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Abstract

Natural products that inhibit the proteasome have been fruitful starting points for the development 

of drug candidates. Those of the syringolin family have been under exploited in this context. 

Using the published model for substrate mimicry by the syringolins and knowledge about the 

substrate preferences of the proteolytic subunits of the human proteasome, we have designed, 

synthesized, and evaluated syringolin analogs. As some of our analogs inhibit the activity of the 

proteasome with second-order rate constants 5-fold greater than the methyl ester of syringolin B, 

we conclude that the substrate mimicry model for the syringolins is valid. The improvements in in 

vitro potency and the activities of particular analogs against leukemia cell lines are strong bases 

for further development of the syringolins as anticancer drugs.
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1. Introduction

The 26S proteasome is a multi-subunit complex that effects targeted protein degradation in 

eukaryotic organisms. It has emerged as one of the highest value targets in drug discovery 

and development programs focused on cancer treatments.1 Efforts to develop anti-cancer 

drugs that target the proteasome are motivated by the success of Bortezomib (Velcade), a 

frontline drug for the treatment of multiple myeloma and mantle cell lymphoma.2,3 This 

drug is a peptide boronate that reversibly inhibits the proteasome via substrate imitation and 

labile bonding between its boronic acid moiety and active site threonine residues of the 

proteasome's proteolytic β subunits. Interestingly, Bortezomib's substrate mimicry and its 

active site reactive warhead are features that it shares with virtually all naturally occurring 

and designed inhibitors of the proteasome that have been reported to date. Among these 

molecules are peptidyl aldehydes, peptidyl epoxyketones, and β–lactones.4,5 It is remarkable 

that, with the exception of the peptidyl aldehydes, molecules from each of these structural 

classes are currently in or have completed clinical trials. Notably, an analog of a peptidyl 

epoxyketone natural product, Carfilzomib (Kyprolis), has recently been approved for the 

treatment of multiple myeloma. Clearly, optimization of the reactive substrate mimics is a 

viable strategy for the development of proteasome inhibitors with potential in medicine.4–12

Although natural products in the β-lactone and peptidyl epoxyketone classes of proteasome 

inhibitors have been thoroughly optimized in medicinal chemistry programs, those in the 

syringolin family have received much less attention. Syringolins were first isolated in 1998 

from Pseudomonas syringae pv. syringae (Figure 1)13 and are characterized by a 12-

membered macrocyclic lactam and an exocyclic dipeptide urea.14 Irreversible proteasome 

inhibition by these molecules is a consequence of reaction of the α,β-unsaturated carbonyl 

moiety (i.e., the vinylogous amino acid) in their macrolactams with the catalytic threonine 

residues of the proteolytic subunits.13,15 Syringolin congeners mostly differ with respect to 

the dipeptide peptide urea moiety, but syringolins B and E are distinguished from the others 

by the absence of a unit of unsaturation in the macrolactam. The presence of the alkene 

likely strains the macrolactam such that it is more prone to form the inhibitory conjugate, as 

evidenced by the fact that syringolin A is the most potent congener. In the context of 

anticancer drug development, only a few syringolin analogs have been studied.14,16–19 For 

instance, analogs with esters rather than carboxylic acids in the dipeptide urea moiety are 

reportedly more active.16 The compounds with the most potent anti-cancer activities are the 

lipophilic variants of syringolin A (SylA-LIP)16 and a syringolin B (TIR-203)19 (Figure 1).

Curiously, the medicinal chemistry efforts on the syringolins described in the literature were 

not fully driven by considerations of the means by which the molecules bind to the 

proteasome. From the published crystal structure of syringolin A bound to the yeast 

proteasome,15 it is evident that the side chains of the macrolactam's vinylogous amino acid 

and the amino acid residue appended to the macrocycle mimic those of amino acids at the 

P1 and P3 positions of a proteasome substrate, respectively (Figure 2).14 (A substrate's 
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residue at the P1 position has the scissile bond and is separated from the one at the upstream 

P3 position by a single residue.) This model for substrate mimicry by the syringolins is 

consistent with their preferential (but not exclusive) reactivity with the β5 subunit of 

eukaryotic proteasomes.16 This subunit has a substrate specificity reminiscent of 

chymotrypsin, a protease that prefers substrates with aromatic amino acid residues (e.g., 

phenylalanine, tyrosine, and tryptophan) at the P1 position. In contrast, the β1 and β2 

subunits have substrate preferences similar to caspase and trypsin, respectively. The former 

protease prefers acidic residues at the scissile bond, while the latter prefers those that are 

basic. Accordingly, the biased reactivity of the syringolins towards the β5 subunit is likely a 

consequence of their macrolactams having a hydrophobic, vinylogous amino acid (derived 

from valine) rather than one that is polar. In principle, the potency and selectivity of β5 

subunit inhibition by the syringolins could be enhanced by replacing this mimic of valine 

with aromatic moieties, like those preferred at the P1 position of chymotrypsin substrates. 

Such design considerations could be coupled with recently reported findings of Chiba and 

co-workers that a syringolin A analog with a phenylalanine in the dipeptide urea (mimicking 

a substrate's P3 residue) was much more potent than the parent compound.20 Herein, we 

report the synthesis and evaluation of syringolin analogs designed to closely mimic the 

preferred substrates of the proteasome subunit having specificity like chymotrypsin.

2. Results and Discussion

We sought to test the prediction that the capacity of the syringolins to inhibit the proteasome 

could be improved by rendering their structures more like those of the preferred substrates 

of the β and β5 subunits of the proteasome. Our attention was focused on the vinylogous 

amino acid of the macrolactam (mimic of P1 residue) and the amino acid appended to the 

macrocycle (mimic of P3 residue). Although several syntheses have been presented in the 

literature,16,20–24, we used a convergent synthetic approach developed by Pirrung and 

coworkers for the syntheses of syringolin B and analogs thereof (Schemes 1 and 2).24 It is 

modular and thus amenable to diversity-oriented synthesis. For example, the linear precursor 

of the macrolactam is prepared from a Cbz-protected lysine residue having an acetyl 

phosphonate moiety on the ε-amino group and commercially available or easily synthesized 

1,2-amino alcohols (Scheme 1).25 Our design strategy dictated the selection of 

phenylalaninol, tryptophanol, or close analogs of these 1,2-amino alcohols as building 

blocks because their substituents mimic the aromatic side chains of the P1 residues of the 

preferred substrates of chymotrypsin substrates (see R groups in Scheme 1, Table 1). For the 

purposes of comparing analogs with aromatic substituents to those having aliphatic 

substituents at R, we used valinol and leucinol to prepare linear precursors of syringolin B 

macrolactam and the closely related compound having an isobutyl group at R, respectively 

(Table 1, entries 1 and 2). After coupling of the amino alcohols to the protected lysine and 

oxidation of products' primary alcohols, the reactive functionality mimicking the P1 residue 

of proteasome substrates was formed via an intramolecular Horner-Wadsworth-Emmons 

reaction. A modular route was also used for syntheses of the dipeptide urea side chain 

fragments whose constituents mimic the P3 residue of a proteasome substrate. Indeed, the 

selection of phenylalanine was informed by the report that a syringolin B analog with this 

amino acid at the same position was much more potent than those with glycine, alanine, 
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leucine, or isoleucine.20 In total, we synthesized 16 syringolin analogs having esterified side 

chains and varying degrees of similarity to the substrates preferred by the β5-subunit of the 

human proteasome (Table 1).

Using purified human 20S proteasome (hs20S) and a fluorogenic substrate (Suc-LLVY-

AMC), we performed in vitro assays to systematically assess proteasome inhibition by the 

syringolin analogs. Our choice of substrate was based on the fact that it is preferentially 

acted upon by the chymotrypsin-like β5-subunits of the proteasome due to the aromatic 

tyrosine residue at the scissile bond (i.e., P1 position).26 From measurements of the rates of 

hydrolysis of the fluorogenic substrate by the proteasome in the presence of increasing 

concentrations of each inhibitor, we determined second-order rate constants, kin/Ki (M-1 s-1) 

(Table 1), which reflect both the affinity of the non-covalent binding (Ki) and the rate of the 

chemical reaction with the enzyme (kin).27 All of the syringolin analogs were capable of 

inhibiting the chymotrypsin-like activity of hs20S. As is consistent with our design 

predictions, the most significant contributor to the apparent second-order rate constants of 

the compounds was their binding affinity (Ki) rather than the rates of inhibition (see 

supporting information). Accordingly, we found that an analog of syringolin B with an 

isobutyl substituent at R rather than the isopropyl substituent of the parent exhibited a 

diminished capacity to inhibit the proteasome. In contrast, compounds with aromatic 

substituents (Table 1, entries 3-13) at the same position were markedly more potent. Of 

these macrocyclic analogs, compounds 5 and 6, both containing fluorine-substituted benzyl 

groups, were the most effective in inhibiting the hs20S proteasome. We were surprised that 

a syringolin analog with a methylindole substituent was only slightly more active than 

syringolin B (Table 1, entries 1 and 13). Importantly, the enhanced inhibitory activities of 

syringolin B analogs having aromatic substituents at the R position on the macrolactam are 

consistent with the substrate preference of the β5 subunits of the proteasome and with the 

model for substrate mimicry.

In a separate part of our structure-activity relationship study, we examined the moiety of the 

syringolins thought to imitate the P3 residue of proteasome substrates. Consistent with a 

recent report about the preferred amino acid at this position,20 we found that a molecule with 

the syringolin B macrolactam and a phenylalanine in the dipeptide urea had a second order 

rate constant for inhibition 2.4-fold greater than the methyl ester of syringolin B (Table 1, 

entries 1 and 14). Strikingly, the same compound reacts with hs20S at only 45% the rate of a 

molecule with syringolin analog with a benzyl group at the R position on the macrolactam 

and a phenylalanine in the dipeptide urea (Table 1, entries 14 and 15). We were particularly 

surprised to find that our most potent inhibitor had a methylindole substituent on the 

macrolactam and a phenylalanine residue in the dipeptide urea side chain (Table 1, entry 16) 

because syringolins whose macrolactam substituents were reminiscent of phenylalanine side 

chain were more potent (Table 1, entries 3-12) than one with having the tryptophan side 

chain (13).

The data in Table 1 reflect inhibition of the β5-subunits of the proteasome, which have 

substrate specificities like chymotrypsin. We performed experiments to assess whether the 

improvements in potency also translated to greater selectivity. Specifically, we carried out 

experiments to assess the capacities of syringolin B methyl ester (1) and the most potent 
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inhibitor of the chymotrypsin-like activity (16) to inhibit the trypsin-like activity of the 

hs20S that is mediated by the β2 subunit. Using a fluorogenic peptide substrate (Boc-LRR-

AMC), we measured the second-order rate constants of proteasome inhibition by both 

compounds (see supplementary material). As expected,12 compound 1 preferentially 

inhibited the chymotrypsin-like activity of the proteasome by 2.4-fold (Table 2).12 

Disappointingly, the degree of selectivity of compound 16 (2.5-fold greater in favor of the 

chymotrypsin-like activity) was similar to that of compound 1; despite the fact that the 

former is a 5.5-fold greater inhibitor than the latter in assays of chymotrypsin-like activity 

(Table 1).

To assess their growth inhibitory activities against cancer cells, we submitted syringolin B 

methyl ester (1) and analogs 13, 14, 15, and 16 to the National Cancer Institute (NCI) where 

they were initially evaluated in single-dose assays at a 10 micromolar concentration with 60 

different cancer cell lines (see supporting information). Though it was not the most potent 

inhibitor of the human proteasome (Table 1), analog 15 exhibited the broadest spectrum of 

growth inhibitory activity against the panel of cell lines. Specifically, cell lines incubated in 

media with 10 micromolar of compound 15 grew at an average of 30% of those incubated in 

media without compound (see supporting information). In contrast, the mean growth of the 

cell lines in media with the same concentration of compound 16 was approximately 71% of 

those in negative control experiments. As a follow up to the single-dose experiments, the 

dose-dependent growth inhibition by syringolin B methyl ester (1) and the most potent 

inhibitors (15 and 16) was assessed at the NCI (see supporting information). We found that 

the three compounds were particularly active against leukemia cell lines. Though compound 

16 is slightly more potent than compound 15 as a proteasome inhibitor (Table 3), it is 

markedly more potent in cell culture, which could reflect differences in the cell 

permeabilities or stabilities of the two compounds. Notably, compound 16 is as much as 

11.5-fold more potent than syringolin B methyl ester (1) against the leukemia cell lines.

3. Conclusions

At present, the syringolins and analogs thereof are poorly represented in cancer drug 

development pipelines. The experiments reported herein were motivated by an effort to fill 

in some gaps on the structure-activity relationships of the syringolins and to test the idea that 

proteasome inhibitors can be rationally optimized based on knowledge of the substrate 

preferences of the proteolytic subunits of the proteasome. We found that syringolin analogs 

that are reminiscent of chymotrypsin substrates are more potent inhibitors of the β5-subunits 

of the proteasome than the parent compound, yet their subunit-selectivities for inhibition are 

comparable. The fact that potency, and not selectivity, has been improved could be an asset 

in that inhibition of multiple proteolytic subunits by a compound is highly correlated with 

significant suppression of protein degradation.28,29 Indeed, we found that the syringolin 

analogs are potent suppressors of the growth of cancer lines in vitro, especially those derived 

from leukemias. These observations provide a foundation for further rational optimization of 

the syringolins as lead compounds for anti-leukemic drugs.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Syringolin natural products (syringolins A-F) and synthetic analogs thereof (SylA-Lip and 

TIR-203).
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Figure 2. 
Model for Substrate Mimicry by the Syringolins. R and R′ mimic the side chains of P1 and 

P3 residues of the proteasome substrate, respectively.
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Scheme 1. 
Synthetic Route for Analogs of the Syringolin Macrolactam.24
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Scheme 2. 
Synthetic Route for Analogs of the Syringolin Dipeptide Urea and Their Coupling to 

Macrolactams.24
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Table 1
In Vitro Evaluation of Human Proteasome Inhibition by Syringolin Analogs

Compound R R′ hs20S kin/Ki (M-1 s-1)

1 781

2 571

3 1912

4 187

5 1591
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Compound R R′ hs20S kin/Ki (M-1 s-1)

6 2471

7 1579

8 735

9 1527

10 1214
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Compound R R′ hs20S kin/Ki (M-1 s-1)

11 635

12 1321

13 904

14 1897

15 4199

Bioorg Med Chem. Author manuscript; available in PMC 2016 September 15.
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Compound R R′ hs20S kin/Ki (M-1 s-1)

16 4305
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Table 2
Evaluation of Subunit-Specific Inhibition of Syringolin B Methyl Ester and Analogs 
Thereof

Compound Chymotrypsin-Like Activity kin/Ki (M-1 s-1) Trypsin-Like Activity kin/Ki (M-1 s-1)

1 781 326

16 4305 1701
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Table 3
Growth Inhibitory Activities of Syringolin B Methyl Ester and Analogs Thereof Against 
Various Leukemia Cell Lines

GI50 (μM)

Cell Line Compound 1 Compound 15 Compound 16

HL-60 5.41 4.34 1.29

K-562 6.12 14.6 2.94

MOLT-4 4.73 3.32 0.599

RPMI-8226 3.97 2.72 0.343

SR 5.13 2.78 0.453

Data provided by the National Cancer Institute (NCI): “GI50 is the concentration of test drug where 100 × (T - T0)/(C - T0) = 50. The optical 
density of the test well after a 48-h period of exposure to test drug is T, the optical density at time zero is T0, and the control optical density is C. 
The “50” is called the GI50PRCNT, a T/C-like parameter that can have values from +100 to -100.”
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