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I. Introduction

In this paper asn attempt will be made to develop
an algebre especially suited to problems in the dynamics
of Mendelian populations. Meny of the results presented
here are old in the theory of genetics, but are included
because the method of proof is noﬁel, and usuelly simpler
and more general than those used pfeviously.

For the benefit of readers who are not familiar with
modern genetics theory, we will firsf give a brief factual
summary of those psrts of it which are hecessary for our
work, Although all parts of the theory have not been in-
conteétably established, still it is possible for our pur-
poses, to act as though they were, since the results ob-
tained are known to be the same ag if the simple represen-
tation which we give were true., Hereafter we shall spesak
therefore as though the genes actually exist and as though
our siumple representation of hereditary phenomena were real-
ly true, since so far as we are concerned, this might just
as well be so, We will omit from consideration mutations
and phenomena‘in the sex chromosomes.

Hereditary traits are transmitted by small elements
called genes. These genes are carried in rodlikg bodies

known as chromosomes, a large number of genes lying side

by side along the length of a chromosome., Chromosomes
occur in pairs and an individual obtains one chromosome

of each palr from his mother and the other from his fa-
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ther.

By the genetic constitution of an individusl we
mean the kind_énd location of the genes which he pos-

sesses. If we represent the different genes by letters,

then we may write a genetic formula for sn individual.
Thus considering two chromosome palrs and four gene
positions. in each chromosome, an individual might have

the férmula:

4 B1 Cg Dg Ey F1 Gg Hy (1)
Az By Cq Dz E, Fy Gg Hy

Here the series A; By Cz Dy represents one chromosoue,

with A% Bl Cy Dy the corresponding one of the first pair,
Ay, B1, Cgzs Dg, Az, By, C4, Dy are the genes lying in the
positions under consideration. E4 Fy Gg Hy and B, Fo Gy He
are the two chromosoues of the second pair. We will some-
times write a genetic formula in ome lime. Thus (1) would

be written:
Ay Ag By By Cz C4 Dy Dz By By Fy Fg Gy Gg Hy Hy

‘alternate letters being téken from the top and bottbm,
lines of (1). |

There is no essential ordering of chromosomes in
a pair. That is to say that the top and bottom lines
of the formula for a chromosome pair may be inverted and
still represent the same individuel. Thus the formula

(1) is identical, for exsmple with the following:

3




Ag By C4 Dy By Fy Gg I

A] By Cy Dy Eg Fy Gy H,
in which we have inverted the first pair,

Certain‘simple traits are controlled by only one
pair of genes lying at anslogous points in corresponding.
chromosomes. Two such corresponding points in a chromo-
soiie palir are known as a gene locus, and the different

genes which may occupy one locus are known ss allelomorphs

or more shortly as glleles. In our example (1) the posi-
tions occupied by genes 9@ snd C4 constitute a locus. We
shall adopt the convention that allelomorphic genes shall
have the:same base letter with different subséripts. Thus
Cys Cz, Cz, Cuy Cy represent'five alleles, A.C gene can

only occur in the locus corresponding to C genes.

The appearance of an individual depends only on the
kinds of genes, not on their positions. Thus an individual

with the formule

By By C, Dg E, F Gg Hy

would appear (insofar as the characteristics controlled by
~these genes are concerned) the ssme as (1). He would, how-
ever, breed differently as will appear later. Two such
individusls are said to be phenotypically the same with

respect to these characteristics. They are genotypicslly

different; they have different genetic formulee with resnect
2 E=1 * A kS
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to these loci. Such a situation can occur in a different
way. In garden peas there are two alleles which control
-the size of thé plant. These genes we may represent b&

Ay and Ag. If a plant has two Ai genes, it will be tall.
If it has two Ap gemes, it will be a dwarf. & plant with
one Al gene ané one Ag gene 1is tall, since the gene for
tallness (Al) is, as we say, dominant over the recessive
gene (AE) for shortness. Thus, AiAl plants and AlAé(or
Agﬂl)'plants are phenotypically the same but genotypically
different with respect to tallness.

As we stated above, an individual receives one chro-
mosoue of each pair from the corresponding.pair possessed
by his mother and the other from that of his father. Let
us‘now‘considef a palr of chromosomes possessed by a parent.

In case a phenomenon known as cross-—over does not occur in

the chromosoume pair under consideration, an offspring re-
ceives an entire chromosome selected et rendom from these
two. We say that the genes in the chromosome sre linked
‘together mezning thet they tend to be transmitted és a hody.
Genes located close together in the same chromosome are
closely linked; the grester the distance between th?m, the

weaker the linkege. Let us suppose that an individual has

the genetic foruula renresented as follows
8 N KN

A‘“l Bg 05 D;,—_) Eq Fq Gl
A&e B.g Cg Dl EG Fl G
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for a pair of corresponding chromosomes. HNow, as we hsz

seld, in case crossover does not occur, en offspring of

this individual will receive either the series

A By Cz Dg B4 F1 Gy or Mg By, C5 Dy Eg Fy Cp

and he_is equally l1likely to receive either of these./
However, it may happen that a crossover occurs between
these chromosomes, TIf this crossover occurred, for
instance, between the C and D loci, he would receive

either

H

by B, Cgz Dy Bg Fy Gy or &y Bg Cg Dy By Fy Gy

There 1s a definite probsbility that a creossover will

occur between &ny two gene loci, Determining the rela-
tive positions of genes in & chromosome sccording to

such a probability scale is known as mepplin

-

mosome, This has been carried out guite extensively

n

for Drosophila esnd to a lesser extent for some other.

plants and animelis, The map distance between two locl

a and b mey be defined as followé. Let x measure the
actusl physical distence slong the chromosome and let
"p(x) be the probability that a crossover occurs between
the points x and x;rdx, providing it is‘kﬁown that no
other crossover occurs near to the point x,” This last
restriction is’necessary due to a phenomenon knownﬁas

interference in which a crossover gt ame point hinders

nearby crossovers. The mep distence is then given by
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j o(x) dx.

1

The recombination value of two loci is the probability

of an odd number of crossovers between these loci., For
small distances the probability of more than one cross-
over is a second order term and the map distance is nearly
equal to the recombination value, and both avproximate the
probability of one crossover between the loci.

If the two genes in a certain locus are identical,

the individual is said to be homozygous in this factor,

Otherwise he is heterozygous. The individual (1) is thus

homozygous in the B, E, and G factors and heterozygous in
all others,

& simple example will perhaps help to clarify these
notions., Suppose that two gene locli are under considera-
tion. There are three alleloworphic genes {orthe Tirst
locus, Ay, hg, Ag ; the second locus has four alleles,
Bq, Bg, Bz, By. The recombinationvalue for these two
loci is 1/4, An individusl with the genetic formula:

A& B4
‘A‘B 32

is meted with an individual hsving the formuls:

Ag By




What is the probability thst an offspring of this mating
will have the formuls

Ly B,

Ay By

Stéted another way, what fractioﬁ of the offspring vpopu-
lation should be expected to have this formuls?

Bvidently an offspring must obtain the A5‘B4 chromo-
.some from the first parent. The_?robability that he will
get an,A% gene from this parent is 1/¢2 since Ag and Ay are
equally likely. If he gets this A% gene, the probability
that he will also get s B, gene from this parent’is'l/é,
the recombination value, since A and By are in opposite
chromosomes. Thus, the probability thsat both events occur
is 1/2°1/4=1/8. Now our offspring must obtain A, and By
from the second parent., He will certainly obtein an A%

since both genes in this locus are of this type. The chance

that he obtains & By is 1/2, since By énd By are equally
likely, The probability of the combination is therefore
also 1/2. Our final answer is, since the events are in-
dependent, 1/8°1/2=1/16. If We»had asked what fraction

would be of the type

ml—

5y
Ay B,

o

9}

&

then in place of multiplying by the recombinstion value
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1/4, we would multiply by 1-1/4=3/4 since this is the
probability that a crossover does not occur between

the loci,




IT. Notation

To non—mathematiciahs we point out that it is a
commonyplace of modern algebra’for the symbols to repre-
‘sent concepts other thén numnbers, and freqguently there-
fore not to obey all the laws governing numbers., Such
is..the case in vector algebra, the theory of groups,
rings, matrix algebra, in symbolic logic, tensor snaly-
sis, etc., In the particular algebra we comnstruct for
genetics theoryqthe symbols represent Mendelian popula-
tions, and stand for a large group of numbers which
describe the genetic constitution of the populetion.
Addition and multipliégtion are defined to nmean simple
combination and cross breeding respectively, and 1t 1is
shown that nearly sll tﬁe laws of ordinary numerical
algeﬁra hold here. One interesting exception 1s the
associative law of multiplication. It is not in gene-

ral true that

(}\:t/kl)ltly = ;\ “(/f“r2))

Much of the powef and elegance of any mathemati-
cal theory depends on use of & suitably compact and suggest-
ive notation, which nevertheless completély describes the
concepts involved, We will employ an index notation some;
what similar to that of the tensor calculus, which has

proven so useful in differential geometry and in reletivity
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theory. Because the notation employed is so bssic to_
our work we will first explain the‘meahing of indexed
symbols. |

Consider, for example, the symbol

N 1 :

Here A is the base letter and h, 1, j, and k are in-

dices. Fach index has a certain specific range of:
variation and the different indices may vary inde-
pendently and even have different ranges of variation.
In our work two indices in the same vertical column,
such as h and § in (2), will always have the same range,
but very independently over this range. Thus h and j
might have the range of velues 1, 2, and 3 while i and
kK have the range 1, 2, 3, 4...9.

When the indices of (1) take on specifiic values,
€.8, =1, j=3, 1=5, k=5, the symbol

1 5
35

represents a number., Symbol (2) then stends for s whole
group of numbers, one for each combination of values of
the indices; however, it should not be thought of as a.
group of separate numbers; but rather as a single entity
having components whose values are the different humbers

of the array.
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When we think of an indexed symbol as represent-
ing a whole array of numbers and the indices as varisbles
which asgsume any of the values in their ranges we say the
indices sre live or variable. Occasionally, however, it
is desirable to think of }\34‘(sﬁy) as representing a-
certain specific one of the components, Thus we may set
h=1l, i=3, j=2, k=3. We say then that we have fixed
or killed the indices at these values; they become dezd
indices., Also we sometimes wish to think of the indices
55 fixed at some value which is perfectly arbitrary.

$ W
Wiithout any change of notation we use /\’,‘ to represent
an arbitrary component rather thasn the whole set of com-
ponents., In such a case fixing the indices is purely
subjective,

In an equation, although indices represented by
different letters may vary independentiy,'a specific
letter e.g. h, must not take on different values in

different places. Thus the sum of two indexed symbols

L« A<

;\,j = 1',/L~'j K (8)

By

e R~
is-an indexed symbol say LY whose components are

R

the aums of the corresponding components of /\Jn,and




On the other hand, 1f

L. ' &
17,:( = Xjk,"/f"

theh ;; iks; 1/*3-._ ete,

An equation in indexed syubols stands therefore

for a large number of ordinary equations, one for esch

-4

combination of values of the verizble indices,

Qrdinary muitdiplicstion of indexed symbols will
L <yt oR\A g
pe Ilndicated by Jjuxtaposition, e,g, Ri A“JR;A;))\‘;/&i
Ordinary multiplication mesns numerical multiplication
of the components indicated, and results therefore in

enother indexed symbol. The multiplications above would
x

result respectively in symbols with indices as follows:

A B 2 5
‘l\jl‘ ) P“' > 0-4; 3
_where 3;3 = R, }\;) E:z = R; ;

1 - . ‘ 3 3 K4
P'L Rl Al, P3 - RJ Aa
Ag M5
% 3
~etc, There are always as many variable indices in a pro-
duct &s there are different variable indices in the Tactors,

Thus R )“ ‘has three independent varisble indices i, J, k

and hence the product ti" has three indices.
An important operation in indexed symbols is summation

on one or more indices, This is so common in our work that
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we indicate it by replacing the index in question by a:
large dot. Thus suppose the index i has & range of vari-
ation of 1 to & and i, a range 1 to 5, then

. A 3 £ Po< ~ 34
)\' = Eﬁ )l: = ;le‘ 4 Ai w ¥ Ad K

Ms 2L s A Nl g e

41 4=t :
w ) Tt 13 Ty Ly
¥ %3] + AJK + >\3'k+>\jk*>\l'l<
~ 3) 3L 3> 3y 3r
¥ >\)"= + >\';|< + )\;-k *)\1-K 4 )a"‘

Most of our;indexed’symbols will repfesent popU-
lations. ©BSuppose we are counsideriag two different Men~
delian factors. Let the first have two alleles, A4y and
Ag, and su?pose the second factor has three; Bl, Bé, and
Bz. Then any ?opulation.may be divided into 21 genetically

different groups, having the genetic formulae

(1) A3 A3 By By (7) As 49 By Bg (18) a1 490, B1 By

AV]

(2) A 4y By By (8) Ag & By Bg (14) 45 £g By Bg

(8) Ay 84 By By (9) Ag Ag By By (15) Ay Ay By Bx

¢
[av)]

(4) & 84 B By, (10) & Ag By By (18) 4y 4p By By
(8) 8y &1 Bg By (11) Ag & Bg By (17) 47 Ag By By
(6) &9 Ay Bz By (12) Ay Ag Bz By (18) 2 Ay Bs By

(21) £ Ay Bz Bg
<

This .population would be represented by the symbol ;\J"
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The indices h and J correspond to the first locus
and since there are two zlleles for this factor they each

have a range of variation of 1 to 2, The second factor

~

has three alleles and correspondingly i and k range- over
the Valuesfk; 2, 8. DNow, thinking of h, i, j, and k as
Lo
jm
. ‘ : . D S
following manner. If h=j and i=Xk then )\4 # = b4

fixed or dead we define the components of A in the
the fraction of the population with the genetic formula
13
Ay Ay Bi Bi' Thus ‘A, 3 1s the frazction of the popula-
tion of the type 49 Ay Bz Bz. If hfj, or 1 £k, or both,
. "‘4'
then )\jk represents one half the frazction of the DOPU-~
lation having the formula &y Aj B; Bk or what is the same
. . L 13
thing Ay &y By Bj. Thus A\-s and A:: are one half the
fractions having the respective formulas A Ag Bzgand

Ay By By B

1 27

We shall use Greek letters as base letters for

pooulations, and in general, then, the symbol
>\,;., Ko oo A
g A s (4)

represents é population in which s gene loci sre under
consideration. The first column ofindices, il and Jq,
corresponds to the first factor under consideration,
the second column to the next factor, etc. Tach factor
may have an arbitrary number of alleles, and the linkage
between any two may be -ef-any valde including 50% or

random assortment. In case “rdo ey, 4z g then
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A‘;‘l A“I N 4:—5

Ay Mmoo Ag is. .the fraction of the population having
“the formula (A;A;BiBa ...S%SL ). If these equalities are

1 t . ~ (3 ) .

not all true then
AA:; L‘\ PO Ls

I da - gs ‘
(4. B.B. ... 5.5, ). It is helpful in using this nota-

Ay a| 4:1_ 5\

is. 1/2 the frection having the formulse

tion to note the close connection between the two rows of

a

letters in the indices and the two rows of genes in the
chromosomes., The analogue is more than superficisl, for
we will later show how crossing over, say between the

second and third loci, is connected, in this notation,
- &

with the syabol N\~ ;




IIT. Fundamental Theorems

There are two fundamental manipulation laws which

we present as theorems because of their importance, al-

though both are almost obvious.

Theorem I,

iy A A NPT TR
>\‘jl:\. :: - >\.{I, dt...:_‘

(5)

That is, inverting the upper and lower rows of indices.
of a population gives an identical population., This is
evident from the mesning of the symbols, siunce a genetic
formule (A;A.B.B....8:5:) is identical with the foruula
oI TR T F] 1‘

(B.A.B.B;...5.8:). This inversion of indices may be

I R Ll s '
carried out independent of the locstion of the gene loci
in question. However, if it is known that certain of the
loci are in one chromcsone palr, and none of the others
are in this peir, further ldentities will hold. Namely,
we may invert the indices corresponding to this chromosome
pair and leave the others intact without changing the mean-
Loy
KL m 2
the first two loci are in one chromosome pair, and the

ing of the symbol. Thus, if in the population )\

third in another, we have:

Aoy AL 7 £ 4
)\'.g,vvan = Akg?‘ =/,>\_:.4; = X:AE\
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(6)

That is summeation of a population on &ll indices gives
the result one. Obviously the sum of 211 the fractional
parts of the populatidn ig unity. ©Now those pzrts which
we have divided by 2 come into the summation (6) twicé,
corresponding to sn inversion of the upvner and lower in-

L

- . R >\“'\“- (3
dices. Thus with the population i* the ternm A

. ‘_' . [ ) I u
appears twice in the summstion A. . » once as v &and

T ..
ONCce &8 ) 1 v » which are equal by Theorem I.

The significance of summation on a fewer number

of indices 1s also of considerable importance., Consider
B 4L

A
the ponulation Ak K o oummation on k gives X de , &

a.

symbol with three veriable or "live" indices. The reader
4
may verify that if h# j, Aa_a" represents one hslf the

fraction of A which have the formula Ay A; By -

i J
: 1 S £
where the - may be any gene. If h=j then .XA . renre-
sents 1/¢ the Ifraction having the formula Ay Aj B; -
plus one hall the fraction of the tyne My Ay By B..
z pe i
- - . X .
Summing on both k and i we have )ﬁ « and this
4
way be shown to have exsctly the ssme mesning as Ai where
h and j refer to the same gene locus in each case, That is,
summing on a peir of vertical indices is equivelent to

eliminating this locus from consideration. Summing on

, _ A
two horizontal iandices, J and k, gives A... , & two index




v

symbol, whose corponents are the frachtions of a1l
2

chromosoues in the populetion in which genes Ay and Bi

2.

both appear. TLikewise A_i( revresents the fraction

of all chromosome pairs in whnich Ah is in one =zngd Ek

in the other,

Summation on three indices A ?: gives a one
index symbol end its coumponents are the gene freguen-
cies of Ay, Ag...in the general populction. Thet is
>\i: is the sum of the fraction of homozygotes in Aq
nd nhslf the heterozygotes having one Ly gene.

The reader will easily genereslize thesevstate—

ments for wore complex cuses. For easy reference we

sumnsrize tne cbovo remarks in the folloving provnositisn,

Theorem III.

AL ... <

Fogr- .
is one halt the Iraction of the population of the type

l- Ii' il:j" 4.'1.= %11 [T ,A'“I 33 -1 tth k

Byh. el = plus half the ifrasction of the type 2.A..,..5.8,.
45 ‘ E ~la, Ay A

Ly Ay
It the conditions zbove do not hold then it represents one

hali the popul:stion of the type L R-BiB. o .8 =
' ] l.al. "3
is

2. OSumuation on two vertical indices equivalent
to elininsting the corres spondiag locus from congide atlon.

ry

S. Summing on one index in cgch column gives the
fractions of the chromosore palrs in which slleles with

the remsining indices aﬁﬁear.

- Ay
4, The frazction of )\ s having &t least one

4y, gene 1s given by

D OETIID WA
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In order to present = rigorous mecthemstical de-
velopment it is convenient to consider symbols whose
components sre not all positive real nuﬁbérs lying be-
tween zero and one. Of course, such a symbol cannot
represent an actual group of individuals, but in some
ceses it is possible to solve problems using these sym-
bols and get an actual population for the finsl answer,
Ve shall speak of the sywbol s s populétion in either
case, but if the symbol does correspond to & possible
group of individuals we shall say the populstion is

realizable. If the components zre zll real numbers we

will say the population is real. The use of unrezlizable
populations also adds elegence znd generality to some of
our later theorens.

Ve now introduce an operaticn betysen twe populeti ns

to be known as cross iultiplicstion and writtens:
T 4L
. . X K
Nje "M
This will be defined in such o vwey that the cross product
of two reslizable nonulations Tenrecsents the expected

offspring if the populsticn in guestion ere cross meted

t random. We will first give the definition for the

jax

case of two linked fsctors. Let the probzbility of zero
Or an even number ol crossovers between the two factors
be Py =l-pl, with pl’ Tthen, the probebility of =n odd

number (i.e the recowmbinstiuon value), We define the




‘ PR Al‘ L .
Qross product of JK’/}*1|‘ ss follows
. .4!.4. 4L 4 L~
, 1)3 K - >\ﬂ"‘ )~ .

P2 [po e A Dt

To prove tnet this represents the expected off-
spring population we use the ides of gene-nzir frequen-
cies, a generalizstion of the idez of gene freguencies.
We wish to determine the probabiiity thot an offspring
of mating ‘A with //«. will heve the genetic formula
Ay Aj Bi Bgx. One way an ofispring mzay obtein this for-
mule is to get Ay B; frou A end L3 By from ,/LA .
This corresponds to the term

Ledrentillesdle p il o

in the eguation (8)., Each of the terms of (9) is a gene-

pair frequency. The first is the freguency of the gene

pelr Ay By in the ponulation )k. The second is the

frequency of the gene-»nzir Aj By In M, The product is

then the probabllity of obtsining an offspring Ay Aj By By
by the method described,
Gene-nuair frequency here merns the freguency with

which this pelir of genes occurs together in the sume chro-

mogome gfter crossovers heve taken nlasce. The term

[roffep 2l @




“actuelly renresents this because, from Theorem ITIT, )\. .

represents the frequency with which'Ah and B; appesr

together in the same chromosome before crossover, snd

2 is the orobability thst there is no crossover between
- . N k . . >\-—(4

these factors (or et most an even number) sc thst Peo AL,

~is the probability of getting Ah and By together after
crossovers il they start together., Likewise P, % .« 4

is the vprobability of Ah and Bi ending together when

they start in opposite chromosomes of z poir. Since
these two possibilities are mutuslly exclusive, snd col-

lectively exhaustive, their sum (10) represente t

v}
o
Y

r frecuency of Ay By in A after crogsevers. Similarly

O
e
Q
Lo
A

the second term of (2) is the gene-prir frequen
in/;* zfter crossover and the »nroduct of these tvo is the

probability of szn offspring getting the pair A, By fronm X

and Ej y from /LA The only other vey for sn of spring
to get the formule LEN Aj By By is to get Aj By, from k
and Ay Bi ircem /UL. This corresponds in exzctly the snme

(8), snd we way add. the proba-

Fa

wzy to the second term o
bilities since the events are wutually exclusive. All thet

explained in (8) is the factor 1/2. In case

[
(]
B3
o
.
fa}
{n
t
@]
-
[©

the equations h=j, i =< do not both hold then for the com-
~ponents of the offsnrring ponulztion we went half of the
frection of individuals of this type in order +to fit our

nrevious definition of s po»

c

letion symbol, and hence this

feetor. If both these equalities are true tnen both terms




of (8) are identicsl and we mey add getting
R L R X.
'L)douc: (¢ 2.0 + P )\.t][r. *Y’-/‘*'*-]

which is ﬁhét we get by t lo‘derivation above in this
cese, since the two "different" possibilitizs becoume
identical under this restriction and therefore (8)
nolds Tor all velues of the indices.

Tor three factors the defining equation of the
cross preduct is
‘z) 3‘ >\|<1,.‘ */A:‘;'\i o ’

A"’

= 7 [g» )\f'f_" + e, )\?'“ "4 f,. )\4'-' + P Ala

. Ak . < * « l“"\
cee T (o m t P A, dm t Pun.e.

In this egu(tlon Py is the probebility of an even num-

st two genes and sn eve

[—n

er

ber of crossovers between the f

number between the second snd third, I we wish to con-

sider interfs srence effects ve cennot merely write Prn= D
with 2 the probebility of s=n even number of crosses be-

econd snd

tween the first two loci =znd ¢y that for the s
third, since the events ere not in iependent. However
defining Qg &s the probsbility of sn even nuwber of cross

n

i

/\i(‘jf")

N

€8



between the second snd third fectors after it is_known

factors aﬁd an odd number between the second two, etc.
The method of formation of the forwulas is fairly obv1ous,
note first thet 211 permutationsibf 0, 1 ere used on the
coefficient p. Mso a 1 corresnonds to chenging from
one row of indices to\another, While 0 corresnonds to
staying in the same row.

The proof of formuls (11), end indeed the genersal
case, is an easy generalizatiqn of the method used for
two factors. It merely amounts to showing thet a term

such as

2‘ Ly . 2
[’)“ao ...’1— o >\-3 ?";o o,ga' + 7'" )ﬂa;

is the gene-trlnlet ;requency for the set by B Cﬁ after
crossovers 1n ponulstion ‘A|=!\ .- This the reader will
readily verify.

For n linked genes the expression for the cfoss
?roduet of two populetions will take the form: |

,4:.4'.\....A._‘. >\"- Ay Al»‘-t..."-j

B dr o gs Cge 15 PR U TR F
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‘ k/“p' it.--o‘;s A’.. _.
- .i- [Too...o e @ ... & + 1010...0 e Ay ... Ay

R S e R

.[same expression with X renlaced by M end il, ig,..., i
. . \ . . P
by 3, JQ,...,jS]} +i {same palr of expressions with A and

.7 interchanged}_

Although we have spoken throughout as though the fac-
tors under considerstion were linkedAand in the same chromo-
some, this is not neéessary. buprose that in equation (11)
the first two genes heve a recombinstion vslue P1 = 1-pg,
and that they sre located in 2 different chromosome from

the third. Under these conditions it is easy to see that

pOO = DO_]_ = 1/%130
P1g =P11 =1/2nq
Also we have

RLq £ < ) Ao A L
A‘l{ﬁ i ? :x k2 i o //("L K,Qa; = //A t £ 3

From these equations (11) may be reduced to
L 4 < Ay k Um 15 «
z L. X0 ALY [r.,/.., +1o./u-1.]
: K m Koo m by A:'}
"Z[Y’«k...*?‘. /\.p.][jﬂ./“..?w*?’y“.*?

So that the independence of factors merely simplifies

the situation,




25—

In case all three factors zre independent

Poo = Por= P1p=Pyp >~ 1/4
aQ-\.\n ‘Q‘QV'\
and Alt!\ >\ t-Q‘ = >\ K& a‘ etec,

‘so that (11) reduces to
N an KX w | \RQM
2

.../{u’f{

Ky

M

We have proved, then, the fundsmental

Theorem IV. The croés product of two realizable
poopulations represents the exnected4offspring of theée
populations when cross mated at random.

Much of our work will now be the investigation of
special cases of the generél formulee given abo#e. Ve
note at once both from the wathematical definition and

obvious genetic considerations the following

Theorem V.

/:'l'-- ":-J | 4:'...4‘.5 - LI I 4',)- “ J‘.’.
>\1|’)$ x/"'i'd‘_ /).1‘3:*}‘}(35

SRR

That is to say, cross multiplication is commutative,

Let us now consider the case of a single factor,

but with, however, any number of alleles. Then the

cross product reduces to
T | FAR
>\/‘*a 2[, 9+/\_/u,]

from which we get the proposition: =~ -~

(14)
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Theorem VI. If )\ /* tﬂen A .cr--/ug

In other words if two powulctlnnq have the same gene

frequencies for all alleles of & factor, then they
will have the same breeding characteristics when cross—

mated with another populstion.

Theorem VII. If 0 )\-:./*J then 9% =7 (\° /#f)
Thlq follows immnediately from (14) on summing through
on the index j and noting by Theorem II that A, a/*-
This theorem shows that a gene frequencj of & cross
product 1s the srithmetic mean of the corresponding
gene frequencies of the factors in the product.

7 We have alresady 1nd'cated{in Pert I how 1ndexed
symbols are added. VWhen our symbois represent popu-
lations we shall consider addition only when the sum
of the coefficients is unity. The purpose of this
restriction is to keep all terms on an actusl frac-
tional basis and thus preserve the velidity of our
theorems. In gemeral this causes little or no in-
convehience, as merely div 6ing by the sum of the co-
efficients will always normzlize in this sense.

We write | |

Bl Qi A sl
Moo = R RV L Ry O

where ) Ri= | , for the "sum" of the populstions

1

(1

6

)



M, P, ....0 in the fractional proportions R,, Re.
Note that all terms of a sum must have the same indicesgs
(although sometimes an index msy be changed in position
in the same vertical column). This is part of & useful
idea in indexed symbols known ss index balance,

Index balance serves as a simnle partial check on
equations. If the indices do not bslance in an equation,
the equation is certainly wrong (in fact it is meaning-
less). The rules governing index balsnce for our work
may be formulated as follows:

1. Each term in a sum must have the seme indices,

2. Each sidé,of’an equation must have the same
indices.

3. A product (ordinary or cross) has indices cor-

responding to each different live index appearing on any

of the factors of the product. (B8ee Part II).
Index Dbalance apnlies only to live indices. There
is no balance, for example, on the desd indices O and 1
on py; in equation (11).
| Addition of populations (17) is interpreted very
simply as the populstion obtained by combining random
samples of //15 Y, .. .. & in the fractional propor-

J

tions R, Ry,... R4,

J

Theorem VIII., Cross multiplication i1s distributive

on addition, e.g.

22 . 2. Lo qe 4, s
>\J"‘ 6%./(,(;“: + Ry -D,‘n) = K, )\il‘xjk,"‘ + R, )\Jn" R

R,

(18)
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We shall prove the theorem only for this simnle
case, The method of proof, however, is perfectly gen—
‘eral and will ezpnly with sny nunber of igdices 2nd any
number of terms in the sum. The left side of the ecus—

tion is, by the definiticn (8): - . . .
[re A{ffrl AR [re (Rt RDIE el pl i ROT)
3_;1 IFRET R ;c] [Pk e %) 4 R Rop ]
R 33 troﬁ‘ o X ALpptteprtid] '

3 Lpo X"r}v Al “?’/‘*A‘*Y’/‘ ”

R 5 L W] Leeodt e ot
r)\ +p5\1][3°7)'*390“&]}
A

= R, k x/“JK + RL)?:’VDJk_

fter

m

The theoren on equilibrium of populetion
random intermating mszy be easily proved by thé method
we have developed. Ve shall oﬁnsider & somewhet more
general case than 1s ususlly used, in thst we 217ow =ny
number of a2lleles, snd 21so cross breading between gene—.
rotions (i.e. the generntions need not come in distinet
stens nor need eabh indiVidual mste in itgs owvm generation).

We prove, then,
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Theorem IX.

BTITHICRA R RN
y _ o2 N
b = >\(x>\f = AT A (19)

Thelfirst term corresponds.to & component representing
direct offspring of our present populstion )f the
second term represents & fraction obteined by matingv
this offspring with the parent generation, etec. Con-
sider any term of this expression, In order to have
a meaning it must have a factor )\Ex Xf)= )f"/\\L (by 14),
but this may be replaced by )i from Theorem VI since
A= kf Hence the number of factors in the product
; may be‘reduced by‘oné.» Continuing in this menner all
terms reducé to the form R,‘- )tf& >\f and adding we get
the desired result.

In-particular, if we have "step tynen gengrations

this result shows that

St

MEANREOD
[\)\f fo) x()\f,)\iﬂx[(r\ﬁ%f)x(}f x/\:’)—j’

s etc,

these expressions being the 2nd, 3rd, 4th, etc, off-
spring generations, snd all of these are eguel to

< . s v s
Xv‘ )\, It is obvious that a necessary and sufficient
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4
condition for s populstion ‘X; to be in this type of

egullibrium is that

x”;=x’t’“xf

For two alleles it is well known that this is equiva-

lent to the condition
|.7- )l 1
Al>\t_- '-AT-
We now show how this, and the generalized result for
any nunmber of zlleles masy be obtained,

Theorem X. The three following statements are

all equivalent. ‘
, £ 4 (K
(1) )\J‘: = )\"" N = A ar Al

SR PR

A

(».

A2
—r

. a' T
(2) The matrix ||Ai’ is of rank one.

By the matrix l[%f’! is meant the metrix:
AAL A
= )
AT A

. .




In the first place (1) implies (2), for if
ARt
then )l'i._ )"’2‘ A"ﬂ
and N oy A
) :k:i -),; = .A-F >V% ). X .
S(\ A A N &
DRI TR EP YD
Also (2) implies (1). Suuming (2) on i gives:
K
R NE Y
P SN 3%
SRR

Thus (1) and (%) are equivalent.

Condition (3) is ecuivslent to either of these,

for if (1) is true: |
Atz

and the elements of the metrix II,X&I‘ cen be written

as the product of a number devending only on the row
‘by a number depending only on the column. This is o
well known condition that the mastrix be of rank not
greater than one., The rsnk is actualiy one since ét
least one element is different from zero to satisfy

"N, = 1. Thus (1) implies (8). If (8) is true then




, ‘ , R
each second order minor of llA;" must vanish, In

particular we have
2 4
AL

A

AT N

Hence

Moot

so that (3) implies (2). This shows that all the con-
ditions are equivalent and proves the theorem.

If a population is in equilibrium we have
Z ’,\i: Z},\*)\"=§.>\‘= A= |
A ' -~ '

but this is not s sufficient condition for equilibrium,

ag the example

' 1 ,
, i ¢ °
% : - £ - L s =
3 | I A 4 “ . 3 Iy
. o « 9
-+
proves, for here J'.:;: + -,; -g-f?i'— = } while : _:: l :3—'G
9

so the populéation is not in equilibrium,

In case more than one factor is considered the
population will, in general, only reach ecuilibrium
(for gene combinations) ssymptotically, Suppose we

have two linked factors and assume "step type" gene-
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rations. The result of random intermating is given by

_ Qs
Theorem XTI, Under random 1ntermot1ng af A‘“_ the

nth generation is the population
s [ e N e atr o Iy ‘]
Lr (P AV v X100V s (=g YA )\'.'.‘](530)

and (assuming Fk)#JJA approaches asymptotiéally the

population

O S S S A SIS

Prodf:- By definition “(8} the first generation is:
y -'0\~ < ~ ) . A 'K )
o) fh; = )\’-K X:‘K = [re)\{‘. + P, X‘i‘;][’r’o)\?. +3“.>‘1.;]
L(p W rp AR (l-ro'_‘w Af“.-' AT
[ (e % ' '*'F >"t<5 + { ‘> A'l(]

so the theorem is true for n=1l. We now shou that if
it is true for the nth generation it will be true for the
(n +1)th generation znd thus comnrlete the »roof by mathe-

maticel induction. Assume, then, that the nth generation is
K ' " -1 R 4. - Ly A

Mk T [ %o (ps AL +r.k.-) + (1-p )k*.‘.)‘..j
L (R h 8T v A3 )+ G )00 NF] (D)




whence, éumming on ¥ and X:
M LI e A N ) e A*' o
~[ PP A g M) e (o p T

=[RS (pe AT ,W.Af‘,}) +(.-,..“"> Xn]

since >\.=I and '}001‘1“.“"-

/4%;; [r o A e ARy st A 0]
'\"o (?o)\ « + 1P, )\K)-l-(l r."‘))i ALK

= 2Ry

Now the (n+1)th generstion is given by the cross

product of the nth generation with itself, i.e.

Mt T s e T It e aty]
L e e AR e e o) R e 0]
Troofr (e 23 cpn i) camprn it nsdemai 2n]
i [ " (poats S TR A DR X‘-f]
Lt Al p i) v G=p) AT 4 2]




which is the same expression as (21) with n replzced by
(n ¥1). Tnls, therefore, comoletes the nroof. The asymp-
totic value is obvious since if (J fl the as m -3 o0 ¥, 20

and (l—r:-’)
IS S LB H

&

| so tﬂat (cl) reduces to

An obvious coroliary isAthat & neces Qary and suf-
ficient condiﬁion for a ponulstion @ 'K to be stoble
under random Intermeting is that it sctls y the condi-

tions |

pe L péppi S

IS :

or that either Py 0 or py=1. If o= 0 the exnression

(¢1) reduces to its equilibrium vzlue

D Nl i ,\°fi X

4
|}

st the Tirst generstion., IT Py =L we ha#e perfect.lllx—
zge and the expression becones )ﬁf X??‘ ags 1t shoulq
since it then acts like a single factor.

We note thut Lhe speed with whlcn ecullibrium is
apnroached depends entlrely on the vrlue of p..,

0°
is small the‘approach will be very rspid, less so as Py

becomes larger, or the linksge closer between the factors.

Ir Py

It is interesting ggﬁége that with 2 given popula-
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tion A‘jk , the ecuilibrium will be apnroached mere
rapidly if there is very weak linkage (po<2b@3 than if
the factors are completely independent, either in differ-
ent chromosomes or in the same chromosome with py=1/2.
Incidentally, if there is no interference between

crosses a recombination value po< 1/2 is mathematically
impossible. Suppose the mep distance (measured in morgans)
between two loci is d. Let this distunce be diviced into
a large number, n, of sections, each of map distance d/n.
Then if n is large d/n is small and the probability of =
¢cross in any one section is apnréximately d/n and approaches
this velue as n —» oo , The probability of exactly §_ cross-
es between the two loci is given by

Lim oCo (L) (1= 2

" : TR

" s oo S n | n. (24)

Where “Q‘= n(n-1) .‘;..(!n-sﬂ

nick out the s sections where the crosses may occur,

is the number of ways we can

(%—)S is the probability that these crosses do occur

i and (l~ a-Y"’ is the probuability that crosses do not
;occur in the other (n-s) sections., This limit may be
written as follows:

P MImedey. . (nese) s d\"(1-4)
mMeoMm o W E? T -).(t‘ "

=y oD




The first factor approaches the limit 1, the second 1is
3

a constant ;—; , the third is (setting x =2):

. a

Lo (1= 4= Fan G- Ly¥d . e

hyoe Vx-)oo
and the last term approaches 1 since the exponent is =

constant. The entire function therefore aporoaches

- e
S
&s the probability of exactly s crosses. The probebility

of an odd number is then

-d A 3 s
.r‘k= e “ ‘:_?.'.-S‘.g—"i.....)
‘ ‘ - -ad
- -d ed ] - € :
- e- ( ) —

which is clearly less than 50% for ahy real d. In case
interference is present we cannot multialy nrobabilities
2s we did in (24) since the events are no longer inde-
pendent and it is at least matﬂematlcally possible for
values 6f pi)-l/%. Thus suppose we have a long chromo-
some'which is very likely to éross over 2t least once,
but one cross strongly inhibits any other crosses for
a large distance. It 1is evident that such conditions
would allow recowmbinstion values greazter than 50%,

In the case when the factors sre in different chro-

-

mosomes, equation (20) can be simplified, due to the

TO% 2
AR A

fact that




under these conditions. It follows that

X%?é >\‘QA ' )\qk' >\1

3

S0 £hat (20) reduces to
PES TR b W DI R
[T‘)'-' )\1" ,l_(l_rohq) )\g Ak}

For three linked factors the first generation

off'spring of the bopulatlon )” Qm is
<

[Peo )\‘&4’3 L Y )\J‘ CF P ) 4 fr'cxg*:-i]

' [14.. DAY )\'T.Q...' + gq,,\'.'4',.; ; f,._,\ff"j (23)

The second random intermsting gives:

I']"oo(r’oo {gl + o >\4~: + 'r:oxd&«' f’flc)\L 3)

b (e o) N (0, or py.) )ﬂ.;) Aa
i ) (R (25)
+ r”((r..r’Y’:o))\_.? +(Tc'frll)>‘_.1') )&

+ ’}"-. ((T-°+ 'Pn) >\e'°+ (?o,o-r-]"o') A.QJ\ )\*]

-E‘.ame expression with P\, ,Al.,'a' revlaced by K, A, ’W\]

The nth generati@nfhasmalso been determined in




this case. It is given by the following pronosition.

Theorem XII. Under random intermsting of the
Aiy ,
ponulation ‘X“;i the nth ofi'spring generation is given

by:

‘Q;. w-t o o .. N
Med = e ) R X Y e, 2T

t((Poar P o) {(r..f PN+ (o) Afil} 3
t (( foorr,.,)h-,— r,:"){(?’“f T:OB)A’J + [?’:A*Pn) A‘- :3§ Xa

v (g P - rof"){w-rru} Xhi, (r-.m.)ﬁf;})’fj

LEYE -n—l M-t R -Q,, HPu o
+ (l + Qa"no - (foo‘l'r"m) —(’F,.‘l"\ﬁo.) —(’)‘Ogo‘t P,,) ))\_ >\ A_a}

.[same expression with h, i, j replaced by k, 1, m]

This may be proved by mathematicsl induction

exactly as we proved Theorem XI. The expression




4.‘ -4... -.‘ [P .1: \ ..
approaches A )\ . é >\ . A . >\“ asymptoti-
cally as N > 00 , In case the three loci are in differ-

ent chromosomes it reduces to

_ ‘ ALy -1 ..:‘- Y VA
e D et
SN » . (=28)
P ){}+ (473 . e ) AN X..‘l
4:{%ame éxpfessibn with h, i, j replacéd bf»k, 1, m]

It is poséible fo expand & pépuiétion in a series
form which displays the homogeneoué components of the
population. This series is very similar to the exbansion
of a Boolean function in Symbolié Logic, and not only
throws light on the mathematical nature of the symbols
we are using, but 1s also useful for computatiocnal pur-
poses; To develop the expanéion we ﬁust first define
a set of "constants'; homogeneous poﬁﬁlations of a cer-
tain fixed genetic constitution. These constants will

always be represented by the base letter ¥ , and the

indices refer to the particular locus or loci we are

FTm e

iy,

R T

considering. All the members of a constant ¥ popula-
tion have the same genetic constitution with respect to
the factors under consideration.,

For a single locus our definitions zre as follows:
a.Y‘,-\',__{' if L=5:a
R ¢

0 otherwise (7)

If a + &

——

e < [T if 12z and J2b or 1f 1 =b and j = (og
o {o | (28)

b7

otherwise




Here & and b are desd indices; tﬁey represent
certain fixed numbers while the live indices 1 and j
represent any of' several values. The dead indices
merely serve to distinguish one ¥ from ancther and
there'is, in general, no index balsnce on them. It
. a \ ,a
will be seen frow our definition that 4)% rerre-
-gents a pOpulation whose membérs‘are all{éf‘the ge-
netic type Aa Ab. Thus QY;'is a homogeneous pcnu-
lation with the formuls £ &,

If we afe considefiﬁg only & single dimoréhicr
factor the series expsnsion of s population A; ie

8.8 followé:
~ Y N S L VP oty A
>\3: Xl 'Y.a t D‘>\-:. zya + )\: ,_Y,

To prove this it is werely necessery to note that it
reduces to an identity for all values of i and j. Thus

with 1 =1, J=1 2ll the terms on the right are Zero,
- ]
except the first which reduces to ;\,, For 121, j=29

: : R . - o P ' 'y '
~only the second term is effective giving A=R )\,_—1= )\l :
T1 IR (:0) 33 T e A"" - - nulsti
ne expansion (29) disnleys i &s & ponulation
. 1 I R, 1 - ” satie netida Nae " x t “
made up of three homogeneous narts '}AJJ t}”j ’ ‘&Ai
The fraction of each type is the coefficient of the
corresponding ¥  in the expansion., Ffor more then

two elleles the expension takes the Torm:




>‘a RTINS N U Mo

‘ ey A T ga L VR
+ &)\,_ 7_\"3 +Q>\53 3+ + l)‘hhé (o)

“+

‘?-z‘.: M-l may g~
LA Y I J‘,'-

Vith more then one factor under consideration

to the fol-

m

we def'line the ) populstions zccordin

lowing schenie:

1 if
Q‘V ﬁ\*‘ i:KIb
@ & 'ik B
0 otherwise (1)
If azc or b#d or both
h=aa 12D n=c 1i=4d
' /2 if _ or
«!\' . ,j:C X =zd Joaa k=D
A
ed " e
0O otherwise (
~1. .L 'R; -~ | NP S =
Thus ;. ¥ represents & howogeneous nonulstbion

whose members 211 have the formuls Ay £~ B_, Bo. Constents

for more than two fzctors sre derined in a completelv
: ? J

A.‘\'YQ\&).

anzlogous umanner. Thus e, kow 15 & populetion whose

members s of i A ] . B. B.¢C oy
members are of the tyoe Ay Aa BD BC Cc CI

The series exvansion for wore thsn one locus hes

the form (teking three frctors to be snecific):




A= s N WAL VE O
% Qe TN B LA 3 29N Sy ,,,rl
[ 4 1“
"
+ ..+ X l’lt"-} .itn’ 4‘._3
A
.Jl../lJ Y AN, K 2a

~where r;, r., end r_ sre the number oi slieles of

I
g
o .
5
-

p]

three factors. eTu corresooncing to a part

the population howmozygous in all factors has the co-

efficient one; if the correspouding pert of the
lation is heterozygous in one or wmore fazctors the
efficient should be twvo.

The cross product of any two ¥ nvponulstion

co-

may

be mrltten as a linesr com01qutloqrof_ ¥'s. Thus

,Q‘e _Q ca X _Lkl; 4
6\(‘4.'& L Y‘ dey‘.'. +'+Qx‘,i. + q.ggf

(

In case some of the numbers &, b, ¢, d are equal this

expression is still true but uwey be simplified.
if a=b
a, b cul IEVE ST S}
Jora¥l s gV 3 an,

For two loci the law of multiplicetion of the W95

st bl ©F &;.: Py 1‘_
eelrg'x'%hy‘jk TEFLQ

» ri rl [‘-“FY&-\-

la.
le‘ +ef&

4

LR AVE &

“tpdi o .

Thus

¢4 a -
Gf-ri“l' g h -‘"‘ .t [ JY& +&4x'\~+0& -Q«. ':h‘?‘*}

¢

ponu-



The series expension end law of multiplicstion
of the [;d;spldy & popu ¢ction as & hypercomplex num-
ber, i.e., @5 o symbol of the form (a.e.+ & Lt et E e
. 11 .\,2 n o
where the coefficients al, 8o ..., aTe numbers and the

symbols e., e_...e  are "unit vectors" with some given

1’ 7g
law of multinlication such thet the »roduct of any two

n

of the e's uay be written as a linesr combinstion of e's.

It is well gnown that except for trivial cases and the
case of ordinsry complex numbers, no low of multinlice-

tion preserves zll the comnutative, associztive and dis-

tributive lews of ordinery numbers, TIn our case the
assocletive lew of wulviplication is sacrificed, Thus

the product (,Yfr :6",;“)*;8/' j is, by (s4):

I ) P G S e T R 1

wnile on the other hznd

P AR SO BN SRR S

coede (vt
- 3 i BRIVES
TN y R

This is a simple exasmple of & wultinlicetion in which
the associstive law does not held, and shows that in
& cross product of seversl factors 1t is essentisl that

narentheses be retrined to indicate the order in which




e

R T e AT

multiplication is performed.
The ceries expansion (5&) of & populstion

shows how an arbitrery population may be written ac

the sum of a set of varticular homogeneous ponu-

i

- ” ’ N . = NS .
laticns, the s . The choice of this particular
set of populations as components was o matter of
convenience, not oi necessity. We now show that

any set of populetions sztisfying & certein simple
condition would do as well.
Coﬁciﬂer a °eﬁ of n porulstions A ooy 7
L [ ) 1_ = Ll 15 5 /‘J' J © )
We omit writing the incices, but there mey be eny
{ : number of loci, Ve will say that these nopulstions

are lineerly independent if there is no set of nun-

ners al, Acyeses 2., not #11 zero, end thet
&

& . q.)\i-C\,_/u.'i-...+°~,|O"=O (25)

for 211 velues of the live indices,

v

seql

U

Theorem XIII: Any populetion @ may be expres:
uniguely as a linesr combinstion of n linesrly indepen-
dent populations where n is the nuuber of different pos-
gible genetic formulese for the Fsctois Ponsidére&.

To prove this, note that = necessiTy znd sufficient
conditicn that (ub) have no solution Uor the o 's (not =211

zero) is thst the determinsnt ‘




N s e

[ S | T 0wy
Alc.--i. /“.....z ""oll-..L

(26)

'\..ll-n.,,_/\, ARy g AN A

’\ant.‘-R, ﬂ."\t___ns . e . Q—A,,\\-.- n"

’be different frow zero. In this ceterminent esch DOPl-—
lation takes on the values of =11 components in & column;
i.e. the velues obtained by giving the indices all NOS~
sinle vzlues,

Now the non-vanishing of (:6) is also = necessary
and sufficient condition for the exlstence of @ unigue

solution for the b's in the eqguations:

Pl A+ & o+t 4 o

and this proves the theorem.

In passing we note that if we nave & liuked factors
with Ty, ToreeeTg alleles respectively, then n, the num-
ber of different components is given by

I‘ll"g.. ors(rll":. ,.rs+ l)

el
2 (!)l

We may think of €5 positions in whice genes may be nleced.
There are T1, possibilities Tor the first snd seccud pos-

itions, r_. for the third and fourth, ete., and therefore

n 28 2 < : .
& total of ryor; T eeel . However, ss un iuterchsnge of
. k) ot



A

the two chromosomes does not aft'ect the genetic consti-
tution we should divide this by two, except for the ones
_which are homozygous in all fectors end were not counted
twice. There are PyPoewel types of fully homozygous in-
dividuals and we mzy correcﬁ our formula, then, by adding

this =znd then dividing by two:

2 L% 2 '
rj: I'fg'."rs "'rl I’gncors o .,
n= - l/{; El r‘enutrs{\rlr?.-'rs"' l)

o

In case the loci are not all in the ssme chromosome but
spread out in = nuuber of different ones, we mey evaluate
the expression (37) for easch chromosome involved and

multiply these results.
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IV, The Solution of Ecguations Involving
- L C g
Unknovn Povulations

It 1s easy to write down equations of various tynes

£¥d )

involving unimnown populations. Hany of these mey be solv-
ed for the unknowns in terms of the known populations by
means of theAtheorems we have developed., In general an
equation represents some breeding experiment involving a
population of unknown genetic constitution resulting in

a genetically known povoulation, In the following we shall
use the letters @, ¢, X... for bese letters in unknown

ponulations and V... for known populstions.
a hs b4 i b

be outlined as follows:

l. By summihg on various iandices we
are able To evaluaste gene frequencies, gene
pair frequeﬁcies, ete. for the unknown non-

| ulations., This ordinarily involves no more
than the solutioh of one or more linear al-
gebraic equstions.

2. Knoving these we can eveluate cross
products in which the unknowns appezar, since
a cross product depends only on the values
of the nopulation symbol with half the indi-
ces dotted.

&o. Vith only lineer terms remzining it

is usually easy to solve the eguetions by or-
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inary methods for slgebraic ecuations,

[N

To illustrate how this is done we shell consider
several examples. Buppose first, for simplicity, that
~only one locus is iavelved, znd that we have the egus -
tion: ) 2 3
R, Q2+ Ru@x@, + R @le(ed g F)

~

¥

8)

with (Pf unknown and ‘Af.known.

By Theorem IX this reduces imnediately to the form

ReP+ sodapt =t - Rus = (59)

summing on 1 we have by Theorem VII

Rq% + S@%+ﬂi$@£=A%

i
T
°or = AE

Hence by Theorem VI we mey reonlsce C?? by Af in any

product. Returning then to equation (32) we have

. R ~ R “~ ~
and this must be the unicue solution of the equation,
if & solution exists. To prove that is a solution ve

merely try it in the ecustion and find that it is satislfied,
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A more general eguation in one unknown is the

following:

R ngf) e s ¢8xph rr ol a2 (40)

Summing.on iz

R(z@2 i mte 2o8) L sqf, v gt o 34

A — 2 R L
@ Reysevr AL - Revs 4y A
= _j-__ A"g‘ _ R 4

4 -R " $-R )

Beplacing’c?f in each product of (39) by the expression

S R D R R ives:
4-R AL TR M B

. %)\ﬁ"(ﬁ‘ﬂkf*—'—&—f%‘)'

t-R 74
R LA R 4 A ws (AR RS .4
x[w-nx;/u’“ ‘ w—_.a/u"‘/“*‘ * »—n)‘;, "_—R/u';]

as the solution of (z9).

It way be easily shown that the zbove method is
a'pplicable to eny single eguation in one unknown qpf‘
providing the coefficient of t?f does not equal zero.
Such zn equation alweys hss s unigue solution, although
this solution may not alvieys repreSent a realizable DOPU-
lation.

A.system of linear simultsaneous equations may be
solved by the ordinary wmethods for elgebreaic equations,

since by fixing the indices we actuzlly have such a sys—



tem of linear algebraic eguations. Thus suppose

g K )\K i
A e A
A=
y . o P . i L} K i<
represents the system of equation with P, Pe, .., Py

unknovwns. The indices i and J here serve tc dis-
tinguish between the different @ and A popu-

lations. The solution of this system is

A i MJ‘“ )\,k : : »
L'@-ﬂy- J"' ‘Rs.{\ 1M 2 o (42)

where IRzil , the determinant of the coefficients # 0

FO, end Ms; is the cofactor of R

The reader mey verify that simultaneous systems

1j°

of eguations with cross products ianvolving the unknown
populations mey also be solved by these wethods. Turn-
ing now to »nroblems iavolving wmore than one gene locus

the situstion becomes a bit more complicated., Suppose

again we have the equation in one unknown -

& e PN ,
chj«"cpi“*sqii"_%c"x (43)
Referring to the definitlon of a cross product
for two factors we see thet knowing the two guantities
Cp:f and CP.{.-,'_ the cross '_proc'ipct in (423) is completély

determined. ;Summing,‘then, on J and k we get
4. . L. _ N4 | - - |
Re™ ¢% = Sogli= AU (44)

and we se that to determine q?z‘. we should find ¢A



cumming (45) on i gives us

similarly

..Q
Tt
"
>/
. 3§
&

@i =+ Wi-ENE T (48)

¢ 4 5

Substituting in (44) |
CPJ?‘? el B SARILLID L URY PARD o

STRpP. (47)

Now from our original ecustion (43):
! N L3 &< 40
A : x P

, 4 0 R .
ij‘ S ;’n s L ,'x

and the cross product on the right may be Caiculated
from thé»equations (46) and (47). This, then, gives
the unique solﬁtion to the problen,
Generalizing these methods to systems of simul;
taneous equations in more thsn one unknown énd with any.
% number of gene loci is not difficult. OF course, the
eguations become larger and moré cuwbersome, but no

new theoretical difiiculties appear.
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V. Lethal Factors and Selection

The resulté of a selective acticn mesy be calcula-
ted by the methods we have developed. Suppose the chances
of survival of the types Ah Ly are R? where n and i fake
values over all alleles. Then sterting with a population

)\{' the pooulstion resching maturity will be

AP TN
D, R; >‘-'

where D1 is & normalizing'factor given by
p -2 L RPN (48)
X < ’
Sums on more than one index are of frequent occurence
in selection work and we adopt the convention that
suﬁmation on two or more indices simultaneously will

be indicated by placing a bar over these indices. Thus

.

J

(48) would be written
2

¢ o

D, = R

A

>

L .
The first generation offspring of‘.); would be

o o (RENE &3
S E n:L ) “h‘(R‘ )\‘),
= s (REAF ORI AT

5

‘and if

then o
' : Iy 1
L R".{RJ; )xJ:.‘ RY 2.

A



S A R S DO SR

R

. =D4—

will reach maturity.

The next generation is given by

L R Lk R ST T K It ¥ % T
D;'Rj Ri AE R; Aj R& Rs >‘SR,; h;

etc.

A population will be in equilibrium if and only
' .

il the equation

N N
);‘ER% AT (49)

is satisfied. This requires that

R 2 R <
No. =5 RN (50)

or

(1)

This may be satisfied in two different ways. If none

of the A% = & , we must have

2 X =D
R 2 A (52)
a system of linesr algébraic equations with the unigue
solution (pfoviding (R £ 0)

) \ . ) 1 f
Rl ll‘_ R_&_' | R..‘“ e R

T g1 N

R' R" K’n-l | RIF' R.;\

(57)
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where k is a constant determined by the condition

A =] Equation (51) may also be catisfied if some of
. _

the M. =0. Ve may not divide though by these com-

ponents, but the remainder gives us a set of, say, m<w

equations in the m nonvenishing components which will,

R R T B

in general, have a unigue solution,

Atpopulation satisfying (49) above would be 'in

ecuilibrium in the sense that the first generation

;if"gi
E
3
s
"

expected offspring would be of the same genetic con-

S

stitution. However, this equilibrium mey not be stable,

Ry

for the actual offspring will in genersl deviate some-

what from the expected offspring ancd the ponulation will

be stable if and only if this deviation tends to cause

i the next generstion to return tolthe eguilibrium position.
i The situation may be lirened to a ball which msy be éither
balanéed on the too bf a hill or placed at the lbwest
point in a valley. In either case the ball is in equi- -
librium, but oniy in the valley is it stable, for if

given a slight displacement on the hill the ball will

tend to run down, while in the valley it tends to return
to the lowest point.

Although a complete set of necessary and sufficient
conditions for stability of a population have not been
{ found, we have the following proposition:
; : Theorem XIV. A necessery condition for stability

of a realizable equilibrium“pcyulatibﬁ” )§ (no gene




frequency eguals zero) under the selective action l?ﬁ'
is that

R} < m} S # &
(54)

Proof: Let the Rf coefficients be multiplied by
such a constant that the equilibrium populztion

satisfies the normalized equation:
SR I (55)
or, since no X’% - o

Let this population teake on e small increment Akf vith

a\_ = O. The result of one generation random inter-
mating of this displsced population )ﬁ + 4 xg_’ is
U N B LIRS CRRT RN
fihence

/ufg ‘ﬁ* Q{é(:%%ﬁ+-¢)\%\XTAT? +<1)\?J

{ ' { ~ ‘ -
5 [READAT L ord AA ot

- Rf:)\?AAJf‘+R§ a,\J)AX:.]
low the first term RS AT = A“QJ

L\ < ¥y 2
and the third Rz AT & X, = & A from (56). Tor

small increments the last Lerm is of the second order



.thus
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and may be neglected so that

P D L N L.

i~
>3
>
-2
L

To evaluate the comnstant D, we first sum on h.

- R YT R TIPS

/u,J" ‘: )\4.& + 4 )\‘D“ +R‘£‘ }\"Q_‘A).‘.‘

We see that the offspring of the displaced popu-
lation is equael to this nopulation plus an additional
increment R‘& r\"" A Xr « Clearly s necessary condition
for stability is that this be opposite‘in sign to the
original increment A)fg . Now the original increment
wes completely arbitrary., Let us fix h and s as two con-
stant indices and supvnose the comnonents of the increment
Were‘ o)f,p‘= +e, ) <_ e and all other commonents zero.

Taking € positive we have the condition

ﬁi\ }\J_‘ AN €O

or .
(R*,‘.A)\.' +R“E¢.A°f+..v. + Rf‘ ") <o

For a realizable populstion A% is positive and all the
. . s & 3 s
terms in the parentheses are zero except ad™ znd al

giving

R'i € - sz‘ € ¢ 0




. o Ri < Rf

This proves the theoremn,
For a dimorphic factor tnis condition is zlso

1

easily shown to be sufficient for stability; but
examples show that it is not alweys sufficient for
more than two slleles. Sufficient conditions (not

necessary) for any number of slleles sre that

R'_&‘\ = <, , & coustant indevendent of h
(87)
K-& = I - - » o A
> x , & constent independent of h and s
Ky € K¢

For then the correction term is

n . : '
Mh RS PR N =y oxt]
Jel
: x“. [-nfm%ainﬂ
= _ng s N (i, = k)

which is clearly opposite in sign snd less in asbsolute

velue than o )\“?‘
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VI. A Calculus of Populations

Up to the present, all our pdpulation symbols have
been gonstants, i.e. each represented a certain particulsr
population. The manipulstion of these discrete sets of
aumbers constitutes an aligebra. Sometimes, however, it
is convenient to consider continuous time varictiocns of
a popnulation. Such a study lezds to s calculus of ponu-

ations. We have already used, in the preceding section,
the idea of an incrementsl pogﬁlation, |

In this section we will define the “derivative” 
of a populétion and develop some of the Tfundanentsls

of the celeulus.

Isx

js]

FPirst let us

¢

aené:alize our idea of porul:stion

to include veriable populations, i.e.'populatidns thst
are functions of time. Ve indicate this functional de-
pendence by the usual notetion e.g.

L
A 0t) |
3 - (58)
represents the genetic constitution of the population
A%; at the time t. In case no ambiguity is introduced
]
we will sometimes omit the argument t, it being understood

that

"

k?i AT )
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Ve define the derivative of a populstion =zs the

1ndexed syabol whose comnonents sre the time derivatives

of the components of the population in cuestion. Thus:

& J;
d %< Lo A (t+ot)— jx ¢ :
it A§KH)=4tao = (59)

Ve assume the porulation large enough and the veriation
of )\ smooth enough for the limit to exist in e practi-
cal sense.

Note that the derivetive of & pooulatlon is not

a population. A population has the property k.. = |

while its derivative has the following property:

Theorem XV.

Y= 0 (c0)

This is true if we first suw on &1l indices end then
toke the derivetive ox viée verse., DRoth fcollow lmiediate-
1y on taking the derivetive of (6).

Ls in ordinsry celeulus we have simple rules for
telking derivetives of suis, procducts, etc. These are
21l exsctly the scue &s those of ordinery celculus., FWe

have:
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Theorem XVI,

2
1. If A (¥) is = constant

)]
S

o | (81

ry
"
{:
X
+
2
\V
7

(82)

then
d. -D\s d _Q.
—_— “~ &. -ﬂa.
d ¢ 3 < R‘df/udk*e\d:‘oa'n
Se. IT
' A L2 Lo
x I /&3' « = 1>1' K i
(8%)
then

4 (R L 4 R 2. d .
y d € “K:/u'iltkd‘t__‘)f:f 7)- X—/U‘;

2 -

The first two orf these rules for difierentistion
vare obvious, since by fixing the indices they merely
state the ordiﬁary rules for differenticting constsnts
and sums, The third, which is the enclogue of TLeibnityz
rule for differentiating s prcduéﬁ, recuires nroofl,
fterting with the definition of & cerivetive we have;

q L . : .

dt ‘Q;:= i“-‘:\o ;)__Xe;:(t+ at) - A::\ﬂ]

at

]
At-}oat J

< < < St - aAe L.
[{/uf‘p ) F L\/A-’:l' Lt)}“s_ﬂ‘:‘kkt)fqﬂ '-0‘,%]}"7 /‘*‘-“(ﬂx-n)jk\-g)J



5
)
t

TR L SR L .
where A/“-‘h‘t’DPﬂadF*At‘“/“jlzﬁﬂ end similerly for

&< .
& v - (€)Y . Wow the firat cross product mey be

3

multivlied out by our distributive low (Theoren VIII)

giving ' \
A ‘. X -
. - 1).~'t —Q.A- 4 Y &’ .
stSo ) - s¢ 1At "

[
-The third term in general tends to zero with ot so0

that our limit is:

LI

Lo o4 A, phis B
A GO T Ve

the desired result,
RN :
For a nonulation A 1w intermeting ¢t random this
reduces to
. : : AL d A«
d /&< K A.) - 8 *
dt(A"“K Aa‘( -1>3K dfxalc

£ population whose components are snslytic

functions of ©iume mey be expended in & Taylor series

d \ €
1" t=0 € ) t=

. N N v “eLA.I *
'k?:@lz A?x@)f = A% J:*‘ith % + ...

for by fixing the indices we sre sgoin nerely stating

the stendsrd Teylor Theorem.
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In this thesis, an algebra is constructed for
studying the dynemics of llendelisn porulations. The
symbols of the algebra represent groups of individu-

) . - E
als or nonulations. The indexed sywmbol )5‘)for ex-
smple, represents & population in which two gene loci
are under consideration (the number of loci corre-—
sponds to the aumber of psirs of indices). The num-

ber of allelomorphs in each locus is completely arbi-

[AS)

trary, as 1s the recombiﬁation value for the loci.

The different components of a population sywbol, repre-
sented by fixing the indices at specific values, are
numbers whose values corresnond to the fractions of

the porulation with certain genetic formulae, It is
couvenient in some cases to consider as porulstions

synibols whose coumponents are negative or even complex.

Such symbols cannot, of course, represent an actusl

group of individuals and are called uanreslizable nopu-
lations, but their use sometimes fecilitates the solu-
tion of problems.

22

4l
Addition of two population symbols, Rkjn*'s/“ﬂkl

results in a third population symbol which is defined
in such a way as to represent the population obtained
by wmerely comblning tie originsl nopuletions in frac-
tional proportions cofresponding to the scalar coef-

ficients of R and 8. Cross multinlication of ponule-
4.

; L . : . \ s
tion symbols Xj“.gﬁLj‘ gives a ponulation symbol wihich




-

“s

S R TR

is defined in such a way as to re present the expected
offsnring population when the two original nopulations
are crossuated st Lundom. Vhen two gene loci are con-

sidered, this is realized by the Eathemotlcnl defini-

tion o
J;“.f *ﬂfﬁ : % [?.Xgﬁr. )f;][r./*"f Ped]
B Y (S R B | TR

s B

in which p1.=l-pﬂ is the recowrbinaticn value for tﬂe tw
loci, and renlacing an index by a dot indicates summation
of the population symbol on that index. Cross multinli-
cation is defined analogously for n loci. It is shown
that thisvalgebra is comwutative on addition snd nulti-
plication, distributive, znd associative on addition but
not on multiplication. These laws together with two
fundemental manipulation theorems: one, that summaticn
of a ponulation on all indices gives unity and tweo, that
inverting the upper and lower rows of indices of =2 PODPU~
lation leaves it unchanged, form the basic algorisms of the
algebra.

A number of the well kuown theorems of theoretical
genetics are easily proved by means of this algebra. 1In
addltion, a nwiber of new resuits are found., Completely
general formulae for the nth generation of Tap pring under
random intermating of sn arbitrary initial nopulation are

developed both for the cases of two znd of thres linked

o o —— = o——r % % so
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s¢ factors, the formuls for the

e Ii, VHM« SRIGE AP
L2 (pd® o p ML) ()N 3] | |

in which X~ 4z the initlsl o tion and py the re-

& recombination we

£ oy
3

interference., Comditions are Tound for the stability

under random intermating of a pepulation waen one or more i

iocl are conzidered, For the case of one loocus, three sels

of .m?&em aecessary and sufficlient conditions are

-

,«4

T g
DL ENLOnS

i

By means of certain homogsaeosus

s arbidvary population pey ke expanded In a finite

H’i

series displaying its vawpious components, nis expanasi. }:1
tﬁgéthﬁr with the multiplicstion law for the W popu-

Iatlong, displays the elements of ihls
eouplex pumbers. %t iz shown th,. ¢ oan

wey be ezpanded wolquely a8 & sum of ax

pendent populations where nn is Lhe
possible genetle formulse for ths

iz possible to write down




operations of addition and cross wultipliceaticn. In
general, such an equation cen be iaterpreted 23 a breed-
ing experiment involving one or more unknown nopulations

and resulting in = geaethllv ltnown porulation, ﬁeth-

L‘)z

ods are dGVeloped whereby most such e(uations can be solve
in case a solution.exists. Eriefly this method of solﬁ—
tion may bé suwgnarized as follows, By summing on one or
‘more indices of the unknown populstions, eanough data abou
them is cbtained to unicuely determine any cross products
in which they épnear. The cross product terwms in the ori-
ginal equations then become known snd the ecustions mey be
sloved in exactly the same way as ordinary linear algebrai
equations.,

In case = sélective action exists favoring individu-
als of a certain genetic constitution, the previous formu-
lae for stability no longer hold. Although this more dif-
ficult problem has not been completely solved, a necessary
condition for the possible existence of a stable porulstion
under an arbitrary given selective action is established,
and a formula for this porulation is developed. This has
only been done for the case of a siugle locus.

A start has been made toward the develdpment of a

alculus of ponulations, i.e. the study of ponulétions
which may vary continuously with time. The tiume derive-
tive of a population is detfined. The derivative of &

vmbol is not itself a woru-

v )

5]

porulation, although =an indexed




lation, .All the ordiﬁary rules of derivation inéluding
the Leibnitz rule for the derivative of a cross rroduct
of populationslére‘shown to hold true, £lso, a ponula-
tion may be expanded in & Taylor series in pdwers of

time, of the same form as the ordinary Taylor series.



