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Abstract

This study quantifies and compares the costs of production for six alternative jet fuel
pathways using consistent financial and technical assumptions. Uncertainty was prop-
agated through the analysis using Monte Carlo simulations. The six processes assessed
were hydroprocessed ester and fatty acids (HEFA) using soybean oil, yellow grease,
and tallow; advanced fermentation (AF) using corn grain, sugarcane, and herbaceous
biomass; conventional gasification and Fischer-Tropsch (FT) using municipal solid
waste; aqueous phase processing (APP) using woody biomass; hydrothermal liquefac-
tion (HTL) using woody biomass; and fast pyrolysis and hydroprocessing (FPH) using
corn stover. The results indicate that none of the six processes would be profitable in
the absence of government incentives, with HEFA using yellow grease, HEFA using
tallow, and FT revealing the lowest mean jet fuel prices at $0.91/liter ($0.66/liter
to $1.24/liter), $1.06/liter ($0.79/liter to $1.42/liter), and $1.15/liter ($0.95/liter to
$1.39/liter), respectively. The highest mean NPV was the NPV calculated for HEFA
yellow grease with a mean value (in $B) of -0.112 (95% range of -0.412 to 0.179),
followed by HEFA tallow with -0.202 (-0.517 to 0.100) and FT with -0.210 (-0.424
to 0.033). This study also quantifies plant performance in the United States with
a policy analysis. The alternative fuel production models were used to examine the
economic viability of each pathway under a variety of existing and potential regu-
latory scenarios. Results indicate that some pathways could achieve positive NPV
with relatively high likelihood under existing policy supports, with HEFA and FPH
revealing the highest probability of positive NPV at 94.9% and 99.7%, respectively,
in the best-case scenario.

Thesis Supervisor: Steven R. H. Barrett
Title: Leonardo Associate Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Background

Aviation currently contributes 2% to anthropogenic GHG emissions (ICAO, 2010).

The impact is expected to grow in the absence of mitigation measures, due in part

to a projected annual industry growth (measured in revenue passenger kilometers) of

approximately 5% out to 2034 (Boeing, 2015). The aviation industry’s CO2 emissions

have grown by 3.6% per year since 1980, or approximately double the current world

growth rate of CO2 emissions from energy consumption, prompting attention from

numerous international and domestic regulatory authorities (Schäfer, 2014). The In-

ternational Air Transport Association (IATA), for example, targets carbon-neutral

growth from 2020 onward and a 50% reduction in net emissions by 2050 compared to

2005 levels (IATA, 2009). Alternative jet fuels produced from biomass have received

considerable attention from policy-makers and academia as a potential means to sig-

nificantly reduce greenhouse gas emissions attributable to aviation (ICAO, 2016).

The United States Federal Aviation Administration (FAA), for example, sets an as-

pirational consumption target of 1 billion gallons of alternative jet fuel by 2018, and

alternative jet fuel can qualify under the second iteration of the Environmental Pro-

tection Agency’s (EPA) Renewable Fuel Standard (FAA, 2012). Emissions savings

attributable to alternative jet fuels have been well-documented in several pathway-

and feedstock-specific life cycle GHG emission analyses (Seber et al., 2014; Staples et
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al., 2014; Suresh, 2016).

One of the main challenges for alternative aviation fuels is the economic feasibility

of converting biomass or other feedstocks into liquid fuel that meets current jet fuel

specifications. Five pathways have been approved by ASTM International as drop-in

alternative jet fuels: Fischer-Tropsch Synthetic Paraffin Kerosene (FT-SPK), Fischer-

Tropsch Synthetic Kerosene with Aromatics (FT-SKA), Hydroprocessed Esters and

Fatty Acids (HEFA), Synthetic Iso-Paraffins from fermented hydroprocessed sugar

(SIP), and Alcohol-to-Jet SPK (ATJ-SPK). Sixteen additional pathways are under

review (CAAFI, 2016). ASTM certification associated with fuels produced from these

pathways allows up to 50% blending by volume in current aircraft engines, and some

of these pathways, as a result, have been implemented in commercial scale production

facilities (ICAO, 2016).

This thesis describes a techno-economic study that used harmonized assumptions

for six different alternative jet fuel pathways and incorporated uncertainty through-

out the analysis. Existing studies estimated costs of production for specific pathways

or feedstocks through detailed techno-economic analyses (TEA) that evaluated path-

way performance by calculating the breakeven price of fuel or the net present value

of the plant over the modeled refinery’s lifetime (Bittner et al., 2015; Bond et al.,

2014; Niziolek et al., 2015; Pearlson et al., 2013; Staples et al., 2014; Zhu et al.,

2014). Although considerable uncertainty surrounds critical variables such as fuel

prices, conversion yield, and capital expenditures, few studies to date have incor-

porated stochasticity in the modeled pathways or have examined the diesel and jet

fuel industry specifically (de Jong et al., 2015). This paper incorporates both har-

monized assumptions and stochasticity in critical inputs and accounts for different

policy scenarios in a harmonized comparison of jet fuel production techniques.

1.2 The Renewable Fuel Standard

From a technical standpoint, this study primarily focuses on probabilistic models for

alternative jet fuel production pathways. Existing U.S. policy, however, allows for the

14



characterization of the private costs of these pathways within the context of supports

and subsidies created under the Renewable Fuel Standard (RFS). This framework,

created as an expansion to the Clean Air Act (CAA) under the Energy Policy Act of

2005, incentivizes the use of alternative fuels provided those fuels meet certain green-

house gas reduction targets. The Environmental Protection Agency (EPA) oversees

the execution of the RFS along with the Department of Agriculture and the Depart-

ment of Energy. The most relevant function of the RFS in the context of this study

is the creation of yearly alternative fuel mandates as dictated by Renewable Vol-

ume Obligations (RVOs). These are targets that require replacement of conventional

petroleum fuels with alternative fuels in increasing amounts. As of 2017, the EPA has

dictated four renewable fuel categories with separate obligations for each: biomass-

based diesel, cellulosic biofuel, advanced biofuel, and renewable fuel. The program

was amended with the Energy Independence and Security Act of 2007 (or RFS2)

which expanded the RVO requirement to 36 billion gallons of alternative fuel through

2022. The RVO categories are listed in Table 1.1 along with their corresponding GHG

intensity reduction requirement. Note that this intensity reduction is compared to

2005 measures of conventional petroleum-based fuel emissions intensities.

Figure 1-1 demonstrates the evolution of these blendstock requirements over time–

note that the proportion of cellulosic biofuel, advanced biofuel, and biomass-based

diesel grows relative to the renewable fuel requirement. The growing requirements for

cellulosic biofuel, a fuel for which most conversion pathways are technically immature,

corresponds with a growing value assigned to cellulosic fuels. Appendix D expands

upon the value of RINs in greater detail.
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Table 1.1: RVO fuel categories and feedstock/pathway examples

Fuel Category GHG Intensity

Reduction

Feedstock Examples Pathway Examples

Renewable Fuel 20% Corn starch Dry mill process,

fermentation

Advanced

Biofuel

50% Sugarcane, corn

stover, soybean oil

HEFA, AF

Biomass-based

Diesel

50% Sugarcane, corn

stover, soybean oil

HEFA, AF

Cellulosic

biofuel/biodiesel

60% Woody biomass,

switchgrass

FPH, HTL

Figure 1-1: EPA Renewable Volume Obligations dictated by the RFS (EPA, 2016)
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Chapter 2

Materials and Methods

2.1 Alternative Jet Fuel Pathway Modeling

This study compared six alternative jet fuel pathways for which data is available in

peer-reviewed studies: HEFA, fermentation and advanced fermentation (AF), aque-

ous phase processing (APP), conventional gasification and Fischer-Tropsch (FT), hy-

drothermal liquefaction (HTL), and fast pyrolysis and hydroprocessing (FPH). The

source literature and information regarding the feedstocks and liquid fuel products for

each pathway is found in Table 2.1. A technical survey of each pathway can be found

in Appendix A and the technical assumptions used in the original literature sources

can be found in Appendix B. In every case, the products are chemically equivalent

to conventional products of petroleum refining, with the middle distillate fraction

composed of renewable or "green" diesel and kerosene-type jet fuel.

The surveyed pathways are at various stages of technical maturity, and discrep-

ancies in commercialization were accounted for with a nth plant analysis that as-

sumes construction in 2015 and plant operation beginning in 2018. The design bases

for the pathway models, however, varied with the availability of bench-, pilot- or

commercial-scale process data, with some models constructed using industry data

and others constructed using computer-simulated results. Although the HEFA path-

way is modeled by Pearlson et al. using Aspen Plus chemical process software, the

material and energy balances were confirmed against commercial-scale values from

17



Table 2.1: The six alternative jet fuel production pathways evaluated in this study

Path-
way

Feedstock Fuel Products Source

HEFA Soybean oil, tallow,
yellow grease

LPG, naphtha,
middle distillates

Pearlson et al., 2013;
Seber et al. 2014

AF Corn grain, sugarcane,
herbaceous biomass

LPG, naphtha,
middle distillates

Staples et al., 2014

APP Woody biomass LPG, naphtha,
middle distillates

Bond et al., 2014

HTL Woody biomass Gasoline, heavy oil,
middle distillates

Zhu et al., 2014

FT MSW Gasoline, middle
distillates

Niziolek et al., 2015;
Suresh, 2016

FPH Corn stover Gasoline, middle
distillates

Bittner et al., 2015;
Brown et al., 2013

the UOP-Honeywell Ecofining process (Pearlson et al., 2013). The Fischer-Tropsch

process, a reaction that converts a syngas intermediate into liquid hydrocarbons, is

well-understood from nearly a century of research at varying scales, but the plant

design presented by Niziolek et al. incorporates a novel nonlinear optimization model

that integrates both simulation results and industry-created sub-processes (Niziolek

et al., 2015). Similarly, the AF pathway modeled by Staples et. al. relies heavily

on industry heuristics and commercial-scale plant data when replicating the material

and utility requirements for various process steps (Staples et al., 2014). Zhu et al.

models the HTL process using bench-scale data from the Pacific Northwest National

Laboratory (PNNL) (Zhu et al., 2014). Bittner et al. and Bond et al. rely on a com-

bination of experimental data and simulation results for the APP and FPH processes,

respectively (Bittner et al., 2015; Bond et al., 2015). This study assumed equivalent

fuel yields at scale in each case.

This study compared each pathway using material and energy balances from the

sources found in Table 2.1, but the original TEAs of the pathways relied on deter-

ministic fuel yields and capital cost estimates as well as historical averages for input

and output prices. Point values for these model components were then used in a
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Discounted Cash Flow Rate of Return (DCFROR) model that was used to deter-

mine either the net present value (NPV) of the plant assuming market fuel prices

or the minimum middle distillate selling price (MSP) such that the NPV was posi-

tive. Assuming that prices for inputs and outputs were certain throughout a plant’s

lifetime, however, does not account for fluctuations in the costs of key inputs or the

prices of fuel products. The original TEA studies associated with each pathway used

DCFROR variables with deterministic values, but in reality these variables change

stochastically such that sampling values from probabilistic models provided a better

model for input value fluctuation over a plant’s lifetime.

Blazy et al. used the example of diesel fuel price, which can be affected by a mul-

titude of external forces such as supply shocks, changes in demand, or adjustments

to domestic policy (Blazy et al., 2016). Using a single value for the price of diesel

ignored these fluctuations. Instead, correlating the price of diesel to stochastic vari-

ations in the projected price of gasoline provided a more robust description of how

this input changed over time. Instead of varying independently with time, other fuel

products were also correlated to the stochastically projected price of gasoline. This

study implemented stochasticity using a Monte Carlo simulation that sampled values

from probability distributions assigned to critical inputs. A MATLAB model sam-

pled values from each probability distribution, computed either MSP and NPV over

10,000 iterations, and stored the results for each iteration such that each iteration

was a discrete 20-year plant lifetime.

2.2 Financial Model

This study employed a MATLAB version of the DCFROR model from Pearlson et

al. in order to quantify pathway performance in terms of MSP and NPV (Pearlson

et al., 2013). Financial assumptions were harmonized for each pathway assuming

a 20-year plant lifetime with 20% equity financing and a 10-year loan with 10%

interest. Each plant was assumed to operate for 8400 hours, or 350 days, per year.

The income tax rate was assumed to be 16.9% based on the value for the average
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effective corporate tax rate from the United States Government Accountability Office

(GAO, 2013). Other financial assumptions were drawn from Blazy et al.’s research

on bio-process commercialization (Blazy et al., 2016). All costs and prices were

expressed in 2015 USD. The critical inputs for the DCFROR model were assessed

using the relevant studies associated with each pathway, and probability distributions

were assigned to each input given the availability of relevant data. The complete

table of parameters, their distributions, and the references associated with the data

underlying each distribution was included in the Appendix B. Probabilistic inputs

that were common between pathways include capital expenditures, fixed operating

costs, feedstock costs, and fuel prices. The parameter distributions were primarily

dependent on the available data: uniform distributions were used in cases where

data values were equally likely and triangular or beta PERT distributions were used

when minimum, maximum, and most likely values were known. In cases of statistical

uncertainty arising from descriptive data sets, such as historical commodity prices

or price projections, the probability distributions were developed from the samples

themselves. The fit of these distributions was confirmed using the Anderson-Darling

test (Stephens, 1974).

The feedstock input quantities and associated maximum fuel outputs can be found

in Appendix B. Due to the price parity between diesel and jet fuel the model solved

for the MSP of middle distillates (i.e. jet and diesel). The MSP for middle distillate

fuels was calculated as the price for middle distillates such that the refinery has an

NPV of zero. The MSP thus represents the price for middle distillates that a producer

must demand in order to achieve a target rate of return. All other products, such

as naphtha or LPG, were sold at the sampled market price and not at a correlated

premium, a method used in previous TEA studies (Pearlson et al., 2013). The costs

of transportation from the plant to the retail location were not considered, nor were

additional fuel taxes, so the MSP and other product prices are the "gate price" of

the fuel and not the at-pump price. The DCFROR model was also used to calculate

the NPV of each pathway assuming market prices for all fuel products. A positive

NPV implies that a producer can expect profits above the target rate of return, while
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a negative NPV implies net losses below a target rate of return. MSP and NPV

calculations were chosen as metrics for plant performance due to literature precedent

and due to ease of visual comparison.

2.3 Technical Uncertainty

2.3.1 Capital Investment and Fixed Operating Cost Uncer-

tainty

The capital cost estimates for each refinery model were obtained from the literature

studies used to determine the mass and energy balances for the pathways examined in

this study. The deterministic pathway capacity was fixed to 111.3 million liters/year

(2000 barrels/day) a reference capacity used for many of the original case processes

(Pearlson et al., 2013; Staples et al. 2014; Niziolek et al. 2015). This output capacity

varied, however, with stochastic changes in fuel yield. Plant utility requirements,

feedstock inputs, and product slates were normalized to a 111.3 million liters/year

output capacity in cases where the reference pathways produced greater volumes of

liquid fuels (Bond et al. 2015; Zhu et al. 2014; Bittner et al. 2015). This study

assumed greenfield plants with onsite hydrogen production, and it is noted that cap-

ital and operating costs might be reduced with brownfield sites purchasing offsite

hydrogen. The feedstock inputs and fuel outputs for each pathway are summarized

in Appendix B. Where data availability allowed, plant component cost estimates and

fuel yields were harmonized between pathways. Due to diverse simulation techniques

(using Aspen PlusTM, ChemCAD©, or mathematical models) and conversion data

sources (bench tests, industry heuristics), this study assumed that the deterministic

capital expense values accurately reflect the investment requirements for each process.

Because this study further assumed that construction for each plant begins in 2015,

the capital costs were adjusted to 2015 USD using the Chemical Engineering Plant

Cost Index (Chemical Engineering, 2016).

In order to incorporate uncertainty into the capital cost figures, the error associ-
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ated with deterministic cost estimates was assumed to be 20% (Gary et al., 2007). A

review of other biomass-to-jet fuel studies revealed that the capital costs for similar

plant components fall within this range. Previous studies employed a triangular or

beta PERT distribution given mode, minimum, and maximum values, and a beta

PERT distribution was employed in this case (Bittner et al., 2015; Blazy et al., 2016;

Zhao et al., 2015). Brown found that an asymmetric probability distribution with

positive skewness best represented current capital expenditures, and a 5% mean cost

overrun was assumed based on a survey of the literature for a variety of industrial

plants and construction projects (Brown, 2015). As a result, a beta PERT distri-

bution for fixed capital investment (FCI) that varies between 80% and 150% of the

deterministic value was used in order to replicate these conditions. Following an as-

sumption found in several preceding TEA studies for these pathways, working capital

(WC) was assumed to be 5% of the FCI, and the sum of these two values was the

total capital investment (TCI) (Peters et al., 2003; Pearlson et al., 2013; Staples et

al. 2014; Bond et al., 2014).

Fixed operating costs (FOC) was determined as a percentage of the capital costs,

but each pathway cited widely varying deterministic values that correspond with dif-

ferences in estimates of yearly expenses such as labor and maintenance. Insurance,

local taxes, maintenance, and contingency costs for each pathway were estimated

using guidance from the petroleum refining industry, and the literature FOC as a

percentage of FCI was selected as the mode for a positively-skewed beta PERT dis-

tribution with harmonized parameters (Gary et al., 2007). Each pathway’s FOC was

varied by 50% and values beyond the bounds of this distribution were investigated in

the sensitivity analyses.

2.3.2 Fuel Yield Uncertainty

The conversion efficiency of each pathway was described by assigning a probability

distribution to fuel yield in terms of liters of gasoline equivalent (LGE) per metric

ton of feedstock. The energy shares of each fuel product, expressed as the energy

content of each fuel product (in MJ) divided by the total energy content of the prod-
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uct slate (in MJ), was assumed to remain constant for each pathway. In literature

refinery models where diesel was the only middle distillate product, this study fol-

lowed Bittner et al. and assumed that this stream was 50% jet fuel and 50% diesel

by volume when calculating NPV (Bittner et al., 2015). Previous studies that incor-

porated fuel yield uncertainty employed a variety of probability distributions based

on bench-scale data or simulation results including beta general distributions, beta

PERT distributions, and triangular distributions (Zhao et al., 2014; Petter and Tyner,

2014; Zhu et al., 2003). In this case, a lack of fuel yield data dictated the use of a

beta PERT distribution with some minimum, maximum, and mode value using the

method employed by Suresh and Petter and Tyner (Suresh, 2016; Petter and Tyner,

2014). Following Zhao et al., a negatively-skewed beta PERT distribution was as-

sumed based on pathway-specific supporting data. In pathway cases with only one

supporting study, such as HEFA, AF, and APP, the deterministic value was used as

the maximum fuel yield value. Because of the negative skewness, the distribution

mean was lower than the deterministic value. In order to illustrate the different fuel

yield scenarios, the upper and lower bounds of this distribution were investigated in

the sensitivity analyses with the original literature value used as the upper input.

The distribution parameters and their references can be found in Appendix B.

2.4 Fuel and Utility Price Uncertainty

In order to project the prices of natural gas, electricity, and gasoline from the analysis

start point in 2018 through the plant’s 20-year lifetime, Geometric Brownian Motion

(GBM) was applied according to the method described in Zhao et al. as shown in

Equation 1:

Pt = Pt�1 ⇥ et + ✏ (2.1)

where Pt is the price at time t, Pt � 1 is the previous year’s price, r is the growth

rate, and ✏ is the yearly price variation (Zhao et al., 2014). The Energy Information

Administration (EIA) Annual Energy Outlook (AEO) 2015 provides projected price

data in the analysis start year (2018) as well as real price growth rates from 2018
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to 2038, with low, reference, and high oil price scenarios describing the behavior of

these prices over time (EIA, 2015). Uncertainty was incorporated in the gasoline

growth rate and the 2018 start price by assigning a beta PERT distribution to both

parameters using the oil price scenarios as low, mode, and high values. The starting

prices and growth rates for natural gas and electricity were then correlated with the

selected gasoline values (EIA, 2016a,e). The 2018 prices of gasoline, natural gas, and

electricity from the AEO reference case projections are $0.58/liter, $5.02/GJ, and

$0.07/kWh, respectively (2015 USD). The yearly price variation term, , was selected

from a normal distribution of the year-to-year variations in prices from the past 15

years from 2001 to 2015. Although the MATLAB model was constructed to ensure

that prices remain positive, values selected from the outer bounds of the variation

distribution can result in prices far above or far below prices seen in historical or

projected datasets. Prices were prevented from dropping below 75% of the lowest

forecasted value or rising above 125% of the highest forecasted value in order to

correct for this error.

The prices of other fuel products, such as LPG, jet, and diesel, were correlated

with the gasoline price using historical price data from the EIA (EIA 2016b,c,d,f).

Following Pearlson et al. and Staples et al., the propane spot price was used as a

surrogate for both light ends and LPG and the gasoline price was used as a surrogate

for naphtha (Pearlson et al., 2013; Staples et al., 2014). The correlation functions for

these fuels were based on their historical regression relationship and can be found in

Appendix B.

2.5 Policy Uncertainty

In order to quantify uncertainty under various policy scenarios including the Renew-

able Fuel Standard (RFS2), this study modeled the price behavior of fuel credits called

Renewable Identification Numbers (RINs) using probability distributions and incor-

porated various tax credit scenarios as sensitivity analyses. Under RFS2, blenders

and refiners are required to incorporate a certain quantity of biofuels in their an-
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nual supply in order to meet their Renewable Volume Obligation (RVO). Renewable

fuels generate RIN certificates, which can be bought and sold to help blenders and

refiners achieve their RVO; as a result, RINs represent a source of additional revenue

for biofuel producers (ICCT, 2014). The nationwide RVO increases every year up to

36 billion gallons in 2022. At the conclusion of 2022, the RVO could be extended,

increased, or reduced with the passage of a new RFS, thus changing the RIN market

substantially (Winchester, et al., 2013). Information regarding the implementation of

RINs for each fuel product and the calculation of stochastic RIN prices can be found

in Appendix D.

The Biodiesel Mixture Excise Tax Credit, which can be applied to both biodiesel

and renewable diesel mixtures, is a $1.00/gallon ($0.26/liter) credit applied to con-

ventional and alternative diesel blends (DOE, 2016). This credit is often instated

retroactively, so the existence of the credit from year to year is the subject of con-

siderable uncertainty. Blenders arrange sharing provisions with alternative fuel pro-

ducers in order to compensate biofuel production (Irwin, 2015). Various sharing

agreements between producers and blenders including 25%, 50%, 75%, and 100% of

the $1.00/gallon ($0.26/liter) given to producers were explored. Blenders and pro-

ducers were assumed to share the additional revenue from these credits according to

such sharing contracts. A producer’s credit, or a credit given directly to producers

instead of blenders, is the subject of current legislation in the U.S. Senate (Swoboda,

2016). If passed, this new credit would be paid to producers but would also likely

be shared via market mechanisms. Thus, the $1.00/gallon ($0.26/liter) credit rep-

resents an upper-limit value for a credit given to producers. Because the FT MSW

feed composition contains unseparated biogenic and non-biogenic components, it was

ineligible for the blender’s or producer’s credits.

Six different scenarios were examined in this study to reflect future legislative

uncertainty: a case in which the pathways were evaluated without the benefit of

policy supports; a case in which the blender’s credit was not renewed at the conclu-

sion of 2016 and the RVO falls to zero at the conclusion of 2022; and four different

sharing arrangements with 25%, 50%, 75%, and 100% of a $1.00/gallon ($0.26/liter)

25



excise tax credit given to producers along with a perpetual RIN market. Note that a

zero RVO eliminates the demand for RINs, thereby removing the RIN revenue stream.
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Chapter 3

Results and Discussion

3.1 MSP and NPV

The MSP and NPV were first calculated without the addition of policy supports or

financial incentives. Box-and-whisker comparisons of each pathway’s MSP and NPV

results are shown in Figures 3-1 and 3-2, with the limits of each pathway result rep-

resenting the middle 95% of values. The lowest mean MSP was that of HEFA yellow

grease with a value of $0.91/liter (95% range of $0.66/liter to $1.24/liter), followed

by HEFA tallow with a mean MSP value of $1.06/liter ($0.79/liter to $1.42/liter),

FT with $1.15/liter ($0.95/liter to $1.39/liter), HEFA soybean oil with $1.19/liter

($0.87/liter to $1.60/liter), AF sugarcane at $1.47/liter ($1.10/liter to $1.96/liter),

FPH with $1.52/liter ($1.02/liter to $2.10/liter), AF corn grain with $1.66/liter

($1.30/liter to $2.10/liter), APP with $2.07/liter ($1.73/liter to $2.48/liter), AF

herbaceous biomass with $2.51/liter ($2.16/liter to $2.92/liter), and HTL with $2.78/liter

($2.09/liter to $3.58/liter). None of the MSP results approached the 5-year average

conventional jet fuel price of $0.64/L, even at the lower-bound values (EIA, 2016d).
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Figure 3-1: Box-and-whisker plot of the MSP results for each pathway evaluated in

this study

The mean future middle distillate prices were subject to considerable uncertainty

over time, and the volatility of price behavior was accounted for with NPV calculations

that incorporated projected prices of middle distillate fuels. None of the pathway

simulations resulted in positive mean NPV values, although HEFA and FT exhibited

positive NPV values at the upper bound of the results distribution. The highest

mean NPV was that of HEFA yellow grease with a mean value (in $B) of -0.112 (95%

range of -0.412 to 0.179), followed by HEFA tallow with -0.202 (-0.517 to 0.100), FT

with -0.210 (-0.424 to 0.033), HEFA soybean oil with -0.281 (-0.625 to 0.049), AF

sugarcane with -0.420 (-0.775 to -0.099), AF corn grain with -0.552 (-0.905 to -0.216),

FPH with -0.344 (-0.583 to -0.070), APP with -0.716 (-1.005 to -0.408), HTL with

-0.854 (-1.120 to -0.560), and AF herbaceous biomass with -1.036 (-1.336 to -0.716).
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Figure 3-2: Box-and-whisker plot of the NPV over the 20-year lifetime for each path-

way evaluated in this study

The cumulative density functions of the NPV results are shown in Figure 3-3 and

the baseline probabilities of positive NPV over each plant’s lifetime are shown in

Figure 3-7 (in the "No Policy" case). HEFA demonstrated the highest probability

of positive NPV with a 27.7%, 14.8%, and 8.6% chance of positive NPV for yellow

grease, tallow, and soybean oil, respectively. HEFA and FT exhibited the lowest

mean MSP and the least negative NPV due to a combination of factors: in the HEFA

case, low capital investment requirements and high fuel yields outweighed relatively

high feedstock costs. In the case of FT, these results stemmed from high fuel yields,

no-cost feedstock, and comparatively low capital investment.
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Figure 3-3: The cumulative density function (CDF) for the NPV results for each

pathway

An evaluation of the NPV contributors to variance revealed that yearly fuel price

deviations primarily explained the variance in the NPV results for AF herbaceous

biomass, APP, FT, HTL, and FPH, at 39%, 48%, 49%, 64%, and 56%. The primary

contributor for HEFA, AF corn grain, and AF sugarcane was feedstock cost. The

feedstock cost distribution was negatively skewed which explains the negative skew-

ness of the NPV distributions for these pathways. More information regarding the

skewness and kurtosis of distributions fit to the Monte Carlo results can be found in

Appendix C. Note that the variance for each pathway was influenced by the avail-

ability of data for the underlying distributions. In some cases, feedstock prices were

based off of industry heuristics rather than historical price behavior. The price for

herbaceous or woody biomass, for example, relied on low, mode, and high values from

relevant literature sources surveying similar cellulosic biofuel refineries. The price for

soybean oil and slaughtering byproducts, meanwhile, was described by a lognormal

distribution derived from historical commodity prices. A survey of the contributors
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to variance for each pathway can be found in Appendix C. The MSP and NPV results

for each pathway were separated into their constituent cost and revenue streams as

shown in Figure 3-4 and 3-5. Only the mean values were reported in this figure, and

the median and standard deviations for each component can be found in Appendix

C. For NPV, the revenue stream components were separated into gasoline/naphtha,

middle distillate fuels, other co-products, and scrap materials. Due to the sorting

requirement during the MSW pre-processing stage, only the FT pathway collected

revenue from scrap materials. The cost stream components were separated into capi-

tal costs, fixed operating expenditures, non-feedstock variable operating expenditures,

feedstock expenditures, and income tax.
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Figure 3-4: Mean MSP ($/liter) results breakdown by cost and revenue contributions

Although plant capacities were harmonized, the product distribution varied based

on the literature material balances, with HEFA, AF, APP, and FT pathways opti-

mized for middle distillate production and HTL and FPH optimized for total fuel
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production. In the cases of HEFA, AF, APP, and FT, middle distillate fuels com-

prised the largest portion of the revenue stream. Because HTL and FPH produce

more gasoline then middle distillates, the largest contributor to the revenue stream

for those pathways was gasoline.
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Figure 3-5: Mean NPV ($B) results breakdown by cost and revenue contributions

The revenue contributions to NPV for each pathway were larger in cases where

pathways produce additional non-liquid-fuel products. This was true for AF corn

grain, a byproduct of which is distiller’s dried grains with solubles (DDGS); AF sug-

arcane, a byproduct of which is sugarcane bagasse used to generate power; APP, a

byproduct of which is hydroxymethylfurfural (HMF) and acetic acid; FT, a byproduct

of which is scrap materials; and FPH, a byproduct of which is generated electricity

from the heat of the pyrolysis reaction. The price of feedstock was the primary cost

contributor to MSP and NPV for HEFA, AF corn grain, and AF sugarcane, and cap-

ital investment was the largest cost contributor to MSP and NPV for AF herbaceous
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biomass, HTL, APP, FT, and FPH. Fixed operating expenditures, which include

maintenance, labor, and other yearly cost requirements, contributed an average of

9% and at most 20% to the cost stream for each pathway. Non-feedstock variable

operating expenses, such as wastewater treatment, catalyst costs, and other utilities,

comprised an average of 15% and at most 27% of the cost stream for each pathway.

The impact of different critical variables on MSP were examined with a sensitivity

analysis for each pathway, quantifying the impact of adjustments to fixed operating

costs, capital investment, fuel yield, income tax rate, feedstock costs, and the dis-

count rate. The results are shown in Figure 3-6. The discount rate, which resulted

from the rate of required return for equity and loan interest rate for debt, had the

largest impact on MSP for every case except for the HEFA pathway, which required

the lowest capital investment among all pathways and was therefore less sensitive to

rate of return assumptions. The discount rate had a larger impact for pathways with

a larger capital investment requirement because higher discount rates minimized the

value of future cash flows, thus increasing the price of middle distillates required to set

NPV equal to zero over the plant’s 20-year lifetime. The upper-bound discount rate

test value of 22% was taken from Blazy et al., who suggested that the discount rate

could be this high in order to offset the risks associated with investment in alternative

fuel production technologies (Blazy et al., 2016). This can increase the MSP by up to

40%. The lower-bound discount rate value of 3.2% came from the social opportunity

cost of capital based on long-term treasury bond rates from the U.S. Office of Man-

agement and Budget (U.S. OMB, 2015). Use of this value can decrease MSP by up

to 60%. The pathways with the lowest mean MSP under the social opportunity cost

of capital were FT and FPH with a mean MSP of $0.58/L and $0.61/L, respectively.

The fuel yield sensitivity analysis tested the outer bounds of the beta PERT dis-

tributions used for each pathway. Since the distributions were skewed negatively,

the mode fuel yield value was close to the maximum so increases in fuel yield fail to

lower mean MSP more than 20%. Similarly, varying fixed operating costs to extreme

values changed the mean MSP only up to 14%. Although decreasing capital costs to

80% of the deterministic value improved mean MSP results, increasing those costs to
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150% of the deterministic value increased mean MSP values by up to 50%, indicating

that cost overruns inhibited the economic viability of a given pathway. In order to

explore the impact of feedstock cost on the FT pathway, which owed its probability

of positive NPV and low mean MSP in part to a zero feedstock cost, the cost was

varied by $55/MT both positively and negatively to reflect average landfill tipping

fees. Although this could be a source of revenue in the short run, this tipping fee

could become a cost if MSW is increasingly used as a feedstock for fuel production.

Both cases adjusted the mean MSP by 15% positively or negatively. The income tax

rate was varied between 0% and 39% with the upper bound chosen to reflect the 2015

U.S. combined corporate income tax rate (OECD, 2016). This value increased the

mean MSP by up to 20%.
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Figure 3-6: MSP sensitivity results for each pathway. All values expressed are mean

values in units of $/liter. The variables and associated test inputs are listed on the

left axis (low, baseline, high)
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3.2 Policy Scenario Analysis
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Figure 3-7: The probability of positive NPV over each pathway’s 20-year plant lifetime

under various policy scenarios. The "No Policy" case describes the results presented

in section 3.1

To quantify the impact of different policy environments on the economic viability of

alternative fuel production techniques, the NPV for each pathway was calculated and

the cumulative density distribution was used to find the probability of positive NPV.

The results of this analysis are shown in Figure 3-7. The HEFA pathway showed the

highest likelihood of positive NPV in a case with no policy supports for alternative

fuels, with each of the three evaluated feedstocks outperforming the other pathways

(27.7% for HEFA yellow grease, 14.8% for HEFA tallow, and 8.56% for HEFA soybean

oil). Under the policy case with no blender’s credit and a zero RVO, HEFA yellow

grease, HEFA tallow, and FPH had the highest probability of positive NPV at 53.2%,

34.9%, and 23.5%, respectively. The probability of positive NPV for FPH is higher

under this scenario because the pathway used corn stover, a cellulosic feedstock, and

therefore earned higher-value D3 and D7 RINs. HEFA, meanwhile, earned D4 and D5
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RINs because it uses soybean oil and animal fats as feedstocks. Under the 50% credit-

share and RIN market policy case, FPH, HEFA yellow grease, and HEFA tallow had

the highest probability of positive NPV at 99.2%, 87.7%, and 73.1%. This was due

to the higher value of D3 and D7 RINs relative to D4 and D5 RINs. Although FT

had a 7.87% probability of positive NPV under the "No Policy" case, fuels produced

from MSW only earned a D5 Advanced Biofuel RIN and were not subject to blender’s

credits, so the maximum probability of positive NPV for FT was only 37.8%. Under

the 100% credit-share case, five of the 10 feedstock-pathway combinations resulted in

a 50% chance of positive NPV or higher: FPH, HEFA yellow grease, HEFA tallow,

HEFA soybean oil, and APP have positive NPV probabilities of 99.7%, 94.9%, 86.6%,

73.4%, and 57.6%, respectively.
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Chapter 4

Conclusions

This thesis illustrates a harmonized comparison of U.S. alternative jet fuel produc-

tion that used stochasticity in key variables. By fitting probability distributions to

input parameters such as fuel yield, capital expenditures, or fuel prices, the costs of

production for each pathway and feedstock could be expressed as a range of poten-

tial values under a variety of scenarios. For the first time, the use of Monte Carlo

simulations allows for the capture of uncertainty in alternative jet fuel production

MSP and NPV results. This thesis demonstrates the value of uncertainty inclusion

in energy conversion models and presents a rigorous method for conducting policy

analyses. In the baseline scenario, the lowest mean MSP was that of HEFA yellow

grease with a value of $0.91/liter (95% range of $0.66/liter to $1.24/liter), followed

by HEFA tallow with a mean MSP value of $1.06/liter ($0.79/liter to $1.42/liter) and

FT with $1.15/liter ($0.95/liter to $1.39/liter). None of these results approach the

March 2017 conventional U.S. jet fuel price of $0.40/L, although the EIA indicates

that these prices could rise above $1.08/L over the next 20 years. Similarly, the high-

est mean NPV was the NPV calculated for HEFA yellow grease with a mean value

(in $B) of -0.112 (95% range of -0.412 to 0.179), followed by HEFA tallow with -0.202

(-0.517 to 0.100) and FT with -0.210 (-0.424 to 0.033). In each case, the probability

of positive NPV is 27.7%, 14.78%, and 7.87%, respectively. These results suggest

that current alternative jet fuel production pathways are not cost-competitive with

conventional petroleum refining.
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The models also apply existing United States policy incentives under the Renew-

able Fuel Standard.The results suggest that although no pathway is economically vi-

able without policy supports, regulations can improve the possibility of alternative jet

fuel competition in the market. In the policy case with no RIN market and blender’s

credit expiration, the highest probability of positive NPV is for HEFA yellow grease

at 53.2%; in the policy case with 100% credit share and a continual RIN market,

the highest probability of positive NPV is for fast pyrolysis and hydroprocessing at

99.9%. These results suggest that current policy supports can incentivize investment

in alternative jet fuels, although some pathways may be incentivized more than oth-

ers depending on the structure of the regulations. For example, increasing Renewable

Volume Obligations for cellulosic biofuels drives higher demand–and higher value–for

cellulosic biofuel RINs, which in turn improves the economic outlook for pathways

that use feedstocks such as corn stover or sugarcane. The results for each pathway

can be used by regulatory agencies such as the EPA, USDA, or DOE to craft policies

that favor alternative jet fuel production and can be leveraged by investors to target

promising feedstock conversion technologies. The results in this thesis, moreover, can

be broadly applied to international efforts seeking a framework for regulations that

support alternative fuels.
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Appendix A

Pathway Descriptions

The following process overviews for each pathway come from the sources that supply

the mass and energy balances for the techno-economic evaluation models. Figure A-1

displays each the pre-treatment and intermediate steps required for the production

of drop-in transportation fuels.

A.1 Hydroprocessed esters & fatty acids (HEFA)

The HEFA process uses vegetable or slaughtering byproduct oils such as soybean oil,

tallow, and yellow grease as feedstocks. Hydrogen gas is fed into the feed stream

in a hydrotreator, which deoxygenates the oil. After cooling, the effluent is sent to

an isomerization unit which produces select hydrocarbons of various carbon chain

lengths. Mixed paraffin gases, carbon dioxide, and excess hydrogen are separated out

in a series of separation columns, with paraffin gases and hydrogen recycled to the

hydrotreator and wastewater separated for treatment. The liquid products stream is

then separated into LPG, naphtha, jet, and diesel (Pearlson et al., 2013; Seber et al.,

2014).
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A.2 Advanced fermentation (AF)

Fermentation and advanced fermentation (AF) technologies encapsulate multiple pro-

duction pathways that incorporate the micro-organic metabolism of biomass-derived

sugars. Staples et al. examines three different feedstocks, including corn grain, sug-

arcane, and herbaceous biomass, each with different process steps. Corn grain is

dry milled and ground into corn flour prior to liquefaction with process water and

high pressure steam. Sugarcane is cleaned, chopped, shredded, and crushed to ex-

tract sucrose. A byproduct of this process is sugarcane bagasse, which is used to

co-generate power and heat to meet the utility requirements for the refinery. Herba-

ceous biomass, or switchgrass in this case, is subjected to dilute acid treatment to

extract the sugar prior to fermentation. After the extraction process for each feed-

stock, polymeric sugars are broken down via saccharification into glucose, fructose,

and xylose using enzymatic hydrolysis. Depending on the microorganism used, these

sugar products can be metabolized into a variety of platform molecules including tria-

cylglycerides (TAGs), fatty acids, alkanes, isobutanol, and ethanol. Although Staples

et al. considers each platform molecule, this study uses the baseline mass and en-

ergy requirements which correspond with the fatty acids intermediate. In order to

extract these platform molecules, centrifugation, hexane solvent extraction, potas-

sium hydroxide lysing, and distillation are explored, although centrifugation is used

as the baseline process. The platform molecules are then upgraded to LPG, naph-

tha, jet, and diesel via the HEFA process used by Pearlson et al. (Staples et al., 2014).

A.3 Aqueous phase processing (APP)

This process uses woody biomass as a lignocellulosic feedstock, which is subjected to

hot water extraction pretreatment to extract hemicellulose sugars in one stream and

cellulose and lignin in the other. The hemicellulose stream is hydrolyzed into xylose

and other monomeric sugars which are then dehydrated to form furans. Furfural
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and acetic acid are recovered via xylose and arabinose dehydration. The furfural is

then upgraded to straight-chain and branched alkanes after deoxygenation. Sepa-

rated furfural and acetic acid streams can be sold in the chemical industry. After

pretreatment, the cellulose and lignin stream is treated with sulfuric acid to produce

levulinic acid and formic acid. Residual lignin is combusted in a boiler generator

for heat and power. Levulinic acid is then converted to -valerolactone (GVL), which

itself is converted to branch-chain alkanes. Products include LPG, naphtha, jet, and

diesel (Bond et al., 2014).

A.4 Hydrothermal liquefaction (HTL)

This process uses woody biomass as a feedstock. The inlet pellets are first ground

and softened with hot water to form a slurry. After pre-heating, the slurry is fed to

the HTL reactor which converts the slurry into bio-oil. Solid wastes, such as ash and

other inorganic solids, as well as an aqueous phase consisting of dissolved organics are

water, are removed from the reactor. The aqueous phase is either sent to heat the

reactor inlet stream or separated for waste treatment. The bio-oil, which can be sold

as a crude oil substitute, is upgraded via hydtrotreating to remove oxygen. These

hydrocarbon products are then cooled and separated via distillation into gasoline,

diesel, and heavy oil. Although the process requires hydrogen, the refinery design

includes a steam reforming process onsite, so the cost of hydrogen is subsumed in the

capital cost of the reforming units (Zhu et al., 2014).

A.5 Conventional gasification and Fischer-Tropsch

(FT)

This process uses municipal solid waste (MSW) as a feedstock, which undergoes con-

siderable sorting and processing prior to any reaction stages. The MSW composition,
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which uses the US Environmental Protection Agency’s composition values from 2013,

which includes food waste, metals, paper, and other materials. Non-combustibles and

other inorganics must be sorted out via a system of conveyors, shredders, and other

separators called a Refuse Derived Fuel (RDF) facility. The prepared feed is then

gasified, or partially oxidized, at high temperatures to produce syngas, a mixture of

carbon monoxide and hydrogen. The syngas is cooled, conditioned, and converted to

fuels and paraffinic wax via the Fischer-Tropsch catalytic reaction. These products

are separated into naphtha, jet, and diesel streams, with naphtha further reformed

into gasoline (Niziolek et al., 2015; Suresh, 2016).

A.6 Fast pyrolysis and hydroprocessing (FPH)

Fast pyrolysis is a rapid thermal conversion process that produces three products

including char, gas, and bio-oil. Corn stover, the feedstock input evaluated for this

pathway, is subjected to drying, grinding, and chopping pre-treatment steps. The py-

rolysis reactor then converts the pre-treated corn stover into bio-oil through anaerobic

treatment at high temperatures. Due to the high oxygen content of bio-oil, hydropro-

cessing and catalytic upgrading via hydrotreating and hydrocracking is then used to

produce a variety of deoxygenated products including gasoline and diesel (Bittner et

al., 2015).
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Figure A-1: Process overview for each pathway includes feedstocks, pretreatment
steps, critical conversion steps, and intermediate and final products
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Appendix B

Fuel Production Model Parameters

B.1 Model Parameters

Table B.1: Financial assumptions
Parameter Assumption 

Loan Interest 10% 
Loan Term 10 

Working Capital (% of FCI) 5% 
Type of Depreciation Variable Declining Balance 

Depreciation Period (years) 10 
Construction Period (years) 3 

Discount Rate 15% 
Income Tax Rate 16.90% 

Operating Hours per Year 8,400 
Construction year 2015 

Operation start year 2018 
Inflation 2% 

Year 1 production capacity 75% 
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Table B.2: HEFA Monte Carlo variables and distribution parameters
Variable Nominal Rangea Units Distribution 

Material and energy process 
outputs    

Fuel yield32 [240, 304, 320] GGE/MT Beta PERT 
Material and energy prices    
Process water23, 31, 32 [0.379, 2.16, 2.76] $/Mgal Triangular 
Hydrogen48 [1.08, 1.55, 2.03] $/lb Beta PERT 
Soybean oil10 [5.8822,0.2589] $/Mlb Lognormal 
Tallowb, 45 0.838x + 5.61 $/Mlb N/A 
Yellow greaseb, 45 0.799x - 45.7 $/Mlb N/A 
Gasoline price in analysis start 
year (2018)13 [1.68, 2.18, 3.53] $/gal Beta PERT 

Gasoline price growth rate 
projection13 [0.85, 2.11, 2.33] % Beta PERT 

Gasoline price yearly deviations20 [0, 0.3547] $/gal Normal 
Electricity price yearly 
deviations14 [0, 0.00295] $/kWh Normal 

Natural gas price yearly 
deviations18 [0, 72.99] $/MT Normal 

D4 RINs3 [-0.3441, 0.2262] $/RIN Lognormal 
Capital and fixed costs    
FCI32 [50.0, 62.5, 93.7] $M Beta PERT 
Fixed operating expenses32 [8.75, 10.5, 15.75] % of FCI Beta PERT 

 

aNote: in the tables that follow, the parameters in the Nominal Range column will

adhere to the following format: Lognormal distributions: log mean, log standard

deviation) Normal distributions: mean, standard deviation) Triangular/Beta PERT

distributions: low, mode, high) Uniform distributions: low, high)
bNote: prices for tallow and yellow grease correlate closely with soybean oil, so the

equations in the Nominal Range column represent the results of a linear regression

between the historical prices for tallow/yellow grease and the historical prices for

soybean oil.
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Table B.3: AF Monte Carlo variables and distribution parameters
Variable Nominal Range Units Distribution 

Material and energy process 
outputs    

Fuel yield, Corn grain40 [44.5, 56.3, 59.3] GGE/MT Beta PERT 
Fuel yield, Sugarcane40 [12.0, 15.2, 16.0] GGE/MT Beta PERT 
Fuel yield, Herbaceous biomass40 [32.8, 41.6, 43.7] GGE/MT Beta PERT 
Material and energy prices    
Process water23, 31, 32 [0.379, 2.16, 2.76] $/Mgal Triangular 
Corn grain46 [-1.732, 0.2696] $/kg Lognormal 
Sugarcane9 [3.4574, 0.3210] $/kg Lognormal 
Herbaceous biomass40 [0.030, 0.059, 0.089] $/kg Triangular 
Gasoline price in analysis start year 
(2018)13 [1.68, 2.18, 3.53] $/gal Beta PERT 

Gasoline price growth rate 
projection13 [0.85, 2.11, 2.33] % Beta PERT 

Gasoline price yearly deviations20 [0, 0.3547] $/gal Normal 
Electricity price yearly deviations14 [0, 0.00295] $/kWh Normal 
Natural gas price yearly deviations18 [0, 72.99] $/MT Normal 
DDGSc, 47 0.694x + 0.0162 $/kg N/A 
D4 RINs3 [-0.3441, 0.2262] $/RIN Lognormal 
Capital and fixed costs    
FCI, corn grain40 [143, 179, 268] $M Beta PERT 
FCI, sugarcane40 [163, 204, 306] $M Beta PERT 
FCI, herbaceous biomass40 [312, 389, 584] $M Beta PERT 
Fixed operating expenses40 [5.08, 6.09, 9.14] % of FCI Beta PERT 

 

cNote: the historical prices for DDGS correlate closely with the price for corn grain,

so the equation in the Nominal Range column represents a linear regression between

the historical price of DDGS and the historical price of corn grain.
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Table B.4: APP Monte Carlo variables and distribution parameters
Variable Nominal Range Units Distribution 

Material and energy process 
outputs    

Fuel yield4 [49.0, 62.1, 65.4] GGE/MT Beta PERT 
Material and energy prices    
Woody biomass4, 25, 49 [51.89, 66.05, 78.69] $/MT Triangular 
Sodium chloride4, 44 [35.6, 55] $/MT Uniform 
Acetone4, 22 [772, 1121.21] $/MT Uniform 
Tetrahydrofuran4, 22 [3364.6, 3476.6] $/MT Uniform 
Sulfuric acid5, 22 [80, 103.4] $/MT Uniform 
Hydrochloric acid4, 22 [90, 254.4] $/MT Uniform 
Acetic acid4, 5 [745.9, 1181.4] $/MT Triangular 
HMF4 1607.5 $/MT Non-variable 
SBP4 50.9 $/MT Non-variable 
Process water23, 31, 32 [0.10, 0.57, 0.73] $/MT Triangular 
Gasoline price in analysis start year 
(2018)13 [1.68, 2.18, 3.53] $/gal Beta PERT 

Gasoline price growth rate 
projection13 [0.85, 2.11, 2.33] % Beta PERT 

Gasoline price yearly deviations20 [0, 0.3547] $/gal Normal 
Electricity price yearly deviations14 [0, 0.00295] $/kWh Normal 
Natural gas price yearly deviations18 [0, 72.99] $/MT Normal 
D4 RINs3 [-0.3441, 0.2262] $/RIN Lognormal 
Capital and fixed costs    
Fixed capital investment4 [388, 485, 727] $M Beta PERT 
Fixed operating expenses4 [2.5, 3.0, 4.5] % of FCI Beta PERT 
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Table B.5: HTL Monte Carlo variables and distribution parameters
Variable Nominal Range Units Distribution 

Material and energy process outputs    
Fuel yield49 [49.3, 59.7, 61.2] GGE/MT Beta PERT 
Material and energy prices    
Woody biomass4, 25, 49 [51.89, 66.05, 78.69] $/MT Triangular 
Catalyst costs49 [6.27, 1.04] $M Normal 
Wastewater treatment49 [28.6, 4.76] $M Normal 
Gasoline price in analysis start year 
(2018)13 [1.68, 2.18, 3.53] $/gal Beta PERT 

Gasoline price growth rate projection13 [0.85, 2.11, 2.33] % Beta PERT 
Gasoline price yearly deviations20 [0, 0.3547] $/gal Normal 
Electricity price yearly deviations14 [0, 0.00295] $/kWh Normal 
Natural gas price yearly deviations18 [0, 72.99] $/MT Normal 
D4 RINs3 [-0.3441, 0.2262] $/RIN Lognormal 
Capital and fixed costs    
Fixed capital investment49 [418, 523, 785] $M Beta PERT 
Fixed operating expenses49 [4.08, 4.89, 7.34] % of FCI Beta PERT 
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Table B.6: FT Monte Carlo variables and distribution parameters
Variable Nominal Range Units Distribution 

Material and energy process 
inputs 

      

Utility for MSW pre-processing8, 35, 
36 [0.06, 0.13, 0.15] MJ/kgMSW Triangular 

Natural gas27 [6, 0.6] g/kgPMSW Normal 
Petroleum coke27 [50, 5] g/kgPMSW Normal 
Olivine11, 23, 28 [1.37, 2.07, 4.96] g/kgPMSW Triangular 
Tar reforming catalyst11, 12, 28 [0.005, 0.006, 0.045] g/kgPMSW Triangular 
Material and energy process 
outputs    

Fuel yield30, 36, 42, 43 [79.8, 91.5, 95] GGE/MT Beta PERT 
Scrap aluminum21 [5.9, 14.1, 15.1] g/kgMSW Triangular 
Scrap iron and steel21 [3.2, 3.6, 26.7] g/kgMSW Triangular 
Scrap glass21 [29.6, 32.9, 45.2] g/kgMSW Triangular 
Material and energy prices    
Gasoline price in analysis start year 
(2018)13 [1.68, 2.18, 3.53] $/gal Beta PERT 

Gasoline price growth rate 
projection13 [0.85, 2.11, 2.33] % Beta PERT 

Gasoline price yearly deviations20 [0, 0.3547] $/gal Normal 
Natural gas price yearly deviations18 [0, 72.99] $/MT Normal 
Electricity price yearly deviations14 [0, 0.00295] $/kWh Normal 
Higher alcohols6, 34, 37 [1.28, 2.00, 3.00] $/gal Triangular 

Petroleum coke2 [4.1046, 0.1886] Based on 
$/MT Lognormal 

Sulfur44 [4.5898, 0.3407] Based on 
$/MT Lognormal 

Scrap aluminum23, 26, 29, 39, 39 [772, 1858, 2457] $/MT Triangular 
Scrap iron and steel23, 26, 29, 39, 39 [136, 342, 492] $/MT Triangular 
Scrap glass24, 29 [7, 22, 30] $/MT Triangular 
Construction aggregates44 [7.82, 10.21, 18.36] $/MT Triangular 
Olivine23, 34, 50 [235, 255, 332] $/MT Triangular 
Tar reforming catalyst23, 34, 50 [12670, 15130, 20812] $/MT Triangular 
Alcohol synthesis catalyst23, 34, 50 [12915, 14244, 15696] $/MT Triangular 
Process water23, 31, 32 [0.10, 0.57, 0.73] $/MT Triangular 
D4 RINs3 [-0.3441, 0.2262] $/RIN Lognormal 
Capital and fixed costs    
Fixed capital investment30 [206, 258, 387] $M Beta PERT 
Fixed operating expenses41 [6.4,7.7,11.6] % of FCI Beta PERT 
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Table B.7: FPH Monte Carlo variables and distribution parameters
Variable Nominal Range Units Distribution 

Material and energy process outputs    
Fuel yield1 [57.9, 80.4, 90.5] GGE/MT Beta PERT 
Material and energy prices    
Corn stover46 [57.95, 87.46. 115.91] $/MT Beta PERT 
Catalyst costs7 [1.87, 0.31] $M Normal 
Hydrogen46 [2.37, 3.42, 4.48] $/kg Beta PERT 
Gasoline price in analysis start year 
(2018)13 [1.68, 2.18, 3.53] $/gal Beta PERT 

Gasoline price growth rate projection13 [0.85, 2.11, 2.33] % Beta PERT 
Gasoline price yearly deviations20 [0, 0.3547] $/gal Normal 
Electricity price yearly deviations14 [0, 0.00295] $/kWh Normal 
Natural gas price yearly deviations18 [0, 72.99] $/MT Normal 
Capital and fixed costs    
Fixed capital investment7 [284, 355, 532] $M Beta PERT 
Fixed operating expenses7 [3.56, 4.27, 6.41] % of FCI Beta PERT 
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Table B.10: Fuel price correlations from historical U.S. Energy Information Admin-
istration (EIA) data

Fuel price Correlation with 
gasoline price, x 

Propane 0.3762x + 0.0476 
Heavy oil 0.8683x – 0.0330 
Jet fuel 1.1698x – 0.0906 
Diesel 1.1798x – 0.0786 
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Appendix C

Detailed MSP and NPV Results

C.1 MSP and NPV Monte Carlo Data

Table C.1: MSP ($/L) results for each pathway
Pathway Median Mean Std. Dev. Lower 5% Upper 5% 

HEFA, Soybean oil 1.16 1.19 0.22 0.87 1.60 
HEFA, Tallow 1.04 1.06 0.19 0.79 1.42 
HEFA, Yellow grease 0.89 0.91 0.18 0.66 1.24 
AF, Corn grain 1.64 1.66 0.25 1.30 2.10 
AF, Sugarcane 1.43 1.47 0.26 1.10 1.96 
AF, Herbaceous biomass 2.50 2.51 0.23 2.16 2.92 
APP 2.05 2.07 0.23 1.73 2.48 
HTL 2.75 2.78 0.45 2.09 3.58 
FT 1.14 1.15 0.14 0.95 1.39 
FPH 1.50 1.52 0.33 1.02 2.10 
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Table C.2: NPV ($B) results for each pathway
Pathway Median Mean Std. Dev. Lower 5% Upper 5% 

HEFA, Soybean oil -0.278 -0.281 0.205 -0.625 0.049 
HEFA, Tallow -0.199 -0.202 0.188 -0.517 0.100 
HEFA, Yellow grease -0.110 -0.112 0.181 -0.412 0.179 
AF, Corn grain -0.549 -0.552 0.209 -0.905 -0.216 
AF, Sugarcane -0.414 -0.420 0.209 -0.775 -0.099 
AF, Herbaceous biomass -1.044 -1.036 0.188 -1.336 -0.716 
APP -0.863 -0.854 0.171 -1.120 -0.560 
HTL -0.721 -0.716 0.181 -1.005 -0.408 
FT -0.217 -0.210 0.139 -0.424 0.033 
FPH -0.351 -0.344 0.157 -0.583 -0.070 
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Table C.7: Skewness and kurtosis results for baseline MSP and NPV kernel distribu-
tions
 MSP NPV 
 Skewness Kurtosis Skewness Kurtosis 
HEFA Soybean oil 0.771 4.022 -0.202 3.142 
HEFA Tallow 0.772 3.957 -0.145 3.071 
HEFA Yellow grease 0.772 4.146 -0.096 3.005 
AF Corn grain 0.711 4.036 -0.183 3.067 
AF Sugarcane 0.838 4.186 -0.297 3.378 
AF Herbaceous biomass 0.391 3.030 0.170 2.812 
HTL 0.283 2.797 0.218 2.785 
APP 0.418 2.932 0.133 2.712 
FT 0.337 2.753 0.259 2.816 
FPH 0.381 3.196 0.300 2.778 

 

Note: The MSP and NPV results were fit to kernel distributions, a distribution used
in cases when parametric distributions fail to properly describe the dataset. The
positive skewness of the MSP results can be observed in the difference between the
median and mean MSP for each case, with the median MSP slightly less than the
mean MSP by $0.01/L - $0.04/L. The positive skewness of the capital investment
distribution imposes the greatest influence on the positive skewness of the MSP
distributions, and none of the pathways reveal symmetrical skewness results
(skewness less than 0.25). A test for normality (kurtosis of 3) reveals that none of
the MSP results can be described accurately by a normal distribution. Conversely,
the NPV results demonstrate kurtosis values that conform closely with a normal
distribution, with all values falling within 15% of 3. The NPV distributions reveal
more varied skewness results, with AF from herbaceous biomass, HTL, APP, and
FPH skewed positively due to the dominance of capital costs among contributors to
variance and HEFA, AF from corn grain, and AF from sugarcane skewed negatively
due to the dominance of feedstock among contributors to variance
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Figure C-1: HEFA soybean oil MSP histogram ($/L)
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Figure C-2: HEFA tallow MSP histogram ($/L)
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Figure C-3: HEFA yellow grease MSP histogram ($/L)
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Figure C-4: AF corn grain MSP histogram ($/L)
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Figure C-5: AF sugarcane MSP histogram ($/L)
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Figure C-6: AF herbaceous biomass MSP histogram ($/L)
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Figure C-7: HTL MSP histogram ($/L)
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Figure C-8: APP MSP histogram ($/L)
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Figure C-9: FT MSP histogram ($/L)
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Figure C-10: FPH MSP histogram ($/L)
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Figure C-11: HEFA soybean oil NPV histogram ($B)
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Figure C-12: HEFA tallow NPV histogram ($B)
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Figure C-13: HEFA yellow grease NPV histogram ($B)
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Figure C-14: AF corn grain NPV histogram ($B)
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Figure C-15: AF sugarcane NPV histogram ($B)
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Figure C-16: AF herbaceous biomass NPV histogram ($B)
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Figure C-17: HTL NPV histogram ($B)
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Figure C-18: APP NPV histogram ($B)
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Figure C-19: FT NPV histogram ($B)
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Figure C-20: FPH NPV histogram ($B)
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C.2 Contribution to Variance
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Figure C-21: Contributions to variance for HEFA and AF pathways
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Figure C-22: Contributions to variance for APP, FT, HTL, and FPH
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C.3 Detailed Sensitivity Analysis Results

Table C.9: Sensitivity analysis for HEFA soybean oil MSP and positive NPV proba-
bility

Table C.10: Sensitivity analysis for HEFA tallow MSP and positive NPV probability
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Table C.11: Sensitivity analysis for HEFA yellow grease MSP and positive NPV
probability

Table C.12: Sensitivity analysis for AF corn grain MSP and positive NPV probability

Table C.13: Sensitivity analysis for AF sugarcane MSP and positive NPV probability
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Table C.14: Sensitivity analysis for AF herbaceous biomass MSP and positive NPV
probability

Table C.15: Sensitivity analysis for HTL MSP and positive NPV probability

Table C.16: Sensitivity analysis for APP MSP and positive NPV probability
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Table C.17: Sensitivity analysis for FT MSP and positive NPV probability

Table C.18: Sensitivity analysis for FPH MSP and positive NPV probability
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Appendix D

Policy Analysis Methods

D.1 Equivalence Value Assignment

To demonstrate compliance with the RVO, blenders and refiners buy and sell 38-digit

RIN codes assigned to each gallon of biofuel. These RINs have different D-Code

designations associated with the emissions mitigation potential of different biofuel

production pathways. As the RVO increases, RINs for fuels produced from pathways

that abate greater quantities of greenhouse gases become more valuable. D3 Cellu-

losic Biofuel RINs, for example, can only be earned by pathways that use a cellulosic

feedstock and emit 60% fewer greenhouse gases than conventional fuels. As a result,

D3 RINs are more valuable on a $ per RIN basis than D5 Advanced Biofuel RINs,

which have a less stringent feedstock requirement and require a 50% greenhouse gas

reduction (ICCT, 2014). Where life-cycle emissions data is not available, this thesis

refer to D-Codes assigned to these pathways by the EPA.
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Figure D-1: RIN lifecycle from fuel production to purchase points (EPA, 2016)

Under the Renewable Fuel Standard (RFS), renewable fuel products are eligible

for equivalence multipliers that increase the number of RINs earned per gallon. For

example, depending on the LHV of the fuel, diesel could earn an equivalence value

multiplier of 1.7. The number of RINs earned would then be subject to multiplication

by 1.7. We assume that the proprietors of each pathway would apply for and earn

the equivalence values commensurate with the LHV of each fuel product, according

to the following equation:

EV =
R

0.972
⇥ EC

77, 000
(D.1)

where EV is the equivalence value rounded to the nearest tenth, R is the renewable

content of the fuel (assumed to be 1 for each pathway) and EC is the energy content

of the renewable fuel in Btu per gallon (LHV). Table D.2 provides the assumed LHV

for each fuel product and the associated equivalence value. In general, any pathway

that converts a cellulosic feedstock into fuel earns a D7 RIN for middle distillates

and a D3 RIN for other fuels. Commercial HEFA plants that use oil feedstocks earn

D4 RINs for middle distillates and D5 RINs for other fuels, and MSW conversion

pathways with non-cellulosic feedstocks earn D5 RINs (EPA, 2016).

Historical price values for D4 and D5 RINs were collected from Bloomberg commodity

datasets (Bloomberg, 2016a,b). D4 and D5 RINs correlate closely over time, so the
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price of D5 RINs in any given year was dictated by the following equation using the

random result of a kernel distribution applied to D4 RIN price data:

PriceD5 = 0.813⇥ PriceD4 + 0.0811 (D.2)

Because D3 and D7 RINs only comprise 0.8% of the RINs generated in 2015, price

data is less readily available (EPA, 2015b). As a proxy, we follow Stock’s method of

estimating D3/D7 RIN prices by adding the D5 RIN price to the Cellulosic Waiver

Credit (CWC), an EPA price support for cellulosic fuels that equates to $0.25 in real

terms or $3.00 in real terms minus the average yearly wholesale price of gasoline,

whichever is higher (EPA, 2015a; Stock, 2015). We apply this method on a year-to-

year basis, combining the stochastic D5 RIN value with the CWC determined from

the GBM-estimated gasoline price. Equivalence values, which are RIN multipliers

attached to each gallon of fuel, are calculated based off of the assumed energy content

(LHV) of each product using the equation found in RFS2. The distributions for each

RIN type based on the Bloomberg commodity data are shown in Figure D-2.
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Figure D-2: RIN price distributions ($/RIN)
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Table D.1: Earned RINs for each pathway and feedstock
Pathway Fuel product Earned D-Code D-Code 

Classification 

HEFA 

LPG D5 Advanced biofuel 
Naphtha D5 Advanced biofuel 

Jet D4 Biomass-based diesel 
Diesel D4 Biomass-based diesel 

AF 

LPG D5/D3* 
Advanced 

biofuel/Cellulosic 
biofuel 

Naphtha D5/D3* 
Advanced 

biofuel/Cellulosic 
biofuel 

Jet D4/D7* 
Biomass-based 

diesel/Cellulosic 
diesel 

Diesel D4/D7* 
Biomass-based 

diesel/Cellulosic 
diesel 

APP 

LPG D3 Cellulosic biofuel 
Naphtha D3 Cellulosic biofuel 

Jet D7 Cellulosic diesel 
Diesel D7 Cellulosic diesel 

HTL 
Gasoline D3 Cellulosic biofuel 

Jet D7 Cellulosic diesel 
Diesel D7 Cellulosic diesel 

FT 
Gasoline D5 Advanced biofuel 

Jet D5 Advanced biofuel 
Diesel D5 Advanced biofuel 

FPH 
Gasoline D3 Cellulosic biofuel 

Jet D7 Cellulosic diesel 
Diesel D7 Cellulosic diesel 

	

*D3/D7 RINs only earned for herbaceous biomass feedstock in the AF case.
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Table D.2: Assumed LHV and equivalence value for each fuel product
Fuel product LHV (Btu/gallon) Equivalence value 

LPG 84,950 1.1 

Naphtha 111,520 1.5 

Gasoline 115,983 1.5 

Jet 125,800 1.7 

Diesel 128,450 1.7 
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