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Abstract

Traditional coalitional game theory does not apply if different participants hold dif-
ferent opinions about the payoff function that corresponds to each subset of the
coalition. In this thesis, we propose a framework in which players can exchange
opinions about their views of payoff functions and then decide the distribution of the
value of the grand coalition.

The main contributions of this thesis include:
1. This thesis proposes a coalitional game model with private payoff functions

and opinion exchange. In current literature, no information exchange on private
payoff functions has been considered.

2. When players are truth-telling, the problem of opinion consensus is decoupled
from the coalitional game. However, interesting dynamics arise when players are
strategic in the consensus phase. Assuming that all players are rational, we show
that, if influential players are risk-averse, an efficient fusion of the distributed data
is achieved at pure strategy Nash equilibrium, meaning that the average opinion will
not drift as time goes on.

3. If the weighted average of private payoff functions is supermodular, then there
exists a risk averse level such that the Bayesian core is non-empty.

4. Without the assumption that all players are rational, each player can use an
algorithmic R-learning process, which gives the same result as the pure strategy Nash
equilibrium with rational players.
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Title: William A. Coolidge Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Background and Literature

In recent years, the application of coalitional game theory in multi-agent systems has

been receiving increasing attention. Those applications include task allocation [161,

smart grids [14], transportation networks [13]. Although the theory of coalitional

games has existed for a few decades, theory for the case of unrealized payoff functions

(of subsets of players) is quite limited. In most of the literature that considers

coalitional game theory, an oversimplified assumption is used, i.e., that all players

agree on a common sub-coalition payoff function.

Recently, researchers have started to look at this case in a variety of ways, e.g.,

using the model of Bayesian games, bargaining games, or repeated playing dynamic

games. One paper [11] derived a model that generalizes coalitional games to a

Bayesian framework using types. Furthermore, a Bayesian core contract is defined

as the set of contracts of payoff distributions that are non-blocking under the ex-

pected value of payoffs of players, whether Ex ante, Ex interim, or Ex post. Note

11



that non-blocking means one player is better off staying in the grand coalition, so

this player would not block the formation of this grand coalition. Similarly, another

paper [10] defined the concept of Bayesian core (A core is a set of payoff distributions

such that every player is better off staying in the grand coalition) under uncertainty

and gave a bargaining algorithm that converges to the Bayesian core, assuming that

it exists. However, there are two practical issues with the setting. First, the theory

says nothing when such a core does not exist; second, even if it does exist, people's

individual observations, which are private information, are not used constructively

because they do not exchange information on private payoff functions. By exchang-

ing information, everyone can obtain a better estimate of the ground truth of the

payoff function. In addition, players may not follow the algorithm suggested in the

literature when they are strategic and want the algorithm to converge to some value

in the core that favors them. Finally, a fair distribution, such as the Shapley value

in the classical coalitional game model, is not well defined because a commonly-

accepted payoff function may not exist. Another paper, [5], used a repeated playing

model and assumed that players learn the actual state of the world as the game goes

on, but, in practice, states may never converge if the game that is being played is

changing rapidly over time or, even worse, if the game is only played once.

1.2 Contributions of this Thesis

In reality, the realization of a sub-coalition payoff function may involve opinion con-

sensus, i.e., people's views of each other are affected by each other, and consensus

eventually reveals the truth. However, to date, there has been virtually no work on

the interplay between coalitional games and opinion consensus theory. This thesis

takes an initial step in this direction and shows that this model gives rise to several

12



interesting implications parallel to many social phenomena. As noted before, in this

model, players obtain a better estimation of the ground truth of the payoff function

by exchanging information; a fair value distribution (i.e., the Shapley value) is also

well defined given some conditions for efficient opinion exchange that are stated in

the thesis.

The proposed framework of the coalitional game with information exchange re-

sults in three interesting phenomena that relate to psychology and sociology. First,

at the equilibrium of this game, each participant should be a little overconfident by

exaggerating their own contribution in the coalition. Second, in a rational player

setting, if the members' influences in a network are proportional to their risk-averse

levels, the opinion exchange process is efficient, i.e., it is beneficial to an organization

as a whole if more responsible people are taking more important positions. Gradual

opinion exchange, instead of an instant opinion fusion, is necessary when players

are not fully rational. Finally, in an environment with tremendous social pressure,

players tend to switch positions in the opinion exchange process.

1.3 Real World Applications

Deciding equity distribution is a critical step in forming a startup company [121.

For a long period of time, it has been regarded as a problem that that is often

solved case by case relying on experience. For example, [121 suggests that equity

distribution should consider "past and future contributions," but those contributions

are very subjective. To avoid this subjectivity, [17] argues that everyone who joins

the startup at the same time should receive equal shares.

Recent years there are some theories and practices trying to deal with this prob-

lem in a systematic way. To date, the most suitable theory is the Shapley value in

13



coalitional game theory, in which payoffs are distributed according to the contribu-

tion of each of the sub-coalitions and the three axioms of fairness [15]. An online

tool, "Startup Equity Calculator," [9] implements this idea by asking the question

"What will the company look like without this particular founder?", which essentially

evaluates the contribution of each of the sub-coalitions.

However, the above ideas of the Shapley value assume that everyone will agree

on the contribution of each of the sub-coalitions. In practice, different people have

different opinions about the contribution of each of the sub-coalitions, hence a coali-

tional game theory with incomplete information is required, such as the one in this

paper.

As another example, in the United States, passing legislation requires substan-

tial effort and extensive lobbying and debates, and the same game is not played

repeatedly. Thus, a repeated game model in the paper [41 is not applicable. In con-

temporary U.S. politics, in addition, it is usually the case that the Bayesian core,

defined in [11] does not exist, because the two.parties have strong prejudices about

each other. Moreover, the opinion exchange process affects the outcomes substan-

tially, so a model, such as an opinion consensus model, is required to capture its

effect. At the end, each Senator and Representative has her or his own interests and

cares almost exclusively about the welfare of his or her own constituents.

1.4 Thesis Struction

The rest of this thesis is organized as follows: Chapter II discusses existing models

on coalitional games and opinion consensus. In this section, Proposition 1 shows

that with large number of players, the Bayesian core as defined in [6] is likely to be

empty, and Proposition 2 gives conditions for linear opinion consensus which could

14



give non-empty Bayesian core. However, the linear opinion consensus models do not

consider self-interested players, so a modified model with self-interested players is also

discussed. In addition, Chapter III discusses system dynamics with self-interested

players in coalitional games with opinion exchange. In this section, Theorem 1 gives

conditions for which a coalitional game with opinion exchange is efficient. Further-

more, conditions for which a Bayesian core is non-empty are given in Proposition

4 with a consensus assumption, and Theorem 2 without the consensus assumption.

Additionally, Chapter IV shows that an R-learning algorithm can provide a player

the best strategy when other players are not rational, i.e., when other players' behav-

iors have to be learned. Finally, Chapter V gives concluding remarks and discusses

further work.
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Chapter 2

Coalitional games and opinion

consensus models

In a classical coalitional game, it is assumed that the sub-coalition payoff function is

common knowledge for all players. In this thesis, this oversimplified assumption is

removed, and private sub-coalition payoff functions are allowed. Those different sub-

coalition payoff functions represent different evaluations of other players' abilities,

i.e., they are private opinions. As indicated in much of the social science literature,

people's opinions can affect each other substantially [7]. Thus, such opinion exchange

requires a new coalitional game model. My thesis, in particular, uses the linear opin-

ion consensus model [1] as a tool to investigate opinion exchange in coalitional games.

Informally, players first carry out opinion consensus, and then they play the classi-

cal coalitional game to decide the fair payoff distribution; a rigorous mathematical

model of this process is given later in this thesis. However, the coalitional game with

opinion exchange is more than a coalitional game after opinion consensus; during the

opinion consensus process, each participant is incentivized by her or his final pay-
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off in the coalitional game and may tell lies. That interaction generates a coupling

between the coalitional game and the opinion consensus.

2.1 Notations and definitions

This subsection reviews notations and definitions used in classical coalitional games

and opinion consensus models.

Definition. [Supermodularity] Let N = {1, 2,.- ,n} be a set of consecutive integers.

Suppose f(.): 2 N -- R is a set function. The set function f(-) is supermodular iff

one of the following equivalent conditions holds

1. VX C Y C N and x G N\Y, there holds f(X U {x}) - f(X) ; f(Y U {x}) -

f(Y), or

2. VX, Y C N, there holds f(X UY)+ f(X nY) > f(X)+ f(Y).

The set function is said to be strictly supermodular if the inequalities in the above

two equations are strict.

Definition. [Stochastic Matrix] A matrix W = [wij1 is called a stochastic matrix iff

1. Vi,j, wi ;> 0, and

2. Vi, there holds >j wij = 1

2.2 Coalitional game

Let N = {1, 2, ... , n} be a set of n players. In the classical coalitional game setting,

a subset C C N is called a sub-coalition. A set function v(C): 2 N -+ R of the

subcoalition gives the payoff if sub-coalition C is formed. Note that the cardinality

of {CIC C N} is finite, so v(C) can be represented as a vector, v.

18



In a coalitional game, we consider two major questions:

1. Is there a payoff allocation such that everyone is better-off in the grand coali-

tion? (This problem is solved by the notion of core), and

2. Is there a payoff allocation which is fair to everyone? (This problem is solved

by the notion of Shapley value).

The core of a coalitional game is the set of payoff allocation, gi, i E N:

{gsiVC C N,Zgi ;> v(C), and Zgi = v(N)}
iCC icN

If the core of a coalitional game is not empty, then the coalitional game has a stable

solution, such that everyone is better off staying in the grand coalition. Furthermore,

the core is non-empty as long as the payoff function is supermodular.

The Shapley value is a payoff allocation, gi, derived from three fairness principles,

i.e., symmetry, linearity, and null player. This value is given by

gi = di(v) =C!(n - II - 1)! (v(C U {i}) - v(C))
CCN\{i}

The Shapley value defines a fair distribution of the total payoff v(N).

Example 1. Suppose there are three players playing a coalitional game. They have

a common sub-coalition payoff function v(0) = 0, v(1) = v(2) = v(3) = 0.2, v(1, 2) =

v(1, 3) = v(2, 3) = 0.6, and v(1, 2,3) = 1.

19



We fisrt verify that the subset-payoff function v(C): 2 N -+ R is supermodular:

v(1) + v(2) < v(1, 2)

v(1) + v(3) < v(1, 3)

v(2) + v(3) < v(2, 3)

v(1, 2) + v(3) < v(1, 2, 3)

v(2,3) + v(1) < v(1, 2,3)

v(1, 3) + v(2) < v(1, 2, 3)

Note the sub-coalition payoff function can be written in the form of a vector

[v(0), v(1), v(2), v(3), v(1, 2), v(1, 3), v(2, 3), v(1, 2, 3 )]T

and the condition of supermodularity can be regarded as a set of linear constraints

inposed on the vector.

Then we demonstrate the notation of core. Consider the payoff allocation

1
1= g = 93 = 3

The above payoff allocation satisfies the budget constraint

g1 + g 2 + 93 = v(1, 2,3)

and the rationality constraint (i.e., everyone is better staying in the grand coalition)

v(i) < gi

v(ij) < gi + gj

20



hence it is a stable solution of the coalitional game and an element in the core.

Now we consider the Shapley value di(v). Shapley value is defined by three fairness

principles, i.e.,

1. Symmetry: if VS,v(S n {i}) = v(S n {j}), then di = dj.

2. Linearity: if two coalition games with subcoalition payoff functions v and w

are combined, then the allocated payoff d is also combined:

di(v + w) = di(v) + di(w)

3. Null player: if VS, v(S n {i}) = v(S), then di = 0

One can verify that the Shapley value

v (0)

v(1)

- 1 - v(2) -

3 3 v(3)
g = d(v) - 1 1 _ 3

6 -3 6) v(1, 2)

- -6 6 3 v(2, 3) -

v(1, 3)

v(1,2,3)

satisfies the three properties above. Note that this Shapley value is in the core of the

game; this is not a coincidence. If the subcoalition payoff function v(C) of a game

is supermodular, then the Shapley value is in the core of this game. Suppose v is the

vectorized form of v(-), and we let v(0) = 0, v(N) = 1, then we can also write the

Shapley value in the form
1

gi = - + div
n

21



with the plausible property

> di = 0
i

We will use the above property in our derivation later.

Neither the core nor the Shapley value is well defined without a payoff function,

v(C), which is commonly accepted among all players. However, the notion of a core

is generalized in [4] and [11] as a Bayesian core, where private sub-coalition payoff

functions are assumed. Note that the definitions of the Bayesian core are different

in the above two thesiss, and the definition in our thesis is similar to that in [4]. In

our thesis, the Bayesian core is defined as the set of value distributions, gi, such that

every player is better off staying in the grand coalition. Mathematically, "better off"

is defined by

Vi, VC 5 N, gj ; vi(C) (2.1)
jEC

where vi is private information of player i, characterizing his or her unique opinion

of the game. Furthermore, there holds the budget constraint

Vi, gj = vi(N) (2.2)
jEN

Now, a value distribution, gi, is in the Bayesian core iff both (2.1) and (2.2) hold.

The problem with the setting of the Bayesian coalitional game is that, in many cases,

the Bayesian core is empty even though the core is not empty for each player i. That

is particularly true if the number of players, n, is large, as illustrated by Proposition

1.

Proposition 1. Suppose that there is a strictly supermodular ground truth payoff

function v(C) : 20 -+ R (Note one can represent the function as an m-vector v).

22



Further suppose each player's opinion vi - N(v, EZ) is a sample from the ground

truth payoff function, where N(v, EZ) represents a truncated normal distribution with

support vi E {V|V vectorize vi(C) and vi(C) is supermodular}, and Ei is a diagonal

matrix with diagonal entries o? > 0. As the number of players increases, i.e. n -+ 00,

the Bayesian core defined by (2.1) and (2.2) is empty with probability 1.

Proof. Proof by contradiction. Let S, and S 2 be partitions of N. i.e., S1 n Si = 0

and S, U S2 = N. Because each player takes a sample from a Gaussian distribution,

1 1
lim IP{i, j, k, s.t. vi(S1 ) > -vk(N) and vj(S2) > -vk(N)} -+ 1
n+o 2 2

The "better off" condition defined by (2.1) gives

vk(N) < vi(S 1 ) + v(S 2 ) < E gp + 1 gp = E g
pES1 pES2 pEN

Now the inequality EPEN 9p > Vk(N) contradicts the budget constraint defined

by (2.2). L

In the above proposition, even if each sampled value function has non-empty core,

the game itself has empty Bayesian core.

2.3 Opinion consensus

Suppose a graph g = {N, E} characterizes the opinion influence among a set of

players N. There is an edge eij e E with weight wij E (0, 1) if player i has a

influence on player j's opinion. If there is not an edge between i and j, we set wij = 0.

Furthermore, wii = 1 - Eji wij ;> 0. At each time instance tk, player i hold an

23



opinion of the function vi(C)[k]. In fact, because the cardinality of {CIC C N} is

finite, one can consider vi(C)[k] as a vector vi[k].

In the classical opinion consensus literature, all players are truth-telling. When

all players are truth- telling, the problem of opinion consensus is decoupled from the

coalitional game. Players just update their opinions according to the linear opinion

dynamics defined by

vi[k wij vj[k - 1]

In the above system, opinion consensus can be achieved, i.e., Vi, the limit limk..+e vi[k]

exists and Vi, j, limk--,. vi [k] = limkl,0 vj [k], iff the stochastic matrix W = [wis] has

one eigenvalue of 1 and all other eigenvalues are strictly in the unit disk. If the

opinion consensus can be achieved, one can define a consensused payoff function

V = limk,+, vi[k]. After the opinion consensus, players can play the coalitional game

and a grand coalition exists iff the stable core of v is non-empty. A set of sufficient

conditions for which the stable core of v is non-empty is given by Lemma 2 below.

Proposition 2. There exists a stable coalition under the consensused payoff function

v if all of the prior payoff functions vi[1] are supermodular set functions.

Proof. First, note that if vi [k - 1] is supermodular, then vi [k] = Ej wijv [k - 1] is

also supermodular. Since vi[1] is supermodular, by induction, it follows that Vk, vi[k]

is supermodular.

Because the set of supermodular set functions is closed, the consensused payoff

function v = limk,÷o vi [k] is supermodular. Since the core is non-empty as long as

the payoff function is supermodular, a stable coalition exists under the consensused

payoff function.
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In reality, however, because players are incentivized by the payoff distributions

in the coalitional game, they do not necessarily tell the truth during the opinion

consensus process. To incorporate this strategic aspect of opinion consensus, a better

model is required. Assume that, at each time instance, player i reveals an opinion,

xi[k], as a decision variable at stage k, that may or may not be equal to vi[k]. Define

9 E (0, 1) as a trust parameter. Now each player updates his or her opinion according

to the linear opinion dynamics defined by

vi[k] = 0 wijzx [k - 1] + (1 - O)vi[k - 1] (2.3)

Proposition 3. Suppose vi[k], x [k], wij and 0 are defined as above, and the opinion

dynamics follow (2.3). If

Vi, lim xi[k] = x
k-*oo

then

Vi, lim vi[k] = x
k-+oo

The reverse is not true.

Proof. We first prove that if Vi, limk, 0 xi[k] = x, then Vi, limk_, 0 vi[k] = x. We

want to show that VE > 0, ]n E N+, s.t. Vi, Vk > n, ivi[k] - xIK|o < e.

Let E be given. Because limk+oo Xi[k] = x, Eni E N+ s.t. Vi, Vk > ni, 11i[k] -

xII,, < 1. Without loss of generality, one can only consider the jth component of

vi[k], xi[k] and x, denoted by (-),. When k > ni, one consider the first order feedback

system with reference (x)j + 2.

(Ui[k])j = 9 [(x)j + + (1 - 9) (Ui[k - 1])j (2.4)
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Note that (vi[k])j is upper bounded by the above feedback system in (2.4) because

(xi[k])j < (x)j + . Furthermore, the above feedback system (2.4) converges to

(x)j + 1, i.e. 3n2 s.t. Vi, Vk > n2 , (Uh[k])j - + < i. Now choose n3

max{ni, n 2 }, there holds Vi, Vk > n3 , (vi[k])j < (Ti[k])j < (X)j + f + L = (x)j + C.

Similarly one can find a lower bound system and show that (vi[k1) > (x)j - c. Hence

]n E N+, s.t. Vi, Vk > n, Ivi[k] - x|joc < E.

However, the reverse is not true when [wij1 is singular. L

When there are strategic players, the above propositions shows that consensus in

the expressed opinion ensures the consensus of true opinion. Since the true opinion

is not directly measurable, the above property shows a way to infer true opinion.
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Chapter 3

System dynamics with strategic

players

As pointed out in Section 2.3, the system dynamics are trivial when all players are

truth-telling because the opinion consensus and coalitional game are decoupled. This

chapter discusses the opinion dynamics when players may tell lies to get themselves

better payoff distributions. We refer to such players as strategic players.

3.1 Enforcing effective information exchange

In the rational player setting, if telling a lie has no cost, the game becomes a cheap-

talk game [8]. Players will not trust any information, and there is no efficient infor-

mation exchange. Similar problems exist under the cognitive hierarchical model [2],

where the opinions will not reach consensus because the second level players again

form a cheap-talk game, even though the first level players may tell the truth. We

would like to investigate this type of bounded rationality models in future work.
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In our coalitional game setting, each player's private knowledge of the sub-

coalition payoff function can be viewed as a sample of the ground truth. People enter

the opinion consensus to acquire information on other samples, and hence acquire a

better understanding of the ground truth. However, revealing false information to

others will introduce bias and also undermine trust among the players. Hence, it

is useful to introduce a disutility when false information is revealed so that players

become risk-averse, and effective information exchange is established.

3.2 Rational and risk-averse players

Consider a ground truth payoff function v(-). Suppose it is normalized, i.e. v(0) = 0

and v(N) = 1. When we write it in its vector form, each entries in v are v(C), 0 C

C C N (hence it is an m-vector, m = 2N - 2). Note v(C), 0 C C C N is unknown to

players. Further suppose that each player's private initial opinion at time instance

k = 0 is an i.i.d. sample vi[0] ~ N(v, Ej), where Ei = oI and I is the identity

matrix. Define weight of opinions as t = 0r/ E 1, then 4[0] = E[vi[0]] = Ei tivi[0]

is the ML estimator of v. Note that E[-] denotes weighted average. In addition,

assume the influence among players, defined by W = [wijl, satisfies limka, 0 Wk -

1I t t2 ... tn ], when 1n denotes n dimensional column-1-vector. Note [wij]

and tj are also common knowledge; the only private information to player i is its

opinion vi [k].

Suppose the payoff v(N) is allocated according to Shapley value d#([K]) of the

average opinion [K] at step K. Because the Shapley ratio defines a linear function,

we can also refer this final payment to player i as - + di' [K], where d[ is a m-vector.

Note the property of Shapley value gives EZ d[ = 0. If every player is truth telling,

then the system reaches consensus, i.e. Vi, limk, 0, vi[k] = b, and the final payoff
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function is the MLE.

Now, assume that players can tell lies. Each player may introduce some fraud

at step k: uj[k] = xj[k] - vj[k], but, at the same time, these fraudulent statements

undermine trust in the system, and, hence, they introduce disutility 1Tvar[u], where

var[u] = Ei tj (ui[k]) 2 - (Ei tiu[k])2 (Note that this disutility metric is a scalar, and

it can be interpreted as the 1-norm of the variance of ui [k]). After K steps of playing,

the overall disutility due to fraud is given by 1 T E var [u[k]]. Each player makes

a trade-off between 1 K E var [u[k]] and di(E[v[K]]) by solving the minimization

problem

K

arg mi p2 . 1 T var [u [k] - d[E [v [K]] (3.1)
u2 [k~k=12,.. k=1

Lemma 1. In the coalitional game with optinion exchange (which follows the system

dyanmics (2.3)), there holds

E[v[K]] = OE[u[K - 1]] + E[v[K - 1]] = OE[u[k]] + E[v[O]]
k

Proof. Let T = [ti], W = [wij], V[k] = [vi[k]], X[k] = [x[k]] and U[k] = [ui[k]]. By

definition

E[v[k + 1]] = TTV[k +1]

Substitute (2.3) into the above equation. We obtain

E[v[k + 1]] = TT (OWX[k] + (1 - 6)V[k])

29



By the definition of ui in the last subsection, it holds that

E[v[k + 1]] = T T (OW(V[k] + U[k]) + (1 - O)V[k])

= T TOWV[k] + T TWU[k] + (1 - O)TTV[k]

According to the definition of ti, the influence among players satisfies limk,.,oo W -

in [ tl t 2 .. tn ,i.e., TTW = TT. Therefore

E[v[k + 1]] = T TOV [k] + TT GU[k] + (1 - O)T TV [k]

= TTV[k] + OTTU[k]

= OE[u[k]] +E[v[]]
k

From Lemma 1, we obtain

K

arg min P- 1 T E var [u[k]] - d[E[v[K]]
uj[k],k=1,2,--- k=1

K

=arg min, 2 (p, i1Tvar [u[k]] - OdTIE[u[k]1)

That says that the optimal strategy is indeed a myopic strategy. Therefore, one

can seek to find the optimal strategy step-by-step. In step k, it holds that
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argminpi- lvar [u[k]] - Od E[u[k]]

=arg minp -1 T  tj (u[k]) 2 - ( tuj[k])ui [k]

- OdT tj - uj[k]

Set the first derivative with respect to ui to zero

2pi (tiu[k] - t ( tu [k] = tidi (3.2)

The above equation defines the best strategy of player i given the actions of the

other players. The linear equations above can be used to solve for pure strategy Nash

equilibrium. Note that the coefficient matrix of the above linear equations has the

rank of n - 1, so there are multiple Nash equilibria.

Suppose for now that the weight pi of disutility is proportional to player i's

influence tj in the network, i.e. pi c< ti. Further because of the property of the

Shapley value, _j dj = 0, one can obtain a solution of (3.2) as

diO
ui[k] = -- (3.3)

2p

The above solution is a pure strategy Nash-equilibrium, and it yields Vi, ui = 0,

and Ei tiu[k] = 0. In addition, at the equilibrium, vi[k] will converge, but not

achieve consensus. The larger the value of pi is, the smaller the opinion divergence

is, and the more likely that dj(i'[oo]) is a stable coalition for all players.

Remark 1. In practice, the assumption of pi oc ti, i.e., the weight pi of disutility
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is proportional to player i's influence ti, implies that more responsible players are

placed at more important positions in a network.

Definition 1. A coalitional game with information exchange is efficient if there

exists a Nash equilibrium such that the average opinion is constant.

Theorem 1. In the fully rational risk-averse player scenario, i.e., opinion dynamics

follows (2.3) and strategic players minimize the objective function (3.1), the coali-

tional game with information exchange is efficient if pi oc ti over all players.

Proof. Let T = [ti], W = [wij], V[k] = [vi[k]], X[k] = [xi[k]] and U[k] = [ui[k]]. By

Lemma 1,

i3[k + 1] = TTV[k] + OTTU[k]

Given pi oc ti, the optimal strategy for each rational risk-averse player is given by

(3.3). Because the solution (3.3) satisfies E> tiui[k] = 0, i.e. TTU[k] = 0, we find

that

)[k + 1] = TTV [k] = I[k]

is invariant over time steps k.

3.3 Existence of stable coalition

This subsection discusses conditions for non-empty Bayesian core. Assuming that

consensus is achieved, Proposition 4 gives a sufficient condition for which a stable

coalition exists.

Proposition 4. Suppose that consensus is achieved. There is a stable coalition under

the consensused payoff function if all of the prior payoff functions vi[1] and all the

reported payoff functions xi [k] are supermodular set functions.
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Proof. First, we want to show that Vk, vi[k] is supermodular.

Let k > 2 be given. If vi[k - 1] is supermodular, then vi[k] = Oi Ej wijzx[k - 1] +

(1 - 9i)vi[k - 1], as a positive weighted average of supermodular set functions, is also

supermodular. In addition, because vi[1] are supermodular, by induction, we know

that Vk, vi[k] is supermodular.

Given that all payoff functions in step k are supermodular, and because the set of

supermodular set functions is a closed set, and further because v = limk,+' vi[k], the

consensused payoff function v is supermodular. Furthermore, because the Shapley

value of a supermodular payoff function is in the stable core, we reach the conclusion

that there is a stable coalition under the consensused payoff function. 3

In the above proposition, the assumption of achieved consensus may be too strong

in practice. Therefore, in Theorem 2, the assumption of achieved consensus is re-

moved, and a stable coalition is shown to exist when p0 is sufficiently large.

Theorem 2. Assume that pi oc t over all players, and define po = pi/ti. Then

vi [o = limk_+, 0o vi [k] exists. In addition, if vi [0] is strictly supermodular for any given

set of initial states vi[0li E N, then ~p0 > 0 s.t. the Bayesian core is non-empty

with subcoalition payoff functions vi [oc], that is, the Bayesian core is non-empty after

the opinion consensus process.

Proof. Because Vi E N, vi[0] is strictly supermodular, i)[0], the weighted average

of all vi[0], is also strictly supermodular. Further because pi oc tj over all players,

the average opinion i[k] is invariant over time step k, hence i[k] = f)[0] is strictly

supermodular.

Moreover, given the optimal strategy solution (3.3), one can rewrite the system
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dynamics of (2.3) as

vi[k] =0 W (V[k -1] +2pt) +(1 -)vi[k -1]

Define V[k] = [vi[k]], X[k] = [xi[k]], U[k] = I W = [ij] and W = OW +L2p,,ti

(1 - 0)1. Because W is a stochastic matrix, the limits limk,,, Wk and limk, Wk

exist and are equal to each other. We define T = limka, 0 Wk = liMk_,,, W . A

stochastic matrix has a eigenvalue equals 1 and all other eigenvalues inside the unit

disk, so one can define an eigenvalue decomposition W = D~ 1 [Si + S 2] D, where

1 0 ... 0

0 0 ... 0
S= and S2 is a diagonal matrix with the first entry 0 and all

0 0 ... 0
other entries inside the unit disk. The system dynamics is given by

V[k] = OW (V[k - 1] + U) + (1 - O)V[k - 1]

=WV[k -1] + wU

= WkV[0+W (I + W + W2 +--+ Wk ) U

If we further consider the eigenvalue decomposition W = D- 1 [S1 + S 2] D, we obtain

V[k] =WkV[O] + OWDT [I + (S1 + S2) + (S1 + S2 )2

+--- (s1+ s2)k- - DU

=WkV[O] +WDT [I + S2+ S2+-...S- 1] DU

+(k -1)OWTU
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Because the solution (3.3) satisfies E> tiju = 0, i.e. TU = 0, it holds that

V [k] = WkV[0] +OWDT [I+S 2 +S, +...Sk ] DU

Considering the fact that S2 is a diagonal matrix with all entries in the unit disk,

when k -÷ oo, the series I + S 2 + S2 + -- S-. converges to (1 - S2)-. Further

because limk_, 0 Wk = T, we obtain

lim V[k] = TV[O] + OWDT (1 - S2) 1 DU
k-4oo

Recall that we have U = , hence,

lim lim V[k] = TV[0]
Po O- o k--+oo

i.e.,

lim vi[OO] = [00
Po4OO

Given that b[oo] is strictly supermodular, the Shapley value d(b[oo]) is in the

interior of the core of the coalitional game with subcoalition payoff functions D[O0].

For each player i, limPO,-O vi[oo] = i[oo] and the mapping from vi[oo] to the core

is continuous. Hence, for sufficiently large p,, d(b[oo]) is also in the core of the

coalitional game with subcoalition payoff function vi[oo], concluding the proof. I

Remark 2. The above derivation can be interpreted as follows: 1. The more influen-

tial one is, the more risk-averse one should be to ensure zero-drift, and 2. Everyone's

best strategy is to be a little overconfident, as pointed out in [3].

Definition 2. Suppose f : 2 N -+ R is a supermodular set function. Define a func-
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tional variation

g : 2-+ R, s.t. S (g(q)) 2 = 1.

QE2N

Then the degree of supermodularity R of the function f is defined as

R = sup {Vg, f + r - g is supermodular}.
r

Remark 3. In the traditional coalitional game, a grand coalition exists as long as

the value set function is supermodular. Moreover, in a coalitional game with im-

perfect information, the degree of this supermodularity R is related positively to

sup {Po s.t. Baysian core is non-empty}, i.e., the more supermodular the value set

function is, the more robust the grand coalition is when dealing with irresponsible

players.

3.4 Herding model

As pointed out in [19], people do not always follow the rational strategy. In a social

context, people are usually affected by social pressures and reveals herding behavior.

Considering this herding effect in our coalitional game with opinion exchange, we

add a social pressure function to each player's utility function. Now suppose the

social pressure of player j is given by EZ(Xj -V,)2

To illustrate the outcome of this herding model, we look at a two-player example.

Suppose player 1 get a unit in the end according to Shapley value and player 2 get

(1 - a). Similar to the above, p is the social pressure coefficient. Note a only exists

when consensus is achieved.
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Player 1:
N [2 1

argmaxa(vi[oo]) -pEE I>(xi[k] - )2
xi[k] k=1 .j=1

Player 2:

N [2

argmax(1 - a(vi[oo])) -p E (x1[k] -v[k])2
X2 [k] k=1 .j=I

Assume at the beginning vi are private i.i.d. observations of the true payoff

function with standard normal noise.

If players only maximize the first term (p = 0), then they should always report

[1,0] and [0,1] respectively. In this case, consensus will not be achieved.

On the other hand, if they both only minimize the second term (p -+ oo), then

at the first instance when k = 1, they should report x4[1] = vi[1], because at the

beginning E[vj] = vi in player i's perspective. After that, when k > 2, they will

choose x1 [k] = v 2 [k], x 2 [k] = v1 [k] and vi [k] =j wjixj [k - 1]. Hence the system

becomes

Sv1 [k] l ) w1 1 W 12  0 1 + (1 - ) vi[k - 1]

v 2 [k] -J [W2 1 W 2 2 J 1 0 -J )JL[v 2 [k - 1] J

So the system achieves consensus iff the eigenvalues of E W11 W12 0 1 ]
W21 W22 1 0

(1 - E) is strictly in a unit circle.

In the herding model there are two interesting implications: 1. judging on others

with difference opinions case enforce consensus, and 2. when the degree of judgment

p is large, two players tend to switch positions.
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Chapter 4

Algorithmic playing

In the above analysis, we made the assumption that all of the players are rational. In

the case in which all players are fully rational and risk-averse, an equilibrium exists

and convergence can be achieved. However, from a single player's perspective, he or

she does not have control over how the other players play. What should a player do

if he or she is fully rational while others are not? In this chapter, we show that an

R-learning algorithm [18] can provide such a player the best strategy.

4.1 R-Learning Formulation

At each step k, the reward of a rational player is given by:

ri[k] = -P,. lTvar [u[k]] + Gd E [u[k]]

Define s[k] = E [v[k]] as the state and ui as the action of each player i. For

convenience, let i- denote the players other than player i. Furthermore, because all

of the state variables and action variables are continuous, a model of environment
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s[k]

E[v[k]]

ui[k + 1]

s[k + 1]

E[v[k+ 1]]

e[k + 1] ~ p,(eIs[k],var[u[k]];4<)

Figure 4-1: States transition of R-learning

(i.e., action pattern of players i-) with finite parameters must be defined prior to

the learning process. Thus we define the environment e - E [ui [ki] , and the
var [ui_ [k]]

environment model pe(e s, var [u[k - 1]]; D) as the probability distribution of e given

state s, parameterized by D. Note D is the set of finite environment parameters to

be learned. In addition, the environment e is independent of current action ui, but

the rewards and next state are functions of environment e and the action u%.

One may find it problematic that the states and the associated rewards are not

observable for player i, hence the learning process cannot proceed unless var [u[k]]

and E [v[k]] are broadcast centrally. Furthermore, E [v[k]] cannot be obtained so even

a central broadcast would be problematic. However, the rewards in each step depend

only on the decision variable and environment, but not directly on any state variable;

i.e., the impact of state variables only goes into the system via environment e. As a

result, the choice of state variables in the R-learning process depends only on how i-

players are modeled, and it is possible to choose state variables other than E [v[k]],

e.g. E [x[k]].

Remark 4. In chapter 4, if everyone is rational and adopts the R-learning algorithm,

then (3.3) is the optimal strategy. In this case, although chapter 4 and section 3.2
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have the same objective function and the same optimal strategy, some assumptions are

different, i.e., section 3.2 assumes that all players know that all players are rational.

However, chapter 4 does not have this assumption, but it requires that var [u[k]] and

E [v[k]] can be broadcast centrally.

Remark 5. The learning process justifies the need for gradual consensus of opinion,

i.e., the participants learn each other's patterns during the consensus process.

4.2 Simulations

As an illustrative example, first, we look at a two-player coalitional game with opinion

exchange. Suppose player 2's expressed opinion is quasilinear in its true opinion and

depends on the mean opinion, i.e. x 2 [k + 1] = v2 [k + 1] + f (E [x[k]]) + w where w is

white noise. Further, assume that player 1 is a risk-averse, rational player as defined

in section 3.2, and uses an R-learning algorithm to learn the f(.) function during the

opinion consensus process to maximize his or her own utility in the coalitional game.

From player 1's perspective, his or her optimal strategy is given by the solution

of (3.2)

2pi (ui[k] - (tiui[k] + t2u 2 [k])) = d10

*k + 1] d1  + t2 f(E [x[k]])
2p,1(I - ti) 1 - ti

where f(-) is player l's estimate of f (.).

In the simulation, assume that v({1,2}) = 1, v({0}) = 0 , vi[k] = V(1)
v({2})

[0.71 [0.31
Let the initial conditions be v 1 [0] = ] and v2 [0] = . Furthermore, let

0.1 0.5
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Figure 4-2: Performance r[k] when y = 0.5

0.3 0.7
the system parameters be 0 = 0.1, W = . Player 1 has the probability

0.4 0.6

of -y = 0.5 of implementing the optimal strategy given its current estimate f ()

(exploitation), and this player has the probability of 1 - - of carrying out exploration.

When player 1 has the probability of -y = 0.5 of implementing the optimal strat-

egy (exploitation), and the probability of 1 - - = 0.5 of choosing a random action

(exploration), the results are shown in Figures 4-2-4-4. Figure 4-2 shows the perfor-

mance index r[k] of player 1 in each time step k, Figure 4-3 shows player 2's strategy

f(.) (solid line) and player l's samples on player 2's strategy (circles). Furthermore,

Figure 4-4 shows the opinion consensus and evolution process.

When player 1 has the probability of -y = 0.9 of implementing the optimal strat-

egy (exploitation), and the probability of 1 - -y = 0.1 of choosing a random action
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Figure 4-3: Player 2's strategy f(.) when y = 0.5
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Figure 4-4: True opinion v[k] when -y = 0.5
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Figure 4-5: Performance r[k] when y = 0.9
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Figure 4--6: Player 2's strategy f(-) when -y= 0.9
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Figure 4-7: True opinion v[k] when y = 0.9
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(exploration), the results are shown in Figures 4-5-4-7. Figure 4-5 shows the per-

formance index r[k] of player 1 in each time step k. In comparison to Figure 4-2,

player 1 with -y = 0.9 is achieving a higher performance index. Furthermore, Figure

4-6 shows player 2's strategy f(.) (solid line) and player 1's samples on player 2's

strategy (circles). Compared to Figure 4-3, samples in Figure 4-6 has a narrower

spread. Furthermore, Figure 4-7 shows the opinion consensus and evolution process.

In the above scenario, player 1 is rational and learns the strategy of player 2,

but player 2 is not fully rational. As a result, during the opinion consensus process,

the average opinion drifts and the coalitional game with information exchange is

not efficient. Now, assume that both players are rational and risk-averse, but do

not know that their opponents are rational. The coalitional game with information

exchange in this case will be efficient, i.e. d(i[k]) is invarient over k, as shown in the

example in Figure 4-8.
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Figure 4-8: True opinion v[k] when y = 0.8. Here both players are rational and risk-
averse. Both players are doing R-learning to learn the behavior of their opponents.
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Chapter 5

Conclusions and Future work

In this thesis, a new framework for coalitional games is presented with an unrealized

subset payoff function and information exchange among players. The framework

creates an interplay between the traditional model of the coalitional game and the

opinion consensus model. Many interesting implications arise from the new frame-

work, including the sufficient condition of non-stable core and the sufficient condition

of efficient information exchange. Furthermore, the case of algorithmic learning play-

ers was studied, and the results were compared and connected to the case of pure

rational players.

In the future, the dependency of equilibrium on the topology of the opinion con-

sensus network may be considered. It is clear that different communication topologies

will result in different steady states. From the perspective of an investor in the busi-

ness scenario, there is a need to design a communication topology and rule (mecha-

nism) that ensures truth telling. From the perspective of the participants, questions

may arise concerning with whom and in what order should issues be addressed to

ensure favorable outcomes. Additional future work that is needed is related to al-
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gorithmic learning. In this approach, quantizing the rewards associated with the

possible "exit" action of each player also could be considered.
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