
Critical Breaking

by

Christopher Kerich

B.S., Mathematics
Carnegie Mellon University, 2013

SUBMITTED TO THE DEPARTMENT OF COMPARATIVE MEDIA STUDIES/WRITING IN
PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN COMPARATIVE MEDIA STUDIES

AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2017

2017 Christopher Kerich. Some rights reserved.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License (https://creativecommons.org/licenses/by-nc-sa/4.0/). The author hereby
grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of

this thesis document in whole or in part in any medium now known or hereafter created.

Signature of Author....................................

C e rtifie d b y ..

9,IJ.JI.P~ Lt; y

MASSACHUSEUS INSTITUTE
OF TECHNOLOGY Director of Graduate Stu

MAY 312017

LIBRARIES

Signature redacted
Department of Comparative Media Studies/Writing

May 1, 2017

Signature redacted
Lisa Parks

Professor, Comparative Media Studies/Writing
Thesis Supervisor

Signature redacted
Heather Hendershot

dies, Comparative Media Studies/Writing

2

Critical Breaking

by

Christopher Kerich

Submitted to the Department of Comparative Media Studies/Writing on May 9, 2017 in Partial
Fulfillment of the Requirements for the Degree of Master of Science in Comparative Media

Studies

ABSTRACT

Utilizing critical and feminist science and technology studies methods, this thesis offers a new
framework, called critical breaking, to allow for reflective and critical examination and analysis of
instances of error, breakdown, and failure in digital systems. This framework has three key
analytic goals: auditing systems, forging better relationships with systems, and discovering
elements of the context in which these systems exist. This framework is further explored by the
examination of three case studies of communities of breaking practice: video game
speedrunners, software testers, and hacktivists. In each case, critical breaking is further
developed in reflection of resonant and dissonant elements of each practice with critical
breaking. In addition, artistic productions related to these case studies are also introduced as
inflection points and potential alternative expressions of critical breaking analysis. The goal of
this thesis is to provide a way to engage with breakdown and error and more than simply the
negation of the good or as a sensationalist talking point, and instead use it as a fecund place for
reflective, analytic growth.

Thesis Supervisor: Lisa Parks
Title: Professor of Comparative Media Studies/Writing

3

4

Contents

Chapter One: Introduction

Auditing

Negotiating Relationships

Contextual Knowledge

Discursive Normalization of
Breaking

Historical Antecedents

Cybernetics

Critical Practices

Media Art

The Goal of the Thesis

Conclusion

Chapter Two: Speedrunning

What is Speedrunning?

8

10

10

11

12

14

14

16

19

20

22

25

25

5

Speedrunning Literature

Why Analyze Game Systems?

Breaking Games Using
Speedrunning

Famous Speedrunning Glitches

Critical Breaking Analysis

Do Speedrunners Actually Break
Games?

Counterplay

Game Art

Speedrunning and Critical Breaking

Conclusion

Chapter Three: Software Testing

Affective Testing Methods

Corporate Testing

Twitterbots

6

29

32

34

36

41

42

43

45

48

51

55

57

60

63

Twitterbots vs. Software
Testing

Software Testing and Critical
Breaking

Conclusion

Chapter Four: Hacktivism

The EDT

Anonymous

Hacking

Hacktivism and Critical Breaking

Conclusion

Coda

Image Bibliography

66

68

70

73

75

80

84

88

91

99

103

7

Chapter One: Introduction

Digital systems and infrastructure sometimes don't work. When they fail, it can be

funny, frustrating, tragic, invisible, politically charged, or even revelatory. These errors evoke

some kind of emotional response, however small. The pervasiveness of digital systems in

Western life coupled with the evocative nature of glitch and breakdown has led humanists,

technologists, and journalists to study digital systems and give special attention to especially

resonant incidents of error in their work. Motivated by this fascination with breakdown, this

thesis seeks to crystallize and analyze a particular analytic way of engaging with errors,

centered on developing localized, specific knowledge surrounding the systems which produce

those errors.

One of the images from "Eigenfaces"

By way of an example, consider my 2015 work titled "Eigenfaces". The system this work

is engaged with is a circa-1991 facial recognition algorithm called the "eigenface algorithm".

Without getting too deep into the mathematical and technical aspects, this algorithm takes a

corpus of pictures of faces as input and creates a set of a ghostly eigenfaces. When given a

8

new picture, it can use those eigenfaces to attempt to match the new picture to one in the

original set, thus "recognizing" it. In my project I used one classic method of breaking systems,

giving unintended input, and fed sets of other pictures into the algorithm of objects other than

faces. In doing so, the system produced eigenfaces but also dramatically lowered the success

rate on the "facial recognition" aspect of the system. This allowed an exploration of the affective

power of the system, what is the emotional impact of generating these ghostly images? It also

facilitated an exploration into the power of systemic byproduct: what does it mean for the system

when the byproduct, these "eigenfaces", are more interesting than its nonfunctional main

function, recognizing faces? These interesting avenues of inquiry were opened up through a

simple breaking of the original algorithm.

In the foundational text "Do Artifacts Have Politics?", Langdon Winner sets out a specific

vision of the form that politics take in artifacts. These politics of artifacts are collections of

affordances or specific instantiations in charged contexts, "...specific features in the design or

arrangement of a device or system could provide a convenient means of establishing patterns of

power and authority in a given setting" (134, Winner 1980). These politics are often not

immediately visible on viewing an artifact. I would add this is especially true of an artifact in use,

whose very act of functioning erases and hides possible alternatives. This begs the question,

what are some ways of determining these politics, how do we display them once we know about

them, and how do we use this knowledge? To explore answers to these questions, I have

developed the concept of "critical breaking" which is a reflective, critical practice that produces

and reflects on breaking and error in order to interrogate dominant paradigms of correctness

and utility. This interrogation is done in pursuit of critical breaking's three key analytic goals:

auditing systems, negotiating relationships with systems, and as previously mentioned, for

gaining information on the contexts in which systems are embedded. Achieving these analytic

goals is important in pursuing emancipatory and resistant uses of systems.

9

Auditing

Auditing a system means determining what a system is capable of doing and also when

it does those things. Specifically, when auditing a system attention must be paid to how biases

of the system could impact disadvantaged groups. This is an area of major concern in the field

of algorithm studies. In 1996, for example, Batya Friedman and Helen Nissenbaum attempted to

build a framework for algorithmic auditing by publishing categories of different kinds of

computational bias that could exist in a system (Friedman & Nissenbaum 1996). This was an

important step but in practice auditing digital systems has proved to be fairly difficult. Algorithms

are slippery subjects, as Nick Seaver writes, "What we recognize or 'discover' when critically

approaching algorithms from the outside is often partial, temporary, and contingent" (Seaver

2014). The user facing side of an algorithm can be personalized, algorithms can be totally

changed after the analysis is completed, algorithms can be extremely complex, and they can

use data sets far outside the reach of the analyst. This slipperiness is not in and of itself a bad

thing, as I will discuss later, but it makes traditional methods of auditing technology like reverse

engineering extremely costly and difficult. This very problem has been written about by data

journalists such as Nicholas Diakopoulos, who use reverse engineering as a core tool in their

practice (Diakopoulos 2014). Critical breaking leans into the contingency of algorithmic auditing

and seeks only to produce those partial and temporary insights, which in turn require less

resources to produce. Critical breaking is not a replacement for rigorous reverse engineering but

is positioned to support it with local and contingent auditing.

Negotiating Relationships

Negotiating relationships with systems is another motivation for critical breaking. At its

most liberatory, this means molding systems to the desires of their users. Often, though, this

means instead discovering how the needs and desires of the user can coexist with the system.

In his "Postscript on the Societies of Control" Deleuze warns of a society that constantly

10

constricts and normalizes its populace through its infrastructure and systems. More subtle than

disciplinary society, control society constantly and invisibly molds its subjects (Deleuze 1992, 4).

This negotiation with systems, then, is to lessen this normalizing control and restore agency to

the individual in control society. At the very least it will aid in making the concession to a given

system something explicitly and consciously decided. This idea of system negotiation is built in

part off of Alexander Galloway's concept of protocological hypertrophy and tactical media. He

writes, "...those phenomena that are able to exploit flaws in proctological and proprietary

command and control, not to destroy technology, but to sculpt protocol and make it better suited

to people's real desires... Tactical media propel protocol into a state of hypertrophy, pushing it

further, in better and more interesting ways" (176, Galloway 2004). These exploits and breaks

cause systems not to crumble but instead to swell and "make room" for individuals and their

desires.

Contextual Knowledge

Of course, breaking systems can also reveal aspects of the context in which that system

exists, especially with regard to the users and creators of that system. For example, if a

predictive policing system fails with too many false positives when deployed in Detroit but works

within acceptable margins in Baltimore, it speaks not only to the design of the system but the

data it is fed, the demographics of the city it is being used in, the nature of the idea of crime

used to create that system and much more. When a system breaks down we ask the important

feminist science and technology question, for whom? For all of critical breaking, and especially

this kind of contextual knowledge, it is useful to think of the knowledge produced by critical

breaking as a part of Donna Haraway's theory of situated knowledge. Situated knowledge

answers a problem brought up in scientific inquiry and also in critical breaking, which Haraway

characterizes as "...my problem, and 'our' problem, is how to have simultaneously an account of

radical historical contingency for all knowledge claims and knowing subjects, a critical practice

11

for recognizing our own 'semiotic technologies' for making meanings, and a no-nonsense

commitment to faithful accounts of a 'real' world, one that can be partially shared and that is

friendly to earthwide projects of finite freedom, adequate material abundance, modest meaning

in suffering, and limited happiness" (Haraway 1988, 579). Haraway presents situated knowledge

as an attempt to solve this problem by acknowledging and embracing the fact that knowledge is

radically contingent and relative. With situated knowledge this relativity does not preclude

knowledge from affecting the world and it can do so in limited, local ways that respect the

contingency of that knowledge. The same is true of the knowledge produced by critical

breaking. The results will always be extremely relative and as Seaver writes, "slippery", but still

useful if deployed in measured and tactical ways. Instead of being a one-size-fits-all tool, critical

breaking is a specific analytic tool with reasonable limitations.

Discursive Normalization of Breaking

In this thesis, a very general definition of brokenness is "the operation of a system

counter to the desire or expectation of some invested party". That being said, before continuing

on discussion of brokenness, errors, failure, and glitch, it is important to take a moment to

wrestle with the discursive normative effect these ideas have on use of systems. Categorizing a

phenomenon as an error implies the category of "not error", meaning there is somehow truly a

correct use for a given system. As a one off this might not be harmful, but in a project such as a

master's thesis uncritically engaging with brokenness may further marginalize fringe uses of

systems and erase those user's validity as users. Still, the idea of breaking is compelling and

has analytic value, especially when speaking about breaking in relational way. The imperfect

solution that I am using to speak about breaking while resisting its discursive power is to make

the decision to use it an explicit one, as I am doing now, and to conceptualize brokenness as

one of Karen Barad's apparatuses. Generally, apparatuses are meant to be a way to discuss

the implements through which scientific inquiry is done, a microscope or titration pipe, and it's

12

interesting to think about how the brokenness of those tools may affect results and our

understanding of the world. However, apparatuses are not just physical tools for Barad, she

writes "(1) apparatuses are specific material-discursive practices (they are not merely laboratory

setups that embody human concepts and measurements)" (Barad 2007, 146). I will go one step

further with my analysis of breaking and suggest that brokenness itself is a theoretical

apparatus through which inquiry is done. For Barad, "Apparatuses are not passive observing

instruments; on the contrary, they are productive of (and part of) phenomena" (Barad 2007,

142). That is, accepting that breaking is only one way of examining phenomena and doing so

colors and partially dictates what it is possible to learn. Even though there are restrictions given

by using a specific apparatus the results are still not deterministic. As Barad writes,

"Furthermore, the future is radically open at every turn, and this open sense of futurity does not

depend on the clash or collision of cultural demands. Rather, it is inherent in the nature of intra-

activity-- even when apparatuses are primarily reinforcing, agency is not foreclosed." (Barad

2007, 178). In this thesis when brokenness is invoked it is as an engagement with an apparatus

for examining phenomena and not intentionally discursively marginalizing different kinds of

systemic use.

Discursive normalization of breaking also runs the danger of discounting the relational

aspect of breaking. In fact, breaking is a very relational idea and different stakeholders in a

system will not always agree as to when a system is broken. For example, if Google indexes my

website I might feel that their system is erroneously invading my privacy. From the perspective

of Google, if I had not installed a robots.txt file on my website, my site was fair game for

indexing and there is no error. The most fundamental example is to take the perspective of an

algorithm on itself. Systems do not as of yet have conscious opinions as a human being does,

but they do have the capability to detect and classify errors using certain criteria in a process

known as "error handling". In many cases the errors and glitches detected by outside observers

are the result of the system procedurally working completely as intended but acting on

13

unintended inputs or in an unintended context. This is one of the reasons critical breaking

works: this dissonance between perceived errors by human observers and internal error

processed by the system brings the elements which precipitated the error, the input, the context,

to the fore.

Historical Antecedents

The concept of critical breaking has not sprung into existence out of nothing. In fact,

there are many historical antecedents to this analysis of breakdown and they are being

synthesized into what I describe as critical breaking. Each historical area has particular

contributions to critical breaking and I will now survey them to highlight those contributions and

make the connections clear. Then, I'll expand on some of these antecedents to locate my case

studies for this thesis.

Cybernetics

Much of the earliest writing on error and glitch as we understand them in a systemic

setting comes from early cybernetics work that began to crystallize at the end of World War II.

As those thinkers began to conceptualize digital systems, primarily for military industrial

purposes, it began incumbent on them to also conceptualize how those systems could break,

and be improved by that breaking, when deployed in real life situations. Some of the work with

the longest lasting impact on error studies has been Claude Shannon's mathematizing of noise

in the late 40's and early 50's, and Norbert Wiener's notion of cybernetic feedback as described

in his 1950 book The Human Use of Human Beings.

It may at first seem like the strict mathematizing of noise by Shannon in 1949 would

work against more humanist readings of error as a discursive phenomenon, owing to the

detached and cold nature usually ascribed to mathematics. The mathematizing that I am

alluding to is established primarily in Shannon's 1949 essay "Communication in the Presence of

14

Noise" where, among other things, Shannon describes formulas to calculate the channel

capacity of communication systems- the maximum rate of transmission that communication

channels can withstand before their messages are not guaranteed to remain uncorrupted by

noise. He makes noise, at least in this specific communication systems context, something

avoidable by using specific calculations. In other words, noise becomes calculable. In doing this

Shannon centers noise as a concern that should be directly addressed instead of treating it as

an unwanted side effect or incidental problem. It is the centering and grasping of noise (and by

extension, error and glitch) that is the important revelatory push that makes critical breaking's

centering of the same things possible. Shannon's channel capacity formulas for noise are useful

in certain contexts, but his important contribution to critical breaking is the fundamental

discursive shift that centers noise, and therefore glitch, error, and other breaking, as central and

fundamental aspects of systems.

Contemporaneous to this, Norbert Wiener was developing early cybernetics. Specifically

he was developing the modern idea of a system and along with it a notion of systemic feedback.

Wiener writes, "The control of a machine on the basis of its actual performance rather than its

expected performance is known as feedback, and involves sensory members which are

actuated by motor members and perform the function of tell-tales or monitors- that is, of

elements which indicates a performance" (Wiener 1950, 24). This quote does a number of

things at once. First, it highlights the importance of the material performance of the machine.

Hypothetical machines and designs do not have errors. At most, they have expected errors.

Critical breaking is concerned instead with what arises in the performance of errors, the same

with feedback. Also, more importantly, this quote also indicates the necessity of observing the

performance of a machine in order to modify or improve it. Again, the same is true of critical

breaking, it is the observation of errors being performed that can lead to modifying the system or

the elements around it. Wiener's feedback frames the information gained from the performance

of the system as being used to improve it and avoid future malfunctions or errors. This is only

15

sometimes also the aim of critical breaking, however both emphasize the generation of

information from the performance of systems and its utility for making changes.

Contemporary writing on error, such as Mark Nunes' essay "Error, Noise, and Potential:

The Outside of Purpose", are sometimes critical of Wiener's negative view on error as

something to be avoided and weeded out of systems using feedback and laud Shannon's

relatively open-armed embrace of the fact that error will exist and needs to simply be worked

around. Nunes writes, "We can contrast [Wiener's] view with Claude Shannon's statistical

analysis of communication as a system, which pairs an increase in information with an increase

in entropy. The uncertainty that Wiener associates with an opportunity for malevolent

manipulation becomes in Shannon's account a measure of the total information in a system"

(Nunes 2011, 12). While this distinction can help draw out some attitudes towards control, which

Nunes does in his piece, it ultimately hides the fact that both Wiener and Shannon ultimately did

want to prevent errors from occurring. Critical breaking is indebted to these lessons from

Shannon and Wiener but moves past the avoidance or mitigation of error into a new analytical

domain, one that seeks to encourage and learn from it.

Critical Practices

Critical breaking is part of a long line of "critical" practices and owes much of its framing

to them. In particular, critical breaking is similar but distinct to two critical practices, critical

making and critical repair. Critical making, coined by Matt Ratto in a 2011 article, is described as

a "mode of materially productive engagement that is intended to bridge the gap between

creative physical and conceptual exploration". The words "making" and "engagement" are

crucial here, as for Ratto, "Critical making emphasizes the shared acts of making rather than the

evocative object" (Ratto 2011, 253). This emphasis on process is something shared by critical

breaking, occasionally after the breaking is finished there is even no remaining object to

analyze. When there is a result to be analyzed, it is useful, but it is not required by critical

16

making or breaking. It may seem obvious to say that critical making and critical breaking

otherwise work in opposite directions, but the opposition is deeper than is immediately obvious.

Critical making starts with a concept, a debate on how digital resources help us learn, a

discussion on walled gardens in digital spaces, and then through collaborative work explores

the concept and generates artifacts and analytic results. Critical breaking starts with the artifact-

the facebook feed, the video game, and through collaborative (or solitary) work, generates

concepts that are designed to be specific analytic interventions about various aspects of the

artifact. The difference between them is subtle, but lies in the framing of the acts and the

direction of their movements: critical making is top-down and critical breaking is bottom-up.

While these practices may be capable of producing similar insights, this difference cause the

emphasis to be placed in different areas and helps ensure that their results exist in mostly

separate domains.

Critical repair is a slightly newer critical concept developed in part by Daniela K. Rosner

and Fred Turner's 2015 analysis of hobbyist repair culture. Instead of being a particular process

that Turner or Rosner would enact as part of their research, their work is more about

considering the importance of and ideological values of repair practices (Rosner & Turner 2015,

60). This practice is situated in a bit of a different place chronologically than critical breaking.

Critical repair starts from the broken object and looks to see what communities can repurpose

and reuse. This can lead to insights on consumerism, the value of community work, and so on.

Critical breaking ends where critical repair begins, at the broken object. It stretches backwards

considering the process by which the artifact broke, what the significance of that is, and how it

relates to different standpoints with different opinions of the artifact and its brokenness.

Considered next to each other critical breaking can also help address a subtle shortcoming in

this early work on critical repair. This problem surfaces in Turner and Rosin's definition of repair,

"We conceptualize repair as the process of sustaining, managing, and repurposing technology

in order to cope with attrition and regressive change" (ibid, 60). What is being repaired are only

17

breakdowns that fit into the mold of "attrition and regressive change", a kind of inevitable,

entropic breakdown that somewhat alienates this failure from its causes. This is partially

necessary for the project of critical repair: considering the full and true range of breakdowns

would make moving forward with the analysis of repairing nearly impossible. Thankfully, critical

breaking is positioned to look backwards at different sorts and causes of breaking, pick up the

analytical slack, and repair it into something useful.

Another writer thinking about the critical aspect of repair is Stephen J. Jackson, who has

coined the term "broken world thinking" for describing the starting point for this thought. He

writes, "[Broken world thinking] asks what happens when we take erosion, breakdown, and

decay, rather than novelty, growth, and progress as our starting points in thinking through the

nature, use, and effects of information technology and new media" (Jackson 2014, 221). Again,

the creation myth of critical repair is in full effect: Jackson only describes one particular entropic

style of breakdown as part of his broken world thinking. Still, critical breaking aligns very closely

with the spirit of the statement. Jackson also eloquently situates the chronological situation of

repair as taking the space after critical breaking, "Above all, repair occupies and constitutes an

aftermath, growing at the margins, breakpoints and interstices of complex sociotechnical

systems as they creak, flex and bend their way through time" (ibid, 223). Critical breaking's

backwards and inwards looking necessitates critical repair's forward and outward looking, and

vice versa. Combined they present a strong analytical and critical foundation to do the work of

science and technology studies and media studies.

In terms of its goals, critical breaking is not that much different than critical making or

repair. All these practices seek to achieve insights and critical results than stem from material

work. Where critical breaking differs is in its area of analysis inside the lifecycle of an object, in

the breakdown. Both critical making and repair pay lipservice to the importance of the

breakdown aspect, critical repair especially is reliant on the brokenness of an object to function,

but they do not appreciate the nuances: they ascribe to the "creation myth" of breaking, as

18

I

mentioned before. There are many different ways an artifact can be broken; critical breaking is a

practice that can stave off this oversimplification and draw unique critical results that the other

practices might miss because of this.

Media Art

i ne Tront page oT np:iwwwwwwwww.joai.org1

The motivation for critical breaking does not come only from academic inquiry into

science and culture. Art, in particular new media art, is invested in exploring breakdown in ways

that are relevant to critical breaking. Consider the net art duo JODI, whose work such as

19

http://wwwwwwwww.jodi.org/ explores breaking webpages as an aesthetic. The stunning ways

that JODI display web breaking forces an engagement with the technology, one of the goals of

critical breaking, in a way that would be more difficult coming from a scholarly paper or article.

The viewer of JODIs artwork does not merely experience of broken web technology, but directly

engages with it in a browser and feels its effects. The brokenness, and its results, are

immediate and visible. This kind of production of critical, broken artifacts is a core element of

critical breaking following Sarah Kember and Joanna Zylinska's exhortation in the concluding

chapter of their 2012 book Life After New Media: "Critics of the world, create!". One central

aspect of critical breaking is embracing the fact that broken systems are still productive systems

whose output must be considered. This output varies from system to system, and can assume a

range of forms: it could be a slight perversion on typical output for the system, it could be error

logs, it could be the total absence of output (though this is rare). Considering system output

involves taking responsibility for the systems that are broken and the artifacts that are produced

as a critic and potentially as an artist. The formulation of critical breaking results as artistic

artifacts can make the results of the audit, relationship building, or context exploration concrete

and understandable, a valuable step in communicating results to relevant communities or

stakeholders.

The Goal of the Thesis

One immediate lesson to be learned from critical breaking's historical antecedents is

that it can be difficult to understand or evaluate the utility of a concept like critical breaking

without seeing it applied to concrete examples in a range of circumstances. Therefore, the

project of this thesis is to examine three case studies of contemporary forms of digital breaking

practice and apply a critical breaking framework. The digital constraint has been chosen to keep

the analysis focused on this particularly modern style of breaking and to not bloat the scope of

the thesis. In addition, I will explore how these case studies intersect with critical breaking, how

20

certain parts of them are resonant and dissonant, and how critical breaking can be further

developed based on the insights gained from examining each case study. Each case study is

built on a history of breaking practice that has resulted in these modern iterations. Building upon

the study of games and cheating, the first case study will be speedrunning, a particular style of

breaking games. From the history of testing the next case study will be software testing, where I

will examine corporate software testing practices. Finally, from the history of hacking in the third

case study I will examine the historical arc of hacktivism, hacking for political goals. Together,

they display a range of models to both emulate and avoid and ask interesting questions about

how and why systems are broken.

Speedrunning is name of a relatively new gaming practice, where players attempt to

complete specific objectives in videogames as quickly as possible. To do this, speedrunners

often break the games they speedrun very severely. My main methods for this chapter are

interviews with speedrunners and fieldwork combined with analysis of recorded speedruns.

Using these alongside literature on game art and counterplay, I will interrogate speedrunning's

emancipatory potential as well as its particular strengths when considered with a critical

breaking lens.

Software testing is, as one might imagine, the testing of software to detect and then

eventually remedy bugs or errors. Using a bedrock of my personal experience with software

testing, I will examine historical academic literature on testing, contemporary breakthroughs in

the field, textbooks and other media aimed towards learning software testing, and interviews

with current software testers. Ultimately, I will determine the standpoints, methods, and stakes

involved in software testing and just how critical breaking intersects with corporate breaking. As

a foil to this, I will also examine automated Twitter accounts, or Twitterbots, as another kind of

breaking that happens in a corporate framework but with generally counter-corporate aims.

Hacktivism is the name given to the liminal area of hacking for specifically political ends.

By examining literature on hacktivism as well as deep dives in hacktivist tools, we will push to

21

flesh out what it means to break systems when the politics of the action are front and center

instead of implicit. The tools especially will help reveal how in particular these actions take

place, and what the practice can reveal when examined in a critical breaking framework.

In all of these case studies, the kinds of breaking examined are intimately tied into

artistic production, either by myself or other new media artists and activists. As such, and also

with respect to Kember and Zylinksa's exhortation, each chapter will feature a heavy analysis of

related artwork to further concretize critical breaking and explore new analytical areas. In the

speedrunning chapter this will be game art, in the software testing chapter this will be

Twitterbots, and in the hacktivism chapter this will be twinned with the discussion of hacktivist

tools as historically they have been presented not only as activist technology but also as activist

art. The art examples will mingle with the interviews and literature to create generative, fecund

analysis.

Conclusion

Critical breaking is a new concept to describe a particular form of knowledge creation

involving breaking systems. In particular, it helps to perform localized audits, relationship

building, and context investigation of these digital systems. It is a synthesis of many influences,

including cybernetics and noise, critical making and repair, cheating studies, the history of

testing, hacking, and new media art. In this thesis, we will examine critical breaking by looking at

case studies ranging from speedrunning, to software testing, to hacktivism, all while considering

art as an essential part of the research method. By the end, critical breaking will be situated as a

valuable tool amongst many in the analysis of digital systems, adding the ability to engage with

and deploy error as a powerful, evocative, analytic tool.

22

Works Cited

Barad, Karen. Meeting the Universe Halfway: Quantum Physics and the Entanglement
of Matter and Meaning. Durham: Duke UP, 2007. Print.

Deleuze, Gilles "Postscript on the Societies of Control" October, Vol. 59. (Winter, 1992),
pp. 3-7. Print.

Diakopoulos, Nicholas. "Algorithmic Accountability: Journalistic Investigation of Computational
Power Structures." Digital Journalism 3.3 (2015): 398-415. CrossRef. Web.

Friedman, Batya, and Helen Nissenbaum. "Bias in Computer Systems." ACM Transactions on
Information Systems (TOIS) 14.3 (1996): 330-347. Print.

Galloway, Alexander R. Protocol: How Control Exists after Decentralization. Cambridge, MA:
MIT,

2004. Print

Haraway, Donna. "Situated Knowledges: The Science Question in Feminism and the Privilege
of Partial Perspective". Feminist Studies, Vol. 14, No. 3 (Autumn, 1988), pp. 575-599.
Print.

Jackson, Stephen J., "Rethinking Repair" Eds. Gillespie, Tarleton, Pablo J. Boczkowski, and
Kirsten A. Foot. Media Technologies: Essays on Communication, Materiality, and
Society. Cambridge, MA: MIT 2014. Print.

JODI. "%Location I Http://wwwwwwwww.jodi.org." %Location I Http://wwwwwwwww.jodi.org.
Web.

09 Dec. 2016.

Kember, Sarah, and Joanna Zylinska. Life after New Media: Mediation as a Vital Process.
Cambridge, MA: MIT, 2012. Print.

Levy, Steven. Hackers: Heroes of the Computer Revolution. Garden City, NY:
Anchor/Doubleday,

1984. Print.

Nunes, Mark. "Error, Noise, and Potential: The Outside of Purpose." Introduction. Error: Glitch,
Noise, and Jam in New Media Cultures. New York: Continuum International Group,

2011.
3-27. Print.

Ratto, Matt. "Critical making: Conceptual and material studies in technology and social life." The
Information Society 27.4 (2011): 252-260.

Rosner, Daniela K., and Fred Turner. "Theaters of Alternative Industry: Hobbyist Repair
Collectives and the Legacy of the 1960s American Counterculture." Design Thinking
Research. Springer International Publishing, 2015. 59-69.

23

Seaver, Nick. "Knowing Algorithms." Media in Transition. Feb. 2014. Web. 2 June 2016.

Shannon, Claude Elwood. "Communication in the presence of noise." Proceedings of the IRE
37.1 (1949): 10-21.

Wiener, Norbert. The Human Use of Human Beings. U.S.A.: Houghton Mifflin, 1950. Print.

Winner, Langdon. "Do Artifacts Have Politics?" Daedalus, vol. 109, no. 1, 1980, pp. 121-136.
www.jstor.org/stable/20024652.

24

Chapter Two: Speedrunning

Many contemporary video games have multiple language options. Games

include these options as an accessibility concern and a way to market their game to more

audiences. If you were playing such a game, chances are you would change the game to

display its text in your native language, maybe picking another language if you were interested

in practicing your translation skills. You might even think this is the only possible use case for

this option. It is how we think of language, as a tool for understanding. Something you may not

have considered is how fast the text displays in your selected language compared to the other

options. If the text displays character-by-character, there are significant speed advantages to

choosing languages where the average length of words is shorter. Unless you are a

speedrunner, that is, interrogating language and games in this way may have never occurred to

you. However, doing so brings to the fore properties of games and their constituent parts that

would usually go taken for granted or unconsidered. This foregrounding of unconsidered

aspects of systems is what makes speedrunning an interesting site for this first case study of

breaking communities. Before getting too deep into analysis, though, it is important to first

establish what speedrunning actually is.

What is Speedrunning?

Speedrunning, in short, is the practice of attempting to achieve a specific objective in a

video game as quickly as possible. Very often this specific objective is to reach the end of the

game. However, this is not as straightforward as it sounds. Where a game ends (or sometimes,

begins) is not set in stone, there are usually many equally plausible places to consider game to

begin or end: does it begin on the hardware level with the power button, on the software level

with the player's input, or does it begin later on in the game where a player's actions can

actually cause significant variance between playthroughs? This ends up being a socially

25

negotiated property determined by discussions between different factions in the speedrunning

community, and often varies depending on the game being speedrun.

Speedruns require very precise and rehearsed play and they also very frequently

include glitches or exploits that allow for maximum speed navigating through a game. Choosing

the fastest displaying language is a simple example of this. The only basic rules of a speedrun

are that no input can be issued to the game besides input that one can do via a controller and

such input must happen inside of the game. This rules out modding the game and the use of

memory alteration devices like a Gameshark, for instance. These basic rules are often added to

by speedrunners to make their speedruns more challenging, interesting, or simply different.

To better illustrate some of these ideas let's examine a speedrun of the Any% category

(meaning only the basic rules of speedrunning apply) of Super Mario 64 by a Japanese

speedrunner who goes by Akira. The first thing you'll notice when watching this video is that

despite it being a very short speedrun, only 6 minutes and 44 seconds, the first minute is spent

watching the opening cutscene where Princess Peach reads her letter aloud to Mario inviting

him to the castle and Lakitu flies around with his camera. This is because this cutscene is, as far

as any Mario 64 speedrunner has ever been able to discern, unskippable. Almost as if in spite

of all the incredibly tight optimization that occurs later in this speedrun, the unskippable

cutscene at the start says to the viewer and the speedrunner: given the constraints of

speedrunning, there are rules that you must always obey. Those rules still allow for a lot of

interesting behavior, though, as you can see at around 1:15 in the video when Akira performs

the first of four Backwards Long Jumps (BLJs) in the run. The BLJ is a very common style of

speedrunning exploit, especially in 3D platformer games, where quirks in the movement logic of

the game are manipulated to ends not intended by the developers. In Super Mario 64 Mario has

a limit on how fast he can move forwards- if he were able to gain infinite forward momentum the

game would basically become unplayable as Mario zoomed around his world at dizzying speed.

However, an oversight by the developers left Mario with no limit on his backwards momentum.

26

Using very particular setups and execution, Akira is building up an excess of backwards

momentum using Mario's long jump movement which they will then release and send Mario

barrelling off, bypassing walls and barriers due to the game's collision physics not being able to

cope with Mario's extremely high speed. This is an extremely difficult exploit to execute. One of

the reasons that this speedrun is only three seconds off of the world record is because all four of

the BLJs in this run are executed nearly flawlessly.

A backwards long jump in action

Starting at 1:25 in the video we can see the last thing I want to call attention to in this

particular speedrun. Aside from more obvious speedrunning tricks like the BLJ, speedruns often

include precise routes and execution that blurs the line between "exploit" and "normal play". For

instance, this section is a very optimized path that requires precision platforming. There are lots

of small tricks such as involving knowing exactly where to move and knowing where certain

platforms will be at a certain time, but these tricks ultimately interact with the game rules at a

higher level than the BLJ does. In the speedrunning community figuring out the fastest way

27

through a game is called routing. This includes movement glitches like a BLJ but also highly

optimized jumping like in this section. The remainder of this speedrun is a combination of BLJs

and highly optimized platforming sections which eventually culminate in the time of 6 minutes

and 44 seconds.

This video is an example of what is known as Real Time Attack (RTA) speedrunning.

These are speedruns performed by hand, by human beings holding a controller. There is

another type of speedrunning that is also worth discussing which is known as Tool Assisted

Speedrunning (TASing). A TAS has basically the same rules as an RTA speedrun but uses

emulation technology to methodically program speedruns that are executed by a computer. In

essence, a TAS is a long list of controller inputs that the computer executes in sequence to try

to complete whatever speedrunning objective as quickly as possible. TAS creators can optimize

these inputs by trial and error to create incredibly fast speedruns that require inputs that no

human could ever execute by hand. This means that a TAS is almost always as fast or faster

than its RTA counterpart. TASing also incorporates the same glitch and exploit techniques

previously mentioned for RTA speedrunning, and in fact TASers and RTA speedrunners

sometimes collaborate on fleshing out certain glitches or experiment on improving each other's

routes.

Since 2002, speedrunners have been congregating online on sites like Speed Demos

Archive and Speed Runs Live but the community did not have more widespread exposure. In

the last few years speedrunning has become an increasingly popular activity especially due to

the prevalence of livestreaming technology. Every single speedrunner I interviewed for this

project has some kind of streaming media presence. The livestreamed Games Done Quick

charity speedrunning marathons now regularly raise over a million dollars per marathon for their

various causes. This has extended to even some relatively mainstream acceptance as well, as

part a promotion for Summer Games Done Quick 2016, a speedrunner named

28

MitchFlowerPower performed a speedrun on The Late Show With Stephen Colbert. This

marked the first exposure of speedrunning on a national broadcast.

Speedrunning Literature

The literature on speedrunning is still relatively sparse and tends to address

speedrunning in very specific ways. Most often single speedruns are used to underline

argumentative points, as in Patrick LeMieux's discussion of digital seriality using Morimoto's

2003 TAS of Super Mario Bros. 3 (LeMieux 2014) or Seb Franklin's measuring the distinctions

between user and programmer with Bisqwit and Finalfighter's 2009 TAS of Mega Man for the

NES (Franklin 2009). Speedrunning, particularly TASing, works well in academic writing as the

one-off oddity or eccentric edge case when writing about digital systems (something that I am

also partially guilty of here), but also deserves to be studied as a practice and community.

Rainforest Scully-Blaker seems to have picked up that torch and their 2014 article remains the

most comprehensive analysis of speedrunning to date (Scully-Blaker 2014). In it, they attempt to

build a model to help describe speedruns and specifically how speedrunners break games. To

do this they first extend Mia Consalvo's ideas of contextually defined cheating (Consalvo 2007)

into a taxonomy consisting of implicit and explicit rules. Implicit rules are player expectations of

a game and a game world while explicit rules are the "hardcoded" elements of a game that

cannot be broken. In Scully-Blaker's words, "In this sense, then, I would argue that while

speedrunners clearly trespass against the implicit rules of certain games, they cannot be

considered cheaters with reference to a game's explicit rules, because explicit rules cannot be

broken. In fact, if a game has been available for enough time, runners are often more familiar

with the game's explicit rules than those who designed the game." (Scully-Blaker 2014). These

ideas of rules are expanded again into a taxonomy of two different kinds of speedruns, obeying

implicit rules creates finesse runs and only obeying only explicit rules creates deconstructive

runs:

29

"I suggest that finesse runs are runs in which the player interacts with the game as an extreme

extension of what a game designer may consider an 'ideal' player. Such a run uses no game-

breaking glitches... Deconstructive runs, on the other hand, are runs in which the player exploits

glitches within the game to break scripted sequences and potentially skip several hours of

gameplay altogether. To again use de Certeau's terms, I believe that a deconstructive run

dismantles narrative boundaries by transgressing both the literal narrative and the narrative

implied by the design of the gamespace (the implicit rules)." (Scully-Blaker 2014). To give a

concrete example, you could imagine the BLJ from the earlier Super Mario 64 speedrun as part

of a deconstructive run and the level traversal as part of a finesse run.

An SGDQ Practice Room (taken by the author)

However, something lacking from this discussion of speedrunning and most other

published literature on the topic are interviews and discussions with actual speedrunners, the

30

<I

people who actually perform this practice. As part of my work for this thesis I did onsite

interviews and observation at two speedrunning marathons: SGDQ 2016 and Memeathon 3. In

addition, I did many other interviews with speedrunners and organizers outside these events.

Based on this work, I reject Scully-Blaker's interesting but ultimately universalizing ideas of

implicit/explicit rules and finesse/deconstructive runs for a more contingent, embodied model.

No model will ever totally capture anything completely accurately but Scully-Blaker's is

misleading. In their model, implicit/explicit rules are a fixed property of a game but in actuality,

something being categorized as an implicit or explicit rule is an opinion formed by an observer,

whether it be a machine observer or a human observer. The implicit rules described by Scully-

Blaker reflect the expectations of a game designer or casual player. These are different for

speedrunners, for whom the only "implicit" rule is that completing a game as quickly as possible

is the most important aspect of playing it. Speedrunners only stopped to consider the narrative

or the implied edges of the game world when they were trying to analyze how a game designer

might have architected the system in order to then break it. When speedrunners speak about

"game breaking tricks" they are speaking from a position located outside of speedrunning. That

phrase does come up often when speaking to speedrunners but it is part of a translation effort, it

means for you the game appears broken. Speedruns themselves have their own ways of

breaking that rely on a different set of rules and assumptions owned by the speedrunners. For

example, a glitch that allows a character to walk outside of walls would appear broken to a

casual observer, but to speedrunners this is an intentional way to save time in a speedrun and

is the opposite of being broken- the speedrun is going as intended. If the character gets stuck

outside the walls and can't get back in, the speedrun cannot progress and times like these are

when speedruns actually "break". Implicit rules belong to an observer and not to the universal

reading of video games put forth by Scully-Blaker. Harkening back to Scully-Blaker's definitions

of finesse and deconstructive runs we can say that for speedrunners, all speedruns are finesse

runs. For the inexperienced or uninformed, all speedruns are deconstructive. I argue that

31

speedrunners always follow their own interpreted implicit rules and to some degree always

transgress assumed rules about how games are meant to be played.

I do not mean to argue that rule breaking does not exist in speedrunning, far from it. In

fact, the idea that speedrunners break games are the reason it is included as a community of

breaking in this thesis. I would like to emphasize that as we continue to examine how

speedrunners twist and break games it is important to consider from whose perspective things

are breaking, whose expectations are involved, whose desires are being met or denied, and

what the negotiation is between humans and machine systems. Critical breaking is this lens for

thinking about breaking systems and developing insight from that breakage.

Why Analyze Game Systems?

It could be argued that games are not a suitable subject for this kind of analysis. There

are many pressing socially relevant algorithms to analyze outside of games. Do game systems

matter in the same way that Facebook's news feed algorithm or Google's pagerank algorithm

do? To answer this, first and foremost important to state that games have great emancipatory

potential. This comes in many ways, one is through radical design methods that Mary Flanagan

explores in her 2009 monograph Critical Play. In it, Flanagan examines various socially relevant

"critical games" and and advocates for a game design process where values are deeply

embedded (Flanagan 2009). This reflects games not yet made, however, and also games that

are often set apart as "art games" or "education games". With critical breaking, it is more

productive to focus on the emancipatory potential encoded into games that already exist or in

games that are produced as part of global capitalism. Critical play and critical games give

analytic ways to think about the future of games, and critical breaking gives a way of analytically

viewing past games. This is something forecasted by Nick Dyer-Witheford and Greig de Peuter

in the last pages of Games of Empire, "For in this process of cooptation, Empire cultivates

capacities that might exceed its grasp. In this perspective, the imperial content of so many

32

games may turn out to be simply a shell from which the far more radical potentials of the game

form eventually break out. Rather than simply swallowing the utopian potential of digital play's

possible worlds, commercial game culture might also simultaneously be incubating a culture of

system-stimulating, self-organized, cooperatively producing hacker-players capable of looking to

a future beyond the edge of the global market." (Dyer-Witheford & de Peuter 2009, 228-229).

Critical breaking is the system-stimulation mentioned in this quote, it is the looking forward, it is

one way of seeing commercial games become more than products or entertainment media and

transforms them into critical windows on society and play.

In addition to their emancipatory potential, game systems need to be analyzed because

they regularly perform damage in ways that are complex and often hidden. A good example of

this has been chronicled by Claudia Lo about the PC game RimWorld, though the method of

analysis used was decompiling the source code and not breaking the game systems. RimWorld

is a very fine grained simulation game where while characters build shelters and farm resources

on far flung alien worlds, characters are assigned genders and can engage in relationships.

Crunching the numbers on how the relationship system worked resulted in many findings

summarized by Lo in her article. In short, the system was coded such that men were never

bisexual and women always were. Additionally, for women engaging in relationships outside of

their assigned sexual orientation by the game (always straight or gay) was determined heavily

by the "beauty" score of their potential partner. In Lo's words, "Code is never neutral. All of

these coded structures push a particular scenario over others, and most of the time this is fairly

benign. However, this does not mean that it should escape scrutiny, because we can end up

uncritically coding in harmful assumptions, which ultimately means we are constraining what our

games could be while also alienating other players." (Lo 2016). This of course reflects a long

history of criticism of the embedded politics in code stretching all the way back to Langdon

Winner's 1980 "Do Artifacts Have Politics?" and beyond. The developer's later comments

confirmed that these harmful assumptions were in fact intentional. Game systems speak to

33

things outside of their game worlds and can do damage, representational or otherwise, outside

of them. As boyd, Levy, and Marwick write in a short piece on algorithmic discrimination,

"Racism, sexism, and other forms of bigotry and prejudice are still pervasive in contemporary

society, but new technologies have a tendency to obscure the ways in which societal biases are

baked into algorithmic decision-making. Not only must such practices be made legible, but we

must also develop legal, social, and ethical models that intentionally account for networks, not

just groups and individuals." (boyd et. al. 2014, 4). Critical breaking is not geared just for

emancipation but for present day accountability by aiding in auditing systems and rendering

them more legible. Critical breaking does double duty by looking at both what exists and what's

possible when what exists, breaks.

Breaking Games Using Speedrunning

The way that speedrunners go about breaking games is, unsurprisingly, relatively

complicated. My research shows that speedrunners can be broken down into three non-

mutually exclusive roles: runners, routers, and glitch-hunters. Runners are the most

straightforward group: they are the performers of speedruns; they are the people who appear on

streams. They most often have functional understandings of the game rules and why they tricks

they use work, but it is ultimately more important that they be able to execute them. This is also

by far the most populous role. Supporting runners are routers: the people who tediously map

and chart the fastest ways to complete each speedrun. For different kinds of games routing

looks very different. In an RPG speedrun, for instance, a router might chart all the vendors who

sell potions below a certain cost threshold and then calculate which is the least out of the way to

shop at. In a platforming speedrun like Super Mario 64, though, a router would be figuring out

how to set up all of the BLJ glitches and figuring out the quickest movement path through the

levels. They break the game through intense optimization and studious experimentation though

most routers would not frame what they do in that way. Many runners I spoke to were also their

34

own routers but there are runners who route games than they don't run, or dedicated routers

who do not have the manual dexterity (or desire) to run the games than they route. Supporting

both runners and routers are the glitch-hunters: a very select group who do not necessarily even

see themselves as part of the speedrunning community, but rather only find complicated

glitches and exploits in games because they enjoy doing it. Routers will then quickly scoop up

and attempt to operationalize these exploits as part of speedruns. There do not seem to be very

many glitch-hunters, and it is an event when one of them begins looking for glitches in a new

game.

This hierarchy of roles only applies to RTA speedrunning, though. In TASing the

computer does the "execution" part of a speedrun, the primary work of the humans involved in

the process is encoding the run as inputs. This is technically different than routing a TAS:

planning a route through a level of Megaman is mostly conceptual while the encoding of the run

through that same level is mostly technical, but the roles are much blurrier than in RTA running.

The glitch-hunter role is agnostic to RTA speedrunning and TASing, the glitches they discover

are often utilized in both. While the RTA community and TAS community are definitely distinct

entities there is often collaboration on the level of directly or indirectly sharing glitches and

exploits. When I asked speedrunners about this, they would tell similar stories. First, an RTA or

TAS speedrunner discovers something strange in practice and posts a video about it. Maybe

the wrong item popped out of a chest in Super Ghouls n' Ghosts, or perhaps a tool-assisted

route to perform arbitrary code execution in Super Mario World has been published. Then RTA

or TAS runners watch those videos and begin experimenting with the new technique or glitch.

Eventually, the runner figures out a way to implement the strange behavior in a useful way for a

RTA or TAS speedrun and posts a video of that. RTA runners can see the TAS or TAS runners

can see the RTA speedrun and then attempt to execute the trick in their own runs. It seemed

more often than not these strategies were disseminated indirectly rather than being shared

explicitly. This maps somewhat onto T.L. Taylor's discussion of the community knowledge

35

systems of the "power gamer", gamers who maximize their progress in a game towards specific

goals, a descriptor which can also describe speedrunners. She writes, "While the casual gamer

may visit a map site on occasion or sometimes peruse a message board, power gamers

regularly consult, dispute, refine, and build knowledge through the more formalized mechanisms

of Web sites and bulletin boards. By participating in guild sites, gaining status through

contribution, and entering discussion with others, players bond to the collective and enact social

modes of play" (Taylor 2006, 84). This close bonding to the community surfaces quickly in

conversation with speedrunners, they will always know all of the people who run the same

games as them because the knowledge community centered on speedrunning that game is so

tight and collaborative.

While the Mario 64 example discussed earlier is illustrative of some glitches and

exploits, it doesn't even begin to cover the range of different ways that speedrunners have

broken games. To help flesh this out, the next section will survey a selection of famous glitches

or common exploit strategies in speedrunning.

Famous Speedrunning Glitches

The first of these glitches is wrong warping, a famous glitch used in speedrunning The

Legend of Zelda: Ocarina of Time for the N64. It was discovered by one of the most

notorious/famous glitch-hunters, Sockfolder, and is considered to be so powerful that there are

categories of speedrunning Ocarina of Time that specifically ban the use of it and nothing else.

For those who aren't familiar, Ocarina of Time is an adventure game where a character, Link,

goes from dungeon to dungeon and explores a kingdom in search of mysterious artifacts and a

missing princess. Constraints on the processing power of the N64 mean that this entire

adventure is delimited by doors that separate areas. This is so that all the areas that Link will

travel to or have already traveled to do not need to be loaded and rendered at the same time.

When Link opens a door, the value of that door is checked in a table that says where the door

36

leads. Then the game loads that area and Link continues on his adventure until the next door

and the process repeats. The process is complicated by a number of factors including the fact

that sometimes when Link moves through a door a cutscene will play before loading the new

area and that Link has ways of getting to new areas without even using a door (blue warps after

defeating a boss or the magic spell Farore's wind, for instance).

Release bugs and re-catch
Still from Wrong Warping tutorial video (https://www.youtube.com/watch?v=OAvFdMSPHPk)

The speedrunning technique known as "wrong warping" takes advantage of the fact that

these additional wrinkles to the loading process are handled by simple addition (i.e. the value of

the door is added to the value of the cutscene and that result is loaded from the table). There

are many ways to execute a wrong warp, but essentially their goal is to have Link open a door

and move to a completely unintended area by having strange values added to the door's value.

For example, if Link travels through a door that doesn't have any cutscenes listed in the table

but has a cutscene value added to it (achievable through a variety of unrelated glitching), he can

travel to the areas that are just below the door's value in the table. The value of door plus

37

cutscene in the table then could be someplace Link is absolutely not intended to be able to

travel to at that moment. Speedrunners have experimented and discovered the optimal

combination of door and cutscene values to allow Link to enter a door towards the beginning of

the game and then exit a door during the final sequence of the game, skipping the majority of

play (see https://www.youtube.com/watch?v=OAVFdMSPHPk).

Not all speedrunning exploits necessarily interact with games at such a deep level,

though. "Sequence breaking" is a technique used in speedrunning many games. Sequence

breaking is defined as skipping parts of a linear gameplay sequence that are intended not to be

skippable. Wrong warping can be used as a sequence breaking tool, but sequence breaking in

many games does not require conceptualizing internal game data structures like wrong warping

does. The sequence breaking used in speedrunning Super Metroid for the SNES is one such

example. In Super Metroid you play an intergalactic bounty hunter, Samus Aran, as she

explores an alien planet. As you progress you collect upgrades that allow Samus to return to

previously inaccessible areas. For example, collecting a grappling hook will let Samus swing

over a pit that was previously untraversable. These upgrades appear in a linear order that

requires having the previous upgrade to acquire the next, you need morph ball to get missiles,

and you need missiles to get bombs, and so on and so forth.

Of course, the phrasing "need" here is from the perspective of the game designers.

Speedrunners of Super Metroid have found ways to collect these upgrades out of order by

performing a variety of different movement tricks and exploits (see

https://www.youtube.com/watch?v=T3ZRpXl5rhc). For example, "wall jumping" (a movement

technique intentionally in the game, but in this case deployed in an unintentional circumstance)

can allow Samus to jump up a wall that is just barely in reach to collect the power bombs much

earlier than in the intended linear upgrade order. This has a lot of ramifications on Samus's

damage-dealing ability in addition to controlling where she can travel in the world, resulting in a

lot of time being saved that would otherwise be spent following the intended path. The

38

movement tricks involved are often very precise and sometimes require taking damage that, if

not managed well in an RTA speedrun, could kill Samus and end the run. This has contributed

to Super Metroids notorious reputation as a difficult game to speedrun and why at the massive

Games Done Quick events the 4-way Super Metroid race, where four players attempt

synchronous speedruns of Super Metroid, is always a marquee event.

Still from Super Metroid sequence breaking video at (https://www.youtube.com/watch?v=T3ZRpXl5rhc)

The kind of skipping involved in a speedrun is not always on the scale of something like

a wrong warp or sequence breaking in Super Metroid, though. Sometimes the skips are on such

a micro level that you execute one with every step. That is the case with "step counting", a

technique used in speedrunning Final Fantasy V/I (FF7) for the Playstation. FF7 is a role playing

39

game, or RPG, set on a futuristic planet where you play as a group of characters exploring an

epic story all the while battling monsters and leveling up. Crucially, in order to do all of those

things your characters must walk around. As they walk in a hostile area on each step there is a

chance for a random battle to occur where the characters will fight enemies and gain money,

experience, and items. Not all battles are triggered this way, some happen instead as part of the

storyline, but random battles are by far the more common method. However, the storyline

battles are the only ones that are absolutely essential for advancing the story and completing

the game and the random battles exist only to gain extra money, items, and experience. In a

speedrunning situation the non-essential eats up time that could be spent elsewhere.

Every step taken in FF7 is recorded by a single counter stored in the game's memory.

One step walking increases it by one, and one step running increases it by four. It takes four

walking steps to cover the same distance as a running step so the step counter will always

measure distance in the same way regardless if you run or walk to a destination. When moving

in a hostile area there is also a danger value which starts at zero and is increased on every step

in that hostile area. On every step the value of the step counter is used to lookup a value in a

"battle check table", if the danger value is less than the battle check there is no random battle, if

the danger value is higher then there is one. By digging into the game's code speedrunners

have determined what this table is and every value in it. Thus, by keeping mental track of their

step counts during a speedrun they can always know what the battle check value is. Because

speedrunners can keep track of these values they coordinate their steps using a mixture of

walking and running to ensure their danger values are always below the battle check values and

therefore only have random battles if and when they want them (see

https://www.youtube.com/watch?v=Tq5cnashuOg). This is used to lower the rate of random

battles dramatically and save the precious time wasted in doing them in an FF7 speedrun.

40

Critical Breaking Analysis

Now, we'll examine these examples from a critical breaking standpoint, to further draw

out how this kind of analysis can be used and also some of the affordances of examining

speedrunning related breaking. What follows are just brief, potential readings of all of these

breakages, to give an idea of how this analysis could be carried out.

Wrong warping is an interesting example to begin with because of how fine grained the

systems are that it reflects. It shows how speedrunners can reach all the way down and perform

manipulations at the memory addressing level while only using a controller. Of course, that is

what a controller does- even simple movements in games perform manipulations at the level of

memory but that reality is purposefully kept obfuscated in most games. Wrong warping can be

an inflection point for speaking about how these kinds of false power divides are constructed in

games: manipulations thought to be impossible in fact always were possible. Additionally, one of

the reasons that wrong warping works is that the different areas of the game are ordered semi-

arbitrarily in the game's code. The fiction of the game world sets up a geography of connections

between places that absolutely collapses on the code level. Speedrunners use wrong warping

to seize on that inconsistency. The seizure of the disjunctive space between fiction and coding

to exercise speedrunning agency is a lesson in generating user agency that can be carried over

to other games or encoded fictions. It would have been possible to order the levels in a more

linear or semi-linear way in the table that represented Link's path through the mostly linear

story, but for whatever reason that was not a priority in development and speedrunners can

configure the game to suit their needs around that. Performing this exploit reiterates the

disjunction between fictional world and encoded space.

Sequence breaking in Super Metroid is a very strong audit of that game's progression

system and reflects a particular design ethos. Sequence breaking works because the game still

functions when Samus's items are collected out of order and Samus's upgrades are not

dependent on each other to work. This reflects a design philosophy committed to open

41

exploration, or at the very least committed to less strict restrictions on fringe gameplay

possibilities. Individual doors and sections generally require Samus to have only one item, and

not a combination of multiple items, further enforcing this accepting philosophy. The limitations

of what is possible inside the game system are sketched with explorations into sequence

breaking. While it is certainly difficult to perform sequence breaking tricks in Super Metroid, the

design is ultimately lenient towards it and the item system is very nearly predisposed to it. The

use of sequence breaking by speedrunners also reflects this commitment to similar principles

from their end though speedrunners' commitment to fringe gameplay styles is almost

tautological.

Step counting is, compared to the other techniques mentioned, very granular. Each

individual step of the character is contributing to a complex human-machine speedrunning

assemblage. It is a good example of when the negotiation between user and system still ends

up primarily in the hands of the system, where the user must twist and turn and count their very

steps to just achieve the small comfort of not having to battle anyone. The technique

emphasizes the difficulty of negotiating power and agency back to the user with respect to the

random battle system. Step counting is also another solid refutation to Scully-Blaker's distinction

between destructive runs and finesse runs. There's certainly nothing destructive about walking

or running in a speedrun, nothing is being "glitched", and yet it is most certainly against every

design intention that went into the creation of the random battle system in Final Fantasy VI/. The

ways that speedrunners engage with games, including step counts, are never so cleanly

divisible.

Do Speedrunners Actually Break Games?

It is worth taking a moment to consider if these glitches and exploits are actually glitching

or exploiting the games that they're a part of. In her work on cheating in games Mia Consalvo

examines how individual players define and interpret cheating for themselves (Consalvo 2007).

42

In that spirit it is worth examining how different stakeholder groups might interpret these

speedrunning glitch examples. In a speedrunning situation, for instance, each of the previous

exploit examples is functioning exactly as intended by the speedrunner executing them. For a

player more invested in the story of the game these techniques would go beyond just breaking a

game and border on the unthinkable, executing them would work exactly opposite to their goals

of experiencing the content of the game's story and mechanics. From a game design

perspective these techniques completely break the game and player experience. Elements of

the game are positioned in certain relationships to each other (bombs come after missiles, it is

symbolically important for Link to get the master sword, you need experience points from

random battles in order to be prepared for challenges) that is completely disrespected with

these techniques. It is a design disaster! However, the most tricky perspective to consider is that

of the system itself. Systems do not have opinions as such, but do have the ability to categorize

and parse behavior that is deemed erroneous by some criteria. In higher level programming

languages this is known as error-handling. In these particular three platforms, the SNES, the

N64, and the Playstation, games were written in lower level languages and often do not have

robust error handling. Therefore, despite there being strange behavior to outside observers

when speedrunners execute exploits on these machines, on the code and memory level the

systems are operating exactly as intended. Breakdown depends on whose perspective is being

inhabited, speedrunning is both not breaking and breaking games depending on the context it is

situated in. This reinforces that analyses of speedrunning and critical breaking more broadly

cannot simply rely on determining static models for behavior, but must consider perspectival

realities as part of their analysis.

Counterplay

Speedrunning is not the only method through which games can be considered broken. In

the next few sections we will move through and consider both counterplay and game art as two

43

other practices of game breaking to compare to speedrunning. Counterplay has a fluid definition

but has been described by Greig de Peuter as "heterogeneous ludic activities that challenge,

subvert, or exceed the dominant representational, algorithmic, and commercial practices of

digital games." (de Peuter 2015, 2) and "disruptive potential immanent to gamer culture,

specifically those instances in which this potential converges with activist efforts to contest

hegemonic power relations. Counterplay is a broadly construed field of ludic action and critical

inquiry" (ibid, 2). It truly is a broad categorization and has been used to refer to game activities

ranging from gold farming (ibid) to playing Alpha Centauri as an environmental activist (Dyer-

Witheford & de Peuter 2009, 192-193). Writers such as Tom Apperley have even pushed the

definition of counterplay to include exploits (Apperley 2009, 102-103) which would seem to

capture even speedrunning. However, I would argue speedrunning is a perfect example of why

to not assign the disruptive, anti-hegemonic political valence of counterplay onto generic

exploitation of game systems.

It would be possible to situate speedrunning in the general milieu of counterplay.

Speedrunning "exceeds algorithmic practices of commercial games" but the politics of

speedrunning are firmly pointed away from the counterhegemonic field conjured by counterplay.

Certainly, the politics of speedrunners are nowhere near aligned with this: speedrunners often

start speedrunning because they have played a game so many times that they are searching for

new challenges. The practice is born from deep affection and respect for the games they run

and not subversive activist action. Their pleasure derives from internal mastery and

understanding of the system. When speedrunners are breaking games to better suit their needs,

it comes from a place of utilitarianism- no matter how subversive the action, if it did not

ultimately make the speedrun faster it would not matter. I concede that there is some simmering

revolutionary and emancipatory potential in twisting and transforming commercial games to suit

the individual, that is Galloway's thesis about tactical media as well (Galloway 2009), but it is

important to also consider to what end that breaking is used. Consider this passage from de

44

Peuter and Dyer-Witheford as they develop their concept of counterplay in Games of Empire,

"This is an example of the process William Stephenson (1999) suggests when he asks: 'What if

the player elects ... knowingly to be a Bad Subject? The power of the computer,' he argues,

'can be harnessed by the skeptical, dissident player."' (Dyer-Witheford & de Peuter 2009, 193).

Speedrunners are not dissident, only skeptical of world record times that are declared

unbreakable, and elect instead knowingly to become not Bad Subjects but very, very Good

ones. Instead of operating inside of a game in a way that enacts dissidence, speedrunners

actually take what is asked of them by game systems or Empire and highly optimize and

streamline it. Speedrunning may still hold deep structural emancipatory potential, but it lacks the

fundamental political orientation that characterizes counterplay.

Game Art

Excerpt from Super Mario Clouds by Cory Arcangel

Another kind of game breaking that hews slightly closer to counterplay than

speedrunning is game art. Game art is a subgenre of new media art that emphasizes using

video games as an artistic medium. Game art doesn't necessarily have to involve breaking

games, many games are in fact intended to be artistic products. Still, much game art involves

45

creating art out of games in ways that are unintended and to my mind that qualifies as breaking

them. To dig into this further I will analyze two pieces of game art: Super Mario Clouds by the

artist Cory Arcangel from 2002, and one of my own pieces of game art, Katamari Dreams from

2016.

Excerpt from Katamari Dreams by Chris Kerich

Super Mario Clouds is one of the most significant works of game art in the short history

of the form and is also one of the most straightforward. Cory Arcangel took the classic NES

game Super Mario Brothers and by modifying the physical cartridge, removed all of the sprites

(e.g. the visuals) except for the blue sky and clouds that slowly move across them. He also

documented this process and has made the modified code and instructions available alongside

the project. This work is very engaged with the physicality of games, the necessity of having to

46

-- - - - - -- "51 , R

crack open the cartridge to delete everything besides clouds broadcasts the fact that games are

artifacts, embedded in circuits and code. The deletion aspect of the work also highlights the

small parts of games that usually go unacknowledged, the artist who designed the clouds and

how they move gets implicit top billing in Super Mario Clouds. Games can often suppress the

very art that they are built off of; Super Mario Clouds is such a valuable game art piece because

it deletes the game and leaves the art.

Inspired by work like Super Mario Clouds I began investigating the potential of producing

game art using the Playstation 2 title Katamari Damacy. It took a lot of work scouring the back-

alleys of the web and digging into the history of developments in PS2 modification and hacking.

Eventually, I got ahold of a combination PS2 emulator and memory disassembler titled

PCSX2dis, released in February 2015, that allows for live memory modification as the PS2 is

running. Using this tool I created the Katamari Dreams project by switching around what level is

being loaded during the loading process of the game which creates hybridized and broken

levels. The levels will often have characters or objects moving in erratic patterns, have objects

too large or too small for the level they're a part of, or have totally strange, broken textures that

make surfaces like roads or grass look completely alien. These errors surface different elements

of the game's design, in particular how the loading process interacts with the structure of the

level. Giant airplanes phasing through tiny city streets is a reflection of the granularity of scale in

the design, for instance, the emphasis of moving through many scales is highlighted when they

are presented directly next to each other. Like Super Mario Clouds and unlike speedrunning,

Katamari Dreams is a distinctly un-utilitarian project. In fact, both art projects actually glitch

games in a way that is actively avoided in speedrunning: they are examples of the dreaded

"softlock". When a game hardlocks, it means that the actual machine is unresponsive to

controls- the hardware or software itself has ceased to function. A softlock, on the other hand, is

when the game is still responsive to inputs but progression inside the game has become

impossible. In the case of a speedrun it means the run is permanently stalled and effectively

47

over. Both Super Mario Clouds and Katamari Dreams are projects where the game is still

technically functional, but the conventional progression required by a speedrun is not attainable.

These artworks showcase just a few alternative paths for game breaking that speedrunning

cannot explore due to the restrictions of the practice.

Speedrunning and Critical Breaking

Taking these other examples into account it's now possible to ask the question "in what

ways is speedrunning like critical breaking, and in which ways is it not?". The goal of this

analysis is to further situate critical breaking but also further develop the concept through the

lens of speedrunning. One avenue that speedrunning has the potential to achieve the critical

reflection of critical breaking is through its close engagement with designer intention. While

game art projects like Super Mario Clouds or Katamari Dreams can engage with the design of

games at something of a distance, speedrunning requires special attention to be paid to it as the

ultimate goals of speedrunning are aligned with the goals set out by the game designers. Even

though speedrunners often perform actions that go against the game designer's intentions for

specific pieces of a game, holistically speaking they are moving towards the same resolution.

The terms of success and failure set by the game designer still approximately capture the

success and failure of speedrunning breaking techniques. This specific close relationship allows

these techniques to speak to game design in a deeper way. For example, wrong warping

speaks to a very elemental location of game spaces in code, it accomplishes a connection

between external game phenomena and game design at the memory table level.

However, this avenue is often left unexplored by speedrunners. As mentioned before,

one limitation of speedrunning is that while it is possible to do political readings of speedrunning,

the community of practice itself is not predisposed to making claims about the games that are

speedrun. In other words, speedrunning is not a reflexive practice and is not particularly

interested in the meaning of its own content outside of how much time it takes to execute.

48

Consider this in relationship to counterplay, or to Mary Flanagan's concept of critical games and

critical play, "[...] games designed for artistic, political, and social critique or intervention, in order

to propose ways of understanding larger cultural issues as well as the games themselves"

(Flanagan 2009, 2). Speedrunning's shackling to productive movement in games limits it from

being able to explore these other areas, and indeed speedrunning practitioners would not even

want it to attempt it. Speedrunners make very interesting claims about games internally, critical

breaking instead seeks to make claims about systems externally- claims that affect the people

and world that the system exists in and not merely the system itself.

Another feature of speedrunning is that the knowledge produced by speedrunning can

"leak" from game to game. When game design styles are reproduced or copied then

speedrunning techniques have the ability to be reapplied to those new games. For example, an

interviewee I spoke to starting speedrunning Mega Man 6 but was able to more easily pick up

also speedrunning Mega Man 4 due to similarities in the design of the games and the platform

they were released on, the NES. Beyond even that he is able to be a part of the Mega Man

speedrunning community and his speedrunning knowledge of Mega Man 4 and Mega Man 6

helps him appreciate and contribute to the speedrunning of other games in the series. Much

other game breaking is locked very strictly to platforms. For example, so much of the

construction of Katamari Dreams is tied to the PS2 that is would never be feasible to transfer

that knowledge to other games in the series on other platforms like the Xbox 360. The

contingent applicability of speedrunning techniques to many games makes it robust in a way

that most game breaking is not. One reason to establish a unifying term like "critical breaking" is

to enable the discursive possibility of comparison of breakdown, so this is very in-line with my

goals for the concept.

If the goal of critical breaking is to reflect on certain examples of brokenness and

achieve some specific analytic goals, then it has to be willing to engage with a broad array of

aspects of systems. One aspect of speedrunning that distinguishes it from critical breaking is

49

that it is only concerned with a very narrow slice of what games are and ignores the rest. Video

games can have rich graphical fidelity, interesting characters, and complex storylines.

Speedrunning is a symbolic annihilator of all of those things. Game breaking like game art

trades on the fact that the results of the breaking are somewhat interpretable as

representational objects and their resonance or dissonance helps convey the meanings or ideas

of the art. In speedrunning, those things are just obstacles to be surmounted with technique and

skill. Mysterious behavior inside the game world is located precisely in code, cutscenes are

skipped, text is sped through, and level geometries become either tools or annoyances. Some

speedrunners will even refuse to start speedrunning games because they do not want to "ruin"

their favorite games for themselves by subjecting them to this process. This withering space

drastically limits what topics speedrunning can truly represent or speak to. The situated

knowledge of speedrunning is localized to just game mechanics and game design.

Speedrunning has deep engagement and insight into these things, but in doing so walls itself off

from relevancy elsewhere and severely hampers its ability to be "critical" in the same ways as

critical breaking.

Critical breaking is often concerned with using brokenness to question established

systemic paradigms and undermine assumed correctness, so it may also be prudent to ask 'is

speedrunning subversive?'. The answer, we can safely say, is 'no'. It is true that speedrunners

often break or subvert gameplay design. However, as mentioned before, the ultimate goal of

doing this is intimately tied to the whims of the designers of that gameplay. This has not gone

unnoticed by game designers and publishers and many indie titles now actually design features

for speedrunners by including a "speedrunning mode" in their game which puts a timer on the

screen, eliminates dialogue, etc. The implicit symbolic annihilation of speedrunning becomes

appropriated by these games and made explicit. Speedrunning is slowly becoming a marketing

category. Also, frankly, subversion is not what speedrunners aspire to accomplish with the

practice. More and more, the goals of speedrunners are to build a streaming brand, monetize it,

50

and become professional streamers, not perform any kind of subversive activity. This is not a

uniform goal amongst all speedrunners; many of my interviewees were strictly speedrunners as

a hobby and were sometimes even critical of those who would attempt to make a living doing it.

The more general question to ask is 'is speedrunning critical?'. Not being subversive

does not necessarily prohibit speedrunning from being a critical practice and the answer is a bit

more muddled. As we've seen, if we do consider speedrunning a critical practice it only can do

so in a very limited band- its rejection of representation hinders its ability to reach very far

outside of the game to which it is tied. Still, that could be a fairly wide range of activities, for

example step counting speaks to movement, space, combat, diligence, and randomness just

inside of Final Fantasy V11. With work these ideas can be addressed using speedrunning in a

critical way, but they do not offer themselves up in a necessarily obvious way.

Conclusion

Still, there are elements of speedrunning that make with worthwhile to examine when

developing a subversive, emancipatory framework like critical breaking. Speedrunners take

commercial games and bend them to their own desires and those desires are in part directed by

the game itself. It is nonetheless however a nontrivial move from passive consumer to active

user. In the small scale speedrunners go against designed intentions and negotiate themselves

around encoded values. In the large scale they obey and follow the designed intentions of the

game at large with dogmatic focus. Speedrunning has political implications and political

readings, but is very far from having political content. In the introduction to the edited collection

Error: Glitch, Noise and Jam in New Media Cultures, Mark Nunes describes error as "Error, as

errant heading, suggests ways in which failure, glitch, and miscommunication provide creative

openings and lines of flight that allow for a reconceptualization of what can (or cannot) be

realized within existing social and cultural practices" (Nunes 2011, 3-4). Speedrunning does not

do that. As Alex Galloway's hypertrophy implies, speedrunning can swell the possibility space of

51

systems but not escape it. It shows what can be done, it shows things that we did not think that

we could do and speaks to the reasons that we actually can. Speedrunning is not subversive,

nor anti-capitalist, but points to a way to understand relationships with systems that pushes,

however slightly, towards new and non-normative use.

52

Works Cited

akira06072525. "SM64 0 stars speedrun 6:44"23" Youtube. Youtube, 7 August 2015. Web. 14
October 2016.

Apperley, Tom. Gaming Rhythms: Play and Counterplay from the Situated to the Global.
Amsterdam: Institute of Network Cultures, 2009. Print.

Arcangel, Cory. "Super Mario Clouds" Cory Arcangel's Official Portfolio Website and Portal.
http://www.coryarcangel.com/things-i-made/2002-001-super-mario-clouds. Web. 24
October 2016.

boyd, danah, Karen Levy, and Alice Marwick. "The Networked Nature of Algorithmic
Discrimination." Open Technology Institute, 2014. Web. 2 June 2016.

Consalvo, Mia. Cheating: Gaining Advantage in Videogames. Cambridge, MA: MIT, 2007. Print.

de Peuter, Greig. "Online Games and Counterplay." The International Encyclopedia of Digital
Communication and Society, First Edition. John Wiley & Sons, Inc., 2015. Web.

Dyer-Witheford, Nick, and Greig de Peuter. Games of Empire: Global Capitalism and Video
Games. Minneapolis: U of Minnesota, 2009. Print.

Flanagan, Mary. Critical Play: Radical Game Design. Cambridge, MA: MIT, 2009. Print.

Franklin, Seb. "On Game Art, Circuit Bending and Speedrunning as Counter-Practice: 'Hard'
and

'Soft' Nonexistence." CTheory 0.0, 2009: 6-2/2009. Print.

Galloway, Alexander R., and Eugene Thacker. The Exploit: A Theory of Networks. Minneapolis:
University of Minnesota Press, 2007. Print.

Galloway, Alexander R. Protocol: How Control Exists after Decentralization. Cambridge, MA:
MIT,

2004. Print

Kerich, Chris. "Katamari Dreams" ckerich.com. http://www.ckerich.com/#/katamari-d reams/. 24
October 2016.

LeMieux, Patrick. "From NES-4021 to moSMB3.wmv: Speedrunning the Serial Interface."
Eludamos. Journal for Computer Game Culture 8.1, 2014: 7-31. Print.

Lo, Claudia. "How RimWorld's Code Defines Strict Gender Roles" Rock Paper Shotgun. 2
November 2016. Web. 6 November 2016.

Nunes, Mark. "Error, Noise, and Potential: The Outside of Purpose." Introduction. Error: Glitch,
Noise, and Jam in New Media Cultures. New York: Continuum International Group,

2011.
3-27. Print.

53

Scully-Blaker, Rainforest. "A Practiced Practice: Speedrunning Through Space With de Certeau
and Virilio." Game Studies 14.1, 2014: Game Studies. Web. 30 April 2016.

Taylor, T.L. Play between Worlds: Exploring Online Game Culture. Cambridge, MA: MIT, 2006.
Print.

The Late Show with Stephen Colbert. "Late Show 3-Legged Race: Video Game Speedrunner
Edition" Youtube. Youtube, 2 July 2016. Web. 14 October 2016.

Winner, Langdon. "Do Artifacts Have Politics?" Daedalus, vol. 109, no. 1, 1980, pp. 121-136.
www.jstor.org/stable/20024652.

54

Chapter Three: Software Testing

For those not familiar with the discipline of software development, it may seem strange

to refer to software testing as being a distinct discipline. Shouldn't testing the software you're

making be part of the development process? For much of the history of software development

this has been considered true, and the developers who create the software were also

responsible for testing it. Even today, in smaller software development situations where there

aren't enough resources to hire dedicated testers, testing is still done by developers. On the

whole, though, software testing has grown into its own discipline with its own norms, values,

practices, and protocols which sometimes mesh with but also sometimes clash with those of

software development.

What software testing actually means has undergone some radical shifts as the field of

software testing developed. To trace these, it's instructive to refer to some relatively early

academic documents attempting to characterize software testing. First, consider Victor R. Basili

and Richard W. Selby's 1985 report "Comparing the Effectiveness of Software Testing

Strategies". Written in the days of FORTRAN (an early programming language), Basili and

Selby provided test subjects with error-filled programs and measured their "effectiveness" at

finding those errors using various testing methods. More interesting than their results, though, is

their metric for measuring test effectiveness, the number of faults detected. Given the same

software, the testing method that could find more errors (on average across different human

testers) was their "most effective". This intuitive, raw number of faults way of viewing testing has

its problems: it lacks the ability to deal with the subjective, negotiated properties of error, for

instance, and represents early attempts at the formalization and professionalization-through-

quantification of software testing. Just three years later, in David Gelprin and Bill Hetzel's 1988

"The Growth of Software Testing" the professionalization of software testing leaves a more

heavy mark: instead of debugging or demonstrating correctness, as a student might do in a lab

or a scientist might do on a one-off program, Gelprin and Hetzel emphasize the shift to

55

"preventative" lifetime models (Gelprin & Hetzel 1988, 691). As customers and clients become

dependent on software, more robust testing methods and practices are implemented. This

includes widening the scope of what can be tested to earlier and earlier iterations of code and

also continuing to test and improve the software product post-release. This in turn implies a shift

in emphasis from determining if code is "objectively" or "scientifically" correct to determining if

code fulfills requirements put in place by a customer-client. Maintenance of a software product

during a lifecycle reflects a need to respond to human needs and expectations rather than a

notion of mathematical correctness of code.

Because software testing has taken many different forms over its history, it's difficult to

compare it to critical breaking as an entire discipline. In this chapter, I will endeavor to be careful

to specify what kind of software testing values or practices I'm referring to when I make

connections to critical breaking. There are two main resources from which this chapter will build

its arguments. The first is my own experience as a software engineer and tester, of which I have

about two years professional experience. The other is a review of both academic and

professional literature on software testing. From both of these, some clear parallels between

software testing and critical breaking can begin to be formed. On the whole, software testing

seeks to improve systems through discovering and analyzing their faults. "Improvement" for

software testers is almost always repair of the system while critical breaking is more agnostic to

the fate of the system itself: it's concerned with the people who rely on and use the system

instead. The effects of having this goal of corporate repair are an area of major focus and

comparison for this chapter. Also, the professionalization of software testing gives it very

specific forms and practices, especially around disclosure and formatting of results, but yet has

connections to very "non-standard" methods and strategies. The extent to which critical

breaking should borrow from these is another core question for this chapter. In general the

goals and methods of software testing and critical breaking are often broadly aligned, so this

chapter will focus on some deeper and more complicated issues inside software testing to both

56

complicate and sometimes strengthen this relationship. In addition, the chapter will engage with

outsider artistic techniques that also perform corporate breaking in different ways. This will put

in relief the extent of what is possible with software testing and help move towards constructing

a fully realized concept of critical breaking.

Affective Testing Methods

One of the strangest, most compelling elements of software testing is not captured at all

by the historical, academic documents examined thus far. One might assume that software

testing is governed by scientific, rigid procedure and algorithms, programmatic and based in

computer science. This is partially true, but there is also a set of emphatically non-scientific

methods that rely on psychology and social dynamics that nevertheless penetrate much of the

popular discourse on software testing aimed towards professionals. I do not mean to denigrate

these techniques, they serve as a valuable twin to the seemingly contradictory talk of procedure,

method, quantification (as will be examined in more detail later) and science that is also a part

of software testing as a discipline. The same could potentially be said of many trades and

professions, but software testing has this twin aspect in full force in a way that's ignored by the

academic literature. To see some examples of this, it is helpful to examine a different kind of

software testing text. We'll examine the textbook, where the academic aspirations of software

testing give way to practicalities and "real world" advice and examples.

The Art of Software Testing is a textbook designed to teach professionals and students

about software testing, now in its third edition. It both intentionally and unintentionally displays

interesting social and psychological testing practices and methods. As the authors themselves

write in the introduction, "Given these facts, you might expect that by this time program testing

would have been refined into an exact science. This is far from the case." (Myers et. al. 2012,

ix). Testing is described as the "dark art" of software development. Much of the early part of the

textbook is concerned with engendering a proper "attitude" towards software testing that create

57

effective and professional testers. The textbook gives nearly equal weight to flowcharts and

diagrams and what are best described as software testing mindfulness techniques. In this

particular textbook's case, this includes things like like assuming you will find errors when you

test (so you will be mentally primed to find hidden ones), aiming to add value to the software

you're testing (so you will be thinking not only of how to fix, but how to improve), and so on.

These sections have no math, no formulas, no workflows, it's all addressed directly to the

psychology of the tester. Even when the textbook is attempting to give more practical advice,

about doing group code reviews for example, the justification for this activity is "The reason is

the synergistic effect of the walkthrough or inspection team. The team session fosters a healthy

environment of competition; people like to show off by finding errors" (Myers et. al. 2012, 38).

Even very procedural testing activities are motivated by psychological, philosophical ideals that

often seem not to be grounded in any kind of empirical data.

There are also fringe groups of software testers who believe in alternative testing ideals

than those detailed in The Art of Software Testing. One of these alternative philosophies

towards software testing is exploratory testing, adherents to which have produced a textbook

called Lessons Learned in Software Testing. The main difference between the testing practices

of The Art of Software Testing and exploratory testing is that exploratory testing values

exploration as a testing tool much more. This means that instead of performing rote, simple

tests, or following any kind of testing guide, exploratory testers experiment and follow their own

paths based on individualistic judgment calls and intuition. The main driving point of this whole

branch of software testing is psychology and intuition based and not rooted in anything technical

or "computer science". This is not a bad thing, but represents that psychological and feelings

based methods have significant effect on styles of software testing. Lessons Learned in

Software Testing leans even further this way as it consists of only 293 "lessons" formatted as

questions and answers. It's light and deliberately nonspecific, more of a collection of extended

proverbs than a traditional textbook. A brief selection of these include: "Lesson 40: You're

58

harder to fool if you know you're a fool", "Lesson 47: You can't master testing unless you

reinvent it", "Lesson 93: When a programmer says it's fixed, make sure it isn't still broken",

"Lesson 107: Don't automate a mess", and "Lesson 265: Be cautious about Human Resources"

(Kaner et. al. 2002, x-xv). The fact that it can exist alongside other more rigid textbooks shows

how the discipline values and has thrived on intuition and gut-checks as much as "science".

As of late, there is a movement towards methods that would further systemize software

testing and de-emphasize the human, intuitive elements of the practice. A survey of recent

trends in software testing by Alessandro Orso and Gregg Rothermel titled "Software Testing: A

Research Travelogue (2000-2014)" delineates some of these, specifically automated testing.

Automated testing takes advantage of the computer's ability to tirelessly produce numbers and

input to do software testing on a scale and with a systemicity far outstripping a human's ability.

Along with this, there have been attempts to empirically classify tests and test outcomes,

divorcing this practice from the intuitive judgement of human testers. "Software Fault

Interactions and Implications for Software Testing" by D. Richard Kuhn, Dolores R. Wallace, and

Albert M. Gallo Jr. shows one attempt at this from 2004. In that paper, they produce a number

which they have named the FTFI, the "failure-triggering fault interaction" number, counting the

"number of conditions" it takes to produce a particular error or fault. The paper goes on to

attempt to use that number as part of a formula to calculate the minimum number of tests to

cover the majority of possible errors- shifting what the exploratory testers would see as an

exploratory human function to a mathematical one. Again, it's not that the methods described

here are directly replacing the less formal ones, but it does represent a shifting of focus. The

motivating factors for this shift, measurement and accountability, do not leave much room for

the less formal methods. It's impossible to measure intuition, or to hold a mindset accountable,

and the availability of other methods which can achieve those things does not bode well for their

future tenability. Even if these methods become phased out in professional software testing,

59

they may still have applicability for those wanting to do critical breaking, though perhaps slightly

changed to emphasize the differing kinds of desired analytic reflection and results.

Corporate Testing

Hobbyist programmers and small software development teams most often test their

code, but any discussion of software testing as a discipline means testing in the context of

large-scale, corporate operations. The many informal methods of software testing as previously

described has led to the rise of many different kinds of corporate structures to attempt to corral

and monitor software testing and software testers. One of these is the notion of a bug, which still

retains its original meaning as an error in a program, but in software testing contexts has

become laden with even more meaning and taxonomic structure. Not content to merely mean

that something is wrong, complicated bug classification systems are often set in place to

organize and parse the deluge of bugs discovered by a software testing team. Recordings of

bugs are often managed by a "defect tracking system" such as Bugzilla

(https://www.bugzilla.org/) or JIRA (https://www.atlassian.com/software/ira), which further

allows the assigning, parsing, and manipulation of the traces of bugs discovered by the testers.

The corporate drive to capture and quantify comes through in these systems of bug capture.

Bugs are reduced from complex intermingling of different pieces of code to a mere trace with a

few lines of descriptive text and a few tags. This attempt to render bugs communicable and

transmissible through defect tracking is commodification through reproducibility, as what

McKenzie Wark describes in A Hacker Manifesto as "Every production is a hack formalized and

repeated on the basis of its representation as property" (Wark 2004, 160). Bugs, the hack and

defect tracking, the representation as property. Instead of hackers being the wielders of

abstractions that conjure new structures, "hacking" as Wark describes it, in this case defect

trackers serve as abstractions that can capture bugs and knowledge produced by software

testers and render them as property of a corporation.

60

Until this point we have somewhat evaded a core question that underlies software

testing: how does a tester identify a bug as a bug? That is to say, how can a tester classify an

arbitrary function of code as being a problem? To begin to address this it's important first to

establish for whom the code is question will be a problem. This is generally not covered in

software testing textbooks, maybe because it is considered too obvious or because it is not

considered a problem for rank-and-file testers, but it is nevertheless important. This is because

software testers are employees. Testers are not testing their own personal projects where they

would have a high degree of ownership, they are testing for a paycheck and maybe prestige.

Ultimately, testers are acting as instruments of quality assurance on behalf of a corporation. The

problems the tester is engaged with therefore aren't directly problems for the tester themselves

but rather problems for their corporate employer or forecasted potential problems for a

hypothetical user. Reaching back once again to Haraway, this means the software tester

engages with problem-knowledge situated apart from themselves. Unlike the situated

knowledge described in Haraway's 1988 "Situated Knowledges", this is not an attempt by

software testers to coalign radical constructivism with an honest, useful reading of the world. In

fact, the situated knowledge involved in software testing is often treated as being objective!

Instead, software testers are enmeshed in situated problem-knowledge as part of a business

impulse to test on behalf of another. This practice of considering alternative subjectivities on

breakdown in a formalized way could be used to non-capitalist ends in a critical breaking

context.

Testing on behalf of another party is the birth of the software testing professional, my

primary area of concern in this chapter. To position the professional software tester in an

ecosystem, let us begin with Galloway and Thacker's dichotomy of computer users and

computer programmers from The Exploit. They write, "'User' is a modern synonym for

'consumer'. It designates all those who participate in the algorithmic unfoldings of code. On the

other hand, 'programmer' is a modern synonym for 'producer'. It designates all those who

61

participate both in the authoring of code and in its process of unfolding. Users are executed. But

programmers execute themselves" (Galloway and Thacker 2007, 143). The clients of software

testers are very firmly computer users. They merely receive the products that professional

software testers work on. Casual software testers, those who test their own projects, are

computer programmers by this definition. They both author code (in a manner of speaking,

since software testing does not technically require any writing of code) and participate in its

unfolding. Repair collectives as discussed by Daniela K. Rosner and Fred Turner (Rosner &

Turner 2015) also fit this category: they are local institutions where people bring their broken

appliances and toys and, working together as a collective, members of the community repair

those objects. Both the solving of the problem and the resolution are addressed by the

collective, planting them in the "computer programmer" category. Professional software testers

are in some ways beyond this user/programmer dichotomy. Potentially you could also call them

computer programmers in the same way as causal software testers, but I would argue that they

are too far removed from the unfolding of their own code to count as such. The unfolding they

participate in is not the process of code but the receipt of capital, payment for their work. That

substitution, of payment for participation, is what makes them professional.

Speaking from my own personal experience as a professional software tester, there is a

certain removal from the software and the problems you discover as part of the job. However,

there are also personal connections made with those same programs and bugs. The act of

working with certain recurrent bugs or testing particular aspects of software breeds a familiarity

and affection that is not stripped out by market capitalism. I was not the best software tester and

I would constantly find bugs that were too inconsequential to remove. As a result, there are

many live websites and shipped pieces of software that I know dozens of ways to break, filled

with bugs I interacted with and catalogued for months. There are threads tying me to all these

products that are more complex than merely I tested these things". The fact that these kinds of

interesting, intimate, and durable connections can be made in the stifling conditions of corporate

62

professional software testing is what gives me hope that there might be valuable insight for

critical breaking to be gained from analyzing the practice. To open up a broader perspective on

this corporate practice, it's time to introduce something radically different than software testing

that also operates inside a corporate framework.

Twitterbots

Twitter is a popular internet microblogging platform and Twitterbots are automated

accounts on that site which generate spam, announcements, nonsense, and poetry. Twitter is a

corporate entity with business practices and ideology that affects the platform and its users, and

a subset of its users, the Twitterbots. Instead of working inside this infrastructure for the purpose

of creating value for the company, as a software tester might, Twitterbots generate value for

their creators or, equally as often, solely in the minds of their readers. For example, consider the

popular Twitterbot @everyword by Allison Parrish. It very simply tweeted every word in the

English language, one at a time, every 30 minutes. Far from being a solipsistic, lonely exercise,

the account has 72,000 followers and individual tweets have huge numbers of replies and

retweets. The account is powerful and valued but also exists alien to what Twitter's expectations

of what a Twitter account is (that is to say, actively operated by a human). Not only that but, as

Parrish writes in her essay "twitter bots and the performative critique of procedural writing",

@everyword is not monetizable, at least not under Twitter's current business model and thus

creating @everyword is a political act. @everyword shows a way of using Twitter's corporately

mandated infrastructure in alternative ways undreamed of by its creators. Where software

testing performs technical breakdowns of corporate software to produce value for a company

internally, twitterbots perform conceptual breakdowns of corporate software to produce value

externally for users and creators. This asynchronous mirroring of engagement with corporate

platforms is a key inflection point for deeper analysis of software testing. Consider also

@imganalogybot, a Twitterbot created by me which takes two random images together and

63

using the neural net technique known as "image analogies" creates a gestalt image. The way

the output image is constructed is less important here than the fact that the bot pulls two

random images from Twitter's public feed. It takes advantage of the same feed of tweets that

other companies use for generating demographic profiles in order to sell ads. It is a corporate

parasite, leeching off of what is used to generate revenue and capital to instead make its own

value, in this case, art. Again, this is not a technical breaking of Twitter's public feed of tweets

but a conceptual one, it's an unexpected usage that generates non-monetary value. Bots like

@everyword and @imganalogybot interact with Twitter's corporate infrastructure in very much

the same way that a software tester might, but along different fault lines that software testers do

not have access to.

image analogy bot &imganaicgyboi Feo 5
image analogized from and

1i V2

Example output from @imganalogybot

64

-4

This place where Twitterbots and software testing are in the most productive

disalignment is where the sites of their breakages are. Software testing usually seeks to break

things technically, to cause software errors and crashes. These are then repaired, and the

corporation maintains its value, negates risk, etc. The functioning of Twitterbots is performative

critique, as Allison Parrish writes, it is conceptual breaking. There are some well-established

strategies for this in poetry and on Twitter, which might be extended to be used more generally

for conceptual breaking in a number of circumstances. To further examine alternative kinds of

corporate software breaking let us examine a few relevant poetic practices from an article by

Harry Giles titled "Some Strategies of Bot Poetics" (Giles 2016). For example, @everyword falls

under the strategy "Exhaustion", doing extremely long and complete tasks. Systems are often

designed to support individual tasks like tweeting the first word in the English language, in

Twitter's case. With enough hardware resources companies who own those systems can

usually continue to support these repetitive actions at scale. At the scale of something like

@everyword, tweeting every word in the English language, automated agents are still supported

technically but become outside the ability to be monetized by other ad systems. Bots don't

purchase products, nor do they model any demographic of human that does. There is a

conceptual break in what's expected of the user by Twitter which serves to reveal some part of

the squirming innards of Twitter's business practices. The strategy that @imganalogybot would

most likely fall under is "Recontextualization", taking something from one place and using it in

another. This is actually another connection to software testing, as recontextualization is in fact

a cornerstone of software testing practice already. In the case of software testers it is usually

done to see if running a program on incorrect data will cause it to crash or produce an error.

What's suggested by using this recontextualization as a poetic strategy is instead taking the

result of the recontextualization, whether it be a crash or output data, as being equally valid. It

puts "expected" functionality in relief with functionality with alternative origins and helps to reveal

what the context is that makes expected functionality normalized. Most of the other strategies in

65

the article follow this same pattern: unexpected user action via bots can put normalized

corporate infrastructure in relief and interrogate that normalization.

Twitterbots vs. Software Testing

It is tempting to make the distinction between Twitterbots and software testing a binary

one, too clear cut in their differences. It is too easy to simply say software testing is purely the

technical testing of code while Twitterbots only interrogate systems and provide conceptual

challenges to corporate platforms. Even I am guilty of slipping into this kind of rhetoric now and

again. In fact, Twitterbots are deeply technical and software testing is also engaged with the

highly conceptual. The software tester not only has to identify technical problems but also

(according to many textbooks) cultivate a "testing mindset", decide if technical problems count

as "real" problems for their company, and perform many other strictly conceptual tasks.

Additionally, because software testing is generally a corporate job, there are a whole host of

conceptual problems that software testers must deal with that often have nothing to do with the

particulars of the code they are testing. Consider this candid passage from Lessons Learned in

Software Testing, under the subheading "Lesson 55: You are What You Write", "Programmers

aren't your only audience. Managers and executives sometimes read bug reports. Personnel-

management issues catch their attention quickly and grate on their nerves. Reports that seem

blaming, petty in tone, poorly explained, or inadequately researched or suggest that you're

blowing small issues out of proportion will create a negative impression in the minds of the

people who approve your raises and promotions" (Kaner et. al. 2002, 65). These kinds of

management/personnel negotiations are common to many jobs, but I mention it here to

underline that software testing is a job embedded in the world and those pressures and forces

influence it as a discipline as well. Situating software testing as a practice opens the door to the

kinds of conceptual breaking seen with Twitterbots.

66

Much like software testing is a situated practice in the world which positions it to deal

with conceptual challenges of both the discipline and its situating, Twitterbots are a media form

that is also situated in the world. Its situation also gives it a whole host of technical challenges

that complement its conceptual breaking. Twitter doesn't provide direct access for botmakers,

instead they have to use a service called the Twitter API (Application Programming Interface).

Using the API, they can make tweets or download images, but only in ways preauthorized by

Twitter. This is done in part to prevent malicious use of Twitter but it is also hampers and

constrain what is possible for artists. This additional, purely technical barrier also prevents non-

programmers from being able to easily engage with the Twitterbot form. This has lead to a rise

of bot tutorials and reactionary "easy" bot tutorials (by Allison Parrish, Daniel Shiffman, and

others). The corporate infrastructure that these bots inhabit gives them an additional layer of

technical problems to sort through before they can engage with the conceptual breaking

aspects.

The real differences between Twitterbots and software testing fall along the lines of the

professional versus the hobbyist. Software testing, as a professional practice, dictates that a

very few, specific people (management) to be the recipients of the value created by software

testing. This focuses the whole practice- what bugs get chosen, how testing is conducted, and

how bugs are repaired are all in service of this. Lessons Learned in Software Testing even

define software testing as a "service role". As hobbyist breakers, Twitterbot creators do not have

corporate or business ties to Twitter. This lets them explore the space of the platform and the

value and resources they generate flow back out into the artistic community. This is coupled

with the aforementioned technical limitations of the practice, hobbyist breakers will rarely have

the access afforded to their corporate counterparts. Not only do these distinctions between

software testing and Twitterbots help show what kinds of work is considered valuable, it

importantly also defines what kinds of brokenness are considered valuable. Repairable,

technical brokenness is the bread and butter of software testing while conceptual breaking is

67

what gives the more artistic Twitterbots their cultural cache and poetic impact. This negotiation

of the value of brokenness is especially important in a critical breaking context, because the

value of the particular break itself is already an important tool in revealing elements of the

context of the break.

Software Testing and Critical Breaking

Like in the previous chapter, it's now the time to see how software testing aligns with

critical breaking and how critical breaking could further be developed in relation to software

testing. The goal of this development is to make critical breaking more capable of addressing its

analytic concerns, which in turn can be used to hopefully ensure fairness (via audit) and

empower users (via relationship changing and context exploration). One key distinguishing

feature between critical breaking and software testing is that the critical insights of critical

breaking are meant to affect the world and be accessible to users so that they can find sites of

resistance of improve their relationships with systems. The analytic results of software testing,

on the other hand, are always captured and often hidden. There is much investment in software

testing, according to the US Dept of Labor and the Occupation Information Network there were

233,000 software testers in 2016 with a median income of $86,510 annually (O*Net Online

2016). This, among other reasons, is why the results of software testing are deeply proprietary.

Any insight gained from a software testing break is absorbed back into the company with NDAs.

Of course, in practice NDAs are relatively loose and it is known that in informal conversation

they are often broken. This limits the discussion of any fruitful results to closed circles, behind

closed doors. There is not a venue for mass dissemination of results as there is for many other

kinds of breaking practice. Operating in this mode benefits only the owners of systems and short

circuits the kind of critical, incisive discussion that is central to critical breaking. Critical breaking

practice then should strive for independence and to shed light on things that NDA holders

cannot.

68

Because of this proprietary restriction, software testers cannot mobilize the results of

their research or testing themselves. Instead, people higher up in the business hierarchy make

the decisions about what the impact of software tester's work should be and where it should be

applied. This criticism of the "vectoralist classes" is also applied to hackers in a more general

way by McKenzie Wark in A Hacker Manifesto. He writes, "Hackers come to struggle against

the usurious charges the vectoralists extort for access to the information that hackers

collectively produce, but that vectoralists come to own. Hackers come to struggle against the

particular forms in which abstraction is commodified and turned into the private property of the

vectoralist class. Hackers come as a class to recognize their class interest is best expressed

through the struggle to free the production of abstraction, not just from the particular fetters of

this or that form of property but the abstract the form of property itself' (Wark 2004, 22). Being

able to make the results of critical breaking matter are essential to the practice, and to begin to

do that, you must also have some real claim over the results of your breaking.

One way that software testing is aspirational for critical breaking is how software testing

is deeply embedded in practices of repair. The discovery of breaks is both valuable and directly

motivates and informs the design and process of repair. Even though critical breaking and

critical repair seem conceptually close, it can be difficult to find a practice to adequately bridge

the gap. Software testing's flow into repair allows for further analysis via a critical repair lens as

the system is both corrupted with critical breaking and then repaired. Close engagement with

repair can be read as a commitment that critical breaking is not merely a means to an analytic

result, but a valuable part of a process whose goal is to produce positive, helpful futures.

The reason that software testing is capable of doing repair work is its designation as an

"insider" practice. While "outsider" practices like Twitterbot creation may motivate some changes

inside Twitter, software testers have direct effects on those processes in the companies in

which they work. There are of course certain tradeoffs to becoming an insider; doing critical

breaking work from that perspective has the restrictions mentioned earlier. However, the

69

efficacy of making real material changes is unparalleled by almost any other kind of breaking

practice. Critical breaking is meant to be actionable, and despite its corporate limitations

software testing does show a path to creating actionable repair through breaking.

Conclusion

Software testing is quickly changing away from the affective methods and practices

mostly examined in this chapter. It inexorably moves towards automation, crowdsourced

methods, and generally more quantitative practice. Nevertheless, it serves as a good formal

example for what a kind of rigid, rule-based, and constrained critical breaking could look like.

While I have been critical of the infrastructure surrounding software testing in this chapter, and

rightfully so, I don't want to discount the benefits of the infrastructure entirely. There is a kind of

practiced incisiveness that this infrastructure facilitates. It may not be the only way to ever

achieve that same effect, but it can be one model for doing so. Having a practiced incisiveness

becomes extremely important when attempting to use critical breaking on particularly slippery

systems, where having particular structure, taxonomy, and procedure could help avoid letting

small details slip through the cracks.

70

Works Cited

Basili, Victor R., and Richard W. Selby. "Comparing the Effectiveness of Software Testing
Strategies." Computer Science Technical Report Series. University of Maryland, 1985.
Print.

Galloway, Alexander R., and Eugene Thacker. The Exploit: A Theory of Networks. Minneapolis:
University of Minnesota Press, 2007. Print.

Gelperin, David, and Bill Hetzel. "The Growth of Software Testing." Communications of the ACM
31.6,1988: 687-695. Print.

Giles, Harry. "Some Strategies of Bot Poetics". Harrygiles.org. 6 April 2016. Web. 18 Feburary
2017.

Haraway, Donna. "Situated Knowledges: The Science Question in Feminism and the Privilege
of Partial Perspective". Feminist Studies, Vol. 14, No. 3, Autumn 1988: 575-599. Print.

Kaner, Cem, James Bach, and Bret Pettichord. Lessons Learned in Software Testing: A
Context-driven Approach. New York: John Wiley & Sons, 2002. Print.

Kerich, Chris. "@imganalogybot" Twitter. Web. 18 February 2017.

Kuhn, D. Richard, Dolores R. Wallace, and Albert M. Gallo. "Software Fault Interactions and
Implications for Software Testing." IEEE Transactions on Software Engineering 30.6,
2004: 418-421. Print.

Leicht, Niklas, Nicolas Knop, Ivo Blohm, Christoph Muller-Bloch, Jan Marco Leimeister. "When
is

Crowdsourcing Advantageous? The Case of Crowdsourced Software Testing."
Twenty-Fourth European Conference on Information Systems (ECIS). 2016. Print.

Myers, Glenford J., Corey Sandler, and Tom Badgett. The Art of Software Testing. Hoboken,
NJ:

John Wiley & Sons, 2012. Print.

O*Net Online. "Summary Report for: 15-1199.01 - Software Quality Assurance Engineers and
Testers". O*Net Online. Web. https://www.onetonline.org/link/summary/15-1199.01. 22
April 2017.

Orso, Alessandro, and Gregg Rothermel. "Software Testing: a Research Travelogue
(2000-2014)." Proceedings of the on Future of Software Engineering. ACM, 2014. Print.

Parrish, Allison. "@everyword" Twitter. Web. 18 February 2017.

Parrish, Allison. "Twitter Bots and the Performative Critique of Procedural Writing"
Decontextualize.com. 2016. Web. 18 February 2017.

Rosner, Daniela K., and Fred Turner. "Theaters of Alternative Industry: Hobbyist Repair

71

Collectives and the Legacy of the 1960s American Counterculture." Design Thinking
Research. Springer International Publishing, 2015. 59-69.

Wark, McKenzie. A Hacker Manifesto. Cambridge, MA: Harvard UP, 2004. Print.

72

Chapter Four: Hacktivism

In "Activism, Hacktivism, and Cyberterrorism: The Internet as a Tool for Influencing

Foreign Policy", Dorothy Denning attempts to taxonomize political internet use into the three

titular categories. The "Activism" component is highly speech oriented. That is, it is about

coordination and advocacy via traditional forms of communication like publications or forums.

"Cyberterrorism" for Denning does not have any real world examples (at least in 2001), but

would entail the massive panic and loss of life associated with non-cyber terrorism. Everything

in between polite communication and bodily destructive terrorism falls into the murky category of

"Hacktivism". At the time Denning was writing this category included everything from light

website defacement to serious viruses and worms. It even included now-obsolete hacktivist

tactics like "E-mail Bombs" which, "...bombard[s] them with thousands of messages at once,

distributed with the aid of automated tools. The effect can be to completely jam a recipient's

incoming e-mail box, making it impossible for legitimate e-mail to get through. Thus, an e-mail

bomb is also a form of virtual blockade" (Denning 2001, 17). The advent of sophisticated spam

filters has made this practice much less severe than it once was, but the spirit of direct action

protest as obstruction has remained an integral part of contemporary hacktivism even as the

specific practices and methods evolve.

These evolving methods are what will help inform and improve our understanding of

critical breaking. We ask how these methods are created with specific political goals in mind,

how far those political beliefs carry through the methods, and their level of success in achieving

their goals. Identifying these things will help to reflect on the political aspects of critical breaking,

and show how to structure critical breaking practice to emphasize advocacy goals. Email

bombs, for instance, take advantage of the fact that circa-2001 email systems did not take into

account the possibility of receiving huge numbers of spam mails in a short period of time and

had few if any relevant safeguards. However, the method of breaking in and of itself is not

political and relies on context for its politics: the content of the emails and the identity of the

73

recipient. This is what makes the breaking of the mail management system imbued with political

content. This is only one small example, however, and more recent styles of hacktivism have

complicated this model of political context quite a bit.

As time has progressed from the time of Denning's article, hacktivism has changed. The

obstructionist and "direct action" old guard has given way to new, decentralized groups whose

focus is more on tactics like leaks and doxxing. This shift is exemplified by two groups, one

marking early hacktivism and the other marking contemporary hacktivism. The first is the

Electronic Disturbance Theater, or EDT, a political and artistic cyber-collective of the late

nineties. The second is Anonymous, a still active, decentralized group of internet activists and

trolls loosely organized under a banner of freedom of information amongst other shifting ideals.

Interestingly, both groups also have a specific DDoS (Distributed Denial of Service) tool

associated with them: for the EDT, it's FloodNet and for Anonymous it's the LOIC (Low Orbit Ion

Cannon). DDoSing is a technique of disabling websites by repeatedly accessing them in a short

period of time causing the servers that the websites are hosted on to crash as they can't handle

the stress. DDoS is a controversial tactic amongst even hacktivists, many older hacktivists find

DDoSing to be more a tool of censorship than resistance (Mills 2012). The differences between

these two DDoSing tools are significant, as Gabriella Coleman writes with respect to the EDT

and Anonymous, "Anonymous altered the scale, expression, and effects of DDoSing enough

that the group broke the mold it inherited" (Coleman 2014, 136). I will be comparing the two,

extending similar analysis recently done by Molly Sauter in The Coming Swarm. In that book,

Sauter compares the EDT and Anonymous and pays special attention to their tools and

methods. With regard to their tools, though, there is room for further analysis- Sauter's critique

is focused on the UI and frontend features of these tools, but there is still a world of analysis to

be done based on how the tools are actually coded. As such, I will be focusing just on the

backend code of these tools and examining how it reflects both politics and how these groups

break systems.

74

The EDT

Zaps Net Interface - NetscapePieq

Ee g&t ylew go Commurcator telp

Back Fr d rir Reload Home Search Netscape Print Security Shop stop

1 Bookmarks Location: http://archive rhizome. org/anthology/FloodNet/aprilI0v2/zapsTactical/zaps.html

7 Welcome
In solidarity with the Zapatistas we welcome all netsurfers to use the
automated features in this Flood Net webpage to:-

aI j

"INSTRUCTIONS"

Is this Flood Net working?

P.P fnr vni irgplf I nn-.k fnr vii uil rnnfirmainn in thp hnttnm frpmp anri in thiq frnm.

IDoasnet: Done : I %I 2& td 11

Rhizome.org's implementation of FloodNet

The EDT is a splinter group off of the technological arts and activism group Critical Arts

Ensemble and are dedicated to what Molly Sauter calls in The Coming Swarm "digital direct

action". This means a reimplementation of direct action protest in a digital domain. As Sauter

notes, this parallelism of street protest to digital protest was reflected in their tools. She writes,

"The electrohippies, and the EDT before them, purposefully hamstrung the technological tools

they used in order to maintain a one-to-one participant to signal ratio" (Sauter 2014, 44).

Breaking systems using EDT tools involves the assumption of certain values of protest and

direct action. This digital direct action was also conceived as an artistic endeavor as Aria Dean

75

writes in the FloodNet retrospective on Rhizome, "This notion of theatre was crucial to FloodNet,

as the artists' interest was in the 'performance and performativity of code,' over the effectivity or

the efficiency of the code itself' (Dean 2016). By eschewing typical functionalist philosophies

towards code, the EDT allowed themselves to be more critical with their activism. Visibility and

accountability are emphasized as more major concerns than utility in how the EDT operates.

FloodNet is a 1997 tool developed by the EDT to support the Zapatistas concurrently

fighting in Mexico. FloodNet would also continue to be used by the EDT on several other

occasions to DDoS different targets afterwards. FloodNet was hosted on a webpage making it,

as Sauter notes, more accessible to the average user than many later DDoS tools. When being

used, FloodNet reloads the targets' webpage once every seven seconds, a now laughably long

interval (later shortened to three seconds, which today is still far too long) that even at the height

of FloodNet's use did not cause any significant webpage outages. This interval, intentionally or

unintentionally, ensures that FloodNet requires a huge amount of people using the tool to create

any kind of disturbance, a principle that was integral to the politics of the EDT. The active

engagement of many participants was the only way to create any effect. FloodNet also had the

capability to leave "messages" on the servers of those it targeted by attempting to access a

webpage that didn't exist, say "humanrights.html". In the error log of the server being targeted

there would be a message roughly stating that "humanjrights.html not found". This is one of the

more performative aspect of FloodNet. It's highly unlikely that anybody ever read those error

logs, leading some to conclude that the messaging functionality of FloodNet is "...best viewed as

an out for the activists themselves. A small point of individually determined personal expression

in a tool that otherwise provided few opportunities to stray from the choreography of the action"

(Sauter 2014, 111). However, I believe that fact that participants were able to create them, to

effect a remote server via digital direct action protest, is significant in terms of the protest itself.

The significance of the break here is not necessarily the impact of its results but the fact of its

very existence as results. Enabling a regular computer user to effect a self-determined change,

76

however small, in a government organization or corporate database is not merely an outlet but a

powerful and hopeful statement.

The first step in doing a code analysis of a given piece of software is finding the code

itself. This is harder than getting the program executable, because programmers will often

obfuscate or hide their code to retain trade secrets or prevent abuse of their tools. FloodNet is

no longer hosted in its original website, but Rhizome.org hosts a replica version as part of its

Net Art Anthology series. In this version, and as can be assumed in the original version, some of

the code is available via viewing the HTML of the pages, but some is not. The code that isn't

viewable is compiled Java code. Without getting too deep into technical details, Java code is

written in a human readable version and is then compiled into a version that is machine

readable but is not readable by humans. That's the version of the code that executes in any

Java program, and FloodNet is no exception. However, this means that anyone attempting to

read or modify the code is out of luck. However, FloodNet is widely reported to have released its

source code in January 1999 (Sauter 2014, 111), in something the EDT called the "Disturbance

Developers Kit". This is still available from the EDT, but when I accessed it in March 2017 it was

revealed to be very similar to the version now hosted on Rhizome.org. The human-readable

HTML files are included (with a few extra additions) but the Java code was still compiled. This

decision was most likely taken for ease of use by more casual users- the new HTML files for this

version allow users to reconfigure which website is DDoSed by the tool without having to modify

any Java code. It saves more inexperienced users from having to edit and recompile Java code

to make their version of FloodNet work. This means, however, that the source code of FloodNet

has never been publicly released and in fact what has been examined to this point has only

been the user-facing HTML files and not the heavy-lifting Java code.

While being able to examine the HTML code is helpful, the lack of available Java code

was extremely frustrating. To remedy this I turned to Java decompilers. A Java decompiler

takes compiled Java code and reverse engineers it. This is not a perfect process and some

77

elements of the code are necessarily lost, things like comments and often variable names. Bits

of the original "flavor" of the code are not maintained while the core functionality is more or less

kept intact. I've attached this decompiled code as an appendix to this chapter and it constitutes,

as far as I know, the first ever full release of (some version of) the entire source code of

FloodNet. The code I decompiled is the Rhizome.org version of FloodNet, as I assume that it's

more recent than the 1999 "source code" release. These days, it's relatively easy to decompile

Java code but at the time of FloodNet's release and even the release of the "Disturbance

Developer's Kit", it would not be likely that the average user would have the capability for doing

so or even know that it was a possibility.

Examining FloodNet in its entirety confirms that it is a relatively simple, and in some

senses intuitive, system. FloodNet has often been described this way, but without the source

code available it was not actually possible to confirm this. The structure of FloodNet is a network

of HTML webpages linked together through a menu along the top of the page and displayed in

various frames in the browser. Frame-based webpage design is not longer in vogue and had

reached its nadir in the 90s, placing FloodNets aesthetics as being very much a product of their

time. The actual DDoSing occurs via an applet that is loaded as one of the frames, this is the

obfuscated Java code reproduced in the Appendix to this chapter. Most of the HTML pages are

informational, some have hooks that tie into the applet code and allow a selection of custom

message or choice of target from a list of options (this means, originally, by default FloodNet

restricted users to not be able to DDoS any site through their user interface). It was possible to

edit the "targetUrl" parameter in the "applet.htm" file to target additional sites, but this was not

broadcasted or explained until the release of the DDK. This may also reflect the reason why the

source code was not released, to maintain focus and message FloodNet would need to resist

being perverted or rewritten to do things not in line with the EDT's goals. The blockages to users

turning FloodNet to their own goals were never absolute, but they were significant and the range

of modification available severely hampered by lack of access to the important Java classes.

78

The structure of the Java code that runs the applet is also relatively straightforward. Briefly, the

"zapsNetTactical.java" code keeps everything organized, the "FormURLZapsNet.java" code

formats the URLs, and "SendSpamZapsNet.java" actually does the business of reloading the

target page. "messageForward.java" and "Context.java" are not referenced by the main code,

and I assume have been added for the Rhizome.org version of FloodNet as they also do not

appear in the DDK. They replicate some of the functions of the other code but I do not think are

actually ever executed when FloodNet is running.

There are even some failsafes to prevent FloodNet from being misused. The tool checks

to see if the "this.DocumentBase" parameter (basically, the webpage that is hosting the applet)

is the proper FloodNet one. If this is not true it prints "SOMOS TODOS INDIOS! SOMOS

TODOS MARCOS!" and stops the attack. This Spanish phrase loosely translates to "We are all

Indians! We are all Marcos!" and is a rallying chant used by the Zapatistas emphasizing their

indigenous struggle and their leader, Subcomandante Marcos. In the DDK, even though

FloodNet is publicly distributed there remained controls on its use. In that version of the tool

there is actually a list of "protectedURLs" that are prevented from being DDoSed by that version

of FloodNet, though without the message. The message popping up in the earlier version is

most likely an indictment of the disunity implied by attempting to re-host FloodNet (and thus be

able to modify its targets). To reiterate, by rehosting the original version of FloodNet, the

"targetUrl" (the target of the attack) would easily changed by users so the check to ensure

FloodNet is not being "improperly" used is hidden in the compiled Java files- away from easy

circumvention by users. This doesn't stop FloodNet from being taken down or circumvented in a

number of other ways, the federal government was able to stop FloodNet by other means, so

this failsafe and message should be seen as a kind of technologically forced solidarity between

the users of FloodNet. Users could change the target only in ways pre-prescribed by the EDT,

they could not change anything in a way that would sabotage the overall mission of FloodNet.

79

Overall, FloodNet is a fairly lightweight tool that nonetheless has many restrictions on its

use. These restraints come not only from the ideology and design of FloodNet but also from its

"material" choice of Java applets. This partially dictated how and where the code was

obfuscated and thus how much access users had to the real internals of FloodNet. The

restrictiveness of FloodNet as a disruption tool complicates its supposed physical disruption

analogue. Physical protests do have their own set of restrictions, but they do not include the

same restrictions as FloodNet, they lack the failsafes or restriction in choices of target as

FloodNet does. While the analogy may be a good place to begin, FloodNet moves away, at

least in terms of the autonomy of its participants, to a new sort of civil disturbance.

Anonymous

There are few hacking organizations as notorious as Anonymous. Calling them an

organization is also a bit of a misnomer, as Coleman describes in great detail in Hacker,

Hoaxer, Whistleblower, Spy, Anonymous is composed of loose affiliations, reforming and

fissioning and sometimes rebelling within itself. This isn't to say there aren't figures describable

as leaders, but that there is very little infrastructure to support sustained hold of power besides

simple private discussions on hidden channels. Its tactics have also varied, anywhere from in-

person, physical protests to leaks of information and doxxing to of, course, DDoS. These tools

have been used in operations ranging from a takedown of Scientology to the Arab Spring. DDoS

is one of the more commonly used strategies in these operations, though it is deployed very

differently than in the days of FloodNet. These are massive events, with thousands of

computers being remotely controlled as what is known as a botnet, each participating a bit of

processing power to the DDoS. This kind of large scale operation needs a tool to help organize

its efforts, and for Anonymous this tool has most often been the Low Orbit Ion Cannon (LOIC).

Despite the name, this is just a piece of software which can corral and use thousands of willing

computers to DDoS a given target or targets. Unlike FloodNet, use of the the LOIC has been

80

aggressively prosecuted, with many people being charged with felonies for running the software

(Coleman 2015, 141).

There are many different versions of the LOIC used at different times in the history of

Anonymous. For the purposes of my code analysis I've chosen the version by NewEraCracker.

Its source code is currently available on Github for free and according to that site has been

updated within the past year, making it one of the most contemporary of the LOIC tools

available. This LOIC is written in C#, a programming language owned by Microsoft. This is

significant as certain features of the language and conventional programming style associated

with the language constrain and determine how the LOIC functions, which I'll explain in more

detail later. The LOIC is very much a contemporary programming project, with the contingent

complexity that being a contemporary programming project entails. It has a significant array of

features and modes and clocks in at 101 different files containing different pieces of code

(compare this to FloodNet's total three files of code).

1I Low Orbit [on Cannon I When harpoons, air strikes and nukes fails I v. 1.0.4.0 - X

The LOIC interface in Windows 10

81

The LOIC has a veneer of propriety that infuses many of the public facing elements of its

construction, but it quickly falls away once you dig into the code itself. It's not that anybody is

particularly fooled by the "stress testing" or "hacker defense" messaging that the tool puts

forward, what really surprised me was how little effort is put into maintaining this messaging

beyond the initial impression on the front page of the Github site and on some of the help files

(written in HTML). For example, one of the files in the help directory says this, "LOIC is a

network stress testing tool for simulating and testing peaks on various services. It is meant only

for testing how your servers cope with many requests and under heavy load and how your

server does respond to several (D)DOS ((Distributed) Denial Of Service - Attacks).

Nevertheless it is assumed, that you own the servers you are testing!". While not using entirely

formal language, this section at least appears to be dissuading the illegal uses of the LOIC in a

businesslike way. However, in the same directory, there is a file called "newfag.html", a bit of

slang used to designate a new member to a "chan" community, also used for a new member to

Anonymous (Coleman 2015, 42). This file drops the pretense and is flush with Anonymous

language, "Hello comrade! You have decided to provide your LazOr to an OP for great justice

and more lulz. Because you are a newfag the ubertrollz in the missioncontrol provided you with

either an IRC-address or an URL to hand your helm over to the HiveMind". It goes so far as to

reference a "missioncontrol", an IRC where an Anonymous operation would be organized,

something that would most likely not be a part of a typical corporate stress testing methodology.

The textual markings of both Anonymous and acknowledgement of wrongdoing infuse almost all

of the files of actual source code. For example, the header of every single source code file has

the comment "Enjoy getting v&, kids". v& stands for "vanned", meaning getting thrown into a van

by the FBI when they discover your illegal use of the LOIC. Another place this shows up often is

in error messages, almost all fields in the tool (and there are quite a few) have a unique error

message that they can generate. This error message is usually something like "What's up with

something like that in the timeout box? =S", eroding any claims to professionalism that the tool

82

potentially had. It reflects something of the playful, trickster attitude that pervades Anonymous-

the LOIC isn't trying to seriously pretend to be a stress testing tool, it's having fun at playing at

pretending to be one.

One the flip side of this, the way the LOIC is designed structurally is incredibly rigid. It

conforms to professional programming best practices and completely eschews the sloppy and

silly textual parts. For example, in one of the files that defines the UI and structure of the tool,

"frmMain.cs", even though there are a lot of silly error messages as I mentioned before, all of

the error handling is done very rigidly and comprehensively. Error handling in a program is when

the programmer attempts to anticipate where their program might fail and adds in special cases

to try to handle those circumstances inside the code itself instead of crashing or doing

something unexpected. It's true that in a program as complicated as the LOIC there are many

potentials for errors, but that potential doesn't mean the programmer will account for and work

around them as they have been in the LOIC. Having all the silly message flavor on top of the

rigid error handling is a very striking aspect of the code. Another thing along these lines is in the

"HTTPFlooder.cs" file, one of the many DDoS protocols in the LOIC, there's a good amount of

creation and maintenance of "sockets" or connections to the target website. This is generally a

complicated process, but it's executed perfectly well in the LOIC. Not only that, but there's an

addition of a "ticks" counter and logic to prevent "race conditions", which are when two parallel

instances of a program can intersect and cause each other problems. Dealing with race

conditions is a high level programming task, and to see it implemented in the LOIC is an

emphasis of the professional standards that they're working at formally.

The seemingly discordant playful and professional nature of the LOIC is not as

contradictory as it initially appears. Anonymous is simply serious about its play. Tonally, and

textually, it retains its "edginess", but the way the tool functions is geared not to be the most fun,

but to be the most effective. To make an effective tool using C#, Anonymous is forced to

conform to professional programming paradigms and strategies put in place by Microsoft and

83

implemented as part of C#. This has not slowed down Anonymous or the LOIC, but it's worth

realizing the the structure and form of hacktivist tools and methods is extremely strongly shaped

and measured by the language that they're written in and the cultural context and situation of

the infrastructure that they engage with.

Comparing the source code of FloodNet and the LOIC, there are a few key similarities.

Despite their difference in size they both have some kind of hierarchy or structure, the LOIC

more so than FloodNet, and that hierarchy is somewhat determined by the fact they they are

both web focused tools. While both tools also have the capability to DDoS, the LOIC has many

more DDoSing options than FloodNet. This is partially a function of the time difference between

each of their creations but it's also a function of their different purposes. FloodNet is a small

scope, target action and its code reflects its focus and scale. The LOIC is general, it's meant to

be a tool used in multiple operations and deployed in multiple ways, it's code and scale reflects

this professional attitude not present with FloodNet which was conceptualized as more an

artistic project. The failsafes present in FloodNet are also not in the LOIC, there's nothing

preventing one instance of the LOIC from DDoSing a server hosting another instance. This

reflects the flat organization of Anonymous, if no one member is above the rest, then no one

member is above being DDoSed. FloodNet, despite being about the Zapatistas, is also about

the EDT. Thus, the EDT becomes a privileged group in the code of FloodNet as its host as well

as in the presentation of the tool. They both illustrate different ways of approaching hacktivism:

there's the focused, target method of the EDT and FloodNet or the general, repeated

intervention style of Anonymous and the LOIC. Both have different affordances and require

different structures in their tools to be able to execute on them.

Hacking

One part of hacktivism that I have not yet discussed in this chapter is its connection to

"hacking" more broadly. What kind of hacking is hacktivism? More broadly, can we consider

84

critical breaking to be a kind of hacking and if so, what kind? There are in fact many different

attitudes towards what hacking is or what hacking means. To begin this discussion I will run

through a few of these and situate both hacktivism and critical breaking inside or around these

categories. The first conceptualization of hacking I wish to look at is a canonical one, Stephen

Levy's "hacker ethic" discussed in his 1984 book Hackers: Heroes of the Computer Revolution.

The book itself is structured as an examination of many people important to "hacking" history,

and the "hacker ethic" comes up early on as a way of categorizing all of the subjects of his book.

Levy's hacker ethic is as follows:

"1. Access to computers-and anything that might teach you something about the way the world

works-should be unlimited and total. Always yield to the Hands On Imperative!

2. All information should be free.

3. Mistrust Authority-Promote Decentralization

4. Hackers should be judged by their hacking, not bogus criteria such a degrees, age, race or

position.

5. You can create art and beauty on a computer.

6. Computers can change your life for the better." (Levy 1984, 28-34).

Some of this bears some further explanation. The "Hands On Imperative" means that

working on problems with your hands is always preferable to working on them theoretically. This

is somewhat resonant with critical breaking, where measuring the material effects of a system

being broken is much more important than considering what might happen theoretically. Norbert

Wiener's "feedback" mentioned in the introduction chapter also obeys this principle. The most

resonant element of the ethic to the hacktivist groups we've looked at so far is the third element

relating to authority. Both projects had authorities of some kind as their targets, both

government and business, and required a decentralized application of force to cause an effect.

In terms of the compositions of the hacktivist organizations themselves Anonymous is more

decentralized than the EDT, but neither is truly completely so. Even Anonymous has had

85

troubles with individuals attracting too much individual spotlight, who are unflatteringly referred

to as "namefags" (Coleman 2015, 46). The first and second rules of the ethic are somewhat in

contention with these groups. While DDoSing may technically constitute censorship, and

therefore a denial of the freedom of information, the power differential between the hacktivist

groups and their targets justifies the tactic as a legitimate mode of resistance (Sauter 2014, 49).

Before addressing points four and on, it's worth introducing a talk titled "Towards a New Hacker

Ethic" given by Allison Parrish at the 2016 Open Hardware Summit. In this talk Parrish is

engaged with Levy's hacker ethic, problematizing its implicit assumptions and biases. For

instance with the "Hands-On Imperative": if you manage to get your hands onto a problem,

whose hands are you denying access? In that vein Parrish presents a list of "hacker questions"

to replace some parts of the "hacker ethic". They are as follows:

"1. Access to computer should be unlimited and tot Who gets to use what I make? Who am I

leaving out? How does what I make facilitate or hinder access?

2. All infmation should be free. What data am I using? Whose labor produced it and what

biases and assumptions are built into it? Why choose this particular phenomenon for

digitization/transcription? What do that data leave out?

3. Mistrust authority promote decentralization. What systems of authority am I enacting

through what I make? What systems of support do I rely on? How does what I make support

other people?

4. Hackers should be judged by their hacking, not bogus critcria such as dcgrees, age, racc or

P9sitioE- What kind of community am I assuming? What community do I invite through what I

male? How are my own personal values reflected in what I make?" (Parrish 2016)

Points five and six remain the same as in Levy's hacker ethic. Reading hacktivists and

hacktivist tools into this framework is more problematic. The answers to these questions paint a

different kind of picture: the general public has access to these tools and have the ability to

participate, but the control of these tools puts the authority, often very firmly so, in the hands of

86

the authors or organizing group. The displacement of the system of authority is not as clearcut

as under Levy's model of hacking. Also, while ostensibly the general public could use the

hacker tools, we can see especially in the case of the LOIC that the tool is built to be used by

members of Anonymous or Anonymous-adjacent communities who share the same sense of

humor and general morals. There is a built-in, narrow, assumed community. The boundaries of

these communities are not set in stone and it is possible to configure FloodNet or the LOIC

without ever being a part of them. However, using the tools without a community means they

won't be powerful enough to effect any change on any but the most vulnerable websites, the

barrier here is success and not access. The requirement of community is not true of all kinds of

hacktivist actions, for example the theft and leaking of documents and emails can be done by a

vigilante. This kind of vigilante action requires expertise and training- precluding the public from

participating in that mode as well. In order to function, any kind of hacktivist action needs to

make choices about who to include as potential allies or collaborators and who will be implicitly

or explicitly excluded from participation.

An alternative perspective on hacking comes from McKenzie Wark's A Hacker

Manifesto. The succinct definition of hacking he gives is "A hack touches the virtual-and

transforms the actual" (Wark 2004, 71). To Wark, hackers are manipulators of abstractions,

shaping the virtual (which may be code, music, mathematics, or any other abstraction) and

creating new combinations, creating new possibilities that can exist in the world (transforming

the actual). Now, consider our examined hacktivists. They take programming languages and

paradigms left by Oracle and Microsoft and recombine them to make new tools. These are tools

which in turn have some other goal for influencing the world- engendering pro-Zapatista support

or ensuring the freedom of information, for example. The tools are themselves blueprints for

new worlds. A key issue for Wark's conceptualization of the hacker is reproducibility. Wark

writes, "Every hack is an expression of the inexhaustible multiplicity of the future, of virtuality.

Yet every hack, if it is to be realized as a form of property and assigned a value, must take the

87

form not of an expression of multiplicity, but of a representation of something repeatable and

reproducible" (Wark 2004, 78). Hacks are commodified in part by their reproducibility. Hacktivist

tools are generally not for profit and available for free, but they are still reliant on reproducibility

to create value. This is not monetary value but instead social and political capital. If it were not

possible to make FloodNet or the LOIC function the same across many different computers it

would be impossible to generate any kind of DDoSing power and therefore the tools could effect

no political or social action. Reliance on reproducibility can be a method of the destruction of

value, as well. When the FBI wanted to shut down FloodNet, they were able to develop a single

method to stop every instance, instead of having to develop individual blocks for individual

FloodNets (Sauter 2014, 146). Computer viruses also take advantage of this same principle. As

Alex Galloway writes in Protocol, "Show me a computer virus and I'll show you proprietary

software with a market monopoly" (Galloway 2004, 176). The reproducibility that the tools rely

on to generate their value is also potentially a long time liability in terms of their ability to

continue to generate that value.

Hacktivism and Critical Breaking

As in the previous two chapters, it's now the time to see how these particular examples

of hacktivism align with critical breaking and how critical breaking could further be developed in

relation to them. One very resonant element of hacktivism with respect to critical breaking is its

commitment to public participation and accessibility. It's incredibly important in the case of

critical breaking to make sure that analytic results are understandable and useable. Participation

is not as essential to critical breaking, but these examples of hacktivism show how participation

can be used in conjunction with breaking to produce interesting results. The projects discussed

in this chapter would not be able to effect any change without public reaction to their hacks and

disruptions, and further wouldn't even be able to function at all without somewhat open and

public usage and participation with their tools. As a part of the function of keeping the public

88

interested and informed about their interventions, these hacktivist groups must also explain

themselves and their methods, something that's extremely useful and important in performing

any kind of analysis of a breaking action. It allows people not just inside the organization to

make well-informed analysis about the various hacktivist actions undertaken. This kind of

necessary forwardness and accessibility is something that could involve more people in critical

breaking actions and give it a sort of democratic grounding. Of course, the public-ness of

hacktivists is sometimes more goal than reality, and this disjunction should also be given special

attention when attempt to set up a democratic critical breaking.

Another beneficial aspect of these particular hacktivist actions that aids in their

"readability" is that they are technologically simple. FloodNet especially, but even other kinds of

hacktivist actions, homepage defacement, leaks, are all conceptually straightforward

interventions that are focused technologically, if not politically. This simplicity allows for wider

public and media engagement with their ideas and clarifies statements made using these tools.

In a critical breaking context, it illustrates how technical virtuosity is not necessarily the way to

create an interesting analysis using a breaking method and the value of actually resisting doing

so. Thinking back to Stephen Levy and Allison Parrish's hacker ethics and questions, we can

consider this building a more inclusive community and analysis by rejecting Levy's hacker ethics

of one-upsmanship and technical skill. Instead, the tradeoff is made to potentially alienate those

who would only be interested in incredibly complex hacktivist actions to allow those who can't

engage at that high level to still participate.

The materiality of the tools that these organizations use complicates their relationship

with flat, democratic organizational principles that they outwardly profess. As we've seen,

FloodNet has coded restrictions of various strengths at various levels to enforce what targets

are DDoSed using the tool, including protections for the EDT and affiliated organizations. The

LOIC is a tool that poorly masquerades as something it is not and on top of that is infused with

language and structures that clearly indicate that the tool is not for general use, but instead for

89

Anonymous only. There is also the unavoidable fact that these are tools put out by

organizations or individuals affiliated with organizations- they are still in some ways owned and

generating some kind of value for their originators. This value relationship binds these tools to

certain reproducible forms of interventions (as mentioned earlier in this chapter with relation to

McKenzie Wark's hackers) and thus restricts the kinds of analysis that can be done using them.

This motivates a renewed discussion of critical breaking in relation to the tools that facilitate

system breaking, how can the embedded politics of tools be balanced with the particular

analytic and resistant goals of critical breaking?

When breaking any system the output is always political, hacktivism as a case study

here lets us dig deeper into how explicit politics affect critical breaking and analysis. Especially

of note is the way that intended politics of hacktivist action interact with the practicalities of

producing a framework for breaking. Both FloodNet and the LOIC have political aims that are

complicated by the fact that they're embedded in these material tools. With respect to critical

breaking, this means taking time to ensure that not only the break is considered, but the

material circumstances that facilitate the break are given equal care. Neglecting them won't

spell ultimate failure for the break, FloodNet and the LOIC both achieved some measure of

success despite their inconsistencies, and encountering this problem is also somewhat

inevitable. There are very limited materials for creating digital systems and effects, and even

then manipulating them takes additional skill and training. This bottlenecks development of

breaking tools into few technologies and paradigms, and it's very unlikely that any one

technology will be perfectly suited to a particular breaking task. Acknowledging these

compromises or discordant elements should be the baseline for critical breaking work, and

further examining the material tools of critical breaking will facilitate an even more robust

analysis.

90

Conclusion

Of the three case studies, hacktivism is the one that is perhaps the closest to critical

breaking. It looks outwards, and motivates breaking in a way that is meant to better the world

and empower the users of systems. This practice is not reflective, though, breaking and

brokenness is merely a means to an ideological end for hacktivists- there is not the measured

analysis and interpretation that comes with deploying critical breaking. As mentioned earlier in

this chapter, hacking without asking reflective "hacker questions" can lead to problematic

configurations of brokenness and power. Critical breaking strives to achieve the same

empowering, resistant analytic results of hacktivism coupled with a reflective view on both the

practice of breaking, a la Parrish's "hacker questions", and the tools used to enact that breaking.

91

Works Cited

Coleman, E. Gabriella. Hacker, Hoaxer, Whistleblower, Spy: The Many Faces of Anonymous.
London: Verso, 2015. Print.

Denning, Dorothy E. "Activism, Hacktivism, and Cyberterrorism: The Internet as a Tool for
Influencing Foreign Policy." Networks and Netwars: The Future of Terror, Crime, and
Militancy, 2001. Print.

Electronic Disturbance Theater. Disturbance Developers Kit.
https://www.thing.net/-rdom/ecd/floodnet.html. Web. 17
March 2017

Electronic Disturbance Theater. FloodNet. Rhizome.org.
http://archive.rhizome.org/anthology/floodnet.html. Web. 7 March
2017.

Galloway, Alexander R. Protocol: How Control Exists after Decentralization. Cambridge, MA:
MIT,

2004. Print

Levy, Steven. Hackers: Heroes of the Computer Revolution. Garden City, NY:
Anchor/Doubleday,

1984. Print.

Mills, Elinor. "Old-time hacktivists: Anonymous, you've crossed the line." CNET.com. 30 March
2012.
https://www.cnet.com/news/old-time-hacktivists-anonymous-youve-crossed-the-line/.
Accessed 2 May 2017. Web.

NewEraCracker. LOIC. Github.com. https://github.com/NewEraCracker/LOIC. Web. 11 March
2017.

Parrish, Allison. "Programming is Forgetting, Towards a New Hacker Ethic." Open Hardware
Summit 2016, 2016.
http://opentranscripts.org/transcript/programming-forgeting-new-hacker-ethic/.
Accessed 21 March 2017. Web.

Sauter, Molly. The Coming Swarm. New York, NY: Bloomsbury, 2014. Print.

Wark, McKenzie. A Hacker Manifesto. Cambridge, MA: Harvard UP, 2004. Print.

92

Appendix 1: FloodNet Java Code Decompiled From Rhizome.org

Context.java

/*
* Decompiled with CFR 0_118.
*/

import java.applet.AppletContext;
import java.awt.Frame;
import java.io.PrintStream;
import java.net.MalformedURLException;
import java.net.URL;

class Context
extends Frame {
AppletContext appletContext;

public Context(AppletContext appletContext) {
super("TPS");
this.appletContext = appletContext;

}

public void engage(String badUrlString) {
URL url = null;
try {

url = new URL(badUrlString);
}
catch (MalformedURLException v0) {

System.out.println("Malformed URL");
}
if (url != null) {

this.appletContext.showDocument(url, "target");
} else {
System.out.println("Null URL");

}
}

}

FormURLZapsNet.java

/*
* Decompiled with CFR 0_118.
*/

class FormURLzapsNet {
public String getstring(String string) {

String string2 = null;
string2 = "http://" + string + "/" + this.getBadExtend(;
return string2;

}

private String getBadExtend() {
String string = "error";
String[] arrstring = new String[]{"justice", "fairness", "detachment", "disinterest",

"impartiality", "objectivity", "justness", "objectiveness", "equitableness", "egalitarianism",
"fair-mindedness", "nonpartisanship", "humanrights", "honor", "respect", "dignity",

93

"equality", "humility"};
string = String.valueOf(arrstring[(int)Math.floor(Math.random() *

(double)arrstring.length)]) + "/_and_" + arrstring[(int)Math.floor(Math.random() *
(double)arrstring.length)];

return string;

}

FormURLzapsNet() {
}

}

messageForward.java

/*
* Decompiled with CFR 0_118.

*/
import java.applet.Applet;
import java. applet .AppletContext;
import java.awt.Button;
import java.awt.Choice;
import java.awt.Color;
import java.awt.Component;
import java.awt.Event;
import java.awt.GridLayout;
import java.awt.Label;
import java.awt.LayoutManager;
import java.awt.TextField;
import java.net.URL;

public class messageForward
extends Applet {

Context context;
String badUrlString = new String("http://bmv.floodnet.rhizome.org/");
String name = new String("zap!");
String disallowedChars = ">A{}<[]' ";
String textPar;
String urlPar;
final String homeURLstringl =

"http://archive.rhizome.org/anthology/FloodNet/april10v2/zapsTactical/personal.html"
TextField tf = new TextField("zap!");

public void init() {
int r;
int b;
int gr;
this.context = new Context(this.getAppletContext();
if

(!this.getDocumentBase(.toString(.equals("http://archive.rhizome.org/anthology/FloodNet/apri
110v2/zapsTactical/personal.html")) {

this.showStatus("SOMOS TODOS INDIOS! SOMOS TODOS MARCOS!");
System.exit(0);

} else {
this.start();

}
this.textPar = this.getParameter("textPar");
this.urlPar = this.getParameter("urlPar");
Choice menu = new Choice(;
menu.addItem("Bolsa Mexicana de Valores");
menu. addItem("Grupo Financiero Bital");

94

menu.addItem("Grupo Financiero Bancomer");
menu.addItem("Banco de Mexico");
menu.addItem("Banamex");
menu.addItem(this.textPar);
Button send = new Button("Send Message");
String red = this.getParameter("BGCOLOR_RED");
if (red == null) {

r = 127;

} else {
r = Integer.parseInt(red);
if (r < 0 || r > 255) {

r = 127;

}
}
String green = this.getParameter("BGCOLORGREEN");
if (green == null) {

gr = 127;

} else {
gr = Integer.parseInt(green);
if (gr < 0 11 gr > 255) {

gr = 127;

}
}
String blue = this.getParameter("BGCOLOR_BLUE");
if (blue == null) {

b = 127;

} else {
b = Integer.parseInt(blue);
if (b < 0 1| b > 255) {

b = 127;

}
}
Color c = new Color(r, gr, b);
this.setBackground(c);
this.setForeground(Color.red);
this.setLayout(new GridLayout(3, 2, 5,' 10));
this.add(new Label("type your message:"));
this.add(this.tf);
this.add(new Label("select a site:"));
this.add(menu);
this.add(new Label("Click Send"));
this.add(send);

}

public boolean action(Event evt, Object arg) {
if (evt.target instanceof Button) {

this.getextension();
this.badUrlString = String.valueOf(this.badUrlString) + this.name;
this.context.engage(this.badUrlString);
return true;

I
if (evt.target instanceof Choice) {
this.badUrlString = arg.toString(;
this. setbadUrlString(this. badUrlString);
return true;

I
return false;

}

public void setbadUrlString(String badUrlString) {
if (badUrlString.equals("Bolsa Mexicana de Valores")) {

95

this.badUrlString = "http://bmv.floodnet.rhizome.org/";
} else if (badUrlString.equals("Grupo Financiero Bital")) {

this.badUrlString = "http://bital.floodnet.rhizome.org/";
} else if (badUrlString.equals("Grupo Financiero Bancomer")) {
this.badUrlString = "http://bancomer.floodnet.rhizome.org/";

} else if (badUrlString.equals("Banco de Mexico")) {
this.badUrlString = "http://banxico.floodnet.rhizome.org/";

} else if (badUrlString.equals("Banamex")) {
this.badUrlString = "http://banamex.floodnet.rhizome.org/";

} else if (badUrlString.equals(this.textPar)) {
this.badUrlString = "http://" + this.urlPar + "/";

} else {
badUrlString = "error from setbadUrlString";

}
}

public void getextension() {
this.name = this.tf.getText(;
int count = 0;
while (count < this.disallowedChars.length() {

this.name = this.name.replace(this.disallowedChars.charAt(count),
++count;

}
}

}

SendSpamZapsNet.java

/*
* Decompiled with CFR 0_118.
*

*/
import java.applet.AppletContext;
import java.awt.Frame;
import java.io.PrintStream;
import java.net.MalformedURLException;
import java.net.URL;

class SendSpamZapsNet
extends Frame {
AppletContext appletContext;
String badUrlString = new String();
FormURLzapsNet formurl = new FormURLzapsNet(;

public SendSpamZapsNet(AppletContext appletContext) {
super("TPS");
this.appletContext = appletContext;

I

public void engage(String string) {
URL uRL = null;
try {

uRL = new URL(this.formurl.getstring(string));

I
catch (MalformedURLException vO) {

System.out.println("Malformed URL");
I
if (uRL != null) {

this.appletContext.showDocument(uRL, "target");

96

return;
I
System.out.println("Null URL");

I

public void floodURL(String string) {
URL uRL = null;
try {

uRL = new URL("http://" + string + "/");
I
catch (MalformedURLException vO) {

System.out.println("Malformed URL");

}
if (uRL != null) {

this.appletContext.showDocument(uRL, "target2");
return;

I
System.out.println("Null URL");

}
}

zapsNetTactical.java

/*
* Decompiled with CFR 0_118.

*/

import java.applet.Applet;
import java.applet.AppletContext;
import java.awt.Event;
import java.awt.Graphics;
import java.awt.Image;
import java.awt.image.ImageObserver;
import java.net.URL;

public class zapsNetTactical
extends Applet
implements Runnable {

Image image;
SendSpamZapsNet sendspam;
Thread runner;
String UrlParam;
final String homeURLstringi =

"http://archive.rhizome.org/anthology/FloodNet/aprillev2/zapsTactical/applet.html";

public void init() {
this.image = this.getImage(this.getCodeBase(, "imagel0ex75.gif");
this.sendspam = new SendSpamZapsNet(this.getAppletContext();
this.UrlParam = this.getParameter("targetUrl");
if

(!this.getDocumentBase() .toString(.equals("http://archive.rhizome.org/anthology/FloodNet/apri
110v2/zapsTactical/applet.html")) {

this. showStatus("SOMOS TODOS INDIOS! SOMOS TODOS MARCOS!");
System.exit(0);
return;

I
this.start();

I

97

public void start() {
if (this.runner == null) {
this.runner = new Thread(this);
this.runner.starto;

}
}

public void stop() {
if (this.runner null) {
this.runner.stop(;
this.runner = null;

}
}

public void run() {
do {

this.sendspam.floodURL(this.UrlParam);
try {

Thread.sleep(7000);
continue;

}
catch (InterruptedException v) {
continue;

}
break;

} while (true);
}

public void paint(Graphics graphics) {
graphics.drawImage(this.image, 0, 0, 100, 75, this);

I

public boolean mouseUp(Event event, int n, int n2) {
this.sendspam.engage(this.UrlParam);
return true;

}
}

98

Coda

Now, after all the case studies and explanations are over with, I hope it is now

clear what critical breaking is and what critical breaking can be. To hedge my bets, I want to

close with one final motivating example for critical breaking. Failure is a major part of

contemporary popular thinking about algorithms, consider for example the explosion of articles

condemning Facebook's trending news feature in 2016 for "posting clickbait" (Conger 2016,

Wells 2016, Ng 2016, Thielman 2016). These articles are all written in a condemnatory mode

and are simply content to point out the error and consider their journalistic obligation complete.

This is understandable, to a degree, because there just aren't very many frameworks for

thinking about error and failure in an reflective, critical way.

Critical breaking is a way to engage with incidents like these in a way that goes beyond

making simple value judgements and instead leverage failure and error to create trenchant

analytic insight. One example of this in the particular case of the trending news feature is

pivoting to a reflection on what it means to define seeing "clickbait news" as a "failure" of

Facebook. From the perspective of someone searching for "hard hitting" or "real" news, reading

clickbait news is undeniably an error or mistake in the system. However from the perspective of

Facebook, a corporation who profits based on showing users what other users are interested in

and sending clicks to advertisers, the algorithm is actually working relatively well. Using error in

a perspectival way allows for discussion of richer concepts than the simple failure of the system.

By imagining error as not a finishing point but instead a starting point, it can be leveraged to

develop insight on the context that an algorithm operates in amongst other more internal things

like auditing a system or developing a closer relationship with a system.

Critical breaking began as a concept meant to unify many different discourses about

breaking and error, and to allow for comparative discussion to take place through that

framework. In researching and writing this thesis the concept evolved significantly: its analytic

affordances, its reflective quality, its resistant and emancipatory aims, its necessary

99

independent production, and its focus on material tools all crystallized during this time. This has

allowed critical breaking to, more than ever, allow for trenchant insights that facilitate reflective

use of systems and generates potential sites of resistance inside of systems.

The three case studies were useful in developing these ideas, but also stand on their

own as interesting practices of breaking, despite not being what I would call critical breaking.

Speedrunning shows both the benefit and potential danger of embedding the analysis of system

inside of a system itself. Software testing shows a variety of methods for breaking systems and

organizing that breaking of systems. It also highlights the inherent contradictions of doing critical

breaking with explicit corporate stakeholders. Hacktivism showed the neither the tools nor

complexity fully define what's possible with analyzing breaking, but both need to be paid

attention to and given thought and care. These case studies are not a full representation of

many different kinds of breaking practice in the world but have served admirably as the

groundwork to build a useful concept of critical breaking.

Looking forward, there's still a lot to be done with critical breaking. Besides the more

obvious ways to expand like more case studies or more formalized presentation of results, there

is one major area of interest that this thesis has only briefly touched on. That is, expanding the

notion of systems to non-digital systems and likewise expanding critical breaking to analyze

those systems. The digital/non-digital divide is highly artificial and porous to begin with, and

there's nothing dramatically different between a digital and non-digital system. The closest

examples would be highly abstracted non-digital systems, like mathematics, but I think the

notion of systems as used in this thesis could even cover such things as media infrastructures

or income tax forms. The feedback loop for creating a break and observing its impact is much

longer in non-electric, less-abstract systems, but again, Norbert Wiener's "feedback" was

originally developed for material, mechanical systems (Wiener 1950, 25) and so this is not as

much a stretch as it seems.

100

These expansions are something to work towards in the future of critical breaking by

both myself and those to whom the concept resonates. I would like to see critical breaking

operating internationally as well- the valences of western breaking are clear in critical breaking

in this thesis, there is often an assumption that brokenness is a problem and should be explicitly

avoided. It's possible and even probable that in other places the kinds of insights generated by

working through a critical breaking framework could be entirely different as their conception of

what brokenness actually is would also be changed. For example, consider how Brian Larkin

describes the technological condition of Nigeria, "For Nigerians, cars, televisions VCRs, buses

and motorbikes are often out of service. Even when they work electricity supplies are unreliable

and prone to surges that damage consumer equipment. NEPA, the Nigerian Electric Power

Authority, is famously known as 'Never Expect Power Always,' and phone lines are expensive

and difficult to obtain" (Larkin 2008, 234). How does critical breaking change when instead of a

breakdown being an aberrant condition that occurs only every once in awhile, to something that

is ubiquitous and a core concept of contemporary engagement with technology? Asking

questions like this one are what I hope to see as critical breaking is introduced to an

international community. This thesis comes with a few founding principles and examples to

motivate others to perform their owns kinds of critical breaking analysis, and then use that

analysis to enact further resistant and emancipatory actions and research. It is ultimately a small

offering, but I hope to see critical breaking blossom and grow as a new framework for reflective,

critical analysis.

101

O

Works Cited

Conger, Kate. "Facebook's Trending Topics algorithm already screwed up". TechCrunch. 28
August 2016. Web.
https://techcrunch.com/2016/08/29/facebooks-trending-topics-algorithm-mistake/. 1 May
2017.

Larkin, Brian. Signal and Noise: Media, Infrastructure, and Urban Culture in Nigeria. Durham,
NC: Duke UP, 2008. Print.

Ng, Alfred. "Facebook's algorithm took over, making fake news trending". NY Daily News. 29
August 2016. Web.
http://www.nydailynews.com/news/national/facebook-algorithm-making-fake-news-trendi
ng-article-1.2770670. 1 May 2017.

Thielman, Sam. "Facebook fires trending team, and algorithm without humans goes crazy". The
Guardian. 29 August 2016. Web.
https://www.theguardian.com/technology/2016/aug/29/facebook-fires-trending-topics-tea
m-algorithm. 1 May 2017.

Wells, Georgia. "Facebook's 'Trending' Feature Exhibits Flaws Under New Algorithm". The Wall
Street Journal. 6 September 2016. Web.
https://www.wsj.com/articles/facebooks-trending-feature-exhibits-flaws-under-new-agorit
hm-1473176652. 1 May 2017.

Wiener, Norbert. The Human Use of Human Beings. U.S.A.: Houghton Mifflin, 1950. Print.

102

Image Bibliography

Page 8:
Kerich, Chris. 01 - BYKUtAV.png. Digital image. www.ckerich.com. Web. 4 May 2017.

<http://www.ckerich.com/#/eigenfaces/>

Page 19:
JODI. The front page of http://wwwwwwwww.jodi.org/. Digital image. wwwwwwwww.jodi.org/.

Web. 4 May 2017. <wwwwwwwww.jodi.org/>.

Page 27:
TheRallyGamer. A screen shot of a backwards long jump video. Digital image. Youtube

Web. 4 May 2017. <https://i.ytimg.com/vi/HbOR92AAcQA/hqdefault.jpg>

Page 30:
Kerich, Chris. Photo of an SGDQ Practice Room. 2016. Digital Image.

Page 37:
MikamiHero. A still from "[Speedrun Tutorial] Wrong Warp from Deku Tree / Ganondoor Tutorial

(Aliensqueakytoy's setup)". Digital image. Youtube. Web. 4 May 2017.
<https://www.youtube.com/watch?v=OAVFdMSPHPk>

Page 39:
jammerandcuteness. A still from "Super Metroid Speed Run and Sequence Break Guide by

Jammer". Digital image. Youtube. Web. 4 May 2017.
<https://www.youtube.com/watch?v=T3ZRpXl5rhc>

Page 45:
Arcangel, Cory. A still from "Super Mario Clouds". Digital image. Cory Arcangel's Official
Portfolio

Website and Portal. Web. 4 May 2017.
<http://www.coryarcangel.com/images/artwork/arcangel-super-mario-clouds.gif>

Page 46:
Kerich, Chris. 3.png. Digital image. www.ckerich.com. Web. 4 May 2017.

<http://www.ckerich.com/#/katamari-dreams/>

Page 64:
Kerich Chris. Example output from @imganalogybot. Digital image. Twitter. Web. 4 May

2017. <www.twitter.com/imganalogybot>

Page 75:
Electronic Disturbance Theater. A screen shot of FloodNet. Digital image. Rhizome. Web. 4

May 2017. <http://archive.rhizome.org/anthology/floodnet.html>

103

Page 81:
FockeWulf FW 190. "LOIC-0 screenshot in Windows 10". Digital image. Wikipedia.org. Web. 4

May 2017. <https://commons.wikimedia.org/wiki/File:LOIC-0.png>

104

