A DIGITAL RADIO MODEM FOR THE
MOBILE ROBOT PROJECT

by

Carl Martin Pietrzak, Jr.

Submitted to the department of
Electrical Engineering and Computer Science
in Partial Fulfillment of the
Requirements of the Degree of
Bachelor of Science
in Electrical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1985

© Carl Martin Pietrzak, Jr. 1985

The author hereby grants to M.I.T. permission to reproduce and
to distribute copies of this thesis document in whole or in part.

Signature Redacted

Signature of Author
Department of Electrical Engineering and Computer Science
May 29, 1985

Signature Redacted

Certified by ____________________________ Professor Rodney A. Brooks
Thesis supervisor

Signature Redacted

Accepted by ____________________________ Professor Leonard A. Gould
Department Committee Chairman
A DIGITAL RADIO MODEM FOR THE
MOBILE ROBOT PROJECT

by

Carl Martin Pietrzak, Jr.

Submitted to the Department of
Electrical Engineering and Computer Science
on May 29, 1985 in partial fulfillment of the
requirements for the Degree of Bachelor of Science in
Electrical Engineering

ABSTRACT

Using four Motorola MX340 hand-held radios, a 12 Kilobit/sec. radio modem was constructed. It is intended to be
flexible and rugged enough to be used in any project at the
AI Lab requiring such a device. A surrounding system
including antennas, duplexers, and interface circuits was
designed to utilize this modem in the Mobile Robot Project.
The modem will provide a better environment for the
development of the robot system by ensuring fast and
reliable communications with a LISP Machine. The LISP
Machine was appropriately modified to interface with the
modem.

Thesis Supervisor: Dr. Rodney A. Brooks
Title: Professor of Computer Science
To my parents for their love and support.
ACKNOWLEDGEMENTS

I would like to thank Prof. Brooks for giving me the opportunity to complete the work I began on this modem through UROP by advising this thesis. He shows a degree of support and enthusiasm toward me and the other students working on the Mobile Robot Project that is uncommon in the department of EECS; it was a pleasure working for him.

I would like to thank my student coworkers for their assistance with this thesis. Ed Kim provided an excellent sounding board for my RF designs, John-Paul Mattia and Sathya Narayanan helped me with the LISP Machine modifications and programming, and Anita Flynn helped me find equipment and other facilities around the AI Lab.

I am grateful to Bill Chichairo of Lincoln Labs for his analysis of the radios and the duplexers, and to Craig Rogers for running the scanner test.

I am especially grateful to Motorola, Incorporated for the donation of the radios, without which nothing could have been done. I appreciate the assistance I was given by Sue Thomson, John Kuzma, and Doug Mach to achieve the donation. I am also grateful to Eric Ziolko, Al Wilson, and Paul Bocci for their help as technical consultants. Each provided valuable information towards the modification of the radios and their implementation in the modem system.

And special thanks to Irina Rakin for her help with the
technical drawings, machining of the copper boxes, and for all those things that cannot be defined on paper and for those which would be to numerous to list.
TABLE OF CONTENTS

I. INTRODUCTION ... 9

II. THE RADIOS ... 11
 A. Why Use MX300's? ... 11
 B. Further Literature ... 13

III. FROM WALKIE-TALKIES TO MODEM ... 15
 A. Modifications .. 15
 B. System Structure ... 16
 C. Other Issues ... 17

IV. INTERFACING THE MODEM TO ROBOT SYSTEM HARDWARE 18
 A. Line Levels ... 18
 B. Synchronization ... 18
 C. Constraints on the Data Sent through the Modem .. 19
 D. CADR Modification ... 22
 E. Robot Interface .. 22

V. RF ISSUES .. 24
 A. Isolation .. 24
 B. Antennas .. 26
 C. Interference .. 27

VI. SOFTWARE ISSUES ... 28
 A. Timing Constraints ... 28
 B. Full Duplex vs. Half Duplex .. 29
 C. Splatter Filters and Linear Coding of Data ... 30
 D. Error Correction Codes ... 30

VII. CONCLUDING REMARKS .. 32

APPENDIX A: MX340 SPECIFICATIONS .. 33
APPENDIX B: LISP PROGRAMS .. 35
APPENDIX C: FULL DUPLEX PSEUDO-CODE ... 38

Tables and Figures .. 41
List of Figures

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>DVP Transmitter Block Diagram</td>
<td>41</td>
</tr>
<tr>
<td>2.</td>
<td>DVP Receiver Block Diagram</td>
<td>41</td>
</tr>
<tr>
<td>3.</td>
<td>Controls on top of MX340's</td>
<td>42</td>
</tr>
<tr>
<td>4.</td>
<td>Connection Pad Signal Locations</td>
<td>44</td>
</tr>
<tr>
<td>5.</td>
<td>Data Links</td>
<td>45</td>
</tr>
<tr>
<td>6.</td>
<td>Splatter Filter Effects</td>
<td>46</td>
</tr>
<tr>
<td>7.</td>
<td>CADR I/O Board Modifications</td>
<td>47</td>
</tr>
<tr>
<td>8.</td>
<td>Handshake Timing Test</td>
<td>48</td>
</tr>
<tr>
<td>9.</td>
<td>Duplex Operating Curves</td>
<td>49</td>
</tr>
<tr>
<td>10.</td>
<td>Isolation vs. Antenna Separation</td>
<td>50</td>
</tr>
<tr>
<td>11.</td>
<td>RF Isolation System</td>
<td>51</td>
</tr>
<tr>
<td>12.</td>
<td>Explosion Diagram of Copper Box</td>
<td>52</td>
</tr>
<tr>
<td>13.</td>
<td>Robot Antenna Assembly</td>
<td>54</td>
</tr>
<tr>
<td>14.</td>
<td>Spectrum Analysis of MX340's (Wide View)</td>
<td>55</td>
</tr>
<tr>
<td>15.</td>
<td>Spectrum Analysis of MX340's (Narrow View)</td>
<td>56</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MX340 Channel Frequencies</td>
<td>43</td>
</tr>
<tr>
<td>2.</td>
<td>Parts List for Fig.12</td>
<td>53</td>
</tr>
<tr>
<td>3.</td>
<td>1 1/2 days Scanner Test</td>
<td>57</td>
</tr>
</tbody>
</table>
INTRODUCTION

The Mobile Robot Project under the direction of Professor Rodney Brooks differs from other robot projects in several ways, one of which is its goal of developing a robot which operates in the real world. To accomplish this goal, the robot must operate using robust, real-time software and control systems. Addressing the software and computer architecture issues is the primary concern of this project. Prof. Brooks proposes solutions to several of these problems in Working Paper 265, but this paper mainly builds a framework in which the evolution of software and system structure will occur. To provide a better environment for system development Prof. Brooks decided to simulate computers on-board the Robot with a dedicated CADR and connect the CADR to the robot via some communications link. The construction of such a link is the topic of this thesis.

I first undertook this project through a UROP titled Robotics and Radio. In the interest of continuity of information, the results of this UROP are described in addition to the work which was conducted afterwards specifically for this thesis.

To meet the goals of the robot project I decided to construct a high-speed radio modem. A radio link allows the robot to communicate with its host computer from any location
within the radios' range. This digital radio modem was constructed with four goals in mind: 1) To provide reliable communication 2) at the highest possible speed 3) using hardware that is simple to use by people not very familiar with radios 4) and easy to adapt for use in other systems at the AI Lab.
THE RADIOS

Why Use MX300's?

No commercially available radio modems exist that exceed 2400BPS data rates for a reasonable price. However, while working for Motorola, Inc. through the VI-A program, I became familiar with the MX300 series DVP (Digital Voice Protection) hand held radios. MX300 series radios are highly advanced FM "Handie-Talkies which can operate in either a standard (clear) or private (coded) mode. Clear mode operation employs standard narrow band FM transmitting and receiving techniques. Of greater interest, however, is the digital circuitry used in DVP coded mode.

Before modification, the DVP section of the radios' transmitters could be described by the block diagram in Fig.1. The CVSD (continuously variable slope delta) digitization changes an analog voice wave into a string of 1's and 0's. The voice wave is sampled at 12 Kilobits per second. Digitizing the voice wave permits easy processing of the information. Specifically, these radios employ a public key encryption algorithm to create a high security link to other radios. Encryption is performed in a separate hybrid, whose pinouts are easily accessible. The output bit stream of the encryption hybrid is fed to the modulator. Modulated output is filtered to remove the tremendous band splattering caused by the
impulse-like transitions in the digital signal, and then amplified and radiated.

The receiver section uses the same digital components as the transmitters though the RF circuitry is naturally particular to receivers, as shown in Fig.2.

Because of their digital circuitry and speed of data transmission, these radios are especially well suited to communicate with computers. Recognizing this fact, Ed Kim a fellow VI-A and UROP student, and I negotiated with Motorola for the donation of six of these radios. Motorola obliged and we received six, 2 watt, UHF, MX340 hand-held radios and various accessories including ni-cad batteries and antennas. Specifications of the radios are provided in Appendix A.

The radios have a minimum number of controls to allow ease of operations. The location and setting of these controls are shown in Fig.3. The Volume/On/Off and Channel Select knobs are self explanatory. A frequency listing for the channels is provided in Table 1. Note that channels 3,4,5,11, and 12 are currently unusable in the modem system. These channel frequencies as well as the others, can be reprogrammed by a Motorola Service Center if desired. The red Transmit Light is illuminated when the radio is transmitting. The antenna jack normally connects the antenna to the radio, but is bypassed in the modem system, as will be described later. The squelch is a variable threshold that will enable audio output only if a sufficiently strong signal is received. This feature is used by radio operators to avoid constantly listening to background
static while listening for messages directed to them. The squelch is functional only when the receiver is operated in clear mode. In coded mode, the receiver relies on a squelch that is fixed internally. Since the AI Lab contains an especially RF noisy environment, and the received signals from our modem will be strong, the receivers will be operated in clear mode and the squelch threshold will be set at a high value. The headphone jack allows the attachment of external headphones. This feature is not relevant to the modem. The last control on top of the radio is the mode switch. The markings are somewhat obscure and should be explained. The position marked "0" places the radio in "clear" mode. In this mode the radios operate the same as any commercial FM walkie-talkie, using standard FM voice transmission and reception. The position marked "4" enables the PL (Private Line) circuitry. The radio still operates in clear mode but also transmits a sub-audio tone with each voice transmission. In this mode the receiver will not unsquelch (enable audio output) unless this sub-audio tone is received. The audio output is also subject to the squelch control. The position marked "0" enables the radio's DVP and related digital circuitry. In this "coded mode" the variable squelch control is disabled and only a sufficiently strong digital signal will unsquelch the radio.

Further Literature

This chapter provides a brief overview of the MX300 series radios and their operation. More detailed information,
including schematics and alignment procedures, can be found in Motorola's "MX300-S Series Handie-Talkie" Portable Radios with Digital Voice Protection service manual, and MX300 Series "Handie-Talkie" FM Two-Way Portable Radios Maintenance Manual.
FROM WALKIE-TALKIES TO MODEM

Modifications

Figs.1 and 2 suggest a simple way of changing the radios from walkie-talkies to parts of a modem: cut the signal path from encryption to modulation on the transmitter and from limiting to decryption on the receiver. This modification turned out to be very easy. In all Motorola radios, most useful signal lines are accessible via "I points" and other well marked solder connections. All of these lines in the MX340's are available on the connection pad of Modu-Flex Circuit NLE9340A, which resembles the back side of a 38 pin dip, though it is not. Modification amounted to simply soldering wires to these connections and connecting them to the computer's hardware through some simple interface circuits.

The flex circuit connection pad is located at the bottom of the radio on the circuit board side. Connection No.1 is at the top right corner of the pad and No.38 is below it. Fig.4 shows the location of the modification connection on the pad.

CSI is the chip select for the encryption/decryption hybrid. Grounding CSI with a jumper effectively makes the cut described above. Normally, the encryption hybrid drives CTO with its output bit stream and is driven by CTI, the bit stream recovered by the radio's receive circuitry. Deselecting the hybrid allows computer streams to be inserted and extracted via
lines soldered to CTO and CTI, respectively. CTO and CTI are TTL compatible, though communication with them must occur synchronously using CLK as the synchronizing clock.

I37 can be used to remotely toggle between receive and transmit. In the mobile robot system, one radio will be dedicated to transmitting and one to receiving at each location. This line can therefore be used to save power by turning the transmitter on and off. It can also be used as an "Acknowledge" or "Request to Send" hand shake line. Turning the transmitter on involves grounding I37 (the PTT line, as it shall be called). Less than 0.5 mA must be drained. Setting I37/PTT to high impedance will disable the transmitter. I36 is another useful line, unsquelch or UNSQ. This line goes low when a sufficiently strong signal is detected opening the squelch. UNSQ provides a "someone is talking to you" signal and when used together with PTT, completes a handshake.

System Structure

The system developed using the appropriately modified MX340 radios is a 12 Kilobit per second, full-duplex, radio modem. Each site, either the robot or the CADR, maintains two radios, one dedicated to transmitting and one to receiving. Two radio links are set up, one "HI" frequency and one "LO" frequency. Fig.5 illustrates the arrangement. The robot's transmitter transmits on a frequency 5MHz below that on which the CADR's radio transmits. The robot's receiver listens on the CADR's transmit frequency and the CADR's receiver listens on
the robot's transmit frequency. These two radio links provide full duplex (simultaneous transmit and receive) operation.

Other Issues

The modem has been developed at the system level. The rest of this thesis concerns itself with specifying the modem at a lower level. Connection to computer hardware, software, and RF issues will be discussed.
INTERFACING THE MODEM TO THE ROBOT SYSTEM HARDWARE

Line Levels

The modem, which consists of a transmitter and a receiver, provides six signal lines which must be connected to external computer hardware. The lines and their voltage levels are listed below:

- RXDAT/TXDAT: 0v low, 5v high
- RXC/TXC: 0v low, 8v high
- PTT: drain < 0.5mA to assert
- UNSQ: 0v low, 5v high

All signals except the clocks TXC and RXC are TTL compatible. The clock lines must be buffered with a CMOS 14049 inverting buffer. An inverting buffer is necessary as opposed to a non-inverting one, since the Robot and CADR USART chips require TXCLK and RXCLK.

Synchronization

To transfer data to and from the radios, external hardware must be synchronized to the radios' clocks. Each radio contains a 12 KHz clock for its internal digital circuitry and the computer must synchronize to each separately. Both the CADR and Robot employ the 2651 UART for their serial I/O. This chip has full duplex capability through the use of separate transmitter and receiver sections and their respective external clock pinouts, RXC and TXC. The 12 KHz clock signals supplied by the
radios are well within the chip's external clock specifications.

Constraints on the Data Sent through the Modem

The radios are, in a broad sense, transparent to the data sent through them. Protocol such as stop and start bits and parity are unnecessary as far as the radios are concerned; they will send whatever is given to them. However, the modem is an AC-coupled data link. The transmitter splatter filter removes DC components to reduce output bandwidth. As a result, setting the TXD line high or low for many clock cycles, as is the usual idle condition on a hard wire link, is meaningless. The transmitter filter will cause some arbitrary default condition to be sent and as a result of its capacitors being fully charged or discharged, will react sluggishly to a sudden transmission of data. A character sent after setting TXD low or high for, say, 1000 clock cycles will not go through the filter and thus not be recovered at the receiver. To prevent this condition, the idle pattern on the TXD line should be a square wave. The line may be set low or high for a short time on the order of 10 clock cycles, signaling that data is about to be transmitted, but some fairly high frequency square wave should be placed on TXD between packets of information. 6KHz is of course the highest frequency square wave (and is the letter "U" in Ascii, incidently) that can be sent but the wave could just as well be 1 KHz. Indeed, different frequency square waves may be used to inform a distant station of local status.
conditions. Such possibilities will be discussed later in this paper.

Even using square waves between data packets, may not cure errors caused by the splatter filter. The time constants in this filter were optimized at Motorola for use with encrypted data. This means that the data must have a fairly even distribution of 1's and 0's. Actual 1 and 0 evenness versus error rate tests were not performed, but I discussed the issue with Motorola engineers and ran a rough test.

The test set-up and results are shown in Fig.6. the transmitter's RF was fed directly into the receivers through an attenuator to eliminate environmental interference. The Lisp machine was loaded with the programs SerialMod and TestSerial whose listing are provided in Appendix B. Evaluating:

(forever-sent-stream mobot serial (stream 'UUUUU))

asserted a 6 KHz square wave, on TXDAT and an oscilloscope proved that the wave appeared on RXDAT with no errors. Changing the second argument to (stream 'TTTTT) creates a non-random continuous wave to be sent. Ascii for T is 01010100. The scope revealed some errors on RXDAT, about one occurrence every second. It is expected that these are burst rather than single errors. Both the noticeable length of time of error on the scope and an understanding of the cause of the errors lead me to this conclusion. The scope was triggered by TXDAT so trigger loss did not cause the delay. Still worse results were obtained when sending a stream of A's whose Ascii code is 01000001. RXDAT correctly recovered the character for only a
tenth of a second or so after the A's were asserted at TXDAT. The recovered wave then degraded as shown in Fig. 6.

The immediate solution which comes to mind is to use the encryption already provided within the radios and make "the cut" between the CVSD and encryption in Figs. 1 and 2. This solution is undesirable, however, because of the nature of the code. The code uses several maximal-length number generators to produce a non-linear, public key code. This code is self synchronizing and needs no preambles. While such a code provides a high degree of security, synchronization is not instantaneous. The resulting trade-off is error multiplication. One error in the text produces 32 errors at the destination. The Robot operates in a noisy environment and requires a more reliable data link. Using this code is out of the question.

However, sending an even number of 1's and 0's on the average is not too difficult. Data, by its very nature, should be fairly even within 1000 bit blocks. It is worth while to attempt a system run without taking any measures to even out signals sent through the modem. If further encoding is necessary, a simple linear code should provide an even enough distribution of 1's and 0's. One example:

append 00 if number 1's > number 0's
01 if number 1's = number 0's
11 if number 1's < number 0's

Such a code maps eight bits into ten. If encoding is performed in hardware, 9600 baud transfers can be maintained.

8 bits / 10 bits = 12000 bits/sec / 9600 bits/sec
One simple hardware implementation uses two EPROMs. The ASCII character would be presented at the EPROM's address lines. The content of that address would be the 10 bit code which would be fed to the UART.

A surer and simpler fix would employ Manchester encoding. Manchester encoding maps a 1 into a 10, and a 0 into a 01. Speed of data transfer would drop by a factor of two, but reliable transfer of data would be assured.

CADR Modification

Interfacing the radios to the CADR is a relatively painless procedure. A direct connect to the CADR's serial port is not possible because of the +12v to -12v RS-232 output level. The radios must directly access the 2651 USART on the I/O board. The wire connections and their locations on the I/O board are listed in Fig.7. Also listed are the color codes for the wires I have installed on CADR-24. These wires are not intended to be permanent connections, rather temporary test patches. I did not connect PTT to the USART since testing required me to switch it manually. However, TTL DTR OUT may be a suitable connection. To activate this electrical protocol, the USART must be initialized as shown in the program SerialMod.Lisp in Appendix B. A power source is also necessary, of course.

Robot Interface

Interfacing the Robot's USART is the same procedure as
that for the CADR. However, power is more of an issue on the Robot than at the CADR. The Robot supplies only a finite amount of power from its 8v batteries. The PTT line on the radios was originally installed with this issue in mind. While the receivers draw very little current (see MX340 specifications in Appendix A), the transmitters each draw an amp and a half. Robot control of the PTT can help save power by switching the transmitter on and off, instead of operating it at full duty cycle. The radios are nevertheless thermally capable of operating at full duty cycle.
RF ISSUES

Isolation

As shown in Fig. 5, the modem maintains two radio links 5 MHz apart in frequency. To accomplish this each site contains a transmitter and a receiver operating simultaneously. Even though 5 MHz may seem like enough separation in frequency for simultaneous operation, it is not. The lower graph in Fig. 9 reveals that 43 dB of isolation is required between the transmitter and receiver to prevent the former from lowering the sensitivity of the latter. 46 dB of transmitter noise attenuation is also required.

One way to isolate a receiver and transmitter is to physically separate the radios and their antennas. Required distance of separation can be found from the graphs in Fig.10. The required 50 feet of horizontal separation or 7 feet of vertical separation are both impractical for the Robot's radios.

Since isolation is essential for reliable communication of data and given that a significant amount is needed, I decided not to compromise the system construction regarding this issue. Figs.11 and 12 illustrate measures taken to isolate the radios. Table 2 provides a parts listing for the explosion diagram in Fig.12. Each radio is encased in 40/1000 inch copper boxes. The boxes were formed from a single piece of copper obtained from
the Research Laboratory of Electronics and machined at the Bld. 36 RLE shop. The corners of the box were solder-welded shut with a propane torch obtained from the Tokamak facility also in Bld. 36. A torch is necessary not because copper is difficult to solder, but because the heat conductivity of a solid piece of copper is too great to use an iron.

Copper was chosen over aluminum because of its solderability, workability and excellent heat dissipation characteristics. Double sided PC board would have been easier to solder and work with than solid copper, but is not as mechanically strong.

To prevent RF from traveling on the signal wires, 100pf feed-through capacitors were installed in the box and two ferrite beads were placed near the capacitor end of the signal wires inside the box. The installation of the capacitors required drilling holes, tinning the holes and the capacitors with solder, then placing the capacitors in the holes and heating the surrounding copper with a torch. After installation, the capacitors were tested using the 38-500 lab's capacitance bridge to make sure the torch did not damage them. RF exits the box via a BNC connector which is not soldered to the box, but is connected via two star washers. Double-shielded 50 Ω-coax carries the RF to a duplexer. The duplexer consists of four resonant cavities which are tuned to provide a high degree of isolation between the inputs. The duplexers were tested by Bill Chiarchiaro of Lincoln Labs and met specification. Each duplexer provides 50 dB of transmitter
noise suppression and 50 dB of receiver isolation with less than 2 dB of insertion loss. Output RF from the duplexer is fed to the antenna via another length of coax.

The only possible source of RF leakage in this system is from the copper box tops. No measures have been taken to electromagnetically seal the crack between the box and the cover plate. However, the copper is flexible, and the six sheetmetal screws appear to leave only a few small cracks. I believe 460 MHz is a low enough frequency not to worry about these cracks. If a higher degree of shielding is desired, copper tape should be used to seal the box.

Antennas

The antenna system which I have specified for the robot project is illustrated in Fig.13. This system has not been constructed, but it meets the requirements of both the radio modem and the television transmitter on the robot. An analogous antenna should be constructed at the CADR.

The modem radios have a longer range than the television, and their antenna occupies the less ideal lower position on the mast. It should, however, be clear of all other equipment on top of the robot. It consists of two sections of brass welding rod which have already been cut. These rods form the two halves of a vertically oriented half-wave dipole antenna. This antenna has superior range and performance with respect to Motorola's supplied vertical antennas.

I have suggested in the diagram that the rods be soldered
directly to a PL259 coax connector. The mounting of the rods deserves more thought, though. The modem and television antennas must be mounted colinearly to provide isolation. They operate 25 MHz apart, but the more isolation, the better. The antennas are omnidirectional on the plane perpendicular to them, but their radiation pattern has a null directly above and below them (on the line connecting the two antennas). This fact should be kept in mind if the Robot is operated on a different floor from the CADR. Still, these antennas supplied with two watts of power from the radios should provide satisfactory coverage throughout NE43.

Interference

The MX340 radios emit a very clean signal, even during digital transmissions. A spectrum analysis of the radios was performed at Lincoln Labs and the results are shown from two perspectives in Figs. 14 and 15. There is no threat of failing to meet FCC standards. In addition, unwanted interaction between the emissions and computing hardware is very unlikely.
SOFTWARE ISSUES

Timing Constraints

The lack of signal lines and "data transfer ready" information available to the computer creates a need to install fixed timing constraints in the computers' software. Two times are especially necessary to know:

1. How soon after UNSQ is RXDAT valid?
2. How quickly can a handshake occur?

The test arrangement pictured in Fig. 8 was constructed to measure these times. The analyzer was triggered using the PTT side switch on the transmitter. About 1 ms of contact bounce was detected,—not bad enough to interfere with results. Tests were performed in the evening to avoid on-channel interference. As expected, reaction times were variable. The amount of time between the assertion of PTT and UNSQ was measured anywhere from 17 ms to 21 ms for the "LO" radios (group 1 in Fig. 8). Over 100 tests were performed to allow for radio heating effects and to set a safe upper bound. Another 100 tests were performed using the "HI" link (group 2 in Fig. 8). I found 30 ms to be a safe reaction time between any transmitter-receiver pair.

These tests were performed with the radios in the same room. Could strength of signal be a factor? A second set of tests were performed, this time with two radios on the 7th floor remotely controlled by two 9th floor radios. This
arrangement is shown in Fig. 9. "Ideal" 60 ms transfers did occur, but not reliably. Several "false starts" occurred in the 60-90 ms time segment; \(\text{UNSQ} \) would disassert several times before settling to "assert". No set of false starts endured for a period longer than 20 ms.

Squelch drop timing, the time between the disasserting of \(PTT \) and \(\text{UNSQ} \), was similarly measured. 140 ms is a safe upper bound on this event. The results reiterated:

1. Time from \(PTT \) assert to \(\text{UNSQ} \) assert across a four radio link where \(\text{UNSQ} \) at the remote site causes an immediate \(PTT \) response = 100 ms.

2. Time for a similar disassertion of \(PTT \) and \(\text{UNSQ} \) = 140 ms.

3. Time computer must wait after the first \(\text{UNSQ} \) is received to be assured a valid \(\text{UNSQ} \) = 20 ms.

Full Duplex vs. Half Duplex

Initially, the modem will be operated at half duplex (only one site transmits at any given time). Full duplex is more flexible, however, allowing either the CADR or Robot the ability to send the other data immediately. While the link does not maintain the required four signal lines for full duplex, DTR, RTS, CTS, DCD, status information can be passed across the link itself in various ways. Appendix C contains the pseudo-code for implementing full duplex operation by using different frequency square waves as radio status signals. At the very least, this code demonstrates the ramifications of the time constraints discussed in the previous section.
Splatter Filters and Linear Coding of Data

As already mentioned, some sort of coding scheme may be required to even out the number of 1's and 0's. This coding need not be performed in hardware and may be more easily done in software.

Error Correction Codes

This modem operates using an inherently noisy data channel, a radio link. Sources of noise include:

- The surrounding computers
- Splatter filter and receiver front end
- On-channel interference from the surrounding metroplex
- Multipathing

The last source deserves explanation. Multipath errors occur when two paths of wave propagation appear. Both paths provide the same quality of signal transmission, but one, because it is a longer path, delivers a signal that is phase delayed with respect to the other. These signals interfere and cause errors. At 460 MHz, multipathing is a serious problem. Even people moving in the vicinity of the radios can act as waveguides, causing multipathing. This problem is further exacerbated by the motion of the Robot's radios since this motion constantly creates multipaths.

These errors can be dealt with. Multipath and splatter filter effects will tend to cause burst errors; 20-50 bits will be knocked out. These figures were given to me by Motorola
engineers who have studied the problem. The solution is to send "interleaved" data. The procedure is as follows: if 30 bytes of data need to be sent, send the first bit of each of the 30 bytes, then all of the second bits, and so on. If each byte is error encoded with a 2-error code, a 50 bit burst error would cause less than two errors per byte. The error correcting code would absorb these errors and reliable communication would be maintained. Hamming codes are well known error correction codes which can be used on the individual bytes.

The error correction code will also help eliminate sources of random and periodic errors, such as computers and radio stations causing on-channel interference.

On-channel interference was measured in a one and one half day scanner test. A Bearcat scanner located in Senior house was set to scan the radios' frequencies and record the number of times its squelch was broken by each channel. The results are listed in Table 3. A significant amount of on-channel interference exists on all of the radios' duplex channels. (The simplex channels obviously cannot be used in the modem system.) Channel 2 appears to be the least populated and the radios are all set to this channel. However, installation of new frequencies may be desired.
CONCLUDING REMARKS

Though the modem system is still incomplete, the testing which has been performed to date is very encouraging and no unexpected problems have arisen. The actual modem hardware has been completely built and tested, though a lack of antennas and a test set-up representative of Robot to CADR operations prevent me from saying definitively "it works!" The antenna assembly while not yet constructed, has been designed and most parts obtained. The duplexers must be tuned to the correct frequency. They are currently unusable since they are tuned to amateur radio frequencies. This operation can be performed at Lincoln Labs in an afternoon.

The only information which I have not yet obtained concerns error rates over the link in the Robot's operating environment. I suggest that error counting and other diagnostic programs be run of the CADR to obtain this information. Error rates may be seriously high, but correctly implemented error correcting codes should remedy even the worst of conditions.

Once this testing and construction has been completed, I am confident that the AI Lab will own a very reliable, high performance radio modem.
APPENDIX A

The next page contains a condensed version of the MX340 specifications as listed in Motorola's "MX300-S Series Handie-Talkie Portable Radios with Digital Voice Protection" service manual. All specifications not relevant to the AI Lab projects are deleted.
MX 340 SPECIFICATIONS

General
- Frequency: 460 MHz Band (UHF)
- Size: 72mm x 36mm x 126mm
- Weight: 17 oz.

Transmitter
- RF Power Output: 2 watts
- Frequency Stability: ±0.0005% (-30° to +60°C)
- Modulation (5KHz for 100% modulation at 10 KHz):
 - 16F3
- FM Noise: -45 dB
- Spurious Harmonies: -60/-60dB
- Current Drain: 1263 mA
- PL Tone: 2A

Receiver
- Frequency Stability: ±0.0005% (-30° to +60°C)
- Modulation Acceptance: ±7.5 KHz
- Spurious & Image Rejection: 80 dB
- Current Drain:
 - Unsquelched: 213 mA
 - Squelched: 67 mA
- Sensitivity (20dBQ)
 - (12dB SINAD): 0.5 μV
 - 0.35 μV
- Selectivity (Adjacent Channel): -70 dB
- Intermodulation: -70 dB

DVP Digital Circuitry
- Bit Rate: 12 Kilo Bits/Sec
- Clock: 12 KHz
APPENDIX B

The next two pages list the LISP programming used to test the modem. The first page is an excerpt of <ads.cadr>serial.lisp demonstrating the 2651 UART formatting for a CADR. The second page lists the file <ads.cadr>serialmod.lisp which was used to send data through the modem. Only FOREVER-SEND-STRING was used for modem testing. FOREVER-SEND-CHAR did not function properly (reason unknown) and the error counter was never tried. A test similar to the shown error counter should be used for further testing of the modem.
Just load <ads.cadr>serial.qfasl ...
 actually contains mainly the following.

Only thing which needs to be changed to run off the external clock. Mode is initialized to
1 stop bit
No Parity
8Bits/Character
Async 1X mode
I think that only the last is needed the rest don’t really matter.

Housekeeping methods
(DEFMETHOD (SERIAL-STREAM-MIXIN :INIT) (INIT-PLIST)
(SERIAL-CHECK-EXISTENCE) ;Barf if machine doesn’t have serial I/O port
(LET ((REQUEST-TO-SEND T) ;Parse options
 (DATA-TERMIAL-READY T)
 (SYNCHRONOUS-MODE NIL))
 (LOOP FOR (KWD VAL) ON (CDR INIT-PLIST) BY 'CDDR DO
 (SELEQT KWD
 (:REQUEST-TO-SEND (SETQ REQUEST-TO-SEND VAL))
 (:DATA-TERMIAL-READY (SETQ DATA-TERMIAL-READY VAL))
 (:SYNCHRONOUS-MODE (SETQ SYNCHRONOUS-MODE VAL)))
 (%UNIBUS-WRITE 764166 20) ;Reset
 (SERIAL-WRITE-COMMAND UART-COMMAND) ;Unreset, enable receiver and transmitter
 ;; Set up modes which want to be specified first
 (SEND SELF ':PUT ':SYNCHRONOUS-MODE SYNCHRONOUS-MODE)
 (SEND SELF ':PUT ':REQUEST-TO-SEND REQUEST-TO-SEND)
 (SEND SELF ':PUT ':DATA-TERMIAL-READY DATA-TERMIAL-READY)
 ;; Default to even parity and 7 data bits,
 ;; but don’t check received parity. This causes the
 ;; input stream to return 7-bit characters, to avoid
 ;; faking out Lisp-machine-oriented programs.
 (SEND SELF ':PUT ':NUMBER-OF-STOP-BITS 1)
 (SEND SELF ':PUT ':PARITY ':EVEN)
 (SEND SELF ':PUT ':NUMBER-OF-DATA-BITS 7)
 ;; (SEND SELF ':PUT ':BAUD 300.)
 ;; Now do :PUT for any necessary options
 (LOOP FOR (KWD VAL) ON (CDR INIT-PLIST) BY 'CDDR
 UNLESS (MEMQ KWD '(:REQUEST-TO-SEND :DATA-TERMIAL-READY :SYNCHRONOUS-MODE
 :ASCII-CHARACTERS :FORCE-OUTPUT
 :DLE-CHARACTER :SYN1-CHARACTER :SYN2-CHARACTER))
 DO (ERRSET (SEND SELF ':PUT KWD VAL) NIL))
 (SEND SELF ':RESET))) ;Sets up the Unibus channels
(DEFUN MOBOT-STREAM ()
 (SI:MAKE-SERIAL-STREAM
 :BAUD 300
 :NUMBER-OF-DATA-BITS 8.
 :PARITY NIL
 :NUMBER-OF-STOP-BITS 1.))

(DEFUN FOREVER-SEND-CHAR (X CHAR)
 (DO-FOREVER
 (SEND X :TYO CHAR)))

(DEFUN FOREVER-SEND-STRING (X STRING)
 (DO-FOREVER
 (SEND X :STRING-OUT STRING)))

(DEFUN RST (X)
 (SEND X :CLEAR-INPUT)
 (SEND X :RESET)
 (SEND X :RESET))

(DEFVAR *NUMBER-OF-ERRORS* ()

(DEFUN TRANSMISSION (MOBOT-STREAM &OPTIONAL (NUMBER-OF-TIMES 100000.)
 (CHAR-TO-SEND 'A))
 (SETQ NUMBER-OF-ERRORS 0)
 (LET ((X ()))
 (DOTIMES (I NUMBER-OF-TIMES)
 (SEND MOBOT-STREAM :TYO CHAR-TO-SEND)
 (SETQ X (SEND MOBOT-STREAM :TYI))
 (COND ((NOT (= X CHAR-TO-SEND))
 (INCF *NUMBER-OF-ERRORS*)))))

37
APPENDIX C

The following is a Pseudo-Code listing of one method of implementing full-duplex operation of the modem. Transcribing this program into LISP for use on the CADR and/or Robot may not be practical because of time constraints in processing, but this listing is useful for illustrating the time and data constraints of the modem.
FULL-DUPEX PSEUDO-CODE

Sending Data:

1. Assert PTT
 "RTS" frequency square wave on TXDAT

2. Wait for UNSQ
 Read RXDAT -- 4 possibilities:
 a. Normal "ACK" response
 b. "RTS" response
 c. No response
 d. False Response

 a. Detection: "ACK" frequency square wave maintains on RXDAT 20ms after first detection
 Action: Send data on TXDAT
 Continue polling RXDAT for "RTS"

 b. Detection: "RTS" frequency square wave maintains on RXDAT 20ms after first detection
 Action: Send "FULL-DUPEX" frequency square wave on TXDAT
 Wait for data on RXDAT
 Send data on TXDAT

 c. Detection: Time Out = 100ms
 Action: Disassert PTT
 Count = Count + 1 (receiving data must reset)
 If Count = 4, Error Trap "LOST CONTACT"
 else goto 1.

 d. Detection: No square wave on RXDAT
 Action: Wait 100ms for square wave
 If no square wave, Count = Count + 1
 If Count = 4, Error Trap "Unrecognized Response"
 else goto 1.

3.* RXDAT changes to "FULL-DUPEX" frequency square wave.
 Send "FULL-DUPEX" square wave to acknowledge and use
 this wave as the idle wave between data packets.
 Send and Receive data

4. Stop Sending -- can occur from two states: a. Half-Duplex
 b. Full-Duplex

 a. Send "EOM" (end of message) signal
 Disassert PTT
b. (Send "EOM"?)
 Send "ACK" frequency square wave on TXDAT
 (now in receive only mode)

Receiving Data:

1. UNSQ is asserted
2. Wait for 20ms
3. Is UNSQ still asserted?
 a. No: Error Trap "FALSE RECEIVER SIGNAL"
 b. Yes: continue
4. Assert PTT
 Send "ACK" frequency square wave on TXDAT
 Receive data on RXDAT
5. To Transmit, send "FULL-DUPLEX" wave on TXDAT
 Wait for "FULL-DUPLEX" response
 Send data on TXDAT
6. Stop Receiving
 "EOM" is sent
 Disassert PTT
7. If "EOM" not sent and "RTS", "FULL-DUPLEX", or data
 not detected and UNSQ is not disasserted after 140ms,
 then Error Trap "RECEIVE SIGNAL LOST, JAMMED OR
 SQUELCH NOT SET CORRECTLY"
Fig. 1 DVP Transmitter Block Diagram

Fig. 2 DVP Receiver Block Diagram
The controls on each radio should be set as shown below.

Antenna Squelch Jack
MX300-S

Transmit Light
Channel select, same as all other radios. 1,2,6,7,8,9,10

Volume On/Off On, but at lowest Volume

Fig. 3 Controls on top of MX340's
Table 1

MX340 Channel Frequencies

<table>
<thead>
<tr>
<th>Channel</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>465.7875, 460.7875</td>
</tr>
<tr>
<td>2</td>
<td>467.7875, 462.7875</td>
</tr>
<tr>
<td>3</td>
<td>464.2875</td>
</tr>
<tr>
<td>4</td>
<td>464.290</td>
</tr>
<tr>
<td>5</td>
<td>464.275</td>
</tr>
<tr>
<td>6</td>
<td>465.800, 460.800</td>
</tr>
<tr>
<td>7</td>
<td>465.900, 460.900</td>
</tr>
<tr>
<td>8</td>
<td>466.100, 461.100</td>
</tr>
<tr>
<td>9</td>
<td>466.200, 461.200</td>
</tr>
<tr>
<td>10</td>
<td>466.300, 461.300</td>
</tr>
<tr>
<td>11</td>
<td>Not Programmed</td>
</tr>
<tr>
<td>12</td>
<td>Not Programmed</td>
</tr>
</tbody>
</table>

- Radios whose serial numbers end in 12, 13, or 14 receive on the higher frequency and transmit on the lower frequency for any given channel.

- Radios whose serial numbers end in 15, 16, or 17 do the reverse.

- All radios receive and transmit on the same frequency when set to channels 3, 4, or 5.
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CSI (GND to Radio)</td>
</tr>
<tr>
<td>2</td>
<td>116x690</td>
</tr>
<tr>
<td>3</td>
<td>117x666</td>
</tr>
<tr>
<td>4</td>
<td>117x642</td>
</tr>
<tr>
<td>5</td>
<td>117x617</td>
</tr>
<tr>
<td>6</td>
<td>117x593</td>
</tr>
<tr>
<td>7</td>
<td>117x569</td>
</tr>
<tr>
<td>8</td>
<td>118x545</td>
</tr>
<tr>
<td>9</td>
<td>118x521</td>
</tr>
<tr>
<td>10</td>
<td>118x497</td>
</tr>
<tr>
<td>11</td>
<td>112x472</td>
</tr>
<tr>
<td>12</td>
<td>130x472</td>
</tr>
<tr>
<td>13</td>
<td>CSI (GND to Radio)</td>
</tr>
<tr>
<td>14</td>
<td>113x448</td>
</tr>
<tr>
<td>15</td>
<td>113x424</td>
</tr>
<tr>
<td>16</td>
<td>113x400</td>
</tr>
<tr>
<td>17</td>
<td>113x376</td>
</tr>
<tr>
<td>18</td>
<td>114x352</td>
</tr>
<tr>
<td>19</td>
<td>114x328</td>
</tr>
<tr>
<td>20</td>
<td>114x304</td>
</tr>
<tr>
<td>21</td>
<td>114x280</td>
</tr>
<tr>
<td>22</td>
<td>138 (FFT)</td>
</tr>
<tr>
<td>23</td>
<td>117x256</td>
</tr>
<tr>
<td>24</td>
<td>117x232</td>
</tr>
<tr>
<td>25</td>
<td>117x208</td>
</tr>
<tr>
<td>26</td>
<td>117x184</td>
</tr>
<tr>
<td>27</td>
<td>117x160</td>
</tr>
<tr>
<td>28</td>
<td>117x136</td>
</tr>
<tr>
<td>29</td>
<td>117x112</td>
</tr>
<tr>
<td>30</td>
<td>117x88</td>
</tr>
<tr>
<td>31</td>
<td>117x64</td>
</tr>
<tr>
<td>32</td>
<td>117x40</td>
</tr>
<tr>
<td>33</td>
<td>117x16</td>
</tr>
<tr>
<td>34</td>
<td>117x0</td>
</tr>
<tr>
<td>35</td>
<td>118x25</td>
</tr>
<tr>
<td>36</td>
<td>118x51</td>
</tr>
<tr>
<td>37</td>
<td>118x77</td>
</tr>
<tr>
<td>38</td>
<td>118x103</td>
</tr>
</tbody>
</table>

Fig. 4 Connection Pad Signal Locations
Fig. 5 Data Links
CADR Continually Sends

<table>
<thead>
<tr>
<th>Character</th>
<th>ASCII</th>
<th>Receiver RXD</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>01010101</td>
<td>Identical, no errors</td>
</tr>
<tr>
<td>T</td>
<td>01010100</td>
<td>Some errors (burst?)</td>
</tr>
<tr>
<td>UUAUU</td>
<td>01010101, 01000001</td>
<td>Identical? Hard to tell</td>
</tr>
<tr>
<td>A</td>
<td>01000001</td>
<td>Bad (see below)</td>
</tr>
</tbody>
</table>

Scope waveform when CADR sent stream of A's

TXD: __________
RXD: __________

Looks like low-pass filtering.

Fig.6 Splatter Filter Effects
From some I/O port on CADR

<table>
<thead>
<tr>
<th>Wire Color</th>
<th>CADR Signal</th>
<th>Radio Connection</th>
<th>(CADR Pin) I/O Board</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orange</td>
<td>TTL Data In</td>
<td>Received Data</td>
<td>A14-15</td>
</tr>
<tr>
<td>Blue</td>
<td>TTL Data Out</td>
<td>Transmit Data</td>
<td>A12-14</td>
</tr>
<tr>
<td>Green</td>
<td>TTL DCD In</td>
<td>UNSQ (= UNSQ)</td>
<td>A12-7</td>
</tr>
<tr>
<td>Black</td>
<td>TXC</td>
<td>CLK from Trans.</td>
<td>A13-14</td>
</tr>
<tr>
<td>Brown</td>
<td>RXC</td>
<td>CLK from Receiver</td>
<td>A14-8</td>
</tr>
</tbody>
</table>

Fig. 7 CADR I/O Board Modification

47
Measure with a logic analyzer,

1) time from PTT TX#1 to UNSQ RX#2
2) time from PTT TX#2 to UNSQ TX#1
3) total time, PTT TX#1 to UNSQ TX#1

Fig. 8 Handshake Timing Test
The curves indicate the amount of attenuation (isolation) required between a “typical” transmitter (50 watt) and receiver to prevent greater than 1 dB reduction in a 12 dB SINAD ratio, due to: (1) transmitter noise and (2) receiver desensitization. As an example, a 150 MHz duplex station — with a 100 watt transmitter and 5 MHz separation between transmit and receive frequencies — would require approximately 51 dB attenuation of transmitter noise at the receive frequency, and approximately 48 dB receiver desensitization isolation (receiver isolation from the transmitter carrier frequency).

CAUTION: These curves are typical curves and should not be used when accuracy is desired. They are meant to serve only as a guide. For exact requirements of a specific duplex station, contact the manufacturer of the radio equipment.
Above curves are based on the use of half-wave dipole antennas. The curves will also provide acceptable results for gain type antennas if (1) the spacing is measured between the physical centers of the antennas and if (2) one antenna is mounted directly above the other (collinear), with no horizontal offset. No correction factor is required for the antenna gains. Note: The values indicated by the curves are approximate values because of coupling which exists between the antenna and tower. Increasing the antenna spacing beyond that shown by these curves may not always provide additional isolation because of antenna-tower coupling.

These curves are based on the use of half-wave dipole antennas. The curves will also provide acceptable results for gain type antennas if (1) the indicated isolation is reduced by the sum of the antenna gains and if (2) the spacing between the gain antennas is greater than 50 feet.
Fig. 11 RF Isolation System
Table 2

PARTS LIST for Fig. 12

1. 6 #8 sheetmetal screws
2. Top copper plate
3. Foam
4. Radio
5. Foam Side and Bottom Pads
6. Connection Pad (Source of Signals)
7. Signal Wires
8. Ferrite Beads (2 per wire)
9. Location of RF Out on Radio
10. Double Shielded Coax (50Ω)
11. Nut - Solder Lug - Star Washer
12. Copper Box
13. Feed Through Capacitors (100pF or 475pF)
14. Star Washer - Solder Lug - BNC Connector
Mast
(Fiberglass whip, i.e. fishing pole)

UHF (PL259)
Male Connector

TV Transmission Line

Modem Transmission Line

~150mm

155mm

Some type of antenna mount

TV Antenna

Radio Modem Antenna

Fig. 13 Robot Antenna Assembly
REF -10.0 dBm ATTEN 10 dB

CENTER 464.287 0 MHz SPAN 39.2 kHz
RES BW 100 Hz VBW 100 Hz SWP 11.8 sec

Fig.15
(Spectrum Analysis of MX340's
Narrow View)
Table 3

1st days Scanner Test 4/30 - 5/2 1985

<table>
<thead>
<tr>
<th>Channel Frequency</th>
<th># of times scanner unsquelched</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>465.7875</td>
</tr>
<tr>
<td></td>
<td>460.7875</td>
</tr>
<tr>
<td>2</td>
<td>467.7875</td>
</tr>
<tr>
<td></td>
<td>462.7875</td>
</tr>
<tr>
<td>3</td>
<td>464.2875</td>
</tr>
<tr>
<td>4</td>
<td>464.290</td>
</tr>
<tr>
<td>5</td>
<td>464.275</td>
</tr>
<tr>
<td>6</td>
<td>465.800</td>
</tr>
<tr>
<td></td>
<td>460.800</td>
</tr>
<tr>
<td>7</td>
<td>465.900</td>
</tr>
<tr>
<td></td>
<td>460.900</td>
</tr>
<tr>
<td>8</td>
<td>466.100</td>
</tr>
<tr>
<td>9</td>
<td>466.200</td>
</tr>
<tr>
<td>10</td>
<td>466.300</td>
</tr>
<tr>
<td></td>
<td>461.300</td>
</tr>
<tr>
<td></td>
<td>99+</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>99+</td>
</tr>
<tr>
<td></td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>99+</td>
</tr>
</tbody>
</table>