
Sequential Short-Text Classification
with Neural Networks

by

Franck Dernoncourt

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2017

c○Massachusetts Institute of Technology 2017. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 18, 2017

Certified by .
Peter Szolovits

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by. .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Sequential Short-Text Classification

with Neural Networks

by

Franck Dernoncourt

Submitted to the Department of Electrical Engineering and Computer Science
on May 18, 2017, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science

Abstract
Medical practice too often fails to incorporate recent medical advances. The two main rea-
sons are that over 25 million scholarly medical articles have been published, and medical
practitioners do not have the time to perform literature reviews. Systematic reviews aim
at summarizing published medical evidence, but writing them requires tremendous human
efforts. In this thesis, we propose several natural language processing methods based on ar-
tificial neural networks to facilitate the completion of systematic reviews. In particular, we
focus on short-text classification, to help authors of systematic reviews locate the desired in-
formation. We introduce several algorithms to perform sequential short-text classification,
which outperform state-of-the-art algorithms. To facilitate the choice of hyperparameters,
we present a method based on Gaussian processes. Lastly, we release PubMed 20k RCT, a
new dataset for sequential sentence classification in randomized control trial abstracts.

Thesis Supervisor:

Peter Szolovits
Professor of Electrical Engineering and Computer Science at the Massachusetts In-
stitute of Technology.

Thesis Committee:

Patrick Henry Winston
Ford Professor of Artificial Intelligence and Computer Science at the Massachusetts
Institute of Technology.

Trung H. Bui
Senior Research Scientist at Adobe Research, San Jose.

3

4

Acknowledgments

This thesis would not have been possible without the guidance, encouragement and funding

from my advisor, Peter Szolovits. I am especially grateful for the latitude in his research

group to explore a wide range of topics and ideas, which we gradually narrowed down

to form this work. I have also had the pleasure to work with Anna Rumshisky and Ozlem

Uzuner [34, 75]. More generally, my research laboratory, CSAIL Clinical Decision Making

Group, was a fruitful environment and I feel lucky to have been surrounded by such great

and diverse colleagues: William Boag, Michele Filannino, Marzyeh Ghassemi, Owen Hsu,

Nathan Hunt, Mohamed Kane, Lydia Letham, Yuan Luo, Matthew McDermott, Tristan

Naumann, Divya Pillai, Harini Suresh, Ziyu Wang. All the work presented in this thesis

was performed jointly with Ji Young Lee.

I also thank the MIT Laboratory for Computational Physiology for all the interesting

collaborations we have had [27, 92, 82, 99]. In particular, I had a great time working

with Leo Celi, Christina Chen, Mohammad Ghassemi, Alistair Johnson, Roger Mark, Tom

Pollard, and Felipe Torres. I deeply appreciate the motivations underlying the creation of

the MIMIC database, and it is my conviction that research would progress much faster if

all laboratories had such a mindset toward open science. MIMIC is an example to take

inspiration from.

Outside these two research laboratories, I would like to thank my thesis committee,

Trung Bui and Patrick Winston, for their insightful comments and encouragement. I also

had some great research collaborations with Samuel Finlayson, Sebastian Gehrmann, Yeran

Li, Elias Baedorf Kassis, Edward Moseley, Raymond Sarmiento, Patrick Tyler, Adrian

Velasquez, Jonathan Welt, Joy Wu [43, 120]. I spent a summer at Adobe Research, where

I had the pleasure to work with Trung Bui, Hung Bui, and Walter Chang [29, 30, 13]. I

also had some fruitful collaborations with Una-May O’Reilly and Kalyan Veeramachaneni,

who supervised my research during my first two years at MIT [115, 24, 49, 50, 114, 37,

36, 35]. This intellectually simulating research environment helped me for my own side

projects [22, 23, 26, 25] as well.

My projects relied heavily on a 1,500-core OpenStack computer cluster as well as 4

5

GPU servers. I thank the patience of MIT CSAIL technical members Jonathan Proulx

and Stephen Jahl for answering all my bug reports and other miscellaneous issues, and

the generosity of Quanta Computer and Philips Research, who funded a large part of the

hardware. I also warmly thank Steve Ruggiero, Jay Sekora, and Garrett Wollman for their

Unix expertise.

I am very grateful for the financial support provided by Philips Research, who funded

most of my PhD. In addition to the financial support, I have had the opportunity to work

with Philips Research scientists Eric Carlson and Oladimeji Farri on two very interesting

projects.

Outside research, I thank Yongwook Bryce Kim for mentoring me throughout the PhD.

His advice was always very accurate, and helped me a lot. I also greatly appreciate the

support from Osvaldo Jimenez, Alain Mille, and Michael Zock.

Lastly, I thank my family for their support.

6

Contents

1 Introduction 15

1.1 Background and Motivation . 15

1.2 Contributions . 18

1.3 Organization . 20

2 Forward Sequential Short-Text Classification 21

2.1 Model . 22

2.1.1 Short-text representation . 23

2.1.2 Sequential short-text classification 24

2.2 Datasets and Experimental Setup . 25

2.2.1 Datasets . 25

2.2.2 Training . 26

2.3 Results and Discussion . 26

2.4 Conclusion . 29

3 Bidirectional Sequential Short-Text Classification 31

3.1 Related Work . 32

3.2 Model . 32

3.2.1 ANN model . 32

3.3 PubMed 20k RCT . 36

3.3.1 Existing Datasets . 37

3.3.2 Dataset Construction . 37

3.3.3 Dataset Analysis . 39

7

3.4 Experiments . 40

3.4.1 Datasets . 40

3.4.2 Training . 41

3.5 Results and Discussion . 42

3.6 Conclusions . 47

4 Neural Network Hyperparameter Optimization 49

4.1 Introduction and related work . 50

4.2 Methods . 52

4.2.1 ANN model . 52

4.2.2 Hyperparameter optimization using GP 53

4.3 Experiments . 55

4.3.1 Datasets . 55

4.3.2 Training . 56

4.3.3 Hyperparameters . 56

4.4 Results . 57

4.5 Conclusion . 62

5 Conclusions 65

5.1 Contributions . 65

5.2 Future work . 65

A Abbreviations 81

8

List of Figures

1-1 Percentage of papers available in open access repositories 16

1-2 Levels of evidence for medical papers . 17

1-3 Number of RCTs published per year . 18

1-4 Example of abstract with the method section highlighted 19

2-1 RNN architecture for generating the vector representation 22

2-2 CNN architectures for generating the vector representation 22

2-3 Four instances of the two-layer feedforward ANN used for the label prediction 23

3-1 ANN model for sequential sentence classification 33

3-2 Example of structured RCT abstract . 39

3-3 Number of sentences per label in PubMed 20k RCT 40

3-4 Distribution of the number of tokens the sentence in PubMed 20k RCT . . . 41

3-5 Distribution of the number of sentences per abstract in PubMed 20k RCT . 42

3-6 Transition matrix learned on PubMed 20k RCT 44

4-1 The ANN model to optimize with Gaussian processes 51

4-2 Performance of GP search with different kernels and random search for

hyperparameter optimization on DSTC 4, MRDA, and SwDA 58

4-3 Impact of the number of initial random hyperparameter combinations on

the GP search . 59

4-4 Finding near-optimal hyperparameter combinations on SwDA 60

4-5 Parallel coordinate plot of all 1215 hyperparameter combinations for DSTC 4. 63

9

4-6 Heatmap of the F1-scores on SwDA as the number of filters and the dropout

rate vary . 64

10

List of Tables

2.1 Overview of the datasets for dialogue act classification 26

2.2 Experiment ranges and choices of hyperparameters 26

2.3 Accuracy (%) on different LSTM-based architectures and history sizes . . . 27

2.4 Accuracy (%) on different CNN-based architectures and history sizes . . . 28

2.5 Accuracy (%) of our models and other methods from the literature 28

3.1 Overview of existing datasets for sentence classification in medical abstracts 36

3.2 Overview of the PubMed and the NICTA datasets for sentence classification 41

3.3 F1-scores on the test set with several baselines on PubMed 20k and NICTA 43

3.4 Ablation analysis . 43

3.5 Examples of prediction errors of our model on PubMed 20k RCT 44

3.6 Results for each class obtained by our model on PubMed 20k RCT. 45

3.7 Confusion matrix on PubMed 20k RCT obtained with our model 45

4.1 Candidate values for each hyperparameter to optimize with Gaussian process 57

11

12

Listings

3.1 Example of one abstract as formatted in the PubMed 20k RCT dataset set . 39

13

14

Chapter 1

Introduction

We investigate in this thesis several natural language processing (NLP) methods to mine

information from medical research articles. In this introduction, we outline the motivations

of our work.

1.1 Background and Motivation

Over 50 million scholarly articles have been published [57], and the number of articles

published every year keeps increasing [39, 71]. Approximately half of them are medical

papers indexed by MEDLINE, managed by the U.S. National Library of Medicine. While

the abstracts are typically available, the vast majority of papers are not freely accessible as

full-text, as shown in Figure 1-1. However, the abstracts still represent an immensely rich

dataset.

We focus on medical papers in this thesis, and particularly on randomized controlled

trials (RCTs), as they are commonly considered to be the best source of medical evidence

(see Figure 1-2). An RCT is a study in which subjects sharing the same medical condition

are randomly allocated to one of several clinical interventions. At least one of these clin-

ical interventions is regarded as a control intervention, i.e., an intervention against which

it makes sense to compare another intervention. A common control intervention is the

treatment that is normally given to patients with the same medical condition.

The number of RCTs published every year is steadily increasing, as shown in Figure 1-

15

Figure 1-1: Percentage of total scholarly literature available in open access repositories by year of publication
broken down by discipline. Source: [110]

3. Despite this growing amount of evidence, evidence-based medicine (EBM) is still very

far from having reached its goals. For instance, fewer than half of all the medical treatments

delivered today are supported by evidence [97], and there is a lack—at least in the United

States—of a clear prioritization of the gaps in medical evidence and an allocation of clinical

research resources to efficiently and effectively fill these evidence gaps [42].

One of the main difficulties in finding evidence amongst published RCTs is the sheer

number of RCTs: over one million. The average physician does not have time to per-

form literature reviews: Ely et al. [41] report that the average time that a physician spends

searching for a topic is two minutes. Systematic reviews (SRs) aim at summarizing pub-

16

Figure 1-2: Level of evidence. The higher in the pyramid, the more reliable the evidence is. There exist other
sources of medical evidence such as cohort studies, observational studies, case studies, but they are regarded
of lower quality evidence than RCTs and SRs. Source: [113]

lished medical evidence, often concentrating on one medical condition and one or several

medical interventions, so that physicians can rapidly access a succinct overview for the

topics of interest to them. SRs are the only superior type of evidence compared to RCTs.

However, SRs are extremely time-consuming to complete [58]: for example, Allen and

Olkin [1] report that the median time spent to conduct a clinical SR is 1,139 hours. It typi-

cally takes 2.5 to 6.5 years for a primary study publication to be included and published in a

new SR [40]. Further, within 2 years of the publication of SRs, 23% are out of date because

they have not incorporated new evidence that might change the SR’s primary results [101]

We believe that NLP can help organize EBM by facilitating the completion of SRs,

and subsequently help physicians provide more adequate care to their patients. When re-

searchers search for previous literature, for example, they often skim through abstracts in

order to quickly check whether the papers match the criteria of interest. This process is

easier when abstracts are structured, i.e., the text in an abstract is divided into semantic

headings such as objective, method, result, and conclusion. However, a significant portion

of published paper abstracts is unstructured, which makes it more difficult to quickly ac-

cess the information of interest. Consequently, classifying each sentence of an abstract to

17

1960 1970 1980 1990 2000 2010 2020

Year of publication

0

5000

10000

15000

20000

25000

N
u
m

b
e
rs

 o
f

R
C

T
s

Figure 1-3: Number of RCTs published per year. It is estimated that around 50% of published RCTs are not
in MEDLINE [80].

an appropriate heading can significantly reduce time to locate the desired information, as

illustrated in Table 1-4. Besides assisting humans, this task may also be useful for a variety

of downstream applications such as automatic text summarization, information extraction,

and information retrieval.

1.2 Contributions

Inspired by the performance of artificial neural network-based (ANN) systems for non-

sequential short-text classification, we introduce several models based on recurrent neural

networks (RNNs) and convolutional neural networks (CNNs) for short-text classification.

We evaluate them on the sentence classification task in medical research articles, which we

introduced in the previous section, and on the dialog act classification task, which we will

introduce in Chapter 2.

Short-text classification is an important task in many areas of NLP, including sentiment

18

Achilles tendinopathy (AT) is a common and difficult to treat musculoskeletal disorder. The
purpose of this study is to examine whether 1 injection of platelet-rich plasma (PRP) would
improve outcomes more effectively than placebo (saline) after 3 months when used to treat
AT. A total of 24 male patients with chronic AT (median disease duration, 33 months) were
randomized (1:1) to receive either a blinded injection of PRP (n = 12) or saline (n = 12). Pa-
tients were informed that they could drop out after 3 months if they were dissatisfied with the
treatment. After 3 months, all patients were reassessed (no dropouts). No difference between
the PRP and the saline group could be observed with regard to the primary outcome (VISA-A
score: mean difference [MD], -1.3; 95% CI, -17.8 to 15.2; P = .868). Secondary outcomes
were pain at rest (MD, 1.6; 95% CI, -0.5 to 3.7; P = .137), pain while walking (MD, 0.8;
95% CI, -1.8 to 3.3; P = .544), pain when tendon was squeezed (MD, 0.3; 95% CI, -0.2 to
0.9; P = .208). PRP injection did not result in an improved VISA-A score over a 3-month
period compared with placebo. The only secondary outcome demonstrating a statistically
significant difference between the groups was change in tendon thickness; this difference
indicates that a PRP injection could increase tendon thickness compared with saline injection.
The conclusions are limited to the 3 months after treatment owing to the large dropout rate.

Figure 1-4: Example of abstract with the method section highlighted. Abstracts in the medical field can be
long. This abstract was taken from [68] and several sentences have been removed for the sake of conciseness.
Providing clinical researchers and practitioners a tool that would allow them to highlight the section(s) that
they are interested in would help them to explore the literature more efficiently.

analysis, question answering, or dialog management. Many different approaches have been

developed for short-text classification, based on machine learning methods such as logistic

regression [44], support Vector machines (SVMs) [103], naive Bayes [117], or random

forests [11]. Several recent studies using ANNs have shown promising results, including

convolutional neural networks [66, 10, 61] and recursive neural networks [105].

Existing ANN systems classify short texts in isolation, i.e., without considering preced-

ing or succeeding short texts. However, short texts often appear in sequence (e.g., sentences

in a document or utterances in a dialog), and therefore using information from preceding or

succeeding short texts may improve the classification accuracy. Previous works on sequen-

tial short-text classification are based on non-ANN approaches, such as Hidden Markov

Models (HMMs) [94, 107], maximum entropy [3], naive Bayes [76], and CRF.

The contributions of this thesis are threefold:

∙ We propose two ANN architectures for sequential short-text classification, which we

evaluate on medical and conversational datasets. The first architecture performs for-

19

ward sequential short-text classification, i.e., it classifies the current short-text based

on the current short-text as well as the preceding short-texts. The second architecture

performs bidirectional sequential short-text classification, i.e., it classifies the current

short-text based on the current short-text as well as the preceding short texts and the

succeeding short texts. This work was published at NAACL 2016 [72] and EACL

2017 [31].

∙ We explore a hyperparameter optimization strategy for ANN based on Gaussian Pro-

cesses. This work was published at IEEE SLT 2016 [28].

∙ We introduce PubMed 20k RCT, a new dataset for sequential sentence classification

in medical abstracts. This work is under submission [33].

1.3 Organization

The rest of this thesis is organized as follows:

∙ Chapter 2 presents our work on forward sequential short-text classification.

∙ Chapter 3 presents our work on bidirectional sequential short-text classification and

introduces a new data set, PubMed 20k RCT.

∙ Chapter 4 presents our work on ANN hyperparameter optimization.

∙ Chapter 5 draws conclusions from the work and discusses fruitful avenues for further

research.

20

Chapter 2

Forward Sequential Short-Text

Classification

As we mentioned in the introduction, recent approaches based on artificial neural networks

(ANNs) have shown promising results for short-text classification. However, many short

texts occur in sequences (e.g., sentences in a document or utterances in a dialog), and most

existing ANN-based systems do not leverage the preceding short texts when classifying a

subsequent one. In this chapter, we present a model based on recurrent neural networks and

convolutional neural networks that incorporates the preceding short texts. We call this task

forward sequential short-text classification. Our model outperforms state-of-the-art results

on three datasets for dialog act prediction.

A dialog act characterizes an utterance in a dialog based on a combination of pragmatic,

semantic, and syntactic criteria. Its accurate detection is useful for a range of applications,

from speech recognition to automatic summarization [107]. Previous works on sequential

short-text classification are mostly based on non-ANN approaches, such as Hidden Markov

Models (HMMs) [94, 107, 109], maximum entropy [3], naive Bayes [76], and conditional

random fields (CRFs) [64, 93].

21

Pooling

RNNRNNRNN RNN

Pooling

ConvConvConv Conv

Figure 2-1: RNN architectures for generating the vector representation s of a short text x1:ℓ.

Pooling

RNNRNNRNN RNN

Pooling

ConvConvConv Conv

Figure 2-2: CNN architectures for generating the vector representation s of a short text x1:ℓ. Conv refers to
convolution operations, and the filter height ℎ = 3 is used in this figure.

2.1 Model

Our model comprises two parts. The first part generates a vector representation for each

short text using either the RNN or CNN architecture, as discussed in Section 2.1.1 and

Figure 2-1 as well as Figure 2-2. The second part classifies the current short text based on

the vector representations of the current as well as a few preceding short texts, as presented

in Section 4.2.1 and Figure 2-3.

We denote scalars with italic lowercase symbols (e.g., 𝑘, 𝑏𝑓), vectors with bold lower-

case symbols (e.g., s, x𝑖), and matrices with italic uppercase symbols (e.g., 𝑊𝑓). We use

the colon notation v𝑖:𝑗 to denote the sequence of vectors (v𝑖,v𝑖+1, . . . ,v𝑗). We will use

22

FF1

S2VS2VS2V

FF1

S2VS2VS2V

FF1 FF1

FF2

FF1

S2VS2VS2V

FF1

FF2FF2

FF1

S2V

FF2

Figure 2-3: Four instances of the two-layer feedforward ANN used for predicting the probability distribution
over the classes z𝑖 for the 𝑖𝑡ℎ short-text X𝑖. S2V stands for short text to vector, which is the RNN/CNN
architecture that generates s𝑖 from X𝑖. From left to right, the history sizes (𝑑1, 𝑑2) are (0, 0), (2, 0), (0, 2)
and (1, 1). (0, 0) corresponds to the non-sequential classification case.

these notations in the rest of the thesis.

2.1.1 Short-text representation

A given short text of length ℓ is represented as the sequence of 𝑚-dimensional word vectors

x1:ℓ, which is used by the RNN or CNN model to produce the 𝑛-dimensional short-text

representation s.

RNN-based short-text representation

We use a variant of RNN called Long Short Term Memory (LSTM) [52]. For the 𝑡𝑡ℎ word

in the short-text, an LSTM takes as input x𝑡,h𝑡−1, c𝑡−1 and produces h𝑡, c𝑡 based on the

following formulas:

i𝑡 = 𝜎(𝑊𝑖x𝑡 + 𝑈𝑖h𝑡−1 + b𝑖)

f𝑡 = 𝜎(𝑊𝑓x𝑡 + 𝑈𝑓h𝑡−1 + b𝑓)

c̃𝑡 = tanh(𝑊𝑐x𝑡 + 𝑈𝑐h𝑡−1 + b𝑐)

c𝑡 = f𝑡 ⊙ c𝑡−1 + i𝑡 ⊙ c̃𝑡

o𝑡 = 𝜎(𝑊𝑜x𝑡 + 𝑈𝑜h𝑡−1 + b𝑜)

h𝑡 = o𝑡 ⊙ tanh(c𝑡)

where 𝑊𝑗 ∈ R𝑛×𝑚, 𝑈𝑗 ∈ R𝑛×𝑛 are weight matrices and b𝑗 ∈ R𝑛 are bias vectors,

for 𝑗 ∈ {𝑖, 𝑓, 𝑐, 𝑜}. The symbols 𝜎(·) and tanh(·) refer to the element-wise sigmoid and

23

hyperbolic tangent functions, and ⊙ is the element-wise multiplication. h0 = c0 = 0.

In the pooling layer, the sequence of vectors h1:ℓ output from the RNN layer are com-

bined into a single vector s ∈ R𝑛 that represents the short-text, using one of the following

mechanisms: last, mean, and max pooling. Last pooling takes the last vector, i.e., s = hℓ,

mean pooling averages all vectors, i.e., s = 1
ℓ

∑︀ℓ
𝑡=1 h𝑡, and max pooling takes the element-

wise maximum of h1:ℓ.

CNN-based short-text representation

Using a filter 𝑊𝑓 ∈ Rℎ×𝑚 of height ℎ, a convolution operation on ℎ consecutive word

vectors starting from 𝑡𝑡ℎ word outputs the scalar feature

𝑐𝑡 = ReLU(𝑊𝑓 ∙𝑋𝑡:𝑡+ℎ−1 + 𝑏𝑓)

where 𝑋𝑡:𝑡+ℎ−1 ∈ Rℎ×𝑚 is the matrix whose 𝑖𝑡ℎ row is x𝑖 ∈ R𝑚, and 𝑏𝑓 ∈ R is a bias. The

symbol ∙ refers to the dot product and ReLU(·) is the element-wise rectified linear unit

function.

We perform convolution operations with 𝑛 different filters, and denote the resulting

features as c𝑡 ∈ R𝑛, each of whose dimensions comes from a distinct filter. Repeating the

convolution operations for each window of ℎ consecutive words in the short-text, we obtain

c1:ℓ−ℎ+1. The short-text representation s ∈ R𝑛 is computed in the max pooling layer, as the

element-wise maximum of c1:ℓ−ℎ+1. (We tried using mean-pooling instead of max-pooling,

but it yielded lower performance).

2.1.2 Sequential short-text classification

Let s𝑖 be the 𝑛-dimensional short-text representation given by the RNN or CNN architec-

ture for the 𝑖𝑡ℎ short text in the sequence. The sequence s𝑖−𝑑1−𝑑2 : 𝑖 is fed into a two-layer

feedforward ANN that predicts the class for the 𝑖𝑡ℎ short text. The hyperparameters 𝑑1, 𝑑2

are the history sizes used in the first and second layers, respectively.

The first layer takes as input s𝑖−𝑑1−𝑑2 : 𝑖 and outputs the sequence y𝑖−𝑑2 : 𝑖 defined as

24

y𝑗 = tanh

(︃
𝑑1∑︁
𝑑=0

𝑊−𝑑 s𝑗−𝑑 + b1

)︃
, ∀𝑗 ∈ [𝑖− 𝑑2, 𝑖]

where 𝑊0,𝑊−1,𝑊−𝑑1 ∈ R𝑘×𝑛 are the weight matrices, b1 ∈ R𝑘 is the bias vector, y𝑗 ∈ R𝑘

is the class representation, and 𝑘 is the number of classes for the classification task.

Similarly, the second layer takes as input the sequence of class representations y𝑖−𝑑2:𝑖

and outputs z𝑖 ∈ R𝑘:

z𝑖 = softmax

(︃
𝑑2∑︁
𝑗=0

𝑈−𝑗 y𝑖−𝑗 + b2

)︃

where 𝑈0, 𝑈−1, 𝑈−𝑑2 ∈ R𝑘×𝑘 and b2 ∈ R𝑘 are the weight matrices and bias vector.

The final output z𝑖 represents the probability distribution over the set of 𝑘 classes for

the 𝑖𝑡ℎ short-text: the 𝑗𝑡ℎ element of z𝑖 corresponds to the probability that the 𝑖𝑡ℎ short-text

belongs to the 𝑗𝑡ℎ class.

2.2 Datasets and Experimental Setup

2.2.1 Datasets

We evaluate our model on the dialog act classification task using the following datasets:

∙ DSTC 4: Dialog State Tracking Challenge 4 [62, 63].

∙ MRDA: ICSI Meeting Recorder Dialog Act Corpus [55, 102]. The 5 classes are intro-

duced in [3].

∙ SwDA: Switchboard Dialog Act Corpus [60].

For MRDA, we use the train/validation/test splits provided with the datasets. For

DSTC 4 and SwDA, only the train/test splits are provided.1 Table 2.1 presents statistics

on the datasets.

1All train/validation/test splits can be found at https://github.com/Franck-Dernoncourt/
naacl2016

25

https://github.com/Franck-Dernoncourt/naacl2016
https://github.com/Franck-Dernoncourt/naacl2016

Dataset |𝐶| |𝑉 | Train Validation Test

DSTC 4 89 6k 24 (21k) 5 (5k) 6 (6k)

MRDA 5 12k 51 (78k) 11 (16k) 11 (15k)

SwDA 43 20k 1003 (193k) 112 (23k) 19 (5k)

Table 2.1: Overview of the datasets for dialogue act classification. |𝐶| is the number of classes, |𝑉 | the
vocabulary size. For the train, validation and test sets, we indicate the number of dialogs (i.e., sequences)
followed by the number of utterances (i.e., short texts) in parenthesis.

2.2.2 Training

The model is trained to minimize the negative log-likelihood of predicting the correct dialog

acts of the utterances in the train set, using stochastic gradient descent with the Adadelta

update rule [123]. At each gradient descent step, weight matrices, bias vectors, and word

vectors are updated. For regularization, dropout is applied after the pooling layer, and early

stopping is used on the validation set with a patience of 10 epochs.

2.3 Results and Discussion

To find effective hyperparameters, we varied one hyperparameter at a time while keeping

the other ones fixed. Table 2.2 presents our hyperparameter choices.

Hyperparameter Choice Experiment Range
LSTM output dim. (𝑛) 100 50 – 1000
LSTM pooling max max, mean, last
LSTM direction unidir. unidir., bidir.
CNN num. of filters (𝑛) 500 50 – 1000
CNN filter height (ℎ) 3 1 – 10
Dropout rate 0.5 0 – 1
Word vector dim. (𝑚) 200, 300 25 – 300

Table 2.2: Experiment ranges and choices of hyperparameters. Unidir refers to the regular RNNs presented
in Section 2.1.1, and bidir refers to bidirectional RNNs introduced in [100].

26

𝑑1

𝑑2 LSTM
0 1 2

DSTC4
0 63.1 (62.4, 63.6) 65.7 (65.6, 65.7) 64.7 (63.9, 65.3)

1 65.8 (65.5, 66.1) 65.7 (65.3, 66.1) 64.8 (64.6, 65.1)

2 65.7 (65.0, 66.2) 65.5 (64.4, 66.1) 64.9 (64.6, 65.2)

MRDA
0 82.8 (82.4, 83.1) 83.2 (82.9, 83.4) 82.9 (82.4, 83.4)

1 83.2 (82.6, 83.7) 83.8 (83.5, 84.4) 83.6 (83.2, 83.8)

2 84.1 (83.5, 84.4) 83.9 (83.4, 84.7) 83.3 (82.6, 84.2)

SwDA
0 66.3 (65.1, 68.0) 67.9 (66.3, 68.6) 67.8 (66.7, 69.0)

1 68.4 (67.8, 68.8) 67.8 (65.5, 68.9) 67.3 (65.5, 69.5)

2 69.5 (68.9, 70.2) 67.9 (66.5, 69.4) 67.7 (66.9, 68.9)

Table 2.3: Accuracy (%) on different architectures and history sizes 𝑑1, 𝑑2. For each setting, we report
average (minimum, maximum) computed on 5 runs. Sequential classification (𝑑1 + 𝑑2 > 0) outperforms
non-sequential classification (𝑑1 = 𝑑2 = 0). We also tried gated recurrent units (GRUs) [15] and the basic
RNN, but the results were generally lower than LSTM. The numbers reported in bold correspond to the
largest values for each dataset.

We initialized the word vectors with the 300-dimensional word vectors pretrained with

word2vec on Google News [83, 86] for DSTC 4, and the 200-dimensional word vectors

pretrained with GloVe on Twitter [91] for MRDA and SwDA, as these choices yielded the

best results among all publicly available word2vec, GloVe, SENNA [17, 18] and RNNLM [85]

word vectors.

The effects of the history sizes 𝑑1 and 𝑑2 for the short-text and the class representations,

respectively, are presented in Tables 2.3 and 2.4 for both the LSTM and CNN models. In

both models, increasing 𝑑1 while keeping 𝑑2 = 0 improved their performance by 1.3-4.2

percentage points. Conversely, increasing 𝑑2 while keeping 𝑑1 = 0 yielded better results,

but the performance increase was less pronounced: incorporating sequential information at

the short-text representation level was more effective than at the class representation level.

Using sequential information at both the short-text representation level and the class

representation level does not help in most cases and may even lower performance. We

hypothesize that short-text representations contain richer and more general information

than class representations due to their larger dimension. Class representations may not

convey any additional information over short-text representations, and are more likely to

propagate errors from previous misclassifications.

Table 2.5 compares our results with the state-of-the-art. Overall, our model shows

competitive results, while requiring no human-engineered features. Rigorous comparisons

27

𝑑1

𝑑2 CNN
0 1 2

DSTC4
0 64.1 (63.5, 65.2) 65.4 (64.7, 66.6) 65.1 (63.2, 65.9)

1 65.3 (64.1, 65.9) 65.1 (62.1, 66.2) 64.9 (64.4, 65.6)

2 65.7 (64.9, 66.3) 65.8 (65.2, 66.1) 65.4 (64.5, 66.0)

MRDA
0 83.2 (83.0, 83.4) 83.5 (82.9, 84.0) 83.8 (83.4, 84.2)

1 84.6 (84.5, 84.9) 84.6 (84.4, 84.8) 84.1 (83.8, 84.4)

2 84.4 (84.1, 84.8) 84.6 (84.5, 84.7) 84.4 (84.2, 84.7)

SwDA
0 67.0 (65.3, 68.7) 69.1 (68.5, 70.0) 69.7 (69.2, 70.9)

1 69.9 (69.1, 70.9) 69.8 (69.3, 70.6) 69.9 (68.8, 70.6)

2 71.4 (70.4, 73.1) 71.1 (70.2, 72.1) 70.9 (69.7, 71.7)

Table 2.4: Accuracy (%) on different architectures and history sizes 𝑑1, 𝑑2. For each setting, we report
average (minimum, maximum) computed on 5 runs. Sequential classification (𝑑1 + 𝑑2 > 0) outperforms
non-sequential classification (𝑑1 = 𝑑2 = 0). The numbers reported in bold correspond to the largest values
for each dataset.

are challenging to draw, as many important details such as text preprocessing and train/-

valid/test split may vary, and many studies fail to perform several runs despite the random-

ness in some parts of the training process, such as weight initialization.

Model DSTC 4 MRDA SwDA

CNN 65.5 84.6 73.1

LSTM 66.2 84.3 69.6

Majority class 25.8 59.1 33.7

SVM 57.0 – –

Graphical model – 81.3 –

Naive Bayes – 82.0 –

HMM – – 71.0

Memory-based Learning – – 72.3

Table 2.5: Accuracy (%) of our models and other methods from the literature. The majority class model
predicts the most frequent class. SVM: [29]. Graphical model: [56]. Naive Bayes: [76]. HMM: [107].
Memory-based Learning: [96]. All five models use features derived from transcribed words, as well as
previous predicted dialog acts except for Naive Bayes. For SwDA, the Cohen’s kappa coefficient for the
interlabeler agreement is 0.84. The interlabeler agreement could not be obtained for MRDA, and DSTC 4
was labeled by a single annotator. For the CNN and LSTM models, the presented results are the test set
accuracy of the run with the highest accuracy on the validation set. The numbers reported in bold correspond
to the largest values for each dataset.

28

2.4 Conclusion

In this chapter we have presented an ANN-based approach to sequential short-text classi-

fication. We demonstrate that adding sequential information improves the quality of the

predictions, and the performance depends on what sequential information is used in the

model. Our model achieves state-of-the-art results on three different datasets for dialog act

prediction.

29

30

Chapter 3

Bidirectional Sequential Short-Text

Classification

In the previous chapter, we have explored new ANN-based models for forward sequential

short-text classification, i.e., ANN classifiers that use the preceding short texts. They have

two downsides:

∙ They purposedly do not use the succeeding short texts. This is convenient if the

application is real-time, such as a live dialogue, but in many cases the entire sequence

of short-texts can already be accessed when the classification starts.

∙ They classify one short texts at the time, in contrast to classifying all short texts of

the sequence at once, i.e., performing structured prediction.

In this chapter, we propose a model that remediates these two issues. Our model out-

performs the state-of-the-art results on two different datasets for the task of sequential

sentence classification in medical abstracts, which we have introduced and motivated in

the introduction of this thesis.

Our model makes use of both token and character embeddings for classifying sentences,

and has a sequence optimization layer that is learned jointly with other components of the

model. We evaluate our model on the NICTA-PIBOSO dataset as well as a new dataset we

compiled based on the PubMed database.

31

3.1 Related Work

Existing systems for sequential sentence classification are mostly based on naive Bayes [98,

53], support vector machine [81, 122, 51, 122], Hidden Markov models [77], and condi-

tional random fields (CRFs) [65, 48, 51]. They often require numerous hand-engineered

features based on lexical (bag-of-words, n-grams, dictionaries, cue words), semantic (syn-

onyms, hyponyms), structural (part-of-speech tags, headings), and sequential (sentence

position, surrounding features) information.

On the other hand, recent approaches to natural language processing (NLP) based on

artificial neural networks (ANNs) do not require manual features, as they are trained to

automatically learn features based on word as well as character embeddings. Moreover,

ANN-based models have achieved state-of-the-art results on various NLP tasks, including

the most relevant task of text classification [106, 66, 61, 124, 19, 121, 38]. For text clas-

sification, many ANN models use word embeddings [106, 66, 61, 43], and most recent

works are based on character embeddings [124, 19, 121]. Approaches combining word and

character embeddings have also been explored [38, 34].

However, most existing works using ANNs for short-text classification do not use any

context. This is in contrast with sequential sentence classification, where each sentence

in a text is classified taking into account its context, i.e., the surrounding sentences and

possibly the whole text. One exception is our work on dialog act classification that we

introduced in the previous chapter, where each utterance in a dialog is classified into its

dialog act. However, only the preceding utterances were used, as the system was designed

with real-time applications in mind.

3.2 Model

3.2.1 ANN model

Our ANN model consists of three components: a hybrid token embedding layer, a sen-

tence label prediction layer, and a label sequence optimization layer. Figure 3-1 presents a

graphical overview of the model.

32

c1 c2 cl

t
concatenate

e1 e2 ei

Feed forward

a1 a2 an-1

…

y2

aj

…

y1 yj yn-1

an

yn

Token
embeddings

bi-LSTMconcatanate

…

…

bi-LSTM concatanate

…

…

cl-1

s

c

…

…

em

Character embeddings

z1 z2 zlzl-1 x

Figure 3-1: ANN model for sequential sentence classification. 𝑥: token, t: token embeddings (300), 𝑧𝑖: 𝑖th

character of 𝑥, c𝑖: character embeddings (25), c: character-based token embeddings (50), e𝑖: hybrid token
embeddings (350), s: sentence vector (200), a𝑗 : sentence label vector (number of classes), 𝑦𝑗 : sentence label.
The numbers in parenthesis indicate the dimension of the vectors. Token embeddings are initialized with
GloVe [91] embeddings pretrained on Wikipedia and Gigaword 5 [89]. Replacing LSTMs with convolutional
neural networks did not improve the results: we therefore use LSTMs.

33

Hybrid token embedding layer

The hybrid token embedding layer takes a token as an input and outputs its vector repre-

sentation utilizing both the token embeddings and as well as the character embeddings.

Token embeddings are a direct mapping 𝒱𝑇 (·) from token to vector, which can be

pre-trained on large unlabeled datasets using programs such as word2vec [86, 83, 87] or

GloVe [91]. Character embeddings are also defined in an analogous manner, as a direct

mapping 𝒱𝐶(·) from character to vector.

Let 𝑧1:ℓ be the sequence of characters that comprise a token 𝑥. Each character 𝑧𝑖 is

first mapped to its embedding c𝑖 = 𝒱𝐶(𝑧𝑖), and the resulting sequence c1:ℓ is input to a

bidirectional LSTM, which outputs the character-based token embedding c.

The output e of the hybrid token embedding layer for the token 𝑥 is the concatenation

of the character-based token embedding c and the token embedding t = 𝒱𝑇 (𝑥). Using

characters as input to the ANN has been explored by other works such as [67].

Sentence label prediction layer

Let 𝑥1:𝑚 be the sequence of tokens in a given sentence, and e1:𝑚 be the corresponding

embedding output from the hybrid token embedding layer. The sentence label prediction

layer takes as input the sequence of vectors e1:𝑚, and outputs a, where the 𝑘𝑡ℎ element of

a, denoted a[𝑘], reflects the probability that the given sentence has label 𝑘.

To achieve this, the sequence e1:𝑚 is first input to a bidirectional LSTM, which out-

puts the vector representation s of the given sentence. The vector s is subsequently input

to a feedforward neural network with one hidden layer, which outputs the corresponding

probability vector a.

Label sequence optimization layer

The label sequence optimization layer takes the sequence of probability vectors a1:𝑛 from

the label prediction layer as input, and outputs a sequence of labels 𝑦1:𝑛, where 𝑦𝑖 is the

label assigned to the token 𝑥𝑖.

In order to model dependencies between subsequent labels, we incorporate a matrix 𝑇

34

that contains the transition probabilities between two subsequent labels; we define 𝑇 [𝑖, 𝑗]

as the probability that a token with label 𝑖 is followed by a token with the label 𝑗. The score

of a label sequence 𝑦1:𝑛 is defined as the sum of the probabilities of individual labels and

the transition probabilities:

𝑠(𝑦1:𝑛) =
𝑛∑︁

𝑖=1

a𝑖[𝑦𝑖] +
𝑛∑︁

𝑖=2

𝑇 [𝑦𝑖−1, 𝑦𝑖].

These scores can be turned into probabilities of the label sequences by taking a softmax

function over all possible label sequences:

𝑝(𝑦1:𝑛) =
𝑒𝑠(𝑦1:𝑛)∑︀

𝑦1:𝑛∈𝑌 𝑛

𝑒𝑠(𝑦1:𝑛)

with 𝑌 being the set of all possible labels. During the training phase, the objective is to

maximize the log probability of the gold label sequence. In the testing phase, given an

input sequence of tokens, the corresponding sequence of predicted labels is chosen as the

one that maximizes the score.

Computing the denominator
∑︀

𝑦∈𝑌 𝑛 𝑒𝑠(𝑦1:𝑛) can be done in 𝑂(𝑛|𝐶|2) time using dy-

namic programming (where |𝐶| denotes the number of classes), as demonstrated below.

Let 𝐴(𝑛,𝑦𝑛) be the log of the sum of the scores of all the sequence of length 𝑛 the last label

of which is 𝑦𝑛. Then:

𝐴(𝑛,𝑦𝑛)
def.
= log

⎛⎝ ∑︁
𝑦1:(𝑛−1)∈𝑌 𝑛−1

𝑒𝑠(𝑦1:𝑛)

⎞⎠
= log

⎛⎝ ∑︁
𝑦1:(𝑛−1)∈𝑌 𝑛−1

𝑒𝑠(𝑦1:(𝑛−1))+𝑇 (𝑦𝑛−1,𝑦𝑛)+𝑎𝑛(𝑦𝑛)

⎞⎠
= log

⎛⎝ ∑︁
𝑦𝑛−1∈𝑌

⎛⎝ ∑︁
𝑦1:(𝑛−2)∈𝑌 𝑛−2

𝑒𝑠(𝑦1:(𝑛−1))

⎞⎠ 𝑒𝑇 (𝑦𝑛−1,𝑦𝑛)+𝑎𝑛(𝑦𝑛)

⎞⎠
= log

⎛⎝ ∑︁
𝑦𝑛−1∈𝑌

𝑒
𝐴(𝑛−1,𝑦𝑛−1)𝑒𝑇 (𝑦𝑛−1,𝑦𝑛)+𝑎𝑛(𝑦𝑛)

⎞⎠

Since 𝐴(𝑛,𝑦𝑛) can be computed in Θ(|𝐶|) time given
{︀
𝐴(𝑛−1,𝑦𝑛−1)|𝑦𝑛−1 ∈ 𝑌

}︀
, comput-

35

Dataset Size Labels Manual RCT Available

[46] 200 PI y y email
[16] 327 IComp y y no
[12] 28631 POIcomp n n no
[65] 1000 PIBOSObj y n email
[54] 23472 PIO n n no
[95] 1356 Poe n y no
[125] 19893 PIOSObj y n no
[20] 194 PICO n y public1

[53] 19854 PIO n y no
PubMed 20k RCT 20000 BObjSOC n y no

Table 3.1: Overview of existing datasets for sentence classification in medical abstracts. The size is expressed
in terms of number of abstracts. The “labels” column uses the following abbreviations: B: background; C:
conclusion; Comp: comparison; I: intervention; Icomp: intervention and comparison; O: outcome; Obj:
objective; P: population; Poe: patient-oriented outcome; S: study design (a.k.a. method) In the “manual”
column, “y” means that the dataset was manually annotated, “n” otherwise. In the RCT column, “y” means
that the dataset only contains RCTs, “n” otherwise. For [12], the size was inferred as follows: the paper
indicates that the training set contains 28631 abstracts and that it represents 90% of the data, which means
there are 25768/0.9 = 28631 abstracts in total.

ing
{︀
𝐴(𝑛,𝑦𝑛)|𝑦𝑛 ∈ 𝑌

}︀
takes Θ(|𝐶|2) time given

{︀
𝐴(𝑛−1,𝑦𝑛−1)|𝑦𝑛−1 ∈ 𝑌

}︀
. Consequently,

computing
{︀
𝐴(𝑛,𝑦𝑛)|𝑦𝑛 ∈ 𝑌

}︀
takes 𝑂(𝑛|𝐶|2) time.

3.3 PubMed 20k RCT

In this section, we present PubMed 20k RCT, a new dataset based on PubMed for sequential

sentence classification. The dataset consists of 20,000 abstracts of randomized controlled

trials (RCTs). Each sentence of each abstract is annotated with their role in the abstract

using one of the following classes: background, objectives, methods, results, or conclusion.

The dataset is freely available at https://github.com/Franck-Dernoncourt/

pubmed-rct.

The purpose of releasing this dataset is two-fold. First, the majority of datasets for

sequential short-text classification are small: we hope that releasing a new large dataset

will help develop more accurate algorithms for that task. Second, from an application

perspective as we have mentioned before, clinical researchers and practitioners need better

tools to efficiently skim through the medical literature.

36

https://github.com/Franck-Dernoncourt/pubmed-rct
https://github.com/Franck-Dernoncourt/pubmed-rct

3.3.1 Existing Datasets

Existing datasets for classifying sentences in medical abstracts are either small, not publicly

available, or do not focus on RCTs. Table 3.2 presents an overview of existing datasets.

The most studied dataset to our knowledge is the NICTA-PIBOSO corpus published

in [65]. This dataset was the basis of the ALTA 2012 Shared Task [2], in which 8 competing

research teams participated to build the most accurate classifier.

Only the dataset published in [20] is publicly available: half of the datasets can only

be obtained via email inquiries, and the other half are not accessible (unanswered email

requests or negative replies). The only public dataset is also the smallest one.

3.3.2 Dataset Construction

Abstract Selection

Our dataset is constructed upon the MEDLINE/PubMed Baseline Database published in

20162 , which we will refer to as PubMed in this paper. PubMed is managed by the United

States National Library of Medicine (NLM) at the National Institutes of Health. It can

be accessed online by anyone, free of charge and without having to go through any reg-

istration. It contains 24,358,442 records. A record typically consists of metadata on one

article, as well as the article’s title and in many cases its abstract. Metadata information

may include the authors’ names, the authors’ affiliations, and more when available.

We use the following information from each PubMed record to build our dataset: the

article’s PubMed ID (PMID), the article’s abstract along with the abstract’s structure if

available, and the article’s Medical Subject Headings (MeSH) terms. MeSH is the NLM

controlled vocabulary thesaurus used for indexing articles for PubMed.

We select abstracts from PubMed based on the two following criteria:

∙ the abstract has to belong to an RCT. We rely on the article’s MeSH terms only to

select RCTs. Specifically, the MeSH term “D016449” corresponds to an RCT: if an

article does not have the MeSH term D016449, then its abstract is not included in our

2nlm.nih.gov/databases/download/pubmed_medline.html
(mirror)

37

https://www.nlm.nih.gov/databases/download/pubmed_medline.html
https://web.archive.org/web/20170310233129/https://www.nlm.nih.gov/databases/download/pubmed_medline.html

dataset. 399,254 abstracts fit this criterion.

∙ the abstract has to be structured. In order to qualify as structured, it has to contain

between 3 and 9 sections (inclusive), and it should not contain any section labeled

as “None”, “Unassigned”, or “” (empty string). Only 0.5% of abstracts have fewer

than 3 sections or more than 9 sections: we chose to discard these outliers. The

label of each section was originally given by the authors of the articles, typically

following the guidelines given by journals: as many labels exist, PubMed maps them

into a smaller set of standardized labels: background, objective, methods, results,

conclusions, “None”, “Unassigned”, or “” (empty string).

195,654 abstracts fit these two criteria, i.e., are both structured and belong to an RCT.

We choose 20k abstracts from them by taking the abstracts with the highest PMIDs, which

is a proxy for the publication date (in most cases, the higher the PMID, the more recently

published the article is).

Dataset Split

The dataset contains 20k abstracts and is randomly split into three sets: a training set

containing 15k abstracts, a validation set containing 2500 abstracts, a test set containing

2500 abstracts. We name this dataset PubMed 20k RCT, the prefix k meaning 1000, as

defined by the International System of Units [112].

Dataset Format

The dataset is provided as three text files: one file for the training set, one file for the vali-

dation set, and one file for the test set. Each file has the same format: each line corresponds

to either a PMID or a sentence with its capitalized label at the beginning. Each token is

separated by a space. Listing 3.1 shows an excerpt from these files.

For each abstract, sentence and token boundaries are detected using the Stanford CoreNLP

toolkit [79]. Digits were replaced by the character @ (at sign).

38

OBJECTIVE: This study evaluated an eating disorder intervention multimedia program mod-
eled after self-help eating disorder treatment programs. It was hypothesized that women who
completed the program would increase their body satisfaction and decrease their preoccupa-
tion with weight and frequency of disordered eating behaviors.
METHOD: Participants were 57 undergraduate females randomly assigned to either the in-
tervention or control group. Psychological functioning was assessed at baseline, at 3 months
postintervention, and at 3 months follow-up.
RESULTS: Intervention group subjects significantly improved their scores on all psychologi-
cal measures over time. When compared to the control group, however, only the intervention
group’s improvements on the Body Shape Questionnaire were statistically significant.
DISCUSSION: This study has demonstrated that minimally effective eating disorder inter-
vention programs can be delivered. A revised program that eliminates interface problems
and increases the structure of the intervention is likely to be even better received and more
effective.

Figure 3-2: Example of structured RCT abstract, obtained from PubMed. This abstract was taken from [68]

###9813759

OBJECTIVE This study evaluated an eating disorder intervention [...]

OBJECTIVE It was hypothesized that women who completed the program [...]

METHODS Participants were @ undergraduate females randomly [...]

METHODS Psychological functioning was assessed at baseline , at [...]

RESULTS Intervention group subjects significantly improved their [...]

RESULTS When compared to the control group , however , only the [...]

CONCLUSIONS This study has demonstrated that minimally effective [...]

CONCLUSIONS A revised program that eliminates interface problems [...]

Listing 3.1: Example of one abstract as formatted in the PubMed 20k RCT dataset set. The PMID of the

corresponding article is 9813759; the article can be found that https://www.ncbi.nlm.nih.gov/

pubmed/9813759. Figure 3-2 presents the abstract as shown in PubMed.

3.3.3 Dataset Analysis

Figure 3-3 counts the number of sentences per label: the least common label (objective)

is approximately four times less frequent than the most common label (results), which

indicates that the dataset is not excessively unbalanced. Figure 3-4 shows the distribution

of the number of sentences per abstract. Figure 3-5 shows the distribution of the number of

39

https://www.ncbi.nlm.nih.gov/pubmed/9813759
https://www.ncbi.nlm.nih.gov/pubmed/9813759

0 10000 20000 30000 40000 50000 60000 70000 80000

Number of occurrences (total: 240387)

METHODS

RESULTS

CONCLUSIONS

BACKGROUND

OBJECTIVE
La

b
e
ls

79214

77507

36321

28797

18548

Figure 3-3: Number of sentences per label in PubMed 20k RCT

tokens the sentence.

3.4 Experiments

3.4.1 Datasets

We evaluate our model on the sentence classification task using the following two medical

abstract datasets, where each sentence of the abstract is annotated with one label. Table 3.2

presents statistics on each dataset.

NICTA-PIBOSO This dataset was introduced in [65] and was the basis of the ALTA

2012 Shared Task [2].

PubMed 20k RCT This corpus was introduced in the previous section. It is based on

the PubMed database of biomedical literature and uses 5 sentence labels: objectives, back-

ground, methods, results and conclusions

40

0 20 40 60 80 100 120 140 160

Number of tokens per sentence

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

N
u
m

b
e
r

o
f

o
cc

u
rr

e
n
ce

s

Figure 3-4: Distribution of the number of tokens the sentence in PubMed 20k RCT. Minimum: 1; mean:
26.2; maximum: 338; variance: 227.6; skewness: 2.0; kurtosis: 8.7.

Dataset |𝐶| |𝑉 | Train Validation Test

NICTA-PIBOSO 6 17k 722 (8k) 77 (0.9k) 200 (2k)

PubMed 20k RCT 5 68k 15k (195k) 2.5k (33k) 2.5k (33k)

Table 3.2: Overview of the PubMed and the NICTA datasets for sentence classification. |𝐶| denotes the
number of classes, |𝑉 | the vocabulary size. For the train, validation and test sets, we indicate the number of
abstracts followed by the number of sentences in parentheses.

3.4.2 Training

The model is trained using stochastic gradient descent, updating all parameters, i.e., to-

ken embeddings, character embeddings, parameters of bidirectional LSTMs, and transition

probabilities, at each gradient step. For regularization, dropout is applied to the character-

enhanced token embeddings before the label prediction layer. We selected the hyperpa-

rameters manually, though we could have used some hyperparameter optimization tech-

41

0 5 10 15 20 25 30 35

Number of sentences per abstract

0

500

1000

1500

2000

2500

3000

N
u
m

b
e
r

o
f

o
cc

u
rr

e
n
ce

s

Figure 3-5: Distribution of the number of sentences per abstract in PubMed 20k RCT. Minimum: 3; mean:
11.6; maximum: 51; variance: 9.5; skewness: 0.9; kurtosis: 2.6.

niques [8, 28].

3.5 Results and Discussion

The first baseline (LR) is a classifier based on logistic regression using n-gram features

extracted from the current sentence: it does not use any information from the surrounding

sentences. The baseline was implemented with scikit-learn [90].

The second baseline (Forward ANN) uses the model presented in [72]: it computes

sentence embeddings for each sentence, then classifies the current sentence given a few

preceding sentence embeddings as well as the current sentence embedding.

The third baseline (CRF) is a CRF that uses n-grams as features: each output variable

of the CRF corresponds to a label for a sentence, and the sequence the CRF considers is the

entire abstract. The CRF baseline therefore uses both preceding and succeeding sentences

42

Model PubMed 20k NICTA

LR 83.1 71.6
Forward ANN 86.1 75.1
CRF 89.5 81.2
Best published – 82.0
Our model 90.0 82.7

Table 3.3: F1-scores on the test set with several baselines, the best published method [78] from the literature,
and our model. Since PubMed 20k RCT was introduced in this work, there is no previously published method
for this dataset. The presented results for the ANN-based models are the F1-scores on the test set of the run
with the highest F1-score on the validation set.

Model PubMed 20k NICTA

Full model 89.9 82.7
- character emb 89.7 82.7
- pre-train 88.7 78.0
- token emb 88.9 77.0
- seq opt 85.0 72.8

Table 3.4: Ablation analysis. F1-scores are reported. “- character emb” is our model using only token
embeddings, without character-based token embeddings. “- pre-train” is our model where token embeddings
are initialized with random values instead of pre-trained embeddings. “- token emb” is our model using only
character-based token embeddings, without token embeddings. “- seq opt” is our model without the label
sequence optimization layer. These numbers were averaged over 10 runs.

when classifying the current sentence. Lastly, the model presented in [78] developed a new

approach called feature stacking, which is a metalearner that combines multiple feature

sets, and is the best performing system on NICTA-PIBOSO published in the literature. The

baseline was implemented with CRFsuite [88].

Table 3.3 compares our model against several baselines as well as the best performing

model [78] in the ALTA 2012 Shared Task, in which 8 competing research teams partici-

pated to build the most accurate classifier for the NICTA-PIBOSO corpus.

The LR system performs honorably on PubMed 20k RCT (F1-score: 83.1), but quite

poorly on NICTA-PIBOSO (F1-score: 71.6): this suggests that using the surrounding sen-

tences may be more important in NICTA-PIBOSO than in PubMed 20k RCT.

The Forward ANN system performs better than the LR system, and worse than the

CRF: this is expected, as the Forward ANN system only uses the information from the

preceding sentences but do not use any information from the succeeding sentences, unlike

the CRF.

43

Res
ul

ts

M
et

ho
ds

Con
cl
us

io
n

Bac
kg

ro
un

d

Obj
ec

tiv
es

St
ar

t
En

d

Results

Methods

Conclusion

Background

Objectives

Start

End

0.25 -0.13 0.20 -0.18 -0.20 -0.02 -0.02

0.17 0.25 0.05 -0.24 -0.17 0.04 -0.08

-0.24 -0.14 0.28 0.01 -0.10 -0.01 0.22

-0.02 0.08 -0.38 0.35 0.07 -0.06 0.04

-0.03 0.13 -0.23 0.11 0.27 -0.04 -0.19

-0.26 -0.08 -0.14 0.26 0.23 0.02 -0.02

-0.24 0.14 -0.10 0.08 -0.23 -0.01 -0.20

< -0.3

-0.1

0.1

> 0.3

Figure 3-6: Transition matrix learned on PubMed 20k RCT. The rows represent the label of the previous
sentence, the columns represent the label of the current sentence.

Sentence Predicted Actual

This study investigated whether oxytocin can affect attentional bias in social anxiety. Background Methods
The biological mechanisms by which oxytocin may be exerting these effects are [...] Conclusions Results
Leuprolide pharmacokinetics were characterized for 11.25 and 30 mg 3-month [...] Conclusions Results
While, 6%HES 130/0.4 (free flex 6%HES 130/0.4, Fresenius Kabi) infusion was [...] Results Methods
Arterial and central venous blood gas analyses were performed every 20 minutes [...] Results Methods
Cytokine responses accompanying [...] immunotherapy [...] have not previously [...] Background Objectives

Table 3.5: Examples of prediction errors of our model on PubMed 20k RCT. The “predicted” column indi-
cates the label predicted by our model for a given sentence. Our model takes into account all the sentences
present in the abstract in which the classified sentence appears. The “actual” column indicates the gold label
of the sentence.

Our model performs better than the CRF system and the system from [78]. We hypoth-

esize that the following four factors give an edge to our model:

No human-engineered features: Unlike most other systems, our model does not rely on

any human-engineered features.

No n-grams: While other systems heavily relies on n-grams, our model maps each token

to a token embedding, and feeds it as an input to an RNN. This helps combat data scarcity,

as for example “chronic tendonitis” and “chronic tendinitis” are two different bigrams, but

share the same meaning, and their token embeddings should therefore be very similar.

Structured prediction: The labels for all sentences in an abstract are predicted jointly,

which improves the coherency between the predicted labels in a given abstract. The abla-

44

PubMed 20k RCT
Precision Recall F1-score Support

Background 71.8 88.2 79.1 3621
Conclusion 93.5 92.9 93.2 4571
Methods 93.7 96.2 94.9 9897
Objectives 78.2 48.1 59.6 2333
Results 94.8 93.1 93.9 9713

Total 90.1 89.9 90.0 30135

Table 3.6: Results for each class obtained by our model on PubMed 20k RCT.

Backg. Concl. Methods Obj. Res.

Background 3193 28 116 277 7
Conclusions 55 4248 7 0 261
Methods 78 36 9523 35 225
Objectives 1112 1 95 1122 3
Results 11 232 426 1 9043

Table 3.7: Confusion matrix on PubMed 20k RCT obtained with our model. Rows correspond to actual la-
bels, and columns correspond to predicted the labels. For example, 116 background sentences were predicted
as method.

tion analysis presented in Table 3.4 shows that the sequence optimization layer is the most

important component of the ANN model.

Joint learning: Our model learned the features and token embeddings jointly with the

sequence optimization.

The sequence information is mostly contained in the transition matrix. Figure 3-6

presents an example of transition matrix after the model has been trained on PubMed 20k

RCT. We can see that it effectively reflects transitions between different labels. For exam-

ple, it learned that the first sentence of an abstract is most likely to be either discussing

objective (0.23) or background (0.26). By the same token, a sentence pertaining to the

methods is typically followed by a sentence pertaining to the methods (0.25) or the results

(0.17).

Tables 3.6 and 3.7 detail the result of our model for each label in PubMed 20k RCT.

The main difficulty the classifier has is distinguishing background sentences from objec-

tive sentences. In particular, a third of the objective sentences are incorrectly classified as

background, which causes the recall for objectives and the precision for background to be

45

low. The classifier has also some difficulty in distinguishing method sentences from result

sentences.

Table 3.5 presents a few examples of prediction errors. Our error analysis suggests that

a fair number of sentence labels are debatable. For example, the sentence “We conducted a

randomized study comparing strategies X and Y.” belongs to the background according to

the gold target, but most humans would classify it as an objective.

We performed two additional experiments with our model on PubMed 20k RCT: shuf-

fling the sequences, and removing any content present in parentheses.

∙ In the first experiment, shuffling the sequences, within each abstract we shuffle all

sentences. The point of the experiments is to assess to what extent the model relies

on the sequential information to make its predictions. In that setting, our model

achieves an F1-score of 84.0, which is significantly lower than the F1-score of our

model when the sentences are not shuffled (90.0). This indicates that our model

efficiently leverages sentence order.

∙ In the second experiment, we removed any content present in parentheses. For exam-

ple, if the sentence is “all patients were reassessed (no dropouts) and no difference

between the PRP and the saline group could be observed.”, then it is transformed

into “all patients were reassessed no difference between the PRP and the saline group

could be observed.”. The motivation behind this experiment is to quantify the use-

fulness of the content in parentheses. In that setting, our model achieves an F1-score

of 89.9 which is slightly lower the F1-score when the content in parentheses is kept

(90.0).

46

3.6 Conclusions

In this chapter we have presented an ANN architecture to classify sentences that appear in

sequence. We demonstrate that jointly predicting the classes of all sentences in a given text

improves the quality of the predictions. Our model outperforms the state-of-the-art results

on two datasets for sentence classification in medical abstracts.

We have also introduced PubMed 20k RCT, a dataset for sequential sentence classifi-

cation. We hope that the release of this dataset will help the development of algorithms for

sequential sentence classification and increase the interest of the text mining community in

the study of RCTs.

47

48

Chapter 4

Neural Network Hyperparameter

Optimization

Systems based on artificial neural networks (ANNs) have achieved state-of-the-art results

in many natural language processing tasks. Although ANNs do not require manually engi-

neered features, ANNs have many hyperparameters to be optimized. The choice of hyper-

parameters significantly impacts models’ performance. However, the ANN hyperparame-

ters are typically chosen by manual, grid, or random search, which either requires expert

experience or is computationally expensive. Recent approaches based on Bayesian opti-

mization using Gaussian processes (GPs) is a more systematic way to automatically pin-

point optimal or near-optimal machine learning hyperparameters. Using the ANN model

presented in Chapter 2, which yields state-of-the-art results for dialog act classification, we

demonstrate that optimizing hyperparameters using GP further improves the results, and

reduces the computational time by a factor of 4 compared to a random search. Therefore

it is a useful technique for tuning ANN models to yield the best performance for natural

language processing tasks.

49

4.1 Introduction and related work

Artificial neural networks (ANNs) have recently shown state-of-the-art results on various

NLP tasks including language modeling [84], named entity recognition [18, 70, 69], text

classification [106, 66, 10, 72], question answering [118, 116], and machine translation [4,

111]. Unlike other popular non-ANN-based machine learning algorithms such as support

vector machines (SVMs) and conditional random fields (CRFs), ANNs can automatically

learn features that are useful for NLP tasks, thereby requiring no manually engineered

features.

However, ANNs have hyperparameters that need to be tuned in order to achieve the best

results. The hyperparameters of an ANN model may define either its learning process (e.g.,

learning rate or mini-batch size) or its architecture (e.g., number of hidden units or layers).

ANNs commonly contain over ten hyperparameters [7], which makes it challenging to op-

timize. Therefore, most published ANN-based works on NLP tasks rely on basic heuristics

such as manual or random search, and sometimes do not even optimize hyperparameters.

Although most of them report state-of-the-art results without optimizing hyperparame-

ters extensively, we argue that the results can be further improved by properly optimizing

the hyperparameters. Despite this, one of the main reasons why most previous NLP works

do not thoroughly optimize hyperparameters is that it may represent a significant time in-

vestment. However, if we optimize them “efficiently”, we can find hyperparameters that

perform well within a reasonable amount of time, as shown in this chapter.

Like ANNs, other machine learning algorithms also have hyperparameters. The two

most widely used methods for hyperparameter optimization of machine learning algorithms

are manual or grid search [9]. Bergstra and Yoshua [9] show that random search is as good

or better than grid search at finding hyperparameters within a small fraction of computation

time and suggest that random search is a natural baseline for judging the performance of

automatic approaches for tuning the hyperparameters of a learning algorithm. However,

all above-mentioned methods for tuning hyperparameters have some downsides. Manual

search requires human experts or uses arbitrary rules of thumb, while grid and random

searches are computationally expensive [104].

50

Recently, a more systematic approach based on Bayesian optimization with Gaussian

process (GP) [119] has been shown to be effective in automatically tuning the hyperparam-

eters of machine learning algorithms, such as latent Dirichlet allocation, SVMs, convolu-

tional neural networks [104], and deep belief networks [8], as well as tuning the hyper-

parameters that features may have [37, 27]. In this approach, the model’s performance for

each hyperparameter combination is modeled as a sample from a GP, resulting in a tractable

posterior distribution given previous experiments. Therefore, this posterior distribution is

used to find the optimal hyperparameter combination to try next based on the observation.

w1
w2

wl

w3

m

conv

h

n

max
pool

c1

cl -h+1

c2

u1

ui

ur ff (tanh)

y1

yr

u0
u-1 y0

ff (softmax)

d1 d2

n
k

z1

zr

k

dropout rate p

… …

…
…

… …

y2 z2

Figure 4-1: The ANN model. A sequence of words w1:ℓ corresponding to the 𝑖𝑡ℎ utterance is transformed
into a vector u𝑖 using a CNN, consisting of a convolution layer (conv) and a max pooling layer (max pool).
Each utterance is then classified by a two-layer feedforward (ff) network with tanh and softmax activation
functions. The hyperparmeters that we optimize are circled: filter size ℎ, number of filters 𝑛, dropout rate 𝑝,
history sizes 𝑑1, 𝑑2. In the figure, ℎ = 3, 𝑛 = 4, 𝑝 = 0.5, 𝑑1 = 3, 𝑑2 = 2. The grey rows (u−1,u0,y0)
represent zero paddings.

In this work, we demonstrate the application of Gaussian Process (GP) to optimize

ANN hyperparameters on an NLP task, namely dialog act classification [107], whose goal

is to assign a dialog act to each utterance. The ANN model in [72] makes a good candidate

for hyperparameter optimization since it is a simple model with a few architectural hyper-

parameters, and the optimized architectural hyperparameters are interpetable and give some

insights for the task at hand. Using this model, we show that optimizing hyperparameters

further improves the state-of-the-art results on two datasets, and reduces the computational

time by a factor of 4 compared to a random search.

51

4.2 Methods

The ANN model for dialog act classification was introduced in Chapter 2 and is briefly

repeated in Section 4.2.1. The GP used to optimize the hyperparameters of the ANN model

is presented in Section 4.2.2.

4.2.1 ANN model

Each utterance of a dialog is mapped to a vector representation via a CNN (Section 4.2.1).

Each utterance is then sequentially classified by leveraging preceding utterances (Sec-

tion 4.2.1). Figure 4-1 gives an overview of the ANN model.

Utterance representation via CNN

An utterance of length ℓ is represented as the sequence of word vectors w1:ℓ ∈ R𝑚. Given

the word vectors, the CNN model produces the utterance representation u ∈ R𝑛.

Let ℎ be the size of a filter, and the sequence of vectors v1:ℎ ∈ R𝑚 be the corresponding

filter matrix. A convolution operation on ℎ consecutive word vectors starting from the 𝑡𝑡ℎ

word outputs the scalar feature 𝑐𝑡 = tanh
(︁∑︀ℎ

𝑖=1 v
𝑇
𝑖 w𝑡+𝑖−1 + 𝑏𝑓

)︁
, where 𝑏𝑓 ∈ R is a bias

term.

We perform convolution operations with 𝑛 different filters, and denote the resulting

features as c𝑡 ∈ R𝑛, each of whose dimensions comes from a distinct filter. Repeating the

convolution operations for each window of ℎ consecutive words in the utterance, we obtain

c1:ℓ−ℎ+1. The utterance representation u ∈ R𝑛 is computed in the max pooling layer, as the

element-wise maximum of c1:ℓ−ℎ+1. During training, dropout with probability 𝑝 is applied

on this utterance representation u.

The filter size ℎ, the number of filters 𝑛, and a dropout probability 𝑝 are the hyperpa-

rameters of this section that we optimize using the GP (Section 4.2.2).

Sequential utterance classification

Let u𝑖 ∈ R𝑛 be the utterance representation given by the CNN architecture for the 𝑖𝑡ℎ

utterance in the sequence of length 𝑟. The sequence u1 : 𝑟 is input to a two-layer feedforward

52

neural network that classifies each utterance. The hyperparameters 𝑑1, 𝑑2, the history sizes

used in the first and second layers respectively, are optimized using the GP (Section 4.2.2).

The first layer takes as input u𝑖−𝑑1+1 : 𝑖 and outputs y𝑖 ∈ R𝑘, where 𝑘 is the number of

classes for the classification task, i.e. the number of dialog acts. It uses a tanh activation

function. Similarly, the second layer takes as input y𝑖−𝑑2+1 : 𝑖 and outputs z𝑖 ∈ R𝑘 with a

softmax activation function.

The final output z𝑖 represents the probability distribution over the set of 𝑘 classes for

the 𝑖𝑡ℎ utterance: the 𝑗𝑡ℎ element of z𝑖 corresponds to the probability that the 𝑖𝑡ℎ utterance

belongs to the 𝑗𝑡ℎ class. Each utterance is assigned to the class with the highest probability.

4.2.2 Hyperparameter optimization using GP

Let 𝒳 be the set of all hyperparameter combinations considered, and let 𝑓 : 𝒳 → R

be the function mapping from hyperparameter combinations to a real-valued performance

metric (such as F1-score on test set) of a learning algorithm using the given hyperparameter

combination. Our interest lies in efficiently finding a hyperparameter combination x ∈ 𝒳

that yields a near-optimal performance 𝑓(x). In this chapter, we use Bayesian optimization

of hyperparameters using GP, which we call GP search.

Comparison with other methods

A grid search is brute-forcefully evaluating 𝑓(x) for each x ∈ 𝒳 defined on a grid and then

selecting the best one. In a random search, one randomly selects an x ∈ 𝒳 and evaluates

the performance 𝑓(x); this process is repeated until an x with a satisfactory 𝑓(x) is found.

In a manual search, an expert tries out some hyperparameter combinations based on prior

experience until settling on a good one.

In contrast with the other methods mentioned above, a GP search chooses the hyper-

parameter combination to evaluate next by exploiting all previous evaluations. To achieve

this, we assume the prior distribution on the function 𝑓 to be a Gaussian process, which

allows us to construct a probabilistic model for 𝑓 using all previous evaluations, by calcu-

lating the posterior distribution in a tractable manner. Once the model for 𝑓 is computed, it

53

is used to choose an optimal hyperparameter combination to evaluate next.

GP search

In a GP search, we use a GP to describe a distribution over functions. A GP is defined

as a collection of random variables, any finite number of which have a joint Gaussian

distribution. A GP 𝑓(x) is completely specified by its mean function 𝑚(x) and covariance

function 𝑘(x,x′), also called kernel, defined as:

𝑚(x) = E[𝑓(x)],

𝑘(x,x′) = E[(𝑓(x)−𝑚(x))(𝑓(x′)−𝑚(x′))].

In our case 𝑓(x) is the F1-score on the test set evaluated for the ANN model using the

given hyperparameter combination x ∈ 𝒳 , which is a 5-dimensional vector consisting of

filter size ℎ, number of filters 𝑛, dropout rate 𝑝, and history sizes 𝑑1, 𝑑2.

Let 𝑋 = (x1, . . . ,x𝑞), f = (𝑓(x1) . . . , 𝑓(x𝑞)) and 𝑋* = (x𝑞+1, . . . ,x𝑠), f
* = (𝑓(x𝑞+1) . . . , 𝑓(x𝑠))

be the training inputs and outputs, and test inputs and outputs, respectively. 𝑋 ∪𝑋* = 𝒳 ,

and 𝑋 ∩𝑋* = ∅. Note that f is known, and f* is unknown. The goal is to find the distribu-

tion of f* given 𝑋*, 𝑋 and f , in order to select among 𝑋* the hyperparameter combination

that is the most likely to yield the highest F1-score.

The joint distribution of f and f* according to the prior is⎡⎣f
f*

⎤⎦ ∼ 𝒩
⎛⎝⎡⎣m

m*

⎤⎦ ,

⎡⎣𝐾(𝑋,𝑋) 𝐾(𝑋,𝑋*)

𝐾(𝑋*, 𝑋) 𝐾(𝑋*, 𝑋*)

⎤⎦⎞⎠
where m , m* is a vector of the means evaluated at all training and test points respectively,

and 𝐾(𝑋,𝑋*) denotes the 𝑞×𝑞* matrix of the covariances evaluated at all pairs of training

and test points, and similarly for 𝐾(𝑋,𝑋), 𝐾(𝑋*, 𝑋) and 𝐾(𝑋*, 𝑋*).

Conditioning the joint Gaussian prior on the observations yields f*|𝑋*, 𝑋, f ∼ 𝒩 (𝜇,Σ)

where

54

𝜇 = m* −𝐾(𝑋*, 𝑋)𝐾(𝑋,𝑋)−1(f −m), (4.1)

Σ = 𝐾(𝑋*, 𝑋*)−𝐾(𝑋*, 𝑋)𝐾(𝑋,𝑋)−1𝐾(𝑋,𝑋*).

The choice of the kernel 𝑘(x,x′) impacts predictions. We investigate 4 different ker-

nels:

∙ Linear: 𝑘(x,x′) = x𝑇x′

∙ Cubic: 𝑘(x,x′) = 3
(︁(︀

x𝑇x′)︀2 + 2
(︀
x𝑇x′)︀3)︁

∙ Absolute exponential: 𝑘(x,x′) = 𝑒|x−x′|

∙ Squared exponential: 𝑘(x,x′) = 𝑒−0.5|x−x′|2

To initialize the GP search, one needs to compute the F1-score for a certain number of

randomly chosen hyperparameter combinations 𝑟: we investigate what the optimal number

is. We then iterate over the following two steps until a specified maximum number of

iterations 𝑡 is reached. First, we find the hyperparameter combination in the test set with

the highest F1-score predicted by the GP. Second, we compute the actual F1-score, and

move it to the training set. This process is outlined in Algorithm 1.

4.3 Experiments

4.3.1 Datasets

We evaluate the random and GP searches on the dialog act classification task using the

Dialog State Tracking Challenge 4 (DSTC 4) [62, 63], ICSI Meeting Recorder Dialog Act

(MRDA) [55, 102], and Switchboard Dialog Act (SwDA) [60] datasets. DSTC 4, MRDA,

and SwDA respectively contain 32k, 109k, and 221k utterances, which are labeled with 89,

5, and 43 different dialog acts (we used the 5 coarse-grained dialog acts introduced in [3]

for MRDA). The train/test splits are provided along with the datasets, and the validation set

was chosen randomly except for MRDA, which specifies a validation set.1

1See https://github.com/Franck-Dernoncourt/slt2016 for the train, validation, and test
splits.

55

https://github.com/Franck-Dernoncourt/slt2016

Algorithm 1 GP search algorithm
function GP-REGRESSION(𝑋*, 𝑋, f)

compute 𝜇 according to (4.1)
return 𝜇

end function
function GP-SEARCH(𝒳 = {x1, . . . ,x𝑠}, 𝑓(·), 𝑟, 𝑡)

𝑋 ← (∅)
𝑋* ← (x1, . . . ,x𝑠)
for 𝑖 = 1, . . . , 𝑟 do

randomly choose x ∈ 𝑋*

remove x from 𝑋*

add x to 𝑋 and 𝑓(x) to f
end for
for 𝑖 = 𝑟 + 1, . . . , 𝑡 do

𝜇← GP-REGRESSION(𝑋*, 𝑋, f)
�̂� ← arg max

𝑗=1,...,|𝜇|
𝜇𝑗, x← 𝑋[𝑗*]

remove x from 𝑋*

add x to 𝑋 and 𝑓(x) to f
end for
return arg maxx∈𝑋 𝑓(x)

end function

4.3.2 Training

For a given hyperparameter combination, the ANN is trained to minimize the negative

log-likelihood of assigning the correct dialog acts to the utterances in the training set, us-

ing stochastic gradient descent with the Adadelta update rule [123]. At each gradient de-

scent step, weight matrices, bias vectors, and word vectors are updated. For regularization,

dropout is applied after the pooling layer, and early stopping is used on the validation set

with a patience of 10 epochs. We initialize the word vectors with the 300-dimensional

word vectors pretrained with word2vec on Google News [83, 86] for DSTC 4, and the

200-dimensional word vectors pretrained with GloVe on Twitter [91] for SwDA.

4.3.3 Hyperparameters

For each hyperparameter combination, the reported F1-score is averaged over 5 runs. Ta-

ble 4.1 presents the hyperparameter search space.

56

Hyperparameter Values

Filter size ℎ 3, 4, 5

Number of filters 𝑛 50, 100, 250, 500, 1000

Dropout rate 𝑝 0.1, 0.2, . . . , 0.9

History size 𝑑1 1, 2, 3

History size 𝑑2 1, 2, 3

Table 4.1: Candidate values for each hyperparameter. Since ℎ, 𝑛, 𝑝, 𝑑1, and 𝑑2 can take 3, 5, 9, 3, and 3
different values respectively, there are 1215 (= 3× 5× 9× 3× 3) possible hyperparameter combinations.

4.4 Results

GP search finds near-optimal hyperparameters faster than random search. Figure 4-

2 compares the GP searches with different kernels against the random search, which is

a natural baseline for hyperparameter optimization algorithms [9]. On all datasets, the

F1-score evaluated using the hyperparameters found by the GP search converges to near-

optimal values significantly faster than the random search, regardless of the kernels used.

For example, on SwDA, after computing the F1-scores for 100 different hyperparameter

combinations, the GP search reaches on average 72.1, whereas the random search only

obtains 71.4. The random search requires computing over 400 F1-scores to reach 72.1: the

GP search therefore reduces the computational time by a factor of 4. This is a significant

improvement considering that computing the average F1-scores over 5 runs for 300 extra

hyperparameter combinations takes 60 days on a GeForce GTX Titan X GPU.

Squared exponential kernel converges more slowly than others. Even though the

GP search with any kernel choice is faster than the random search, some kernels result

in better performance than others. The best kernel choice depends on the choice of the

dataset, but the squared exponential kernel (a.k.a. radial basis function kernel) consistently

converges more slowly, as illustrated by Figure 4-2. Across the datasets, there were no

consistent differences among the linear, absolute exponential, and cubic kernels.

The number of initial random points impacts the performance. As mentioned in

Section 4.2.2, the GP search starts with computing the F1-score for a certain number of

randomly chosen hyperparameter combinations. Figure 4-3 shows the impact of this num-

57

(a) DSTC 4

0 50 100 150 200

Number of computed F1-scores

64.5

65.0

65.5

66.0

66.5

B
e
st

 F
1
-s

co
re

 f
o
u
n
d

GP: Absolute exponential kernel

GP: Cubic kernel

GP: Linear kernel

GP: Squared exponential kernel

Random search

(b) MRDA

0 50 100 150 200

Number of computed F1-scores

84.0

84.1

84.2

84.3

84.4

84.5

84.6

84.7

84.8

B
e
st

 F
1
-s

co
re

 f
o
u
n
d

GP: Absolute exponential kernel

GP: Cubic kernel

GP: Linear kernel

GP: Squared exponential kernel

Random search

(c) SwDA

0 50 100 150 200

Number of computed F1-scores

68

69

70

71

72

73

B
e
st

 F
1
-s

co
re

 f
o
u
n
d

GP: Absolute exponential kernel

GP: Cubic kernel

GP: Linear kernel

GP: Squared exponential kernel

Random search

Figure 4-2: Performance of GP search with different kernels and random search for hyperparameter opti-
mization on DSTC 4, MRDA, and SwDA. The x-axis represents the number of hyperparameter combinations
for which the F1-score has been computed, and the y-axis shows the best F1-score that has been achieved by
at least one of these hyperparameter combinations. Each data point is averaged over 100 runs of the specified
search strategy.

58

(a) DSTC 4

0 50 100 150 200

Number of computed F1-scores

64.5

65.0

65.5

66.0

66.5

B
e
st

 F
1
-s

co
re

 f
o
u
n
d

GP: 2 initial random points

GP: 5 initial random points

GP: 10 initial random points

GP: 20 initial random points

GP: 50 initial random points

Random search

(b) MRDA

0 50 100 150 200

Number of computed F1-scores

84.0

84.1

84.2

84.3

84.4

84.5

84.6

84.7

84.8

B
e
st

 F
1
-s

co
re

 f
o
u
n
d

GP: 2 initial random points

GP: 5 initial random points

GP: 10 initial random points

GP: 20 initial random points

GP: 50 initial random points

Random search

(c) SwDA

0 50 100 150 200

Number of computed F1-scores

68

69

70

71

72

73

B
e
st

 F
1
-s

co
re

 f
o
u
n
d

GP: 2 initial random points

GP: 5 initial random points

GP: 10 initial random points

GP: 20 initial random points

GP: 50 initial random points

Random search

Figure 4-3: Impact of the number of initial random hyperparameter combinations on the GP search. The
x-axis represents the number of hyperparameter combinations for which the F1-score has been computed,
and the y-axis shows the best F1-score that has been achieved by at least one of these hyperparameter com-
binations. Each data point is averaged over 100 runs of the specified search strategy.

59

(a)

Top 1 Top 3 Top 5
0

20

40

60

80

100

N
u
m

b
e
r

o
f

ru
n
s

(b)

50 100 200
0

20

40

60

80

100

N
u
m

b
e
r

o
f

ru
n
s

50 100 200
0

20

40

60

80

100

N
u
m

b
e
r

o
f

ru
n
s

GP: Absolute exponential kernel

GP: Cubic kernel

GP: Linear kernel

GP: Squared exponential kernel

Random search

Figure 4-4: Finding near-optimal hyperparameter combinations on SwDA. Figure (a) shows how many times
out of 100 runs each search strategy found a hyperparameter combination that is among the top 1, 3, and 5
best performing hyperparameter combinations. Figure (b) shows how many times out of 100 runs each
search strategy found the best hyperparameter combination after evaluating 50, 100, and 200 hyperparameter
combinations.

60

ber on all three datasets. The optimal number seems to be around 10 on average, i.e. 1%

of the hyperparameter search space. When the number is very low (e.g., 2), the GP might

fail to find the optimal hyperparameter combinations: it performs significantly worse on

MRDA and SwDA. Conversely, when the number is very high (e.g., 50) it unnecessarily

delays the convergence.

GP search often finds near-optimal hyperparameters quickly. After evaluating the

F1-scores with 50 hyperparameter combinations, the GP search finds one of the 5 best

hyperparameter combinations almost 80% of the time on SwDA, as shown in Figure 4-4,

and even more frequently on DSTC 4 and MRDA. After computing 100 hyperparameter

combinations, the GP search finds the best one over 70% of the time, while the random

search stumbles upon it less 10% of the time.

Simple heuristics may not find optimal hyperparameters well. Compared to the

previous state-of-the-art results that use the same model optimized manually [72], the GP

search found more optimal hyperparameters, improving the F1-score by 0.5 (= 66.3 −

65.8), 0.1 (= 84.7 − 84.6), and 0.7 (= 72.1 − 71.4) on DTSC 4, MRDA, and SwDA,

respectively. In [72], the hyperparameters were optimized by varying one hyperparame-

ter at a time while keeping the hyperparameters fixed. Figures 4-5 and 4-6 demonstrate

that optimizing each hyperparameter independently might result in a suboptimal choice of

hyperparameters. Figure 4-5 illustrates that the optimal choice of hyperparameters is im-

pacted by the choice of other hyperparameters. For example, a higher number of filters

works better with a smaller dropout probability, and conversely a lower number of filters

yields better results when used with a larger dropout probability. Figure 4-6 shows that, for

instance, if one had first fixed the number of filters to be 100 and optimized the dropout

rate, one would have found that the optimal dropout rate is 0.5. Then, fixing the dropout

rate at 0.5, one would have determined that 500 is the optimal number of filters, thereby

obtaining an F1-score of 70.0, which is far from the best F1-score (70.7).

61

The faster convergence of the GP search may stem from the capacity of the GP to

leverage the patterns in the F1-score landscape such as the one shown in Figure 4-6. The

random search cannot make use of this regularity.

4.5 Conclusion

In this chapter we addressed the commonly encountered issue of tuning ANN hyperparam-

eters. Towards this purpose, we explored a strategy based on GP to automatically pinpoint

optimal or near-optimal ANN hyperparameters. We showed that the GP search requires 4

times less computational time than random search on three datasets, and improves the state-

of-the-art results by efficiently finding the optimal hyperparameter combinations. While the

choices of the kernels and the number of initial random points impact the performance of

the GP search, our findings show that it is more efficient than the random search regardless

of these choices. The GP search can be used for any ordinal hyperparameter; it is therefore

a useful technique when developing ANN models for NLP tasks.

62

Figure 4-5: Parallel coordinate plot of all 1215 hyperparameter combinations for DSTC 4. Each hyperpa-
rameter combination in 5-dimensional search space is shown as a polyline with vertices on the parallel axes,
each of which represents one of the 5 hyperparameter. The position of the vertex on each axis indicates the
value of the corresponding hyperparameter. The color of each polyline reflects the F1-score obtained using
the hyperparameter combination corresponding to the polyline.

63

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Dropout rate

50

100

250

500

1000

N
u
m

b
e
r

o
f

fi
lt

e
rs

67.8 68.4 68.8 69.0 68.8 67.8 65.6 59.9 51.6

68.0 68.6 69.2 69.6 69.7 69.5 68.9 66.6 58.9

68.1 68.6 69.2 69.7 69.8 70.3 70.2 69.8 67.4

68.3 68.6 69.0 69.5 70.0 70.4 70.6 70.5 69.5

68.4 68.7 69.0 69.2 69.8 70.3 70.5 70.7 70.1

< 68

69

70

> 71

Figure 4-6: Heatmap of the F1-scores on SwDA as the number of filters and the dropout rate vary. F1-scores
are averaged over all possible values of the other hyperparameters: as a result, F1-scores can be lower than
the ones in Figure 4-2.

64

Chapter 5

Conclusions

5.1 Contributions

This thesis introduced several algorithms to perform sequential short-text classification,

which outperform state-of-the-art algorithms. One challenge in the algorithms we have

introduced is their number of hyperparameters. To facilitate the choice of hyperparameters,

we presented a method based on Gaussian processes, which allows us to choose optimal or

near optimal hyperparameters significantly faster than using random or grid search.

In order to foster research in sequential short-text classification as well as medical text

mining, we released PubMed 20k RCT, a new dataset for sequential sentence classification

in RCT abstracts.

5.2 Future work

Many directions can be investigated to further enhance medical text mining, and we have

initiated some work in several of these directions.

Interpretability One of the most frequently mentioned limitation of ANNs is the lack of

interpretability of their predictions, i.e., the lack of understanding of how the ANNs make a

prediction given the input they receive. Since results directly impact health, clinicians have

come to expect healthcare applications to use interpretable models [14]. Moreover, the

65

European Union is considering regulations that require algorithms to be interpretable [45].

We have explored a CNN-based method to perform patient phenotyping, and showed that

a simple method allows us to view the phrases associated with each phenotype [43]. Much

more work remains to be done in that direction to gain insights on what happens during

the forward pass in an ANN. For example, developing visualization tools can help, such as

LSTMVis [108], which is a visual analysis tool for recurrent neural networks with a focus

on understanding these hidden state dynamics.

Going beyond classification While we have focused on classification in this thesis, the

automated analysis of the medical literature requires other kind of NLP tasks as well.

To that end, we have performed some work on using ANN for named-entity recogni-

tion [34, 75, 32, 74] as well as relation extraction [73]. It would be interesting to perform

these two tasks jointly, as the performance of ANNs have been shown to improve when per-

forming joint tasks [47]. Aside from the automatic creation of a knowledge base, from the

user standpoint, tools to query knowledge bases need to be improved, e.g., by improving

question answering systems.

Automated ANN architectures design We have analyzed the use of Gaussian processes

to automatically determine of optimal or near-optimal hyperparameters. Beyond optimiz-

ing hyperparameters, one could explore algorithms that choose the entire ANN architecture,

e.g., based on evolutionary computation [6, 21, 59] or reinforcement learning [126, 5].

Leveraging full-text articles We have only used paper abstracts in this thesis. This is

largely due to the fact that most research papers are not open access, and even fewer can be

freely used for text mining purposes. The medical field is especially plagued by the lack of

open access. However, much information is present only in the body of the articles, and the

lack of open access is a major impediment to structuring the medical literature. Medical

researchers must think about the implications of not making research freely available when

deciding to publish in pay-walled venues.

66

Exploring other types of literature We have focused on the medical literature, but most

of the literature would benefit from sentence classification and more generally any tool that

might make it more structured.

67

68

Bibliography

[1] Elaine Allen and Ingram Olkin. Estimating time to conduct a meta-analysis from
number of citations retrieved. JAMA: The Journal of the American Medical Associ-
ation, 282(7):634–635, 1999.

[2] Iman Amini, David Martinez, Diego Molla, et al. Overview of the ALTA 2012
shared task. 2012.

[3] Jeremy Ang, Yang Liu, and Elizabeth Shriberg. Automatic dialog act segmentation
and classification in multiparty meetings. In ICASSP (1), pages 1061–1064, 2005.

[4] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine transla-
tion by jointly learning to align and translate. arXiv:1409.0473, 2014.

[5] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural
network architectures using reinforcement learning. arXiv:1611.02167, 2016.

[6] Justin Bayer, Daan Wierstra, Julian Togelius, and Jürgen Schmidhuber. Evolving
memory cell structures for sequence learning. In International Conference on Arti-
ficial Neural Networks, pages 755–764. Springer, 2009.

[7] Yoshua Bengio. Practical recommendations for gradient-based training of deep ar-
chitectures. In Neural Networks: Tricks of the Trade, pages 437–478. Springer,
2012.

[8] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms
for hyper-parameter optimization. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett,
F. Pereira, and K. Q. Weinberger, editors, Advances in Neural Information Process-
ing Systems 24, pages 2546–2554. Curran Associates, Inc., 2011.

[9] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimiza-
tion. The Journal of Machine Learning Research, 13(1):281–305, 2012.

[10] Phil Blunsom, Edward Grefenstette, Nal Kalchbrenner, et al. A convolutional neural
network for modelling sentences. In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics. Proceedings of the 52nd Annual Meeting
of the Association for Computational Linguistics, 2014.

69

[11] Ameni Bouaziz, Christel Dartigues-Pallez, Célia da Costa Pereira, Frédéric Pre-
cioso, and Patrick Lloret. Short text classification using semantic random forest.
In International Conference on Data Warehousing and Knowledge Discovery, pages
288–299. Springer, 2014.

[12] Florian Boudin, Jian-Yun Nie, Joan C Bartlett, Roland Grad, Pierre Pluye, and Mar-
tin Dawes. Combining classifiers for robust pico element detection. BMC medical
informatics and decision making, 10(1):1, 2010.

[13] Trung H. Bui, Hung H. Bui, and Franck Dernoncourt. Rule-based dialog state track-
ing, August 10 2017. US Patent App. 15/017,305.

[14] Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, and Noemie El-
hadad. Intelligible models for healthcare: Predicting pneumonia risk and hospital
30-day readmission. In Proceedings of the 21th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pages 1721–1730. ACM, 2015.

[15] Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On
the properties of neural machine translation: Encoder-decoder approaches. arXiv
preprint arXiv:1409.1259, 2014.

[16] Grace Yuet-Chee Chung. Towards identifying intervention arms in randomized con-
trolled trials: extracting coordinating constructions. Journal of biomedical informat-
ics, 42(5):790–800, 2009.

[17] Ronan Collobert. Deep learning for efficient discriminative parsing. In International
Conference on Artificial Intelligence and Statistics, number EPFL-CONF-192374,
2011.

[18] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu,
and Pavel Kuksa. Natural language processing (almost) from scratch. The Journal
of Machine Learning Research, 12:2493–2537, 2011.

[19] Alexis Conneau, Holger Schwenk, Loïc Barrault, and Yann Lecun. Very deep con-
volutional networks for natural language processing. arXiv:1606.01781, 2016.

[20] Patrick Davis-Desmond and Diego Mollá. Detection of evidence in clinical research
papers. In Proceedings of the Fifth Australasian Workshop on Health Informatics
and Knowledge Management-Volume 129, pages 13–20. Australian Computer Soci-
ety, Inc., 2012.

[21] Franck Dernoncourt. The medial reticular formation (mRF): a neural substrate for
action selection? an evaluation via evolutionary computation. Master’s thesis, ENS
Ulm, 2011.

[22] Franck Dernoncourt. Replacing the computer mouse. In MIT CSAIL Student Work-
shop, 2012.

70

[23] Franck Dernoncourt. Introduction to fuzzy logic. Massachusetts Institute of Tech-
nology, 2013.

[24] Franck Dernoncourt. BeatDB: an end-to-end approach to unveil saliencies from
massive signal data sets. Master’s thesis, Massachusetts Institute of Technology,
2014.

[25] Franck Dernoncourt. Trackmania is NP-complete. arXiv:1411.5765, 2014.

[26] Franck Dernoncourt. Mapping distributional to model-theoretic semantic spaces: a
baseline. arXiv:1607.02802, 2016.

[27] Franck Dernoncourt, Elias Baedorf Kassis, and Mohammad Mahdi Ghassemi. Hy-
perparameter selection. In Secondary Analysis of Electronic Health Records, pages
419–427. Springer International Publishing, 2016.

[28] Franck Dernoncourt and Ji Young Lee. Optimizing neural network hyperparam-
eters with gaussian processes for dialog act classification. IEEE Spoken Lanuage
Technology, 2016.

[29] Franck Dernoncourt, Ji Young Lee, Trung H. Bui, and Hung H. Bui. Adobe-MIT
submission to the DSTC 4 Spoken Language Understanding pilot task. In 7th Inter-
national Workshop on Spoken Dialogue Systems (IWSDS), 2016.

[30] Franck Dernoncourt, Ji Young Lee, Trung H. Bui, and Hung H. Bui. Robust dialog
state tracking for large ontologies. In International Workshop on Spoken Dialogue
Systems, 2016.

[31] Franck Dernoncourt, Ji Young Lee, and Peter Szolovits. Neural networks for joint
sentence classification in medical paper abstracts. European Chapter of the Associ-
ation for Computational Linguistics (EACL), 2017.

[32] Franck Dernoncourt, Ji Young Lee, and Peter Szolovits. NeuroNER: an easy-to-use
program for named-entity recognition based on neural networks. Empirical Methods
on Natural Language Processing (EMNLP), 2017.

[33] Franck Dernoncourt, Ji Young Lee, and Peter Szolovits. PubMed 200k RCT: a
dataset for sequential sentence classification in medical abstracts. International Joint
Conference on Natural Language Processing (IJCNLP), 2017.

[34] Franck Dernoncourt, Ji Young Lee, Ozlem Uzuner, and Peter Szolovits. De-
identification of patient notes with recurrent neural networks. Journal of the Ameri-
can Medical Informatics Association (JAMIA), 2016.

[35] Franck Dernoncourt, Colin Taylor, Una-May O’Reilly, Kayan Veeramachaneni,
Sherwin Wu, Chuong Do, and Sherif Halawa. MoocViz: A large scale, open access,
collaborative, data analytics platform for MOOCs. In NIPS Education Workshop,
2013.

71

[36] Franck Dernoncourt, Kalyan Veeramachaneni, and Una-May O’Reilly. beatDB: A
large scale waveform feature repository. In NIPS , Machine Learning for Clinical
Data Analysis and Healthcare Workshop, 2013.

[37] Franck Dernoncourt, Kalyan Veeramachaneni, and Una-May O’Reilly. Gaussian
process-based feature selection for wavelet parameters: Predicting acute hypoten-
sive episodes from physiological signals. In IEEE 28th International Symposium on
Computer-Based Medical Systems, 2015.

[38] Cícero Nogueira dos Santos and Maira Gatti. Deep convolutional neural networks
for sentiment analysis of short texts. In COLING, pages 69–78, 2014.

[39] Benjamin G Druss and Steven C Marcus. Growth and decentralization of the medical
literature: implications for evidence-based medicine. Journal of the Medical Library
Association, 93(4):499, 2005.

[40] Julian H Elliott, Tari Turner, Ornella Clavisi, James Thomas, Julian PT Higgins,
Chris Mavergames, and Russell L Gruen. Living systematic reviews: an emerging
opportunity to narrow the evidence-practice gap. PLoS Med, 11(2):e1001603, 2014.

[41] John W Ely, Jerome A Osheroff, Mark H Ebell, George R Bergus, Barcey T Levy,
M Lee Chambliss, and Eric R Evans. Analysis of questions asked by family doctors
regarding patient care. Bmj, 319(7206):358–361, 1999.

[42] Rebecca English, Yeonwoo Lebovitz, Robert Griffin, et al. Transforming clinical
research in the United States: challenges and opportunities: workshop summary.
National Academies Press, 2010.

[43] Sebastian Gehrmann, Franck Dernoncourt, Yeran Li, Eric T. Carlson, Joy T. Wu,
Jonathan Welt, David W. Grant, John Foote Jr., Edward T Moseley, Patrick D. Tyler,
and Leo A. Celi. Comparing rule-based and deep learning models for patient phe-
notyping. arXiv preprint arXiv:1703.08705, 2017.

[44] Alexander Genkin, David D Lewis, and David Madigan. Sparse logistic regression
for text categorization. DIMACS Working Group on Monitoring Message Streams
Project Report, 2005.

[45] Bryce Goodman and Seth Flaxman. Eu regulations on algorithmic decision-making
and a "right to explanation". In ICML Workshop on Human Interpretability in Ma-
chine Learning (WHI 2016), 2016.

[46] Kazuo Hara and Yuji Matsumoto. Extracting clinical trial design information from
medline abstracts. New Generation Computing, 25(3):263–275, 2007.

[47] Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsuruoka, and Richard Socher.
A joint many-task model: Growing a neural network for multiple nlp tasks.
arXiv:1611.01587, 2016.

72

[48] Hamed Hassanzadeh, Tudor Groza, and Jane Hunter. Identifying scientific artefacts
in biomedical literature: The evidence based medicine use case. Journal of biomed-
ical informatics, 49:159–170, 2014.

[49] Erik Hemberg, Kalyan Veeramachaneni, Franck Dernoncourt, Mark Wagy, and Una-
May O’Reilly. Efficient training set use for blood pressure prediction in a large scale
learning classifier system. In Proceedings of the 15th annual conference companion
on Genetic and evolutionary computation, pages 1267–1274. ACM, 2013.

[50] Erik Hemberg, Kalyan Veeramachaneni, Franck Dernoncourt, Mark Wagy, and Una-
May O’Reilly. Imprecise selection and fitness approximation in a large-scale evo-
lutionary rule based system for blood pressure prediction. In Proceedings of the
15th annual conference companion on Genetic and evolutionary computation, pages
153–154. ACM, 2013.

[51] Kenji Hirohata, Naoaki Okazaki, Sophia Ananiadou, Mitsuru Ishizuka, and Manch-
ester Interdisciplinary Biocentre. Identifying sections in scientific abstracts using
conditional random fields. In IJCNLP, pages 381–388, 2008.

[52] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural com-
putation, 9(8):1735–1780, 1997.

[53] Ke-Chun Huang, I-Jen Chiang, Furen Xiao, Chun-Chih Liao, Charles Chih-Ho Liu,
and Jau-Min Wong. Pico element detection in medical text without metadata: Are
first sentences enough? Journal of biomedical informatics, 46(5):940–946, 2013.

[54] Ke-Chun Huang, Charles Chih-Ho Liu, Shung-Shiang Yang, Furen Xiao, Jau-Min
Wong, Chun-Chih Liao, and I-Jen Chiang. Classification of pico elements by text
features systematically extracted from pubmed abstracts. In Granular Computing
(GrC), 2011 IEEE International Conference on, pages 279–283. IEEE, 2011.

[55] Adam Janin, Don Baron, Jane Edwards, Dan Ellis, David Gelbart, Nelson Mor-
gan, Barbara Peskin, Thilo Pfau, Elizabeth Shriberg, Andreas Stolcke, et al. The
ICSI meeting corpus. In Acoustics, Speech, and Signal Processing, 2003. Proceed-
ings.(ICASSP’03). 2003 IEEE International Conference on, volume 1, pages I–364.
IEEE, 2003.

[56] Gang Ji and Jeff Bilmes. Backoff model training using partially observed data: ap-
plication to dialog act tagging. In Proceedings of the main conference on Human
Language Technology Conference of the North American Chapter of the Associa-
tion of Computational Linguistics, pages 280–287. Association for Computational
Linguistics, 2006.

[57] Arif E Jinha. Article 50 million: an estimate of the number of scholarly articles in
existence. Learned Publishing, 23(3):258–263, 2010.

[58] Siddhartha R Jonnalagadda, Pawan Goyal, and Mark D Huffman. Automating data
extraction in systematic reviews: a systematic review. Systematic reviews, 4(1):1,
2015.

73

[59] Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. An empirical exploration
of recurrent network architectures. JMLR, 2015.

[60] Dan Jurafsky, Elizabeth Shriberg, and Debra Biasca. Switchboard SWBD-DAMSL
shallow-discourse-function annotation coders manual. Institute of Cognitive Science
Technical Report, pages 97–102, 1997.

[61] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional neural
network for modelling sentences. arXiv:1404.2188, 2014.

[62] Seokhwan Kim, Luis Fernando D’Haro, Rafael E. Banchs, Jason Williams, and
Matthew Henderson. Dialog State Tracking Challenge 4: Handbook, 2015.

[63] Seokhwan Kim, Luis Fernando D’Haro, Rafael E. Banchs, Jason Williams, and
Matthew Henderson. The Fourth Dialog State Tracking Challenge. In Proceedings
of the 7th International Workshop on Spoken Dialogue Systems (IWSDS), 2016.

[64] Su Nam Kim, Lawrence Cavedon, and Timothy Baldwin. Classifying dialogue acts
in one-on-one live chats. In Proceedings of the 2010 Conference on Empirical Meth-
ods in Natural Language Processing, pages 862–871. Association for Computational
Linguistics, 2010.

[65] Su Nam Kim, David Martinez, Lawrence Cavedon, and Lars Yencken. Automatic
classification of sentences to support evidence based medicine. BMC bioinformatics,
12(2):1, 2011.

[66] Yoon Kim. Convolutional neural networks for sentence classification. In Proceed-
ings of the 2014 Conference on Empirical Methods in Natural Language Processing,
pages 1746–1751. Association for Computational Linguistics, 2014.

[67] Yoon Kim, Yacine Jernite, David Sontag, and Alexander M Rush. Character-aware
neural language models. arXiv:1508.06615, 2015.

[68] Thøger P Krogh, Torkell Ellingsen, Robin Christensen, Pia Jensen, and Ulrich Fred-
berg. Ultrasound-guided injection therapy of achilles tendinopathy with platelet-rich
plasma or saline a randomized, blinded, placebo-controlled trial. The American jour-
nal of sports medicine, page 0363546516647958, 2016.

[69] Matthieu Labeau, Kevin Löser, and Alexandre Allauzen. Non-lexical neural archi-
tecture for fine-grained POS tagging. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, pages 232–237, Lisbon, Por-
tugal, September 2015. Association for Computational Linguistics.

[70] Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya
Kawakami, and Chris Dyer. Neural architectures for named entity recogni-
tion. arXiv:1603.01360, 2016.

74

[71] Peder Olesen Larsen and Markus Von Ins. The rate of growth in scientific publica-
tion and the decline in coverage provided by science citation index. Scientometrics,
84(3):575–603, 2010.

[72] Ji Young Lee and Franck Dernoncourt. Sequential short-text classification with re-
current and convolutional neural networks. In Human Language Technologies 2016:
The Conference of the North American Chapter of the Association for Computa-
tional Linguistics, NAACL HLT, 2016.

[73] Ji Young Lee, Franck Dernoncourt, and Peter Szolovits. MIT at SemEval-2017 Task
10: Relation Extraction with Convolutional Neural Networks. In Proceedings of the
11th International Workshop on Semantic Evaluations. Association for Computa-
tional Linguistics, 2017.

[74] Ji Young Lee, Franck Dernoncourt, and Peter Szolovits. Transfer learning for
named-entity recognition with neural networks. arXiv:1705.06273, 2017.

[75] Ji Young Lee, Franck Dernoncourt, Ozlem Uzuner, and Peter Szolovits. Feature-
augmented neural networks for patient note de-identification. COLING Clinical
NLP, 2016.

[76] Piroska Lendvai and Jeroen Geertzen. Token-based chunking of turn-internal dia-
logue act sequences. In Proceedings of the 8th SIGDIAL Workshop on Discourse
and Dialogue, pages 174–181, 2007.

[77] Jimmy Lin, Damianos Karakos, Dina Demner-Fushman, and Sanjeev Khudanpur.
Generative content models for structural analysis of medical abstracts. BioNLP’06
Linking Natural Language Processing and Biology: Towards Deeper Biological Lit-
erature Analysis, 6:65–72, 2006.

[78] Marco Lui. Feature stacking for sentence classification in evidence-based medicine.
In Australasian Language Technology Workshop 2012: ALTA Shared Task, page
134, 2012.

[79] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J.
Bethard, and David McClosky. The Stanford CoreNLP natural language processing
toolkit. In Association for Computational Linguistics (ACL) System Demonstrations,
pages 55–60, 2014.

[80] Chris Mavergames. The future of knowledge: Cochranetech to 2020 (and beyond).
21st Cochrane Colloquium, 2013.

[81] Larry McKnight and Padmini Srinivasan. Categorization of sentence types in medi-
cal abstracts. In AMIA, 2003.

[82] Anuj Mehta, Franck Dernoncourt, and Allan Walkey. Trend analysis: Evolution
of tidal volume over time for patients receiving invasive mechanical ventilation. In
Secondary Analysis of Electronic Health Records, pages 275–283. Springer Interna-
tional Publishing, 2016.

75

[83] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. arXiv:1301.3781, 2013.

[84] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khudan-
pur. Recurrent neural network based language model. In INTERSPEECH, volume 2,
page 3, 2010.

[85] Tomas Mikolov, Stefan Kombrink, Anoop Deoras, Lukar Burget, and Jan Cernocky.
Rnnlm-recurrent neural network language modeling toolkit. In Proc. of the 2011
ASRU Workshop, pages 196–201, 2011.

[86] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-
tributed representations of words and phrases and their compositionality. In Ad-
vances in neural information processing systems, pages 3111–3119, 2013.

[87] Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in con-
tinuous space word representations. In HLT-NAACL, pages 746–751, 2013.

[88] Naoaki Okazaki. Crfsuite: a fast implementation of conditional random fields
(CRFs), 2007.

[89] Robert Parker, David Graff, Junbo Kong, Ke Chen, and Kazuaki Maeda. English
Gigaword fifth edition. Technical report, Linguistic Data Consortium, Philadelphia,
2011.

[90] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, et al. Scikit-learn: Machine learning in python. Journal of Machine
Learning Research, 12(Oct):2825–2830, 2011.

[91] Jeffrey Pennington, Richard Socher, and Christopher D Manning. GloVe: global
vectors for word representation. Proceedings of the Empiricial Methods in Natural
Language Processing (EMNLP 2014), 12:1532–1543, 2014.

[92] Tom Pollard, Franck Dernoncourt, Samuel Finlayson, and Adrian Velasquez. Data
preparation. In Secondary Analysis of Electronic Health Records, pages 101–114.
Springer International Publishing, 2016.

[93] Silvia Quarteroni, Alexei V Ivanov, and Giuseppe Riccardi. Simultaneous dialog act
segmentation and classification from human-human spoken conversations. In Acous-
tics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference
on, pages 5596–5599. IEEE, 2011.

[94] Norbert Reithinger and Martin Klesen. Dialogue act classification using language
models. In EuroSpeech. Citeseer, 1997.

[95] David Alexander Robinson. Finding patient-oriented evidence in pubmed abstracts.
Athens: University of Georgia, 2012.

76

[96] Mihai Rotaru. Dialog act tagging using memory-based learning. Term project, Uni-
versity of Pittsburgh, pages 255–276, 2002.

[97] IOM roundtable on evidence-based medicine. Learning what works best: The
nation’s need for evidence on comparative effectiveness in health care: an issue
overview. 2007.

[98] Patrick Ruch, Celia Boyer, Christine Chichester, Imad Tbahriti, Antoine Geissbüh-
ler, Paul Fabry, Julien Gobeill, Violaine Pillet, Dietrich Rebholz-Schuhmann, Chris-
tian Lovis, et al. Using argumentation to extract key sentences from biomedical
abstracts. International journal of medical informatics, 76(2):195–200, 2007.

[99] Raymond Francis Sarmiento and Franck Dernoncourt. Improving patient cohort
identification using natural language processing. In Secondary Analysis of Electronic
Health Records, pages 405–417. Springer International Publishing, 2016.

[100] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. Signal
Processing, IEEE Transactions on, 45(11):2673–2681, 1997.

[101] Kaveh G Shojania, Margaret Sampson, Mohammed T Ansari, Jun Ji, Steve Doucette,
and David Moher. How quickly do systematic reviews go out of date? a survival
analysis. Annals of internal medicine, 147(4):224–233, 2007.

[102] Elizabeth Shriberg, Raj Dhillon, Sonali Bhagat, Jeremy Ang, and Hannah Carvey.
The ICSI meeting recorder dialog act (MRDA) corpus. Technical report, DTIC
Document, 2004.

[103] Joao Silva, Luísa Coheur, Ana Cristina Mendes, and Andreas Wichert. From sym-
bolic to sub-symbolic information in question classification. Artificial Intelligence
Review, 35(2):137–154, 2011.

[104] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization
of machine learning algorithms. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems 25, pages
2951–2959. Curran Associates, Inc., 2012.

[105] Richard Socher, Brody Huval, Christopher D Manning, and Andrew Y Ng. Se-
mantic compositionality through recursive matrix-vector spaces. In Proceedings of
the 2012 Joint Conference on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning, pages 1201–1211. Association for
Computational Linguistics, 2012.

[106] Richard Socher, Alex Perelygin, Jean Y Wu, Jason Chuang, Christopher D Man-
ning, Andrew Y Ng, and Christopher Potts. Recursive deep models for semantic
compositionality over a sentiment treebank. In Proceedings of the conference on
empirical methods in natural language processing (EMNLP), volume 1631, page
1642. Citeseer, 2013.

77

[107] Andreas Stolcke, Klaus Ries, Noah Coccaro, Elizabeth Shriberg, Rebecca Bates,
Daniel Jurafsky, Paul Taylor, Rachel Martin, Carol Van Ess-Dykema, and Marie
Meteer. Dialogue act modeling for automatic tagging and recognition of conversa-
tional speech. Computational linguistics, 26(3):339–373, 2000.

[108] Hendrik Strobelt, Sebastian Gehrmann, Bernd Huber, Hanspeter Pfister, and Alexan-
der M Rush. Visual analysis of hidden state dynamics in recurrent neural networks.
arXiv:1606.07461, 2016.

[109] Dinoj Surendran and Gina-Anne Levow. Dialog act tagging with support vector
machines and hidden markov models. In INTERSPEECH, 2006.

[110] Alma Swan. Policy guidelines for the development and promotion of open access.
UNESCO, 2012.

[111] Akihiro Tamura, Taro Watanabe, and Eiichiro Sumita. Recurrent neural networks
for word alignment model. In ACL (1), pages 1470–1480, 2014.

[112] Barry N Taylor and Ambler Thompson. NIST special publication 330 - the interna-
tional system of units (SI), 2008.

[113] Kay Dickersin Tianjing Li. Introduction to systematic review and meta-analysis.
Coursera, 2015.

[114] Kalyan Veeramachaneni, Franck Dernoncourt, Colin Taylor, Zachary Pardos, and
Una-May O’Reilly. Moocdb: Developing data standards for MOOC data science.
In AIED 2013 Workshops Proceedings Volume, page 17, 2013.

[115] Kalyan Veeramachaneni, Sherif Halawa, Franck Dernoncourt, Una-May O’Reilly,
Colin Taylor, and Chuong Do. Moocdb: Developing standards and systems to sup-
port mooc data science. arXiv:1406.2015, 2014.

[116] Di Wang and Eric Nyberg. A long short-term memory model for answer sentence
selection in question answering. In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 2: Short Papers), pages 707–712,
Beijing, China, July 2015. Association for Computational Linguistics.

[117] Sida Wang and Christopher D Manning. Baselines and bigrams: Simple, good sen-
timent and topic classification. In Proceedings of the 50th Annual Meeting of the
Association for Computational Linguistics: Short Papers-Volume 2, pages 90–94.
Association for Computational Linguistics, 2012.

[118] Jason Weston, Antoine Bordes, Sumit Chopra, and Tomas Mikolov. Towards AI-
complete question answering: A set of prerequisite toy tasks. arXiv:1502.05698,
2015.

[119] Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for ma-
chine learning. the MIT Press, 2(3):4, 2006.

78

[120] Joy T. Wu, Franck Dernoncourt, Sebastian Gehrmann, Patrick D. Tyler, Edward T
Moseley, Eric T. Carlson, David W. Grant, Yeran Li, Jonathan Welt, and Leo A. Celi.
Behind the scenes: A medical natural language processing project. International
Journal of Medical Informatics (IJMI), 2018.

[121] Yijun Xiao and Kyunghyun Cho. Efficient character-level document classification
by combining convolution and recurrent layers. arXiv:1602.00367, 2016.

[122] Yasunori Yamamoto and Toshihisa Takagi. A sentence classification system for
multi biomedical literature summarization. In 21st International Conference on Data
Engineering Workshops (ICDEW’05), pages 1163–1163. IEEE, 2005.

[123] Matthew D Zeiler. Adadelta: An adaptive learning rate method. arXiv:1212.5701,
2012.

[124] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks
for text classification. In Advances in Neural Information Processing Systems, pages
649–657, 2015.

[125] Jin Zhao, Praveen Bysani, and Min-Yen Kan. Exploiting classification correlations
for the extraction of evidence-based practice information. In AMIA, 2012.

[126] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning.
arXiv:1611.01578, 2016.

79

80

Abbreviations

The following abbreviations are used in this thesis proposal:

ANN Artificial neural network
ALTA Australasian Language Technology Association
AUC Area under the curve
AUROC Area under the receiver operating characteristic curve
CNN Convolutional Neural Network
CRF Conditional random field
DSTC 4 Dialog State Tracking Challenge 4 (dataset)
EACL European Chapter of the Association for Computational Linguistics
EBM Evidence-based medicine
GP Gaussian process
GRU Gated Recurrent Unit
HMM Hidden Markov Model
i2b2 Informatics for Integrating Biology and the Bedside (dataset)
ICU Intensive care unit
LR Logistic Regression
LSTM Long Short Term Memory network
MEDLINE Medical Literature Analysis and Retrieval System Online
MRDA ICSI Meeting Recorder Dialog Act Corpus (dataset)
NAACL North American Chapter of the Association for Computational Linguistics
NB Naive Bayes
NICTA National ICT Australia Ltd
PIBOSO Population (P), Intervention (I), Background (B), Outcome (O),

Study Design (S), and Other (O)
PICO Population (P), Intervention (I), Comparison(C), and Outcome (O)
RCT Randomized controlled trial

81

RNN Recurrent neural network
ROC Receiver operating characteristic
SR Systematic Review
SVM Support Vector Machines
SwDA Switchboard Dialog Act Corpus (dataset)

82

	Introduction
	Background and Motivation
	Contributions
	Organization

	Forward Sequential Short-Text Classification
	Model
	Short-text representation
	Sequential short-text classification

	Datasets and Experimental Setup
	Datasets
	Training

	Results and Discussion
	Conclusion

	Bidirectional Sequential Short-Text Classification
	Related Work
	Model
	ANN model

	PubMed 20k RCT
	Existing Datasets
	Dataset Construction
	Dataset Analysis

	Experiments
	Datasets
	Training

	Results and Discussion
	Conclusions

	Neural Network Hyperparameter Optimization
	Introduction and related work
	Methods
	ANN model
	Hyperparameter optimization using GP

	Experiments
	Datasets
	Training
	Hyperparameters

	Results
	Conclusion

	Conclusions
	Contributions
	Future work

	Abbreviations

