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The use of proteasome inhibitors to target cancer’s dependence on
altered protein homeostasis has been greatly limited by intrinsic
and acquired resistance. Analyzing data from thousands of cancer
lines and tumors, we find that those with suppressed expression
of one or more 19S proteasome subunits show intrinsic protea-
some inhibitor resistance. Moreover, such proteasome subunit sup-
pression is associated with poor outcome in myeloma patients,
where proteasome inhibitors are a mainstay of treatment. Beyond
conferring resistance to proteasome inhibitors, proteasome subunit
suppression also serves as a sentinel of a more global remodeling of
the transcriptome. This remodeling produces a distinct gene signa-
ture and new vulnerabilities to the proapoptotic drug, ABT-263. This
frequent, naturally arising imbalance in 19S regulatory complex
composition is achieved through a variety of mechanisms, including
DNA methylation, and marks the emergence of a heritably altered
and therapeutically relevant state in diverse cancers.

drug resistance | epigenetic gene regulation | apoptosis | EMT |
bortezomib

Cells rely on the proteasome machinery to mediate protein
turnover and maintain protein homeostasis (1–3). Upon

oncogenic transformation, a myriad of proteotoxic stresses that
tax the cellular machinery responsible for protein homeostasis
are introduced (2, 4). These pressures cause cancer cells to rely
heavily on enhanced proteasome function (2, 5–8). This de-
pendency can be exploited using natural and synthetic com-
pounds that inhibit, with exquisite potency and selectivity, the
catalytic function of the 20S proteasome (9, 10). Indeed, these
compounds are highly effective at inhibiting the growth of a wide
variety of cancer cell lines in culture. Unfortunately, their clinical
utility has been surprisingly limited, with therapeutic benefits
commonly observed for only a few types of cancer (9, 10).
The limited role for proteasome inhibitors as clinical chemo-

therapeutics can be attributed to biological processes that pro-
mote intrinsic and acquired resistance. For example, cell culture
models of acquired resistance often accumulate mutations in the
catalytic subunits of the 20S proteasome (11, 12). In terms of
clinical relevance, however, such mutations have yet to be de-
tected in clinical samples (13). Additional mechanisms of re-
sistance include alteration of specific cellular pathways such as
constitutive activation of NF-κB (14), activation of the chaper-
one machinery (15, 16), or alterations in the EGFR/JAK1/
STAT3 pathway (17).
To further explore and identify the cellular mechanisms of re-

sistance developed in the presence of distinct proteasome inhibi-
tors, our group and others recently applied genome-wide genetic
screens to various cell-line models (18, 19). In all models exam-
ined, experimentally reducing the expression of one of the many
different subunits composing the 19S regulatory complex increases
resistance to inhibitors of the proteasome’s catalytic core (18, 19)
and may show clinical relevance in multiple myeloma patients
(18). These data suggested that transient, nonmutational mecha-
nisms may play a key role in the ability of cancer cells to withstand

proteasome inhibition. In this work we examine if such a mecha-
nism is implemented by different cancers.

Results
Sharply Reduced Expression of One 19S Proteasome Complex Subunit
Occurs Frequently Across Diverse Cancer Cell Lines. We first char-
acterized relative mRNA expression levels for all genes that
encode proteasome subunits using the Genomics of Drug Sen-
sitivity in Cancer (GDSC) database (20). As expected, across 789
cancer cell lines, the average expression level of 20S subunits was
highly correlated with the average expression level of 19S sub-
units (Fig. 1A). However, in some cell lines, the expression of a
specific 19S subunit was much lower than the average expression
of that subunit across all cell lines. To quantify this phenomenon
for each cell line in the GDSC and the Cancer Cell Line Ency-
clopedia (CCLE) datasets, we calculated the SD from the mean
of every 19S subunit in every cell line. Each cell line was then
assigned a sigma score that is indicative of the greatest deviation
from the mean of any one 19S subunit in that cell line. Thus, a
sigma score of 3 indicates a cell line in which the mRNA ex-
pression of at least one subunit of the 19S proteasome complex
was reduced by 3 SDs from the mean mRNA level of that par-
ticular subunit across all cell lines. A sigma score of 2 indicates a
reduction in the mRNA of 2 SDs, and so on.
In 59 cancer cell lines, the mRNA level of at least one 19S

subunit was 3 or more SDs (3σ) from the mean for that subunit
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across all 789 cell lines in the GDSC dataset. For ease of ref-
erence, we designated these as “3σ lines” (Fig. 1B, red dots, and
Dataset S1). We also analyzed the CCLE dataset that includes
mRNA expression and DNA copy-number data for 990 cell lines.
Of these, 6.3% were 3σ lines, a percentage similar to that in the
GDSC dataset (Fig. 1C, red dots, and Dataset S1). To determine
whether this strong deviation from the mean of 19S subunits
could be explained by random variation in the expression of any
21 genes, we analyzed the frequency of 3σ lines in the GDSC and
CCLE datasets for 1,000 random sets of 21 genes (Fig. S1 A and
B). The frequency of 19S subunit 3σ cells was much higher than
expected by chance in both the GDSC and CCLE datasets (P
values = 1.1e-9 and 4.5e-12, respectively).
The particular 19S subunit gene that was suppressed varied

among the 3σ cell lines (Fig. S1C). PSMD5 was the most com-
monly suppressed 19S proteasome subunit in both the GDSC
and the CCLE cell-line datasets. Other frequently reduced sub-
units included PSMD1, PSMC6, PSMD10, PSMD14, and
PSMD6. Overall, the mRNA expression of 19S subunits was
reduced in cell lines representing a wide array of tumor types.
To investigate the frequency and patterns of 19S subunit mRNA

suppression in resection specimens of human primary tumors, we
further analyzed mRNA expression data from The Cancer Ge-
nome Atlas (TCGA). We examined the expression profiles of
8,557 primary tumors from 53 different cancer types. The fre-
quency of tumors with a 3σ drop of at least one subunit of the
19S proteasome was 4.3% (Dataset S2). Moreover, this analysis
of TCGA data showed that 3σ subunit reductions were present in
tumors of diverse histology, amounting to 6–9% of some tumor types
such as low-grade and high-grade gliomas, pheochromocytomas and

paragangliomas, acute myeloid leukemias, renal cell carcinomas,
and cutaneous melanomas (Fig. S1D).
Interestingly, as true for the GDSC and CCLE datasets, PSMD5

was the most commonly suppressed 19S subunit gene in human
tumor resection samples (Fig. 1D). In addition, other 19S subunit
genes that commonly showed changes in the GDSC and CCLE cell-
line datasets such as PSMD10, PSMD1, PSMC6, and PSMD6 were
suppressed in tumor resection samples as well (Fig. 1D).

Reduced Expression of Any One of Many 19S Subunits Correlates
Highly with Resistance to Proteasome Inhibitors. We next examined
whether naturally occurring reduced expression of a 19S subunit
correlated with the cells’ ability to tolerate proteasome in-
hibition. We used 310 cell lines in the GDSC collection for
which drug-sensitivity data were available and asked if our cal-
culated sigma score correlated with the measured EC50 for two
chemically distinct proteasome inhibitors, bortezomib and
MG132 (Fig. 2A and Fig. S2A). Increases in the sigma score (i.e.,
reduced expression of a single 19S subunit) were highly correlated
with increased resistance to both bortezomib and MG132. The
correlation between sigma score and increased EC50 for protea-
some inhibitors plateaued at approximately a sigma score of 3;
cells with sigma scores of 4 or 5 did not have significantly higher
EC50’s than cells with sigma scores of 3 (Fig. 2A and Fig. S2A).
Comparisons of the mean EC50 for both bortezomib and MG132

between the control group of cell lines and the 3σ lines revealed a
significantly higher EC50 in the 3σ group (P < 0.0001) (Fig. 2B and
Fig. S2B). For bortezomib, the average natural log of the EC50 of
the control group was −5.68, whereas the average natural log of
the EC50 of the 3σ group was −3.56 (Fig. 2B). A similar sigma-
score analysis for 20S proteasome subunit expression did not
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Fig. 1. Reduced expression of a single 19S proteasome complex subunit occurs naturally in many cancer cells. (A) The overall expression of all 26S proteasome
subunits is tightly correlated. The correlation between the z-score sum of expression of 20S proteasome subunits versus the 19S proteasome subunits is
plotted across 789 cancer cell lines taken from the GDSC dataset. Spearman correlation: r = 0.84 (P < 0.0001). (B and C) Representation of the expression levels
for individual 19S subunits for each cancer cell line in the GDSC (B) and the CCLE datasets (C). Red dots indicate cells that exhibit reduced expression of a given
subunit by more than 3 SDs from the mean (3σ). Each dot represents an individual cell line. (D) Analysis of primary tumor expression profiles taken from TCGA
dataset. The value of each bar is the number of primary tumors exhibiting a 3σ drop in expression of at least one 19S subunit.
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identify significant correlations with proteasome inhibitor EC50
(Fig. 2C and Fig. S2B), supporting the idea that the differential
sensitivity to proteasome inhibitors is specifically dictated by re-
duced expression of subunits of the 19S proteasome complex.
We experimentally validated the effect of 19S subunit suppres-

sion on proteasome inhibitor sensitivity by examining two sets of
cell lines derived from neuroblastoma and ovarian cancer, malig-
nancies of very different histological origin. One line in each set
had a natural suppression of one 19S subunit (IMR32, OVSAHO)
whereas the other did not (Kelly, OVCAR3) (Dataset S1). The
IMR32 neuroblastoma and OVSAHO ovarian cells have PSMD5
and PSMD9 subunit expression suppressed, respectively. As ex-
pected, cells with a naturally suppressed 19S subunit showed relative
resistance to proteasome inhibition compared with corresponding
lines of the same cancer type without subunit suppression (Fig. 2D).

Reduced 19S Subunit mRNA Expression Correlates with Inhibitor
Resistance and Poor Outcome for Myeloma Patients Treated with
Bortezomib. To determine whether the subunit-suppression mech-
anism of resistance that we identified has relevance in therapeu-
tic settings, we analyzed gene-expression data from two sources: a
laboratory-generated model of acquired resistance to proteasome
inhibition (23) and patient tumor samples collected during clini-
cal trials of bortezomib (22). The laboratory model involved the
mantle cell lymphoma line Jeko-1 and a bortezomib-resistant var-
iant (JBR cells) (23). The transcriptional profile of xenografts
formed by these cell lines in mice (21) revealed a strong reduction
in PSMD5 mRNA levels in the tumors formed by the bortezomib-
resistant JBR cells (Fig. 2E).
For patient-derived data, we mined correlative studies per-

formed as part of key phase 2 and 3 clinical trials that were
conducted in 2007 and established the efficacy of bortezomib in
patients with recurrent multiple myeloma (22). Expression pro-
filing data for pretreatment myeloma samples were available
from these trials but posttreatment samples were not collected,
precluding analysis of 19S subunit levels in the myeloma cells
that emerged following bortezomib treatment and relapse.
Strikingly, even in samples obtained before treatment, we found
that reduced 19S subunit expression at baseline correlated with
inferior disease control by bortezomib (Fig. 2F). Samples from
54 of 264 bortezomib-naive patients exhibited reduced expres-
sion of at least one of the 19S proteasome subunits. Of these 54
cases, 34 patients subsequently received bortezomib. These 34
patients exhibited a significantly shorter time to progression
compared with the patients with myeloma that did not have
relative suppression of 19S subunit expression (P = 0.004) (Fig.
2F). Notably, bortezomib treatment of patients with reduced
expression of 19S proteasome subunit(s) showed no greater ef-
fectiveness than dexamethasone treatment in the control group.
Nor did suppression of 19S subunit(s) induce a significant change
in the efficacy of dexamethasone treatment (Fig. S2C).

Proteasome 19S Subunit Suppression Marks a Distinct Heritable State.
To examine if the altered proteasome inhibitor sensitivity in the
cells with 19S subunit suppression is part of a broader alteration
to the cellular state, we created a rank-ordered list of gene-ex-
pression alterations in the 3σ cell lines. Analysis of CCLE and the
GDSC datasets, comprising more than 1,000 cell lines, yielded
very similar results. Cells with reduced expression of 19S subunits
had a significant reduction in genes associated with several key
oncogenic and signaling pathways. For example, the epithelial–
mesenchymal transition (EMT) gene signature was significantly
reduced (Fig. 3A, yellow, and Fig. S3 A and B). These cells also
displayed a reduction in gene signatures related to EGF and TNF
signaling (Fig. 3A, green, and Fig. S3A) and heat-shock–related
genes (Fig. S3C). Such highly significant patterns of differential
gene expression and gene-set enrichment are compelling, particu-
larly given that they are derived frommany diverse cancer cell lines.
Given the strong suppression of an EMT signature in the cell

lines, we focused additional analyses on the expression profiles
of primary breast cancer samples, a tumor type in which EMT
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Fig. 2. Reduced expression of a single 19S proteasome complex subunit is
associated with resistance to proteasome inhibitors. (A) The average borte-
zomib sensitivity of cells from the GDSC dataset is plotted against the sup-
pression score of any one of their 19S subunits. Each point represents the
median of the natural log EC50 for bortezomib (y axis) of all cells with at least
one 19S proteasome subunit with reduced expression at the indicated SD
from the mean (x axis). The blue line shows the number of cell lines for each
SD—the higher the deviation, the fewer cell lines (right y axis). Cell lines that
exhibit deviation of one 19S subunit by more than 3 SD (red dots) have
higher EC50 for bortezomib. (B and C) Cell lines with 3σ reduction in mRNA
expression of a 19S proteasome complex subunit (B) or a 20S proteasome
subunit (C) were compared with all other cell lines (control) for sensitivity to
bortezomib. The Mann–Whitney test was used to calculate a P value. (D) The
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increasing concentrations of the proteasome inhibitor bortezomib. (E) The
relative expression levels of all proteasome subunits were plotted as the log2
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model (21). (F) Time to relapse is plotted for patients that relapsed and were
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plays a critical role in tumor progression, in invasion, and, ulti-
mately, in systemic metastasis (24, 25). We used mRNA ex-
pression data from the TCGA and defined breast tumors as a
“control” unless they had a 3σ reduction of at least one subunit of
the 19S proteasome. The genes that were specifically enriched in
the proteasome 3σ tumors were primarily related to mitochondrial
oxidative phosphorylation and to ribosomal biogenesis (Fig. 3B,
red, and Fig. S3D). Such findings suggest that the 3σ tumors might
have undergone a less complete shift to aerobic glycolysis
(“Warburg effect”) and therefore may have retained higher de-
pendency on mitochondrial respiration than the control tumors.
Gene-set enrichment analysis further revealed that the unique

signature of the 3σ cancers is conserved between cancer cell lines
and primary tumors. For example, the EMT gene signature was
largely suppressed in 3σ primary breast tumors (Fig. S3D). Extra-
cellular matrix (ECM) genes were also suppressed in the 3σ tumors;
ECM genes are highly relevant to both EMT and EGF signaling.
Thus, in both established tumor cell lines and in primary tumors,
cells with a 3σ reduction in any one 19S proteasome subunit are
similar in many other malignancy-related biological pathways.

Naturally Occurring 19S Subunit Suppression Confers Vulnerability to
ABT-263.Our data indicate that single-subunit imbalances in the 19S
regulatory complex are part of a broad shift in the status of many
cancer cells. Using publicly available drug-screening datasets, we
asked if this naturally occurring, altered state might change the
sensitivity of diverse cancer lines to drugs in addition to proteasome
inhibitors. We examined sensitivity data for 140 drugs, most of
which were screened against 655 cell lines from the GDSC dataset.
For each drug, we calculated the average EC50 for all cells in the 3σ
group and compared that value to the average EC50 for the control
group (Fig. 3C). As described earlier (Fig. 2), 3σ cell lines were
relatively resistant to the proteasome inhibitors MG132 and bor-
tezomib (Fig. 3C). The naturally occurring 3σ cell lines, however,
were much more sensitive to the BCL2 family inhibitor, ABT-
263 (Fig. 4 C and D; P = 0.0077). Analysis of expression levels of
BCL2-family genes in the GDSC dataset revealed that the 3σ
group had a modestly (but significantly) higher level of expression
of BCL2 compared with the control group (Fig. S3E). Whether
there is a direct mechanistic link between increased expression
of BCL2 and inhibitor resistance in cells with suppressed 19S
subunits remains to be determined.

We validated the increased vulnerability of 3σ cell lines to
ABT-263 in the paired neuroblastoma lines described earlier
(Fig. 2D). IMR32 cells, in which PSMD5 is suppressed, were 50-
to 100-fold more sensitive to ABT-263 than Kelly cells, which
have no subunit suppression (Fig. 3E). ABT-263 targets several
members of the BCL2 family, including BCL2 and BCL-XL.
However, increased sensitivity to proapoptotic drugs was re-
stricted to ABT-263. IMR32 cells did not show enhanced sensi-
tivity to more specific BCL2 (ABT-199), BCL-XL (WEHI 539),
and MCL1 (A-1210477) inhibitors (Fig. S3F). This finding sug-
gests that, for reasons yet to be defined, the sensitivity of pro-
teasome 3σ cells to ABT-263 is likely due to dual targeting of
BCL2 and BCL-XL. As expected, IMR32 cells could be resensi-
tized to a proteasome inhibitor by forced transgenic expression of
the PSMD5 subunit (Fig. S3G). However, this did not alter their
sensitivity to ABT-263 or to the other BCL2 family members,
indicating that increased sensitivity to ABT-263 observed in the
19S proteasome 3σ cells was due to an altered cellular state and
was not necessarily driven by proteasome subunit unit loss directly.

Mechanisms That Reduce Expression of Specific 19S Proteasome
Subunits in Cancers. Rewiring of the transcriptome can result
from either genomic aberrations or epigenomic changes. Many
chromosomal regions are recurrently lost in cancers, and some of
these regions harbor genes that encode 19S proteasome subunits,
such as PSMC2 (26). DNA sequencing data from the CCLE
resource enabled us to determine whether the differential re-
duction in 19S subunit mRNA expression was associated with
copy-number loss. Notably, in the majority of 3σ cell lines, the
reduced mRNA expression of 19S subunits was not associated
with gene-copy-number losses (Fig. 4A). For example, in the cases
of PSMC3, PSMC4, PSMD3, PSMD5, PSMD7, PSMD8, and
PSMD10 subunits, the 3σ lines did not exhibit any copy-number
losses involving these genes. Other 19S subunit 3σ lines exhibited
partial gene-copy-number losses (Fig. 4A). Thus, a mechanism
other than gene-copy-number alterations is largely responsible for
the reduction of 19S subunit expression in most cancer cell lines.
To investigate further, we examined regulation of PSMD5 as it

was the most frequently suppressed 19S subunit across cancer
cell lines and tumors (Fig. 1). A common mechanism suppressing
the expression of genes is methylation of their promoters. We
assessed PSMD5 promoter methylation in both low-grade gliomas
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(LGG) and bladder carcinomas (BLCA), tumor types with the
highest frequency of PSMD5 3σ samples. In both tumor types, the
19S proteasome 3σ tumors revealed significantly higher methylation
of the PSMD5 promoter (Fig. 4 B–D and Fig. S4A), suggesting that
promoter methylation is a major mechanism for repressing PSMD5
mRNA expression in cancers.
We next examined the effect of promoter methylation on PSMD5

gene expression in the CCLE dataset (Fig. 4E). Consistent with

the results above, suppression of PSMD5mRNA expression across
different cell lines was strongly correlated with a high methylation
score for the promoter region of PSMD5 (Fig. 4E).
To experimentally validate our findings, we returned to our neu-

roblastoma cell-line pair, IMR32 and Kelly. Confirming CCLE data,
our quantitative RT-PCR measurements demonstrated that the
relative mRNA expression of all of the 19S subunits was re-
markably similar between the two cell lines with the exception of
slightly increased levels of PSMC2 mRNA in the Kelly cells and
the expected eightfold decrease in PSMD5 mRNA in IMR32 cells
(Fig. S4B). Using DNA bisulfite conversion and sequencing of the
PSMD5 promoter, we found strong DNA methylation of this
promoter in IMR32 cells with 98% of the cytosine residues within
promoter CpG islands being modified. In contrast, there was
minimal methylation of the PSMD5 promoter in Kelly cells, with
only 4% of the cytosines within the CpG islands harboring methyl
groups (Fig. 4F).
Striking as these findings may be, PSMD5 was the only 19S

proteasome subunit gene showing a strong correlation between
suppressed expression and promoter DNA methylation in the
CCLE dataset. We therefore suggest that there are multiple path-
ways by which the suppression of other 19S subunits is achieved.
These likely include both genetic and epigenetic mechanisms that,
because of their clear relevance to tumor biology, will be impor-
tant areas of future study.

Discussion
The transcriptional program that regulates proteasome subunit
mRNA expression is highly coordinated to maintain the stoi-
chiometric balance of the multiple proteasome components and
to foster the efficient assembly of the 26S proteasome complex
(27–29). However, a significant change in proteasome complex
assembly can result as a consequence of alterations in the level
of expression of just a single subunit (26, 30–33). Examining
thousands of cancer lines, we show that imbalanced expression of
the subunits composing the 19S regulatory complex occurs
through a variety of mechanisms. In the case of the PSMD5
subunit, multiple cancers displayed suppression mediated by
promoter DNA methylation. However, other subunits did not
use this mechanism. Indeed, other laboratories have shown that
several types of cancer display chromosomal loss of regions
encompassing the locus encoding the PSMC2 subunit. This de-
letion has a twofold effect: a decrease both in overall 26S pro-
teasome levels and in the ratio of 26S-to-20S proteasomes (26).
Moreover, reduced expression of PSMC2 has been associated
with poor response of multiple myeloma patients to carfilzomib
treatment (18). Thus, alterations in both DNA methylation and
gene copy number are clearly involved in regulating the ex-
pression of 19S subunits in a wide variety of cancers. Additional
mechanisms, including histone modifications, new mutations,
and microRNAs, are also likely to be deployed.
Regardless of the mechanism of suppression, however, the

reduction in any one of the many subunits composing the 19S
complex reflects a largely altered cellular state characterized by
increased resistance to proteasome inhibitors, altered gene-ex-
pression signatures, and increased sensitivity to the BCL2 family
inhibitor ABT-263 and a small cohort of other clinically relevant
drugs. For example, the TNF-NFκB pathway is suppressed in
cells that exhibit reduced expression of at least one 19S pro-
teasome subunit. This down-regulation is consistent with the
observation that proteasome inhibitors have a strong inhibitory
effect on NFκB activation (34). Furthermore, the TNF→NF-κB
pathway regulates the transcription of specific proteasome
subunits (including PSMD5) (35). Perhaps the most striking
difference observed in the 3σ group, however, is the altered
expression of genes that are associated with the process of
EMT. Cell lines in which expression of a single 19S subunit
is suppressed display increased epithelial characteristics in-
dicative of a less invasive, less mesenchymal state. Strikingly,
in KRAS mutant cell lines an enhanced epithelial gene signa-
ture correlates with increased sensitivity to ABT-263 (36),
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consistent with our findings here. Moreover, analysis of primary
breast cancers revealed that 3σ tumors display reduced aerobic
glycolysis and higher dependency on oxidative phosphorylation/
mitochondrial respiration. At a functional level, it is tempting to
speculate that the hypersensitivity to ABT-263, which we find
associated with imbalanced 19S subunit expression, is somehow
linked to the alterations in mitochondrial physiology suggested
by our gene-set enrichment analysis.
Our findings imply that some tumors—or, perhaps equally

important, some cancer cells within a heterogeneous tumor—
exist in an altered cellular state in which 19S subunit expression
is imbalanced. This state appears to be part of a larger cell pro-
gram that extends beyond the regulation of proteasome function
and includes metabolism and signaling. Furthermore, although the
more epithelial, more differentiated state marked by regulatory
subunit imbalance may be disfavored in the sole context of in-
creased proliferation, it could well serve as a bet-hedging mech-
anism within the overall tumor to enhance the survival of cells in
which protein homeostasis is particularly challenged. Devising
orthogonal strategies for targeting this and the other varied epi-
genetic and phenotypic states available to tumor cells over the
course of malignant progression may serve to limit adaptations to
chemotherapeutics, block the emergence of drug-resistant clones,
and increase our ability to eradicate advanced cancers.

Materials and Methods
Dataset Analysis.Gene expression and drug sensitivity data were downloaded
from www.cancerrxgene.org/ (GDSC), https://www.broadinstitute.org/ (CCLE),
and https://cancergenome.nih.gov/ (TCGA). For each proteasome subunit gene,
a z-score was calculated for each cell line and that was used to plot the ex-
pression of individual subunits across all cells in the dataset (see SI Materials
and Methods for details).

EC50s for the the different drugs were extracted from the GDSC dataset
and analyzed as described (see SI Materials and Methods for details). Gene

copy estimates were extracted and calculated from the CCLE dataset. PSMD5
promoter methylation scores were extracted from both the CCLE and TCGA
datasets (see SI Materials and Methods for details).

Analysis of expression profiles from the Gene Expression Omnibus (GEO)
(https://www.ncbi.nlm.nih.gov/geo/; accession no. GSE51371) (21) were down-
loaded for the bortezomib-sensitive and -resistant cell-line–derived tumors, and
the change in expression of proteasome subunits was calculated (see SI
Materials and Methods for details).

Pretreatment gene-expression data from relapsed multiple myeloma
patients undergoing clinical trials with bortezomib were downloaded from
GEO (accession no. GSE51371) (22). Gene-expression data were RMA (robust
microarray analysis)-normalized and log-transformed. Sigma scores were
calculated from all probes. Patients were binned into two groups: those that
had a subunit drop more than 2.8 sigma and those that did not. For each
group, the time to relapse from bortezomib treatment was plotted as a
Kaplan–Meier plot. P value was calculated using the Wilcoxon test.

Cell Culture Methods. Kelly, IMR32, OVCAR3, and OVSAHO were cultured in
RPMI-1640 (OVCAR3 was supplemented with 0.01 mg/mL insulin) medium
supplemented with 10% FBS.

DNA Methylation Sequencing. DNA was extracted from IMR32 and Kelly cells
with a DNeasy Blood and Tissue Kit (Qiagen) according to the manufacturer’s
protocol. Bisulfate conversion of the DNA was conducted using the EpiTect
Bisulfite Kit (Qiagen) according to the manufacturer’s protocol. The modi-
fied DNA was then used as a template for PCR of the PSMD5 promoter (see
SI Materials and Methods for details).
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