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ABSTRACT

The propagation of free surface waves on an inviscid,
incompressible, electrically conducting fluid in the presence
of an applied magnetic field are analyzed. The volume motion
equations are developed, and then are constrained by two
classes of boundary conditions. One class leads to free sur-
face gravity waves; the other to surface tension waves on a
slab or column,

The bulk equations and boundary conditions are linearized
for small perturbations of the free surface. Dispersion rela-
tions are obtained for wave motions on the free surface. The
limiting forms of the dispersion equations for large and small
electrical conductivity are obtained by a perturbation expan-
sion in a magnetic Reynolds number based on wave phase velocity
and wave length.

An infinite number of natural frequencies are found to be
associated with a hydromagnetic free surface disturbance of a
given wave length. In the limit as the fluid depth becomes
infinite, a continuum of natural frequencies is required to
describe the motion of the surface.

The effects of the magnetic field on hydrodynamic disturb-
ances in the examples considered are (1) to damp oscillatory
motion and (2) to retard the growth of instabilities.

Thesis Supervisor: William D, Jackson
Title: Associate Professor of Electrical Engineering
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Chapter I

Introduction.

1.1, Historical Background.

" The surface wave motion of incompressible fluids is
among the oldest and most carefully investigated topics in
hydrodynamics. A measure of the importance of the subject
and the quantity of work that has been dbne‘is the space
devoted to this tdpic in the classic texts on hydrodynamics.

1 and nearly half of Basset2 are

Almost a third of Lamb
devoted to surface motions. The modern text of Milne-
,Thompsong contains a similar proportion of materia1.7<The
book by Stoker6 on water waves is an excellent summary of
more recent developments in the field, and a source of
mathematical methods that have proved to be of value in
such problems. |

v The interest in hydromggnetic surfaég waves,.where the
fluidlis electrically conducting and is immersed in a

- magnetic field, is more recent; contributioﬁa haﬁe come from
geophysicists, applied mathema,t:icians‘, dnd, enginéers:

Investigations were made by Hide11

of the closely

related problem of the stability of a viscous‘fiuid'of var-
i&bﬁe,density&‘and of the,stabilityvof_an»in:erface between
two fluidé, under the influence of gravity and a vertiéal .

magnetic field,



Subsequently, Roberts and Boardman4 investigated the
motion of the free surface of a viscous, incompressible fluid
of uniform density under the influence of gravity and a ver-
tical magnetic field.

Fraenke113 analysed the motion of a weakly conducting
fluid, under the influence of gravity and a weak magnetic
field, forvdisturbances whose wavelengths are large when com-
pared with the depth of the fluid. Both iinear and non-linear
soiutions were obtained. ﬁenn14 later extended the work of
Fraenke113‘to cover a wider range of con&uctivity and field
and conducted experiments with mercury as a working fluid

Surface motions of\a perfectly conducting ‘1uid of
infinite depth with the magnetic field normal or tangencial
to the free surface have been analysed by Chandrasekhaf~3

Melche‘r5 analysed the motion of the surface of a per-
fectly conducting fluid under the influence of an electric
field normal to the surface and a magnetic field tangential
to the surface. He shows a close mathematiéal rélationship
between the two problems, which he calls antiduality;\ Heé
also performed experiments for the electric field problem.

Later, Sakurai8

investigatea a magnetic field problem
similar to that treated by Melcher, with closely related
results. ‘

The atabiiiz#tion of thé.surface tension instability

of a fluid colﬁmn‘by_a magnetic‘field was theoreticail§



investigated by Shendrasekhar?

No experimental work on this
problem has been reported,

The theoreticai,,.elysis of surface waves on a current
) carrying column was originally motivated as a simple model
o study the instabilities of the plasma pinch. The theory
of such motions for perfectly conducting fluids is exten-
sively developed and the literature is growing rapidly. A
summary of the earlier baaic work may be found in Rose and

Clark,ls

and Chandrasekhar.3 The motion of a current'carrying
fluid of finite electrical conductivity has been studied less
extensively. The theoretical analyses are,epparently moti-
veted by an experiment on a current-carrying jet of mercury
falling under gravitypﬂpetformed by Dattnet, Lenhert, and
Lundquigt.ls The fact that the volume equations of motion

are solvable in terme”of Bessel functions was first pointed
17 17

out by Taylor. Taylor™  and Mu.rty18 produced results in

.the limit of zero fluid condoctivity.k

"1.2. Object and Scope of the Investigation.

The object of this inveetigation is to analyse in a
unified mennen‘theﬂpropagation,of emall'surfece disturbances
of the free surface of an inoompressibie,felectrically,oon- |
.<ducting fluid in the presence of en applied D.C. magnetic
field. Two basic configurations are treated.‘ The first ia

the motion of the fluid in a large reservoir or tank (the

e
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surface is considecred infinite in extent) under the influence
of gravity. The second is the motion of a fluid slab or
column with gravity avsent, where the fluid is confined by
its surface tension in the absence of a magnetic field. A
unified treatment is obtained by the derivation of volume
motion equations that are common to both problems. The dif-
ference between the two situations is in the boundary condi-
tions on the volume motion solutions, Emphasis is also given
to volume motinns which, by themselves,‘do not disturb the
free surface; but are essential in providing a complete solu-
tion to the probiem of an initial surface disturbance.

Primary attention is given to prcblems in which the
conductivity, as characterized by an appropriate dimgngionless
parametef, may be considered small; however, sore considera-
tion of high conductivity situations is undertaken,

The scope of this investigation is restricted to small
amplitude disturbances of the free surface of an inviscid,
incompressible fluid of finite, scalar, uniform electrical
conductivity. In addition, the applied magnetic field is
considered time invariant and spatially uniform., Further,
with the,éxception of Chapter 5, sections 5.3 and 5.4, the
sugfaée of the fluid is considered infinite in extent, and
no time-average flow is considered.

Chapter II developes the bulk motion equations and



boundary condition for the fluid. In Chapters IiI and IV
these equations #ave appliad to gravity wave motions on an
infinite sea of fluid. In Chapter V, a simple problem on a
finite fluid surface is examined.

Chapter VI treats the modification of surface tension
waves on a planar slab by an applied magnetic field.
Chapter VII considers the same problem, but on a circular
coluimm. In Chapter VIII a D.C. volume current density is

intvoduced as a perturbation to the solutions of Chapter VII.

1.3. Physical Constants for Liquid Metal.

The principal motivation for this thesis is a theoret-
ical description of the aufface motions of liquid metals in
laboratory magnetic fields. The analysis may have some
application in geophysical or astrophysical aituations.*

The purpose of this section is to give numerical values for
the characteristic lengths_and times that appear in the
analysis, using the physiéal éonstants of mercury and sodium-

potaséium alloy (Nak).

* The analysis of this thesis is applicable when the following
conditions hold:
1) The fluid is incompressible and of uniform density.
2) The magnetic field is uniform in space.
3) The electrical conductivity is a scalar quantity.
4) Surface forces are representable by a scalar surface
tens? m.



Hq NaK
. 3 4 3
Density (kg/m”) 1.35 x 10 0.86 x 10
Conductivity (mho/m) 1.06 x 108 2.35 x 10°
Viscosity (kg/m.-sec.) 1.55 x 10-3 1.0 x 10"3
Surface Tension(newton/m) 0.48 0.1

all data at 20°C

Table 1.

Several combinations of the above quantities appear
repeatedly throughout the analysis. The following Tables
are intended to provide the reader with an idea of the magni-
tudes of these quantities which mhy be expected to occur in
laboratory situations.
A characteristic decay time for free surface motions is
L arT

o B2
o

This quantity appears in section 3.2 of Chapter III and
section 4.2 of Chapter IV as a time constant for the decay

of deep fluid gravity waves in the weak conductivity limit..

]

B(weber/m;) T (Hg) | T (NaK)
0.00 o o
0.02 0.92 sec 32.0 sec
0.04 0.23 8.1
0,06 0.102 3.6
0.08 0.057 2.0
0.10 0.037 1.3

Table 2,



The magnetic uiffusion time given by

ouo ouohz
-  or
k2 sz

is a frequently recurring factor in the analysis. For example,
in Chapter III, section 3.2, it is shown that, for the weak
conductivity approximation to hold, the diffusion time based
on the wavelength must be short compared with the period of
the wave motion. Some characteristic valueslof diffusion

time appear in Table 3.

Diffusion Time

Length Hg NaK
0.01i m. 3.3 x 10"6 sec. 7.5 x 10"6 sec.
0.05 8.3 x 1072 1.87 x 1072
0.10 3.3 x 1074 7.5 x 1074
0.20 1.32 x 1072 3.0 x 1077
1.00 3.3 x 1072 7.5 x 1072
Table 3.

In order for high conductivity approximations to hold,
the fluid skin depth must be short compared with the fluid
depth and the wavelength of the disturbance., Table 4 gives
some values of skin depth at low frequencies in mercury and

sodiun-potassium.



d = (Zvouof)' 1/2

Frequency Skin Depth

Hg NaK
1 «c.p.s. 0.33 m 0.23 m
3 0.19 0.13
10 0.105 0.074
30 0.061 0.042
100 0.033 0.028

Table 4.

It is useful in interpreting the results of Chapters
III and IV to know the radian frequency of gravity waves as

a function ' f wavelength. A few values are found in Table 5.

1/2
A (meters) ® L
sec.
0.05 35,10
0.10 24,82
0.20 17.55
0.40 12,41
0.80 8.77
1.00 7.85
Table 5.

As an example of the use of these brief Tables, consider
the low conductivity approximation to the hydromagnetic gravity

wave problem discussed in Chapter III, section 3.2, It is



shown there that the approximation is valid if

WO
(*]
7 << 1

k

and
)
WVA’
<< 1.

i

Consider mercury as a working fluid at a wavelength of 40 cm.
Table 5 shows

w= 12,41,
Table 3 shows the diffusion time is

T = 1.8 x 10~ geconds
and since

k

the first condition is satisfied. Table 2 shows the decay
time at 0.1 webers/m2 to be 1.3 seconds. The product of the
decay time and the radian frequency is about 15. The second
condition on the validity of the solution is that the inverse

of this number be small compared with one. At 0.1 webers/mz

this condition is marginally satisfied.



Chapter II,

Fluid Equations and Boundary Conditions,

The m;tion of a free aurfacé of a fluid is determined
by first solving the relevart equations of motion in the
fluid bulk, and then applying the necessary boundary condi-
tions. Both the equations of motion and the boundary con-
ditions are nonlinear, and will be linearized considering
the fluid motion to be a small perturbation of the equili-
brium state,

To further simplify the equations of motion, the fluid
is taken to be incompressible, invisicid, and of uniform
density with a uniform scalar conductivity. It might‘be
pointed out here that assuming the fluid to be inviscid is

not necessary in order to obtein dispersion relations of

10

the problems discussed below. An exanmple of such an analysis

4 The

‘may be found in the work of Roberts and Boardman.
viscous losses in liquid metals are unimportant in compar-

ison to electrical losses for laboratory scale experiments,

and consequently the analysis may be simplified by neglecting

viscosity.

The problem to be considered in this section may be
described as follows. An incompressible fluid of infinite
extent in the x-z plane has a free surface at y=o and is

bounded by a solid, flat bot*om at the plane y = - d.
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Vacuum

F'Uid ‘P.u‘)

Solid Bottom
Figure 2.1. FREE SURFACE MHD GRAVITY WAVE GEOMETY
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(In later sections the co-ordinate system may be shifted a
bit for convenience).

A uniform magnetic field, supplied by outside sources,
permeates the fluid. Arbitrary orientation of the field will
be considered. Most sttention will be paid to the special
cases of vertical and horizontal fields. The acceleration
of gravity acts along the y-axis in the direction of increasing
negative y.

After examining in detail the motions of the infinite
sea of fluid, we shall investigate certain simple bounded
problems to whici: che infinite sea results may be directly
applied.

2.1. Equations of Motion in the Fluid Region.

In this section, it will be shown that there are two
distinct modes of motion in the fluid which are coupled only
by the boundary conditions. In addition, it will be seen
that we need consider only two-dimensional motion. For two-
dimensional motion, it is shown that the component of the
impressed magnetic field perpendicular to thé plane of
motion does not affect the motion. Finally, it will be showm
that the impressed magnetic field in the plane of motion must
be taﬁgential to a surface in ordcf for a surface curreant to
be present in the high conductivity limit.

2.1.1. The Equations for Motion in the Fluid.

The necésaary equations ¢f motion are the inviscid
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Navier-Stokes equation, the continuity of fluid equation in
the incompressible limit, Maxwell's equations in the non-
relativistic form applicable to moving media, and the con-
stituant relation between the current and fields for a con-

ductor in motion.

P %% =.VP +JxB+ pg (2.1)
Ve veo (2.2)
VxEs= %E B (2.3)
v x Sif u;;' (2.4)
V- :B=0 (2.5)

3- o(E+;x_B‘) (2.6)

The solutions to some of the following problems will
contain an apparent inconsistency. Note that nothing is
said about divergence of E in the above equations. It is
not properly part of the set of equations to be solved. In
some cases, the electric field will have a non-zero, time
varying divergence indicating a changing volume charge dis-
tribution. It is clear from Eq. 4, however, that the diver-
gence of the current is zero. The resolution of this equa-
tion lies in the fact that the additional current needed to
supply these changes is of relativistic order compared to
the total current in the fluid. The approximation inherent

in Eq. 4 allows errors of just this magnitude.



2.1.2, Equilibrium Solution.

14

The equilib:iﬁm’cituation, about which we will consider

small pefturbations, consists of the fluid at rest. The
state is then specified by the solution to Eq. 2.1.

The steady state solution to Eq. 1 is

Po - - pgy + T

¥))

where m is a constant of integration to be determined later,

when the geometry of the problem is fully specified.

2.1.3. Linearizatiomn.

Equations 2.1 and 2.6 are non-linear. The only field

quantity present in the equilibrium situation is the magnetic

field Bo, which we shall take to be uniform and, for the
moment, of arbitrary crientation.

The equations are linearized in the manner usually
'émployed in the analysis of water waves (see Scoker,6

'}Chapter 1).

The linearized equations which describe small perturba-

tiohs of the rest state are

P %% =-V%+3xB
v -';'-'o

Vxem -'%E b
?nguoi
Veb=0

I-aG+?x§)

(2.8)

(2.9)
(2.10)

(2.11)
(2.12)
(2.13)
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All équilibrium quantities are indicated by dﬂsubscript~zero.
2.1.4, Assumed Form of the Solution.
All quantities in the perturbation solution are assumed
to have the following dependence on space and time

f(y)ej(klx + kzz - wt)‘

The ptopagation constants kl and kz are assumed real, hence w
must be complex, as dissipative terms are present in the
motion equation.

Since the equations which will be consideved are linear,
solutions may be superposed. This leads to great simplifi-
cations in the manner of solution as we may, without loss of
generality, consider two-dimensional motion of the fluid.

In particulér, the fluid will be assumed to move in the
x-y plane, aud'kz will be zero. It will be seen that the
perturbation magnetic field wector will lie in the x-y plene
while the electric field and current will lie along the z-
axis. -

It is important to note that there is another form of-
two dimensional motion which we shall not treat here. The
other fofm has only a =z directe; velocity, with current and
\electriﬁ field in the x-y plane. As it does not perturb the
free surface, we shall not consider it further here.

2.1.5. Introduction of Vector Potentials.

The linearized equations of motion are considerably
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7 ~

Figure 220 . FORM OF THE MAGNETIC AND VELOCITY FIELDS
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Figure 2.2b. FORM OF THE ELECTRIC AND CURRENT FIELDS
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simplified by the introduction of vector potentials for the

velocicy and magnetic field

Uxy=v (2.14)
Veym0 (2.15)
VxA=b (2.16)
VeA=0 (2.17)

The use of vector potentials automatically insures the
divergence conditions on the magnetic and velocity fields
will be satisfied.

Since the motion is confined to the x-y plane, ¥ has
only a z component. We shall show that A also has only
a z component.

Let the impressed magnetic field be specified by

Bo - Bo(aix + Biy + yiz) (2.18)
Substitution of the vector potential into Eq. 2.11

yields

3—- - i-'- VZ-A— (2.19)

o

Equation 2.8 becomes
%E (Vx4y) =-9p+ 3 xlio (2.20)

Taking the curl of each quantity in Eq. 2.20 eliminates the

pressure

‘%‘E v’y = v x (3 x B) (2.21)
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And, since Bo is independent of spatial co-ordinates,

vy - <s vy (2.22)

'
0/'01
[ag

An examination of Eqs. 2.22 and 2.19 shows that, since ¥ has
only & z component, A has only a 2z component.

For the electric field, we have, as a consequence of
Eq. 2.10

e ¥ T 8T AT
L-5% L (2.23)

where @ is a scalar po.ential which we will evaluate using
the linearized constituant relation, Eq. 2.13. This equation
now takes the form.

- V2 A = ou e e + o [(v x‘;) x E;]. (2.24)

In the cartesian co-ordinates being employed, the vector

Eq. 2.24 represents the following three scalar equations

-

- _Q Q%
0 M, + yBo B%J (2.25a)
Eﬂﬂ §Di
0 = o, dy + yBo dy (2.25b)
2, _ A _ 3y , . dy
v°A oo St quoﬂo [1 3 + B BX] (2.25¢)

Equation 2.25¢ i: one of the pair of equations which
determine the bulk motion of the fluid. The other is obtained

by combining Bq. 2.22 with Eq. 2.19.
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Bk |
& 2 g o - -1
+$ Vv~ + Y aSFtByy A (2.26)

In the above equations, the symbols A and ¥, without
the vector overstroke, indicate the =z components of the
vectors A and vy.

2.1.6. The Component of B° Perpendicular to the

Plane of Motion.

The equations of motion, Eq. 2.25¢ and Eq. 2.26, do not
contain a dependence on the 2z component of the applied
magnetic field. Therefore, we may safely ignore it in the
succeeding sections. It is interesting to note just what
effect this component does have. We see from Eq. 2.25a and
Eq. 2.25b that it causes a charge distribution in the fluid
which creates an electrostatic potential @

¢ - - 780 v, (2.27)

2,1.7. Solution of the Bulk Motion Equations.
In order to solve the bulk motion equations, we intro-

duce the assumed form of the solution

f(y)ej(kxmwt)

Henceforth, in this section, the subscript notation for

derivatives will be used. The equations to be solved are

A(,m,w)t ~ oh AL = - ou B [ay + B'&y] (2.28)

B

- S _ 2 o2
i( ry)t o jkn(Ayy k“A) + a(Ayyy k“A) (2.29)
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With the assumed x and t dependence, these equations

become
2
Ayy = K°A + Joou A = - ouoBo[jka'& + a'&y] (2.30)
- Jolv, ~k%y] = o [ka (A, -k?A) + p(A,_ -kZA ) (2.31)
yy PH o vy vy Yy )

Simple analysis shows that for this pair of coupled
ordinary differential equations there are four independent
solutions. By inspection, we see that potential motion pro-

vides two of the required solutions.

(1) v = yped (kxer) hy

Bok
A= o—=(a- Jp)V¥

(2) v = 1',lze_'](kxwmt:) e*ky

B
A= =2 (a+3p)¥

11 and ¥, are constants to be determined later by the
boundary conditions. To proceed, we may reduce differential

Eq. 29 to the form

B

- Jov = 2= (koA + phy] (2.32)
o]

This is equivalent to factoring the differential operator and

removing that part of it for which we have the solution. As

Eqs. 2,30 and 2.32 are linear with constant co-efficients,
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their solutions will be exponentials.

Let
A = gA,
y q
Then we find q must satisfy the relationship
2 2 2
q° -k +ja>au.° I-Mz(a-j%‘) | (2.33)
where k2 2
2 VA
w
and 2
2 .o (2.35)
A PH, *=

Then q 1s given by the expression

g . - $RHep +1/(1 - smO (L - 1R Pe%) + 22 (1 + 298 pP6D)
(1 + sRe?)

where we have defined the paramster R

M to be the magnetic

Reynolds number based on phase velocity and wavelength
wop
kz

RM-

As there are two values of q defined by Eq. 2.36,

the remaining two solutione have been found. They are

3,4) ¥y, e oI Uxat)
KkB_

howo-ooS (M.:z- :L_ m) :

k
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Upon examination of the foregoing relationships, the
following facts become evident. First, there is no volume
current density associated with the two potential flow solu-
tions, as both the velocity field and the magnetic field are
curl free. Second, the relationship for the transverse
propagation constant q becomes much simplified when the
impressed field is either purely horizontal or pﬁrely
vertical.

Horizontal Case (a =1, g = 0)

2 2
2 wo kv
o A

Vertical Case (a = 0, g = 2)

wWou
 1-31—=°
q k
a)” . > (2.38)
V..
A
1+ Joug %

2.1.8. Formation of Surface Currents and the High
Conductivity Form of the Solution.

As noted above, the potential flow solution does not
depend on the fluid conductivity, so we may conéern our-
selves with the second, current carrying solution.

Let us first examine the possibility of a surface

current layer. For a layer of this type to form, q must
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~ grow as the square root of the conductivity for large conduc-
éivity. Notice that this occurs in Eq. 2.37 but not in Eq. |
2.38.I In fact, direct examination of the general expression

for q shows that the outfaée current layer does not exist

for any non-zero value of B, since,as the conductivity approaches

infinity in Eq. 2.36, q apprcaches a finite limit,

1 V1 -2Ma® -y

Mp

lim % - 4 (2.39a)

G ®

Therefore, the surface current layer is then properly only a
feature of those situations for which Bo is pureiy horizontal.

When the field is purely normal (a = 0) Eq. 2.39a is even
further simplified

im q =+ 3 2
0 —= VA

which is the expected propagation constant for Alfren waves
along the field lines. N

We might then expect that Eq. 2.37 is the equation for
the propagation constant of Alfren waves in a lossy media.
It is, and a detailed discussion of its behavior as a function
of real w may be found in a recent papex by Kliman.7 Unfor-
tunately, as we shall be interested in behavior for real k
and complex w, the interpretation offered there has limited

application to the problem at hend.
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Further discussion of the high conductivity behavior of
Eq. 2.37 is not profitable since, as will be shown later,
these surface disturbances are not governed by a limplé dis-
persion relation between k ‘and w. The high conductivity |
behavior of Eq. 2.36 is of interest, however. The approxi-

mate form for q is

kz ) 1/2

VA

q=- jmqu,o [ - —2—'} . (2.39b)
W .

This is very nearly the expression obtained for the propa-
gation constant in the classical skin depth problem. The
modifying term in brackets is a result of fluid motion in
the skin depth layer. We may easily see its effect. It is
known (see Melcher)sthat the propagation constant for gravity

waves on a perfectly conducting fluid of infinite depth 1is

given by
m? = gk + 2k2vi.
Therefore kzvz
0<—2 < £, (2.40)
w

Thus the skin depth may be up to 1.4 times as great as that
in a solid of the same conductivity. Hence, the first order
loss may be as little as half that which would be estimated

on the basis of the standard skin depth formula.
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2,1.9. Loﬁ Conductivity Limit,

As the fluid conductivity approaches zero, the fluid
motion must closely approach the ozdinary hydrodynamic
behavior. Mathematically, this will be seen as

lim I%, - 1. (2.41)
o0 .

When the conductivity is small, but non-zero

k)
;1 -] - -;5 [1 - M;(az + 20 - ﬂzﬂ (2.42)
1-‘::- -1+ -'-1;”- 1 - uz(az - 208 - 52) (2-435

We see that, as expected, the solutions differ from
irrotational ones by a small amount linearly dependsnt on

the conductivity.

2,2, Boundary Conditions.. | | E

In this section, boundary conditions at the free surface
and at a solid bottom will be considered. Discussion of end
walls will be deferred until Chapter 5, when bounded motion*

are discussed.

2,2.1., Bottoms. f

}When the fluid depth is not so great that ths motion aé
the surface is independent of the bottom, it is necessary t%
take into account the electromagnetic and hydrodynamic bound-

ary conditions at the bottom., When the depth is much grea#or
.y [
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than the w&velengéh it is only necessary to sepcify that the
motion die out with increasing negative y. This is not
possible vhen waves may propagate aléng,tho; y axis,

- When the bottom is inpoftanc, the following conditions
apply.
1) The vertical velocity is zero.
2) The magnetic field is continuous across the boundary.
When the bottom is perfectly conducting, only the normal
field need be continuous and consequently zero. For sim-
plicity, perfectly conducting or non-conducting bottoms will
be treated in the work toufollo;.
2.2.2, The Free Surface.
The boundary conditions applicable at the free surface
may be briefly stated as:
1) The free surface is always composed of the lama'
fluid particlo;. | .
2) The magnetic field is continuous at the boundary.
3) The discontinuity in the stress tensor is balanced
by the surface forces. ..\
The boundary conditions are all non-linear and must be
linearized. ”

Let.
F(xpypt) =0 . . (2.“)

be the equation of a free surface. The mathematical state-

ment of the first condition is then
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- 0. (2.45)
F=0

D
Dt T

For this problem, F is convcnionc1y4§r1tton as
Fey-n(xt) (2.46)
Equation 2.45 beconei

vV (y - n(x,t)) -1, =0. (2.47)
Fu0

The linearized form is then

v iy = Mg

The second boundary condition is easily linearized. Since

(2.48)

Bo is automatically continuous, we need conaider'only the
perturbation magnetic field, and this becomes a linesar boundary
condition when we refer the continuity to the equilibrium
boundary.

The final boundary condition concerns the fluid stress
tensor. The magnetic terms are continuous across the boundary
by virtue of th§ previous condition. The remaining off-
diagonal terms are zero for an inviscid fluid. The balance
to be effected then is between the pressure discontinuity and
the surface forces, which will be caused by the surface tension.

The surface tension produces a surface force density
which is inversely proportional to the radius of curvature
and directed toward the center of curvature. The linearized

relationship is
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Fs - Tﬂxxo (2 049)

For the pressure at the free surface, in linearized form,

it is necessary to sum the perturbation pressure of the equi-

librium boundary with the equilibrium pressure at the per-

turbad'boundary. The final equation is

More care must be taken with the surface discontinuityv
of the stress tensor when one considers ideal fluids When
the fluid conductivity is infinite, the condition on the
tangential mngnetic field ie no longer applicable, and the
condition on the tangential portion of the total stress

tensor must be invoked.

2.3. Separate Excitation of the Modes of Fluid Motion.

We have seen that the bulk motion consists of two mcdes
of motion, which are independent in the fluid bulk, but will
in general, be coupled at the fluid soundarieo. As the
resultant combined motion of the fluid is somewhat compli-
cated, it is useful to consider rather artificial boundary
conditiois which allow the volume modes to be excited sep-
arately.

- The independent excitation of the two modes may be accom-
plished by rezoval of a boundary condition at the fres surface,

namely the condition that the magnetic field be continuous.
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One may picture this being accomplished by placing a thin,
weightless, perfectly flexible sheet with perfect electrical
cdnductivity over the surface of the fluid. This results in
the possibility that a surface current may exist on the
fluid, hence the component of the magnetic field which is
tangential to the free surface need not be continuous. For
simplicity, the depth of the fiuid will be taken as infinite
and surface tension will be neglected.

2.3.1. The Irrotational Mode.

Let us first take up the motion of the irrotational
mode. As we have previously shown, there is no volume
current flow associated with this mode. Therefore, since
our imposed artificial boundary is lossless, and the fluid
motion is also lossless, one may expect that associated with
each real value of the propagation constant k will be
associated a real value of the square of ths radian fre-
quency w. The situation under examination is dlearly steble,
hence » will be a purely real number.

The case for the magnetic field parallel to the equi-
1ibrium free surface is now quite straightforward. When the
field is normal to the surface, the force on the conducting
skin we have placed over the fluid is tangential to the fluid
surface and we must introduce a further artifice, namely a
constraint that the skin be constrained to move only in a

vertical direction and hence not buckle.
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Now the form of the two stream functions in the fluid is

the same for both orientations of the magnetic field,

vay ek dlixeat) (2.51)
. kB
Ae=-—=2y, (2.52)

The fluid motion is that of ordinary hydrodynamic waves
in which the motion of the fiuid consists of circular parti-
cal paths in the x-y plane, the radius of these paths having
an exponential decay with distance in the x-y plane.

There is no current in the bulk of the fluid in this
mode, consequently the motional induction in the fluid must
be exactly counteracted by the time rate of change of the
magnetic field. The source of the magnetic field must be
a surface current layer in the conducting skin.

Applying the pressure boundary condition at the free

surface, we find

of =gk + 2t (2.53)
for the applied magnetic field tangential to the free sur-
face and

w? - g k (2.54)
for the field normal to the surface. Figure 2.3 shows

partical paths and magnetic field lines for a traveling

wave of this type.
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2.3.2. The Lossy Mode.
The other mode is somewhat more complicated. The atream

functions are

v = v,eW od (kx-at) (2.55)
kB 2
) [4))
Aw-—=2 47 - (2.56)
Va

Because of the loss mechanism, the particle paths
spiral inward. They may conveniently be pictured as ellipses
whose size is decreasing in time at an exponential rate
determined by the imaginary part of w.

Figure 2.4 shows particle path ellipses and magnetic
field contours for such a mode when the applied .fiasld is
parallel to the surface. Figure 2.5 indicates motion with
a vertical applied field. Plots are shown for low conduc-
tivity where the motion is a slight modification of irrota-
tional flow, and for a higher conductivity, where the Alfren
structure is more developed.

Like a irrotational mode, the lossy rotational mode,
when excited in this way, has a characteristic radian fre-
quency w associated with each k. For the applied field

parallel to the free surface
1/2

2
WO Jou v,
gk - a? [1+2(1-5-5-2+—;L‘) ] (2.57)
k
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. and for the field perpendicﬁlar,to the surface

1/2

2
2
Sk - W - 0. (2.58)
;. Joau, .,
k2

2.3.3. Removal of the Artificial Surface Constant.

As a method for making a transition from this set of
boundary conditions to a more natural set with no conducting
skin on the surface, let us consider driving the two modes
with an externally applied surface pressure. Let the applied

surface pressure to the 1rrotationp1 mode be
Py(x,t) = p_ o (kx-ut) (2.59)

where w may be complex. Let us drive the dislipative mode
with
Py(x,t) = - p_ o (kx-0t) (2.60)

Now, if it is possible to find some complex ® such that the
conducting sheot over the irrotational mode carries a surface
current just opposite that which is found in the sheet on the
dissipative mode, we may sum the two solutions to obtain the
solution_for a free surface deep fluid wave without con-
ducting sheets or driving pressures.

This leads to a convenient picture of energy being trans-

ported from the lossless irrotational mode to the lossy mode

by virtue of the coupling required by the boundary conditions.
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Chapter 111
Gravity Wave Motion in a

Horizontal Magnatic Field.

In the preceeding chapter, it was seen that the volume
motion of the fluid was representable by two independent
modes, coupled only by the boundaries. In the succeeding
sections, the above general considerations will be applied
to situations such as that of Fig. 3.1.

Two dimensional motion of the fluid is considered. The
magnetic field lies in the plane of motion and parallel to |
the free surface. The fluid has a surface tension. The
lower boundary of the fluid is a solid bottom of arbitrary
electrical conductivity.

The simplest situaticn, namely the case where the bottom
has been removed to infinity, will be considered first.

3.1. Wave Motion on a Fluid of Infinite Depth.

The removal of the lower boundary of the fluid to
infinity makes the free surface motion of the fluid inde-
pendent of the nature of the bottom. This results in a
considerable simplification of the dispersion relation for
traveling and standing waves but introduces some additional
difficulties. 1In Section 3.3, it will be seen that, for a
sinusoidal surface disturbance, there is a continuum of

natural frequencies associated with other fluid processes
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in addition to a natural frequency deaéribins surface wave
motion. In the present section, only surface wave motion
will be treated and the cont;nuum.will be ignored.

3.1.1, Soiutions to the Bulk Motion Equations.

The éeometry under consideration is shown in Fig. 3.1.
A fluid of electrical conductivity ¢ and density p lies
below the plane y = 0, which is the equilibrium free surface.
A magnetic field B,, caused by a current distribution out-
side the fluid lies along the x axis.

The bulk motion equations are formulated and solved in
section 2.1.7. The required solutions are those which

vanish at y = « w,

V= ej (kx-wt) [*13 Ik‘ Y & .‘ZGQYJ (3.1)
kB [
-} Wy . w2, .4
A - Lvle + MA'&ze )] (3.2)
where
2
M2 = < (3.3)
“A
2
B
2 2 0
W, = k m; - (3.4)
2 1/2
WO, | @y
q =kl - 3 -5 1.3 (3.5)
k W _

and in Eq. 3.5, the root with the positive real part is

intended. The above expressions for ¥ and A are those solutions
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of Eq. 2.30 and Eq. 2.31 which vanish at - =,
3.1.2. The External Magnetic Field and the Magnetic
Boundary Condition.
The region above the fluid is current free, hence the
pertprbation magnetic field must be curl free. The vector

potential for the external magnetic field is then

A=A el (kx-at) - |ky, (3.6)

The normal and tangential components of the magnetic
fiel& are continuous at the boundary if the vector potential
and its y derivative are continuous at the plane y = 0,

Because of the form of the solution for the exéernal
magnetic stream function in Eq. 3.6, the condition on the

internal magnetic stream function at the free surface is

[Ay + [i]A) - 0, 3.7)
y=0

Upon substitution of the expression for A from Eq. 3.1 and

Eq. 3.2 into the above equation, we obtain

) .
2¥, + My [1+ﬁ-|»]wz-o. (3.8)
This is one of the two equations required to determine the

dispersion relation. The other equation is obtained by

application of the condition of pressure continuity at the

free surface.
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3.1.3. The Boundary Condition on the Surface Pressure.

Equation 2,30 expresses the condition on the perturba-
tion pressure p in terms of the elevation of the free surface
n(x,t). Equetion 2.48 relates the elevation of the surfacé‘
to the vertical velocity at the surface. Making use of the

stream function Eq. 2.50 becomes
n=Ey, | (3.9

It remains to express the perturbation pressure in
terms of ¥. This is accomplished by means of the X-component

of the Navier-Stokes equation, Eq. 2.8

R"g.

- () .o
P iy (3.10)

Substitution of the above two results into the expres-
sion for the surface pressure boundary condition, Eq. 2.50,
yields
2 3|, o 2 Tk?
0 f [w - |k|( 8 - o ) V¥ [:w Tﬂr - |k|( g - -3-)] ¥y
’(3.11)
Equations 3.8 and 3.11 determine the dispersion éela-
tion for traveling and standing waves.
3.1.4. The Dispersion Equetion and Some Simple
Limiting Forms.
Direct combination of Eqs. 3.8 and 3.11 gives the dis-

persion relation. Tt is
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2 2 2 2
Mi(w '"’s)(“'ﬁ-l) -2(%«»-%) (3.12)

where 2
cu: - |k| ( g - I-E-) (3.13)

is the characteristic frequency associated with the propaga-
tion of surface waves in the absence of a magnetic field.

The dispersion relation must reduce to hydrodynamic
behavior when the magnetic field is removed, or the electrical
conductivity vanishes. When the magnetic field becomes

smail, ”A becomes very large

1

1im 'y
=20 W
Substitution of this into Eq. 3.12 gives

o = wi. (3.14)

When the electrical conductivity becomes small the
transverse wuve.number q approaches k. It is seen from
Eq. 3.5 that

1lim q -lkl

O =
Substitution of the above result into Eq. 3.12 again
gives Eq. 3.14,

As the conductivity becomes infinite, Eq. 3.12 becomes

2
2 w

S B 4 2y2, (3.15)

2 2 AT .
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5 8

This result has besn noted by Melcher” and Sakurai.

A spuriou§ root of Eq. 3.12 is
w? - kzvi‘
For at this frequency, Eq. 3.5 indicates that
q = k|
and substitution of the above values of w and q into the
dispersion relation, Eq. 3.12, shows that this is a solution.

However, substitution of the above exprsasions, for w and k
into either Eq. 3.8 or Eq. ” 11 yield

*1 T, 0.
The stream function is thus identically zero for this solu-
tion. The spurious solution rapresents no net motion of the
system.,

3.1.4. Low Conductivity Behavior.

Henceforth in the consideration of the limiting forms of
the dispersion equatrion, the wavelength will be considered
long enough to enable surface tension effects to be ignored.
This simplifies the expression for the dispersion relation
and decreases the number of dimensionless parameters needed
to describe the system.

Approximate solutions to the dispersion equation in the
limit of small electrical conductivity will be examined.
Before doing this, it is useful to make the equations dimen-

sionless.
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Let
k' = Lk
w' = Tw
q' = a/k

be the set of dimensionless variables where

2
Va

L=-2
v

T-—A
. 8

define the characteristic length and time of the system.

Then the dispersion relation, Eq. 3.14, becomes

2 |

0T f:_f @? - k')A +q") - 2(q'0'? - ,k',) (3.16)

and Eq. 3.5
) 1/2
ql.[l,jnuiu—z( 1-&-:-2-)] (3.17)
' w
where
on, Vi

v -
Ry = g
is a characteristic magnetic Reynolds number for the system,
Substituting Eq. 3.17 intoc Eq. 3.16, and properly

grouping and squaring the resulting expression, the following

polynomial expression is obtained.
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3 2

0 = 4@ - k'2) + 4 55)4— [0'? - k'(1 + 2k")) (3.18)

This polynomial has rooﬁs other than those of the
original dispersion relation. These spurious roots are a
result of the squaring operation and are roots of the disper-
sion equation with q' replaced by -q'. The spurious roots
discussed in the preceding section have been algebraically
divided out of the above expression. There are seven roots
to Eq. 3.18. For zero Rﬁ, there are 4 finite roots of Eq.
3.18.

1) - k1/2
) e - /2
D o= g2
B o= - 2

The remaining three rocts diverge to infinity as the con-

ductivity becomes small. Their asymptotic forms are

1/3
5) o= diV3 R-‘?-S-‘:

1/3
6) m-J—%l@ %:—l:

R
7 o=-j QM—‘.‘-
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Of these seven roots, only roots 1 and 2 belong to the original
dispersion equation, Eq. 3.16. Figure 3.2 indicates the initial
path of these roots in the complex w plane as RM is increased
from zero. In order to find an analytic expression for the
roots of the dispersion equation a power series expansion in

the magnetic Reynolds number may be made for w'

2
! = ' L)
w a\‘") + RM‘”I + RM"’i + (3.19)
When a series of this form is substituted into Eq. 3.18 the

first three terms are

"o 11/2
@y k

The first term represents the hydrodynamic velocity.
The second term represents simple exponential damping. Removing

the normalization,, it is seen that all modes decay as

2
“0u Vv, t
e 0A

which is independent of wavelength.

The third term is real and represents a correction to the
rate of oscillation. The feature of note here is that for a
certain range of wave numbers, the frequency increases with

the increase of conductivity, vhile for the remaining wave
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numbers it decreases. For

k>£7*- &
Va
the second correction is a decrease in the real part of w,

while for

<k 5y

Va

the term represents an increase in the oscillatory frequency.
The physical mechanism for this lies in the phase angle between
the current and the vertical component of velocity. When the
current is in phase with the velocity, the effect is damping
of the oscillation. When the phase of the current leads that
of the velocity, the effect is essentially that of increased
restoring force and the rate of oscillation increases. When
the current lags the velocity, the restoring force of gravity
1s partially counteracted and the frequency of oscillation is
decreased. An examination of the expressions for current and
velocity show the former effect at long wavelengths and the
latter at short wavelengths., From Eqs. 3.1 through 3.5 an

approximate expression for the phase angle at low conductivity

and at the free surface may be obtained

2
vE L2 l-=3
16 k

This has the above noted behavior at high and low wave length,




48

but the wavelength associated with the sign change is not
the same.
3.1.5. High Conductivity Behavior.
When the conductivity is very large, the following situ-

ation is approached

1,2 o= [kl + 2k))1/2 double rost
1/2

3,4 we= - [k(1 + 2k)/ double root

5,6,7 w= 0 triple root

All these roots satisfy both Eqs, 3.16 and 3.18. To analyse

the behavior in this region, it is neceliary to find the

1/2

root trajectories as (IIRM) approaches zero.

Roots 5, 6, and 7 have asymptotic forms as follows:

5) w=jA
6) o= - j;‘\f.’!
7) D = - (J-;—Q) A

where 1/3

Ry [k(1 + 2k) 2
Roots 6 and 7 are solutions to the dispersion relation,

while root 5 is not. The other roots split in the following

manner :
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1/2
1+
D o= - 175—1 (%;) %
1\ 1/2
1+
2) o= @y + 175-1' (%;) w,
1/2
H o= -0+ gl (t) @
1/2
R R
where
o, = lk( + 21012

- l. o
“ = 'wl a7'7'2" =

Initial root trajectories for high conductivity are shown in
Figure 3.3. Roots 1 and 3 are solutions of the dispersion
equation, while roots 2 and 4 are not, having been introduced
by the squaring operation.

There are four solutions to the dispersion equation
for high conductivity while for low conductivity there are
only two.

Two of these roots are simple modifications of the usual
perfectly conducting solution caused by the existence of a

surface current boundary layer of finite non-zero width. It

is a characteristic of the skin effect that the deviation
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from the perfectly conducting situation consists of equal
parts damping and frequency shift.

The other two roots represent the relaxation of an
initial fluid elevation supported by the magnetic field,

3.1.5. An Expansion for Small Megnetic Fields.

The dimensionless representation of the previous section
{s not useful for finding the fluid behavior &t small magnetic
fields as the characteristic velocity chosen was the Alfven
velocity.

For the purpose of obtaining an expansion valid for
arbitrary conductivity but small wmignetic field the follouving

characteristic quantities may be introduced.

1 1
L= T .
"k '("'8'—'Tk)1 2

The pair of equations to be solved become

a+q%e%@? -1 - v -1 =0 (3.20)
Vx? 1/2
' o - [} - —
q [1 Jo'Ry ( 1 m.z)] (3.21)
where the characteristic magnetic Reynolds number is
. duosllz
Ry = -;375—— (3.22)
and the normalized Alfven velocity is defined by
2 Vi
VA L (3.23?
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It is now possible to expand in a series for small
values of the magnetic field and arbitrary conductivity.

w' = mg +'vx2mi + Y&«m& + e (3,24?

Substitution of the above series in Eqs. 3.20 and

3.21 yields

' qo -1
w = % 1 (3.26)
vhere
q, = (1 - Jng)l/z (3.27)

It is seen that the angle the initial root trajectory makes
vith the real w axis varies from© = 0 to © = v/2 as the
characteristic Reynolds number of Eq. 3.22 goes from zero
to infinity. A graph of angle vs. magnetic Reynolds number
is shown in Figure J.4. This angular function of the
magnetic Reynolds number of Eq. 3.22 serves to conveniently
delineate high and low conductivity, for when G(Ru) is
approximately v/2 a low conductivity approximation is to be
used, while for G(RM) near zero, it is possible to use the
high conductivity approximation. The angle is approximately
/4 when the magnetl: Reynolds number is unity, so that this
alternate method of specifying the importnace of the fluid

conductivity corresponds well with the usual one based on RH.
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3.2. Wave Motion in a Fluid of Finite Depth.

The prcoblem of the previous section will now be extended
to include the presence of a solid bottom at a finite distance
below the surface. When considering wave motion on a fluid
of finite depth, it is convenient to arrange the co-ordinate
system to be that shown in Figure 3.5 with the origin for y
being the bottom of the fluid, rather than at the free
surface, and this will be done throughout this section.

3.2.1. Bulk Solutions and Boundary Conditions.

The solutions of the motion equations for the magnetic
and velocity stream functions obtained in section 2.1.7 may

be combined in a simple manner to give

v = d XD 1y ginh ky + ¥, cosh ky + ¥, sinh qy + ¥, cosh qy]

(3.28)

KBy 2 2
A= - -Zr-[il sinh ky + ¥, cosh ky + M, v, sinh qy + M,¥, cosh qy)

(3.29)
The application of the condition that the vertical
fluid velocity be zero at the bottom gives the simple result

*2 + ¢4 -0, (3.30?

This is the first of four homogeneous equations needed
to determine the dispersion relation.

The second boundary condition involves the continuity of
the magnetic field at the bottom. The behavior of the mag-

netic stream function in the bottom is governed by the equation
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Figure 3.5. GEOMETRY OF SURFACE WAVE
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hence
A= Aoej (kx-wt) vy (3.32)
where
jwouo 1/2
k

where the square root with a positive real part is the one

to be used. This is the usual skin depth behavior.
Continuity of the magnetic field across the boundary is

established when the magnetic stream function and its y

derivative are continuous.
-2 dmy .2 -
V1 =k Yot MYy kniv,‘ . 0. (3.34)
If the bottom is non-conducting, the equation is
- a2y .
Wl Wz + K MA*3 MAi4. (3.35)
When the bottom is perfectly conducting, the equation

becomes

v, + My, =0, (3.36)

For this case, it is seen that Eqs. 3.30 and 3.35
result in the particularly simple condition

v, = 74 = 0. (3.37)

The boundary conditions on the free surface are the same as
those of section 3.2, and the method of obtaining the

boundary equations is substantially the same. The condition
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on the magnetic field at the free surface becomes

kd
(v, + ¥,)e

+ vsni ( % cosh qd + sinh qd)

+ iani (cosh qd + ﬁ'sinh qd) =0, (3.38)

And the condition on the free surface pressure discontinuity

gives the equation

il[sinh ky - 2 cosh ky)
+ ¥,[cosh ky - 2 sinh ky])
+ v3[sinh qy - M: a'coeh qy) (3.39)
+ ¥, [cosh qy - i %»sinh qy]
= 0
where
2
M =5 (3.40)
kv
H
and
2 8, Ik
Rk *to (3.41)

which is the square of the velocity of free surface waves on
a fluid of infinite depth with no hydromagnetic effects.
Equations 3.30, 3.34, 3.38 and 3.39 determine the dispersion
relation which is given in determinental form in Eq. 3.42.
Equations 3.43 and 3.44 represent the special cases of non-
conducting, conducting and perfectly conducting bottoms,

respectively.



11

13

14

21

22

23

24

all

21

12

22

| A

lcijll' 0

Icij -0

co-efficients are as

--1

iy = O

cosh qd + sinh qd]
[cosh qd + 2 sinh qd]

sinh kd - MZ cosh kd

N

= cosh kd - M sinh kd

sinh qd - M cosh qd

o O 0
e ®lo

cosh qd - M sinh qd

in Eq. 3.42 with the exceptions
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(3.42)

(3.43)

(3.44)
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The limiting forms of Eq. 3.42 obtained as the magnetic
field vanishes and as the electrical conductivity vanishes
must correspond to the hydrodynamic results. As the magnetic
field vanishes, M

A
is easily expanded by minors of the dominant terms. The

approaches infinity and the determinant

result is

sinh ky - Mi cosh ky = 0 (3.45)
which is perhaps more easily recognized when rewritten

o . [3+1‘$] tanh kd. (3.46)
2 Lkoop

As the conductivity vanishes q/k approaches one, and
again the limiting form is seen to be Eq. 3,46, the well-
known expression for the velocity of water waves in a fluid
of finite depth.

As the conductivity becomes infinite, q/k becomes
infinite, and a careful reduction of Eq. 3.42 gives

2

L. .
kz

ol

w2 tanh kd + vi(l + tanh kd). (3.47)

5 for

This corresponds to a result established by Melcher
waves on a perfectly conducting fluid of finite depth.

The detailed solution of the above determinental dis-
persion relations will not be undertaken in this thesis.
They will be examined in section 3.4 for a number of approxi-

mate solutions. Further, the mathematically simple and
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physically interesting long wave limit will be examined.
3.2.,2. Shallow Fluid Limit.
When the fluid depth is small enough that the following
relationships hold,
[kd|< < 1, lad| < <1
a simplification of Eq. 3.42 may be effected by replacing the
hyperbolic functions by the initial terms of their power
series.
When only the first term in each power series 1is taken,
the result is
‘-”-i— - [§+g] kd (3.48)
K P
which is easily seen to be the shallow depth approximation
to Eq. 3.46. There is no effect due to the magnetic field
as, to first order in kd, the fluid motion is parallel to
the field lines. To see the field effects, it is necessary
to use a higher order expansion.

When the first two terms in each power series are taken,

the result is

2 2
® = o [1-‘%]-3-&%)— ouovi (3.49)

where @, is the solution to I'q., 3.48. The damping is thus
inversely proportional to the square of the wavelength in this
long wave limit,.

One of the more interesting featuréa of the above expression



61

is that the conductivity of the bottom does not enter into the
solution.

Further, although the damping factor is of second crder
in the expansion parameter, the size of the term

2
aquA

may be made quite iarge with liquid conductors and laboratory
magnetic fields. Thus the damping effect of the magnetic
field, which now in the long wave approximation does depend
on the wavelength, may be easily observable at wavelengths
where the change in real frequency caused by finite depth,

a hydrodynamic phenomenon, is not observable.

3.3. An Initial Value Problem for the Infinitely Deep Fluid.

The complexity of the dispersion relation for waves on
8 fluid of finite depth contrasts strongly with the relative
simplicity of the dispersion relation for the fluid of
infinite depth. The finite depth dispersion relation can
be shown to have an infinite number of roots. This strongly
indicates that there are fluid motions, excitable by outside
forces, which are not associated with solutions of the dis-
persion relation for a fluid of infinite depth.

A formal solution of an initial value problem for free
surface motion on a fluid of infinite depth but finite elec-
trical conductiviﬁy will now be undertaken. In this manner,

a mathematical expression for the additional fluid motions
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will be obtained. Figure 3.1 again shows the situation under
discussion. As before, a sinusoidal dependence upon the x
co~-ordinate will be assumed,

The stream functions for the velocity and magnetic fields

are assumed to be of the following form

¥(x,y,t) = ¥(y,t) eI** (3.50)

A(x,y,t) = A(y,t) eI¥%, (3.51)

The single-ended Laplace transform will be employed here

? (y,8) = J( ¥(y,t) e 5% de. (3.52)
| 0

The volume equations of motion, Eq. 2.25¢ and Eq. 2.26 may
be combined to give a single partial differential equation

for the velocity stream function.

¥ (xxbyy)t = To¥ee + MoVatey) - 0. (3.53)

(xxtyy)

Employing the above transform and the assumed x dependence
from Eq. 3.50, and representing the derivative with respect
to y by capital D, we obtain for the transform of Eq. 3.53

2

® - A0 - kD)ed - ouye? + kB

= @ - )10 - DI¥(y,0) - ou (s7(y,0) + ¥ (3,0))]
(3.54)
If there is initial motion in the fluid which is not a

zero of the differential operator on the right-hand side of



63

Eq, 3.54, a particular integral of the initial terms will be
needed in addition to the homogeneous solution of the equa-
tion. The differential operator on the right hand side of
Eq. 3.54 is a combination of the Laplacian and the operator
for magnetic diffusion in cartesian co-ordinates. Initial
disturbances outside the fluid will be considered here and
only the homogeneous solution will be required.

The possibility of particular solutions to the motion
equation is not entirely due to hydromagnetic effects. Upon
removing magnetic effects from the above equation, one obtains
an equation for hydrodynamic motions and it is seen that a
particular solution needs to be added if the fluid motion
initially contained vorticity. This is a well known result
in the hydrodynamic theory of surface wave motions.

The homogeneous solution to Eq. 3.54 is

8 =cpe + cze“(""‘)y (3.55)
where 1/2
oK 8 kzvi
q=k (1+ kz 1-&-—2 (3.56)
8

and the branch of the square root with the real part of q
non-negative is required.
The boundary condition on the magnetic field at the free

surface has been previously established as:

(Ay + k A =0, (3.57)
y=C
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A manipulation of Eq. 2.25c¢ and Eq. 2.26 yield the
following expression for A in terms of ¥, which contains no

y derivatives of A and may therefore be substituted into

Eq. 3.57,
Bo
Axt - BO*KX T '___2' *( 4 )to (3.58)
HoVa
The transformed L undary condition is then
2 .2, B 2
(D + k) |8(D” -k -3 @ -k Bo¢
o""ovA
y=0
2 .2, B ~
= (D + k) (D -k ) 2 ;(0,0) - jkA(OnQ)
°uovA
(3.59)

The transformed pressure condition at the free surface

may be obtained from the following equations

(P - pg"n) =0 (3.60)
y=0
vy =Lp (3.61)
yt p X
n, = - .‘x. (3.62)
The result is
s2Dg + gk’@ = sD¥(0,0) - Jkgi(0). (3.63)

The transformed boundary conditions together with a
specification of the initial conditions determine the con-
stants c1 and C2 in Eq. 3.55, the expression for the trans-

formed velocity stream function.
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Consider the special case of an initial elevation of the
fluid at time t = 0. Let the initial elevation of the fluid
be specified by

Mo = 87 (3.64)

The boundary Eq. 3.59 and 3.63 become

2 .2, B 2
(@ + k) | s(d* - k%) >0 -kBY | =0 (3.65)
GuovA
2 2
s2Dg + gk’ = - jkgd. (3.66)

The constants C1 and C2 of Eq. 3.55 may now be

evaluated
jgész(k + g)
kv, P
A
2kigd
c, = - __gs_ (3.68)
and
g2 2 2 2
P= -E-i'(k + q)(8° + gk) + 2(s°q + gk“). (3.69)
kv
A

The zeros of P are the roots of the dispersion relation
Eq. 3.14 obtained in section 3.1. The zeroes of P at

2 2.2
s + k vA

are also zeros of the numerator of the transformed solu-

=0 (3.70)

tion, hence the transformed solution has no poles there.
This is true for arbitracy initial conditions, not just for

the special case examined here, as may be seen by introducing
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arbitrary driving functions on £he right-hand side of Eas,
3.65 and Eq. 3.66.

When the inversion integral is performed on the trans-
formed solution in the usual manner, the result consists of
contributions due to singularities of the transformed solu-
tion. The possible singularities are poles and branch
points.

The poles of the transformed solution are the zeros of
P, with the excepcion of those indicated in Eq. 3.70. These
are the discrete set of natural frequencies asscciated with
the wave solutions discussed in section 3.1,

The transformed stream function @ is multi-valued on the
s-plane. The multi-valued nature of @ arises from the fact
that q is a two-valued function of s, as it is defined in
Eq. 3.56 with a square root. Now the boundary condition at
y = - » gpecifies which of the values for q, and consequently
@, is to be taken. However, in order to perform the inver-
sion integral by contour integral methods, it is necessary to
introduce branch cuts into the complex plane to make ¢ a
single-valued functioen.

- The branch cuts terminate on the branch points of q and
follow the path slong uh?ch the real part of q vanishes. The
branch of the function q to be taﬁin is that with a positive

real part.
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Im(S)

X Branch Point

+A##4  Branch Cut

\ >>—p—-  |ntegration
‘\ Contour

Figure 3.6, BRANCH CUTS AND INTEGRATION
CONTOURS — LOW Rwm .
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The branch points of q are the points in the s plane
'where q = 0 and 1/q = 0. From Eq. 3.56, it is seen that there

are four such points

1) s =0, -} =0 (3.71a)

2) s ==, %- 0 | {3.71b)
2 [ 42 2 T2 |

3 s=- 5‘;;; + (i%“:) -8 L q=0 (3.71c)
, , .2 12

“ s-- ;5;: - | (;‘g;;) -1 L q=0, (3.714)

Branch points 3 and 4 lie along the negative real axis
for
k > Zouoja.
For thie situation, the branch cuts are shown in Figure 3.6.
The branch points 3 and 4 occur at complex conjugate values

’

- of 8 with negative real parts for
k < 20uv,.
The branch cuts for this situation are shown in Fig. 3.7.
The cut consists of the entire negative real axis and a por-
tion of the circle ”
|s| =, kyA.
As the conductivity approaches infinity, the branch cut con-

sists of the negative real axis and that half of the above

\
\
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1,(S)

[/ Re(S)
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—AA/AA~  Branch Cut

g e Integration
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Figure 3.7, BRANCH CUTS AND CONTOUR
INTEGRATION FOR HIGH Rwm.
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circle which 1lies in the left half of the s-plane.

The branch cuts required always lie in the left half
plane for all values of conductivity, wave-length, and mag-
“netic field.

The solution for the velocity stream function is then

m s c
¥(y,t) = z (s - 'kw('k). k 2'3 f¢(-)o"‘ ds.
] © kel ‘
(3.72)

The contours around which the intagral is to be taken are
indicated in Fig. 3.6 and Fig. 3.7, The summation is to be
taken over the m poles of the £ﬁnction @(s).

The nature of the fluid motion annoéiited with the poles
was the subject of séction 3.1. Section 3.4 will indicate a
connection between the branch cut integral associated with
the infinite depth solution and the infinity of solutions to

the dispersion relation of the finite depth solution.

3.4. Fluid Motion Associated with the Branch Cut Integral.
The dispersion equation for surface wave motion of
finite depth, Eq., 3.42, has, for a given wavelength of dis-
turbance, an infinite number of sclutions corresponding to
natural frequencies which lie in the s-plane on Qr near.thc
branch cuts of Figs. 3,6 and 3.7. As the fluid depth tends
to infinity, the spaging between the solutions tends to zero.

Although a complete proof of this assertion has not been
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»ﬁcarried out, the subsequent analysin'ofzapproxinatealolutiono
makes this assertion plauliblc and 1nd1caco|’th¢ types of
fiuid motion aalociatod with these solutions.

Equation 3.42 yields approximate solutions caoily near
critical points of the transverse propagation constant q.
These critical points are the locations in the s-plane for
which q is either zero or infinite. They are also branch
points of the transformed solution and are indicated in Eqs.
3.71. The approximate solutions will be shown to be primarily
bulk motions with little associated surface disturbance.

First, consider the critical point of Eq. 3.7la. In this
regio; |

Mi ~ 0(.2)

Hi ~ 0(.2).

Then both of the above quantities are small, and a power
series expansion may be made of Eq. 3.42 in terms of in-
creasing powers of Mﬁ. When this is done, 'and only the first
term is taken, Egq. 3.42 becomes approximately

| sinh qd = 0 (3.73)
and since q is purely imaginary and approaches infinity as
s approaches zero along the negative real axis, there are
an infinite number of solutions along this path for any value
of 6, It is seen from Eqs. 3,;0 and 3.38 that 11, '2’ and
*4 are approximately zero. Then from Bq. 3.39 it is seen
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that the condition of Eq. 3.73 is approximately the require-
ment that volume mode vs satisfy the free surface pressure
condition. Equation 3.29 shows the magnetic field associated
with this motion is of OCMK) compared to the velocity, and Mi
is the expansion parameter. Consequently there is no magnetic
field to zero order in the expansion associated with this
motion. The stream function, Eq. 3.28, determines the motion.
Since q is purely imaginary, the motion is sinusoidally peri-
odic in the x direction. As q approaches infinity in this

region

9
k >° 1.

Consequently, the velocity is primarily along the x axis,

since the ratio of the velocity components of the motion is

< |“<

-S
k
y
The approximate solutions in this region are thin shear flows

which interact weakly with the applied field. For large

values of imaginary q

2.2

o v,k

g = __22_5_. . (3.74)
q

This represents & slow decay in time with no oscillatiom.
In the region of the critical point defined b;- Eq. 3.71b,
Hi and.Mi are large, and a power series expansion of Eq. 3.42

may be made in powers of 1/M2, Equation 3.42 becomes
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approximately
cosh qd = 0, (3.75)

Equations 3.30 and 3.39 sh&w that again '1’ *2’ nnd"l4 ’
are approximately zero. Since Hi is a large number, Eq.

3.29 shows that the velocity is now of the order of the expen-
sion parameter times the magnetic field and consequently
negligibie. Equation 3.38 indicates that the requirement
that the magnetic fielde be continuous, expanded in the above
series, with q/k large, leads to Eq. 3.75. In this region

0
This is the decay rate for an initial sinusoidal distribution
of magnetic field in a solid conductor.

The critical points of Eqs. 3.71c and 3.71d occur at
finite, non-zero, values of s. Consequently an expansion of
Eq. 3.42 can be made in powers of the dimensionless para-
meter ¢/k which is small in the neighborhood of these points.
The result is Eq. 3.75. The parameters Mi and Mi are inde-
pendent of q/k in this region, consequently both magnetic
field and velocity are important. Equation 3.34 shows again
that 11, 12, and 14 are approximately zero, and Eqs. 3.38
and 3.39, expanded in the above poﬁur series show that the
condition of Eq. 3.75 is, in these cases, equivalent to both
the free surface pressure constraint and the free surface

magnetic field constraint. For small values of q/k, it
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should be noted that Eq. 3.75 demands large values of kd for
a solution. Examination of the stream function of Eqs. 3.28
and 3.29 with q/k small show the velocity and perturbation
magnetic field to be y directed, and approximately uniform in
y, with sinusoidal periodicity in x. The approximate values
of s associated with this aolutio; are roots of the equation

2

[ S
kz+°”’o+vA 0. (3.76)

The approximate value of s given by the above equation
is that associated with the propagation of Alfven waves
through a lossy conducting fluid.

The branch cut integral of section 3.3 and the infinity
of soluticns to Eq. 3.42 are thus seen, in the regions where
approximate solutions were obtained, to represent three bulk
processes in the fluid. These are persistent vortex motion,

magnetic diffusion and Alfven wave propagation.
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Chapter 1V
Gravity Waves Under a Vertical Magnetic Field.

In this chapter, a theory of hydromagnetic waves under
the influence of a vertical applied magnetic field is devel-
oped.

Two major previous investigations have been nnda'in this
field. The investigation by Roberts and Boardman® treated
the motions of a viscid inqompféblible homogeneous fluid of
infinite depth under the influence of a vertical magnetic
field. A dispersion rciacion for surface wave motion was
obtained and a number of limiting cases examined. The inviscid
limit is that which is relevant to the present work.

Fraenkelladeveloped a shallow water theory of hydromngnetic
surface wave motion over a non-conducting bottom. Both iinear
and non-linear motions were tr?ated and the linear fesponse
to initial impulsive excitations was obtained.

In section 4.1, the results obtained by Roberts and
Boardmnn4 are developed uqiﬁg the methods and notation estab-
lished in Chapter 3. Ko ;riginal work is presented.

In section 4.2, the dispersion equation for wave motion
in a fluid of finite depth is obtained. It is shown that the
limiting form of the equation for long wuvnlcng;h disturbances
uis equivalent to the expressions cbtained by Frunnk.l.la

- In section 4.3, an initial value problem for motion on a
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fluid of infinite depth is treated. A continuum of natural
freéuencies, represented by a branch cut integral, is shown
to be necessary in addition to the discrete natural Ereiuencies
of the dispersion relation.

In section 4.4, the continuum of natural freéuencies of
section 4.3 is shown to be related to an infinite number of

discrete solutions to the finite depth dispersion equation.

4,1, Wave Motion on a Fluid of Infinite Depth.

The basic equations for the velocity and magnetic stream
function are obtained from Eq. 2.30 and Eq. 2.31 with the
magnetic f£ield purely vertical (a = 0, p = 1).

(4.1)

Alrtyy) = Fole = T o Bo¥ y

- -
¥ (xxtyy)t Piy A(xx*yy)y (4.2)

The four solutions to this pair of equations, obtained

by the methods of section 2.1.7, are

1) ¥ = vyl (0E) W (4.3)
JkB
A= —2 v (4.4)
2) gy *2 ej (kx=-wt) e-ky ‘ (4.5)
kB .
A=« -j-a-)i  / (4.6)

3) ¥y, dUER) B .7
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A= - § % E;?- Mi v (4;8)
B v =y, ofexma) - %.9)
A-j% %nﬁv (4.10)

where
“i - ;%EZ (4.11)

the ratio of the phase velocity to the Alfven velocity, and q
is the transverse propagation constant defined by Eq. 2.38.
.~ When the depth of the fluid is such that
1) e <<1
2) |e'qd

the bottom becomes unimportant and the boundary condition that

<Kl

all motion vanish as y approaches minus infinity is sufficient.

It should be noted that as the conductivity grows large,
the second condition becomes increasingly more difficult to
satisfy since

1lim Re

q| - 0. (4.12)
1/6+ 0

When the above conditions do apply, the appropriate forms

of the volume solutions are

vy = o (lx-0t) [*leikly + izeqy ] (4.13)
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By excary [ S
A=y —2 o (lx-ut) vle“"y -1%1- wevye | (4.14)

In this chapter, the surface force caused by surface
tension is ignored. The application of the boundary condi-
tions, Eq. 2.48 and Eq. 2.50, together with the reﬁuirement
of continuity of the magnetic field at the fluid surface lead

to the following expressions

- M2 - -
2¥, - My (1+ Ikl) v, = 0 (4.15)

ne - sk + ¥, [y o - ski] =0 (4.16)

The above equations directly yield the dispersion relation

which is
M (1+-% ] @ - glk|) +2 Tg—coz-glkl -0
A [kl ki )
(4.17)
This is the equation obtained by Roberts and Boardman® as

a limiting form for a fluid of zero viscosity.

This equation has two spurious roots, as did the disper-
sion equation in the case of a tangential field. They occur
at

W - - kzyi (4.18)

Equation 4.17 may be rewritten as

Mi(w - gik|) - 2glk| = - |kl [MA(w - glkl]) + 2(»2] (4.19)
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In this form, the equation may be squnrod, the expression for
q2 from Eq. 2,38 introduced, and a ninth order polynomial in
w obtained. Algebraic removal of the spurious roots of Eq.
4.18 reduces the polynomial to seventh order. The roots of

the polynomial are either roots of Eq. 4.19 or of

M2 @? - glk|) - 2|k =+ Tl [Mi(mz - g|K[) + 2m2] (4.20)

4 have extensively studied the

Roberts and Boardman
above mentioned polynomial, both computationally and analyt-
ically. An interesting feature of their analysis are regions
in which all solutions to the polynomial are solutions of
4.20, There are then no solutions to the dispersion aduation.

A simple form of Eq. 4.17 was obtained in the limit as
the conductivity approaches zero. It is

Ol .
o= (glk|)}/? -y g (4.21)

The rate of damping is seen to be the same as that obtained
for the horizontal magnetic field case.

Roberts and Boardman® point out that the dispersion equa-
tion obtained above is not applicable in the perfectly con-
ducting limit, and that an initial value analysis is necessary

to determine the motion in this limit.

4.2, Wave Motions on a Fluid of Finite Depth.

The dispersion rolation for wave motion on a fluid of
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fiiﬂ.tn depth will now l;o developed.

Consider the situation shown in Fig. 4.1, with a fluid
of uniform depth d at rest over a solid bottom. The oloc-'
trical conductivity of the bottom is og. It is convenient to
consider the bottom to be defined by the plane y = 0.

Equations 4.3 through 4.11 may be cqmbinod to give
Ve .j (kx-ot) [ '&1 sinh ky + \/3 c&oh ky
+ —'El- '&3 sinh qy + '&4 cosh qy] (4.22)

jkB

A= -3—9 | .j(kx-mt:)\ [ ¥, cosh ky + ¥, sinh ky

- nﬁ '&3 cosh qy - -E—H: sinh qy]'

(6,23).

The application of the boundary condition on the verti-
cal velocity at the bottom gives | .
Vo + ¥, = 0. - (4.24)

Tho second btoundary condition involves the behavior of
the magnetic field in the bottom. The equation governing
the magnetic stream function A in ﬁho bottom is

A - oghicA, = 0 ) (4.25)

xxtyy)
where o is the conductivity of the bottom. The solution

for A is that of the well-known skin effect.

A = Ay ol (x0t) o kyy (4.26)
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where o : ’ ’
e .2
v = [1 - 3 -2—9] : (4.27)
L k

The continuity of the normal and tangential magnetic field )
is established when A and its normal derivative are continuouo.
The resultant condition on the constants in the volume lolu-
tion is

TV =¥y - v Miv, + iy, =0, (4.28)
If the fluid lies over a non-conducting bottom, Ei. 4.28
becomes .

¥ - ¥y - Ma(¥y - ¥,) = 0. (4.29)

When the bottom is perfactly conducting, Eé;‘4.28

becomes

*1 A*S | (4.30)
The methods of section 3.1.2 yield the following equation

for magnetic field continuity at the free surface.
(7 + 12) elk|d - MZ ( cosh qd + TaT sinh qd ) *3

- Hﬁ ‘cosh qd + JEL sinh qd ) v, =0 (4.31)

The pressure in the fluid is detormined by the y component

of the motion equation, Eq. 2.8

- v, - .‘% P, . (4.32)

Substitution of the expression for ¥ from Eq. 4.22 31vol'_

=
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+ ¥, sioh iy

+ ¥, cosh qy .

+ 9, L sinh gy (4.33)
The pressure condition at the free lurfico» is given by Eq. .

2.50. Use of the above expression for the perturbation

pressure in Eq. 2.50 yields further constraint on the con-

stants of the volume solution.

v [sinh ky - #2 cosh ky]

+ v, [cosh ky - M: s:l.tfh ky]

+ '&3 [I{T sinh qy - M: coah qy]

+'l4 [coahqy-!{:mcinhqy]

q
=0 (4.34)
vhere, since surface tension has been ignored,
2
2 A
M¢ SI%T N (4.35)

Equations 4.24, 4.28, 4.31 and 4.34 yield the dispersion
relation for this case, which is:
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|ey|=0 . (4.36‘);

Cyy = 0 Cyy = - n: Tcouh qd + —;-‘.inh vqld]
Gy = 1 G,y = i "‘: :cooh qd + £ s1on q&]
Cyy = 0 | C,y = sinh kd - 2 cosh ka

Cpy = 1 C, = cosh kd - M2 sinh kd
‘cél 'VV C43 = [k sinh §d=- uz cosh id

Cpp = - 1 N C,, = cosh qd - }12 W g4 qa

Ca3 = "’“42; |

2 =My

Cyy = ok

gy = oFd

Tho diaporlion rolation horo‘will be cxnuinod in che linit
of long uuvolongthn. It wilL be of use in lcction 4,4 where
some approximate solutions wﬂll be obtainod.

4.2.1. Long Wave Bohavior.

When the conductivity of the £luid, nnd the nnsnotic
field are both .ufficicntly small, a ohallow water thoory
similar to that used in ordinary hydrodynnnico may be cotab-.
lished. This has been done by Fraenkell¥ho thoroughly
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dioculnod thn prob1¢m uhcn the fluid 11.. over a non-conducting
bottom. Thc toeulﬁ* dcvolopcd here are valid for arbitrary
conductivity of thq bottqn.

The behavior df lllll anplitidc, shallow fluid wuval vill
be established by considering the liniting forms of Bq 4. 36
Under the allunptiénl

a) kd|< <1
b) l[ed| < <1
1 2 :
c) 951«!<<1
k

the hyperbolic functionl in the diaporsion rolation may be re-
pPlaced by the 1n1t101 fornu in their Taylor series.

The dispersion relation is

[:; + ni] [k|d = (1 + nﬁ)ng. (4.37)
Lctl
8 = - jw.
Then the values of q, ¥, and ¥ from Bqs. 2.38, 4.11, and
4.35 may be introduced into 4. 37 with the result

32 + auoyia + gkz

d=0, (4.38)
This is the result obtained by Fraenkal for the pro-

pngation of shallow fluid waves in a vertical magnetic field.

In contrast to the nhallov depth limit when the magnetic fiold

is tangential ta the frae surface, the damping effect of the
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tiold on tho wave motion 1is quicn strong. Thil is bocaulc,
for wavelengths long conpnrod uich eho fluid dopth, the fluid
motion is primarily horiszontal; conloquoncly vhen the field

is vertical, strong interaction results.

4.3. An Initial Value Problem in the Infinitely Deep Fluid.

It was mantioned in section 4.1'th§t,'fqr'cortnin |
values of wavelength and magnetic field, Rdbortu and Boardman
had nyoun that the dispersion relation, Eé. 4.17, had no
roots. It was also indicated that the dispersion relation
couldvnot explair: the behavior of the perfectly conducg;ng
fluid. Evidently, a solution to an initial value problem is
of interest in this situation.

For this analysis, the dependence of the stream func-
tions on the x co-ordinate is assumed to be sinusoidal

and is expressed as
¥x,3,6) = ¥(y,e) oIk (4.39)
Alx,y,t) = K(y,t) oI*%, (4.40)

Equations 4.1 and 4.2 can be combined intc a single o
partial differential equation in A.

(A (441) "

(xetyy)t ~ Mohee +°"0An)(m'-yy)'°
‘The Laplace transform of A 1is

A f X (y,t) o~% at. (4.42)
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. Making use of the assumed x depandence and indicating
the y derivative by a capital D, the transform of Eq, 4.41

may be written
@ - D)@ < WDahk - sk + au vED%h)

- @2 - B0 - KDIAO,y) - ou (8K(0,y) + K, (0,))]
(4.43)
As was shown in the tangential field case, Eq. 4.43'13
found to be honosonooﬁl for an important class of initial con-
ditions, namely those motioﬁo arising from disturbance ouc;

side the fluid. The solution to Eq. 4.43 is then

A - cl. |k|y + cz.Q(.’k)y , (4.44)

where C, and C, are constants to be determined by the initial

conditions and

1/2
2 2
ks + ou_s *
s + " Vy

with the square root to be chosen such that |
Re [q] > O. (4.46)

The boundary condition on the naghitic field gi@ol the condi-

tion
D+ k) Aa=o, (4.47)

It is necessary to express the free surface pressure

condition

& eﬁﬁbﬁ,s;@%még




(P - pgn)| =0 (4.48)
in terms of A and initial quantities. Now
--15, . "
Nee 5 Py. (4.4?)
Thus Eq. 4.48 can be written
(P, + gPy) -0, (4.50)
tt y_o

The oquntion necessary to express P in terms of A is

The resulting transfomed boundary .qu.cio;u is | x
o2 + D) [0 - WD) (s + ouvd) & - o e? )
= 1(0? - xP)e? - ou°-3 + ouoyi(D? - k%)s
+ 800 - &%) - gDaw 8] % (0,0)
+HO" - kD0 - auge® + aueo? - 6) - s iR, (0,0)
+ 102 - - el K (0,0
ou k... (0,0). (4.52)

Equations 4.47 and 4.52, along with an appropriate set

~of initial conditions, determine the behavior of tﬁs free sur-

e e s R Ll

face.

Congider, in particular, the case of an initial un;t

pressure impulse at t = 0, The boundary condition, Eq. 4.48,

|

is repleced by /.
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(P - pgn) 0" 8(t)elix, | (4.53)
y-

Hence, Eﬁ. 4.52 becomes
(32 + gD)[(D2 - kz)(a + oﬂovi) - auoozl - 2525229 32.
| | (4.54)
For this particular problem, the transformed solution
for the fluid motion may now be obtained. Substitution of
E@. 4.55 into Eﬁa. 4.47 and 4.54 yields ”
2ka + (k + q)B -0 (4.55)

and

v2K2 JkB

(s> + g)c, + A (s 4 g9) ¢, = - —2 (4.56)
8

Evaluation of the constants from the above equation gives

kB

A= = [k + Qe - ke (4.57)
where
2.2
vhk
P=2k <~ (s+4qg) - (k+q)(s + qk) (4.58)
. .

- The zeros of P are the solutions to the previously
obtained dispersion equation. The transformed solution is
multi-valued in the complex frequency plane. It remains,
therefore, to select the appropriate branch of the function
defined in Eq. 4.57 and introduce branch cuts to make it
single-valued before contour integral methods can be used to

perform the inverse transformation.
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The double-valued nature of A is caused by the square
root operation involved in the definition of i. Boundary
conditions at infinity roéuirc that

Re q > 0.

The branch points for A are the branch points for q,

and these occur for

q® =0 (4.59)
or

Q2 = =, (4.50)

Reference to Eq. 4.45 shows the branch pointe defined
by Ed. 4.59 are located at

s =0 (4.61)
and |
. n. K (4.62)
o
Those defined by Eq. 4.60 are located at
8 = o (4.63)
s« - a2, | (4.64)

The cuts to be made in the s-plane are along a curve
defined by the relationships
Im |q% =0 (4.65)
R |a% <o (4.66)

The branch cut is alwvays found along the real axis.

Starting from s = 0, it pProceeds along the real negative
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axis to the next branch point, uhich.will be the smaller of
the two values in Edn. 4.62 and 4.64. The cut resumss at
the next branch point and continpol along the negative real
axis to infinity, as in Fig. 4.2, -

It is to be noted, in perforningrtho contour 1ntogra;
tion that no contribution to the integral occurs due to the
zeros of P at ‘

ol = kzvi (4.67)
since these are also zeros of the numerator of the fraction
defining ﬁ. This is a genersl property of all initial value
solution, not just this particular one, as may be seen by
placing arbitrary driving termi in both Eqs. 4.55 and 4.56.

The other zeros of P correspond to poles of A.

The solution then is of the form

- 1im et
A(y,t) = Z s—s, (8 °8)A(y,8)e"
j=1 k
+ 5% [ A (y,8) e®% ds. (4.68)
(]

where the contour C encloses the branch cut, as indicated

in Fig. 4.2.



Iu(S)

X Branch Point
A/~  Branch Cut

B . integration
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Figure 4.2 . BRANCH CUT AND INTEGRATION
CONTOUR IN THE COMPLER PLANE.

/
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bob, Intnrpritatign of the Branch Cut Integral.

As was found 1n the gravity wave problon with a tnngoncial
magnetic field, the continuum of naturnl froquoncioo rcprclcntcd
by the branch cut integral ha. as a qount.rpart.in the fin;cc
depth problem, an 1n£1n1ty:of discrete nutu:al froiuonciol.

It is again possible to determine approximate solutions

to the dispersion relation of Eq. 4.36 near critical values
of thc transverse propagation conotant q uhich represent

branch points in the infinite dopth solution. These points

are )
1) q =0, s =0 (4.69)
2 .
2) q=0, s = - K (4.70)
mo
1 - - e
3) | ql 0, s (4.71)
4) |%1 =0, s = - ouoy:. (4.72)

Approximate solutions of Eq. 4.36 near the point defined
by Eq. 4.69 are determined by expanding Eq. 4.36 in a power

2
series in MA

and keeping only the first term. The result is
cosh qd = 0. (4.73)
This equation can be satisfied only for purely imaginary
values of q, which occur on the negative real axis. Sinqo
the magnitude of q is small compared with k in this region,

a large value of kd is required before a solution can exist



%
'1n this rogion. 'Expaﬁctonkafvﬁq. Alzéfihd'Eq. 4'28‘ihow 111
o-efficiento but *3 to be zero to toro order in the expan-’
sion parameter. Exnminacion of cho volocity stream function
of Eq. 4.22 for q very cmnll shows thn volocity fisld to be
approximately uniform in y and periodic in x, with the velo-
city primarily in the y'direccionr' This is principally a
shear flow. Examination of the n;gnctic stream function of
Eﬁ. 4.23 shows that for small Mﬁ, thor§‘1| negligible mag-
netic field associated with the motion. The appgoxinnte
relationship between i and s is
g = ouovi g; (4.74)

k
which, for q small, represents a slow decay of the motion in

time.

For the region around tho point defined by Eq. 4.70, s
is non-zero and finite, but q is vory omnll. The dispersion
equation, Eq. 4.36, may be expanded in powers of q/k and
the result when only the gzero order term is taken is

sinh qd = 0. (4.75)

This equation is also solutle only when ¢ is imaginary
ané consequently s is real and negative. The depth again
must be large for a solution to exist since q is small.
Expansion of Eq. 4.24 and Eq. 4.33 shows that to zero order
in kd, *3 is the only non-zero constant in the volume solu-

tion. The equations for the stream functions, Eq. 4.22



K
and Eﬁ. 4.33, show that the velocity is a first ordcr*iuqngi:y*'
in the pranaion‘uhilo tﬁd mhgﬁoﬁic fiol# is of zero ofdcr.
The approximate value for s in these solutions is

s = =4k3 ' (4:76)
LT _
This is the time constant for decay of an initially periodic
distribution of magnetic field in a‘lbliq conductor. The
magnetic field in these golutionl is p;innrily or;ontqd in
the y direction and is approximately unifofn in y, with a
sinusoidal dependence on x.
Near the critical point of Eé. 4.71, s 1is very large
and an expansion of Eﬁ. 4.36 may be made in inverse powers
of Mi. Equation 4.36 then reduces to
sinh qd = 0. (4.77)
Expansion of Eq. 4.24 and Eq. 4.28 again shows 13 to be the
important constant in the expressions for the stream func-
tions, with the other constants approximately zero. Since
q approaches infinity, for large s and is imaginary for
largq negative real s, there exists an infinite number of
solutions to Eq. 4.77 for any value of depth. Expansion of
the equations for the velocity and magnetic stream functions
Eq. 4.22 and Eq. 4.23, shows the magnetic field to be a zero
order quantity and the velocity field & first order quantity
and conaequentiy negligible. The approxinatq relitionuhip

between 8 and q in this region is
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g o ”
- , V .

| : Mg o S (b.78)
This is a he decay rate for a magnetic field distribu-

tion in an nuuwuile conduécing ngdiun. iTho magnetic field
in this case is x-directed, and has & sinusoidal y depend-
ence, with very slow variation in ths x-direction.

In the neighborhcod of the point defined by Eé. 4.72
s is finite and non-gzero, while 4 is very ;nrgo. Eiuation
4.36 may be expanded in a power series in k/d. fha gero
order term is | ‘

cosh dd = 0. (4.79)

Expansion of Eq. 4.24 and 4.28 show that ¥, is the only
constﬁnt which is zero order in the expansion parameter, the
others being of first order. Since q 1is imaginary and
approaches infinity on the negative real axis in this region,
there are an infinite number of solutions tc Eq. 4.79 in

this region. The relationship for s 1is approximately
. .
8 = Ou V,. (4.80)

Expansion of Eq. 4.22 and Eq. 4.23 show both the velocity and
- the magnetic field to be of zero order in the expansion para-
meter. Both the velocity and the field are approximately
uniform in the x direction, are principally x-directed and
have rapid sinusoidal dopondonce_on Y.

In order to locate in the mathematical expressions an
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effect identifiable as Alfven wave motion it is simplest to
rotﬁrn to the integral expression of Egq. 4.68.

For
ok
au > com——
o v A

the branch cut extends from

s =0
to
2
g = - K
Mo
and from
- 2
to

8 = - o,
It is this second part of the branch cut to which attention
is directed.
In the infinite conductivity limit, the branch cut

integral takes a very simple form since

1lim 8
. ;A (4.81)

The branch cut has become an essential singularity at infinity.
In this limit

3 2 2.2
p--;‘: (s - kvy)[s” + 2|kl v, 8 + (g[k| + 2k*v{)s

+ 2gkv2]  (4.82)

d
an 2

S TP ™ Y
A-—;;—-[(Ikl-bq)e Y - 2]kle ] (4.83)
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Let 8, be a oolution of

0= lz +2k vAo + (g k + 2 EZVk)l + 2;k2 2 (4.84)

Tﬁcn the solution is of the forn

Y
O-ZAu (t:)omyo +Znu._1(t:+’— ."(t'.' )

1=l .
| (4.85)

The second set of terms in thq above aunnntiqn cleirly
Qhows,the propagation of a discontinuity in the motion at
the Alfven velocity along the y axis.

This same set represents the liuiting form of the inte-
gral along the branch cut fron ew tO =OM vﬁ in the original
problem, since the singularity at infinity which gave rise
to these terms is formed by the conjunction of the two branch
points which terpinatod the above branch cut.

The above perfect conductivity solution was first pro-
posed by Roberts and Boardman. Unfortunately, they
evaluated the inverse transform incorrectly, attributing part
ofvthe solution to a singularity at s = kv,, which does not
exist.

The solutions to the infinite depth dispersion relation
give the inportlﬁt time variation of the solution above, but
the most interesting feature is the discontinuity propagating
at the Alfven velocity.

Thus, the branch cut intcgralﬁ in this vertical £luid

problem have been shown to represent the same bulk fluid
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' Chapter V
Motions of a Bounded Surface.
| The dispersion relations of the preceding sections have
Qeen derived for motion of an unbounded surface of fluid. In
section 5.1 of this chapter, certain special end-walls are
diocuo.ed,'nannly those which may be inserted into a standing
vave solution on the unbounded surface without disturbing the
mpcion.

1
. In section 5.2 more general end wall constraints are

|

dﬂicuoled, along with suggestions for methods of solution in
thLoo cases.
| Section 5.3 treats a boundad surface rotion in cylindrical
geometry. Numerical results are obtained by approximate com-
putational methods.
Section 5.4 contains a brief discussion of po.oibie

experinnhts associated with the above theoretical results.

5.1. Simple End Wall Constraints.

In this section, the properties of an end wall which can
be inserted into the unbounded fluid without disturbing the
motion of the fluid will be investigated. For simplicity,
all end boundaries considered here will be solid walls. Thus
all such boundaries are to be introduced into a standing wave
solution at a point of zero transverse velocity. In a

“standing wave motion, this is a point of maximum vertical
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velocity. Conloéuontly. the fluid and the surface must slide
freely along the wall.

This wall condition 1is ftciuontly used in hydrodynanicl.*
In the hydromagnetic problem it is necessary in addition to
specify the electrical properties of the wall.

Two cases will be considered. One is motion under a
horizontal impressed magnetic field. The other is motion in
a vertical field.

When the impressed magnetic field is horizontal, a
standing wave disturbance has, at a maximum of vertical veloc-
ity, a finite horizontal magnetic field and a zero vertical
magnetic field. An end wall to be inserted at this point
must be of infinite magnetic permeability in addition to
having the above mechanical properties. A wall of soft iron
faced with some material to protect it from the liquid metal
would adequately approximate such a boundary in a laboratory
experiment.

When the impressed magnetic field is vertical, a zero
tangential electric field and zero normal magnetic field are
found at a maximum of vertical velocity. The tangential mag-
netic field in the fluid is finite. A perfect conductor is

10

required for the boundary here. Kliman™ has shown that a

copper wall represents a good approximation to such a condition

* See‘uilne-rhonplon? Article 14.14.
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when the fluid is Nak and a very good approximation when tho
fluid is mercury. The latter combination, however, is chem-

ically unsatisfactory.

5.2. Commente on More Geaneral Boundary Constraints.

In the preceding section it was shown that certain bound-
aries may be inserted into a standing wave solution on an
unbounded surface without disturbing the form of the solution.
When such boundaries are satisfactorily approximated by a
physical situation, dispersion relations previocusly obtained
directly yield the natural frciucncias of surface distur-
bances in the container.

When the boundary conditions are of other than this simple
type, a more involved approach is needed. The container and
fluid are represented by & system of differential eiuations,
combined with appropriate boundary conditions. Such a system
may be characterized by a number of eigenvalues, in this case
the natural frequencies of the system. An eigenfunction, in
this case the vector function describing the velocity field
or the magnetic field, will be associated with each such eigen-
function. Suppose the container has a bottom boundary and a
natural frequency is known. Then from the appropriate dispersion
relation, suitably modified, an infinite sequence of velocity
functions may be found. A linear combination of these which

satisfies the end wall conditions is the required eigenfunctionm.
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Two points need further discussion. The first concerns
the dispersion relations in Chapters III and IV which were

all derived for real values of k. To make them valid for
1/2

all k, it is only necessary to replace |k | by (k2 where
the root with the positive real part is to be taken.

Secondly, in principle, one finds the natural freduencies
w of the system from the dispersisn eéuacion by determining
for which values of w the infinite number of velocity func-
tion can form an infinite sevies which satisfies the boundary
condition. In practice, this method would seem to be
restricted to limiting cases in which the dispersion relation
has a particularly simple form.

Another method deserves brief mention. If the bound-
aries are rectangular, the dimensional dependence in the
surface plane may be expanded in an Fourier series. A
series solution for the eigenvalues and eigenfunctions may
then be obtained. This process is, however, not without
difficulties. In the theory of shallow water hydrodynamic
waves, an approximate solution is obtainable for a situation
in which, in addition to the usual constraint that the fluid
velocity be tangential to the end walls the additional con-
straint that the end point of the free surface not move is
imposcd. When an attempt is made to solve this problem by
Fourier expansion methods, it is found that upon removal of

the first harmonic term, the remainder of the solution is
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concentrated near the end walls. Such concentrated distur-
bances require a large number of terms for adeﬁuate represen-
tation by a Fourier series.

The author suggests two methods for proceeding in such
problems. The first is the computation of the large number
of terms required in the Fourier series expansion. The second
is the possibility of patching an approximate solution near
the boundary to a simple sinusoidai standing-wave solution in
the center. The latter, if done carefully, would seem to
provide a useful physical picture of the motion near the walls,
which a series solution tends to obscure.

Only the ideal wall conditions of section 5.1 will be

treated in this thesis.

5.3. A Hydromagnetic Surface Wave Resonator.

In this section, the motion of a finite surface of con-
ducting fluid under the influence of an impressed vertical
magnetic field, gravity, and surface tension is considered.
The boundary walls are of perfect electrical conductivit& and
allow the fluid surface to move freely at the wall. This is
the simple end wall constraint discussed in section 5.1.

A simple situation, both geometrically and mathematically,
occ.rs when the boundery walls form a right circular cylinder.

5.3.1. The Unperturbed Systea.

An externally applied magnetic field is uniform throughout

all space, of value Bo’ and directed along the positive s
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axis. The fluid forms a cylindrical segment of radius L
bounded by the planes z = 0 and 2 = d. The fluid is assumed
to be inviscid, incompressible, of uniform density p, and to
possess a uniform isotropic conductivity o and a surface
tension 7. The semi-infinite cylinder defined by r < r, and
z > d is a vacuum. The rest of space ii filled with a rigid
material of infinite electrical conductivity. The geomtery
of the system is shown in Figure 5.1.

5.3.2. Assumed Form of the Surface Disturbance.

The frequency of oscillation and rate of decay of small
perturbations of the free surface are to be determined. Let
the perturbed surface be specified by the equation

z=d+a(r, 0, t) (5.1)
vhere

ac<cd (5.2)
for all r, ©, and t.

Further, let a(r, 9, t) be of the form
a=3y§ ej(ne-wt) Jn(kr) (5.3)

5.3.3. Equations for Bulk Motion.
The equations for bulk motion linearized to first order
in 6 are Eq. 2.25¢ and Eq. 2.26 with the magnetic field

purely in the vertical direction.

B
3 27 .2 327
STV Ph 57 A (5.4)
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Figure 5.1 . CYLINDRICAL SURFACE WAVE RESONATOR
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(5.5)

.%7]

In view of the assumed form of the surface perturbation, the

solutions are obtained as

- ej(nO-cm:) ; B

v r ke Jn(kr) + 199 J"‘(kt) ¥, sinh ke
+ 12 coah ke
+ '&3 sinh Bz
+ ¥, cosh pe ]
21.1.‘_3& J(n0-wt) n_ '
A= = ir ke Jn(kt) + 19_1 Jn(kr) [ '&1 cosh kz
+ 12 sinh kg
!
2
-k (_m__) ¥, cosh Pz
=] kzvi 3
2
-k ‘—‘9—) ¥, sin Bz
B kzvx 4
where
2 B
/' i, (5.8)
and
Jwou
2 1- —24
£ - e .9
YA
1+ jwauo mz

(5.6)

](5.7)
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There are additional solutions to Eﬁo. 5.4 and 5;5, but
they do not perturb the free surfaco,nnnd are not coupled to
the above solutions at the bound,rioo.

5.3.4. Boundary Conditions.

The boundary condition on the velocity of the rigid walls
is ‘

Vven=0 (5.10)
where n is a vector normal to the rigid surface. This condi-
tionat r = T, glves

J; (kro) = 0, (5.11)
This equation determines the transverse wave numbers which
are permitted.

Applying the above condition at z = 0, we find

Vot ¥, - 0. | (5.12)

The perfectly conducting boundaries require that the
tangential E field, and hence the tangential component of A
vanish at those boundaries. The condition implied by Eé.

5.11 fixes Atan equal to zero at r = T, The boundary at

z = 0 yields the relationship

neo(k) @ | ¥y =o. (5.13)
P kzv:

The condition that the electric and magnetic fields are
continuous across the free surface is equivalent to a require-

ment that A and 3A/dz be continuous across that boundary. The
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resulting equation is
- 2
ie'k'd-!-velk'd-i L Mcooh Ad + sinh pd
1 : 2 3 kzvz )
A .

2
- 14 -%—i JEL sinh pd + cosh pd | = C, (5.14)
k Va

The remaining boundary condition is that the discon-

tinuity in the normal stress of the surface be zero, or

Pl + & + pga=0 (5.15)
z=d
where
P T 5.16
28 w23 » (5.16)

R1 and R2 are the principal radii of curvature and P is the
perturbation pressure.

The expressions for 1/R, P, and a in terms of UTR/Y
13 and *4 are

3
e K (kr)ed ™90 [y sioh kd + v, cosh kd

+¥, sinh pd + v, cosh pd] (5.17)

4 i - pw Jn(kr)oj(“e'wt) [*l cosh kd + ¥, ginh kd

cosh kd + k

k .
+ 5 ¥,

B 13 éinh kd] (5.18)

aw ;*; of (nO-0t) ;  (kr) [ ¥, sinh kd + ¥, cosh kd

+ 13 sinh pd + 14 cosh gd ] (5.19)
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When Eqs. 5.17 through 5.19 are used, Eq. 5.15 becomes
¥, 4 cosh kd - sinh kd)

+ *z[“ﬁ ginh kd - cosh kd)

+ '&3[ %Hﬁ cosh pd - sinh pd]

+ ¥, £ oinh pd - cosh pd] = 0 (5.20)
where
M2 - o’ (5.21)
3 ] [ ]
I%—«+ gk

The dispersion relation, in determinental form, is obtained
by combining Eqs. 5.12, 5.13, 5.14 and 5.20. It is Eq. 5.22.
The dispersion relation of Eq. 5.22 is, when surface
tension is neglected, identical to that of Eq. 4.36, which
was obtained for two-dimensional motion. The importance of
Eq. 5.22, ffom a practical point of view, is that the volume
of fluid to which it applies is bounded in three dimensions.
The limitations on construction of such a system in the
laboratory are then the problems of approximately re¢11z1n3
the ideal boundary conditions.

5.3.5. Numerical Solutionms.

Equation 5.22 was solved by machine computation using the
Newton-Raphson method. Fluid parameters of NaK were used and
e depth of 5 cm was assumed. The real and imaginary parts of

« for several values of real k are shown in Figure 7.2 as a
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.lkld

‘|k|d

- ni ( -'-gj- cosh pd - sinh ﬁd)
- !4: (conh pd - J%L sinh pd )
sinh kd - M5 cosh kd
cosh kd - M% sinh kd

H..zi cosh Bd

sinh pd - .I%L
cosh pd - -%1 uﬁ sinh pd

(5.22)
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function of the magnetic field.

Solutions were obtained in the following manner. At zero
magnetic field, Eé. 3.46 gives a value of w. For each
succeeding point, the value of the magnetic field was incre-
mented and an extrapolation of preceding solutions was used
to obtain an initial estimate. The accuracy of the estimate
was increased by successive applications of the Newton-Raphson
technique until three successive estimates of w differed by

less than 10™° times the estimated value of w.

5.4. Poseible Experimental Tests.

The interesting features of the numerical solutions pre-
sented above are the frequency shift, and damping of the modes
caused by the application of a magnetic field. The wavelengths,
fields, and other physical dimensions of the above sclutions
are obtainable in the laboratory.

An experimental check of the above results may be made
if amplitude response vs. frequency of excitation can be
obtained for the driven resonator.

Several conditions must be met before this can be accom-
plished. First, the experiment must be designed so that only
one mode of nscillation is strongly excited. Second, that
mode must have a reasonably high Q. Third, an excitor which
delivers a constant amplitude excitation over a desired range
of frequencies must be available. Finally, a method of

measuring the amplitude of the response is needed.
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Chapter VI.

Surface Motions of a Slab of Conducting Fluid.

In the preceding sections, emphasis has been placed
upon the modification of hydrodynamic gravity waves by the
presar..2 of electrical fluid conductivity and an externally
applied magnetic field. The subject of surface motions on
slabs and cylinders of fluid will now be investigated, where,
in the absence of a magnetic field, restoring forces for
small surface distrubances are provided by the fluid surface
tension.

A convenient introduction to this problem is prowided
by the following model. Consider an electrically conducting
fluid, inviscid and incompressible, infinite in extent in
the x and z directions but bound in the equilibrium config-
uration by the planes y = + d. A uniform magnetic field
lies along the x axis. We consider two-dimensional motion in
the x-y plane and all quantities will have zero derivative
with respect to z. The geometry under consideration is
shown in Fig. 1.

Before entering into the analysis, it is useful to indi-
cate the reasons for undertaking such a problem. By treating
two dimensional motion in Cartesian co-ordinates, all velo-
cities and fields can be found in terms of scalar functions of

space and time, and these functions will consist of familiar
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circular and hyperbolic functions, whose behavior is well
known.

Secondly, it is important to emphasize the similarities
between the foregoing gravity wave problems and the motion
of slabs and cylinders. Since the preceding analysis have
been carried out principally in Cartesian co-ordinates, it
would seem simplest to begin in the same co-ordinate system
in order that physical and mathematical insights may be carried
over from one problem to the next.

Finally, it is not uncommon to examine a two dimensional
plane-parallel flow in order to gain insight into the related
problem in cylindrical co-ordinates. We shall endeavor to
point out, in the succeeding chapter both the similarities

and the very marked differences between these two geometries.

6.1. Statement of the Problem.

Consider a fluid of infinite extent in the x and 2z
directions. When at rest, the fluid is bounded by the planes
y =+ d. The fluid is assumed to be inviscid, incompressible
an& electrically conducting. This conductivity is uniform
and isotropic. The other pertinent chsaracteristics of the
fluid are its uniform density p and its surface tension T.

The fluid is permeated by a magnetic fieid, which is
uniform throughout space, of value Bo’ and directed along the

x axis.
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Small perturbations of the surface from its equilibrium
value will be considered. These perturbations, along with
the velocity and magnetic fields, are assumed independent of
the z-coordinate, and there will be no z-component of those
fields. G

The perturbed surfaces are described by the following

pair of equations. For the upper surface
y =d+n, (xt). (6.1)

For the lower surface
y=-d-n, (x,t) (6.2)
where
n <<d
for all x and t.

Let us consider then two cases, an antisymmetric mode

nz (603)
and a symmetric mode

N = Ny (6.4)
The form of the surface perturbation is assumed to be

Ny (x,t) = sed (x-eE) O (6.5)

6.2. Motion In the Fluid Bulk.
The fluid motion equations are those discussed in

section 2.1. From section 2.1.7 the required solutions may
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be obtained. It is then necessary to form linear combinations
of those solutions in order to obtain expressions which are
syrmetric or antisymmetric about the y axis.

To obtain the solution desired for the symmetric mode and
the antisymmetric mode, the arguments are the same and the
formulas similar. We shall then transcribe the fcrmulas in
pairs, the first member of each pair representing antisymmetric
motion of the slab, and the second, symmetric motion.

Introducing, as in the previous sections, the stream
functions ¥ and A for the velocity field and the perturbation
magnetic field respectively, the solutions to the bulk motion

of the fluid may be written

vV =¥ i -y i (6.6)

b = Ay ix - Ax iy' (6.7)
For the antisyumetric case

*a = [11 cosh ky + *2 cosh By] ej(kx-wt)' (6.8)

For the svmmetric case

¥, = [¥) sinh k + ¥, sinh B ] ek (kx-at) (6.9)
kB
Aa - - -59 [il cosh k,y + Mﬁié cosh By] ej(kx-wt)
(6.10)
kB
-« .9 2 J (kx-wt)
A m [*1 sinh ky + M,¥, sinh By] e

(6.11)
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where
2 Jwop -
55 =1-= 0 [ 1 - MAZ ] (6.12)
k k .
and
2
2 w
MA =53 (6.13)
k Vs

By separating the solutions, as has been done above, the
boundary conditions of symmetry or antisymmetry have been
satisfied. It remains only to assure the continuity of the
magnetic field and the balance of surface forces at either

boundary to complete the problem.

6.3. Boundary Conditions.

Since the motion will be considered either symmetric
or antisymmetric about the plane y = 0, it is sufficient to
consider only one pair of boundary conditions, and the upper
boundary, (y = d), will be chosen.

First consider the stream function for the perturbation
magnetic field above the fluid., The space is current free,
hence A must be a solution to Laplace's equation which

vanishes at large distances from the slab.

A = Ao ej (k)(“wt) e"'kl(Y'd) (6.14)

As has been previously established, the magnetic fields
are continuous across the boundary when the x and y deriva-

tives of A are continuous. Equations 6.10 and 6.11, along
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with Eq. 6.14 when subjected to the above conatraint, yield

a condition on the constants, Vl and ?2.

lkld 2 B - '
Vle + MA*Z[ cosh pd + ™ sinh Bd] 0 (6.15)
for the antisymmetric case
lkld 2 B -
ile + MA*Z [sinh gd + Ty cosh Bé] 0 (6.16)

for the symmetric case.
The remaining boundary condition is the balance of the
surface caused by surface tension and the discontinuity in

fluid pressure

P -
y=d

e L

(6.17)

where R is the radius of curvature of the surf&éé. When the
surface motion is small then, to a sufficiently accurate

approximation,

% - (6.18)

The vertical velocity at the free surface is equal to the
time rate of increase of the free surface elevation.
N = = ¥ (6.19)
y=d

The perturbation pressure is most easily obtained from

Voo = - % R,. (6.20)



120

Combining Eq. 6.17 through 6.20 with the previously found
expressions for ¥ from Eqs. 6.8 and 6.9 the second relation-

ship between the co-efficients 11 and 12 is obtained

3 3 ,
0 = ¥, [sinh kd - k;% cosh kd ] + WZ[:E sinh pd - 553 cosh adJ
pw w

©

(6.21)

2
pa @”p

0= ¥, [cosh kd - L ihkd 4 v, £ cosh pd - 5;1 sinh Bd] :
(6.22)
The pair of equations 6.21 and 6.22 may be combined with
the pair of equations 6.15 and 6.16 to give the dispersion
relations between k and w for symmetric and antisymmetric
oscillations of the fluid slab. The resulting equations, in

determinental form are given by Eqs. 6.23 and 6.24 as:

e kd Mi cosh gd + —E— sinh gd
=0
k sinh kd - 5;1 cosh kd B sinh pd - B;! cosh Bd
wp (Dp
(6.23)
e k d Mi -%— sinh Agd + cosh Bd
=0
cosh kd - E;E sinh kd cosh pd - k sinh gd
wp w pPp
(6.24)

Dispersion relation for antisymmetric and symmetric disturbances

respectively.
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In the limit as either the magnetic field or the conductivity

approaches zero, Eq. 6.23 and Eq. 6.24 become

2
-a-)-z- = %r- coth kd (antisymet:ric) (6.25)
k
w2 KT
—i- = -p— tanh kd (symet:ric) (6026)
k

In the limit as the conductivity becomes infinite, the
mode with B as a transverse propagation constant becomes a

surface current, and the dispersion relation simplifies to

Q; = %Z coth kd + (1 + coth kd) VK (antisymmetric)

) (6.27)
2

2 = KL tanh kd + (1 + tanh ke) v} (symmetric)

. (6.28)

Equations €.25 and 6.26 represent simple hydrodynamic
waves, while Eqs. 6.27 and 6.28 represent special cases of
the formulae given by Melcher5 for oscillations of a planar
fluid slab.

It may be noted thaﬁ, just as in the gravity wave
problems, we have two modes of fluid motion, independent in
the fluid bulk and coupled at the boundary conditions. As
before, the mode with transverse propagation constant k 1is
lossless, containing no flow of electrical current. The mode
with transverse propagation constant B is then the lossy one

and energy is transported from the lossless irrotational
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mode to the lossy mode by the boundary conditions.

Analysis of three limiting cases which will show the
effect of finite non-zero conductivity will now be undertaken.
These will be the behavior at long wave lengths, at low con-

ductivity, and at high conductivity.

6.4. The Asymptotic Behavior for Long Wave Length Disturbances.
When the wave length, the fluid conductivity and the
impressed magnetic field are small enough to enable the

following inequalities to hold:

kd < < 1

2

% kd < < 1
Kk

the hyperbolic functions in the dispersion relation may be
replaced by the initial terms in their Taylor series expan-

sions. When this is done, we have, for the antisymmetric

case
2 2 KT _
@” + Jaou v, - od 0 (6.29)

and for the symmetric case

wz - 5219 =0, (6.3)

The lack of effect of the magnetic field on the symmetric
oscillations is easily understood if we examine, to the same

order of approximation, the velocity field
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y x 'x 'y
-k (*1 + E 12) e (kx-ot) I; (6.31)
+ jk°d ( vy +2y, ) e (kx-ot) Ty.

The motion is thus predominantly along the field lines and
hence the damping, which is proportional to the square of the
transverse velocity component is, to the order of approxima-
tion here employed, zero.

In the antisymmetric case, the dominant velocity com-
ponent is across the magnetic field lines, hence the damping
is sensible.

The Eq. 6.30 may be solved directly for w

2 2 2 ,1/2
jou v oL Vv
W = - 20 A -1- li-ls'i—rd' - (—%'é') } (6.32)

Figures 6.2 and 6.3 show curves of complex w vs. the wave
length with NaK and Hg assumed for the working fluids.
Some liberties have been taken with our expansion as the

curves are considered tc be accurate when

kd < 0.1

2
ﬁz- kd < 0.1.
Kk

It may be seen from the limited ranges of the curves that this
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expansion suffers a breakdown at quite low fields. This will
not be the case in circular geometry, where quite large fields

may be used in such an expansion.

6.5. Low Conductivity Limit.
When the fluid conductivity and the magnetic field are

low enough so that

2

oL W v IR

&~ <<1, —2A
k

22 <<

the motion is very rearly irrotational and the dispersion
relation simplifies considerably. An expansion of the disper-
sion relation which begins with the hydrodynamic solution is

then easy to perform.
- e 00 (
© = o + R, + T6.33)

where for the antiaymmetric case

3y 1/2
w =+ KL cothkd (6.34)
o - P _ .
and for the symmetric case
1/2
it

@, = + -'5- tanh kd ‘(.6.35).

and RM is a characteristic magnetic Reynolds number for the

problem

Ry = -2—° (6.36)
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The transverse propagation constant f may also be expanded in

such a series
p = B°+RM51- (6.37)

It 18 found that

B, = k (6.38)
B, =15 - wd). (6.39)
s

When such series expansions are made of the dispersion
equations, it is found that for the antisymmetric case
2

J‘movA
Rﬁwl --—3 [kd coth kd + (1 - kd)]) (6.40)

and for the symmetric case

2
- o jouovA

d
Ry A

- —kd__ - 2
Tanh kg (1 - tanh® kd) . (6.41)

1

Thus the first order correction terms are proportional to the
square of the magnetic field and to the conductivity and
represent damping when the term in brackets is a positive

quantity. Let

Aa(x) = [x coth x + (1 - x)) (6.42)
As(x) = [1 - x coth x(1 - tanhz x) ) (6.43)

Then the nature of the correction depends upon the behavior
of Aa(x) and As(x)‘ The limiting terms are easily obtained

lim A (x) =2 (6.44)
x—+0
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Um A (x) =0 (6.45)
x—~0 ' . :

lim A (x) =1 (6.46)
X—r o

lim A (x) =1 (6.47)
X~

It is easily shown that A‘(x) is a monotonically decreasing
)
function of x and A.(x)'h monotoniically increasing function.

Graphs of these two functions are shown in Figure 6.4.

6.5. High Conductivity Limit.

When the fluid conductivity is large enough for the
perturbation current in the fluid to lie principally in the
narrov layer near the free surface, a simple expansion tech-
nique yields a direct expression for w., The dimensionless
expansion parameter which it is convenient to use is the
product of the longitudinal propagation constant k and the

hydromagnetic skin depth. This parameter will be denoted by 3&.

2
kzy:
d = k W OH 1 - 2 (6.48)

w
(<]

The characteristic radian frequency ®, is chosen to be that
which describes the oscillation of a perfectly conducting

fluid. For the antisymmetric mode
1/2
o, =tk [ %2 coth kd + (1 + coth kd) vi] (6.49)
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and for the symmetric mode

1/2

=tk K tanh kd + (1 + tanh kd) v} (6.50)

The transverse propagation constant g becomes infinite as the
conductivity becomes infinite but 8p/k approaches a finite non-
zero value. The radian frequency w and the transverse propa-

gation constant p may be expended in a power series in &

® f @, + éwl + oo SG.SI)

%ﬁ ® ey = 70 + 571. (6-52)

The zero order radian frequency ie defined above and @y is

the quantity to be found. The quantities Y, and v, may be

determined in terms of mb

v = %1 (6.53)
2 2 2
Yo oy ( w, + k YA) ]
1 2 [ wb w% - kzv:

The above series expansions of p and w may be substituted
directly into the dispersion relations, Eqs. 6.23 and 6.24.

The result is, for the antisymmetric case

Lp1 B
W = - 5 TeEnRd \ 2 ) (6.55)
wo pmo
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and for the symmetric case

2 2

k kd
©. = - a+1) VA — 53!_ -1 (6.56)
1 2 2 2 cosh kd 2 *
@, @, P

Thus the radian frequency increment caused by a small devia-

tion from perfect conductivity consists of equal parts damping

and frequency decrease.
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Chapter VII

Surface Waves on Hydromagnetic Columns.

In this chapter the analysis of Chapter VI will be
modified to treat surface disturbances on a circular column
of conducting fluid in the presence of an applied axisl D.C.
magnetic field. The solution for volume fluid motion will
again consist of the two volume modes of section 2.3, now
appearing in cylindrical co-ordinates in the mathematical
expressions.

The hydrodynamic problem, first analyzed by Lord
Rayleigh? has been extended by Chandrusekharaco include
hydromagnetic effects for axisymmetric disturbances and is

extended here to include arbitrary surface disturbances.

7.1. The Unperturbed System.

Using cylindrical co-ordinates, the unperturbed system
may be described as follows. The externally applied magnetic
field is uniform throughout space, of value Bo, and directed
along the z-axis. The fluid forms a cylinder of infinite
extent along the z-axis, centered on the z-axis, and of radius
L The electrical conductivity of the fluid is isotropic
and homogeneous and of value ¢. Space surrounding the column

is a vacuum. This geometry is shown in Fig. 7.1.

1

* See Lamb, ™ Article 274,
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There is a static fluid pressure Po‘ It is related to

the surface tension T by the equation

== =P, (7.1)

7.2, Perturbation of the System.
The propagation of small perturbations of the free sur-
face of the fluid column will be considered. Let the surface

of fluid column be specified by the equation

r = R(0,2,t) (7.2)
where

R(8,z,t) = Ro + Rl(e,z,t) (7.3)
and

Rl << Ro (7.4)

for all 6, z and t.
The following form is assumed for R1

R, = Re[bej (nO+kz-at) (1.5)

In solving the differential equations of this problem,
and in applying appropriate boundary conditions, only terms
independent of & or of first order in & will be considered.
Terms of order 62 or greater will be considered negligible.

The average radius of the perturbeﬁ column, is, to
within the above stated limits of accura.y, given by

R =¢ (7.6)

o "o
where r_ is the radius of the unperturbed cylinder.
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Quantities characteristic of the unperturbed system will
carry a subscript zero. All other terms are perturbation

terms of order §&.

3.3. Equations and Solutions for Bulk Motions.
The equations to be solved for the bulk fluid motion
and the perturbation magnetic field are Eqs. 5.4 and 5.5.
In view of the form of the perturbation of the surface
assured in Eq. 7.5, all quantities must be of the form

£(x) ej(n9+kz-wt).

Under this stipulation, and the further requirement that

V.¥y=0, and Vv . A= 0, there are four independent solutions

to Eqs. 5.4 and 5.5.

Solution 1

Ve " o (BthzED [ ﬁ? I, (Jkr) I; - J;(Jkr)ZB] (7;7)
e P‘;’—o ; (7.8)
- (7.9)
Solution 2

v = vy of (MEHkz-ar) [;—r 3, (480) 1 - J;,(Jar)i'e] (7.10)

- kB 2 -
T (7.1
k A/

¢ =0, (7.12)
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kn

¥ = yed (nOtkz-at) [ Ja(er)i, + 55— 3 (4er)ig + 3 (48D,
B r
(7.13)
- kB 2 _
Aw o -2 L v (7.14)
2.2
@ k Va
B = - B_v,d_(3pr) o (nEke-0t) (7.15)
Sclution 4
¥ - wae(“°+kz'““)[J Qo)L + B3 (ko) + J_(ke) T ] (7.16)
kB
[o)
A=-—2 y (7.17)

j(n9+kz-wt).

@ =-- BciéJn(jkr) e (7.18)

In solutions 2 through 4 the parameters g and v2 have

been introduced. They are defined as follows:

2
2 fe_ ~(7.19)
Va " o .
(o]
2 .2 kz“i
" = k* - jwauo ) - (7.20)
[V V)

The quantity vi is the Alfven velocity and the quantity

p 1s the transverse propagation constant originally introduced
in Eq. 2.37.

The fourth solution consiste of curl free vector potentiale
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and consequently the velocity and field obtained from it are

identically gzero. Therefore, it may be discarded.

7.4, External Fields.
The external fields are governed by free space Maxwell's
equatione with displacement current neglected.

They are given by

E = B ej(n9+kz wt)[i H' (jkr) + 18 kr H (jkr) +1 Hn(jkr)]

ex
(7.21)
E = Eqx ol (nEtkz-wt) [1 H! (Jkr) + 19 kr H_ (jkr) + i H (jkr)]
+ % gexej (“9‘““2""':)[ B H_(3kr) - Ionr'l(jkr)] (7.22)

All Hankel functions in this and the following chapter are

of the first kind.

7.5. Internal Field and Fluid Quantities.

In section 4, four independent vector solutions to the
coupled set of partial differential equations were found.
The general solution is an arbitrary sum of these. The quan-
tities of physical interest are the velocity, pressure,
magnetic field, electric field and current.
V=Ux¥

of (n¥kz-at) [vljw,;ukr) + ¥, k3 ) (38r)

2
+, (1 - 1;-2-) %9- Jn(jﬁr)] 1
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-

| 2 _
+ |9y L3 Gke) + ¥y &2 3,287 Y (1 - 5{)15311(35”)] 1o

"

+ [ ypa, (i) + '&ZJBJn(jBr)] 1 (7.23)

Bw=9 x Z

kB
et § EX BRI

) _
0] 1,

2
2 k_

+ [11 -3-'—‘ J (Jkr) + “ﬁ"'z %:—n- J,(38r)

2
2 3 '

+ ['&lijn(jkr) * Mivzwn(mr)] 1,

(7.24)
J=-1 ¢
u'o (
kB
) 2 _ .22 §(ne+kz-ot)
"va (- k )HAe J[*Z !B‘_; Jn(.“ﬁt)

+vy K J,;(Jar)] i,

+ [- ¥,3! (38T)

+ ¥ ;“"5; Jn(jBr)] 1o

+ ¥ (Jpr) 1

J(7.25) -
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1 [-&1 B g (Jkr) + 15 ¥, B Jn(dpr)

2
- v, £ ‘1 - t;ui 3} (38x) ]

+3y - w0 - vaicen
2
v, ( 1- g,-ni) Jn(jﬂr)]

+1 [ - v, (1 - uﬁ) Jn(jsr)] (7.26)

In the above formulae, the parameter M:, defined by

2
2 w
A kzvi

has been introduced. It is the ratio of the phase velocity
to the Alfven velocity.

The perturbation pressure is found by substituting the
above expressions for v and J into the linearized Navier-

Stokes equation, Eq. 2.8, and is:
P gop [ W3 (k) 4§ ¥ (e0) | (7.28)
7.6. Boundary Conditions.

At the wall of the columm, a nﬁmbcr of boundary condi-

tions must be satisfied. These are the continuity of the
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electric and magnetic fields across the boundary, the condition
that no current flow thrcugh the boundary, and the pressure
condition at the free surface. The result of applying these
conditions to the general solutions in the fluid and outside
it will be a dispersion relation between the k and o of
the assumed form of the surface disturbance.

In order to satisfy the condition that no current flows .
through the boundaries to within accuracy of terms of order 4,

it is only necessary to require that Jt be zero at v = LI

Ir

-y
¥ ]

KB
- 2 ,2.,.2 §(n6+kz-wt)
o (ke [vz Be InliB )+ 5 J;,(jar‘,)]

o
= 0, (7.29)
Hence
J_(jpr.)
.
3" 3-2-(-3;:; v, (7.30)

It is necessary that all three vector components of the

magnetic field be continuous across the boundary of the column

since the fluid has finite conductivity and consequently no
surface currents may exist.
The continuity of Bz requires

kB .
- —m—o. ej (nO-I-kz-a)t) [*Ijk"n(jkro) + ui "2-15*’5(-15"0) ]
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(n@+kz-wt) " "
= B, ol (OTRECE) g (jkr). (7.31)

Therefore

3, (Jkr ) B I Uery)

2
Jx2s .
Box ™ ° 5 ["1 B Qkr, + M % ﬂiTjTr:Y ] (7.32)

The continuity of Br requires that

kB
- 2 Iy i) + 9,9 (BT

2
2 in

- B, of (OHRECE) gy ), (7.33)

The combination of Eqs. 7.30, 7.32 and 7.33 yields

rkr Jz(jbr YH_(Jkr )

2 2
2
v - T.Q. nAiz[J"‘(jBro)Hn(jkro)- :gr_z (1 - lﬂ‘-z-) _B.TB?E.;:T—L
o

- B5_(ser u! (3kr,) ] (7.34)

The continuity of Be leads to an equation which is
already satisfied by Eqs. 7.30, 7.32 and 7.34.

The continuity of Ez leads to the equation
3 KBy¥y(1 - M) J_(spr) = B H (Jkr.) (7.35)
or

J_(jer,)
E,, = ) kB ¥5(1 - M2) RO (7.36)
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The concinuity.of &e*leadl to an quatiou which is already
satisfied by Eqs. 7.30, 7.32, 7.34 and 7.36. There is a sur-
face charge on the column and Er is not continuous.

The kinematic free surface condition states that the
fluid velocity normal to the free surface is eiual to the nor-

mal velocity of the surface.

A - Jwd o’ (n6-+icz-wt) . (7;37)
. r-ro
So
2
b= & [rascamey) + vyapuee) + vy [1- B g 3tteey |

(7.38)
The condition on the pressure at the free surface is

- (7.37)

[P+P°] =T §-+ ;

rer, 1
where T is the fluid surface tension and R1 and Rz are the
radii of curvature along the principle axes of curvature.
The principle axes of curvature of the perturbed surface
are, to within the first order in ¢, the same as the principle

axes of the unperturbed surface. Keeping only linear terms

in §,

2 _
%— + 2 a -}- +8 (B——;—l + kz) o) (n+kz-0t) (7.40)
1 R2 [\ T,

Since

T _p
ro

2]
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P - T8 (B—%Jw kz) o) (nOFkE-0t) (g 49
" |

r-ro

Equations 7.28, 7.30, 7.34, 7.38 and 7.41 determine
the dispersion relation for the system. The combination of

Eqs. 7.28, 7.30, 7.38 and 7.41 yields

jkar ~ ) . ]
¥ + 1] J'(3kr) - J_(Jkr))
1 szp (kr )2 n J o) n J o
2
,Lu% 22 -1 ) o2 ﬁ) Jc(3ex,)
+¥ + 1 J 1l - -QT-J%-
- % Jn<jﬂr°)] = (0, (7.42)

The requirement that the determinant of the co-efficients

of 11 and vz vanish establishes the dispersion relation.

(7;43)

| 44|
k1
Ay -1 (?;r )1 + 1) 3 (k) - J_(Jkr)
2
.L“.{T_/n__l ' I _HJU”)
A12 mzp (kr )2 + 1 ) J (jﬂr ) (kr)z 52 Jn-jﬂrQ-

- E J (ex,)
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Ayg '-2_0' "i [Jt;(”'o)ﬂn(-’kro)

2
)
(kr,) p

jer )H (Jktgl
)

TG,

- 8 3 (B )k ) ]

This equation will be examined in the three succeeding
sections at the limits of long wavelength, low conductivity,
and high conduectivity.

7.7. The Long Wavelength Limit.

A case for which the dispersion relation assumes a
particularly simple form is the long wave limit, where the
first few terms of a pdwur series expansion will approximate
the Bessel functions closely. The n = 1 mode will be con-
sidered, as Chandrasekhar has conplot;ly treated the n = 0
mode. |

1f one keeps only the first term in the power series
expansion, the dispersion relation becomes

2
e . L (7.44)

dz pro

The electromagnetic effects disappear. As an examination
of Eq. 7.23 shows that this is because, for small radii, the
absolute average current is proportion to the square of the

radius.
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Keeping the next higher order terms in the expansions

of the Bessel functions, the following equation is obtained:

, |
2 k™T 2
(1 QMA) Fr—— - 0
. 0
2 .
(kr ) 2 2 2 o
+ —8 %r_r 4-53-mi’+2m2(u:-£3) = 0. (7.45)
(o]

A value of w which satisfies the above equation to within

the accuracy of the approximate equation is

2
4 - 38 w2

A
wek == {14+ k (7.46)
Pr, 1 - M2
l A
where now
2
2 Ve .
M© -5 (7.47)
Va
and
2 . _T_
Ve " or (7.48)
o
Equation 59 simplifies further to
T rzrg 33 oW, vﬁ
w=k 3;: 1+ 37 1 - ” -3 (7.49)
v
]
The damping constant is then seen to be
o = %5 O oYi‘ (7.50)

The change in natural frequency is a hydromagnetic effect and
the only effect of the magnetic field on the long wavelength -

disturbances is exponential damping.
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7.8. Low Conductivity Behavior.

When the conductivity is lmnll, in a sense which is
formalized below, a power series expansion of the dispersion
relation may be made in a dimensionless parameter which
depends linearly on the conductivity. The first term in
the ssries, which represents the limiting form of the disper-
sion relation for zero conductivity, must be the classical
hydrodynamic solution to the problem. The magnitude and
nature of the first order correction term, as well as the
applicability of the expansion will now be determined.

The dispersion relation in the limit as o approaches

zero .will be examined first
1lim

Substitution of this result into Eq. 7.42 yields

2
0= (¥; +¥,) [ LS (L—;-l + kz) 3 (ke ) - Jn(jkro)]

wzp T,
(7.52)
Equation 7,34 becomes
¥, + My, = 0. (7.53)

The dispersion relation thus has the pair of spurious roots,

w? - kzvi, Plus the pair of roots coming from the equation

KT [n? . 2
iz—' (n—rz-l—-ﬁ- k ) Jx:("kro) - Jn(jkro) -0 (7.54)

o
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Since the Bessel functions in this case have purely imaginary
arguments, it is useful to introduce the modified, or hyper-

bolic, Bessel functions.

I (3% = 51 (x) (7.55)
3% = "1 1 . (7.56)
Then
3 2 I!(kr)
kI LD §
> ( 1+ ? ) -nz—ﬂy (7.57)

Since the modified Bessel function and its first deri-
vation have the property that both are poaigive and real
for positive real afgunnnco, it is easily seen all non-
axisymmetric disturbances are stable but all axisymetric
(n=0) disturbances of sufficiently long wavelength are un-
stable.

The values of w given by Eq. 7.54 will be ihdicated
with a subscript zero. The low conductivity, low field behavior

of the system will now be considered. The expansicn para-

meters are
w_ou
! - °2 2 (7.58)
k .
2 o?
M - -§-5 . (7.59)
k YA

The conditions for the low conductivity expansion to be valid

are then
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Ry <<1

and

LB
-RL<<1.

)
]
M,

The appropriate expansion is then a power series in
Rﬁ vhich is a magnetic Reynolds number. The transverse
Propagation constant p may be represented by the initial
terms in its power series

j'
a-k[l-—? 1 -4 (7.60)
A

A power series expression for w may be performed.

@ = + Rﬁwl + oo (7.61)

Upon substitution of the initial terms of the series
for w and B into Eqs. 7.34 and 7.42. an expression for @,
identical to Eq. 7.54 is obtained «. . the resulting equa-

tion for o, is

2 2
jouovA xlg(x) 2 2 I%(x) xI'(x)]
- + ————— + L - 1 - (7.62)
(»1 4 [ In (x xz 11.12 (x) In (xs
et ‘X "), 2 1)
xI'(x xI'(x I%(x
- - - -24 L
A (x) [1 "I G ‘TEGT 2 12 (x)J (7.63)
Then

2

Jou v
o = - =22 4 (). (7.64)
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The following parameter simplifies the expression for An(x).
I (x)

e (7.65)

R (x) =
Substitution of Eq. 7.65 into Eq. 7.63 yields

An(x) - 24+ En-%a [1 - (u2 + xz)Ri(x) - ZnZR:(x)]

(7.66)
The limiting forms for Rh(x) are
1im i
lim . . 1 '
X o Rn(x) x 1t o (7.68)

Substitution of Eq. 7.67 and Eq. 7.68 into Eq. 7.66 gives
the limiting values of An(x).

lim

a0 A (X) =0 (7.69)
14 _
ko A (X)) =1, (7.70)

Figure 7.2 gives values of An(x) for n = 0 through
n =6 values of x from 0 to 6.

The values of An(x) are all positive, consequently
Eq. 7.64 indicates that all modes which were oscillatory in
the limit of zero conductivity are damped when finite conduc-
tivity is present. Modes which grow exponentially in the

hydrodynamic problem, grow less rapidly in the presence of a
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magnetic field and small finite conductivity. The Eq. 7.64
is invalid when used to predict changes in frequency com-
parable to the zero order frequency, consequently this theory

will not predict transition from instability to stability,

7.9. High Conductivity Behavior.

" It has been noted by Chandralakhar3 that the varicose
capillary instability of a perfectly conducting fluid column
may be stabilized by an axial magnetic field. The modifi-
cation of the perfect conductivity solutions caused by
lerge but finite conductivity will be examined in this section.
This will be accomplished by expansion of the dispersion
equation, Eq. 7.43, in a parameter which is inversely propor-
tional to the square root of the conductivity.

The transverse propagation constant g, Eq. 7.70, grows
as the square root of the conductivity and therefore becomes
infinite as the conductivity becomes infinite. The portion
of the solution which has this transverse behavior must
then be confined to a region near the edge of the colum,

The width of this region will serve as the basis of the

expansion parameter. Let the expansion parameter be given by

p= -;'-r (7.71)

where p' is given by
2 2 1/2

p' = [onouo (1 - —-A)] (7.72)

[«
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and @, 1s the value of w obca}nod in the limit as the con? |
ductivity approaches infinity. This is a legitimate procedure
since the value of @, may be obtained by d;rect connid@ratigq
of a perfectly conducting fluid without recourse to this expan-
sion. It is known from the solution by Chandrasekhnra that

@, 1s either a purely real or a purely imaginary number for

real longitudinal propagation constant k. For @, real and

2,22
o, >k Va
p = Lkl : (7.73a)
2 2. 172
k™v
A
[w°m° (1- o? ”
[+

2.2

For @, real and wg =k Var the expansion fails.

For @, imaginary

k2 2
o aﬂ
o
It will be necessary in the expansion to know
e lim pp

Yo g - k (7.74)
vy=1 ; ®, imaginary, jo > 0 (7.75a)
Y= -1 3 @, imaginary, jo < 0 (7.75b)
Y- %7%‘1 G R real, w% > kzyi (7.75¢)

vl o real, o <2 (7.754)
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The frequency w will be expanded in a power series in p ]
@ =+ pwy, + oo (7.76)

It ie convenient to introduce the modified Bessel functions
L = 4% 3 (4%) (7.77)

k) =T 3™ (D (4 (7.78)

The equations determining the dispersion relation, Eq. 7.33
and Eq. 7.42 become

0=y 13;'[(1+3—-1)1(kr)-1(k:)]
) (kr )

K, n2-1)., R I (er,)
+¥, ") (1+(k:) I(ﬁr)-ﬁ-(kr )2 2) _'7_271 or

- £ 1,,<ar",>] (7.79)

2
2\ 1°(pr))
- ' L - L °
0= ¥ +ke Msz K_ (ke )[I (er,) + e, 2 1 ﬂz) | 'Inlg(aré]

- % L (Br)K! (ke,) | (7.80)

The expansion of Eq. 7.76 may now be substituted tho Eqs.
7.79 and 7.80 and the constants *1 and v: eliminated. The

reduction of the resulting expressions is facilitated by the
following relationships. Since

Re [B] > 0
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then
lim I (pr))

8 - T'E'(a_rg)' -1, (7.81)

The collection of zero and first order terms of the resulting

equation gives

' 2 2
% " k;- (1 + <2 ) I (x) ° xK%ZxSInzxs (7.82)
2 2.2
k
o R Y T ;’A) (7.83)
% w, 2x @

In obtaining the last expression, use has been mz=de of the

identity

Y !
Inxh Inxh - x

The implications of Eq. 7.80 are found after considering
the various values of vy from Eqs. 7.75a 7.75d with the values
of w, to vhich they correspond. The effects of finite but
small resistivity may be summarized as:
1) Solutions which are exponentially growing in
the zero resistivity limit grow more rapidiy.
2) All solutions which are oscillatory in the
zero resistivity limit are damped.

For

2 2 2
@, < k Va

this is accompanied by an increase in the oscillating fre-

quency.
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7.10. Application of the Results to a Simple Moving
Systenm.

The results of the preceding sections describe the
motion of a stationary column of fluid reacting to a disturb-
ance which is periodic in a space variable. In a simple
situation of some practical interest, & column of fluid moves
at constant velocity past an exciter which is localized in
space and oinulbidal in time. An experiment of this type,
on electrohydrodynamic free surface waves, has been performed
by Molchor.*

The response of the system to a disturbance localized in

time and space is

n(z,t) = f o (kE-00(k)t) 4 (7.84)

-0
The exciter is assumed to move along the column in the
negative z direction at a velocity A and is sinusoidal in
time with radian frequency . The response of the system

to the excitation is

t v
(k(xtv_t )-o(k)(t-t )]
n(e,t) = f f cos () oto°j 00’ ™ ° dkdt

(7.85)

5

f See Melcher,” Section 6.3, p. 131 and Section 6.4, p. 136.
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A stationary phase cxpanoion* of Eq. 7.85 may be performed

under the following conditions.

8) O, >>0 (—g-!) (driving frequency much
: o
larger than the response)
b) j%Lg (x + Vo t) >> 1 (the exciter has passed the

o
point of interest several

cycles ago).
The stationary phase point of the integral on k in the

above conditions occurs for v k = + (3 . Let

Qo
ky, =5

° o

Then the approximate response in time at a fixed position is

+jo(k ) (t-t ) +jw{-k_)(t-t )
£(t) = Ae Jolie °" 4+ Be Jolkq °, (7.86)

This is the response to an initial disturbance of space
propagation constant koc Condition (a) is the requirement
that the point excitation place on the jet a spatial sinu-
soidal disturbance over several wave lengths in a time shorter
than the characteristic response time of the system.

Returning to a co-ordinate system in which the exciter

is fixed, the response, which is

[l x-wlk)vox] =ik xto(-k ]
n(x,t) = cos () ot[Aej o*-ellg)vgx + Be Il gxtw(-ky)vox]

(7.87)

*
See Erdelyizo,SQccion 2.8, page 51.
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The respense cf Eq. 7.87 is valid only when the driving
frequency ®, is large compared with the response frequency.
The conditions for a laboratory experimeni will now be exam-

ined. The parameters used will be those of the experiment by

5

Melcher™ previously mentioned in this section.

(0o = 1500 rad./sec.

Vo= 5 m./sec.

column radius = 2 x 10~ m,

- -1
ko 300 m,

For hydrodynamic motions of long wavelength

. T
pr_

which, for NaK or water, and ths above column radius is

3

p(k) = 5 x 10" sec”!

and the above stipulation on the frequency ratios is satis-
fied. The expansion of the integral should therefore

describe the motion occuring in a laboratory experiment.

Note: The results in sections 7.1 through 7.8 of this
chspter have been reported by Nayar and Trehanl9. The work
was performed independently by the author.
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Chapter VIII
Surface Waves on a Current Carrying

Hydromagnetic Column,

The behavior of a conducting column discussed in Chapter
VII is modified by a longitudinal electrical current flowing
through the column. The longitudinal electrical current,
supplied by a external voltage source is treated here as a
perturbation on the solutions of Chapter VII and only the low
conductivity limit is considered in detail. .

The analysis proceeds in two parts. The first part is
a derivation applicable to arbitrary electrical currents and
conductivities. An unwieldly dispersion relation results.
The aquations determining the dispersion relation are then
examined in the limit of low conductivity and weak electric

current,

8.1. Derivation of the Dispersion Equatione.

8.1.1. The Unperturbed System.

The unperturbed system, shown in Fig. 8.1, may be
described using cylindrical coordinates. An inviscid incom-
pressible fluid forms a right circular cylinder of radius T,
which extends from 2z = - ® to £ = + w, The fluid carries a
uniform current density Jo vhich is directed along the axis in
the positive z direction. A uniform magnetic field, Boiz’
fills all space. The fluid density is homogeneous and of
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Figure 8.1

CURRENT CARRYING HYDROMAGNETIC COLUMN
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value o. Space surrounding the column is a vacuum. The total

magnetic field is

B= quorlz Ié + Bozz (8.1)
inside the column and
B = u°J°r§/2r I; + B;I; (8.2)

outside it.

The steady-state pressure distribution in the fluid

column is
2
J
T Ho%o 2 2
P r + A (x® - ro) (8.3)

where T is the surface tension of the fluid.

8.1.2, Perturbation of the System.

The propagation of small disturbances of the column will
be considered. Let the surface of the column be specified by

the equation.

r = R(6,z,t) (8.4)
wvhere

Re r, + Rl(e,z,c) (8.5)
and

R1 << Ro (8.6)

for all 6,z, and t.

In particular, perturbations will be of the form

R, = R_ [o of (nO+kz-ut), 8.7)
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In the subsequent sections of the chapter, non-linsar
differential equations will be linearized to contain only
constant terms and terms of first order in 6. Complex nota-
tion will be used and the operation of taking the real part
is to be understood and will not be expressly indicated.

8.1.3. The Surface Current.

In order to formulate the conditions in a simple menner,
it is convenient to introduce the artifice of a surface
current., This surface current does not represent the limiting
form of any physicai current distribution, but rather allows
us to take into account the effect of the deformation of the
conductor through which a d.c. current is passing. It is an
idea borrowed from electron beam theory, whereby the effect
of perturbation of the boundary of a Brillouin beam is treated.

Let the surface of a current carrying column be speci-
fied by

rer +6 o (nBHut-kz) (8.8)

Now the magnetic field resulting from the current flow is no
longer that given by Eqs. 8.1 and 8.2. The effects of surface
perturbation may be separated into two segments. The first is
a first order change in the current in the column. This may
be taken into account by assuming that it lies between the
unperturbed boundaries, as using the actual boundary introduces

only a second-order correction to the field. The second is a
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first order change in the boundary causing the zero-order
current to fill a slightly altered volume of space. It is
this effect that will be modeled as a surface current.

Consider Figure 8.1. In some regions, zero-order current
now flows where before there was none, while other regions
have become current free. Since, by virtue of the assumption
of small surface perturbation, these regions sre concentrated
near the equilibrium surface, they may be taken to represent
a first order surface current flowing along the equilibrium
surface.

Since

J=J, 1, (8.9)
the required surface current is

E(G,z,t) -'3;6 ej(n9+kz-mt) Iz. (8.10)

8.1.4. Equations of Motion in the Fluid.

The equations of motion will be presented in linearized
form, where upper case letters will represent steady state
quantities and lover case letters represent perturbation quan-
tities. The linearized Navier-Stokes for no zero-order fluid

motion equation is

%c‘ v "f"p’fl(beH (3 x B) (8.11)
where
JeJ 1
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and

Maxwell's equations in the MHD approximation are

Veb=o0 (8.12)
Vxb= mod (8.13)
Vx;---g—t . (8.14)

The conductivity equation is:

3 =ole+vxB). (8.15)
One exceptioﬁ will be made to the convention that upper case
letters represent steady-state quantities. The letter A will
reprasent the vector potential for the perturbation magnetic
field. The letter ¥ will represent the vector potential for
the velocity field.

Vxyev (8.16)

VXA =b, (8.17)

The divergence of each vector potentials is chosen to

be zero

Vey=0,V:a=0,

The equation of motion becomes

%E (Vx9y) = - %'Vp - ;&: (%A x.;;) + % (E.x (Vv x ;)) (8.18)

Maxwell's equations reduce to

A - - uo]' (8.19)
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Vxe=- St (V x A) (8.20)
and the conductivity equation is
sz--ouo [:-l- (Vx-i—)x; ] (8.21)

In view of the form of perturbation assumed in Eq.. 8.7
and the linearity of Eq. 8.18 through 8.21, all perturba-
tion quantities are of the form

f(t') ‘J (n9+kz -a)t)

and with this spatial dependence, Eqs. 8,18 through 8.21 may
be combined to yield

J -
Cve?s o L In bodo | 2- . 3k
Jaw?y y [jkno + — A+ I (VXA (8.22)
and
— - [ InpJd | _
v?A + juo Hoh = ou W - ou_ | JkB + —52 °] v
.- wJ
+ o _Bov*z + —9—22 ] v(r 'lo) (8.23)

The pair of equations, Eq. 8.22 and Eq. 8.23. are solved
by an appropriate combination of the longitudinal and trans-
verse solutions to the vector Hemholtz equation in cylin-
drical coordinates.

Let the vector potential A be given by

e A o) (nOHwt-ke) |+
A Aoe [1:'

3'(3pr) - gf J,,(Jar>]

+e (w0er) + Lo 3, (ser)

+H ‘E Jn(jﬂr)) | (8.24)
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where

o (8.25)

Let ¥ be of the same form; that is,

v

Ve A (8.26)
o
Then _
VxA=-jkqA (8.27)

eand a similar relation holds for ¥. Upon setting the scalar

potential of the electric field to ge given by

nJ r
Eq. 8.23 becomes
- - nu J -
v2A + oo A = - ou_ [jkno + —-P-] v (8.29)

and the assumed form of the vector potentials ¥ and A repre-
sent a solution if q 18 a root of the cubic equation

@’ + 3[Ry + Ry(1 + na) Jq + 24uR, = O (8.30)

where Rl and R2 are again the two magnetic Reynolds numbers

characteristic of the problem
wou

- ~°
and
OMoVi

@ represents an appropriate ratio of the two steady state
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magnetic fields.

. J
o' o
e = 5g (8.33)
: o
and yﬁ represents the square of the Alfven velocity
2 B
- -2
Va " o (8.34)
o
The constant vo is related to Ao by the equation
2
q + JR
| o 1 (8.35)
o 1+ na kBo JRy

As there are three solutions to Eq. 8.30, three inde-
pendent solutions to the coupled pair of equations, Eq. 8.22
and Eq. 8.23, have been found. It is seen that the set,

Eq. 8.22 and Eq. 8.29, under the constraint that V + A =
Ve ;.- 0, have four independent solutions. The fourth solu-
tion may be found by setting

A= (r,z,t) (8.36)
where

o(r,z,t) = Jn(jkr)ej(“9+kz'wt) (8.37)
and relating ¥ to A by Eq. 8.29. ¥ is also found to be a
gradient of a scalar.

Since both ¥ and A, in this fourth solution, are gradients
of scalar functions, their curls, which represent physical
quantities, are zero. Therefore, ﬁlthough this fourth solution

is necessary to complete the set of independent solutions for
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Eqs. 8.22 and 8.29, only the first three are needed for a

complete determination of the physical model which gave rise

to those equations.

Thus, the

general solution for ¥ and A in the fluid

column may be written as follows: Let

81 f

Then

and

¥y =

where the qi's
related to the

related to the

v, -

- I ' qih

i [3!(er) - BeE SCTR
Hy (qu;(jar) - -EI’ Jn(jair)}

e
+_ [7} Jn(Jair)] (8.38)
3
D aed(mbtke-ut) g (8.39)
fw]

3,
z: *iej(n9+kz-mt) s, (8.40)
=1

are the solutions to Eq. 8.30, and the B's are
qi'a by Eq. 8.25. The constants 11 are

constants Ai by the equation

"1+ na kB 3Ry Ay (8.41)
(o]

8.1.5. Solutions Outside the Fluid Column

An expression for the magnetic field bex valid outside
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the fluid column is needed. In this region, the magnetic
field is divergence free and curl free. Hence, with the pre-

viously assumed € and 2 variation,

T o J(ne+kez-wt)| T T DN ry
bax ' bex‘ [ ir“Q(J“') + 10 ke Hn(jkr) + izﬂn(jkr)]
(8.42)
where the Hankel functions intended are those of the first
kind, and
-
H;(z) 3z Hn(z). (8.43)

The constant bcx is related to the Ai's of the preceding
equation by the boundary conditions.

8.1.6. Boundary Conditions.

In this section, sufficient boundary conditions will be
applied to the previously obtained solutions to produce three
equations, linear in the Ai's and homogeneous. The condition
that the determinant of the co-efficients of the Ai's be zero
results in a trancendental equation which is the dispersion
relation.

The following bcundary conditions will be employed:

(1) All components of the magnetic field are continuous

across the free surface.

(2) The discontinuity in the normal component of the

stress tensor is balanced by the surface tension.

Since, for an inviscid fluid, the tangential component

of the fluid stress tensor consists only of electromagnetic
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quantities, condition (1) assures that it also is continuous.
Condition (1) also assures that the boundary condition
J.n=0
is satisfied, where J 1is thé total current and';-ia the
normal vector to the surface. Similarly, the tangential com-
ponents of e are forced to be continuous. The normal com-
ponent of e 1is discontinucus at the free surface as there
1s a surface charge density, time varying and of first order
in 6 on the fluid surface.

The condition that Br be continuous is

3
bexﬂg(jkro) - ;E: - jkinisi,r (ro) (8.44)
w]

where S (r ) is the r component of the vector S
i,r Yo i
evaluated at r = T,
The condition that Bz is continuous is

bexﬂn(jkro) - - quiAisi,z (ro). (8.45)

They may be combined to yield

3
0= ;E; quA; [k )S, |, (x,) - Hn(Jkro)si,r (ry))

(8.46)
The boundary condition on the © component of :the magnetic

field is a difficult one. The formulation of the boundary
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condition is simplified if, rather than requiring the con-
tinuity of By at the actual boundary, it is required that bg
be discontinuous by an amount determined by the effective
surface current discussed in section 8.1.2. The result of
both these approaches is the same, but the latter is much
easier to formulate.

In order to write this boundary condition in terms of
the Ai'°’ an expression for 4 in terms of the Ai's is needed.
The time rate of change of & is, to first order in 8, equal
to the normal velocity of the fiuid evaluated at r = T, the

equilibrium surface.

Hence
- 2 q, 3 [+ R

K = [ o (n0tkz-wt) i ‘o i 1l A s (r.)

Tz l+na Bo jRI ii,r Yo

(8.48)
The condition on Be is, then
n

bex kr Hp(Jkr) = - JkqA; 8y o (r)

2
. S (qi + IRy

1+na B IR,
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bex may be eliminated by substitution of Eq. 8.45 into Eq.
8.49. Equation 8.45 is used rather than Eq. 8.44 in order to

eliminate the Hankel function also, The result is

39,
0 f 2{; ES si,z (ro) + qui si,e (ro)

2
9y ”‘oJo (qi + JR1

tTvw B, | TR ) Sgr (5 (8.30)

In order to apply the second boundary condition, it is neces-
sary to find an expression for the pressure. The perturbation
pressure is most easily determined by making use of the z-

component of the linearized Navier-Stokes equation, Eq. 8.18,

It is:
2
+ IR
- 1l o (t70H
P31 ) Aoy T B, (TR, ) S1,2
kr J 2
+ 3 qy Si,r (8.51)

The discontinuity in the perturbation pressure p 1is
set equal to the two surface "forces'", one caused by surface

tension, the other the result of the effective surface current.

rd 2

P -2 ua? - ( R kz) - 0. (8.52)

re=y r

o o

Let 2
(TIN5 2
€ = °2° 2 4 (B 5 1 4 2 . (8.53)
r, :
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Then
p '26-0 (8054)
rfro :
or
3 2
+ jR
- —
0 _ Ay Jwpqy 1 + na kB ﬁ si,z gro?
i=]1
Jkr J
9o 2
+ 2 UG si,r (ro)
ki qz + JR
. S E I T
w 1+ na kBo le i,r o

(8.55)
Equations 8.46, 8.50 and 8.55 are the three homogeneous

equations required to determine the dispersion relation

8.2. A Solution in the Low Conductivity Limit.

The preceding development applies tc arbitrary electrical
co. Juctivity and arbitrary D.C. current. It is desired to
find ¢ .olution to the dispersion equation when the conduc-
tivily is small and the applied longitudinal electric field
is of the same order as the electrical field caused by
motional induction. In such cases the parameter a of Eq.

8.33 will be replaced by

al R1
where
O oM kzvi
k w,
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and @, is given by

l(.
LT [t -1 ] i) (8.57)
o P . 2 I (kr) ’
(xro) n' o

the oscillatory frequency for hydrodynamic disturbances.
Then RM is a magnetic Reynolds number based upon the wave-
length and hydrodynamic natural time constant of the system,

For the expansion to be valid

RM<<1
RMa'<<1

consequently a' may be zero in the expansion but it may not
become comparable in magnitude to 1/RM’ the expansion then
proceeds in a straightforward manner. From Eq. 8.30, the
values of q are, approximately
q, = 0
1/2
q, =+ (JRy)
1/2
q3 = - (jRM) °
The functions Si(r) may now be determined and the results

substituted in Eq. 8.46,Eq. 8.50 and Eq. 8.55. A power series

expansion in RM is then made. The result is

jouovi JBO
® = - An(x) + jnk ;5; Rn(x) (8.58)

where RN(x) is defined in Eq. and An(x) is defined in
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Eq. 7.66.

It should‘be noted that the D.C. current has no effect
on the axisymmetric disturbances. The D.C. current in the
axisymmetric mode interacts only with its self field, and the
nature of the expansion undertaken here makes this effect
second order in the expansion parameter. It is seen directly
from comparison of Eq. 7.64 and Eq. 8.58 that, in the absence
of D.C. current the result reduces to that obtained in Chapter
VII, section 7.8.

A feature of the term caused by D.C. current in Eq. 8.58
is that the sign may be either positive or negative, depending
upon the sign of nk. The surface perturbation described by
Eq. 8.8 represents, for n greater than zero, either a left
or right helical surface disturbance. The D.C. current tends
to cause time growth of those modes which have a helical
surface disturbance which is in the same sense as the magnetic
field. This result is well known in the perfectly conducting

limit.
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Chapter IX
Concluding Remarks and Suggestions

for Further Investigations.

9.1. Concluding Remarks.

The aim of this investigation was to develop a unified
method of determining the effects of a magnetic field on
surface wave motions of a fluid with finite electrical con-
ductivity in several geometrical configurations. The
development proceeds from the fundamental equations of
inviscid incompressible hydromagnetics, linearized for small
fluid oscillations, to a general solution for the fluid
motion. This solution for the fluid motion is then con-
strained by the appiication of various boundary conditions,
and the resulting equation determining the behavior in time
of the fluid is examined.

The physical configurations examined here are the most
commonly treated ones in hydrodynamics. They are the propa-
gation of surface gravity waves and the motion of disturb-
ances on a fluid column.

A brief word is in order concerning the mathematical
methods used in this thesis. The solution of the differen-
tial equations for volume motion is made sinple once it 1is
realized that the linear fourth-order operator in the vector

differential equation for volume motion factors in all
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orthogonal co-ordinate systems into two second-order permuta-
ble operators. The formulation of the equations, the boundary
conditions, and the dispersion relations is greatly facili-
tated by the introduction of the vector potentials. The
number of mathematical manipulations required in proceeding
from problem statement to answer is considerably reduced by
these potentials.

The 1imiting forms, established by expansion of the dis-
persion relation in some parameter (usually a magretic
Reynolds number), are of interest not only for the informa-
tion they provide directly, but also for an initial point
and a check on digital solutions of the dispersion relation.
All dispersion equations are presented in a form the author
found useful for machine computation.

The effect of the magnetic field is, in general, a
stabilizing one. Motions which are oscillatory in the absence
of the field are damped in its presence. The rate of oscilla-
tion may also change significantly. The growth rate of
hydrodynamic instabilities is reduced.

The nature of the motion in the fluid is complicated by
the presence of the field. In the hydromagnetic problem,
there are an infinite number of discrete natural frequencies‘
for a disturbance of a given wavelength, while in the hydro-

dynamic problem, there is only one.
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9.2. Suggestions for Experimental Investigations.

An appealing feature of experimental investigations on
liquid metal surface motions is that the time and distance
scale of the motions involved in laboratory experiments are
such that the motions are visually observable.

The gravity wave motion under a vertical magnetic field
has received some experimental attention. It would appear
that the horizontal field case is more interesting, in view
of the results in Chapter III, but no experimental investiga-
tions have yet been reported.

Some qualitative experiments, notably those by Dattner,16
et., al., have been done on freely falling current carrying
fluid columns, but no good quantitative results are available

either for the current-carrying or the noncurrent-carrying

fluid column.

9.3, Theoretical Extensions.

Several possible theoretical extensions of this inves-
tigation are concerned with the transition from the idealized
physical situations discussed in this work to theoretical
situations more closely approximating laboratory experiments.

In the field of gravity waves, theoretical solutions
applicable tc more general end wall constraints than those of
section 5.1 are required.

When the fluid is in motion, passing stationary boundaries,
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there exists a possibility of energy conversion. Some work
on this problem for perfectly conducting fluids has been

performed.12
The introduction of spatially non-uniform applied fields
into the analysis would permit consideration of such problems

as an MHD induction generator using a fluid jet.
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Appendix A.

A Small-Signal Fower Theorem.

The small-signal power theorem presented here is a
special case of the theorem for hydromagnetic waves in a
moving media given by Cogdall.12 For the derivation of the
theorem and its historical antecedents, see Chapter II of
Cogdello12

The small signal power theorem is a relation among
products of perturbation quantities in the solution derived
from formal mathematical operations on the linearized equa-
tions. The terms have the dimensions of power and energy.

The power theorem was used by the author only in the
closing stages of his work and as a means of verifying the
accuracy of solutions obtained by other methods, and as an
aid to the intuition.

The questions of growth or decay of perturbations which
arise in Chapter VII can be answered quite easily with the
power theorem, but the determination of rate of growth or

decay is no simpler than with the methods of Chapter VII,

In the fluid, the power theorem is

" 2u°

2 - = 2
0= 4+v. E"B+vp +-§-E %pv?'-i-l’-—J (A.1)
(o]

for the motion of an incompressible, inviscid, fluid of

arbitrary conductivity, when the unperturbed solution has
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zero fluid velocity. The above theory is obtained directly
as a limiting form for zero compressibility of the expression
given by Cogdell. The expression given by Cogdell, however,
was derived under the assumption that the conductivity was

large enough that

E =~ - (.\-r- x Eo) (A.2)

This is never a good assumption for any problems considered
in this thesis, since Eq. A.2, although approximately correct
in the interior of the fluid, is invalid in surface boundary
layers where most of the current flows.

Under the assumption of incompressibility, Eq. A.1 may
be shown to hold for all conductivity without the aid of the

approximation of Eq. A.2.

Small Signal Surface Energy Storage.

The theorem of Eq. A.1 is most frequently used after
integration over a volume of interest. In problems of the
type considered in this thesis, the volume is one wavelength
along assumed direction of wave propagation and extends to
infinity in the plane perpendicular to this direction. The
surface of the fluid is therefore included in the volume in

question. The vector quantity

xB +Vvp (A.3)
)

P =E

V)

may be discontinuous at this surface, which indicates a
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possibility of energy storage at the surface. In a fluid of
finite conductivity, the electric and magnetic fields tangential
to the surface are continuous, therefore no discontinuity in

E x B

Yo

can occur. The Eerm of interest then is the product of dis-
continuity of the pressure at the free surface and the com-
ponent of velocity normal to the free surface. The effects

of gravity and of surface tension will be treated separately

for clarity, though both may be present in a given situation.

The effect of gravity will be considered first. The
discontinuity of the perturbation pressure at a free surface
under the influence of a normal gravitational acceleration is
P = pgn (A.4)

where n is the elevation of the free surface above its

equilibrium value. The normal component of velocity is

Avn -1, (A.5)

Consequently  (vp), the discontinuity in the perturbation

kinetic power flow is given by

A (vp) = -g—t- % gn . (A.6)

The term on the right-hand side has the physical interpreta-
tion of potential energy stored by elevation in a gravitational

field.
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The effect of surface tension on the small signal energy

storage may be found in a similar manner
Ap =% (A.7)

where % is the sum of the inverse of the principle radii of
curvature of the surface. Consider a plane surface (y = 0).
Let the perturbation of the surface be

n(x,t) = £(t) cos kx

then
Ao = TkPn(x,t)
and
v, nt
hence
—. 3 2 o2
Z&(vp) =3t Tk 2 . (A.8)

Now the surface tension represent energy per unit surface
area and is often called the surface free energy. A calcula-
tion of the change in surface area of the fluid caused by the
assumed pertrwrbation shows that the right-hand side of Eq.
A.8 represents the product of the surface tension and the
change in surface area. In cylindrical geometry, if the

surface of the column has the form

r =R+ Re [ sed (kz‘““e)]

then

. (A.9)
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and

2
Avp) = -g-g '—i- (1«5)2 (1 - —“—-—2——%— ) (A.10)
(kro)

Notice that the term in brackets is negative for axisymmetric

disturbances when

2
(kro) < 1.

The term in brackets is shown to be the product of the surface
tension and tha change in area by Chandrasekhar3 in Article
III, page 539. The surface tension is thus a negative energy

storage on a small signal basis for these disturbances.
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Appendix B.

Equations for a Viscous Conducting Fluid.

It was mentioned in Chapter II that the viscous forces
could be included in the analysis, with increasing complexity
of the mathematical expressions as a consequence. The pur-
pose of this Appendix 1is to develop the equations necessary
to describe a viscous electrically conducting fluid, to
indicate the form of the solutions in cartesian and cylin-
drical co-ordinates, and to indicate the related effects of
viscosity and conductivity in wave motions, as characterized

by the Reynolds number and the magnetic Reynolds number.

B.1. The Equations of Motion.
The equations that govern the motion, linearized as in

Chapter II, sectior. 2.1, are Maxwell's relations

Vxb= “03 (B.1)
Vxes=- §~.B (B.2)
ot )

Voeba=0 (B.3)
the constiturive relation

J=ole+vxB) (B.4)
the Navier-Stokes equation with electrical body forces

I N 2 -

Y o + 5 (g x F;) + W v (B.5)

and the incompressibility restriction



Vevs=0.

Vector potentials may be introduced for the velocity

and magnetic fields by virtue of Eq. B.3 and Eq. B.6

<
%
<
'
<1

0

VxA=0D

V. A=o.
Equations B.1l, B.9 and B.10 yield

3 = - VA,

Equations B.2 and B.9 yield

Q/

{4

- v¢

T - -

where @ is a scalar function of time and position, as yet

undetermined.
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(B.6)

(B.7)
(B.8)
(B.9)

(B.10)

(B;ll)

(B.12)

The magnetic field Bo is assumed to lie along the z-axis

of either a rectangular or cylindrical co-ordinate system

and to be uniform throughout space. Equetions B.5, B.7, and

B.8 may be combined, and the curl of that combination taken

to eliminate the pressure. The result is

—_ B -
(a__nvz) v-p% g—; v A.
(o]

(B.13)

The results of substituting Eqs. B.1l1, B.12, B.7, and

B.8 into Eq. B.4 is
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2 ; Ay - .27
V- A - *o St A - ouOVG cuoBo ( Viz Sz ] ). (B.14)

The gradient terms in Eq. B.14 must cancel, hence

VP = - novwz (B.15)
leaving
2 3 N d_
Ve - oM SE) A= - auoBo Sz ¥. (B.16)

Equations B.13 and B.16 may be combined to give a
single partial differential equation for the velocity vector
potential

2 —— 0
) 1 .2 3 2 2 2

B.2, The Equation in Dimensionless Form.
A characteristic length L and a characteristic time T
may be introduced into Eq. B.17 to reduce it to dimensionless

form.

The result is

2 -
[(i-%;vz) (g-;-%vz) + M g?] vy = 0 (B.18)
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where

2
ou L
Ry = : (magnetic Reynolds number) (B.19)

2
R= %T (Reynolds number) A (B.20)

and
T |
M - -T o (3021)
L
The close analogy between the effects of viscosity and con-
ductivity in these motions is illustrated very well by the
identical manner in which the two Reynolds numbers enter into

Eq. B.18,

B.3. Method of Soluticn of the Eﬁuaticna.

Equation B.17 can be solved easily in either cartesian
or cylindrical co-crdinates for disturbances of the type con-
sidered in the thesis. The purpose of this section is to
outline a method of solution,

In cartesian co-ordinates, let all components of ¥ be of
the form

£(y) e“kx"""‘zz) o5t
Then
£(y) = eV
1s a solution and substitution into Eq. B.17 yields six

values of q.

In cylindrical co-ordinates, assume a solution of the
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form

y = ol (kz¥nO-at) [

LGB T, - o3 () 1o

g
+ % I, (38r) 1:]
or of the form

a o) (kztnO-wt) [n_ T . 1t -

e Br Jn(jBr) ir Jn(.‘lﬁr) 19
Substitution of either form into Eq. B.17 leads to the
same six values for p that were obtained for q. This would

apparently produce twelve solutions, but examination shows

8ix of them to be redi:ndan*.
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Appendix C
The Digital Computation.

The numerical calculations presented in Chapter V and
Chapter VII of this work were performed by the IBM 7094
Data Processing System at the Computat:.m Center of the
Massachusetts Institute of Technology.

The computer programs were written by the author in the
FORTRAN progremming language. Approximately two and one-
half hours of computer time was used in correcting and

testing the preograms and producing the results.
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