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Abstract

The characteristics of two actuator designs for flow control are discussed. Both devices
are based on resonating structures that interact with a closed volume of fluid to create
a concentrated jet. The resulting unsteady flow through a small orifice introduces
viscous effects that are characterized by the Stokes’ parameter based on the orifice
diameter. An optimum operating Stokes’ parameter is then computed by matching
this viscous dominated solution to an ideal, inviscid result. The actuators are modeled
with a system of equations that describe their fluid-structural behavior. These models
are compared to experimental results and are seen to predict time and frequency
characteristics well. Experimental data also show that away from the exit orifice, the
jet is self similar and its intensity is also governed by the Stokes’ parameter. Scaling
arguments are presented regarding actuator performance as a function of device size
and Reynolds number in a turbulent flow. These arguments suggest that, in order to
maintain adequate resolution at a given flow Reynolds number the device size must
scale with the local momentum thickness.
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Chapter 1

Introduction

Interest in active flow control for drag or noise reduction, flow vectoring, etc., has
stimulated the recent development of innovative actuator designs that create localized
disturbances in a flow field. A family of such actuators utilizes the large displacements
attainable when structural members are driven at their resonant frequencies. These
resonating structures are used to create pressure fluctuations in a closed cavity with
an opening through which fluid is driven and used as a control input. Due to the
relatively small sizes and high natural frequencies of the devices, off-resonance forcing
will not provide sufficient deflections for control.

A design, referred herein as the ‘Membrane’ actuator, is illustrated schematically
in Figure 1-1a. It was first proposed by Coe et al. [2] and consists of a thin mem-
brane, rigidly fixed at its edges and driven into transverse oscillations at its resonant
frequency. The membrane makes up an end wall of a closed, cylindrical cavity. The
opposite wall is rigid and contains a small orifice. As the membrane deflects to com-
press the fluid in the cavity, the rise in pressure drives fluid out through the orifice.
The outflow separates at the edge of the orifice and emerges as a normal jet. When

“the membrane deflects in the opposite direction, the orifice acts as a sink and fluid is
drawn into the cavity from all directions. The differences between the inflow and out-
flow results in a time-averaged flow field resembling a vortex ring over the orifice with
a steady jet emanating outwards from its core. Coe et al. [2] fabricated an extremely

efficient micro-machined actuator with orifice diameters of 150-300 um that achieved
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Figure 1-1: Schematic cross sectional views of the (a) ‘Membrane’ and (b) ‘Spring-
board’ actuators, showing the resulting time-averaged flow fields.

jet velocities of 17 m/s and penetration depths of 500 orifice diameters. Similar de-
vices were also used to achieve jet thrust vectoring. An experimental investigation of
the turbulent jet produced by a similar macro-sized device has alsc been carried out
by James et al. [6].

A second design, referred herein as the ‘Springboard’ actuator, was first proposed
by Jacobson and Reynolds [3] and comprises a piezo-ceramic/metal shim bimorph
cantilever, mounted eccentrically over an open cavity (Figure 1-1b). The design
presented here is modified in that a structurally ‘soft’ region is made at the rigid
end of the cantilever to obtain larger tip displacements. The cantilever is driven at
resonance with an alternating voltage and the oscillatory cavity pressure created, in
turn, drives an unsteady flow through the cavity gaps. The time-averaged flow field
over the narrower gap resembles a pair of line vortices accompanied by a normal jet.
Mass conservation requires that a much less intense flow develop over the larger gap.
However, a lower limit to the small gap width was observed, at which the mass flow
through the small gap vanishes. An array of devices has been used in series with shear
stress sensors for transition and turbulence control [5] and has produced encouraging
results. Saddoughi [8] is currently developing a larger ‘Springboard’ device to be used
as a vortex generator for the control of boundary layer separation.

These devices, although characterized by a single frequency, may be driven with



amplitude modulated signals at frequencies to which the global flow is receptive [12].
In order to use these devices to their full potential, it is vital that their behavior be
fully understood. The devices must be accurately characterized to obtain a transfer
function between the input (voltage) and output (mass ejection). To that end, it is
necessary to consider the fluid-structural coupling of each actuator configuration. In
this paper, the structural and fluid characteristics of these actuators are investigated
and suitable models are considered. These models are then used in the analysis of

experiments carried out with the ‘Membrane’ actuator.



Chapter 2

Theory and Modeling

In order to gain insight into the mechanisms that govern the fluid-structural cou-
pling associated with each actuator design, theoretical models are considered in this
section. The analysis is separated into structural and fluids sections. For the struc-
tural analysis, the devices are modeled as simple bending beams and plates. A
transendental equation is obtained and solved for the eigenvalues and eigenmodes
of each configuration. In the fluids analysis, both devices are simply modeled as a
cavity filled with a compressible fluid that is forced out through one or more exits
due to a pressure difference created by the action of an oscillating piston. A set of
differential equations may be written to describe the fluid properties both inside and

outside the devices.

2.1 Structural Modeling

2.1.1 The ‘Membrane’ Actuator

The ‘Membrane’ device is modeled as a circular plate, rigidly clamped at its edge.
The solution to this problem is well documented [1, 13] and the first two natural

frequencies are given by,

Et3

Wmi2 = Kl,2J 12(1 - up)maR“’ (2.1)
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Figure 2-1: Structural model of the ‘Springboard’ actuator as a composite beam of
length [, free at one end and supported by a spring of stiffness k, at the other.
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Figure 2-2: Schematic of the ‘Springboard’ mode shapes for; (a) the first coupled
mode (in phase) and (b) the second coupled mode (out of phase).

where K72 = 10.2 and 21.3, m,, v, t and R are the mass per unit area, Poissons’

ratio, thickness and radius of the membrane, respectively. The mode shapes are given

by (1],

@, = {Jo,l (K;;r) - j:::g::)) Iy, (K;;T)}COS(W), (2.2)

where J, and I,, are the Bessel functions and the modified Bessel function of the
first kind of order n, respectively and r is the radial distance from the center of the

membrane.

2.1.2 The ‘Springboard’ Actuator

The ‘Springboard’ device considered is different from that of Jacobson and Reynolds’
[3] in that it has a low stiffness region at the fixed end. This was included because
the highly rigid piezo-ceramic restricts the movement of the cantilever. In order to
maximize its deflection, the cantilever is mounted with a small overhang, to ensure

that most of the bending takes place in a small region near the fixed end. That is,

11



the piezo-ceramic extends from the tip of the cantilever to a short distance away from
the fixed end, from where only the metai shim extends into the fixed support. This
configuration creates a ‘soft’ point at the fixed end that allows much larger tip de-
flections. This configuration is modeled as a beain, free at one end, simply supported
and connected to a spring at the other (Figure 2-1). Using energy methods with a
three degrees of freedom system, the eigenvalues and mode shapes for the first two
modes may be computed (Figure 2-2). The total kinetic energy, T', may be written
as the integral of the time derivative of the cantilever displacement with respect to

its length;
1 /! ] . . \2
T = ‘2'/0 m(zqgy + 142 + ¢ad3)” dz (2.3)

where m is the mass per unit length, ¢; is the spring angular displacement, g, 3 are
the first two degrees of freedom for a cantilever beam, [ is the length of the cantilever,
z is the distance from the fixed end and ¢(2), o are the functions that describe the

first two mode shapes for a cantilever. Hence,
ol o, .. .. .. 2.2 L 42:2y
T = 2 Jy m(z°qy + 22¢141G2 + 2224143 + 201024243 + B1dy + $243) dz,

| { .. .. .. 1n .. )
= -2-qu? + /0 m(2¢1G142 + 2024143 + P1024243) dz + 3 /0 m(¢24Z + ¢3d3) d2,4)

where I is the mass moment of inertia of the cantilever, about its fixed end. The de-
grees of freedom are time-independent and may be excluded from the integrals. Thus,
substituting M;; for the integrals associated with products of ¢; and ¢;, Equation 2.4

may be simplified to
T = Iog?/2 + Mi2gide + Misgids + Masdeds + Maagl /2 + Ma3g3 /2. (2.5)

Similarly, the total potential energy may be written as the total strain energy, U, in

the cantilever:

U = kgi/2+ Mapnwp,nds /2 + Maywj,ya3/2 (2.6)

12



where k is the spring stiffness and wy,2 3 are the uncoupled fundamental and first
harmonic frequencies for a cantilever. Using Lagranges’ equation for each degree of

freedom,

8 (8T\ T U
5?(5(1_,)—6_(1,_'_6_% = 0, (2.7)

leads to three coupled equations for q, a column vector with elements q;, ¢ and gj:

1 Mlz/Io M13/Io wg,l 0 0
Myp/Mp 1 Myp/Mp pd+4 0 i, 0 pq = 0 (28)
My3/M33 M3 /M3y 1 0 0 Wi
where wg,; = /k/ Iy, is the uncoupled spring natural frequency. The mode shapes for

a cantilever beam are given by [11]:
én(2) = cosh(e,z/l) — cos(enz/l) — an(sinh(e,z/l) — sin(e,2/l))  (2.9)

where €,, = 1.875, 4.694 and 0‘1..2 = .734, 1.019, respectively. Finally, ¢, is nor-
malized so that, fj ¢2dz = 1. Assuming a harmonic solution, g; = R{qo,e*}, the

transendental equation may be written:

{M123M22 + MHMss + M2 Ty — 2My3 Myz M3 } W5
ToMay M3

M"Z M2 M2
+ 1 _ 23 )w2 + (1 _ 13 )w2 + (1 . 12 _) w2’ }w:
{( MpMs; ) ! IoMy | 0% oMy, | %

- {(won wos2)? + (wos1 wos3)? + (wos2 wo;3)2} w? + {wos1 Wos2 wo.a}2 = 0.(2.10)

The spring natural frequency, is given by,

EI
Wos = ﬁ (2.11)

13



where F is the Youngs’ Modulus of the shim that extends into the support, I; is the
first area moment of the shim alone and !’ is the length of the cantilever not covered

by the piezo-ceramic. Assuming that I’ < [, beam bending theory [11] shows that,

El. sy
2 = 3. 21/ , 2.12
“0s2 35 mylt (212)

where Ely is the effective bending stiffness of the composite cantilever, m, is its

EI
Wos3 = 22.03\/?{{. (2.13)

The effective bending stiffness may be found by using the reference area method for

mass per unit length and

a composite section.
Equation 2.10 may now be solved for the eigenvalues of the system, w,. Since the
analysis was carried out to third order, the first two modes of the system may be

obtained with accuracy.

2.2 Fluid Modeling

Fluid effects arise when the flexible structure causes a compression of the fluid in
the cavity and when the unsteady flow that results from the unsteady cavity pressure,
develops through the orifice. The model used is illustrated in Figure 2-3. The device
is modeled as a piston of area A, moving in a cylinder of height H. The piston
displacement normalized by the cavity height, z, is an average of the true membrane
deflection described by Equation 2.2. The piston resembles the membrane, in that
it causes an equivalent pressure change in the cavity. As the piston oscillates, the
fluid in the cavity expands and compresses, leading to a fluctuating cavity pressure.
Assuming the orifice area, a, is large enough that viscous effects are isolated at the
boundaries and may be ignored, the cavity pressure change drives a flow through the
orifice at a uniform velocity u. For smaller orifice diameters, viscous effects lead to a

non-uniform velocity profile across the orifice and will be investigated in Section 2.3.
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Figure 2-3: Features of the model for the analysis of fluid effects in a ‘Membrane’
actuator. The membrane is modeled as a piston of area A, that oscillates in a cavity
from which flow is driven out through a small orifice of area a. The flow exit velocity,
u, is assumed to be uniform and a nominal accelerating streamline, L, is assumed to
stretch from a few diameters into the cavity to a few diameters into the emanating
jet.

The ‘Springboard’ device is modeled in a analogous manner with the exception that
there are two exit gaps (one on either side of the cantilever).

The modeling leads to two coupled equations for the density and jet velocity. The
time derivative of the instantaneous mass in the cavity gives the rate of change of

density as a function of the normalized membrane displacement and velocity and u:

Op _ p(AHZ —ua)
8 ~  AH(1-z) (2.14)

Since the piston displacement is small compared to the cavity height, pressure fluc-
tuations in the cavity are small and the jet exiting through the orifice is assumed to
be subsonic and incompressible. Using the unsteady Bernoulli equation in streamline
coordinates, the jet velocity may then be written in terms of the pressure difference

across the orifice and a nominal accelerating streamline length, L:

%ti‘. = (P-Po)/pL—ulul/2L (2.15)
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Since Equations 2.14 and 2.15 hold for any flow driven through a small opening,
they are valid for both devices. The result of combining structural and fluid effects is
summarized below as a set of five, coupled, non-linear first order differential equations
with states that include the membrane position and velocity (z; and z,), the fluid
density and pressure and the jet velocity. The process is assumed to be isothermal.

The forcing on the membrane is given by G sin(wt).

.‘iIl = T2
. A Go .
M.’Ez = —Ko.’lil — Co(l?g - E (P - Po) + ﬁﬂ SlIl((dt)
. p(AH z5 — ua)
= 1
p AH(1— ;) (2.16)
P = RT)

i = (P—Py)/pL—ulul/2L

where R is the universal gas constant, T is the fluid temperature, M is the mass
of the membrane, Ky and Cy are the structural stiffness and damping coefficient,
respectively. Equation 2.16 may be used as a transfer function to compute the actua-
tor response. The structural stiffness and damping coefficients are dependent on the
manufacturing technique and quality of the device and may be measured experimen-
tally.

It is instructive to examine two limits for this system: (i) in which the cavity is
sealed (i.e. @ — 0) and (ii) in which the fluid is incompressible. In the first case, the
terms associated with the jet vanish and the entire system may be written as a single
differential equation for the normalized membrane position, z:

P()A.'B Go

Mi = —-Kyr— Cot — E—(_l—_x) + E sm(wt). (217)

Expanding the compressibility term reveals that, for small values of z, the undamped

natural frequency is given by

K,
wo = ‘/ ﬂ—g’—’i/ﬂ, (2.18)
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while for larger values of z, quadratic and cubic non-linearities will emerge resulting
in the generation of harmonics and a modulation of the fundamental amplitude and
a further shift in the natural frequency, proportional to z? [7).

For the second case - that of an incompressible flow - the conservation of mass

reduces to a simple relationship between the piston velocity and the jet velocity:

u = A_Hx (2.19)
a
This also results in a single differential equation for z:
2 ..
(M + poAL%):L‘ = —Kox — Co.'l: - poAH (é) % + %sin(wt). (220)

Here the non-linearities are more complex. On the left-hand-side of Equation 2.20
we see that there is an apparent mass term resulting from the unsteadiness of the fluid
in the orifice. On the right-hand-side, a term proportional to z|Z| and (A/a)? acts
as a fluid damping term. Note that as a/A — 0, the term becomes singular due to
infinite orifice velocities. In reality, the model is not valid in this limit since viscosity
becomes dominant and restricts the mass flow through the hole. This is discussed in
more detail in the following section. Expanding the z |Z| term in Fourier coefficients
leads to linear and cubic damping terms, the second of which will result in a further
source of frequency shift as the amplitude of the membrane oscillations increase. A

full non-linear perturbation analysis of this rich system is currently underway.

2.3 The Stokes’ Parameter

The preceding analysis on the fluid characteristics of the actuator was based on a
uniform exit velocity, u. As the orifice size decreases, the viscous layer in the orifice
grows, leading to a restriction in the the mass flow. Thus, at very small orifice sizes
it is necessary to study the detail characteristics of the oscillating flow through the
orifice. The orifice on a ‘Membrane’ device is circular, while the one on a large aspect

ratio 'Springboard’ device, may be considered to be a two dimensional slit.
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(a) : (b)

Figure 2-4: Coordinate system for the analysis of the Stokes’ flow through; (a) a
circular pipe of diameter d and (b) parallel plates separated by a distance h. Flow
direction is normal to the page.

This problem is similar to the oscillating plate problem first examined by Stokes,
except that now the solid boundary is stationary and the flow adjacent to it is driven
by a pressure gradient, IT;(¢), [10]. Viscous effects lead to a boundary layer in the
orifice whose thickness is governed by the viscosity and the frequency of oscillation and
may be expressed in terms of a Stokes’ length scale, Is = \/;/_w There is a radially
independent, potential flow velocity component, u,(t) = U cos(wt), associated with
the pressure gradient and it is necessary to find a velocity, u,(r,t) or u,(y,?) (in the
case of the ‘Membrane’ and ‘Springboard’ devices, respectively), such that u, + u,
satisfies the no-slip boundary condition. The simplest form for u, is given by the

diffusion equation.

2.3.1 The ‘Membrane’ Model

The ‘Membrane’ problem is represented by an axisymmetric orifice and the diffu-

18




sion equation in cylindrical coordinates is given by,

ou, v o, Ou,
—(r

ot  ror ar)'

(2.21)

Assuming a harmonic solution, u,(r,t) = R{f(r)e*'} and substituting into Equa-

tion 2.21 gives,

f = amlo(\/?r)ﬁ-ﬁm[{o(— %7‘) (222)

where oy, and (,, are arbitrary constants and Kj is the complex Hankel function.

Using the Stokes’ parameter, Sty = \/wd?/v and £ = 2r/d and boundary conditions,

f(0) is finite,
) = U

adding on the contribution from wu,, the solution for u(§,t) = u(§,t), +u, is given by,

U (Io(Vi Sta€) — In(Vi Sta))
(1 — Iy(Vi Stg))

u(€,t) = §R{ exp(z'wt)}. (2.23)

In the limit for small St4, the flow is quasi-steady and u may be shown to approximate

the Hagen-Poiseuille formula,

u(r,t) ~ %(dz/4—r2). (2.24)

2.3.2 The ‘Springboard’ Model

The ‘Springboard’ problem is approximated by a two dimensional slit and the

diffusion equation gives,

Ou, 0%u,

ot V6y2°

(2.25)
Assuming a harmonic solution, u,(y,t) = R{f(y)e**} and substituting into Equa-

19



tion 2.25 gives,

f = a,exp(\/g-gyﬂﬁsexp(— z%Jy) (2-26)

where o, and f, are arbitrary constants. Imposing the no-slip condition at the wall

and a symmetric velocity profile,

f0) = -0,
daf (1
()

Using the Stokes’ parameter and a non-dimensional length, 7 = y/h and adding on

the contribution of u,, the solution may be written as,

_ _ {exp(V/i Stan) + exp(Vi Sta(1 — 1))} ofiu
u(n,t) = ?R{U (1 (1 + exp(vi 512) )e p( t)} (2.27)

When St is large, the instantaneous ve!.city profile is uniform except for a viscous

layer close to the wall. As St; decreases, this layer grows until it penetrates the
entire flow region. As St; decreases further the flow is ‘choked’, that is the mass
flow is reduced due to the effect of the viscous layer. Solving Equation 2.27 for the
‘Springboard’, the mass flow through the slit is seen to fall by 95 %, at Sty ~ 1.5.
As St; decreases further, the slit is essentially sealed and the mass flow appears
across the larger gap. The ‘Membrane’ device behaves differently since the single
orifice is the only way flow leaves and enters the cavity. In this case, the ‘choking’
phenomena leads to an effective stiffening of the membrane. This causes an increase
in the fundamental frequency which in turn increases St, so as to achieve the required
mass flux. The effective thicknessof the Stokes’ layer is approximately 415 and 2.5 g
for the ‘Springboard’ and ‘Membrane’ devices, respectively. This corresponds to a
critical St, of 8 and 5, respectively, indicating that a ‘Membrane’ device could achieve
a given jet velocity with a smaller exit hole.

Equations 2.24 and 2.27 describe the increase in the axial velocity as St; increases

and the solution for large St; tends towards an asymptote defined by inviscid flow.

20



However, as the exit hole size increases (leading to an increase in St;), mass con-
servation requires that the flow velocity should decrease proportionally to the hole
area. Thus, matching these two regimes will provide an optimum St; at which the
maximum flow velocity is achieved for a given device.

Consider the solution for the ‘Membrane’ device. At small St,, the axial velocity
increases with d? or orifice area,.a (Equation 2.24). When the boundary layer is
restricted close to the orifice edge (at large St4) so that the flow may be considered
to be nearly inviscid, the axial velocity is then proportional the membrane velocity
and inversely proportional to a (from mass conservation). Matching the center-line

velocities in these two regimes requires:

II,a AH .
= I.
4Ty a

Assuming a harmonic solution for the membrane deflection and substituting the ex-
pression for the fundamental frequency from Equation 2.1, one obtains, after some

algebraic manipulation:

3, g\
C“H), (2.28)

Stopt = 4 (__A27T2P0V

where C = K, \/Et3 /(12(1 — vp)m,), as defined by Equation 2.1 and ¢, is the orifice
depth. St is then the optimal Stokes’ parameter for a given actuator design. It
depends on the variation of the natural frequency with the device dimensions, cavity
volume and depth of the orifice. St,, for various actuator designs may be similarly

computed if the natural frequency associated with the device is known.
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Chapter 3

Experimental Techniques and

Data Reduction

In order to test the theory presented in the previous section, experiments were
carried out with relatively large devices. These macro-sized devices were more easily
fabricated and manipulated allowing investigation of various configurations. Although
much larger in size than would be practical for most flow control purposes, these
devices provided a sufficient range of values of St; for general conclusions to be
drawn regarding their behavior with this parameter. The scaling of device size with
flow parameters will be discussed in Section 4.5.

The ‘Membrane’ device shown in Figure 3-1 was made using a 170 um thick brass
shim bonded at its edge to steel washers. A small rectangular Nickel plated PZT-5H
piezo-ceramic (250 pm thick) was bonded (using epoxy and silver paint) with one
short edge rigidly fixed to the edge support. Since the purpose of the piezo-ceramic is
only to excite the membrane at its resonant frequency, it may be small compared to
the membrane size so as to minimize the interference on the motion of the membrane.
In this case, it measured R/4 in length and R/10 wide, where R is the membrane
radius. A reinforced cap was mounted over the support washer, creating a 1.2 mm
deep closed cavity. The cap consisted of a 1 mm thick plexi-glass annulus sandwiched
with a 250 um brass shim. The jet exit hole was drilled through this shim, permitting

an orifice flow. Hole diameters varied from 120 gm to 3.5 mm. Contact wires (24
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Figure 3-1: The circular symmetric ‘Membrane’ actuator is illustrated here in cross
ection, showing the position of the piezo-ceramic and contact wires.
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Figure 3-2: The ‘Springboard’ actuator shown eccentrically mounted over a cavity.
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awg) were soldered onto the membrane and the ceramic.

The ‘Springboard’ bimorph, shown in Figure 3-2 was made up of a brass shim /
piezo-ceramic sandwich (each 250 pm thick). The two materials were bonded together
with epoxy and silver paint and then cut to size with a die saw. Wires were soldered
onto the shim and piezo-ceramic. The cavity was cut out of a plexi-glass block.
The bimorph was rigidly bolted to the plexi-glass support to form the springboard.
Springboards were made 15 mm long and varied in width from 2 to 6.5 mm. The
cavity size was fixed at 16 mm long, 7 mm wide and 2 mm deep.

Since both devices work on the same principal, a detailed study was first made with
the ‘Membrane’ device and parallels were then drawn with the ‘Springboard’ device.
In order to determine the structural characteristics of the actuators, an inductive
sensor with a resolution of 5um was used to measure the deflection of the springboard
and membrane. Both actuator and sensor were held rigidly to a firm base so as
to minimize structural vibrations. The measurements were made at the maximum
deflection points for each actuator. The amplified signal from a digital function
generator was used to provide the input to the devices. The dynamic response was
measured using a sinusoidal sweep input about the resonant frequency of each device,
which was obtained experimentally. The results were analyzed in terms of Bode plots.
This procedure was carried out at different input voltages (from 5 to 90 V) in order
to investigate amplitude characteristics and the linearity of the device response.

The jet characteristics of the device were investigated by using a constant tem-
perature hot wire anemometer to measure the axial velocity component in the jet .
The hot wire probe was traversed across the jet at different axial distances from the
exit.

To minimize structural differences that arise during fabrication of the actuators,
the membrane diameter was kept constant at 25.4 mm, while the jet exit hole diameter

was varied from 120 ym to 3.5 mm, so as to obtain Stokes’ parameters of 2.4 to 30.
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Chapter 4

Results and Discussion

The frequency of the fundamental mode computed using Equations 2.1 and 2.10
agreed well with experimental data, with errors of less than 5 %, indicating that the
‘Membrane’ actuator behaves as a clamped circular plate and negligible interference
- was introduced by the piezo-ceramic. Also, this indicates that the ‘Springboard’
device behaves like a rigid beam supported by a spring at one end as modeled, that
is, almost all the bending occurs at the fixed end to achieve larger tip deflections. A
typical Bode plot for a ‘Membrane’ actuator with St; = 15.2 is plotted in Figure 4-1
and shows an approximate second order behavior with a 180° drop in phase and a
20 dB /decade roll-off in magnitude. Thus the assumption of a second order equation
of motion (Equations 2.20 and 2.17) is valid, at least to a first approximation and
non-linearities are small and may be analyzed using perturbation theory.

The sharpness of the peak in the transfer function provides a measure of the
damping in the system in terms of @), the quality factor and its position provides the
fundamental mode precisely. The @ corresponding to Figure 4-1 is 9 and indicates
a lightly damped system (a non-dimensional, linear second order damping coefficient
of 0.05).

The model described by Equations 2.16 was solved using a fourth order Runge-
Kutta algorithm and the results matched experimental data well, as shown in Fig-
ure 4-2. The input was a burst of 100 periods at the fundamental frequency of 1750

Hz. By matching the rise and decay time of the membrane alone (that is, without
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Figure 4-1: Bode plot of a typical ‘Membrane’ actuator response; Sty = 15.2, input
amplitude of 20 V and fundamental frequency of 1750 Hz.

the closed cavity), it was possible to extract the structural stiffness and damping
coefficients (in this case the stiffness, Ky = 120 x 10 N/m and the damping constant,
Co = 430 Ns/m).

4.1 Non-Linear Characteristics

A plot of the transfer function at higher frequencies, indicates the existence of a
super-harmonic mode at twice the frequency of the fundamental. Since no forcing
was applied at the harmonic frequency, ivs magnitude was relatively small but was
seen to grow with the square of the input amplitude (not shown). Phase information
was noisy and unreliable. Cleaner data may be obtained if the system is forced at a
single frequency corresponding to its fundamental mode. A sweep input, no matter
how slowly modulated reduces the effective forcing at all frequencies. This has an

effect on the absolute magnitude of the response but provides a true transfer function.
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Figure 4-2: A typical burst input across the piezo-ceramic is shown in (a) and leads
to a measured response (b), that may be compared to numerical results (c), for a
‘Membrane’ actuator. Experimental data corresponds to an actuator with Sty = 15.2,
input amplitude of 20 V and fundamental frequency of 1750 Hz.
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Figure 4-3: Contours of the transfer function amplitude for ‘Membrane’ actuators of
various Stq4; (a) Closed cavity (wo = 1990H2), (b) Sty = 3.5 (wo = 2000H?2), (c)
Sty = 9.8 (wp = 1940Hz2) and (d) Sty = 17.6 (wo = 1950H 2) where wy is the low-
amplitude natural frequency. The transfer functione have been normalized for unity
zero-frequency gain and contour line increments are identical for all plots. Darker
shades correspond to higher values.
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Thus, linear and non-linear system characteristics, namely fundamental frequency and
amplitude, harmonic frequency and amplitude, damping and fundamental frequency
shifts with input amplitude may be extracted from a contour or surface plot of the
transfer function, plotted against frequency and input amplitude. Figure 4-3 is a
series of such contour plots describing the behavior of the actuator with St; and
input amplitude. The contour line increments in each plot is identical.

When the cavity is fully sealed, (Figure 4-3a), the contour lines are closely spaced
and there is a distinct increase in natural frequency with input amplitude and a
modulation of the peak transfer function amplitude. This shift persists until an
input amplitude of 50 V, above which the natural frequency remains constant. This
behavior may be explained by considering the large fluid compression that introduces
terms of order z? and z3, which, from Equation 2.17, lead to a quadratic amplitude
modulation and a shift in natural frequency with input amplitude, respectively. As
the input amplitude rises to a critical value, the membrane displacement reaches a
maximum (saturation) and its response is unchanged for higher input amplitudes.
The closely spaced contour lines indicate that the stiffness term dominates here and
damping is relatively light (Q = 17).

With a small exit hole (Figure 4-3b) corresponding to a St, of 3.5, the contour lines
are spaced much further apart and negligible frequency shift or amplitude modulation
is observed. The transfer function peak amplitude is also smaller than that of the
sealed case. This suggests that compressibility effects are negligible at the order
of z3. Furthermore, at this Sty the viscous layer penetrates the entire orifice area
and reduces the mass flow through it so that non-linear terms associated with the
unsteady jet velocity are also small. The reduction in the peak amplitude of the
transfer function comes about from the large added mass term similar to that in
Equation 2.20. The introduction of fluid damping through the orifice causes the
increased separation between contour lines (Q = 10).

As St4 increases (Figure 4-3c), the contour lines move further apart and a pro-
nounced frequency shift develops. Now, the viscous layer in the orifice diminishes

so that larger unsteady velocities develop which strengthen the damping term in
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Equation 2.20 that lead to a relatively large natural frequency shift. Note that the
term associated with the unsteady jet also introduces added linear damping, whose
effect is readily observed by the increased separation between the contour lines in
the vicinity of the fundamental frequency and the reduction in the low-amplitude
fundamental frequency (Q = 6). As the input amplitude increases, the peak transfer
function amplitude rapidly rises to a maximum and remains constant, indicating that
the dominant effect at this Stokes’ parameter is that from the unsteady jet velocity.

At very large Sty (Figure 4-3d), the contour lines are more closely spaced and
no frequency shift or amplitude modulation is observed. The relatively large orifice
size eliminates the effect of fluid non-linearities and the flow may be considered to
be effectively incompressible and inviscid. The shift in the natural frequency van-
ishes and the contour lines are more closely spaced, indicating that the reduced flow
acceleration through the orifice makes the fluid damping term negligible (Q = 9).
Furthermore, the peak transfer function amplitude remains constant.

Thus, the behavior of the actuator with St; may be approximated by considering
the limiting Equations 2.20 and 2.17 individually. In reality, there is an intermediate
range of Sty where both effects apply simultaneously and coupling terms may arise.

Further non-linear analysis is needed to obtain quantitative solutions in this range.

4.2 Jet Characteristics

Figure 4-4 illustrates the characteristics of the jet in terms of its mean and fluctuat-
ing center-line velocity and momentum thickness with respect to the non-dimensional
axial distance from the orifice, z/d. Figure 4-4a shows that the center-line velocity
accelerates to a maximum at z/d = 10, after which there appears to exist a jet whose
mean velocity varies as 1. This behavior is indicative of an axisymmetric jet. For
z/d < 10, the jet is not fully developed and as Figure 4-4c indicates, consists of large
fluctuations that correspond to the oscillating membrane. Figure 4-4b describes the
extent of the shear layer with streamwise distance and shows an initially large region

of influence, followed by a rapid reduction up to z/d =~ 10. The layer then grows
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linearly with z/d, again indicating the development of an axisymmetric jet. The
results suggest that in the region close to the jet exit, a ‘doughnut’ shaped axisym-
metric vortex structure surrounds the emanating jet, analogous to the longitudinal
vortices observed by Jacobson and Reynolds [4]. This phenomena is caused by the
irreversible unsteady orifice flow and its influence extends to the point where a stable,
well developed jet can form. Figure 4-4c also shows the rapid decay of the fluctuat-
ing component with the streamwise distance which begins only after the coherent jet
forms.

In Figure 4-5a, the jet velocity profiles for z/d > 10 are plotted in similarity
coordinates. It clearly shows that the jet is similar in the outer region. Figure 4-5b
is a plot of the maximum center-line velocity, which occurs at the beginning of the
similar jet, against Sts. The plot indicates an optimum St4 of approximately 15, at
which the actuator performs most efficiently (maximum Reynolds number of 150).
This compares well with the optimum value of 16 predicted by Equation 2.28. Below
this value, fluid non-linearities are dominant as discussed earlier and above this value,
the flow is essentially incompressible and inviscid (solid line) and the velocity falls
with increasing orifice diameter. - This critical St; corresponds well with what was
observed in the Section 4.1 as the point where the flow may be considered to be

essentially incompressible and inviscid.

4.3 Comparisons of the Springboard and Mem-
brane Actuators

As mentioned previously, both devices work on the same basic principle. The key
difference being that the ‘Springboard’ device has two gaps for fluid flow out of the
cavity whereas the ‘Membrane’ device is restricted to having only one. Hence when
Stq gets small enough for fluid effects to cause significant resistance, the ‘Springboard’
device allows fluid to flow through the larger gap, effectively sealing the narrow gap.

Compressibility effects become negligible and the mean velocity, u, is prevented from
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getting large enough for non-linea. fluid effects to be present unless both gaps corre-
spond to low St;. Similar experiments carried out with the ‘Springboard’ actuator,
show no natural frequency shift or super-harmonic growth, except at large input am-
plitudes where the structural deflections become large enough to cause non-linear
effects. Furthermore, for St; less than approximately 1.5, no jet flow could be de-
tected over the narrow gap. Hot wire measurements were not made closer than 5 gap
widths away from the exit and errors in measuring the gap width could lead to errors

of £10% in St,.

4.4 Optimal Actuator Design

Taking into consideration the behavior of the actuators discussed here, a modified
design for resonant actuators is proposed. It encompasses the benefits of both devices
and utilizes some of the subtler fluid properties observed in an effort to increase
efficiency. Figure 4-6 shows a schematic of the device. It is a cantilever mounted in
a closed cavity with a slit at one end for the jet exit. The springboard is made, such
that the gaps around it are small enough so that St; < 1.5, making a seal. A hole
made in the springboard is covered with a flexible membrane. This acts as a valve,
allowing fluid to flow in on the down stroke but closing on the up stroke, enabling fluid
to fill the cavity from an external source. This increases the efficiency of the device
by reducing viscous loses across the exit slit. The external source of fluid also enables
the use of a high concentration of devices without competition for the available fluid

in the flow.

4.5 Scaling Arguments for Flow Control

For practical flow control purposes, the length, time and velocity scales of an
actuator must be comparable to those associated with the flow so as to achieve full
controllability. Scaling arguments regarding actuator performance may be developed

for particular flow fields for which characteristic scales are well defined. The following
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Figure 4-6: Proposed design for second generation actuator

approach develops an argument for turbulent flow control based on a fixed optimal
Stokes’ parameter.

In turbulent flow, fundamental flow structures scale with viscous lengths and times
that, in turn, scale with the flow Reynolds number. To a first approximation, it may
be shown [9] that the viscous length scale, I*, varies as 6 Re, S 8, times scale, t*, varies
as 82Re; "/* /v and the velocity scale, u*, varies as vRey/® /6, where Rey = Uno8/v is
the turbulent flow Reynolds number based on the local momentum thickness, 8, and
the characteristic flow velocity, U, .

Using the structural model developed in Section 2.1 and imposing a fixed Stg,
scaling arguments may be made regarding actuator configuration in a turbulent wall
flow. In particular, the characteristic length, time and velocity scales of the device
normalized by corresponding turbulent quantities may be expressed in terms of a
Reynolds number based on the local momentum thickness. The following analysis

assumes a well fabricated ‘Membrane’ device with a high quality factor. The charac-
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teristic length normalized with the viscous length scale may be written as:

P U < o/8 D
dflI*=d* ~ { B } Stq Re) = (4.1)
where p, and D are the membrane material density and diameter, respectively. The
first factor on the right hand side of Equation 4.1 is the parameter consisting of the
device and fluid properties that imposes a given Sty. With both St; and the flow
Reynolds number specified a prior, it indicates that the membrane size is required to
vary as the local momentum thickness in order to maintain a given resolution. Thus,
if such devices were arranged on a large surface their sizes would vary with location
to maintain adequate resolution.

In general, the response time pf the control jet is several times the period of the
forcing function (in the above experiments, an average of 10 cycles were needed before
the steady state condition was reached). To maintain good control performance the
ratio of the flow to device time scale must be much greater than unity and be kept at
a relatively high value throughout all flow conditions. The characteristic time scale
normalized by the viscous time scale may be written in terms of a turbulent Stokes’

parameter:

214 -
vwt* = \/wl‘z/u =St ~ ({%} Re;/8 %) . (4.2)

Equation 4.2 indicates a similar linear relationship between device size and momentum
thickness for time scales as for length scales.

The jet velocity will depend on the forcing method and amplitude. These factors
influence the zero frequency membrane amplitude, o, and the cavity compression,
respectively. An approximation may be made by assuming an incompressible flow
and a circumferential forcing method. That is, the force is applied around the edge
of the membrane (say, electrostatically [2]). In this case, the characteristic velocity

normalized by a viscous velocity scale may be expressed in terms of the device and
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fluid properties as follows,

v? _ss D\
Ujer/u' ~ Qo ({pEa,tz,}Stheos/s-o—) . (4.3)

The quality factor of the device, @, appears in Equation 4.3 because it is a measure
of the maximum attainable amplitude, while the zero frequency amplitude gives an
indication of the efficiency of the forcing method. The device size is again scaled with

the local momentum thickness as a similarity parameter.
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Chapter 5

Conclusions

A model for resonant fluid actuators that create an unsteady jet through the
compression of a cavity was developed. It includes five coupled, non-linear state
equations. Compressibility and unsteadiness are shown to lead to non-linear fluid
effects that dominate when the jet exit size is small. The model was compared to
experimental data and successfully predicted trends in the behavior of the ‘Membrane’
actuator. The Stokes’ parameter based on the jet exit diameter is used to describe
the behavior of the device and the results indicate that for this particular actuator
configuration, St; ~ 15 defines an upper boundary for fluid effects, above which,
the jet characteristics is governed by incompressible theory . This critical value is
accurately predicted by theory. It also defines the most efficient configuration for a
given ‘Membrane’ actuator design.

A similar, axisymmetric jet is observed beyond 10 diameters away from the exit
and sustains itself beyond 100 diameters. Close to the exit, the flow irreversibilities
lead to a complex, vortical flow structure that could not be accurately investigated
in this experiment. Scaling arguments for the device in a turbulent boundary layer
indicates that the associated viscous lengths and times, scale with the flow Reynolds

number and the local momentum thickness.
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