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Abstract

Robot Hand/Eye Coordination and Active Vision are both fields which have enjoyed much
attention. A variety of research has been completed which examines the use of vision to
direct robot manipulation. Specifically, previous research at MIT has examined the task of
combining vision and manipulation applied to the task of tracking and catching tossed balls
in controlled environments. Building upon the foundations of this past research, this thesis
presents work which incorporates a new active vision system which requires a minimally
controlled environment and implements new methods for object tracking, robot/camera
calibration, and new catching algorithms.

The system which is used here is composed of a seven degree of freedom cable driven
arm and a ceiling mounted active vision system. The active vision system is composed
of two color CCD cameras each mounted on two degree of freedom actuators. The vision
processing is done using simple blob detection to locate color-keyed objects.

The goal of this research is to develop the control methods and additional algorithms
required to complete successful catching of lightly tossed objects. The required elements
to achieve successful catching are: (1) a vision system capable of locating objects, (2)
controllers and robust tracking methods for the active vision system to stably track fast
moving objects, (3) cross calibration between the vision system and manipulator, (4) path
prediction for the tossed object, and (5) path generation for the manipulator to intercept
the object.

This thesis addresses each of the required elements. Techniques for locating and ro-
bustly tracking objects using visual information are presented. Methods of cross calibration
between the vision system and the manipulator are discussed. A recursive least squares
algorithm for model-based path prediction of the tossed object is presented. And finally,
methods for determination of safe catch points and new polynomial path generation tech-
niques for the robot manipulator are discussed.

Experimental results for the application of the above algorithms to the task of catching
free-flying spherical balls are presented. The system was tested on under-hand tosses from
random locations approximately 1.5-2.5 meters distant from the arm. The average time
of travel from leaving the hand of the tosser to successful catching is approximately 0.5
seconds. The best performance results were found to be 70-80% success for similar tosses.

Thesis Supervisor: Jean-Jacques E. Slotine
Title: Associate Professor of Mechanical Engineering and Information Sciences
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Chapter 1

Introduction

This chapter provides an introduction to the contents of this thesis. The motivation and
project goals for this research are presented first. Then, prior work on robotic catching
with this system and similar projects at other sites are discussed. This chapter ends with

a description of the organization of this thesis.

1.1 Motivation

There exist robots which are stronger, faster, more repeatable, etc. than humans. But with
all these benefits, there are still dynamic tasks at which humans perform much better. One
such task is catching. Human vision has a complexity which is not yet understood and the
coordination and learning capabilities of humans are much greater than artificial methods
which have been developed.

The purpose of this research is to conduct an experimental investigation of the coor-
dination of vision and manipulation for static and dynamic tasks. Specifically, this thesis
discusses the control and use of a new active vision system and the coordination of this
system with a seven degree of freedom manipulator arm. The combined system is applied
to the static and dynamic tasks of grasping stationary objects and catching of free-flying
objects.

The hopes are that this system will provide a foundation for future study on hand/eye

coordination and robot learning.
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16 CHAPTER 1. INTRODUCTION

1.1.1 Project Goals

The primary goals for this research are classified into two categories: (1) the incorporation
of the new active vision system, the Fast Eye Gimbals (FEGs), and (2) the coordination
of the vision and manipulation to achieve successful catching of free-flying balls in 3D in a

minimally controlled environment.

Incorporation of Active Vision

Since the previous work on this system, one of the major changes has been in the vision
system. The incorporation of the new active vision system involves design and implementa-
tion of controllers for the Gimbals and the design of algorithms to utilize the stereo vision
information. This research applies traditional PD and PID controllers and an Adaptive
controller to the Gimbals and studies the relative performance of these controllers for tra-
Jectory tracking. This research also develops methods for using visual information to locate
and focus attention on objects of interest. These methods are then extended to the task of
tracking fast moving objects. This introduces additional challenges. Accurate compensa-
tion for time delays in the system and object state estimation are required. This research
presents an object tracking algorithm which attempts to satisfy these requirements and

perform robust object tracking.

Hand/Eye Coordination for Dynamic Tasks

In order to coordinate the vision system and the manipulator, a cross calibration is required
and interface routines are needed. This research presents a simplified approach to cross
calibration. Using this calibration, simple static tasks such as grasping stationary ob jects
can be completed. For dynamic tasks, additional techniques are required. The path of
the tossed object needs to be predicted for the full duration of the toss. Then, algorithms
for using the object path p1  tion to select satisfactory catch points are required. And
finally, a path generation scheiwie must be designed to direct the manipulator to intercept
the object. These algorithms are presented here and applied to the ultimate project goal

for this research, successful catching free-flying tossed balls.
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1.1.2 Applications of Research

The initial development of the active vision/manipulator system was towards successful
hand/eye coordination in order to be able to locate and grasp static objects. The goal
being the use of the system for autonomous planetary rovers which would be capable of
collecting geological samples.

The catching task was considered to gain a better understanding of the numerous in-
dividual components required for successful catching. The resulting methods from this
research could expanded upon to be used in many different areas. Methods for simple
cross calibration, object tracking, recursive least squares fitting, and path planning are all
presented here. A possible relevant task is intercepting and catching free flying objects in
space using a manipulator arm.

The primary application for this research, which is directly realized, is the establishment
of a platform for further study. This research has developed a system which can and will be

used for further research into active vision, vision guided manipulation, and robot learning.

1.2 History

1.2.1 Past Research With This System

The Whole Arm Manipulator (WAM) has been previously used for robotic catching research
[Hove, Slotine 91, Kimura et al 92]. Using the WAM, combined with two stationary black
and white cameras, successful catching results were presented [Hove, Slotine 91). Windowed
least squares methods were used to fit ball data to a parabolic path with assumed grav-
itational acceleration in the z direction. Path generation for the arm was accomplished
through use cf a time-varying second order filter.

Using the same system configuration as above, adaptive visual tracking algorithms were
added [Kimura et al 92] which provided better vision information which improved catching
reliability. These new algorithms used a vision window to track objects using adaptive and
nonlinear control and identification techniques. In addition, a recursive least squares fit
approach was implemented to fit ball data to a second-order polynomial in z, y, and z with

no assumptions on acceleration.
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The WAM is again used here in conjunction with a new active vision system. The new
system is comprised of two high resolution color CCD cameras, each mounted on two degree
of freedom gimbals. A new vision processing system is also added which is faster and much
less sensitive to background. A new end-effector for the WAM is also used. Both the vision

system and the end-effector are described in more detail in Chapter 2.

1.2.2 Research at Other Sites

There is not much current research on robotic catching specifically, but there is a wealth of
research in the same general area of applying manipulators and vision systems for dynamic
tasks.

As a result of the European ROBAT championship of robot ping pong [Billingsley 83],
there exist many robots capable of playing ping pong [Andersson 87, Hashimoto et al 87,
Fissler et al 90]. The ping pong system at the Swiss Federal Institute of Technology (ETH)
[Fssler et al 90] is a good example of the capabilities of the robot ping pong players. Their
stationary two vision camera system boasts an average position determination error of
approximately 0.5 mm and is used to track balls moving up to 7 m/s. They use thresholded
vision processing which outputs information at 50 Hz. to detect a white ball upon a black
background. Their vision system is combined with a seven degree of freedom manipulator
which is capable of moving over distances of 0.3 m in 0.1 s. The ping pong system benefits
from a controlled environment and a stationary vision system requiring extensive calibration
which allows it to have extraordinary accuracy. In contrast, our system is used in a much
less controlled environment and a simpler visual calibration method is implemented. But
with an associated cost of a less accurate vision system.

Another robot system which combines vision and manipulation, and also incorporates
learning, is the robot at Osaka University which is capable of playing Japanese badminton
[Watanabe et al 95]. This system consists of a stationary two camera vision system and a
five degree of freedom manipulator which uses a simple learning algorithm to increase the
performance of the system. Our system does not currently use learning, but there are plans
to incorporate learning in a number of areas. The future research on the current system

will use learning to move away from model-based path prediction of the tossed ob ject and
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to modify catching algorithms so that more items may be learned rather than programmed.

There are additional works which are similar to sub-elements of our system, such as
active vision systems and robust object tracking methods. Some examples of other active
vision systems are TRICLOPs at the National Institute of Standards (NIST) [Fiala et al 94]
and Prism-3 at Teleos Research [Nishihara, Thomas 94]. Some examples of object tracking
research are [Woodfill et al 94, Wavering, Lumia 93, Kalata 84]. In contrast to our system,
these other active vision systems often have short baseline distances and often have tilt,
vergence, and “neck” degrees of freedom. That arrangement has the benefit that more
accurate mounting may be achieved, the system is more portable, and feature correlation
is easier since the cameras have similar perspectives. In contrast, our system has less
accurate mounting, but benefits from its large baseline. In addition, our system provides
greater flexibility because each camera is independent. They may be individually moved or
additional cameras may be added.

Research is also being done on the use of visual feedback to directly guide manipulation
and on uncertainty tolerant precise positioning systems. Research at University of Illinois
at Urbana-Champaign [Castafio, Hutchinson 94] uses visual feedback to position the end
of a manipulator along a visual constraint surface defined by a projection ray to achieve
visual compliant motion. Other research at Yale University [Hager et al 95] also uses visual
feedback for uncertainty tolerant precise positioning of a manipulator. The visual servoing
methods they have developed can still accurately position the manipulator in the presence
of large deviations in camera positioning. Currently, our system uses visual information,
but we do not directly close a control loop by using visual feedback. In the future, we may

explore the use of visual feedback for more precise positioning tasks.

1.3 Summary

This thesis is organized into three primary sections. The first section provides an introduc-
tion, the second section is the main body of the thesis, and the third section presents the
results and conclusions.

The first section is comprised of this chapter and Chapter 2. This chapter has presented
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the motivation, history, and goals for this research. Chapter 2 provides descriptions of the
mechanical and computational hardware which comprise our system.

The second section is comprised of Chapters 3 and 4. Chapter 3 deals with the new
component of our system, the Fast Eye Gimbals (FEGs). The dynamics, control, and use
of the FEGs are presented. In addition, the coordination between the vision system and
the WAM is also discussed. The algorithms presented in Chapter 3 are used subsequently
in Chapter 4. Chapter 4 discusses the use of the FEGs and the WAM for the purpose
of catching tossed objects. Path prediction methods and path generation methods are
presented.

The third section is comprised of Chapters 5 and 6. Chapter 5 present our experimental
catching results. And finally, Chapter 6 closes out the thesis, containing recommendations

for improvement of the system and directions for future research.



Chapter 2

System Description

This chapter provides a brief introduction to each of the components which comprise our
system. Mechanical hardware is discussed first, followed by computational hardware and
software, and vision processing hardware. Figure 2-1 shows the system configuration which

is used for grasping and catching tasks.

2.1 The Arm, Eyes, and Hand

2.1.1 The Whole Arm Manipulator (WAM)

The Whole Arm Manipulator (WAM) is a four degree of freedom cable driven manipulator
arm designed by Bill Townsend, Brian Eberman, and Dr. Kenneth Salisbury of the MIT
Artificial Intelligence Lab [Salisbury 87, Salisbury et al 88, Townsend 88]. At full extension,
the WAM is approximately 1.1 meters in lengih, depending upon the length of the end
effector. Each of the four motors can output a maximum of 1.5 Nm and position signals
are provided through 12 bit resolvers. The cable drive transmissions for each of the joints
are two stage and provide velocity reductions between 1:20 and 1:30. The WAM is cable
driven, therefore there is no backlash, and as a result, the whole arm may be used for force
feedback. The WAM is controlled using an Adaptive Controller implemented by Giinter
Niemeyer [Niemeyer, Slotine 88, Niemeyer 90] which achieves a tracking performance of less
than half a degree within 0.5 - 1.0 seconds of adaptation. Some additional items of note are

the use of a differential in the second joint axis and the exceptional dynamic performance

21
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Fast Eye Gimbals

Whole Arm Manipulator

Figure 2-1: The system configuration used for catching has the FEGs mounted to ceiling
rafters approximately seven feet from the floor and three feet behind the WAM.

which has allowed the end point of the WAM to achieve accelerations up to 25 times the

acceleration of gravity (with no mass at the endpoint).

2.1.2 The Fast Eye Gimbals (FEGs)
Active Vision versus Static Vision

The previous vision system used two stationary cameras with large fields of view. The
current system uses two cameras mounted on actuated gimbals. The choice to use an active
vision system over a stationary system has associated advantages and disadvantages.

The advantages to the use of an active vision system primarily relate to focus of at-
tention. The active vision system allows for the use of larger focal length lenses which

provide much more detail. The pixel resolution for the same size object is much greater
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due to the smaller field of view. In addition, by having a smaller field of view, attention
may be more focused to a smaller region, neglecting a majority of background noise. With
actuated cameras, the object of interest may be centered in the image, reducing the effects
of lens distortion. Also, with actuated cameras, depending upon the range of motion of the
actuator, in practice, a wider overall range of view is obtained.

The disadvantages to the use of an active vision system primarily relate to accuracy
and increased difficulty. There is increased complexity when using an active vision system,
such as gear ratios and misalignments and mounting errors, which result in more sources of
error. Accurate calibration of an active vision system is therefore more difficult. As a result,
often the accuracy is less than a stationary vision system. Finally, there is the difficulty of
having to tracking moving objects to maintain them in the field of view and re-acquiring or
locating new objects requires a searching routine.

Overall, the advantages of the active vision system out weigh the disadvantages. With

better algorithms, the disadvantages of the active vision system can be minimized.

The Fast Eye Gimbals (FEGs)

The Fast Eye Gimbal (FEG) was designed by Nitish Swarup and Akhil Madhani as
a two degree of freedom cable driven gimbal for active vision applications [Swarup 93].
The FEG has a range of + 90 degrees on the first axis and + 45 degrees on the second
axis. The mass of the lens limits the maximum velocity and acceleration of the FEG. The
current camera and lens weigh approximately 1 pound, with which the FEG has exceeded
accelerations of 200 rad/s2. The cameras are high resolution 768x493 color CCD cameras
which output interlaced NTSC signals at 60 Hz. The cameras have an adjustable shutter
speed, white balance, auto gain control, and can synchronize with an external trigger.
The lens is currently a 50 mm focal length lens allowing for approximately a + 5 degree
field of view. The small field of view allows for better accuracy in position determination,
but introduces difficulties in high performance tracking and searching. The cameras are
mounted to the FEGs such that the focal point of the camera closely coincides with the

center of rotation!. A stationary third camera with a fish-eye lens may be added in the

'Inaccuracies in mounting can be approximately compensated for if mounting offset distances are known.
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Figure 2-2: A photograph of the FEGs mounted to a ceiling rafter.

future as well as possibly down-sizing the focal length of the lenses.

2.1.3 The Talon

The Talon is a wrist/hand designed by Akhil Madhani as an end effector for the WAM
for touch sensing and grasping tasks. The Talon is a cable driven three degree of freedom
system. The Talon has a supination/pronation (forearm) joint and two finger joints which
each move independently. The degrees of freedom can be thought of as a forearm joint, a
“wrist” joint where both fingers move in the same direction, and a “grasping” joint where
the fingers move in opposite directions. The forearm joint has a range of + 90 degrees and
can move 180 degrees in less than 0.3 seconds. From the closed position, the fingers can

each open approximately 70 degrees, but they each have a full range of approximately 180

(see Appendix A.4).
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Figure 2-3: A photograph of the Talon mounted to the end of the WAM.

degrees® The Talon requires approximately 0.33 seconds to travel the 70 degrees from the
fully open position to the fully closed position. Various fingers have been designed for the
Talon, including simple aluminum fingers, spring loaded fingers with hall effect sensors to
detect deflection, and highly sensitive fingers which each have four PVDF contact sensors
along the outer surfaces and a single strain gauge sensor at the base for measuring net
torque. In our catching experiments conducted here, we do not utilize touch sensing or any
additional sensors, aside from motor encoders, to detect finger deflection. Instead, we only
require durable fingers, so sturdy light aluminum fingers with serrated edges are used for

better grasping.

*The full 180 degree range of each finger is used to act as a “wrist”. With both fingers touching one
another, they may both travel 180 degrees, but with a decrease/increase in the amount which they can
“open”.
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Whole Arm

Resolver Signals
Control Signal
4 DOF

Panallel O ())

Encoder Lincs

VMEbus Control Signa}
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Figure 2-4: Overall system and connections to the VMEbus.

2.2 VMEbus Hardware and Software

The WAM, FEGs, and Talon are controlled by a multiprocessor VMEbus system connected
to a host Sun Sparc 5 workstation. The host workstation is used for compiling, downloading,
monitoring, and command input. Our VMEbus contains five 68040 processors and a dual
DSP board from Ariel and additional 1/O boards. The software for this system is written
primarily in C. The operating system which is used, called Hummingbird, was developed
in-house by Giinter Niemeyer specifically for our needs. It is a real-time operating system
based on the Condor system developed by Sundar Narasimhan.

The computation and I/O for our system is distributed among the processors in the
following manner. The WAM is currently controlled by two 68040 boards, one executing
1/0 routines at 4000 Hz, and the other executing trajectory planning, adaptation, controller

calculations, and kinematics at 200 Hz. For more information about the control of the WAM,
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see [Niemeyer, Slotine 88]. The FEGs and Talon are similarly controlled by two 68040s, one
executing low level PD control at 2000 Hz, and another executing the FEG adaptive control,
trajectory planning for the FEGs and Talon, and any other additional calculations at 400
Hz. The last 68040 is used as an intelligent I/O board, currently handling the serial line

transfers from the vision boards.

2.3 Vision Processing Hardware

Previous System versus Current System

A major change in the current system compared to the previous system is the replacement
of the stationary vision system with the active vision system and the associated replacement
of the previous frame grabber/vision processing hardware with the new blob detector vision
boards.

The previous vision system was composed of two black and white cameras which pro-
vided information at 20 Hz. The vision processing hardware required a heavily controlled
environment. The object of interest was required to be white and the entire background
black, which required the surroundings and the arm itself to be covered. The latency in
the system from image acquisition until the time when all the vital information is extracted
and output was significantly larger than our new system. And lastly, the old vision system
provided center of area information only.

In contrast, the current vision processing hardware requires minimal control of the
environment. Aside from “marking” objects of interest with the appropriate color, there
are no additional requirements on the environment. By choosing an appropriate color for
“marking”, it is unlikely a regular background will contain distracting items of that color.
By using only color keying to detect objects of interest, the speed of the visual processing
is greatly increased. This is in accord with the goals for this project, since the objective
is not to address the traditional vision problems of edge detection, object recognition, or
segmentation which would require more powerful hardware, but rather, to simply have a
vision processing system which provides the information required as fast as possible at a

low cost.
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Blob Detector Vision Boards

The vision boards are based on the 68332 processor and output information via serial line
at 38400 bps into one of the 68040 boards in the VMEbus. The vision boards are color
keyed and use a histogram lookup table to create binary images from the camera input
signal. They were designed and programmed by Anne Wright and Randy Sargent of the
MIT Artificial Intelligence Laboratory [Wright 93].

The board receives an NTSC signal from the cameras and outputs a black and white
NTSC signal of the processed image to be displayed on a monitor. Since the interlaced signal
from the cameras is used, the vision boards have a vertical resolution of half that of the
cameras. The horizontal resolution of the vision boards is limited by the speed and memory
of the board and is approximately 256. Therefore, exclnding the unused border around the
outside edge of the screen, the processed image resolution is approximately 230x230. The
board communicates via two serial lines operating at 38400 bps. An interface to the board
is provided on a Sun Sparc and allows for training, loading new programs, and changing
parameters, such as data output format.

The boards operate at frame rate (60 Hz) and require approximately 1/30 th of a second
to process each image. Figure 2-5 illustrates a sample binary image from the vision boards
and shows the various outputs available. The output format is variable and can be set to
include frame count, row number of center, column number of center, number of pixels of
the image, major axis angle from horizontal, and the aspect ratio® of the image. In the
case of multiple non-connected blobs in a single image, the vision boards are capable of
outputting full information for up to approximately ten blobs. We currently only compute
information for the largest blob. Adding additional blobs incr-.ases the required computing,
thereby increasing the latency in the system and possibly reducing the rate of information
through-put.

The board can be trained to simultaneously detect objects with three distinct color
histograms at once. During training, the color of interest is shown to the cameras and a

histogram is built, occupyiug a region of the RGB space. These histograms can be stored

3The aspect ratio output by the vision boards are defined here as the square root of the ratio of the
second moments of inertia along primary axes.
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Figure 2-5: Ilustration of a sample binary image as produced from the vision boards and

the various outputs which are available.

to EEPROM so that the boards do not require re-training on the next boot. Currently we

only utilize blob detection with one histogram since we want to limit noise introduced by

background and environment and we are only interested in individual objects of one certain

color (fluorescent orange). In the future, the WAM itself may be marked in order to study

visual servoing (precise positioning using visual feedback).
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Chapter 3

Fast Eye Gimbal Control and Use

This Chapter discusses how the FEGs are controlled and various algorithms which are
used to apply them to our research goals. Section 3.1 gives the derivation of the dynamic
equations of motion for the FEG and discusses various ccntrol methods and their perfor-
mance. Section 3.2 presents triangulation methods for determining the location of objects
using stereo vision information. Section 3.3 presents the WAM/FEG calibration methods
used to coordinate the vision and the manipulation. Section 3.4 presents various trajecto-
ries and behaviors for the FEGs, such as self-calibration, searching, and the application of
the WAM/FEG calibration and searching algorithms to the task of locating and grasping

objects.

3.1 FEG Dynamics and Control

3.1.1 Dynamics of the FEG

Figure 3-1 shows the FEG with coordinate axes labeled based upon the Denavit-Hartenberg
Notation. Using the coordinate frames as defined in the figure, the dynamical equations of
the FEG are derived through both the recursive Newton Euler Method and the Lagrange
Method (Appendix A.l). They can be expressed as

Hq+Cq+G=r (3.1)

31
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Figure 3-1: FEG with labeled coordinate axes based upon Denavit-Hartenberg Notation.

where H, C, and G are defined as

e [ 2J12 cos(qz) sin(gz2) + Ju1 + Ja2 + (mad? + Jo3 — Jyy) cos?(gz) h

hy mad? + Ja3
(3.2)
hy = J13sin(gz) + Ja3 cos(gz)
C —c1§2  —c1q1 + (J13 cos(qz) — Jazsin(gz))ga (3.3)
c1q1 0
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1 = (1 — 2cos?(q2)) 12 + (mad? + Jog — J11) cos(gz) sin(gz)

G= 0 (3.4)

magd cos(q2)
Here I5; is the inertia of the mass 1 (m,) about the y, axis and the J terms are the inertias
of the mass 2 (m; - including the camera) in the coordinate frame fixed to the camera.
Note that since the camera is cylindrical, Jo3 = J33. The matrices above are valid for
all orientations of the FEGs except for the gravity vector, G. The G vector varies over
different orientations, reflecting the change in the direction of gravity and its effects on each
of the joint axes. For the configuration used in later sections where the FEGs are mounted

horizontally on ceiling rafters, the G vector becomes

magd cos(q; ) cos(qz)
magdsin(q; ) sin(gz)

G = (3.5)

which reflects the change in direction of gravity.

3.1.2 Basic Controllers for the FEGs

A variety of controllers for the FEGs have been implemented (PD, PID, Feed Forward, and
Adaptive).

PD The basic PD is implemented with the following torque command on each joint axis.

r = -Kpii— Kpd (3.6)

where t'i =q-q4, 4 = q — qq, and q and qq are the actual and desired joint positions.

PID The PID has an integral term added to the PD which compensates for any steady

state error. This was found to be necessary as a result of the video signal cable from the
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camera creating large errors. The torque command for this controller on each joint axis is

the following.

r=-Kpd- K- K1 [ § (3.7)

Feed Forward and Adaptive Control The Feed Forward is an application of the Adap-
tive Controller with constant parameter estimates. The Adaptive Controller determines a
set of parameters which yield the best tracking performance. The Feed Forward controller
uses these parameters with no adaptation to attempt to cancel the effects of dynamics of

the system. See the next section for more details.

3.1.3 Adaptive Control

Motivation

Adaptive Control for trajectory tracking can achieve close to zero tracking error. PD Control
on the other hand does not improve its tracking performance and the tracking error is
considerably larger. Adaptive Control can also maintain good tracking error in the presence
of changing physical characteristics such as friction and camera cable effects.

There exist other controller options besides PD and Adaptive, but each of these have
either prohibitive requirements or undesirable characteristics. For example, a Computed
Torque Controller requires knowledge of the physical parameters. But it is difficult to
derive a physically accurate model which accounts for all effects, which leads to inaccurate
parameter estimates, and therefore decreased performance. Also, a Switching Controller
theoretically achieves zero tracking error, but at the cost of chattering and high control
activity (which may not be achievable by the actual physical actuators or other hardware).

The Adaptive Controller requires little a priori knowledge of the actual physical pa-
rameters of the system and utilizes the same amount o1 control authority as a simple PD
Controller. In addition, the Adaptive Controller has the added benefit that it can in some

cases be used for parameter estimation.
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Concepts and Controller Design

The Model Reference Adaptive Controller used here is composed of a feed forward dynamical
term and a PD term. The controller uses the dynamics of the system to aid in parameter

convergence while { PD term adds stability. The basic control law is of the form

T=Ya- Kps (3.8)

The variable s is an intermediate variable which can be used as a measure of the tracking

performance and is defined as

5=§+2q=G-ér (3.9)

where @ = q — q4, and where )\ is the bandwidth of the control system. The reference

velocity and acceleration can then be defined as

Y
dr=9a -4 (3.10)
dr = 4q — AqQ

Using these reference values, the following relation defines the Y matrix and the a vector.

Hgr+Cqr+G=Ya (3.11)

The Y matrix is composed of known terms, and the a vector of unknown parameters.
The last part of the Adaptive Controller is the parameter estimation update law, which

updates the parameters based upon the measure of tracking error, s. The adaptation

law is selected so as to formally guarantee global boundedness and tracking convergence

[Slotine, Li 91].

4d=-TYs (3.12)

Using these equations, it can be shown using Lyapunov-like methods, that the system is
stable and that the tracking error should, in ideal cases, converge to zero (see Appendix A.2.1

and [Slotine, Li 91]). And for sufficiently “exciting” trajectories, the parameters should
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converge to their actual values (with an accurate model).
Additional terms can also be added to model coulomb and viscous friction. The equation

defining Y and a then becomes

H@ar + Car + G + D,sgn(@r) + Dugr = Ya (3.13)

where D, and D, are diagonal positive definite matrices.

With both of these effects, there are a total of 11 parameters for the system, 7 from the
dynamics and 4 from friction. The Y matrix is then a 2x11 matrix and a is a 11x1 column
vector.

Given H, C, and G from equations 3.2, 3.3, and 3.4, equation 3.13 is used to find the Y

matrix and the a vector. For the table mounted FEG (standing vertically), the Y matrix is

Yii 61 Yi3 Y4 Y5 0 0 7 0 7 0
Y = 11 9r1 113 X4 Y5 89"(%-1) qr1 (3.14)

Y 0 Y3 Yoy Y5 Gr2 cos(qo) 0 sgn(gr2) 0 Gr2

where each of the Y;, terms are defined as follows

Y11 = 2cos(g2) sin(gz)dr1 — (1 — 2 cos(g2)?)(d26r1 + G14r2)
Y13 = cos(g2)%§r1 — cos(q2) sin(g2)(d2dr1 + G1dr2)
Y14 = sin(g2)Gr2 + c0s(g2)G2Gr2
Y15 = cos(g2)dr2 — sin(g2)d2gr2

Ya1 = (1 - 2 cos?(q2))d16r1
Y23 = cos(gz) sin(g2)(§1dr1 + Gr2)
Y24 = sin(q2)dn
Yas = cos(g2)dn

and the a vector is
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J12
Ju + Iz
mad? + Jy — 1y
J13
Jas
a= mad? + Jaz (3.15)
mogd
D
D,
D,
Dy,

Conceptually, the Y matrix and the a vector represent a linear parameterization of the
dynamics of the system.

The control law which is implemented slightly differs from that shown in equation 3.8.
The Kp gain may be tuned higher than KpA to achieve better performance in the presence
of high frequency unmodelled dynamics. This is done by separating the PD portion of the

control law which results in the following expression

r=Ya- Kp§—- Kpg (3.16)

The stability and the convergence of this control law is again shown with Lyapunov methods

(see Appendix A.2.1 and [Slotine, Li 91]).

3.1.4 Performance of PD and Adaptive Controllers
Trajectories for Tracking

Both PD Control and the Adaptive Control have been implemented for the FEG and applied

to tracking two trajectories of the form
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gn = 0.5cos(wt) g2 = 0.5cos(1.7wt) (3.17)
91 = 0.7sin(sin(cos(wt))) gi2 = 0.7sin(sin(cos(1.7wt))) (3.18)

The first trajectory is non-repetitive over the time of our testing due to the 1.7 term
in g42. The second trajectory is an at! pt to increase the “excitation™ to encourage

parameter convergence. These trajectories were used with w values of 5, 7, and 10 rad/s.

Implementation

The PD components were tuned as high as possible while minimizing oscillations in trajec-
tory tracking. The figures in this section for PD Control performance were generated with
these values.

For the Adaptive Controller, the PD components remain the same, but the bandwidth
(A) and adaptation gains (T') need to be specified. Appendix A.2.2 gives some guidelines for
selection of these values. The bandwidth is chosen to eliminate undesired higher frequency
components by adjusting it’s value and examining the performance (keeping in mind the
guidelines from equation A.20). The resulting controller bandwidth was chosen to be A = 50.
Next, the adaptation gains were selected based upon equation A.21 with some additional

tuning to improve performance. The final value for the adaptation gains were

I' = diag([0.29 0.72 1.73 0.04 0.02 0.10 112.28 32.12 10.88 10.26 1.82]) (3.19)

Performance Results

Figures 3-2, 3-3, 3-4, and 3-5 show the performance results for both the PD and the Adaptive
Control applied to the two trajectories listed earlier in this section.

Figure 3-2 and Figure 3-4 show that the Adaptive Control, with no initial knowledge
of the physical parameters, achieves tracking to %" after initial transients. This is approx-
imately 4 times better than PD alone. Even during the initial transients of less than 1

second, the tracking error remains 2 times better than with PD.
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Figure 3-2: Tracking performance for the PD and Adaptive Controllers for Trajectory 1
with w = 5 rad/s.
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Figure 3-3: Control output for the PD and Adaptive Controllers for Trajectory 1 withw =5
rad/s.
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Figure 3-4: Tracking performance for the PD and Adaptive Controllers for Trajectory 2
with w = 5 rad/s.
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Figure 3-6: FEG parameter estimates from the Adaptive Controller on Trajectory 1 with
w = 5. Labels on the y axes are in order of increasing final parameter value.

Note that the position error on axis 2 for both trajectories under PD Control does not
center about zero due to the gravity torque resulting from the mass of the lens. Addition
of a compensation terms lead to a shift of the tracking error to center about zero. None the
less, the Adaptive Controller still outperforms the PD.

Figure 3-3 and Figure 3-5 show the control torques for each controller applied to the first
and second trajectories respectively. Note that the approximate magnitudes are comparable
for both Adaptive and PD Control. So thus Adaptive Control does not require more control
authority, but rather uses it more effectively.

Additional tests were run with values for w = 7,10 rad/s with similar results. The
tracking error increases as a result of the faster trajectories, but the relative performance
between Adaptive and PD remains the same.

In ideal cases, if our trajectories were “exciting” and our dynamics model accurate, the
parameters would converge to their actual values. Figure 3-6 shows the time history of all
11 parameters, most of which converge to a value within 1 second. Note, however, that two

of the parameters are are decidedly negative. These two parameters are the primary inertia
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terms for each of the axis, and they are multiplied by the §, terms in the Y matrix. These
negative parameters most likely result from the unmodelled dynamics from the video signal
cable and the cable transmission. The convergence of these two parameters to negative
values adversely effect the other parameters, so the values to which all parameters converge
to cannot be used for parameter estimation. In our case, the primary concern is minimizing
tracking error rather than parameter estimation. If parameter estimation is necessary, an

accurate model for the cable needs to be included, or the effects of the cable minimized.
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3.2 Locating Objects in Space

3.2.1 Self Calibration/Homing

Before the task of locating objects in space can be accomplished, the Eyes must be calibrated
to some reference frame. As described in Section 3.1.1, the Adaptive Controller for the Eyes
need to know the direction of gravity. Therefore, it is useful to calibrate the Eyes with the
z axis in the same direction as gravity.

This calibration method defines an independent coordinate system for the FEGs which
is defined from a horizontal home position. The encoders on the FEG motors do not output
absolute position, therefore the zero position must be initialized at start-up. The FEGs
find their home position by moving to each joint limit for each of their axes. Knowing
the locations of these joint limits, the FEGs can find their default home position. This
method is repeatable to within 0.003 radians. When done calibrating, each FEG pan axis
is oriented parallel to one another and perpendicular to the baseline connecting the two
cameras and each FEG tilt axis is oriented horizontally with respect to the world. This
places each camera horizontal to the floor and looking directly forward. In this orientation,
the cameras are able to see specially marked (fluorescent orange) “calibration squares”
which are strategically placed in the room to fine tune the calibration of the home position.

Using this additional aid, a repeatability of approximately 0.001 radians is achieved.

3.2.2 Locating Spheres

After initial calibration of the FEG coordinate system, the z, y, z coordinates of objects
may be determined by solving the triangulation problem shown in Figure 3-7. The cameras
are located at the upper corners of the tilted triangle, separated by a baseline distance which
we will call 2D (equal to 0.8255 meters in our case). The origin of the camera coordinate
frame is located at the midpoint of the baseline with axes defined as shown in the inset.
The four joint angles, two corresponding to each gimbal, are shown with the sign convention
defined in the other inset. The cameras are mounted at the same height and parallel to

each other so 8, is equal to 63. A solution to the triangulation problem is
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Figure 3-7: Two cameras at the corners of the tilted triangle focus on a ball in space, with
joint angles defined as shown. Triangulation is used to locate the coordinates of the ball.

D(tan 8, + tanéd,)

= tanf - tan6, 320
2D cos 0 cos 84
0 21
y sin(8s — 6) cos 6, (3.21)
2D cos 63 cos b4 in 6, (3.22)

sin(6, — 0,)

Experiments in tracking moving objects also require velocity transforms as well. These
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can be derived by differentiating the above equations with respect to the @ variables. The
derivation is straight forward, with the results shown in Appendix A.3.

The inverse transforms can also be found based upon the relations

tanf; = tanf; = ':-, (323)
z—D

tanly = —-—— 3.24

P T TR (329

tand, = -—F2_ (3.25)

The inverse velocity and acceleration transforms can also be found by differentiating these

equations, with the results shown in Appendix A.3.

3.2.3 Locating Cylinders

The blob detector vision system outputs the direction of the major axis of the image. The
code used by the boards was written and optimized by Anne Wright and Randy Sargent
[Wright 93]. The method described here is simply a standard method and not necessarily
the one used in their software. A standard method for obtaining the major and minor
axes of a two dimensional images consists of minimizing the second moment of inertia. By
obtaining I, I, and I, by simple summation, you can find the primary directions by using

the equation

tan 20 = -Iz—_lv-

(3.26)

This yields two directions which are 90 degrees apart, indicating the major and minor
axes. You can recalculate the new values for the second moments of inertia in the primary

directions using the equations

I = —;-(I,_. + 1) + %(I, — I,)) cos(26) — I, sin(26) (3.27)

I, = %(I, + 1)) - -;-(I,, — I,) cos(20) + I, sin(26) (3.28)

For an initial approach to the problem of determining the spatial orientation of an
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Figure 3-8: Using two cameras and major axes measurements from each, we can examine
the intersection of the two planes to determine the orientation of the object.

object, we might use the individual measurements of major axis from each camera to define
a plane in which the major axis of the object must lie. Then finding the intersections of
the planes defined from each camera, we should be able determine the orientation of the
object in space. Figure 3-8 is shown as an illustration of this problem. Note there are also
special cases here where the planes might be parallel, or the image might be “deceiving”
where incorrect major axis angles are obtained due to our perspective which would lead to
incorrect assumptions on orientation. These topics are currently being examined in more

depth.

3.2.4 Accuracy of Resulting Coordinates and Sources of Error

The accuracy of this method for determining object location is extremely sensitive to the

calibration discussed in Section 3.2. As a test of the vision system, the floor about the
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WAM has been mapped using a lattice of points in one foot squares. Variations in z, ¥,
and z of less than 0.5 inches were found across a six foot square region.

Errors of this magnitude equate to approximately 0.003 radians position error in the
joints. This error can be attributed to a combination of effects from small errors in gear
ratio and small variations in calibration of the zero positions for the joint axes. In addition,
the change in viewing perspectives for the same object under varying lighting conditions
across the room result in some pixels being detected while others are not. Small errors in
the mounting of the cameras to the FEGs cause the focal point to not exactly coincide with
the center of rotation. The incorrect mounting can be partially compensated for by using
the exact location of the focal points (Appendix A.4) at the cost of increased computation.

Note that the blob detectors only locate the center of the object, so this is ideal for
spherical objects and flat objects, because the two vectors would intersect at approximately
the center of the object. For other objects of different shape, some error would be introduced
because each camera has a different viewpoint and observes different faces of the object, yet
considers it flat. A more advanced vision processing system is required to solve problems

where this error becomes significant.
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3.3 FEG/WAM Calibration

3.3.1 Simplification of Problem

In order to coordinate the FEGs and the WAM, a transformation between the FEGs and the
WAM must be determined. Various methods could be used to determine the transformation
from FEG joint space to WAM joint or cartesian space. Most of these methods would involve
a system of nonlinear equations. In addition, different representations could be used, such
as quaternions, euler angles, or rotation matrices. Additional methods and representations
are discussed briefly in the Conclusion.

Ideally, we would like to have a simple calibration method which has a straight forward
solution and is easy to implement. The method which has been selected places constraints on
the physical location and orientation of the FEGs. Methods were examined which attempt
to determine a calibration for arbitrary locations and orientations for each FEG. These
proved to be difficult and were not guaranteed to converge but are still being explored.

The method which was settled upon greatly simplifies the problem by making assump-
tions about the mounting and orientation of the FEGs which leads to a one degree of
freedom least squares problem. The FEGs must be mounted at the same height from the
floor and they must be placed parallel to one another. With this mounting configuration,
an independent coordinate frame for the FEGs can be defined relative to the world frame
as previously discussed (Section 3.2). Similarly, the WAM has its own coordinate frame
relative to the world. Due to the mounting configuration of the FEGs, the z axes for both
the WAM and the FEG coordinate frames are parallel. This leaves one rotational degree of
freedom and a translation which must be solved to determine the transformation between

coordinate frames.

3.3.2 One DOF Least Squares

To determine the transformation from the FEG coordinate frame to the WAM coordinate
frame, multiple data points are collected of a ball in the end of the WAM as seen by the
cameras and as measured by the WAM. Storing data from 13 points around the workspace

of the WAM, and assuming that the horizontal z-y planes are parallel for the FEGs and the
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Figure 3-9: Results from Least Squares calibration for transformation from FEG to WAM
space.

WAM (as a result of our earlier calibration of the FEG joint axes), the remaining problem
involves a one dimensional rotation.

We wish to obtain a rotation matrix, R, and a translation vector, t which will overlap
the two sets of data. First, by using the centroid of each set of data points as the origin,
t is found by finding the translation that will overlap the centroids. In order to find the
rotation matrix, a least squares approach is used [Horn 86). By referencing each data point

relative to their centroids, the problem becomes the minimization of

Y (62 + 6y7) (3.29)

=1
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where
bx; z! cosf sinf z;
- _ (3.30)
by; v —sinf cos#d Yi
The angle of rotation, #, which defines R can then be found by the equation
' e o A
tanf = Lrxr-2 (3.31)

Xr-r

where r; = (z;,¥;,0)T corresponds to data points from the camera and rf = (z},9/,0)T
corresponds to data points from the WAM.

The results from the least squares calibration is shown in Figure 3-9. The sum of the
square error was 1.0153 inches? over 13 points, with an average error of 0.2795 inches.

It is essential throughout this process that the coordinates from the FEGs and the WAM
are consistent. Initially, there were large errors in this calibration, indicating inconsistent
coordinate systems, but after extensive calibration of link lengths and gear ratios for both

the FEGs and the WAM, the data consistency was much improved.



3.4. FEG TRAJECTORIES AND BEHAVIORS 51

3.4 FEG Trajectories and Behaviors

3.4.1 Searching/Scanning

The cameras mounted to the FEGs have a small field of view. In order to locate objects,
the FEGs must perform a search. The searching/scanning trajectory was designed to find
and track objects which are of the correct color.

There are two searching modes. The first is a specific search routine designed to locate
objects located on the foam floor within the workspace of the WAM. This search mode
incorporates z height consistency checks and handles cases where the view from one camera
is possibly obstructed. The second is similar to the first, except the consistency checks and
obstructed cases are not included. This more general search mode locates objects anywhere
in space and hence, we cannot apply any consistency constraints (besides divergence of the

cameras).

Comsa>

Both Cameras Search End of Search Region Reached No Object
0 Objec
Along Horizontal Scan Lines
One Camera Locates
An Object Inconsistent Z
Coordinate
Other Camera Scans Second Camera Consistency Check Consistent
Along Tilt Axis of First Camera | Locates An Object y
Second Camera
Does Not Locate
An Object
Estimate Joint Values Servo Second Camera
Based Upon Known Z Height to Estimated Joint Values Obstructed

Figure 3-10: Flowchart of SEARCH procedure which scans with the FEGs to locate objects
of interest within a user defined region.
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Floor Searching Figure 3-10 shows a flowchart of the first searching mode. First, both
cameras simultaneously scan over a user defined square region in joint space. The cameras
scan in horizontal scan lines by moving their pan axes while simultaneously slowly adjusting
their tilt axes. If the search region is completed without either camera locating an object,
then the search routine ends, returning “No Object”. If one camera locates an ob ject, the
second camera moves to the same tilt angle, and then scans across with its pan axis until
an object is found. If an object is found by the second, then using the triangulation as
discussed previously, the coordinates of the object are obtained and the consistency of the
z height with the known height of the foam floor is checked. If the z height is consistent,
then the search routine ends, returning “Found”. If the cameras have locked on to different
objects, then the z height would be inconsistent. In this case, the second camera ignores
that object and continues its horizontal motion with the pan axis until another object is
encountered. If no consistent object is found by the second camera after the first back and
forth horizontal scan motion, then the tilt axis is perturbed by a small amount and the
horizontal scanning is repeated. After three perturbations, it is declared that the view from
the second camera must be obstructed. But, since the z height of the floor is known,the pan
joint angle which corresponds to an object located on the floor at that particular tilt angle
can be calculated. The second camera then servos to these calculated joint coordinates and

then the search routine ends, returning “Obstracted”.

General Searching The second searching mode is exactly the same as the first mode
except that it may only return “Found” or “No Object”. In addition, if an object is found
by the one camera, but not the second, then the horizontal scanning and perturbation will
execute indefinitely. No consistency constraints may be applied in this case to stop the
search due to obstruction. It is hoped that, the object would be moved away from obstruc-
tion. During the motion, the first camera will still track the object and the second camera
will continue scanning. Once the view from the second camera becomes unobstructed, the

search will end with “Found”.
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3.4.2 Servoing on Stationary Objects

Once an object enters the field of view of the cameras, the Eyes should center the object in
the screen. The cameras can visually servo to the color keyed object by using the center of
area information provided by the vision boards boards. Visually servoing on static objects
or slowly moving objects can simply be accomplished by setting the desired velocity and

acceleration to zero and setting the desired position for the Eyes using the following equation

[} [} izel_arc, (z — z
pan - pan + pt T ( center) (332)

Orine J Ocite pizel_arcy (Y — Yeenter)

where ¢ and y are the coordinates of the center of the blob in pixels and z.cnter and
Ycenter are the predetermined coordinates of the center of the screen in pixels and finally
pizel_arc; and pizel_arc, represent the angle subtended by one pixel in r and y. The
camera lenses have a field of view of +5 degrees which allows us to use the approximation
pizelarc = tan~1(1/f) ~ 1/ f where f is the focal length.

By this method, for stationary or slowing moving objects, the cameras may servo to
maintain the object in the center of the screen. Timing delay compensations do not need

to be made in this case since the object is stationary.

3.4.3 Generalized Tracking of Moving Objects
Introduction

We would like to have a general purpose tracker which makes as few assumptions on the
path of the object as possible. One assumption which is made is that the path can be
approximated by a time varying second order polynomial. The acceleration estimate is held
constant between vision samples, but the estimate is allowed to vary at each new vision

sample.

Difficulties

The primary difficulty in robust tracking of fast moving objects is the compensation for

the processing delay in the vision system. Information arriving from the vision boards is
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delayed by the amount of time for CCD charging, vision board processing, and transfer over
serial lines. Even with accurate estimates of this delay time, estimates of object velocity and
acceleration must be used to integrate over the time delay, which amplify any estimation
errors. But currently the delay time is not constant, it varies depending upon the content
of the image being processed. Therefore the delay time itself is not known accurately.

An average measure of the processing delay time may be obtained. The delay time can
be estimated using a sinusoidal trajectory for the cameras while observing the center of
area output from the vision boards. By calculating the phase shift in the two sinusoidal
signals, the average time delay in the system is determined. For the current configuration,
the phase shift is found to be approximately 0.035 seconds. Methods to reduce the delay
time and make it invariant to image content are discussed in the Conclusion.

An additional difficulty results from noise in the vision system due to lighting effects.
As an object moves about the room, due to non-uniform lighting, the perceived color of
portions of the object will change. The change will result in the addition and subtraction
of “white” pixels from the processed image which shift the center of area. This effect will

introduce oscillations in the system which require greater filtering.

Overview

Vision information from the vision boards arrive at 60 Hz. The new vision information is
from a time, t — t4, in the past. Using this vision information, estimates for the position,
velocity, and acceleration of the object at the previous time, ¢t — ty, are made. These
estimates are in FEG joint space. The primary purpose for conducting tracking in joint
space is to allow each camera be able to track independent of the other.

The estimates of the object’s state are then used to integrate over the time delay. The
integration is done assuming constant acceleration. The result is an estimate of the current
state of the object. This estimate is then fed to the FEG controller.

Between vision samples, no additional information is available, but a smooth trajectory
should be provided to the FEG contreller. Therefore, the trajectory generator integrates

the position and velocity, assuming constant acceleration during the intervening time.
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Implementation

Figure 3-11 shows a block diagram of our observer. The diagram uses z, v, and a to
represent position, velocity and acceleration for the joint which is currently being estimated.
Each joint for each FEG is computed individually using the exact same method.

The input to the tracker is the measurement for the location of the object. The new
information which the tracker receives from the vision boards is actually information from
an image which was iaken at a previous time. This delay for processing was previously
estimated to be ty = 0.035 seconds. Past position information for the FEGs is stored
continuously so that the position of the FEGs at the time that the image was taken may be
known. Using the position of the FEGs 4 seconds in the past and summing this with the

offset of the image in the screen, the measurement of the location of the object is obtained.

zp = p(t —ta) + of fset (3.33)

From the last vision sample, old estimates for the position, velocity and acceleration
exist. Using these position and velocity estimates and the time between vision samples, t,

= t} — tx~1 =~ 0.0167 seconds, a prediction of the expected location of the object may be
made.

ék(-) = 5k-l(+) + dfk—ltv (3'34)

The (—) and the (+) represent the estimates right before and right after the incorporation of
the new measurement and dy, _, is the filtered raw velocity measurement from the previous
vision sample, as defined by Equations 3.38 and 3.39.

The error between the measurement and the prediction is then given by

I =z — &x(-) (3.35)

This prediction error is used to implement a “Kalman-like” filter which uses a weighted

sum. The weighted sum is computed by
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Abbreviations:  D.D. = Discrete Differentiation, T.V.F.OF. = Time-Varying First Order Filter

Figure 3-11: Block diagram of our generalized tracker which estimates the current position,
velocity, and arceleration of the object from delayed information.
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E1(+) = wadh(=) + (1 - wa)2n (3.36)

where the weighting, w;, is determined by the magnitude of the prediction error, Z;. Cur-

rently the weighting term is given by

0 for =0,
wy ={ (% — E;)/E; for 0< & < E,, (3.37)
1 for &> E,

The maximum value of the prediction error for which the measurement is still used is E.
This value is set to reflect the noise content of the system. The weighting function was
chosen so that it would remove small magnitude oscillations, yet track large deviations.
This may appear backwards. But, in general, the measurements from the vision system do
not contain noise in the form of large “spikes” (large magnitude deviations from previous
measurements) but rather contain small oscillations due to the changing location of the
center of area. The center of area information will often change by small amounts as the
object is seen from different perspectives or as the object moves about the room under
non-uniform lighting. These small shifts do not reflect the true motion of the object. The
contribution of small magnitude noise may be minor for fast moving ob jects, but this method
helps to minimize oscillations when servoing on stationary objects.

The output of the weighted sum is our new position estimate for the object. This new
position estimate is next used to obtain estimates for the velocity and acceleration of the

object. The position estimate is passed through a discrete differentiator.

_ Bu() — ()

d
k 7

(3.38)

The output from the differentiator is then passed through a time-varying first order filter

to remove noise.

df, = Mg, _, + (1 = A)dx (3.39)

The bandwidth of the filter is varied depending upon the integrated offset of the object
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Position

Measurement
Prediction
Prediction Error

zr=p(t—ta) + off.szet
(=) = ik_1(+) + d!k—lt‘"
Er = zp — 3x(-)

New Estimate Ep(+) = we (=) + (1 — wy)z

Velocity
Differentiation dy = mﬂ,;f—"-(:l
Filtering ds, = Ady,_, + (1 - N)dg
Prediction (=) = Ok—1(+) + @y, _, 1,

Prediction Error
New Estimate

O = dg, — ok(-)
() = wytp(-) + (1 - wv)dfk
Acceleration

Differentiation : a; = ﬂ‘-(i)t:—”"—tl

g, = Mg, + (1= Aax
ax(+) = ay,

Filtering
New Estimate

Table 3.1: A summary of the equations for the tracking algorithm.

from the center of the screen. If the object is constantly offset from the center of the screen,
often this indicates that the tracking is lagging behind the object. The integrated offset
could be thought of as a measure of the signal content of the motion. If the integrated offset
is large, A is increased. If the integrated offset is small, A is decreased. Using this method,
A is allowed to vary between a lower and upper bound during tracking. We cannot simply
use the upper bound because of the increased oscillations for slower moving objects.

The method for determining the estimated velocity of the object is of exactly the same
form as the method outlined above for position. The dotted squares in the block diagram
indicate the two regions which are identical in structure. The differences are the input and
outputs and the weighting term of the “Kalman-like” filter. The input to the second block,
dj, , can be considered as a “measurement” of the object velocity. The outputs of the second
block are the new estimates for velocity and acceleration. The weighting term is of the same
form, except a different maximum value is used, E,.

Table 3.1 presents a summary in equation form, of the complete tracking algorithm. The
resulting new estimates of the state of the object are for time t—t4 in the past. Therefore, in
order to use these values for tracking, they must be integrated over the processing delay. It

is assumed that the path of the object may be approximated by second order polynomials.
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Thus, the integration over the processing delay is done assuming constant acceleration.

2p = Eu(H)+ oW+t + Sa(H) (3.40)
vp = V(4)+éx(+)ta (3.41)
ap = ax(+) (3.42)

The resulting values are the prediction of where the object currently is located. These are

fed to the FEG controller for tracking.

Tracking Performance and Difficulties

This tracker performs moderately well but experiences problems related to very fast motions,
lighting conditions, and large or odd shaped objects. The filter constants are tuned such
that the FEGs do not become unstable, but at the same time, this limits the speed of
response of the tracking.

The tracking algorithm designed here is capable of tracking objects which are moving
at up to 4 m/s at a distance of 1 m (8 m/s at 2 m, etc.). With very fast moving objects
(> 4 — 5 m/s towards the FEGs at a distance of 1 m), the FEGs fail to track the object.
While the first order filters are tuned for stability and attempt to remove high frequency
noise, they also have an associated delay which is sufficient to cause loss of tracking with
faster moving objects. The absolute limitation due to hardware (focal length of the lenses,
60 Hz frame rate) is approximately 7 m/s at a distance of 1 meter. This value is for the
case where there are no image processing and information transfer delays and if perfect
estimation and tracking were possible.

The non-uniform lighting conditions adversely affect the accuracy of the vision hardware.
The light refleciing off the ball, or the lack of lighting, changes the color which is seen by
the cameras in that region, therefore the center of area changes as the ball moves towards,
under, and past light fixtures. These effects limit the maximum bandwidth which may be
used while still avoiding unstable oscillations. The weighting functior attempis to remove
noise resulting from these effects.

Objects which extend past the field of view of the camera will have a randomly moving
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center as the camera could possibly servo along the object. Along the same lines, objects
whose center of area changes depending upon viewing perspective would introduce noise
into our tracking system if the object rotates. In both cases, this tracker would experience
problems similar to those for non-uniform lighting,.

Problems are also encountered for fast moving objects entering the field of view due to
required initialization of the trajectory generator. Initialization of the velocity and accel-
eration estimates must be done as an object just enters the screen. The tracker currently
assumes that the velocity is zero for the first data point and the acceleration zero for the
first two data points. This limits the speed with which the tracker can respond to ob jects
entering the screen.

Better methods for tracking are constantly being explored. In the catching algorithms
of the next chapter, we use additional information to aid in tracking. During catching, we
predict the future path of the ball in cartesian space to determine catch points. We also
use this information to aid in tracking by computing weighted sums of parabolic predicted
paths and the results from our observer. This increases the performance of the system, but
still is not sufficient to track faster moving objects. A new structure for our observer must
be designed in order to track these objects. We discuss possible directions of improvement

in the Conclusion.

3.5 Grasping Experiments

A grasping sequence has been implemented which uses the methods described in this Chap-
ter and methods developed by a number of persons associated with this system to demon-
strate hand/eye coordination. The FEGs are used to locate an object, the WAM and the
Talon then use the information from the FEGs to move into position above the object,
orient, and grasp the object. Figure 3-12 provides a flowchart for the sequence of events.
The grasp sequence begins with the FEGs searching for objects located on the foam
within the workspace of the WAM. When an object is found, the WAM moves above the
object and the Talon orients the fingers perpendicular to the major axis of the object. The

WAM then moves down to the object and attempts a grasp. The WAM attempts to grasp
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Figure 3-12: Flowchart of GRASP sequence which coordinates the vision and the manipu-
lation in order to locate and grasp objects.

underneath the object by first moving completely down on the object. At this time the
fingers close using torque sensing and often touch the foam floor. As the WAM moves up
while the Talon closes, the fingers move along the surface of the foam to grasp underneath
the object. The repeated upward motion combined with closure ensures a more reliable
grasp. After grasping, the WAM moves two feet above the foam and verifies whether it has
successfully grasped the object. The motion moves the WAM away from the floor so that
if our grasp was unsuccessful, the FEGs have a clearer view of the object. In the case of

unsuccessful grasps, the FEGs re-search and the process is repeated.
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Figure 3-13: A photograph of the WAM in the process of picking and sorting a number of
objects placed about its workspace.

Using this procedure, the WAM has successfully picked up 1o fifteen objects semi-
randomly! placed about the full workspace of the WAM and deposited them in sepatate
containers. The major axis information from the cameras is used to correctly orient the
Talon so that it can grasp long eylinders. The aspect ratio is also used to determine whet her
objects are spherical or non-spherical. And finally, a dynamic weighing procedure is im-
plemented. which uses the WAM to obtain relative measures of the weight of the ohjects.
Using all of these methods, the WANM has picked up and sorted objects into four containers
by aspect and weight. Figure 3-13 shows the WAM in the process of picking and sorting a

number of objects,

"The objects are semi-randomly placed in the sense that they are not allowed to overlap one another,
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The grasping succeeds on the first attempt in most cases, with the exceptions being
objects which are very heavy and large, small and thin, or objects which are partially

obstructed from view by the WAM itself, yielding incorrect position information.
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Chapter 4
Catching Algorithms

4.1 Introduction

This chapter discusses the application of our system to the task of catching free flying tossed
objects. The chapter begins by discussing two different approaches to catching. Then Figure
4-1 shows a flowchart of the sequence of events which occur during catching. Each item in

the flowchart is discussed in detail in the later sections.

4.1.1 Catching Versus Snatching

There are two fundamental approaches to catching. One approach is to simply calculate
an intercept point, move to it before the object arrives, wait, and close at the appropriate
time. Humans catch most light objects in this manner, using our visual sense and our sense
of touch to determine when to close our hand. Another approach is to match the trajectory
of the object in order to grasp the object with less impact and to allow for more time for
grasping. Humans do not catch purely in this manner very often. For heavier or faster
moving objects, humans often catch using a combination of the two approaches. Humans
move towards the path of the object but do not fully match the velocity of the object.
The first method will be called “snatching” and the second method where the velocity is
matched will be called “catching”.

Over the course of our experimentation, it has been found that the “snatching” approach

produced poor results for a number of reasons. One of the foremost reasons is the extreme

65
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sensitivity to the timing of closure. Without matching paths, the amount of tolerance for
timing errors is minimal. An offset as small as 0.005 seconds produced very few successful
“snatches”. The presence of a palm could improve the situation by stopping the object
temporarily. One more degree of freedom would be required in the Talon in order to orient
the fingers in such as manner as to present a “palm” for the ball to impact. One set of fingers
cannot be used as a palm because the angle of approach of the object would intersect the
other set of fingers as they are in the process of closing (Section 4.6). Therefore snatching
must be attempted by orienting the direction of finger closure perpendicular to the objects
path and closing based purely on timing predictions from the cameras.

The remaining portion of this chapter deals primarily with “catching”. The algorithms
are the same for “catching” and “snatching” except for the path generation for the WAM.
In the “snatching” approach, a second order filter is used without the velocity matching
term so that the arm arrives at the catch point before the object and then times the closure
of the fingers appropriately. Some results for the “snatching™ approach will be presented in

the Experimental Results Chapter.

4.1.2 Sequence of Events During Catching

The flowchart in Figure 4-1 illustrates the different stages of catching. The catching attempt
begins with a toss trigger (Section 4.2.1) which starts the initial WAM motion (Section
4.3) and the recursive least square fitting (Section 4.2.2). Within the servo loop, using
the parabolic fit information, a satisfactory catch time/point is determined (Section 4.4)
and desired path for the WAM is generated (Section 4.5) to intercept the object. At the
appropriate time the arm attempts to grasp the object by closing the Talon fingers (Section
4.6). The arm then decelerates (Section 4.7) and returns to the “home” position.
Additional events, not shown in the flowchart, that occur during catching are the ac-
tivation of WAM and FEG adaptation and data storage. The adaptive controllers for the
WAM and the FEG are both activated with large adaptation gains for the short duration
of the catching attempt in order to improve dynamic tracking performance by adapting to

mass, friction, and inertial parameters.
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Figure 4-1: Flowchart of events during the catching trajectory beginning with the toss being
triggered.
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4.2 Toss Triggering and Prediction

In order to be able to catch a free flying ball, the future path must be predicted. In this
case, a recursive least squares method is used to fit the ball data to first order polynomials
in z and y and a second order polynomial in 2. A forgetting term or a windowed fitting
approach is not used, therefore, a method for detecting when the toss has begun (i.e. when
the ball has left the thrower’s hand) must be included. If data from the time when the
ball is still in the thrower’s hand is incorporated into the fit, then the estimates will be
slightly incorrect due to the bad initial data. If the trigger is done late, then some valuable
initial information is lost. This section discusses the triggering method which has been

implemented and the recursive least squares fitting method.

4.2.1 'Triggering

Detecting when a ball has left a thrower’s hand and begins free flight is a difficult task.
When throwing, different people have different back-swings and follow-through motions.
A method is required which throws away minimal amounts of data but which accurately
triggers after the ball has left the hand of the thrower.

Two measures are used to detect whether or not a toss has been triggered. One measure
is the z height and the second is the z-y radial distance from the base of the WAM. Initially
these trigger values are set using offsets from the current location of the ball. The trigger
values are updated in cases where the bail moves lower or farther away from the WAM.
Thus, the trigger values are ultimately set to be offsets from the lowest and farthest point
the ball has reached prior to triggering. Both measures must be satisfied in order for the toss
to trigger the parabolic fitting and catching procedures. Figure 4-2 illustrates the trigger
offsets.

Relating our triggering methods to how people toss, the low point of the back swing is
used as a reference point. It is assumed that the lowest point that the bali reaches is the
low peint of the back swing. Thus the trigger is set relative to this point in the belief that
people will release an object at a consistent distance ahead of this low point when tossing

an object.
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Figure 4-2: Iustration of the trigger distance offsets from the ball location to determine
where the toss will be triggered.

There are other possible methods for triggering which have been examined. One possible
method is to trigger once the ball has past a preset radial distance from the base of the
WAM. This method throws out a large amount of usable data or incorporates bad data
from the back-swing or follow-through depending on where the thrower is located. Another
possible method is to continuously do a windowed parabolic fit in the z direction until the
acceleration is found to be close to -9.81 m/s?. The problem with this method is that
the data from the parabolic fit is quite noisy for approximately the first 10 data points.
Therefore a window of at least that size is required. Thus, up to a sixth of a second is lost
in which the WAM may have started the catching motion.

One of the primary reasons for choosing the current method of triggering over these
other options is the simplicity and the reliability. By setting the offset values appropriately,

we can avoid throwing away useful data and also avoid incorporating bad data.
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4.2.2 Recursive Least Squares Fitting

Once the toss has been triggered, data storage, fitting, and prediction begins. A recursive
least squares parabolic fitting method is utilized for object path prediction [Kimura et ai 92,
Kimura 92]. A summary of the method is provided in Appendix B.1.

Because the computation is recursive, running summations of intermediate variables are
maintained. The variables are used to compute the least squares fit at each time step. The
computation required each new data point is independent of how many data points have
already been collected. Each data point is weighted equally, the last having as much effect
on the predicted pzrabolic constants.

Using the previous work of [Kimura 92] as a starting point, two modifications are made
which improve the results. First, the initial estimates for the z acceleration are constrained
because they vary quite wildly for the first several data points due to noise content. If left
unconstrained, the z acceleration constants do not converge to correct values until after
approximately 10-15 data points. Therefore, for the first 10 data points the predicted Z
acceleration is bounded. Initially, the acceleration is set to -9.81 m/s2. The upper and lower
bounds are then set to -8.31 m/s? and -11.31 m/s? respectively for the first 10 data points.
After the first 10 data points, the Z acceleration has usually stabilized and converged to
close to -9.81 m/s? and the constraints become unnecessary. Secondly. cal ulations for the
z and y acceleration values are not done. Instead, it is assumed that they are zero in these
cases. Fitting a polynomial of higher order to a system of lower order decreases the accuracy
of resulting estimated constants. Therefore since it is known that the paths of the objects
for these experiments are linear in = and y, the acceleration values for these axes are set to
zero so that information is not wasted.

The constants which are determined using the least squares fit are

0 v p:
Cprb = 0 Vy Dy (4 1 )
a v; p.

which can be multiplied by (32 ¢1)7 to find the state of the object at time .

The estimates of the parabolic constants are updated every time both cameras receive
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new information. Although the cameras are synchronized in hardware, the processing time
on each of the vision boards could be different and occasionally the vision boards overrun a
frame during computation, so the output drops to 30 Hz. In order to get accurate cartesian
position information from the cameras, joint information from the same moment in time
is required. Therefore, time stamping must be done for each of the vision packets received
from each camera. Using these time stamps and velocity and acceleration estimates from
the tracker, the position estimate of one of the two cameras is integrated over the time
difference between the two camera time stamps so that joint information from the same
moment in time is used.

Once a set of estimated parabolic constants are obtained, the future path of the object
may be predicted for any given time. Later sections discuss how a catch point is selected
by moving along the predicted path of the object. The later sections require full knowledge
of the path of the object so that different points along the path may be examined.

One additional use for the parabolic fit is to aid in FEG tracking performance. In order
for the fitting to continue, the FEGs must remain tracking the object being tossed. Since
the path of the object is known as a result of the fitting, this information can be used to aid
in the FEG tracking of the object. The parabolic fit prediction is done in WAM cartesian
space, so it must first be transformed to FEG joint space. The position transformations
were presented in Section 3.2.2 and the velocity and acceleration transformations are found
in Appendix A.3. After transformation, the fit data is incorporated into the FEG tracker
by using a weighted sum of the tracker prediction and the parabolic fit prediction, resulting

in better overall tracking performance.

4.3 Initial WAM Catching Motion

Drawing from the previous work on this system [Hove, Slotine 91, Hove 91}, the WAM
initially moves away from the ball to avoid “spatiai backtracking”. “Spatial backtracking”
is the phenomena where the arm would initially try to move towards the ball and then as
the ball progresses along its path past the arm, the arm must move back in the direction

it came from in order to intercept the ball. The first several data points are not sufficient
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to compute a fit, but it is necessary to start the WAM accelerating so that sufficient time
is given to attempt a catch. In these initial stages, gravitational acceleration is assumed in
z. The WAM then moves in the direction of the peak of the toss so that the WAM will be
moving towards a position a good distance ahead of the ball rather than towards the ball.
Avoiding “spatial backtracking” causes the WAM to start moving with minimal data in a

generally correct direction and provides greater time for the WAM to accelerate.

4.4 Catch Point Determination

4.4.1 Safety Constraints

The first stage in catching is to determine if the ball is catchable, and if so, where should
catching be attempted. These items are determined by checking points along the object path
against a series of workspace and deceleration constraints. The path of the object is defined
parametrically in time using our parabolic fit. The catch point determination process is
actually a catch time determination process. The catch time is varied systematically, with
checks based upon the corresponding catch point coordinates. This process is repeated until

a satisfactory catch time is determined.

Radial Constraints The first set of constraints are based upon the safe workspace of
the WAM. Figure 4-3 illustrates two radial constraints. The physical length of the WAM
determines the outer radius limitation which is approximately one meter from the base.
The inner radius limitation is to protect the WAM from impacting itself during a catch.
In addition, there is a singularity along the line directly above the base of the WAM, so
inner radius limitation must be extended upward to avoid crossing through the singularity.
These limitations then define a sphere one meter in radius and a cylinder ;‘1- of a meter in

radius centered at the base of the WAM within which catching may not be attempted.

Z Height Constraints The next set of constraints are based on z height limitations.
Figure 4-4 illustrates two height limitations. The maximum z catch height is to prevent the
WAM from attempting to catch objects which are thrown in very high looping arcs over the

WAM. The minimum z catch height is to allow enough room for the WAM to decelerate
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Figure 4-3: The WAM’s workspace is constrained by a maximum radial distance and a
minimum radial distance.

before impacting the foam floor.

4.4.2 Catch Point Determination Process

The catch point determination process begins by selecting an initial prospective catch time.
Coordinates corresponding to this catch time are obtained using the parabolic fit constants.
These coordinates are checked against the workspace and deceleration constraints. If the
constraints are not satisfied, a new prospective catch time is selected and the process begins
again. This process is repeated until a satisfactory catch time/point is determined or the

toss is deemed uncatchable. The following paragraphs discuss these steps in more detail.

Starting Point The process of selecting a catch time/point begins by selecting an initial

prospective catch point. The parabolic fit constants for the z and y axes have significantly



74 CHAPTER 4. CATCHING ALGORITHMS

Maximum Catch Height

Figure 4-4: The WAM’s z catching range is bounded above and below for safety.

less noise and variation during the course of the toss than the z axis. Thus the z and y
velocity constants are used to locate the closest point along the path of the ball to the base
of the WAM (Figure 4-3). The reason for using the closest point to the base of the WAM,
as opposed to possibly using the closest point to the endpoint of the WAM, is to allow for
sufficient room for acceleration. The WAM requires room to swing about to approach the
catch point with the desired catch velocity.

The time for the closest point is calculated using the initial 2 y position of the ball and
the initial z y velocity from the parabolic fit. Figure 4-5 graphically illustrates the items in

the following equation.

d _ |pil(=P;j e Vj)
o=+ — = —/————4 4.2
i i (4-2)

After determining a catch time, the catch time and the parabolic constants may be used

to determine the coordinates of the prospective catch point.
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Figure 4-5: Calculations for the closest point to the base of the WAM are done using the
initial position and velocity vectors for the ball toss.
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Constraint Checking This catch point is checked against the previously mentioned
workspace constraints. If the maximum radius constraint is not satisfied, the ball is not
catchable. If the inner radius is not satisfied, then the ball path is passing close to the base
of the WAM, so the catch time is decreased to move backwards along the ball path and the
catch point is recalculated. The catch time is repeatedly decreased either until the inner
radius constraint has been satisfied, or the catch time has been moved to below 0.3 seconds
at which time the ball is deemed uncatchable. After satisfying the radial constraints, the
z height constraints are checked. If the catch point is above the maximum z height, the
ball is deemed uncatchable. If the ball is below the minimum z height, then the catch time
is decreased repeatedly until this constraint is satisfied or the time has moved below 0.3

seconds.
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Additional Adjustments One additional adjustment was added which gives the WAM
more room for deceleration in cases where the catch point is far from the base of the WAM.
In these cases the catch time is decreased by a small amount in order to catch the ball
higher in its arc. This allows for a greater distance to decelerate to avoid impacting into the
ground. At larger radial distances, the inertia of the WAM is greater and larger distances
are required to decelerate with the same maximum acceleration.

At this point in time the dynamics of the WAM are not incorporated to determine
whether the WAM itself can physically get to the ball in the amount of time given. This re-
quires more information about the dynamics and capabilities of the motors and transmission

than is easily available.

Catch Point Update and Timing of Grasp The calculation for the catch time/point
is repeated each time the predicted parabolic constants change (approximately 60Hz). This
assures that the catch point stays within the safety region of the workspace as the parabolic
constants change. As a result, the catch point and time vary as the toss progresses. But,
once the command to close the hand has been given the catch time must become fixed.
The Talon requires approximately 0.33 seconds to fully close. After the close command is
given, the Talon cannot easily stop the fingers. Therefore the catch time must be fixed after
the close command is given so that when the Talon is fully closed, the Talon and the ball
are coincident. Although the catch time is fixed, the catch point is allowed to vary as the
parabolic constants vary. If the resulting catch point moves out of the safe workspace of
the WAM after the catch time has been fixed, then the ball is uncatchable and the WAM

returns to its “home” position.

Result of Determination Process After the sequence of constraint checking above,
either a satisfactory catch time/point has been determined or the ball has been deemed
uncatchable. If the ball in uncatchable, the WAM decelerates from its current motion and
return to its “home” position. If a satisfactory catch time/point has been determined the
WAM continues with its path generation to intercept and match trajectories with the object

as described below.
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4.5 WAM Path Generation

Various methods for desired path generation for the WAM have been examined. In the
initial stages of this work, carrying over from past v.ork, a second order filter approach
was used. In order to improve the reliability and robustness of the system to a wider
variety of tosses and toss locations, polynomial path generation techniques are now applied

[Kimura 92].

4.5.1 Second Order Filters

In previous experiments with this system, a second order filter was used to generate a
desired path for the WAM. For our initial experiments, a similar method was attempted.
After determining a catch point, second order filters with variable filter constants were
applied in the z, y, and z directions. The desired acceleration for the z axis (23) was given
by the following equation using the coordinates at the catch point (z.) and the velocity at

the catch point (z;)

Ty = 2MN(Z, — £4) + N(z, — z4) (4.4)

with similar equations for the y and 2 accelerations. The desired velocity and positions
were then integrated with this acceleration. The result was a smooth position and velocity
profile but with a discontinuous acceleration profile if the catch position and velocity vary.

One problem with this method is that it had very high accelerations initially because
of the large driving error. With small driving error, the acceleration becomes small, which
translates to slow responsiveness. In an attempt to compensate for this effect, a time varying
filter constant was incorporated. The filter constant on the second order filter was increased
and decreased between an upper and lower bound based upon the hand’s distance from the

ball. The variable filter was implemented using a first order filter on A.

A=A+ f(’\high/low - A) (4.5)

Values for f, Apign, and Ay, were selected for stability and A was initially set to Ajpy. As
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the catch progresses, A approaches Apigr as the WAM approaches the ball. Although this
allowed for larger accelerations with small driving errors, there were limitations on how
large f and Apign could be chosen. With larger filter constants, the filter magnifies noise
and becomes unstable.

Another problem with this method is that it never guarantees the time of travel for the
path. Although the arm is commanded to move to the catch point, the time at which it
will reach the desired point is not known. For similar tosses to the same general region, the
system could be tuned to catch successfully, but this method proved to be quite unreliable

for a variety of tosses.

4.5.2 Third Order Polynomials

In order to have a better grasp on the timing of the catching as well as the acceleration

values for the arm, polynomials are now used to generate intercepting paths for the WAM.

Polynomial Definition Third to fifth order polynomials have been considered for path
generation. Third order polynomials allow for matching of position and velocity at both
endpoints of the segment. Fifth order polynomials allow for matching position, velocity,
and acceleration at both endpoints. The fifth order polynomials are smoother and as a
result will usually take a longer path to match the acceleration of the ball at the end of
the catch. Fifth order polynomials were found to exceed the workspace of the WAM by a
large amount. The third order polynomials cause discontinuities in acceleration, but they
are much closer to remaining within the workspace of the WAM. Therefore, third order
polynomials in z, y, and z are used for path generation for the WAM.

The third order polynomial are generated between the current location of the WAM and

the prospective catch point. The polynomial is of the form

1. 1
p(t) = gjpta + Ezn,,t2 + vpt + pp (4.6)

where each of the bold faced items are 3x1 vectors with z, y, and z components and j is

used to denote “jerk”, the derivative of acceleration.
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Concerns One issue which needed to be addressed was what to do when the polynomial
path exceeded the workspace of the WAM. Here, a combination of the “catching” and
“snatching” approaches are used to resolve this issue. When the path generated by the
third order polynomial is found to exceed the workspace of the WAM, the magnitude of the
velocity at the catch point which the WAM attempts to match is scaled down. By repeatedly
reducing the magnitude of the velocity to be matched, the desired path for the WAM may be
maintained within the safe workspace limits. This is equivalent to assuring that the WAM
reaches the catch point at the appropriate time but without the full magnitude velocity,

thereby reducing the length of the path traveled.

Generation of Path In order to generate the polynomial path, constants in the polyno-
mial equation 4.6 are determined from knowledge of the initial position and velocity (p(t;)
and v(¢;)), final position and velocity (p(Z2) and v(t2)), and the time difference. The jerk

and the acceleration constants are determined first

b= e (p(tz)—p(tl))—av(tz)—v(tl)} (4.7)

(t2 - tl)2 (tz - tl)
2 {'- %jp(tg + 11ty — 2t%) + tg 1 4 (p(tz) - p(tl) - V(tl)} (4.8)

a
P tr— 1y

and these are then used in the following two equations to determine the velocity and position

constants.
1. ,
vp = v(tj)—apt - §th1 (4.9)
1 1,
Pp = P(t)-vph — Eapt% - gjpt? (4.10)

The o term multiplying the velocity vector at time ¢, in equation 4.7 is our compensation
for the outer radius workspace constraint which was discussed previously. It begins at 1.0
and is decreased as necessary to satisfy workspace constraints during path generation.

These constants are then used in the following equation to generate the path for the

WAM for time t.
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Case 1: WanCue.FlngeuClosingPanlkltanlanh-Bllllmpactstideofﬁngm

Ball Path

Case 2: Fingers Closing Perpendicular to Ball Path - No Impact, More Sensitive to Timing

&

Figure 4-6: Two different cases for Talon finger orientation during closing.
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Similar equations are used to generate paths for y and z. The resulting trajectory is then

fed to the WAM adaptive controller.

4.6 Talon Orientation and Timing of Closure

During catching, the Talon supination/pronation (forearm) joint must be oriented such that
the fingers close perpendicular to the path of the ball.

At certain orientations the Talon fingers will block the path of the ball entering the hand,
so therefore the Talon should orient itself such that the fingers close in a direction which
is perpendicular to the path of the object. Figure 4-6 illustrates two cases, one where the

fingers are oriented in the worst case, and a second where the fingers are oriented correctly.
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In this way, the ball impacting the outer surface of the fingers can be avoided. To determine
the correct position for the supination/pronation joint, the forward kinematics of the WAM
and the desired velocity vector at the catch point are used. From the joint values for the
WAM and the forward kinematics, the transformation from the WAM base coordinate frame
(world frame) to the end effector coordinate frame may be determined. The catch point
velocity vector is then transformed to the end effector coordinate frame. The transformed
velocity vector is projected into the zy plane of the end effector coordinate frame. The
projection must be used because an extra degree of freedom would be required in the Talon
in order to orient with respect to any arbitrary vector. The desired supination/pronation
joint value is then set to the angle between the projected velocity vector and the z axis (see
Appendix B.2). The Talon is servo-ed to this joint angle using a second order filter.

Also during catching, the latency between the issuing of the close command the actual
finger closure must be considered. The minimum time for the Talon fingers to move from
fully open to fully closed is approximately 0.33 seconds. Due to this latency, the command
to close the fingers is given before the WAM has reached the catch point. Although the
degree of finger closure could be servo-ed based upon the remaining time until catching, the
logistics would be much more complicated. Therefore, once the Talon command to close the
fingers is given, the motion must be completed. For this reason, once the close command
has been issued, the catch time is fixed to ensure that when the fingers are closed, the WAM

is in the correct catching location.

4.7 Path Matching and Post Catching Deceleration

Once the catch point has been reached, to increase the probability of successful catching,
the WAM matches trajectories with the object for a short period of time before deceleration.
For 0.05 seconds after the catch time, the desired WAM path is coincident with the predicted
ball path.

After matching paths, care is taken to reduce the jarring experienced by the object
and to gradually introduce the change of mass of the end of the WAM for heavy objects.
Therefore, the WAM decelerates gracefully along the prior path of the object. A large
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CATCH Sequence

Ball In Hand? Yes Ve Ball In Hand
Move to Zero Postion ﬂ“’Viaully Toss Back to Thrower [—

SEARCH Lower Region Move WAM Away —l

Ball Found

GRASP Object

Figure 4-7: Flowchart of events which are used for the WAM to play “catch” with a human
thrower.

deceleration is required as a result of the path matching during which the WAM achieves
the same -9.81 m/s? acceleration as the object. Safety constraints are imposed during
deceleration using force fields to prevent impacts with the floor and the WAM itself. A
positive z force field in software is placed above the foam and a radially directed force field
in software is placed about the base of the WAM. If the WAM desired path intersects the z
force field, a positive z acceleration is applied. If the WAM intersects the radial force field,
a radial acceleration outward is applied. In extreme cases where the WAM has attempted
to catch objects far from the base of the WAM, the maximum torque applied to the motors

is insufficient to prevent the WAM from impacting into the foam.

4.8 Testing Environment

To simplify the process of testing changes to the catching algorithm, the WAM has been
programmed to play a game of “catch”. Figure 4-7 shows a flowchart for the sequence
of events in the infinite loop catching state. The game of “catch” begins with the FEGs

searching for an object in the thrower’s hand. When an object is found, the WAM waits
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for the toss to be triggered and then catching sequence in Figure 4-1 is executed. Once
the catching sequence is completed, the WAM checks whether the catch was successful. If
successful, the WAM moves to its vertical zero position, the Eyes visually verify that the
ball is in the hand, and then the WAM tosses the ball back in the direction of the thrower.
If the catch was unsuccessful, the ball should have landed on the floor within the WAM
workspace. The Eyes search the floor for an object using the consistency checking search
routine in Figure 3-10. If the object is obstructed, the WAM moves away and the Eyes re-
execute the search. Once the ball is found, the WAM picks up the ball using the grasping
sequence in Figure 3-12 and then tosses the ball back to the thrower. Once the thrower has
caught the ball, the sequence is begun once again.

Audio output is also incorporated in the system to add some personality to the system
and to aid in debugging. Useful pre-recorded and synthesized avdio clips are played at

various moments during the catching state.

4.9 Applicability of Methods for Non-Spherical Objects or

Non-Parabolic Trajectories

The catching algorithms discussed here may be applied to catching non-spherical objects,
such as cylinders, with varied success. The problems associated with non-spherical objects
primarily relate to the FEG tracking methods. As discussed previously, the FEGs would
experience problems with large objects, objects whose center of area varies as the viewing
perspective changes, or objects which have different lighting characteristics.

But the problems do not solely lie with tracking. For instance, to catching rotating
cylinders, ideally the WAM would like to match rotations to decelerate the rotation as
well as the translation in a smooth manner. To attempt to match arbitrary rotations, one
additional degree of freedom perpendicular to the direction of closure of the fingers would
be required.

For non-parabolic trajectories, new path prediction methods need to be incorporated.
Past work [Cannon, Slotine 95] has laid the foundations for using neural networks to predict

in real-time the aerodynamic forces on objects and thereby predict their future paths. Cur-
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rent work is being explored to combine this work to accomplish successful catching of objects
with non-parabolic non-planar trajectories. Aside from the path prediction techniques, the
other methods such as catch time/point determination and WAM path generation should
be equally applicable with some work on interfacing required. Small modifications to the
triggering method might also be necessary due to the change in throwing manner for objects

such as paper airplanes.



Chapter 5

Experimental Results

This chapter presents results for the two approaches to catching discussed in the previous
chapter. Results for the “snatching” approach are presented first. Then, more in depth re-
sults for the “catching” approach are presented. Finally this chapter closes with a discussion
of the sources of error which affect the performance of both approaches.

The following experimental results were obtained without special calibration or tuning
required. A one time training is required to store color histogram information for the vision
boards and a one time FEG/WAM transformation must be computed. Unlike the previous
system, which required frequent re-calibration, once completed, these calibrations need not
be adjusted each time the system is run. Upon start-up, after the basic home finding
procedures are run for both the FEGs and the WAM, the system is capable of catching.

The following sections present results from under-hand tosses of a fluorescent orange ball

from random locations approximately 1.5-2.5 meters distant from the base of the WAM.

5.1 Snatching Results

The success rate of the “snatching” approach was found to be less than 10%. This method
proved to be too sensitive to timing and noise to produce reliable and robust performance.
The WAM would be close, but the fine position tuning required during the last moments of
catching were often too quick for the WAM to respond with a second order filter. Often the

bali would deflect off the fingers. This section presents data from one successful “snatch”.

85
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Figure 5-1: Plots of zyz vs. time of the Ball and WAM trajectories during a successful
“snatching” attempt.

Figure 5-1 shows plots of each of the axes with respect to time. Note how the WAM
moves to the desired catch position before the ball and then remains there until the ball
and the hand coincide. The small up-curve of the ball data at the end of the toss is a result
of the successful grasp where the fingers have obscured portions of the ball. This caused a
shift in the calculated coordinates.

In the background of the path generation, there are additional computaticns which are
of interest. Note that the parabolic fit is updated with every new vision sample, therefore

the position and time at which the WAM would like to catch changes during the course
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Figure 5-2: Plots of prospective catch times versus toss time (top) and the distance from
the final catch coordinates versus toss time for the “snatching” attempt (bottom).

of the toss. Figure §-2 shows two figures which show the evolution of the catch time and

point. The upper plot shows the evolution of the catch time versus the time of the toss. All

times are relative to when the toss has been triggered. Note how the catch time becomes

constant once the close command for the fingers is given. The lower plot shows the distance

of the changing catch point from the final catch point coordinates. Note how the distance

decreases after the conmand to close the hand has been given and the catch time has been

fixed. This shows how the parabolic fit converges towards the final catch point. Note that

the whole toss and “snatch” attempt is completed in less than 0.6 seconds.
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Figure 5-3: Plots of FEG tracking error for all four joints during a successful “snatching”
attempt.
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Figure 5-4: WAM cartesian tracking error during a successful “snatching” attempt.
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Figure 5-5: WAM cartesian desired velocity during a successful “snatching” attempt.
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Figure 5-6: WAM cartesian desired acceleration during a successful “snatching” attempt.
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In addition to the desired paths for the FEG and the WAM, plots of the FEG and WAM
tracking error are shown. Both the FEG and the WAM are running adaptive controllers
with large adaptation gains to quickly adapt to parameters during the duration of the toss.
Figure 5-3 shows the tracking error for the FEGs for all four joint axes during the toss.
Figure 5-4 shows the WAM tracking error during the course of the toss. The maximum
error for any one axis was approximately 2.5 cm (1 in) during the initial motion, but note
that the error remains within 1 cm during the later half of the “snatching” attempt after
time was given for the adaptation to determine good parameters and where positioning
accuracy is vital. And finally, to better view the motion of the WAM, Figure 5-5 and
Figure 5-6 show the desired velocity and acceleration. The maximum acceleration for the
WAM is limited to + 15.0 m/s?, which is a safety limitation based upon calculations of
maximum motor torques at full extension.

Results from unsuccessful “snatching” attempts do not appear significantly different.
The required precision in timing and positioning for success is so high that it is on the order

of best capabilities of the system.

5.2 Catching Results

Our full “catching” approach using third order polynomials for path generation for the
WAM proved to be a significantly better method for catching. Testing was done to measure
of the repeatability of the system. Tosses were made to the same general area of the
WAM’s workspace, with all of the final catch points lying within a two foot cube. The
success rate for catching was found to be roughly 70% - 80%. On one testing run, there
were 53 successful catches from a set of 75 attempts with a lengthy sequence of 14 successful
catches. In every failed attempt, the ball impacted the end effector or occasionally passed
through the closing fingers. These statistics should be viewed as the current best results for
the system. Performance decreases for more difficult tosses (faster or farther from the base
of the WAM). The sources of error which cause the failures are discussed in more detail
in the next section. The results for a sample catching run are presented here, similar to

those plots presented for the “snatching” approach previously. In addition, Appendix B.3
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Figure 5-7: 3D View of the Ball and WAM trajectories during a successful “catching”
attempt.

contains photographs for two catching attempts.

Figure 5-7 shows a 3D perspective of the catching attempt. Note how the path for the
WAM moves parallel to the path of the ball so that the trajectories are matched for a small
duration of time.

Figure 5-8 shows the z, y, and z plots versus time. The z data flattens out towards the
end of the catch as a result of the force field which is placed about the base of the WAM
to help prevent impacts during the deceleration stage. Note how the distance between

the WAM and the ball converges to zero and remain zero for the duration of trajectory
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Figure 5-8: Plots of zyz vs. time of the Ball and WAM trajectories during a successful
“catching” attempt.

matching. It can also be seen that the parabolic fit matches the actual ball data so well
that the lines are overlapping.

Again, because of the changing parabelic fit estimates and the safety constraints which
are applied to determine catch time/points, the catch time/point will vary as the toss
progresses. Figure 5-9 shows the evolution of the prospective catch time/point versus the
time of the toss. The catch point can be seen to steadily decrease and approach the final
catch point. Over the course of the toss, except for the initial 0.25 seconds, the catch point

varied less than 1 inch, decreasing to almost zero for the last 0.05 seconds.
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Figure 5-9: Plots of prospective catch times versus toss time (top) and the distance from
the final catch coordinates versus toss time for the “catching” attempt (bottom).

The Adaptive Controllers for both FEGs and the WAM are activated with large adap-
tation gains for the duration of the toss. Figures 5-10 and 5-11 show the tracking error for
the FEGs and the WAM. The tracking error for the FEGs is somewhat deceiving because
it is the error between the actual and the desired joint values. But there is no guarantee
that the desired reflect the actuval location of the ball at that time. Similarly, a large error
in FEG tracking does not necessarily equate with large error in position determination. As
long as the object is in the screen, the offset from the center of the screen is accounted for.

But, the farther from the center of the screen, the greater the distortion and the greater
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Figure 5-10: Plots of FEG tracking error for all four joints during a successful “catching”
attempt.
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Figure 5-11: WAM cartesian tracking error during a successful “catching” attempt.
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Figure 5-12: WAM cartesian desired velocity during a successful “catching” attempt.
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Figure 5-13: WAM cartesian desired acceleration during a successful “catching” attempt.
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Number of | Acceleration (m/s?) Velocity (m/s) Position (m)

Samples X Y Z X Y Z X Y Z

2 (0.000 0.000 -9.810" | -1.544 -1.145 1.658 | 1.317 0.866 0.304
50.000 0.000 -£.300' |-1.963 -1.596 2.312| 1.377 0.911 0.424

10 | 0.000 0.000 -10.963 | -1.890 -1.594 2.447 | 1.375 0.912 0.424

15 ( 0.000 0.000 -10.745|-1.914 -1.597 2.421 | 1.377 0.912 0.424

20 | 0.000 0.000 -10.575|-1.932 -1.601 2.404 | 1.378 0.912 0.425

251 0.000 0.000 -10.415|-1.918 -1.585 2.382 | 1.376 0.910 0.426

30 [ 0.000 0.000 -10.146 | -1.928 -1.587 2.335| 1.378 0.911 0.428

! These values are set from our initial constraints for the estimates for z acceleration.

Table 5.1: Evolution of predicted parabolic constants during the “catching” attempt.

the chance for a portion of the object to be outside of the field of view - yielding slightly
incorrect data. Towards the end of the toss, as the ball moves closer to the cameras and
the tracking task becomes more difficult, the FEGs will often lose track of the ball. But in
the majority of cases, the attempted grasp by the WAM occurs first, obstructing the FEGs,
causing them to lose track of the ball. In contrast to the FEG tracking performance, the
tracking performance for the WAM is much more vital to successful catching. As will be
seen in the next section, the tolerance for position error is very small, therefore the WAM
tracking error should be as small as possible. The WAM tracking error remains within
approximately 1 cm for the vital portion of the catching attempt. The large error near 0.5
seconds is a result of the transition to the deceleration stage where there is a large jump in
acceleration.

Figures 5-12 and 5-13 show the WAM desired velocity and acceleration respectively. A
continuous desired position and velocity, and as much as possible, acceleration should be
provided for the WAM. Because third order polynomials are used, a smooth continuous
desired velocity is guaranteed. Aside from transients where switching between stages of
catching occur, the acceleration should not have large steps as long as the parabolic fit
estimates do not vary considerably. The initial jump in acceleration is a result of the start
of the polynomial, and the large jump just prior to 0.5 seconds is a result of the transition
to the deceleration stage.

Table 5.1 shows the evolution of the predicted parabolic constants during the course of
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the toss. Note how after the initial data, the estimated velocity and position constants vary
only slightly. Also note how the estimated z acceleration is not very close to gravitational
acceleration. Estimating z acceleration provides more accuracy than assuming gravitational
acceleration. As evidenced by these results, the assumption of gravitational acceleration

would produce incorrect results.

5.3 Sources of Error

5.3.1 Calibration, Accuracy, and Timing

The best positioning accuracy in steady state for the WAM is approximately 1/5 inch
primarily due to small inaccuracies in gear ratio measurements. Position determination
accuracy for the FEGs across the whole workspace of the WAM is approximately 0.4 inches.
But, the effect of the FEG position determination error is considerably reduced because of
the parabolic fit over 20-40 points.

In the best case, the hand can afford approximately 1/2 inch position error and less than
0.005 seconds timing error and still succeed in grasping the object. For the average toss,
the ball is moving with a velocity near 3 m/s and with gravitational acceleration acting on
the z axis. In 0.005 seconds, the ball will travel close to 1/2 inch.

Therefore with these requirements for catching, there is little room for the presence
of noise and tracking error for the WAM. The Adaptive Control with the fast adaptation
for the WAM is required in order to have the tracking performance which remains within
our constraints. 3imilarly, Adaptive Control for the FEGs is required to maintain the ball

within the field of view for successful tracking and prediction.

5.3.2 Vision System Latency and Lighting Effects

The majority of failures can be attributed to noisy data from the vision system which
results in more error in the prediction. The bad data results primarily from inaccurate
compensation for time delays. It is difficult to completely accurately compensate for the
latency in the vision syst2m. E~ch vision board outputs information once it has finished

computation on a frame. Depending upon the number of pixels, blobs, and edges in the
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image, the timing of completion will vary. Occasionally processing will take sufficient time
to cause the vision boards to overrun the next frame and drop to 30 Hz output.

Therefore there are two places where the code must compensate for timing. First,
the delay resulting from vision processing for the current frame for each camera must be
estimated. This delay is used to determine where the FEGs were positioned at the time
the image was taken. Next, it must be assured that information from both cameras from
the same moment in time are being used. The cameras are synchronized in hardware.
Therefore, it is known that the images were taken at the same time, but due to processing
delays, the controller might receive information from the vision boards at different times.
The data from one of the two boards must be integrated using estimates of the object
velocity and acceleration to synchronize the time stamps from both cameras. Both of these
computations will have small inaccuracies which will result in noise.

For the most part, the cause for increased computation time is the result of white balance
and lighting effects. As the ball travels towards the WAM, it passes under lighting fixtures
in the room and over different backgrounds. In the bright regions, the light reflecting off the
surface of the ball cause white spots in the image which do not register as the appropriate
color from training. This creates new edges which cause increased computation. In the
dark regions, less of the ball is seen, possibly creating more edges, and more importantly,
the center of area is shifted from the true center of the ball. The catching would greatly

benefit from more uniform lighting throughout the room.

5.3.3 Additional Sources '

There additional possible sources of error which have less noticeable effects. Occasionally it
has been found that catching has a better success rate in the evenings than in the mornings.
A possible cause is the ambient lighting conditions resulting from the sunlight through the
windows. It is also found that performance degrades if the system is run for a very long
duration (more than & 5 hours). This could possible be a result of temperature effects.
In addition, the torque ripple from the PWMs powering the motors for the WAM are
occasionally quite noticeable, affecting the tracking performance of the WAM. And finally,

the noise in the system might be slightly reduced if the cameras were auto-focus.



Chapter 6

Conclusion and Recommendations

6.1 Summary

This thesis nas discussed the experimental investigation of the capabilities of the new ac-
tive vision system and the robot manipulator for improved robotic catching in unstructured
environments. Control and use of the new vision system has been presented. New algo-
rithms for object tracking have been introduced. And structured methods for catch point
determination and path generation have been presented.

The incorporation of a new active vision system and the coordination of vision and

manipulation has involved the following.

1. The implementation of various controllers for the active vision system, including a
Model Reference Adaptive Controller [Slotine, Li 91}, has been presented. Perfor-
mance results for the PD and the Adaptive Controllers, showing the increased perfor-

mance of the Adaptive Controller for trajectory tracking were shown.

2. A method for determination of object location using stereo vision information was

presented.

3. A method for visually tracking moving objects was presented which is capable of
tracking objects moving up to approximately 4 m/s at a distance of 1 m from the

cameras (8 m/s at 2 m, etc.).

99
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4. A simplified cross calibration method for coordinating the vision system and the ma-
nipulator was presented. The resulting calibration had an accuracy of approximately

% an inch over the full workspace of the manipulator.

Using the new active vision system and the cross calibration, successful results for robotic

catching were presented. The elements involved in catching were as follows.

1. The implementation of a recursive least squares fitting of ball data to parabolic paths

for toss path prediction was presented.

2. A structured method for utilizing toss path prediction for determining safe catch

points was presented.

3. The replacement of the second order filter path generation scheme with a third order

polynomial path generation scheme for the WAM was presented.

4. Precise timing for closure and methods for orientation of the end effector were imple-

mented for increased catching success.

Utilizing all of the techniques listed above, this system has achieved successful catching
of free-flying spherical balls. The percentage of successful catches for the best performance
was found to be approximately 70-80 %. It was found that the Adaptive Controllers, which

yielded small tracking error, were vital to the success of the catching algorithms.

6.2 Recommendations

This section presents ideas for improvement of the current system. The two most vital
areas for improvement are presented first, cross calibration and object tracking. Then,
additional improvements for WAM path generation during catching are presented. And

finally, additional system improvements are discussed.

6.2.1 WAM/FEG Calibration Methods

In the current calibration method, the problem was simplified by using physical constraints

based upon the mounting of the FEGs relative to the WAM. This method relies upon
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the accuracy of the mounting. Ideally, a full calibration method should be developed which
would account for any inaccuracies, or more generally, for any placement of cameras relative
to the WAM.

The process by which data is collected for the cross calibration should be studied in detail
and different formulations of the calibration problem should be examined. The logistics
of data collection basically should address the problem of how to get accurate position
information from both the FEGs and WAM for the same point in space. And, two possible
formulations of the cross calibration problem are: (1) the FEGs could define their own
cartesian coordinate frame and then the full rotation and translation vector between the
WAM and FEG frames could be determined, and (2) a transformation which directly maps

the four FEG joint angles to WAM cartesian coordinates could be determined.

Logistics of Data Collection

The method we have used here places the ball at the end of the WAM. After measuring the
length to the center of the ball along the last link of the WAM, the forward kinematics can be
used to determine the position of the ball as measured by the WAM. At the same time, the
cameras may track the ball and thereby have joint or cartesian position information. This
method is a bit imprecise, since the ball is large and in certain orientations the WAM itself
partially obstructs the ball from the view of the cameras. Thus, it is difficult to mark the
WAM in a precise way such that the FEGs can pinpoint a location on the WAM accurately.
Possibly the use of a smaller fluorescent orange spherical object placed far enough along

the last link to avoid obstruction may yield more accurate results.

Independent FEG Coordinate Frame

In our current method, the FEGs have their own cartesian coordinate frame which is related
to the WAM fraine through a rotation and translation. There are actually two problems
involved here, one is to obtain an accurate coordinate frame for the FEGs, and the second
is to determine the transformation from the FEG frame to the WAM frame. The problem
of obtaining an accurate coordinate frame for the FEGs is discussed later in Section 6.2.4.

The second problem of determiniag the cross calibration is discussed here.



102 CHAPTER 6. CONCLUSION AND RECOMMENDATIONS

As discussed in Section 3.3, the problem of cross calibration has been simplified to a
one DOF problem. This accuracy of this method depends on the accuracy of the mounting.
Since it is known that there are small inaccuracies in mounting, it would be better to solve
for the full rotation matrix instead of the simplified one. Therefore, additional calibra-
tion methods should be implemented which calibrate for the full rotation and translation.
These methods would involve the solution of a nonlinear system of equations. The use
of quaternions to represent rotations may be beneficial in obtaining an easier solution to
the transformation problem. Rotation matrices would have nine elements (which are not
independent), where quaternions will only have four. The simplified method we have been
using here was a first iteration. The full transformation calibration should be derived and

implemented for greater accuracy.

Direct Mapping from FEG Joint Space to WAM Cartesian Space

There are also other methods which could be pursued which do not define an independent
coordinate space for the FEGs, but rather convert FEG joint angles directly to WAM
coordinates. This would have the added benefit of allowing incorporation of information
from each FEG individually as it arrives. This would eliminate the necessity for some time
stamping and compensation which is currently done, reducing the noise. And finally, this
method would allow for the placement of each camera arbitrarily relative to the WAM
and the other camera. The calibration should then be able to determine the location of
each camera relative to the WAM. This problem is more difficult than the transformation

problem of the previous section, but would possibly yield better calibration.

6.2.2 Improving Visual Tracking

Currently the range of speed of tosses which the system can catch is limited by the vision
system and the visual tracking. In order to be able to catch faster tossed balls, both the
vision hardware and the tracking algorithm require improvement. Three approaches for
improving the tracking capabilities of the vision system are: use custom built non-NTSC
cameras or use smaller focal length lenses (wider field of view), improve the vision boards

to speed up the processing and make the latency a constant value, and use statistical
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measures and tracking and optimal estimation theory to improve the tracking algorithm

used to predict the path of the object.

Custom Cameras and Different Lenses

All NTSC cameras output interlaced frames at 60 Hz. In order to obtain faster output, a
custom camera must be buili. Along with a custom camera, an associated vision processing
system must also be built. For the moment, this is the most difficult and expensive approach
and other methods should be examined first.

Using rough calculations, with the current focal length lens, an object moving at 7 m/s
at a distance of one meter would move out of the field of view before the next camera frame
is taken. By using a smaller focal length lens, providing a wider field of view, this maximum

velocity can be increased. This by far is the simplest method for improvement.

Vision Processing Hardware

A major source of error in the current system involves the integration over the latency in
the vision system. The integration over the latency time results in amplification of errors
in estimates of velocity and acceleration. In addition, the latency time itself is variable,
depending upon the number of edges and “white” pixels in the image.

Therefore, the latency should be decreased and made invariant to image content. In
order to decrease the latency, a change of hardware is required. The current vision system
uses 68332 processors for computation. The more powerful C40 DSP processors could be
used for vision processing which would decrease the processing time for each image. In
order to make the latency invariant, the largest latency time could be found and the board
could be programmed to wait for this length of time for every frame. Another option would
be to specify time-stamps for the start and end of processing for each image so that the
exact latency time would be known.

There is also the possibility of completely altering our approach to the vision problem.
Up to this point, we have used simplified vision using color-keying for speed and simplic-
ity. If more powerful vision processing hardware were obtained, such as DSP based vision

boards, then more “traditional” vision algorithms can be applied which would greatly ex-
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pand the information we may extract from the vision system. We could develop motion
detection/tracking systems, or study image segmentation and recognition. Although this
may not improve the speed of object tracking, it would expand the class of objects which

may be tracked and possibly provide more information about the object being tracked.

Algorithm for Object Tracking

The method used for tracking fast moving objects could be improved. Qther tracking meth-
ods have been discussed by other researchers [Bar-Shalom, Fortmann 88, Bar-Shalom, Li 93,
Fiala et al 94, Kalata 84]. The existing body of work should be built upon and applied to
our task for improved, theoretically sound tracking. In general, the tracking would benefit
from a better formulation and understanding of the problem. The signal from the vision
boards should be analyzed in more detail. The frequency of the noise should be determined
and filtered. More precise models of the behaviors of the object being tracked should be

formulated.

6.2.3 Catching Path Generation Possibilities

The WAM can either be given paths in cartesian space or joint space, with associated
advantages and disadvantages to each. In both representations, different path generation

schemes could be used.

Cartesian Space Path Generation

Additional methods besides third order polynomials for path generation are possible which
may better utilize the capabilities of the arm. The third order polynomial often approaches
the outer radius workspace limitation as it swings around to approach the catch point with
the correct desired velocity. Also, since third order polynomials are being used, accelerations
are not matched, therefore there are discontinuities in acceleration at the beginning and at
the end of the path. Additional methods which are being considered are the use of chained
splines or the combining of sections with predetermined acceleration profiles. These methods
may provide a means for achieving smooth acceleration profiles while remaining within the

workspace limitations.
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Joint Space Path Generation

There is also the possibility of conducting catching in joint space rather than cartesian
space. Currently the catching is done in cartesian space, with the desired path for the
WAM being specified by cartesian position, velocity, and acceleration values. These values
are then converted within the controller using path dependent inverse kinematic methods
[Niemeyer 90]. As another possible option, the catching may be conducted by specifying
desired joint position, velocities, and accelerations. The advantages of using joint space are:
there are no singularities in joint space; you have better control over the desired torque
on each of the individual motors; and this allows for better utilization of the acceleration
capabilities of each of the joints for catching and deceleration. The disadvantages of using
joint space are: the path of the endpoint is not controlled explicitly, so safety constraints
to prevent the arm from impacting iiself or the floor are more difficult to implement; the
position and velocity at the catch point need to be computed through the use of inverse
kinematics; and the matching of trajectories of the arm with the ball path for a lergth of

time for grasping becomes more difficult.

6.2.4 General System Improvements

There are a number of items relating to hardware, software, and environment which may
be changed to increase performance. The Talon may be strengthened and improved. The
code may be revised to consider the WAM and Talon as a single manipulator, rather than
two separate ones. The accuracy of resulting coordinates from the FEGs could be improved

by more precise mounting. And lastly, the lighting could be better controlled.

The Talon

The Talon is currently speed limited due to the large gear reduction in the fingers. By
using stronger motors with smaller gear reductions, we can reduce the time required for the
fingers to close as well as getting firmer grasps on objects.

In addition to time and strength considerations, the design of the Talon could be mod-
ified. Occasionally during catching, the object impacts the fingers or end of the Talon,

bouncing out of reach. The end of the Talon could be padded to create a softer surface to
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impact upon. Lastly, one more degree of freedom in the Talon would allow for orientation
to any direction in space. This would allow the for the use of a “palm” in catching as well

as catching rotating cylinders.

Seven DOF WAM/Talon

Currently, the kinematics for the WAM and Talon are handled separately. In software,
the WAM and the Talon are treated independently. In the future, the software should do
the full seven DOF kinematics. This would ease orientation of the Talon with respect to
the world. It would also provide more flexibility in control method and ease planning of

currently difficult motions.

FEG Mounting Methods

The current vision system is accurate to approximately 0.5 inches. Although this value is
large, the effect is greatly reduced during catching due to the least squares fit over 20-40
points. Nevertheless, the system would greatly benefit from greater accuracy.

More rigorous calibration and mounting is required to improve the accuracy of the vision
system. Internal calibration for the cameras parameters should be done and mounting
misalignments with the center of rotation of the FEG should be determined. The exact
location of the focal point of the cameras should be determined and then the offsets from
the center of rotation of the FEGs should be calculated. These may be used with the
methods in Appendix A.4 to obtain more accurate coordinates. In addition, the FEGs may
be more precisely mounted relative to one another, possibly by mounting to a single base.
Currently each FEG is mounted to a ceiling rafter by means of bolts through holes which
have some clearance. By mounting both FEGs to a single piece with threaded holes, the
relative position of one FEG to the other can be known to machining precision. Once the
mounting is completed, a more complete calibration should be implemented which accounts
for any remaining mounting inaccuracies.

Shortening the baseline between the two FEGs might also be a consideration. This
would make accurate mounting easier, make the system more portable, and would reduce the

effects of vertical misalignments and horizontal misalignments in the direction perpendicular
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to the baseline. But by reducing the baseline, the effects of errors in pan angles are increased.
For instance, if the object were located by one FEG at a pan angle of = /4, for a pan angle
error of 0.01 radians, decreasing the baseline by half would increase the position error by

approximately 25%.

Lighting

Currently, the lighting in the room is very concentrated under the light fixtures placed in
the room. Creating uniform lighting about the workspace would serve to reduce the noise
in the vision data by stabilizing the binary image seen by the vision boards as the object

moves about the room.

6.3 Conclusion and Future Work

This thesis has presented the methods and results for our experiments in 3-D robotic catch-
ing of free-flying objects. Sources of error and recommendations for improvements to the
system have been discussed.

Current research is being done to examine catchirg of objects with different aerodynamic
characteristics. Objects of interest are light-weight foam balls, paper airplanes, and other
items with non-parabolic trajectories. The current least squares approach to path prediction
for the tossed object is replaced by a neural network based prediction method based upon
[Cannon, Slotine 95]. Interfacing this with the catching algorithms documented here have
yielded good preliminary results.

Future work will try to incorporate learning in tracking, prediction, and catching. The
system may also be applied to additional dynamic tasks such as playing baseball or multiple
object juggling.
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Appendix A

Fast Eye Gimbal Appendices

A.1 Derivation of the Dynamic Equations for the FEGs

The Recursive Newton Euler Method originally developed by Luh, Walker, and Paul was
first used to derive the dynamical equations of motion. Then the Lagrange Method was used
as a check to verify the dynamics. Here we briefly summarize the fundamental equations

for both methods. For more information on both methods, see [Asada, Slotine 86).

A.1.1 Recursive Newton Euler

First we apply kinematic equations to each link

Wit1 = Wi + Git1b;
Wip1 = Wi + Gib + wi x ¢;b; (A1)
Vig1 = Ui + Wig1 X T i41

Qg1 = @ + Wigy X Tiip1 + Wigr X (Wig1 X Tii41)

where all the terms are vectors except for the ¢; terms which are scalar, and b; is the
direction of the joint axis. Next we use these equations to find the motion of the center of
mass for each link

Vei = Ui + Wi X Py

(A.2)
Ao = a; + W; X Tici +wi X (wi X Ti,ct')

109
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Now, we use dynamic equations to find the joint torques

i-1,i = Jii+1 — Mg + mia
fi 1,6 fiin g ilci (A.3)

Ni1i = Nijig1 — Tici X fiig1 + Tic1,6i X fio1,i + Liwi +wi x (Liwy)

We are only interested in the component of the torque in the direction of the joint axis, so
Ti = Nioyi - b; (A4)

Through all these equations, it is important to keep track of which coordinate system
you are using. In order to use a configuration independent inertia matrix, I;, we need to
use link coordinates. Thus in the above equations, when a variable with respect to frame
¢ is involved in an equation with respect to frame i+1, it should first be pre-multiplied by

the rotation matrix, R:+!.

A.1.2 Lagrange’s Equations of Motion

The primary equation for the Lagrangian Formulation is

n n n
=Y Hiydi+ Y. Y hijedide + Gi t=1,2 (A.5)
j=1 ji=1k=1

First let us show how the expression for the H matrix is found. Given the following relations

which define Jg) and Jl(:)

Vei = J(')
0. (A.6)
wi = Jy q

and also using the configuration invariant inertia tensor I; to get the inertia tensor in the

base frame

= RL(R))" (A7)

we get an expression for the H matrix of the form

H= Z(m JOT g 4 O L g0y (A.8)
i=1
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To see a more thorough investigation of this equation, see [Asada, Slotine 86).

Next, we find expressions for the other terms in equation A.5.

_ OH;; 10H;;
and
n 3
G;= ijyTJg-) (A.10)
Jj=1

where J g-) is the ¢th column vector of J}j).

Thus from equation A.5 we find expressions for the joint torques.

A.2 Adaptive Control

A.2.1 Lyapunov Proof of Stability

The following is a proof for the case with separate Kp and Kp gains as in equation 3.16.
The proof for Kp and s is very similar and simpler.

First, let us restate the dynamics here

Ha+Cq+G=r (A.11)

where 7 is our control input defined by the equation

T=Ya - Kp§— Kp (A.12)

and Y a is defined by the following

H(i.r + Cq.r +G=Ya (A.13)

Now we select a Lyapunov function of the form

= %sTHs + %a’-"r-la + %"'—’(Kp + KpA\)g > 0 (A.14)

Note that V is positive definite since H, ', Kp, and Kp are all symmetric positive definite
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matrices and A is positive.

We take the first derivative of V and we have

V=sTHs+ %sTHs +&70'a + §(Kp + Kp\)d (A.15)

substituting, we get

V=sl(r—G-Cd— His + %fIa) +a T8+ §(Kp+ KpNd  (A.16)

We know that H — 2C is skew-symmetric based upon energy conservation. Thus removing

these terms and substituting 7 we get

V =sT(Ya - Kpd — Kpd) +4& T™'a+ &Kp + Kp))d (A.17)

Finally, selecting the adaptation law & = ~T'YTs we get

V=-Kpq-2gTKpg<0 (A.18)

where Kp and Kp are symmetric positive definite.

Now, we note that V is lower bounded and V is negative semi-definite. From V < 0 we
also see that s, &, q, and ii are all bounded if qq, 44, and qqd are all bounded. Therefore
T is bounded and thus q is bounded.

We finally need to look at ¥ and check if it is bounded.

V=25 Kp§- 2§ Kpg (A.19)

Thus we see that V is bounded as well. Using Barbalat’s Lemma [Slotine, Li 91], we con-
clude that V converges to zero. This then implies that q and (’i also converge to zero. In

other words, the tracking error ideally converges to zero using this control law.

A.2.2 Implementation Issues

In order to implement the Adaptive Controller, we need to specify the values for the band-

width, A, and also for the adaptation gain matrix, I'.
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The bandwidth should be tuned so that higher frequency elements are not considered

by the controller. Some basic guides for selecting the bandwidth from [Slotine, Li 91] are

AL AR~ -2?"113
R PVEE: (A.20)

A< Asx %Vaampling

where A is selected to be the minimum of the three bounds above. These bounds relate
to unmodelled structural modes, time delays from actuator dynamics or other delays, and
sampling rate limitations. Ideally we would like to have A ® Agp = A4 = Ag, thereby
limiting wasted resources. The slowest structural resonant mode of the system is a physical
characteristic of the plant and is a “hard” limitation, where the other two can be altered
by changing various portions of our experimental apparatus.

In selecting I, we desire each of the parameters to converge at approximately the same
rate. Thus from equation 3.12 we see that the convergence is related to the Y matrix. From
[Niemeyer, Slotine 88], we find a method for selecting initial base values for the I' matrix

from which we can tune for better performance.

T _l
T « diag ( / YTYdt) (A.21)
0

where Y is defined as before from equation 3.14. This relation can be seen as related to
least-squares identification rules. It was found that some additional tuning from these base

values was required to achieve better performance.

A.3 Velocity and Acceleration Transformations

The transformation from joint space velocity to cartesian velocity can be obtained by dif-

ferentiating the z, y, and 2z equations, which lead to

D
02 — 64)
2D cos 6y
sin2(02 - 04)

(— sin(20;) 04 + sin(264) 65) (A.22)

2D sin 0, cos 8, cos 6,4
sin(02 - 04)

(— cos® 0, ég + cos? 0, 0.4) - (A.23)
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2Dsin @ . .
= 55(_0;-_;;)(' cos? 04 0, + cos? 02 6,) +

2D cos 6, cos 05 cos 84
sin(02 - 04)

(A.24)

The transformation from joint space acceleration is not required since the only times we
will be transforming acceleration values is from cartesian space into joint space for specifying
desired accelerations.

In cartesian space, the velocity transformation into joint space is given by the following

equations, again obtained through differentiation.

. . 32— 24
b, = 63 = ?fy2+zzy (A.25)
. - o AN 2 2 .

6, = E-D)witzi)-(y'+2°)s (A.26)

VY2 + 22((z — D)% + 92 + 2?)
(z+D)yy+z2)— (¥ +2°)%
VY2 +23((z + D)% + 42 + 22)

04 (A.27)

The acceleration conversion is a bit more lengthy, and results in the following

-4 2y(zy—yff)) é(-"”'"” 2z(zg'yé)) (A.28)

bp = 63 =3 (_ Y +22 ' (g2 + 22)2 P +22 (Y2 + 22)2

1

vy? +23((1)) (

& ((w) + 22 — (¥ + 2°)i) — 2(z — D)( (z - D)(v9 +(x(zz';)— (y* + 22):1':))
1

) L . ((2)) ((2))
+9 ((w - D)(yii+9) — 2y% + 2y((1)) + e z2)((1)))

. L ., ((2) ((2)
+ 2 ((:c - D)(zE+ 2)— 228 + 2z((1)) + z(y2 " z2)((1))) ) (A.29)

where ((1)) = (z — D)2+ y% + 2% and ((2)) = (y® + 2?) — (z — D)(yy + 2#). The expression
for 6y is exactly the same as 6, with (z + D) instead of (z — D).

A.4 Compensation for Focal Point Location

In this section, we present a process through which we can compensate for misalignment
of the focal point and the center of rotation of the FEG. This section assumes you know

the location of the focal point of the camera which can be done through camera calibration
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methods.

We begin by giving a summary of the procedure. First, we determine the location of
each of the focal points in the FEG cartesian coordinate frame. We also determine the
orientation of the vector along each of the cameras. Using the location of each focal point
and the orientation of each FEG, we determine new tilt and pan angles in a rotated frame.
With these new angle values, we can use the same triangulation procedure as discussed in
Section 3.2.2 to obtain cartesian coordinates in the rotated frame. We can then rotate and
translate these coordinates back to the original FEG cartesian coordinate frame to get our
resulting corrected coordinates.

Next, we give a more detailed explanation of the procedure.

First, we find the location of the focal points in the base coordinate frame for each of

the FEGs.

T
P1 = R{—ol’ -5) R‘(0270) dl (A.30)

Pz = R(6s,-3) R(6:,0)dz (A31)

In the equations above, py and pg are the locations of the focal points and dy and dg are
the mounting offsets from the center of rotation! for FEG 1 and 2 respectively. The 8 terms
are the joint values for the FEGs, as defined in Figure 3-7. The rotation matrices R(8, a)

are defined as

cos@ —sinfcosa sinfsina
R(f,a) = | sinf cosfcosa —cosfsina (A.32)

0 sin o cos a

Next, we transform these focal point locations from each FEG base coordinate frame

to the FEG cartesian coordinate frame located between the two FEGs (as shown in Figure

1These are 3x1 vectors which are the distances to the focal points of each camera from the center of
rotation of the FEGs. The first element is the distance along the axis of the camera, the second is the offset
from the pan axis of rotation, and the third is the offset from the tilt axis of rotation.
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3.7).
[0 0 -1 )
¢t = |10 0 |p+lo (A.33)
0 1 0 0
(0 0 1 -D
2= [100]|p2+]| 0 (A.34)
010 0

where D is defined as before as the distance from each FEG to the origin of the coordinate
frame.
In addition to the location of each of the focal points, we also need to determine the

vector along which the camera is currently oriented. These directions are then

Q R(0,61) R(62,0) y (A.35)

R(0,63) R(04,0) ¥ (A.36)

q2

where ¥ = (01 0)7.

Now, we define a rotated coordinate frame based upon the line connecting the locations
of the two focal points. The location of the object will then first be calculated in this rotated
frame. The resulting coordinates will then be transformed to the FEG cartesian coordinate
frame. The rotation matrix and translation vector are required to do this transformation.
We define the z axis for the rotated frame to be along the line connecting the two focal
points. Then we find a rotation matrix which maps the original = axis from the FEG

cartesian coordinate frame to this rotated frame. The rotation matrix is given by

R/ = R(a,-7) R(3,0) R(0, ) (A.37)

where a = tan™((cy2 — ¢41)/(cz2 — ¢z1)) and 8 = tan~1((c;2 — ¢21)/(cz2 — €21))-
The translation between the FEG cartesian coordinate frame and the rotated frame is given

by
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1
o =5 (e1+e2) (A.38)

Now that we have the rotation between the coordinate frames, we can represent the

orientation of each camera in the rotated frame.

rn = RI%q (A.39)

r2 = RIY¢, (A.40)

Using these orientations in the new rotated frame, we can find the tilt and pan angles
which are equivalent to these directions. The tilt angles would be given by tan~!(z/y) and
the pan angles would be given by + tan~((y? + 22)/(V%% + 2?)).

With these new tilt and pan angles in the rotated frame, we can use the triangulation
method given in Section 3.2.2 to obtain cartesian coordinates for the object. The resulting
coordinates would be in the rotated frame. We then rotate and translate these back to the

FEG cartesian coordinate frame to yield the resulting corrected coordinates.

T
Xcorrected = R{:iq Xrotated + t;-':tg (A'41)

where X,oated are the coordinates found from the triangulation method applied in the

rotated frame.
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Appendix B

Catching Appendices

B.1 Recursive Least Squares Parabolic Fit

The Recursive Least Squares Parabolic Fit was originally documented in [Kimura 92]. We
summarize the method here.

We require a minimum of four data points in order to do the full least squares parabolic
fit. With two and three data points, we assume an z and y acceleration of zero and use
linear fits and for z, we calculate the assume gravitational acceleration for two data points
and we calculate the acceleration directly for three data points. For four or more data
points, we compute the full recursive least squares fit.

Let the parabolic constants be defined in matrix form as

Gy Uz Po
Corn=|4a, v, p (B.1)
a; U P:
The cost function can then be defined as

N
Z X, [tilz

t=1

L
il

N
= Y (X[t:] — Cprs @ Tft:])T(X[t:] — Cprb » T[t:]) (B.2)

=1

119
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where X,[t;] is the estimation error at time ¢;, N is the current number of samples and
T[t:] = (317 t; 1)T. We then minimize J with respect to C,rs with the following results for

the X axis parabolic constants.

2(D4z * DS - Dl:c ° D2)

z B.3
¢ (De - Ds — D3 - D3) (B.3)
1 1
UV = D_s(Dlz-EazD.?;) (B.4)
1, LA TA
pr = = alti]- v ti— e 1?) (B.5)
N =1 =1 2 =1
where
N N N
Dy = N Z(z[t;] 1) — Zz[ti] 2 t; (B.6)
=1 1=1 =1
N N N
Dy = Y 8% ti— (3 1) (B.7)
i=1 =1 i=1
N N N
Dy = =NY #-Y %"y (B.8)
=1 =1 =1
N N N N
Dyy = Y ([t -t))Y ti = D (alti] - 1:) Y17 (B.9)
i=1 =1 =1 i=1
N N
Ds = NY t2-(3 ) (B.10)
=1 =1
N N N N
Dg = Yty u;-Yay ¢ (B.11)
=1 i=1 =1 =1

The y and z directions can be calculated similarly by computing Dy, Dy., D4y, and Dy;.
These computations can also be done recursively in the sense that the whole summations
are not required to be computed each time around. The summations may be maintained
from the last loop with the new data being added to the summation. The result is a process
which does not require more computation as time progresses, each servo loop, the same

amount of computation is required.
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B.2 WAM Forward Kinematics for Talon Orientation

The transformation from the world frame at the base of the WAM to the coordinate frame
at the last link of the WAM can be calculated using Denavit Hartenberg Notation. Table
B.1 show a list of the constants for the four joints of the WAM.

Joint | 8| d| a| «
1|6, 0] O 2
2|16, 0] 0|-%
3 03 h3 as %
4 04 0 a7 -%

Table B.1: Forward kinematics for the WAM expressed in Denavit Hartenberg constants.

The constants in the table are hz = 0.5588 meters, a3 = 0.04064 meters, and a7 =
-0.02794 meters. The actual endpoint of the WAM is located hy7 = 0.46196 meters along
the z axis of the last coordinate frame.

Using the 6 and « values from the table, we can take the velocity vector for the ball
at the catch point and transform it to the endpoint coordinate frame for the WAM. Then
using only the z and y components, we can determine the joint value for the forearm joint
of the Talon to correctly orient the fingers perpendicular to the path of the ball. The z and

y components can then be found by the following equations.

(clc2¢3 — s183)cd — c13234 (c133 + s1c2c3)c4 — s1s2s4 €254 + s2¢3c4

R{ =
cle2s3 + sle3 cle3 — slc2s3 —38283
(B.12)
v v
x4 — R‘} z1 (B.13)
Uy4 Uy1

Then the joint angle for the Talon forearm is then given by the following.

-1, 0
f; = tan 1(ﬁ) (B.14)
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Figure B-1: A sequence of images of a catching attempt with the toss originating from the
left side (right to left. top 1o bottom).

B.3 Photographs of Catching Attempts

Here we present a sequence of images for two catching attempts. In the first. the toss

originates from the right side. In the second, the toss originates from the left side.



B.3. PHOTOGRAPHS OF CATCHING ATTEMPTS 123

Figure B-2: A sequence of images of a catching attempt with the toss originating from the
right side (right to left, top to bottom).
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