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ABSTRACT

Passive longwave infrared radiometric satellite–based retrievals of sea surface temperature (SST) at in-

strument nadir are investigated for cold bias caused by unscreened optically thin cirrus (OTC) clouds [cloud

optical depth (COD)# 0.3]. Level 2 nonlinear SST (NLSST) retrievals over tropical oceans (308S–308N) from

Moderate Resolution Imaging Spectroradiometer (MODIS) radiances collected aboard the NASA Aqua

satellite (Aqua-MODIS) are collocated with cloud profiles from the Cloud–Aerosol Lidar with Orthogonal

Polarization (CALIOP) instrument. OTC clouds are present in approximately 25% of tropical quality-

assured (QA) Aqua-MODIS Level 2 data, representing over 99% of all contaminating cirrus found. Cold-

biased NLSST (MODIS, AVHRR, and VIIRS) and triple-window (AVHRR andVIIRS only) SST retrievals

are modeled based on operational algorithms using radiative transfer model simulations conducted with a

hypothetical 1.5-km-thick OTC cloud placed incrementally from 10.0 to 18.0 km above mean sea level for

cloud optical depths between 0.0 and 0.3. Corresponding cold bias estimates for each sensor are estimated

using relative Aqua-MODIS cloud contamination frequencies as a function of cloud-top height and COD

(assuming they are consistent across each platform) integrated within each corresponding modeled cold bias

matrix. NLSST relative OTC cold biases, for any single observation, range from 0.338 to 0.558C for the three

sensors, with an absolute (bulk mean) bias between 0.098 and 0.148C. Triple-window retrievals are more

resilient, ranging from 0.088 to 0.148C relative and from 0.028 to 0.048C absolute. Cold biases are constant

across the Pacific and Indian Oceans. Absolute bias is lower over the Atlantic but relative bias is higher,

indicating that this issue persists globally.

1. Motivation

Sea surface temperature (SST) measurements are a

core input for a host of meteorological and oceano-

graphic modeling systems (e.g., Kelley et al. 2002; Harris

and Maturi 2003; Tang et al. 2004; Donlon et al. 2007;

Miyazawa et al. 2013). In theory, errors in background

model SSTs can be mitigated by assimilating observed

values, resulting in increased forecast skill. Tropical cy-

clone (TC) intensity forecasting, for instance, represents

one specific area of significance for SST assimilation.

Studies have shown exponential relationships between TC

strength and SST using both maximum wind (Demaria

and Kaplan 1994) and minimum pressure (Miller 1958) as
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proxies for intensity. Thus, accurate SSTs are essential for

accurate TC prediction. Additionally, El Niño–Southern
Oscillation (ENSO) forecasts are highly dependent on SST

(Tang et al. 2004). The proper understanding and pre-

diction of the global weather implications of ENSO re-

quire correct SST fields at model initialization.

While the spatial and temporal coverage of in situ SST

measurements is improving (e.g., Roemmich et al.

2009), high-resolution global daily measurements re-

main unavailable. Thus, SSTs retrieved from passive

radiometric remote sensors aboard Earth-orbiting sat-

ellites are the primary source of global estimates.

Satellite-borne infrared (IR) radiometers in current

use for SST retrievals include the Advanced Very

High Resolution Radiometer (AVHRR; Walton 1988),

Geostationary Operational Environmental Satellites

(GOES; Wu et al. 1999), the Moderate Resolution Im-

aging Spectroradiometer (MODIS; Brown et al. 1999),

and the Visible Infrared Imaging Radiometer Suite

(VIIRS; Petrenko et al. 2014). SST retrieval algorithms

designed for each sensor are based on the specific IR

channels available for each instrument.

Early satellite sensors used only a shortwave IR channel

to retrieve SST (e.g., Deschamps andPhulpin 1980; Barton

1995). However, such shortwave channels are highly sus-

ceptible to errors associated with solar reflection during

daylight hours, traditionally limiting the corresponding

SST retrievals to nighttime only. Beginning in 1981 with

the launch of the NOAA-7 satellite, the AVHRR in-

strument afforded ‘‘split window’’ longwave IR channels

at 10.8- and 11.9-mm wavelengths, making daytime SST

retrievals more practical (Llewellyn-Jones et al. 1984;

McClain et al. 1985; Barton 1995; Davis 2007). Whereas

GOES-12 has also been used for ‘‘dual window’’ SST re-

trievals during the day using the 11- and 3.9-mm bands,

because of the lack of a 12-mm band, solar contamination

is a significant determining factor in product fidelity overall

(Merchant et al. 2009; Koner et al. 2015).

The longwave IR split-window technique is based upon

the assumption that the difference between the SST re-

trieval and brightness temperatures near 11mm is pro-

portional to the difference between the SST retrieval and

brightness temperatures near 12mm (Merchant et al.

2009). Building upon the IR split-window technique is the

nonlinear SST (NLSST) retrieval technique. While the

split-window technique assumes proportionality between

the SST and the 11- and 12-mmbrightness temperatures is

constant, the NLSST assumes this proportionality actu-

ally varies as a function of column water vapor (Barton

1995). Unlike the split-window technique, NLSST re-

quires the use of a first guess, or climatological SST.

Building on this, the Pathfinder SST retrieval uses co-

efficients that vary depending on column water vapor:

one set for low water vapor and one for low water vapor

as determined using the difference in 11- and 12-mm

brightness temperatures (Kilpatrick et al. 2001). For

moderate integrated column water vapor, interpolation

between high and low coefficients is performed.

Triple-window algorithms (e.g., Deschamps and

Phulpin 1980) combine the 3.9-mmbandwith the 11- and

12-mm bands. Since water vapor absorption is signifi-

cantly lower at 3.9mm than at 11 and 12mm, and the

Planck function is steeper, the signal-to-noise is higher

in the former, and triple-window retrievals are more

tolerant of residual cloud contamination. Thus, triple-

window SSTs are generally considered to exhibit the

highest skill of all current IR retrieval methods despite

being used traditionally for only half of the diurnal cycle

(e.g., Pichel et al. 2001).

IR radiometers measure column-integrated radiances,

and thus the presence of cloud and large aerosol particles

negatively impacts their corresponding SST retrievals,

which are fundamentally based on the assumption of clear

skies. Consequently, SST algorithms are designed to

identify and remove cloudy pixels. Operational MODIS

SST cloud screening, for instance, is achieved through a

series of threshold, spatial homogeneity, and climatology

tests (Brown et al. 1999). Despite these efforts, however,

residual cloud contamination remains, particularly with

respect to optically thin cirrus clouds. Sassen and Cho

(1992) define these unique clouds as exhibiting trans-

lucence with respect to blue sky above them, as evident

to a ground observer. Conversely, a nadir-viewing IR ra-

diometric imager presumably senses the relatively warm

ground below,making them difficult to distinguish relative

to surrounding clear skies or background surface features

in terms of spatial and thermal contrast.

Ackerman et al. (2008) demonstrate how the lower

threshold sensitivity of theMODIS cloud product tends to

occur very near a cloud optical depth (COD) of 0.30, or

the approximate upper threshold of optically thin cirrus

(OTC) presence advocated by Sassen and Cho (1992).

Similar bias has been identified in the MODIS aerosol

product. Toth et al. (2013) report the presence of both

cirrus and low-topped near-surface clouds in otherwise

quality-assured MODIS aerosol optical depth retrievals.

Ground-based solar/near-IR radiometers used by the

Aerosol Robotic Network (AERONET) have also been

found to exhibit significant OTC contamination (Chew

et al. 2011; Huang et al. 2011). Although the various SST

products available reflect the result of different cloud-

clearing algorithms, evidence within the cited literature

suggests strongly that passive IR radiometric algorithms

exhibit little skill in detecting OTC.

Residual cirrus clouds present a significant concern for

IR SST retrievals due to their high effective altitude, cold
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cloud tops, and relatively high occurrence, causing greater

potential for significant radiance contamination and alias-

ing at IR wavelengths than atmospheric aerosols. To date,

the potential for cirrus contamination and cold biasing of IR

satellite-retrieved SSTs has been discussed only qualita-

tively (e.g., Merchant and Le Borgne 2004; Vázquez-
Cuervo et al. 2004;Hosoda 2011;Merchant et al. 2012). SST

bias fromunscreened aerosols has been demonstrated (e.g.,

Merchant et al. 1999; Vázquez-Cuervo et al. 2004;

Bogdanoff et al. 2015). Like OTC, aerosols act as strong

longwave emission sources that contaminate sea surface

emission signals and SST retrievals. However, significant

aerosol plumes, like dense dust storms, occur less frequently

and over limited domains compared with cirrus. Further,

they are most prominent at significantly lower altitudes,

which results in less thermal contrast with the sea surface

and a relatively lower associated SST cold bias overall.

NASA’s A-Train presents a unique opportunity for the

pairing of IR radiometric and active-based remote sensing

instruments, usingAqua and theCloud–Aerosol Lidar and

Infrared Pathfinder Satellite Observations (CALIPSO;

Stephens et al. 2002;Winker et al. 2009, 2010) satellites, for

investigating the cold biasing by OTC of IR SST retrievals

(Huang et al. 2013). This paper describes a series of such

experiments, using paired MODIS/Cloud Aerosol lidar

with Orthogonal Polarization (CALIOP (Winker et al.

2010) measurements observations first to identify residual

OTC contamination properties within the MODIS SST

retrieval product and then to estimate corresponding SST

cold biases for NLSST and triple-window IR algorithms

developed for MODIS, VIIRS, and AVHRR.

Similar to Bogdanoff et al. (2015), a one-dimensional

radiative transfer model is used to simulate SST re-

trieval algorithm performance by modeling OTC con-

tamination for the different sensors, methodologies, and

corresponding channels. MODIS/CALIOP cloud con-

tamination properties are assumed consistent across

VIIRS and AVHRR to motivate these modeling ex-

periments. The goal of this work is a broad-scale as-

sessment of the impact of OTC on operational IR

radiometric satellite oceanographic sensors. We focus

on tropical latitudes (308S–308N) in this investigation,

given the greater occurrence frequencies for cirrus

found there and thus presumably greater cold biasing of

SST, relative to global conditions (Mace et al. 2009).

2. Datasets

a. IR cloud-clearing and residual cloud
contamination

Quality testing and cloud clearing for the re-

trieval algorithms of each sensor vary slightly and

stem from the tests created for the AVHRR Path-

finder algorithm described in Kilpatrick et al. (2001).

For example, the MODIS cloud-clearing and quality

control algorithm is based upon the use of brightness

temperature difference, thresholds, and spatial ho-

mogeneity from IR measurements within the atmo-

spheric window region. If a pixel passes the previous

tests, then the retrieved SST is required to be within a

specific range of the expected SST (from climatology

or previous retrieval; Brown et al. 1999). The VIIRS

cloud algorithm is identical to the MODIS algorithm,

based upon the Miami Decision Tree (Minnett et al.

2013). The AVHRR, MODIS, and VIIRS retrieval

algorithms reference both IR and visible channels for

cloud clearing through threshold and spatial homo-

geneity tests (Lavanant et al. 2007).

Whereas collocation is possible only betweenCALIOP

and MODIS, we are unable to independently charac-

terize VIIRS and AVHRR cloud-clearing efficacies.

Modeling of OTC bias in those datasets, described in

sections 3 and 4, requires some knowledge of contami-

nating OTC properties, however. Thus, as introduced

above, it is assumed that OTC contamination is consis-

tent across the three sensors. Contamination properties

relating cloud-top heights and relative frequencies from

MODIS/CALIOP are thus extrapolated to VIIRS and

AVHRR. However, product users presently face the

question of whether to have available a daily satellite

SST dataset with reasonable global coverage, at the

expense of OTC contamination, or to face a highly

limited dataset with many data points removed from

fear of such bias.

b. Infrared satellite SST products and retrieval models

Daily 1-km 11- and 12-mm retrieved NLSST values

from the Level 2 Aqua MODIS SST product (MOD28;

available at https://oceandata.sci.gsfc.nasa.gov/MODIS-

Aqua/L2) from January through December 2012 are

used to collocate with CALIOP. To our knowledge,

there is currently no MODIS triple-window retrieval.

CALIOP is in orbit approximately 2min behind Aqua-

MODIS. Each MODIS SST retrieval is assigned a

quality level (QL) between 0 and 4 (0 indicating no

quality flags set or no known retrieval errors; 4 in-

dicating a failed retrieval). QL is determined through

a series of tests, specifically spatial homogeneity tests

(i.e., pixel-by-pixel ‘‘buddy checks’’), climatology-

deviation tests to remove unrealistic values, and

baseline-deviation checks that look to filter values

that represent a clear deviation from the weekly Op-

timum Interpolation Sea Surface Temperature (OISST;

Reynolds and Smith 1994; Brown et al. 1999). The

inclusion of these tests, beyond simple cloud clearing,
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suggests low confidence in the base visible and IR cloud

detection. We are aware of no defined operational

protocols for working with the MODIS NLSST prod-

uct. In this study, we therefore assume that QL 5 0

and QL 5 1 are of sufficient fidelity so as to be re-

ferred to as quality-assured (QA) data. In contrast,

QL . 1 is considered to represent retrievals with

significant deviations from climatology or baseline

values that are sufficiently indicative of some form of

contamination (most likely cloud). A summary of the

MODIS NLSST product, QL flags, and tests is avail-

able online (https://oceancolor.gsfc.nasa.gov/atbd/sst/).

Results of the modeling experiments described below

are shown for each of QL50, QL51 and QA for

completeness.

Pathfinder-style MODIS IR NLSST retrievals are

conducted using measured radiances at the 11.03- and

12.02-mm bands, chosen as they exhibit significant dif-

ferences in water vapor absorption and proximity to the

average planetary blackbody emission temperature

(Brown et al. 1999). Retrievals are performed through

the following system of equations (Brown et al. 1999):
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Here, DTB is the difference between the brightness

temperature at the 11- and 12-mm bands; TB11
is the

brightness temperature (8C) at the 11.03-mm band; m is

the cosine of the sensor zenith angle; SST is a baseline

SST value created by bilinear interpolation of the OISST

product or a near-IR retrieved SST value (from the pre-

vious night); SST(DTB # 0.5) and SST(DTB $ 0.9) are

the SST values calculated using Eqs. (1a) and (1b), re-

spectively; and the a coefficients are continuously

tuned and optimized through verification with in situ

buoy observations.

Uncertainties arise in the derivation of operational co-

efficients due to ambiguities in relating buoy observations

with satellite radiances and the possible presence of

OTC. For simulations of this retrieval described in

section 3, the a coefficients from the most recent July

available (2006) are used: a0 5 1.2310; a1 5 0.9470;

a2 5 0.1680; a3 5 1.8170; a10 5 2.5450; a11 5 0.9050;

a12 5 0.1250; a13 5 1.6660. The July coefficients are

used to be consistent with the coefficients used for

the VIIRS retrievals.

The MetOp-A AVHRR NLSST retrieval is per-

formed using radiances at the 10.8- and 11.9-mm bands,

from channels 4 and 5, using the following equation from

the Naval Oceanographic Office (NAVO) NLSST al-

gorithm (Walton et al. 1998):
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where TB11
is the brightness temperature (K) from the

10.8-mm band, DTB is the difference in brightness tem-

peratures between the 10.8- and 11.9-mm bands, and the

coefficients a1, a2, and a3 are tuning constants, again

based on optimization between retrievals and observa-

tions from global drifting buoys. We apply the set of

operational coefficients provided by NAVO and used

by Bogdanoff et al. (2015) to model the retrieval

(a052263.3489; a15 0.9690; a25 0.0772; a35 1.0318).

The Suomi-NPP VIIRS NLSST retrieval algorithm

applies radiances at the 10.80- and 12.05-mm bands from

channels 15 and 16 to retrieve SST (Brisson et al. 2002;

Merchant et al. 2008; Petrenko et al. 2014), using the

equation
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where TB11
is the brightness temperature (K) from

channels 15; DTB is the difference in brightness tem-

peratures in the 10.80- and the 12.05-mm bands; SST is

Level 4 SST (8C), provided by the Canadian Meteoro-

logical Centre (or another Level 4 SST product if un-

available); and the coefficients a0–a6 are again the

optimized tuning constants. The set of coefficients used

to model the retrieval here come from the Advanced

Clear-Sky Processor for Oceans (ACSPO) SST algo-

rithm as of July 2015 (B. Petrenko 2015, personal com-

munication; a0 5 5.623 045; a1 5 0.985 192; a2 5
0.019 775; a3 5 0.456 758; a4 5 0.067 732; a5 5 0.705 117;

a6 5 24.714 369).
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Algorithms using triple-window retrieval techniques

are also available forAVHRRandVIIRS. TheMetOp-A

AVHRR triple window SST is retrieved using

SST5 a
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where TB3:7
is the brightness temperature (8C) from the

3.7-mm band, DTB is the difference in brightness tem-

peratures between the 10.8- and 11.9-mm bands, and the

coefficients a1–a5 are again tuning constants. For mod-

eling the retrieval below, we apply a set of coefficients

described byMétéo-France (a05 1.153 51; a15 1.018 67;

a2 5 0.021 09; a3 5 0.688 58; a4 5 0.330 56; a5 5 1.273 03;

Le Borgne et al. 2007).

The operational NAVO Suomi-NPP VIIRS triple

window algorithm uses the same equation as the

MetOP-A AVHRR triple window SST retrieval, where

DTB is the difference in brightness temperatures be-

tween 10.80- and 12.05-mm bands. Here, we model this

equation by applying a set of operational coefficients from

the ACSPO SST algorithm as of July 2015 (B. Petrenko

2015, personal communication; a0 5 0.236 653; a1 5
1.003 204; a2 5 0.032 301; a3 5 0.992 169; a4 5 0.241 534;

a5 5 28.055 822).

c. CALIOP cirrus cloud products

CALIOP cirrus cloud observations considered here

come from the version 3.02 (V3.02) Level 2 CALIPSO

5-km cloud layer product (https://eosweb.larc.nasa.gov/).

This product includes cloud-top and cloud-base

heights, corresponding temperatures, and COD. Cloud

temperatures come from the Goddard Modeling and

Assimilation Office (GMAO)’s Goddard Earth Ob-

serving SystemModel, version 5, data embedded within

the file. This product is chosen for its integration of re-

solved cloud layers at multiple spatial resolutions (5, 20,

and 80 km; Vaughan et al. 2009), which more readily

includeOTC. Clouds resolved with CALIOP algorithms

at higher resolution (0.33 and 1.00 km) are not included

in this product, as they likely represent spatially in-

homogeneous liquid water clouds and not cirrus. Given

that cloud contamination statistics in the collocated

Aqua-MODIS/CALIOP subset are shown below, how-

ever, this caveat with respect to relative frequencies in

liquid-phase cloud contamination exists, particularly for

the lowest/warmest cloud cases reflective of marine

stratocumulus decks.

Cirrus clouds are specifically distinguished in the

CALIOP dataset by applying a maximum cloud-top

temperature of 2378C. The basis for applying this

thermal threshold is motivated by Campbell et al.

(2015). Though conservative, significant ambiguity ari-

ses from interpreting autonomous lidar signals and from

distinguishing ‘‘warm cirrus’’ (typically, sheared fall-

streaks decoupled from their parent cloud, which give

the appearance of a cirrus cloud with an apparent top

height temperature warmer than2378C) from glaciated

liquid water clouds that, though ice, are not cirrus in the

phenomenological sense. These latter clouds feature ice

microphysical characteristics that are sufficiently dif-

ferent from traditional cirrus, such that their optical and

radiative characteristics warrant a distinct phenomeno-

logical classification in their own right, particularly given

the constraints of the radiative transfer modeling ex-

periments conducted and described here (e.g., Sun and

Shine 1994). This distinction is fundamental to opti-

mizing the radiative transfer model simulations de-

scribed below, since they are based upon parameterized

cirrus cloud ice microphysical properties specifically, as

opposed to those of glaciated cloud elements.

COD is used below as the dependent variable for es-

timating SST retrieval cold biases. COD uncertainties in

the V3.02 product have been recently characterized by

Garnier et al. (2015). Specifically, CALIOP COD al-

gorithms perform either constrained retrievals, where

COD is solved directly by comparing molecular atmo-

spheric backscatter returns above and below the cloud,

or unconstrained ones, where molecular returns below

the cloud cannot be estimated and an a priori rela-

tionship between cloud extinction and backscatter

coefficients is applied based on cloud centroid temper-

ature to solve COD (Vaughan et al. 2009; Young and

Vaughan 2009). Whereas we are dealing almost exclu-

sively with relatively low COD cases with OTC, our

sample compositions tends strongly toward constrained

retrievals for which we anticipate relatively low relative

error.

3. Methodology

a. MODIS–CALIOP collocation and cloud
contamination

MODIS SSTs are reported at 1-km2 spatial resolution.

Collocation between Aqua-MODIS and the 5-km

CALIOP product is performed by identifying those

QAMODIS SST 1-km2 pixel centers within 1 km of the

lidar ground track. The frequency of contamination is

reported by cloud type (all cirrus, OTC, and other) and

QA level. Residual cloud-top altitudes, temperatures,
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and COD are also examined. Contamination statistics

are described in section 4.

b. Modeled SST bias due to optically thin cirrus

OTC cold bias estimates for each of the satellite re-

trievals are estimated through radiative transfer simu-

lations using the Santa Barbara DISORT Atmospheric

Radiative Transfer (SBDART) model (Ricchiazzi et al.

1998). Following Bogdanoff et al. (2015), top-of-

atmosphere radiance values for sensor nadir are calcu-

lated using SBDART as equipped with a standard

tropical atmosphere and a surface and skin temperature

of 26.858C (300K), which is used as the background SST.

SST cold bias is defined as the difference between an

SBDART-simulated OTC-contaminated SST retrieval

and an SBDART-simulated clear-sky SST retrieval. In

other words, the SBDART surface skin temperature of

26.858C is not used. Instead, an SBDART-simulated

clear-sky SST retrieval is used. This clear-sky value is

then subtracted from the SBDART-simulated OTC-

contaminated SST retrievals. In this way, the bias is

only a function of the introduction of the OTC but also

not dependent on the retrieval equation’s ability to

reproduce the SBDART profile skin temperature of

26.858C.
The MODIS-, VIIRS-, and AVHRR-simulated

brightness temperatures are calculated by integrating

the SBDART-estimated radiance with each sensor’s

spectral response function. The MODIS 11.30-mm band

radiance is calculated from the SBDART 10.50–

11.50-mm radiances in 100-nm increments. The MODIS

12.02-mm band radiance is calculated from the SBDART

11.64–12.44-mm radiances, also in 100-nm increments.

The AVHRR 10.80- and 11.90-mm band radiances are

calculated from the SBDART 10.10–11.60- and 11.20–

12.60-mm radiances in 100-nm increments, respectively.

Likewise, the VIIRS 10.80- and 12.05-mm radiances are

calculated from the SBDART 9.90–11.70- and 11.06–

12.76-mm radiances in 100-nm increments. The AVHRR

and VIIRS 3.7-mm band radiances are calculated from

SBDART-simulated nighttime 3.40–4.00- and 3.50–

3.90-mm radiances in 20-nm increments, respectively.

All increments represent slightly higher than what is

resolvable by SBDART and thus some interpolation is

performed.

A two-dimensional SST cold bias matrix is deter-

mined for MODIS, VIIRS, and AVHRR NLSST and

VIIRS and AVHRR triple-window retrievals after

simulating a 1.5-km-thick OTC layer present at varying

top height altitudes [10.00–18.00 km in 0.25-km seg-

ments, all heights above mean sea level (MSL)] and

COD (0.00–0.30, in 0.01 segments from 0.01–0.06 and

0.02 segments above 0.06). By default, SBDART

vertical grid spacing is set to 1km from the surface to

100 km. To resolve the 0.25-km segments, this grid

spacing has been adjusted to vary from 0.25 km near

surface to 30 km at 100km. While the segments near

18 km are slightly larger than 0.25 km, the difference is

on the order of 10m. In this case, the cloud top is placed

slightly above 18km.

Mean OTC SST bias values are estimated by in-

tegrating the product of the frequency of OTC-only

occurrence for each altitude/COD bin and the corre-

sponding SST cold bias modeled with SBDART. Rela-

tive bias, defined as the mean bias of all OTC-only

contaminated retrievals, is then calculated using only

the relative frequency of occurrence. Finally, the abso-

lute bias is the mean bias of all pixels, assuming only

OTC contamination (i.e., relative bias normalized by the

frequency of OTC occurrence) given by the absolute

frequency of occurrence. As a subsequent sensitivity

test, the proportionality between the difference be-

tween the true SST and brightness temperatures be-

tween 11- and 12-mm channels is examined for each

sensor, given again that the NLSST technique is based

upon the assumption that this relationship is relatively

constant given constant integrated column water vapor.

For bias estimation, the water vapor profile is unadjusted,

except within the cloud. However, when this proportion-

ality is examined, the water vapor profile is adjusted pro-

portionally outside of the cloud, such that the total column

water vapor is held constant.

The core SBDART module simulates cirrus clouds as

spherical ice grains (Ricchiazzi et al. 1998). Yang et al.

(2005), however, report that differing ice particle

structures result in significant variance in absorption

efficiency at the wavelengths used in the SST retrievals.

Thus, we modified the SBDART ice microphysical

scheme to be consistent with that of the ice particle

structures defined in Yang et al. (2005). For particles

with effective radius smaller than 35mm, the augmented

ice microphysical scheme assumes 50% bullet rosettes,

25% hollow columns, and 25% plates. For particles with

an effective radius larger than 35mm, the scheme as-

sumes 30% aggregates, 30% bullet rosettes, 20% hollow

columns, and 20% plates (Yang et al. 2005). Within

cloud, SBDART features a method to adjust the water

vapor such that the atmosphere is saturated with respect

to liquid water. This method has been updated to satu-

rate the layer with respect to ice if the temperature is

below2378C, andwith respect to liquid water above this
temperature using the Goff–Gratch equations and as-

suming water vapor to be an ideal gas.

The cloud structure is designed within the simulations

such that radiances from both a cirrus cloud with a lin-

early increasing extinction coefficient from cloud base to
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top (i.e., a fallstreak) and a cloud with a constant ex-

tinction coefficient (i.e., ‘‘block’’ cloud) are solved in-

dependently. The block cloud and fallstreak structures

were referred to as ‘‘infinite gradient’’ and ‘‘shelf gra-

dient,’’ respectively, in Bogdanoff et al. (2015). Sensi-

tivity to cloud structure is found to be negligible,

however, and only results from the fallstreak simulations

are presented.

Sensitivity to ice crystal effective radius in SBDART

is constrained using Eq. (9e) in Heymsfield et al. (2014).

This provides a relationship between SBDART stan-

dard atmospheric temperature, altitude, and effective

radius. Ice crystal effective radius is approximately

95mm at an altitude of 10 km, dropping to near 10mm3
16km. Note that there is no normalizing of the actual

MODIS/CALIOP-contaminatedOTC observations as a

function of height/temperature to the temperature

profile of the standard atmosphere used to derive the

net-integrated bias values. They are instead assumed

independent. This will induce some representativeness

error in the solutions, since the contaminated observa-

tions will not directly coincide with the temperatures

and heights of the standard atmosphere.

Sensitivity of the SST error matrices to column water

vapor concentrations is tested by adjusting the water

vapor mixing ratio profile in the SBDART standard

atmosphere during the simulations. Two tests are per-

formed, aside from the direct solutions using the stan-

dard atmospheric water vapor profile. The first is

conducted with the water vapor mixing ratio set to zero

everywhere except within the cloud. The other test sat-

urates the entire column with respect to liquid water at

temperatures above2378Candwith respect to ice below

that temperature. The purpose of this exercise is to

provide ample context for considering the integrated

bulk SST biases calculated from the error matrices,

given that the impact of water vapor absorption and

column-integrated instrument sensitivities within the

SST retrievals themselves can be considerable (e.g.,

Brown et al. 1999).

c. Observational representativeness

To characterize the representativeness of the

SBDART simulations and corresponding cold bias esti-

mates, an analysis of contaminated MODIS data points

is provided for a look at how bias relates in practice. It is

believed that this is the most practical means to esti-

mate bias. Advanced Microwave Scanning Radiometer

(AMSR) microwave SSTs, for instance, are not bi-

ased by OTC presence, given the much longer wave-

length than in the IR. However, AMSR data are not

available for the 2012 study period. Furthermore, AMSR

SSTs are retrieved at approximately 25-km2 resolution,

making them difficult to collocate with confidence to

higher-resolution data from the IR radiometers. A single

AMSR-retrieved SST pixel can correspond with as many

as 625 MODIS pixels, for example. Buoy collocation

with MODIS also could be attempted. However, the

relative bias estimates introduced below are in fact ap-

proximately equal to that found between buoy sub-

surface temperaturemeasurements and remotely sensed

skin temperature retrievals (Brown et al. 1999).

Instead, linear regression is performed between

Aqua-MODIS SST retrievals and CALIOP COD

for OTC-contaminated retrievals over the Southeast

Asian Maritime Continent (1358E, 308N–758E, 158S) for
August–October 2012. A limited spatial and temporal

domain is chosen to mitigate any large spatial and sea-

sonal variability, as sample spread limits the effec-

tiveness of the target regressions. This result is then

qualitatively compared with OTC SST bias estimates

derived from the SBDART simulations to gauge how

representative the bias estimates are in practice.

4. Analysis

a. Collocation statistics

Numbers of collocated QA Aqua-MODIS/CALIOP

data points in 58 3 58 bins between 308S and 308N are

shown in Fig. 1. Although large spatial variation in pixel

counts is evident, bins with relatively low data counts

(such as the Southeast Asian Maritime Continent) still

contain nearly 10 000 collocated points. The spatial

variability in valid collocations varies in both the avail-

ability of QA data, which can be limited due to cloud or

other forms of radiance contamination of the MODIS

retrieval (manifested in the QL value, and discussed in

further detail below), and OTC occurrence. Figure 2a

depicts corresponding total all-cloud contamination

frequencies for the collocated data points. Of particular

interest is the Maritime Continent, where cloud is

present in upward of 80% of all collocated data pairs. A

comparison of cirrus contamination with all-cloud con-

tamination (Fig. 2b) shows that the majority (.90%) of

all residual cloud is cirrus, though this is likely influenced

to some degree by the composition of the Level 2

CALIOP dataset used (discussed in section 2c); 99.4%

of the cirrus sample is OTC (25.7% absolute frequency).

These distributions and percentages of cirrus contami-

nation closely match expectation (see Fig. 1 in Sassen

et al. 2008).

To determine the relative contamination characteris-

tics for each oceanic basin, every 58 3 58 bin is associated
with its parent ocean (Fig. 3). Bins that overlap both the

Atlantic and Pacific basins, such as bins over Central
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America, are not included in the basin investigation.

This is deemed unnecessary for the boundary between

the Indian and Pacific basins because that boundary is

less defined than the distinct geographical barrier pre-

sented by Central America for the Pacific–Atlantic

boundary. Following Fig. 4, then, is the corresponding

difference between the raw QA MODIS SST product

and that after cloud clearing with CALIOP, whereby the

corresponding cold bias effect due to overwhelming

OTC presence is realized.

Histograms of cloud-top heights and temperatures for

residual clouds identified with CALIOP from the col-

located Aqua-MODIS data pairs in each basin are pre-

sented in Figs. 5a and 5b, respectively. These plots

exhibit a bimodal distribution between high-altitude

cold clouds and near-surface warm clouds, echoing

Toth et al. (2013). The Atlantic basin corresponds with,

on average, warmer and lower cloud tops, with more

low-level cloud contamination than the other basins.

This is likely due to cooler SSTs in the Atlantic basin,

resulting in lower tropopause heights and lesser influ-

ence on ice particle nucleation from the tropical

tropopause transition layer (TTL; Fueglistaler et al.

2009). The Pacific and Indian Oceans exhibit very sim-

ilar residual cloud properties, which is likely a reflection

of both basins sharing the very warm waters in and

around the Maritime Continent.

All basins correspond with a relatively strong residual

cirrus signal. Retrieval contamination statistics are

outlined in Table 1, distinguished by MODIS retrieval

QL and oceanic basin. Globally, the majority of collo-

cations (.76%) are QL 5 0. These ‘‘best quality’’ re-

trievals still experienced OTC cloud contamination at a

rates of nearly 23%, while the lower QL 5 1 data ex-

perienced OTC contamination at approximately 36%.

This results in an overall QA dataset OTC contamina-

tion rate of ;26% throughout the tropics.

OTC COD occurrence histograms for contaminated

data pairs in each basin are shown in Fig. 6. Similar to

OTC distributions derived globally from CALIOP,

shown in Campbell et al. (2015), residual COD occur-

rence across all basins decreases exponentially with in-

creasing COD, with counts in the ‘‘subvisual’’ range

(COD , 0.03; Sassen and Cho 1992) occurring two

FIG. 2. Relative frequencies of collocated Aqua-MODIS SST retrieval contamination, as

identified by CALIOP for (a) all cloud and (b) all cirrus (defined as all clouds with a top height

temperature # 2378C).

FIG. 1. Number of collocated Level 2Aqua-MODIS SST and Level 2 CALIOP cloud-profiling

pixels for MODIS data QL 5 0 and QL 5 1, in 58 3 58 bins between 308S and 308N.
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orders of magnitude more often than those approaching

the upper-OTC COD threshold near 0.30. All cirrus and

OTC COD statistics globally and for each basin are

presented in Table 1. Mean contaminating OTC COD

globally is near 0.04. Despite lower/warmer clouds, the

Atlantic basin coincides with the optically thinnest

clouds. Further, and as expected, QL 5 1 clouds are

optically thicker than QL 5 0, consistent with the

greater expectation of cloud contamination that would

likelier reflect the presence of denser clouds.

b. NLSST bias estimates

Respective OTC-only NLSST cold bias matrices are

shown for Aqua-MODIS (Fig. 7a), AVHRR (Fig. 7b),

and VIIRS (Fig. 7c). Overlaid on these data are relative

occurrence percentages of cloud contamination from

Aqua-MODIS/CALIOP. Net OTC cold bias is esti-

mated by integrating the product of relative/absolute

frequency and corresponding bias at each bin as func-

tions of cloud-top height and COD. Again, we empha-

size for AVHRR and VIIRS that this step assumes that

OTC cloud-clearing algorithm infidelities are reason-

ably consistent across each sensor.

The SBDART simulations, and thus all corresponding

bias estimates, are conducted only for the nadir view of

either sensor. Assuming that OTC contamination oc-

currence rates are relatively consistent at all viewing

angles though as a function of COD (which, given the

complexities of passive cloud screening algorithms, such

as ‘‘buddy check’’ pixel comparisons, may very well not

be a good assumption at all), an expanded study could

take into account varying passive sensor responses to the

viewing angles. Given that the relative COD will effec-

tively increase with greater viewing angle however, from

increased optical pathlength through the clouds relative

to the sensor, such a study would become far more

complex than the basic conceptualization conducted

here.

Evident in the cold bias simulations is the sensitivity to

both altitude (i.e., cloud effective radius and thermal

brightness) and COD (i.e., ice water path). Each sensor

retrieval algorithm exhibits generally negligible bias at

subvisual COD (Sassen and Cho 1992). All sensors ex-

hibit maximum bias at CODs approaching 0.3 and

cloud-top altitudes below 15km, corresponding to ef-

fective cloud particle radii greater than 25mm. This

maximum indicates a bias. 68C for MODIS, AVHRR,

and VIIRS retrievals. Note that some undersampling in

the absolute/relative OTC cold bias estimates derived

from these data arises and is apparent here. SBDART

simulations are conducted only between 10.0 and

18.0 km. The lower threshold coincides approximately

with2378C on the tropical standard atmospheric profile

used in SBDART, which is the thermal threshold used

to distinguish cirrus clouds in the CALIOP sample

(described further above). The upper threshold is actu-

ally 1 km above the cold-point tropopause height in the

standard atmospheric profile used as indicated by the

increase in bias above 17.0 km.

It is relatively common to see cirrus clouds in the

tropics, particularly TTL cirrus, at and above 18.0 km

(e.g., Campbell et al. 2015, among many others). This

upper threshold is adjusted slightly from the standard

atmosphere cold-point tropopause accordingly. Reality,

FIG. 3. Spatial extent of oceanic basins used in this study with corresponding 58 3 58 bins
depicted from 308S and 308N.

FIG. 4. For collocated Aqua-MODIS SST and CALIOP cloud profile data pairs, with the

absolute difference between the raw QA product and that after cloud screening.
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however, causes some cirrus, and specifically OTC, to be

observed by CALIOP outside of this range within the

tropics, which are included in the OTC-contaminated

Aqua-MODIS/CALIOP sample; 1.07% of the tropical

OTC sample is not accounted for when integrating the

cold bias matrices and deriving final estimates, sug-

gesting the results are slightly low. However, the in-

crease in atmospheric temperature results in larger

particles and more bias above this cold point, suggesting

the results may be high. Combined with the assumptions

of cloud contamination consistency across each sensor/

algorithm and the use of a static tropical standard

atmosphere/static surface SST in deriving the initial cold

bias matrices, we reiterate that these solutions are

strictly estimates.

Cold bias estimates are reported in Tables 2 and 3 for

each sensor, based upon the Aqua-MODIS QL and the

oceanic basin. Ranges of bias associated with water va-

por sensitivity are also reported according to the sup-

plemental experiments described in section 3b. The

mean absolute global QA OTC-only SST cold bias es-

timated across the three platforms from these simula-

tions without varying the relative humidity profile from

that of the standard atmosphere is between 0.098 and
0.148C. This range reflects the absolute aggregate cold

bias estimated for each sensor in bulk-average tropical

SST, given OTC-only contamination occurrence rates

on the order of 25%. The corresponding relative bias

ranges from 0.338 to 0.558C, reflecting themean cold bias

specifically for OTC-contaminated single observations.

FIG. 5. Relative frequencies of all residual cloud found in contaminated Level 2 Aqua-MODIS

SST and CALIOP cloud profile data pairs as a function of (a) cloud-top height and

(b) cloud-top temperature, plotted globally and for the Atlantic, Indian, and Pacific Ocean

basins (see insets).

TABLE 1. Collocated data counts—all-cloud, all-cirrus, and OTC contamination statistics—calculated from Aqua-MODIS/CALIOP

collocation globally and for theAtlantic, Indian, and PacificOcean basins. Quality control refers to theMODISQL5 0 andQL5 1 Level

2 datasets used for collocation with CALIOP.

Quality Global Atlantic Indian Pacific

QL 5 0 Data count 11 638 397 2 185 709 2 746 064 5 750 944

All-cloud contamination (%) 24.75 20.45 26.81 27.64

Cirrus contamination (%) 22.63 17.66 25.06 25.64

OTC fraction (%) 99.70 99.70 99.75 99.66

Mean OTC COD 0.034 0.033 0.034 0.034

QL 5 1 Data count 3 569 473 701 492 774 006 1 870 591

All-cloud contamination (%) 39.78 35.62 43.79 41.48

Cirrus contamination (%) 36.40 31.47 40.74 38.41

OTC fraction (%) 98.86 99.15 98.83 98.75

Mean OTC COD 0.054 0.047 0.056 0.055

TOTAL QC Data count 15 207 870 2 887 201 3 520 070 7 621 535

All cloud contamination (%) 28.28 24.14 30.54 31.04

Cirrus contamination (%) 25.86 21.01 28.50 28.77

OTC fraction (%) 99.42 99.50 99.46 99.37

Mean OTC COD 0.041 0.038 0.041 0.041
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MODIS represents the lowest bias followed by VIIRS

and AVHRR, the latter having approximately 65%

higher bias. Relative cold biases are higher, reflecting

the impact of a single event as opposed to one normal-

ized by its absolute occurrence rates.

Water vapor sensitivity is relatively stable across the

three sensors, with AVHRR exhibiting less variance

than MODIS or VIIRS. Interestingly, for the highest-

quality data (QL 5 0), the standard atmosphere repre-

sents lower bias forMODIS than that of either the dry or

saturated case. This may be the result of the coefficients

in the Pathfinder-style equation being tuned for more

realistic column water vapor values. Values derived for

the perturbed water vapor mixing ratio profiles relative

to the standard atmosphere encompass the two sets of

simulations as lower and higher bounds, respectively.

Figure 8 features MODIS-only cold bias composites

and relative OTC contamination rates for the Atlantic

Ocean (Fig. 8a), Indian Ocean (Fig. 8b), and Pacific

Ocean (Fig. 8c) basins (see Fig. 3). Again, the Indian and

Pacific Ocean basins exhibit relatively similar distribu-

tions, with the Atlantic Ocean profile being much more

broadly distributed in terms of relative percentage fre-

quency with height.

Absolute/relative cold bias estimates for the Indian

and Pacific Ocean basins, from Tables 2 and 3, are rel-

atively constant across the three sensors. The absolute

cold bias is lower, in contrast, over the Atlantic Ocean

due to lowerOTCoccurrence frequencies. Interestingly,

however, relative cold biases are higher in the Atlantic

basin. This is due to OTC generally occurring at lower

heights, which corresponds with lower cloud-top tem-

peratures and larger effective cloud radii. This result has

important ramifications, though. This implies that,

despite a lesser absolute occurrence rate anticipated

outside of the tropical latitudes, relative OTC SST

contamination will likely persist at significant cold bias

values outside of the tropics overall. It is plausible that

absolute bias could in fact be equal to or exceed that of

the tropics. Despite conceptualizing this OTC SST

contamination problem within a single zonal domain,

the effect likely persists globally in equal, if not greater,

significance.

Figure 9 depicts the ratio of the difference between

the retrieved clear-sky SST and the OTC-contaminated

brightness temperatures modeled for each sensor in

SBDART from the corresponding near-11- and near-

12-mm bands. As NLSST algorithms are based upon the

assumption that these differences are proportional and

constant for a given water vapor loading, the significant

variance depicted in each sensor illustrates how sus-

ceptible the retrievals are to the presence of OTC

overall [a similar response was illustrated by Merchant

et al. (1999) for stratospheric volcanic aerosols]. We

reiterate, for these simulations, that the profile water

vapor is proportionally decreased outside of the cloud,

FIG. 6. Histograms of residual optically thin cirrus (OTC) cloud optical depths (COD) for

Aqua-MODIS SST QL5 0 and QL5 1 (see insets) for (a) global, and (b) Atlantic, (c) Indian,

and (d) Pacific Ocean basins.
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such that total column water vapor is held constant

throughout all the simulations. All sensors exhibit vari-

ance, suggesting this NLSST developmental assumption

fails in the presence of OTC. MODIS and AVHRR

exhibit similar variance, ranging from approximately 0.7

to 0.9. VIIRS ranges from approximately 0.8 to 0.95. A

low difference between proportionality at high COD

when compared to low COD corresponds with lower

theoretical cloud bias. This is because the thicker clouds

are acting similar to thin clouds from an algorithm

standpoint. Interestingly, the proportionality in VIIRS

is of a different structure than MODIS or AVHRR

above 15 km. Furthermore, the VIIRS proportionality is

offset closer to 1 than the other sensors. This may be due

to differences in sensor design. For example, the VIIRS

12-mm band is shifted toward shorter wavelengths when

compared to AVHRR and MODIS.

c. Triple-window bias estimates

Triple-window OTC cold bias matrices and absolute

and relative bias estimates for AVHRR and VIIRS are

presented in Fig. 10 and Table 4, respectively. Again, to

our knowledge no MODIS triple-window product is

publicly available. The bias structure is similar to the

NLSST for both sensors, though the VIIRS simulations

now exhibit the secondary maximum in bias above

15km. The triple-window algorithms prove less sus-

ceptible to cirrus contamination than NLSST in terms of

bias magnitude, however. Global AVHRR absolute and

relative biases are estimated at 0.028 and 0.088C, re-
spectively, which unlike NLSST are lower than for

VIIRS (0.048 and 0.148C, respectively). Bias estimates

drop . 90% for VIIRS and AVHRR overall. Thus,

triple-window techniques exhibit much greater resil-

ience to OTC, in spite of their traditionally being limited

to nighttime use only. With relative bias ranging from

0.108 to 0.158C overall across all basins, the product is

significantly more stable for operational use than the

NLSST. Because of the relatively low bias estimates, a

water vapor sensitivity analysis is not performed here.

d. Verification

To gauge the representativeness of the SBDART-

modeled OTC cold bias estimates, a comparison with

available observations is performed. Figure 11 depicts a

scatterplot of OTC-contaminated SST versus COD over

the Southeast Asian Maritime Continent (758E, 158S
–1358E, 308N) for August–October 2012. The premise is

that the slope of a linear regression fit to these data

should approximately equal that relationship between

the cold bias and OTC COD estimated from Fig. 7. The

slope calculated from these data is 268C per COD or

FIG. 7. SBDART radiative transfer model simulations of potential SST retrieval cold bias

for an unscreened OTC as a function of cloud-top height and optical depth for (a) AVHRR,

(b) MODIS, and (c) VIIRS. Overlaid on each composite are relative Aqua-MODIS/CALIOP

collocated cirrus contamination occurrence frequencies (%).
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approximately 1.88C per 0.30 COD. Figure 7 depicts a

range of cold biases with height varying between 78 and
18C at 0.30 COD, with the latter corresponding to the

altitude where most OTC are present. Where occur-

rence frequency peaks, near 16.0 km, the simulations

suggest bias near 1.88C.
There is some uncertainty due to MODIS algorithm

quality control that may have removed the higher-biased

points. First, there is significant SST variance within the

sample, despite efforts to constrain it in time and space.

The primary mode of points is aggregated near 288C
approaching 0.00 COD, though values range between 248
and 318C overall. Further, the effects of MODISQL and

data rejection are present at the high COD end of the

sample. MODIS NLSST retrieval is partially based

on a background/a priori temperature, which is not only

often in error by some degree but operationally held

below 288C (Walton et al. 1998). This 288C background

threshold corresponds, interestingly, with the mean, near

0.00 COD, retrieved SST. Furthermore, if the actual and

background temperatures are warmer than 288C, then
the retrieved temperature would be nudged toward this

288C value. There is also the effect of data rejection due

to deviation from the background temperature. Because

the QL 5 1 cutoff nominally occurs at 238C, it is more

likely that climatologically warm pixels will pass quality

control when biased by OTC than climatological cool

pixels. Thus, the sample shows the effects where lower

temperature data points appear cut off at higher COD

and lower SST. This effect contributes to the regression

slope in opposing ways, where climatologically high SSTs

are biased cold due to the cool background when OTC is

not present, and climatologically low SSTs are removed

due to the deviation test (especially at higher CODs). At

any rate, that the effect is distinguishable in these data

alone is reasonable.

5. Conclusions

Unscreened cloud contamination within the Level 2

Aqua-ModerateResolution Imaging Spectroradiometer

(MODIS) infrared (IR) nonlinear sea surface tempera-

ture (NLSST) retrievals at instrument nadir in the tropics

(MOD28; 308S–308N) during 2012 is characterized

TABLE 3. As in Table 2, but for mean relative (per contaminated observation) cold biases.

Sensor QL Global Atlantic Indian Pacific

MODIS 0 0.278C (0.288–0.478C) 0.338C (0.338–0.528C) 0.268C (0.278–0.478C) 0.248C (0.268–0.458C)
1 0.468C (0.438–0.748C) 0.518C (0.488–0.768C) 0.468C (0.428–0.758C) 0.418C (0.398–0.708C)

QA 0.338C (0.338–0.568C) 0.408C (0.398–0.618C) 0.328C (0.328–0.568C) 0.308C (0.308–0.538C)

AVHRR 0 0.478C (0.438–0.588C) 0.518C (0.488–0.618C) 0.468C (0.438–0.588C) 0.458C (0.418–0.568C)
1 0.738C (0.688–0.878C) 0.748C (0.708–0.878C) 0.748C (0.698–0.908C) 0.698C (0.648–0.858C)

QA 0.558C (0.528–0.678C) 0.608C (0.568–0.708C) 0.558C (0.518–0.688C) 0.538C (0.498–0.658C)

VIIRS 0 0.408C (0.378–0.528C) 0.458C (0.428–0.568C) 0.398C (0.368–0.528C) 0.388C (0.348–0.508C)
1 0.638C (0.598–0.808C) 0.668C (0.628–0.818C) 0.648C (0.598–0.828C) 0.598C (0.558–0.778C)

QA 0.488C (0.448–0.628C) 0.538C (0.498–0.658C) 0.478C (0.438–0.628C) 0.458C (0.418–0.598C)

TABLE 2. Mean absolute (bulk mean) OTC cold biases in MODIS, AVHRR, and VIIRS NLSST retrievals from SBDART simu-

lations and assuming Aqua-MODIS/CALIOP collocated contamination frequencies, for OTC block cloud extinction and fallstreak

extinction coefficient gradients applied in the simulations (see text), segregated as a function of QL, global, and Atlantic, Indian, and

Pacific Ocean basins. Absolute OTC cold biases for the atmospheric profile with no water vapor and for the saturated column are given

in parentheses.

Sensor QL Global Atlantic Indian Pacific

MODIS 0 0.068C (0.068–0.118C) 0.068C (0.068–0.098C) 0.068C (0.078–0.128C) 0.068C (0.078–0.118C)
1 0.178C (0.168–0.278C) 0.168C (0.158–0.248C) 0.198C (0.178–0.318C) 0.168C (0.158–0.278C)

QA 0.098C (0.098–0.148C) 0.088C (0.088–0.138C) 0.098C (0.098–0.168C) 0.098C (0.098–0.158C)

AVHRR 0 0.108C (0.108–0.138C) 0.098C (0.088–0.118C) 0.128C (0.118–0.148C) 0.118C (0.118–0.148C)
1 0.278C (0.258–0.328C) 0.238C (0.228–0.278C) 0.308C (0.288–0.378C) 0.278C (0.258–0.338C)

QA 0.148C (0.138–0.178C) 0.138C (0.128–0.158C) 0.168C (0.158–0.198C) 0.158C (0.148–0.198C)

VIIRS 0 0.098C (0.088–0.128C) 0.088C (0.078–0.108C) 0.108C (0.098–0.138C) 0.108C (0.098–0.138C)
1 0.238C (0.21–0.298C) 0.218C (0.198–0.268C) 0.268C (0.248–0.348C) 0.238C (0.218–0.308C)

QA 0.128C (0.11–0.168C) 0.118C (0.108–0.148C) 0.138C (0.128–0.188C) 0.138C (0.128–0.178C)
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through collocation with Version 3 Level 2 5-km

cloud profiles from the Cloud Aerosol lidar with

Orthogonal Polarization (CALIOP) instrument. Spe-

cifically, optically thin cirrus (OTC; cloud optical

depths# 0.30; COD) cloud contamination is highlighted

for its predominant contribution to total cloud con-

tamination of IR radiometric retrievals (e.g., Ackerman

et al. 2008). Cloud is found present in;28% of all Level

2 Aqua-MODIS data characterized as quality level

(QL) 5 0 or QL 5 1 (denoted as QA), used for quality

control dataset characterization, though this may be low

given that the specific 5-km cloud product used from

CALIOP ignores cloud samples resolved at finer reso-

lutions. Of the contaminating cloud, greater than 90% is

cirrus (25.96%). Of this sample, 99.4% is OTC (25.7%

absolute), with the remaining clouds being mostly low

and warm near-surface liquid water clouds. Such a bi-

modal residual cirrus/low cloud distribution was also

found to contaminate the MODIS aerosol optical depth

product (Toth et al. 2013).

OTC contamination characteristics from collocated

Aqua-MODIS/CALIOP data pairs are used to estimate

corresponding IR NLSST retrieval cold biases for

MODIS, the Advanced Very High Resolution Radi-

ometer (AVHRR), and the Visible Infrared Imaging

Radiometer Suite (VIIRS), as well as triple-window

retrievals in AVHRR and VIIRS. Respective SST re-

trievals are modeled using the Santa Barbara DISORT

Atmospheric Radiative Transfer (SBDART) model,

equipped with an advanced ice crystal microphysi-

cal parameterization and optical scattering properties

(Yang et al. 2005; Heymsfield et al. 2014). Two-

dimensional OTC-contaminated SST retrieval cold

bias matrices are simulated for both the NLSST and

triple-window IR algorithms after simulating the re-

trievals using a tropical standard atmosphere and the

presence of a hypothetical OTC layer, 1.5 km thick,

between 10.0- and 18.0-km cloud-top height abovemean

sea level (in 0.25-km segments) and COD between 0.0

and 0.3 (in 0.01 segments from 0.01 to 0.06 and 0.02

segments above 0.06). Simulations are performed using

both a cloud structured with a constant optical extinc-

tion coefficient (‘‘block cloud’’) and one with a linearly

decreasing extinction coefficient value from cloud top to

cloud base of 5:1 (fallstreak). Having found very little

difference in the results, only fallstreak results are pre-

sented here. Relative and absolute OTC SST cold biases

are then estimated by multiplying the corresponding

instrument matrix by the corresponding frequency of

OTC occurrence as a function of height and COD esti-

mated from the Aqua-MODIS/CALIOP comparisons.

The mean absolute global NLSST OTC SST cold bias

estimated across the three platforms from these simu-

lations using a standard atmosphere profile is between

0.098 and 0.148C using QA Aqua-MODIS/CALIOP

contamination characteristics, with a corresponding

FIG. 8. As in Fig. 7, but for MODIS only over the (a) Atlantic, (b) Indian, and (c) Pacific

Ocean basins.
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global contamination occurrence rate near 25%. The

relative bias ranges from 0.338 to 0.558C. Relative cold

biases are higher, reflecting the impact of a single event

as opposed to one normalized by its absolute occurrence

rates. MODIS exhibits the lowest bias, suggesting in-

creased accuracy due to the more advanced Pathfinder-

style NLSST algorithm using different coefficients based

on column water vapor. VIIRS corresponds with higher

bias, followed closely by AVHRR. After varying the

water vapor mixing ratio profile from completely dry

(except within the modeled OTC cloud) to liquid water

and ice saturated to investigate its impact on the retrieval

results,MODIS, AVHRR, andVIIRS vary from 0.098 to
0.148C, 0.138 to 0.178C, and 0.118 to 0.168C absolute, and

0.338 to 0.568C, 0.528 to 0.678C, and 0.448 to 0.628C rela-

tive, respectively. In the highest-quality data in MODIS,

however, the dry result is higher than the unperturbed

result, which requires subsequent reconciliation.

Further examination suggests that the atmospheric

correction fails in the presence of cirrus. The NLSST

FIG. 10. SBDART radiative transfer model simulations of potential triple-window SST re-

trieval cold bias for an unscreened OTC as a function of cloud-top height and optical depth for

(a) AVHRR and (b) VIIRS. Overlaid on each composite are relativeAqua-MODIS/CALIOP

collocated cirrus contamination percentage occurrence frequencies (%).

FIG. 9. SBDART radiative transfer model simulations of the ratio of the difference between

the true SST and the OTC-contaminated 11- and 12-mm brightness temperatures as a function

of cloud-top height and optical depth for (a) AVHRR, (b) MODIS, and (c) VIIRS NLSST

algorithms.
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retrieval algorithms are based on the assumption that for

constant columnwater vapor, the difference between the

SST and the brightness temperatures from the 11- and

12-mm bands is proportional, such that the atmospheric

contribution to measured brightness temperatures can

be decoupled from the surface contribution and that an

SST retrieval can be performed. Despite the constant

column water vapor, the presence of cirrus breaks this

proportionality and atmospheric correction fails.

Triple-window simulations show an improved re-

sponse to OTC presence, though these retrievals are

traditionally performed only with reasonable expecta-

tion during night due to the high potential for solar

contamination of the shortwave IR band used. AVHRR

global QAOTC SST bias is estimated at 0.028C absolute

and 0.088C relative, while VIIRS exhibits slightly lower

performance at 0.048C absolute and 0.148C relative. The

triple-window algorithm is significantly more resilient to

OTC presence than NLSST, in spite of its traditionally

limited diurnal use.

Both the NLSST and triple-window results are rela-

tively constant across the Indian and Pacific Ocean

basins, owing to relatively common cirrus cloud

macrophysical properties. Absolute cold biases are

lowest over the Atlantic Ocean, corresponding with

lower overall cirrus frequency. However, relative cold

biases are actually higher in the Atlantic, owing to

lower-topped OTC regionally that corresponds with

larger cloud-top ice crystal effective radii that act less

like water vapor from a spectral standpoint compared

with smaller/colder/higher ones elsewhere. This result

leads us to conclude that the OTC SST bias is likely to

persist significantly while moving away from the tropics,

despite lower regional cirrus occurrence frequencies.

Consistency in the difference between the clear-sky

NLSST and OTC-contaminated brightness tempera-

tures from the near-11- and near-12-mm bands in

MODIS, AVHRR, and VIIRS is also presented, depict-

ing the variance in this relationship caused by cloud

presence that is symptomatic of the lesserNLSST fidelity.

FIG. 11. Scatterplot of CALIOP COD vs Aqua-MODIS SST from OTC-contaminated

retrievals for August–October 2012 over the Maritime Continent (1358W, 308N–758W, 158S).

TABLE 4. Mean absolute (relative) OTC cold biases in MODIS, AVHRR, and VIIRS SST triple-window retrievals from SBDART

simulations and assuming Aqua-MODIS/CALIOP collocated contamination frequencies, segregated as a function of QL, global, and

Atlantic, Indian and Pacific Ocean basins.

Sensor QL Global Atlantic Indian Pacific

AVHRR 0 0.018C (0.068C) 0.018C (0.088C) 0.018C (0.068C) 0.018C (0.068C)
1 0.048C (0.118C) 0.048C (0.138C) 0.048C (0.108C) 0.048C (0.108C)

QA 0.028C (0.088C) 0.028C (0.108C) 0.028C (0.078C) 0.028C (0.078C)

VIIRS 0 0.038C (0.138C) 0.028C (0.138C) 0.038C (0.128C) 0.038C (0.128C)
1 0.078C (0.198C) 0.068C (0.188C) 0.078C (0.188C) 0.078C (0.188C)

QA 0.048C (0.148C) 0.038C (0.158C) 0.048C (0.148C) 0.048C (0.148C)
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Sources of uncertainty relating to these OTC SST cold

bias modeling estimates are described. First, cloud con-

tamination characteristics are uniquely extrapolated from

Aqua-MODIS/CALIOP data pairs to AVHRR and

VIIRS. Cold bias estimates for these latter two sensors are

thus practical estimates based on this assumption of con-

tinuity in OTC contamination between the three IR ra-

diometric sensors. Second, the SBDART simulations are

conducted only between 10.0 and 18.0km. The former

coincides with the2378C level in the standard atmosphere

profile used by the model that helps discriminate between

cloud tops in the Aqua-MODIS/CALIOP collocated

dataset and cirrus cloud presence (Campbell et al. 2015).

The latter is 1.0km above the corresponding cold-point

tropopause in the standard atmosphere profile, extended

slightly to account for the tropical tropopause transition

layer (TTL) cirrus cloud presence. In reality, however,

OTC cloud-top heights found from the Aqua-MODIS/

CALIOP data pairs did not all fall within this range

(98.93%), meaning that the integrated absolute/relative

cold bias estimates are slightly low.

Further uncertainty arises from the use of a static trop-

ical standard atmosphere and static surface SST in deriving

the cold bias matrices using the radiative transfer model.

Importantly, the Aqua-MODIS/CALIOP-contaminated

observations are not normalized for height/temperature

to the standard atmosphere before integrating the abso-

lute/relative cold bias estimates. Furthermore, the ice

particle effective radius is tied to temperature. Sub-

sequent studies may be performed using observations of

effective radius from the CALIPSO imaging infrared

radiometer (IIR) product. The impact of uncertainties in

the base CALIOP Level 2 COD product are also de-

scribed, and the effect is believed negligible given that

the accuracy of these values is typically optimal within

optically thinner clouds.

Subsequent examination of the impact of using cloud-

contaminated data in matchup datasets for the re-

gression of retrieval coefficients is needed. The concern

is that roughly a quarter of all best-quality retrievals

are contaminated by cloud. When matching these

unrealized cloud-contaminated radiances to in situ ob-

servations for regression, the coefficients then in-

advertently correct for this cloud contamination. The

result could be warm-biased true clear-sky retrievals.

Furthermore, this study suggests the use of collocated

sensor radiances with actively sensed cloud and aerosol

profiles for in situ matchups. The use of such a dataset

could ensure that no cloud- or aerosol-contaminated

radiances are used for regression without correction and

thus no clear-sky warm bias.

The community faces a continuing issue with respect

to the use of passive remote sensors for operational

meteorological and oceanographic measurements: cir-

rus clouds are the most common cloud genus in the at-

mosphere, and cloud detection algorithms built off of

passive radiances struggle to find OTC that make up

roughly half of all of those clouds. With global occur-

rence rates of 40%–60% (Mace et al. 2009), cirrus—

particularly OTC clouds—represent a significant and

binding ‘‘noise’’ to passive retrievals that require careful

and considerate error characterization for a host of on-

going applications. This paper provides a reasonable and

novel set of guidelines for more accurately constraining

relative uncertainties in operational SST retrieval

products. In the bigger picture, however, as new mis-

sions are planned and gradually come online, it is be-

coming increasingly incumbent upon the scientific

community to find practical solutions for suppressing

OTC contamination of IR radiometric Level 2 datasets.

Whether that means pairing passive satellite sensors

with simple/inexpensive lidar profilers, adding of addi-

tional infrared bands, or finding advanced spectral

analysis methods (e.g., Gao et al. 1998) for improved

OTC discrimination, unless the community is willing to

deal with an uncertainty that cannot be effectively seen

passively from space, this problem will continue to

persist (e.g., Huang et al. 2016).
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