturally induces
a subgraph Γx containing exactly those edges labeled (i, xi). We say that Γ accepts x iff there is a
path from the start node to the accept node in Γx. At the cost of possibly doubling the number of
edges and vertices, we may assume that there is at most one edge connecting any two nodes in Γ.

7.1 Weak TOR

A weak “two-to-one” encoding (wTOR) scheme consists of the same algorithms as TOR, except
that Keygen(pp, j) takes an additional input j ∈ {0, 1}. That is, Keygen may produce different
distribution of public/secret key pairs depending on j. Moreover, in ReKeyGen, the first public key
is always generated using Keygen(pp, 0) and the second using Keygen(pp, 1); similarly, in Recode,
the first encoding is always generated with respect to a public key from Keygen(pp, 0) and the
second from Keygen(pp, 1). Similarly, the correctness and statistical security properties are relaxed.

Correctness. First, for every pk and s ∈ S, there exists a family of sets Ψpk,s,j , j = 0, 1, . . . , dmax:

• Ψpk,s,1 ⊆ · · · ⊆ Ψpk,s,dmax .

• for all ψ,ψ′ ∈ Ψpk,s,dmax and all m ∈M,

D(ψ′,E(ψ,m)) = m

Secondly, the correctness of recoding requires that for any triple of key pairs (pk0, sk0), (pk1, sk1), (pktgt, sktgt)
respectively in the support of Keygen(pp, 0),Keygen(pp, 1),Keygen(pp, 1) and any encodings ψ0 ∈
Encode(pk0, s) and ψ1 ∈ Ψpk1,s,j1 where 0 < j1,

Recode(rk, ψ0, ψ1) ∈ Ψpktgt,s,j1+1
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Statistical Security Properties. We require recoding simulation as before, but not key
indistinguishability. However, we require the following additional property:

(Back-tracking) : For all (pk0, sk0)← Keygen(pp, 0) and all (pk1, sk1), (pktgt, sktgt)← Keygen(pp, 1),
the following distributions are identical:

ReKeyGen(pk0, pk1, sk0, pktgt) ≡ −ReKeyGen(pk0, pktgt, sk0, pk1)

Informally, this says that switching the order of pk1 and pktgt as inputs to ReKeyGen is the same as
switching the “sign” of the output. In our instantiations, the output of ReKeyGen lies in a group,
so negating the output simply refers to applying the group inverse operation.

Remark 7.1. Due to the additional back-tracking property, it is not the case that a TOR implies
a weak TOR. However, we are able to instantiate weak TOR under weaker and larger classes of
assumptions than TOR.

Computational Security Property. We define the advantage function AdvcpA (λ) (modified to
account for the additional input to Keygen) to be the absolute value of:

Pr


b = b′ :

pp← Setup(1λ); s← S;
(pki, ski)← Keygen(pp, 0),
ψi ← Encode(pki, s), i = 1, . . . , `;
(pk`+1, sk`+1)← Keygen(pp, 1);
ψ′0 ← Encode(pk`+1, s);

b
$← {0, 1};ψ′1

$← K
b′ ← A(pk1, . . . , pk`+1, ψ1, . . . , ψ`, ψ

′
b)


− 1

2

and we require that for all PPT A, the advantage function AdvcpA (λ) is a negligible function in λ.

7.2 Weak TOR from LWE

We provide an instantiation of weak TOR from LWE. The main advantage over our construction
of TOR in Section 5 is that the dependency of q on dmax is linear in dmax instead of exponential.
Therefore, if q is quasi-polynomial, we can handle any polynomial dmax, as opposed to an a-prior
bounded dmax.

Lemma 7.1. Assuming dLWEn,(`+2)m,q,χ where q = O(dmaxn
3 log n), there is a weak TOR scheme

that is correct up to dmax levels.

Note that the parameters here are better than in Lemma 5.1. The construction of weak TOR
from learning with errors follows:

• Params(1λ, dmax): First choose the LWE dimension n = n(λ). Let the error distribution χ =
χ(n) = DZ,

√
n, the error bound B = B(n) = O(n), the modulus q = q(n) = dmax · O(n3 log n),

the number of samples m = m(n) = O(n log q) and the Gaussian parameter s = s(n) =
O(
√
n log q). Output the global public parameters pp = (n, χ,B, q,m, s). Define the domain S

of the encoding scheme to be Znq .
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• Keygen(pp, j): Run the trapdoor generation algorithm TrapGen(1n, 1m, q) to obtain a matrix
A ∈ Zn×mq together with the trapdoor T. Output

pk = A; sk = T.

• Encode(A, s): Sample an error vector e← χm and output the encoding ψ := AT s + e ∈ Znq .

• ReKeyGen(A0,A1,Atgt,T): Outputs a low-norm matrix R such that A0R = Atgt − A1. In
particular,

R← SampleD(A0,T0,Atgt −A1, s)

• SimReKeyGen(A0,A1): Sample a matrix R ← (DZ,s)
m×m by sampling each entry from the

discrete Gaussian distribution DZ,s. Output

rk := R; Atgt := A0R + A1

• Recode(rk,ψ0,ψ1): Outputs rkTψ0 +ψ1.

Correctness. We define the sets ΨA,s,j for pk := A ∈ Zn×mq , s ∈ Znq and j ∈ [1 . . . dmax] as
follows:

ΨA,s,j =
{
AT s + e : ||e||∞ ≤ B · j · (sm

√
m)
}

The analysis is similar to that in the previous section. In particular, we observe right away that

• ΨA,s,1 ⊆ ΨA,s,1 ⊆ . . . ⊆ ΨA,s,dmax .

• For any two encodings ψ,ψ′ ∈ ΨA,s,dmax and µ ∈ {0, 1}n, D(ψ′,E(ψ,µ)) = µ, as long as

B · dmax · (sm
√
m) ≤ q/4.

• Consider two encodings AT s + e ∈ Encode(A, s) and ψ1 ∈ ΨA1,s,j1 for any j1 ∈ N. Then,
ψ0 = AT

0 s + e0 and ψ1 := AT
1 s + e1 where ||e0||∞ ≤ B and ||e1||∞ ≤ j1 ·B · (sm

√
m).

Then, the recoded ciphertext ψtgt is computed as follows:

ψtgt := RTψ0 +ψ1

= RT (AT
0 s + e0) + (AT

1 s + e1)

= AT
tgts + etgt

where the last equation is because Atgt = A0R + A1 and we define etgt := RTe0 + e1. Thus,

||etgt||∞ ≤ m · ||R||∞||e0||∞ + ||e1||∞
≤ m · s

√
m ·B +B · j1 · (sm

√
m)

= (j1 + 1) ·B · (sm
√
m)

exactly as required. Here, the second inequality is because ||R||∞ ≤ s
√
m by Lemma 3.1. This

finishes our proof of correctness.
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Security. Correlated pseudorandomness follows from dLWEn,(`+2)m,q,χ where q = n · dmax.
Recoding simulation follows from Lemma 3.1 by an argument identical to the one for the
construction of TOR in Section 5. For back-tracking, negation is simply the additive inverse over
Zmq .

7.3 Weak TOR from Bilinear Maps

We use asymmetric groups for maximal generality and for conceptual clarity. We consider cyclic
groups G1, G2, GT of prime order q and e : G1 × G2 → GT is a non-degenerate bilinear map.
We require that the group operations in G and GT as well the bilinear map e are computable
in deterministic polynomial time with respect to λ. Let g1, g2 denote random generators of
G1, G2 respectively. The DBDH Assumption says that, given g1, g2, g

a
1 , g

a
2 , g

b
2 and gs1, e(g1, g2)abs is

pseudorandom.

• Params(1λ, dmax): Outputs pp := (g1, g2, g
a
1 , g

a
2).

• Keygen(pp, j):

– If j = 0, then samples t
$← Zq and outputs

(pk, sk) := ((g
a/t
1 , g

a/t
2 ), t)

– If j ≥ 1, output pk
$← G2.

• Encode(pk, s):

– If pk = (g
a/t
1 , g

a/t
2 ) ∈ G1 ×G2, output (g

a/t
1 )s

– If pk ∈ G2, output e(ga1 , pk)s

• Recode(rk, c0, , c1): Outputs e(c0, rk) · c1.

• ReKeyGen((g
a/t
1 , g

a/t
2 ), pk1, pktgt, t): Outputs rk := (pktgt · pk−1

1 )t ∈ G2.

• SimReKeyGen((g
a/t
1 , g

a/t
2 ), pk1): Picks z

$← Zq and outputs

rk := (g
a/t
2 )z, pktgt := pk1 · (ga2)z

Correctness. Define Ψpk,s,j := {Encode(pk, s)}. For recoding, observe that:

Recode((pktgt · pk−1
1 )t, g

as/t
1 , e(ga1 , pk1)s

= e(g
as/t
1 , (pktgt · pk−1

1 )t) · e(ga1 , pk1)s

= e(ga1 , (pktgt · pk−1
1 )s) · e(ga1 , pk1)s

= e(ga1 , pktgt)
s = Encode(pktgt, s)

For back-tracking, negation is simply the multiplicative inverse over Gq.
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Security. Correlation pseudorandomness follows readily from the DBDH assumption and its
random self-reducibility.

7.4 Attribute-Based Encryption from weak TOR

Setup(1λ, 1`, dmax) : For each one of ` input bits, generate two public/secret key pairs. Also,
generate a public/secret key pair for the start and accept states:

(pki,b, ski,b)← Keygen(pp, 0) for i ∈ [`], b ∈ {0, 1}
(pkstart, skstart)← Keygen(pp, 1)

(pkaccept, skaccept)← Keygen(pp, 1)

Output

mpk :=

(
pk1,0 pk2,0 . . . pk`,0 pkstart

pk1,1 pk2,1 . . . pk`,1 pkaccept

)
msk :=

(
sk1,0 sk2,0 . . . sk`,0 skstart

sk1,1 sk2,1 . . . sk`,1 skaccept

)
Enc(mpk, ind,m) : For ind ∈ {0, 1}`, choose a uniformly random s

$← S and encode it under the
public keys specified by the index bits and the start state:

ψi ← Encode(pki,indi , s) for all i ∈ [`]

ψstart ← Encode(pkstart, s)

Encrypt the message:
τ ← E(Encode(pkaccept, s),m)

Output the ciphertext:

ctind =
(
ψ1, ψ2, . . . , ψ`, ψstart, τ

)
KeyGen(msk,Γ): Γ : {0, 1}` → {0, 1} is a branching program that takes a `-bit input and outputs

a single bit.

• For every node u, except the start and accept nodes, sample public/secret key pair:

(pku, sku)← Keygen(pp, 1)

• For every edge (u, v) labeled (i, b) in Γ, sample a recoding key rku,v as follows:

rku,v ← ReKeyGen
(
pki,b, pku, ski,b, pkv

)
The secret key skΓ is the collection of all the recoding keys rku,v for every edge (u, v) in Γ.

Dec(skΓ, ctind) : Suppose Γ(ind) = 1; output ⊥ otherwise. Let Π denote the (directed) path from
the start node to the accept node in Γind. For every edge (u, v) labeled (i, indi) in Π, apply the
recoding algorithm on the two encodings ψi, ψu and the recoding key rku,v:

ψv ← Recode
(
rku,v, ψi, ψu

)
If Γ(ind) = 1, we obtain ψaccept. Decrypt and output the message:

m← D(ψaccept, τ)
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7.4.1 Correctness

Lemma 7.2 (correctness). Let G = {Γ}λ be a collection of polynomial-size branching programs of
depth at most dmax and let wTOR be a weak “two-to-one” recoding scheme for dmax levels. Then,
the construction presented above is a correct attribute-based encryption scheme for G.

Proof. Let Π denote the directed path from the start to the accept nodes in Γind. We show via
induction on nodes v along the path Π that

ψv ∈ Ψpkv ,s,j

where j is the depth of node v along the path. The base case for v := start node follows immediately
from correctness of Encode. For the inductive step, consider a node v along the path Π at depth j
for some edge (u, v) labeled (i, indi). By the induction hypothesis,

ψu ∈ Ψpku,s,j0

where j0 < j denote the depths of node u. Also by the correctness of the Encode algorithm, for all
i ∈ [`]

ψi ∈ Ψpki,indi ,s,0

It follows immediately from the correctness of Recode that

ψv ∈ Ψpkv ,s,j0+1 ⊆ Ψpkv ,s,j

which completes the inductive proof. Since C(ind) = 1, we have

ψaccept ∈ Ψpkaccept,s,dmax

Recall that τ ← E(Encode(pkaccept, s),m). Finally, by the correctness of (E,D),

D(ψaccept, τ) = m

7.4.2 Selective Security

Lemma 7.3 (selective security). For any adversary A against selective security of the attribute-
based encryption scheme for branching programs, there exist an adversary B against correlated
pseudorandomness of wTOR whose running time is essentially the same as that of A, such that

AdvpeA (λ) ≤ AdvcpB (λ) + negl(λ)

where negl(λ) captures the statistical security terms in TOR.

In the proof of security, we will rely crucially on the following combinatorial property of
branching programs: for any input x, the graph Γx does not contain any cycles as an undirected
graph.
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Alternative algorithms. Fix the selective challenge ind. We also get a collection of public
keys, corresponding encodings from the “outside”: (pki, ψi)i∈[`+2], where the challenge is to decide
whether ψ`+1 is Encode(pk`+2, s) or random. The main challenge is design an alternative algorithm
KeyGen∗ for answering secret key queries without knowing sk1,ind1 , . . . , sk`,ind` or skstart, skaccept. We
consider the following “alternative” algorithms.

Setup∗(1λ, 1`, dmax) : Let

(pki,1−indi , ski,1−indi) ← Keygen(pp, 0) for i ∈ [`]

pki,indi := pki for i ∈ [`]

pkstart := pk`+1

pkaccept := pk`+2

Define and output the master public key as follows:

mpk =

(
pk1,0 pk2,0 . . . pk`,0 pkstart

pk1,1 pk2,1 . . . pk`,1 pkaccept

)

Enc∗(mpk, ind,m) : Define

ψi,indi := ψi for all i ∈ [`]

ψstart := ψ`+1

ψaccept := ψ`+2

Encrypt the message m:
τ ← E(ψaccept, b)

Output the simulated ciphertext

ctind =
(
ψ1, ψ2, . . . , ψ`, ψstart, τ

)
KeyGen∗(msk,Γ) : Let Γ′ind denote the undirected graph obtained from Γind by treating every

directed edge as an undirected edge (while keeping the edge label). Observe that Γ′ind satisfies
the following properties:

• Γ′ind contains no cycles. This is because Γind is acyclic and every nonterminal node contains
exactly one outgoing edge.

• The start node and the accept node lie in different connected components in Γ′ind, since
Γ(ind) = 0.

Simulation invariant: for each “active” edge labeled (i, indi) from node u to node v, simulate
the recoding key. Choose our own public/secret key pair for each “inactive” edges (i, 1− indi)
and generate the recoding key honestly.
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• Run a DFS in Γ′ind starting from the start node. Whenever we visit a new node v from a
node u along an edge labeled (i, indi), we set:

(pkv, rku,v) ← SimReKeyGen
(
pki,ind, pku

)
if (u, v) is a directed edge in Γ

(pkv,−rkv,u) ← SimReKeyGen
(
pki,ind, pku

)
if (v, u) is a directed edge in Γ

Here, we exploit the back-tracking property in wTOR.

Note that since Γ(ind) = 0, then the accept node is not assigned a public key by this process.

• For all nodes u without an assignment, run (pku, sku)← Keygen(pp, 1).

• For every remaining edge (u, v) labeled (i, 1− indi) in Γ, sample a recoding key rku,v as in
KeyGen using ski,1−ind as follows:

rku,v ← ReKeyGen
(
pki,1−ind, pku, ski,1−ind, pkv

)
The secret key skΓ is simply the collection of all the recoding keys rku,v for every edge (u, v) in
Γ.

Game sequence. Next, consider the following sequence of games. We use Adv0,Adv1, . . . to
denote the advantage of the adversary A in Games 0, 1, etc. Let n denote the number of edges in
a branching program Γ labeled (i, indi) for some i, and for all j ∈ [n] let ej denote the actual edge.

Game 0. Real experiment.

Game i for i = 1, 2, . . . , q. As in Game 0, except the challenger answers the first i− 1 key queries
using KeyGen∗ and the remaining q− i key queries using KeyGen. For the i’th key query Γi, we
consider sub-Games i.e as follows:

Game i.j, for j = 1, . . . , n. For edge ej = (u, v) labeled (i, indi), the challenger switches the
simulated recoding key rku,v from KeyGen to KeyGen∗. We rely on recoding simulation and
back-tracking properties simultaneously.

By recoding simulation and back-tracking, we have:

|Advi,e − Advi,e+1| ≤ negl(λ) for all i, e

Note that in Game q, the challenger runs Setup∗ and answers all key queries using KeyGen∗

with the selective challenge ind and generates the challenge ciphertext using Enc.

Game q + 1. Same as Game q, except the challenger generates the challenge ciphertext using Enc∗

with ψ`+2 ← Encode(pk`+2, s).
Advq+1 = Advq

Game q + 2. Same as Game q + 1, except ψ`+2
$← K. It is straight-forward to construct an

adversary B such that
|Advq+1 − Advq+2| ≤ AdvcpB (λ)

Finally, Advq+2 ≤ negl(λ) by the one-time semantic security of (E,D). The lemma then follows
readily.
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A Extensions

A.1 Outsourcing Decryption

In this section we show how to modify our main construction of attribute-based encryption to
support outsourcing of decryption circuits, similar to [GHW11]. We require that the Keygen
algorithm returns two keys:

• the evaluation key ekC , that is given to a computationally powerful proxy,

• and a decryption key dk, given to the client.

Given a ciphertext ctind, the proxy must perform the “bulk” of the computation and return a new
ciphertext ct′ind that is forwarded to the client. Using the decryption key dk, the client can decrypt
and learn the message m iff the predicate C(ind) is satisfied. We emphasize that that amount of
computation the client needs to perform to decrypt the message must be independent on the circuit
size. Intuitively, the security ensures that an adversary should learn nothing about the message,
conditioned on that it queries for decryption keys dk’s for predicates that are not satisfied by the
challenge index (note, the adversary can query for evaluation keys separately for predicates that
are satisfied).

Intuitively, we modify the main construction as follows. As before, the key-generation algorithm
assigns two keys for each circuit wire. The evaluation key consists of all the recoding keys for the
circuit. In addition, the output wire has another key pkout which now plays a special role. The
recoding key from pk|C|,1 to pkout is only given to the client as the decryption key. If C(ind) = 1, the
the proxy computes an encoding under the pk|C|,1 and forwards it to the client. The client applies
the transformation, and decrypts the message. For technical reasons, since we are using “two-to-
one” recoding mechanism, we need to introduce an auxiliary public key pkin and a corresponding
encoding.

Setup(1λ, 1`, dmax) : For each of the ` input wires, generate two public/secret key pairs. Also,
generate an additional public/secret key pair:

(pki,b, ski,b)← Keygen(pp) for i ∈ [`], b ∈ {0, 1}
(pkout, skout)← Keygen(pp)

(pkin, skin)← Keygen(pp)

Output

mpk :=

(
pk1,0 pk2,0 . . . pk`,0 pkin

pk1,1 pk2,1 . . . pk`,1 pkout

)
msk :=

(
sk1,0 sk2,0 . . . sk`,0 skin

sk1,1 sk2,1 . . . sk`,1 skout

)

Enc(mpk, ind,m) : For ind ∈ {0, 1}`, choose a uniformly random s
$← S and encode it under the

public keys specified by the index bits:

ψi ← Encode(pki,indi , s) for all i ∈ [`]
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Encode s under the input public key:

ψin ← Encode(pkin, s)

Encrypt the message m:
τ ← E(Encode(pkout, s),m)

Output the ciphertext
ctind :=

(
ψ1, ψ2, . . . , ψ`, ψin, τ

)
KeyGen(msk, C) :

1. For every non-input wire w = `+ 1, . . . , |C| of the circuit C, and every b ∈ {0, 1}, generate
public/secret key pairs:

(pkw,b, skw,b)← Keygen(pp)

2. For the gate g = (u, v, w) with output wire w, compute the four recoding keys rkwb,c (for
b, c ∈ {0, 1}):

rkwb,c ← ReKeyGen
(
pku,b, pkv,c, sku,b, pkw,gw(b,c)

)
3. Also, compute the recoding key

rkout ← ReKeyGen
(
pk|C|,1, pkin, sk|C|,1, pkout

)
Output the evaluation key which is a collection of 4(|C| − `) recoding keys

ekC :=
(
rkwb,c : w ∈

[
`+ 1, |C|

]
, b, c ∈ {0, 1}

)
and the decryption key dk := rkout.

Eval(ekC , ctind) : We tacitly assume that ctind contains the index ind. For w = ` + 1, . . . , |C|, let
g = (u, v, w) denote the gate with output wire w. Suppose wires u and v carry the values b∗

and c∗, so that wire w carries the value d∗ := gw(b∗, c∗). Compute

ψw,d∗ ← Recode
(
rkwb∗,c∗ , ψu,b∗ , ψv,c∗

)
If C(ind) = 1, then we would have computed ψ|C|,1. Output

ct′ind := (ψ|C|,1, ψin, τ)

If C(ind) = 0, output ⊥.

Dec(dk, ct′ind) : Apply the transformation

ψout ← Recode
(
rkout, ψin, ψ|C|,1

)
and output the message

m← D
(
ψout, τ

)
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Security. We informally state how to modify the simulator in the proof of security in Section-6.4.
The simulator gets {pki, ψi}i∈[`+2] from the “outside”. It assigns pk1, . . . , pk` as the public keys
specified by the bits of ind and pkin := pk`+1, pkout := pk`+2. It is easy to see how to simulate the
ciphertext: all the input encodings become a part of it, as well as an encryption of the message
using ψout := ψ`+2. Now, the evaluation key ek is simulated by applying the TOR simulator.

• For query C such that C(ind) = 0, the simulator can choose (pk|C|,1, sk|C|,1) by itself (the public
key pk|C|,0 is “fixed” by the TOR simulator). Hence, the decryption key dk can be computed
using sk|C|,1.

• On the other hand, for query C such that C(ind) = 1, the adversary is not allowed to obtain
the decryption key dk, hence there is not need to simulate it.

A.2 Extending Secret Keys

Consider the following problem: a users holds two (or more) secret keys skC1 and skC2 . C1 allows
to decrypt all ciphertexts addressed to human resources department and C2 allows to decrypt
ciphertexts addressed to share holders. The user wishes to create (and delegate) another secret
key skC∗ that allows to decrypt ciphertexts addressed to human resources and share holders. The
question that we study is whether it is possible to allow the user to compute skC∗ without calling
the authority holding the master secret key msk. More formally, given {skCi}i∈[q] a users should be
able to compute a secret key skC∗ for any circuit C∗ that is an black-box monotone composition of
Ci’s. Note that only monotone compositions are realizable, since otherwise a users holding a secret
keys skC1 where C1(ind) = 0 could come up with a secret key for C1 and hence break any notion of
security.

To suppose monotone extensions, it is enough to show how to obtain (1) skC1 and C2 given
skC1 , skC2 , and (2) skC1 or C2 given skC1 , skC2 . We start from the construction presented in Section-
A.1. We note that the security of that construction does not break if we give the secret key
associated with the output value 0 (sk|Ci|,1) as a part of the secret key skCi . This is because our
simulation proceeds by sampling (pk|Ci|,1, sk|Ci|,1) honestly using Keygen algorithm and the fact
the adversary is restricted to quires Ci such that Ci(ind) = 0. Hence, given sk|C1|,1 and sk|C2|,1,

let C∗ = C1 and C2. The user computes skC∗ as (ekC1 , ekC2) plus four recoding keys rkC
∗

b,c (for
b, c ∈ {0, 1}):

(pk|C∗|,0, rk
C∗
0,0)← SimReKeyGen(pk|C1|,0, pk|C2|,0)

rkC
∗

0,1 ← ReKeyGen
(
pk|C1|,0, pk|C2|,1, sk|C2|,1, pk|C∗|,0

)
rkC

∗
1,0 ← ReKeyGen

(
pk|C1|,1, pk|C2|,0, sk|C1|,1, pk|C∗|,0

)
rkC

∗
1,1 ← ReKeyGen

(
pk|C1|,1, pk|C2|,1, sk|C1|,1, pkout

)
As before, the message is encrypted under the encoding ψout ← Encode(pkout, s). The construction
extends similarly to support or compositions. Furthermore, arbitrary monotone structures can
be realized by sampling keys associated with value 1 (pk1, sk1) honestly and computing the recoding
keys as above, until the final wire is assigned to pkout.
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