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Abstract

Medical practice too often fails to incorporate recent medical advances. The two main rea-
sons are that over 25 million scholarly medical articles have been published, and medical
practitioners do not have the time to perform literature reviews. Systematic reviews aim
at summarizing published medical evidence, but writing them requires tremendous human
efforts. In this thesis, we propose several natural language processing methods based on ar-
tificial neural networks to facilitate the completion of systematic reviews. In particular, we
focus on short-text classification, to help authors of systematic reviews locate the desired in-
formation. We introduce several algorithms to perform sequential short-text classification,
which outperform state-of-the-art algorithms. To facilitate the choice of hyperparameters,
we present a method based on Gaussian processes. Lastly, we release PubMed 20k RCT, a
new dataset for sequential sentence classification in randomized control trial abstracts.
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Chapter 1

Introduction

We investigate in this thesis several natural language processing (NLP) methods to mine
information from medical research articles. In this introduction, we outline the motivations

of our work.

1.1 Background and Motivation

Over 50 million scholarly articles have been published [57], and the number of articles
published every year keeps increasing [39, 71]. Approximately half of them are medical
papers indexed by MEDLINE, managed by the U.S. National Library of Medicine. While
the abstracts are typically available, the vast majority of papers are not freely accessible as
full-text, as shown in Figure 1-1. However, the abstracts still represent an immensely rich
dataset.

We focus on medical papers in this thesis, and particularly on randomized controlled
trials (RCTs), as they are commonly considered to be the best source of medical evidence
(see Figure 1-2). An RCT is a study in which subjects sharing the same medical condition
are randomly allocated to one of several clinical interventions. At least one of these clin-
ical interventions is regarded as a control intervention, i.e., an intervention against which
it makes sense to compare another intervention. A common control intervention is the
treatment that is normally given to patients with the same medical condition.

The number of RCTs published every year is steadily increasing, as shown in Figure 1-
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in Open Access repositories in 2010, by year of publication,
broken down by discipline®

Figure 1-1: Percentage of total scholarly literature available in open access repositories by year of publication
broken down by discipline. Source: [110]

3. Despite this growing amount of evidence, evidence-based medicine (EBM) is still very
far from having reached its goals. For instance, fewer than half of all the medical treatments
delivered today are supported by evidence [97], and there is a lack—at least in the United
States—of a clear prioritization of the gaps in medical evidence and an allocation of clinical

research resources to efficiently and effectively fill these evidence gaps [42].

One of the main difficulties in finding evidence amongst published RCTs is the sheer
number of RCTs: over one million. The average physician does not have time to per-
form literature reviews: Ely et al. [41] report that the average time that a physician spends

searching for a topic is two minutes. Systematic reviews (SRs) aim at summarizing pub-
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Randomized Controlled Trials

Cohort Studies

Case-Control Studies

Case Series, Case Reports

Editorials, Expert Opinion

Figure 1-2: Level of evidence. The higher in the pyramid, the more reliable the evidence is. There exist other
sources of medical evidence such as cohort studies, observational studies, case studies, but they are regarded
of lower quality evidence than RCTs and SRs. Source: [113]

lished medical evidence, often concentrating on one medical condition and one or several
medical interventions, so that physicians can rapidly access a succinct overview for the
topics of interest to them. SRs are the only superior type of evidence compared to RCTs.
However, SRs are extremely time-consuming to complete [58]: for example, Allen and
Olkin [1] report that the median time spent to conduct a clinical SR is 1,139 hours. It typi-
cally takes 2.5 to 6.5 years for a primary study publication to be included and published in a
new SR [40]. Further, within 2 years of the publication of SRs, 23% are out of date because

they have not incorporated new evidence that might change the SR’s primary results [101]

We believe that NLP can help organize EBM by facilitating the completion of SRs,
and subsequently help physicians provide more adequate care to their patients. When re-
searchers search for previous literature, for example, they often skim through abstracts in
order to quickly check whether the papers match the criteria of interest. This process is
easier when abstracts are structured, i.e., the text in an abstract is divided into semantic
headings such as objective, method, result, and conclusion. However, a significant portion
of published paper abstracts is unstructured, which makes it more difficult to quickly ac-

cess the information of interest. Consequently, classifying each sentence of an abstract to

17
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Figure 1-3: Number of RCTs published per year. It is estimated that around 50% of published RCTs are not
in MEDLINE [80].

an appropriate heading can significantly reduce time to locate the desired information, as
illustrated in Table 1-4. Besides assisting humans, this task may also be useful for a variety
of downstream applications such as automatic text summarization, information extraction,

and information retrieval.

1.2 Contributions

Inspired by the performance of artificial neural network-based (ANN) systems for non-
sequential short-text classification, we introduce several models based on recurrent neural
networks (RNNs) and convolutional neural networks (CNNs) for short-text classification.
We evaluate them on the sentence classification task in medical research articles, which we
introduced in the previous section, and on the dialog act classification task, which we will
introduce in Chapter 2.

Short-text classification is an important task in many areas of NLP, including sentiment

18



Achilles tendinopathy (AT) is a common and difficult to treat musculoskeletal disorder. The
purpose of this study is to examine whether 1 injection of platelet-rich plasma (PRP) would
improve outcomes more effectively than placebo (saline) after 3 months when used to treat
AT. A total of 24 male patients with chronic AT (median disease duration, 33 months) were
randomized (1:1) to receive either a blinded injection of PRP (n = 12) or saline (n = 12). Pa-
tients were informed that they could drop out after 3 months if they were dissatisfied with the
treatment. After 3 months, all patients were reassessed (no dropouts). No difference between
the PRP and the saline group could be observed with regard to the primary outcome (VISA-A
score: mean difference [MD], -1.3; 95% CI, -17.8 to 15.2; P = .868). Secondary outcomes
were pain at rest (MD, 1.6; 95% CI, -0.5 to 3.7; P = .137), pain while walking (MD, 0.8;
95% CI, -1.8 to 3.3; P = .544), pain when tendon was squeezed (MD, 0.3; 95% CI, -0.2 to
0.9; P = .208). PRP injection did not result in an improved VISA-A score over a 3-month
period compared with placebo. The only secondary outcome demonstrating a statistically
significant difference between the groups was change in tendon thickness; this difference
indicates that a PRP injection could increase tendon thickness compared with saline injection.
The conclusions are limited to the 3 months after treatment owing to the large dropout rate.

Figure 1-4: Example of abstract with the method section highlighted. Abstracts in the medical field can be
long. This abstract was taken from [68] and several sentences have been removed for the sake of conciseness.
Providing clinical researchers and practitioners a tool that would allow them to highlight the section(s) that
they are interested in would help them to explore the literature more efficiently.

analysis, question answering, or dialog management. Many different approaches have been
developed for short-text classification, based on machine learning methods such as logistic
regression [44], support Vector machines (SVMs) [103], naive Bayes [117], or random
forests [11]. Several recent studies using ANNs have shown promising results, including
convolutional neural networks [66, 10, 61] and recursive neural networks [105].

Existing ANN systems classify short texts in isolation, i.e., without considering preced-
ing or succeeding short texts. However, short texts often appear in sequence (e.g., sentences
in a document or utterances in a dialog), and therefore using information from preceding or
succeeding short texts may improve the classification accuracy. Previous works on sequen-
tial short-text classification are based on non-ANN approaches, such as Hidden Markov

Models (HMMs) [94, 107], maximum entropy [3], naive Bayes [76], and CRF.

The contributions of this thesis are threefold:
e We propose two ANN architectures for sequential short-text classification, which we

evaluate on medical and conversational datasets. The first architecture performs for-

19



1.3

ward sequential short-text classification, i.e., it classifies the current short-text based
on the current short-text as well as the preceding short-texts. The second architecture
performs bidirectional sequential short-text classification, i.e., it classifies the current
short-text based on the current short-text as well as the preceding short texts and the
succeeding short texts. This work was published at NAACL 2016 [72] and EACL
2017 [31].

We explore a hyperparameter optimization strategy for ANN based on Gaussian Pro-
cesses. This work was published at IEEE SLT 2016 [28].

We introduce PubMed 20k RCT, a new dataset for sequential sentence classification

in medical abstracts. This work is under submission [33].

Organization

The rest of this thesis is organized as follows:

Chapter 2 presents our work on forward sequential short-text classification.

Chapter 3 presents our work on bidirectional sequential short-text classification and
introduces a new data set, PubMed 20k RCT.

Chapter 4 presents our work on ANN hyperparameter optimization.

Chapter 5 draws conclusions from the work and discusses fruitful avenues for further

research.

20



Chapter 2

Forward Sequential Short-Text

Classification

As we mentioned in the introduction, recent approaches based on artificial neural networks
(ANNSs) have shown promising results for short-text classification. However, many short
texts occur in sequences (e.g., sentences in a document or utterances in a dialog), and most
existing ANN-based systems do not leverage the preceding short texts when classifying a
subsequent one. In this chapter, we present a model based on recurrent neural networks and
convolutional neural networks that incorporates the preceding short texts. We call this task
forward sequential short-text classification. Our model outperforms state-of-the-art results

on three datasets for dialog act prediction.

A dialog act characterizes an utterance in a dialog based on a combination of pragmatic,
semantic, and syntactic criteria. Its accurate detection is useful for a range of applications,
from speech recognition to automatic summarization [107]. Previous works on sequential
short-text classification are mostly based on non-ANN approaches, such as Hidden Markov
Models (HMMs) [94, 107, 109], maximum entropy [3], naive Bayes [76], and conditional
random fields (CRFs) [64, 93].
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Figure 2-1: RNN architectures for generating the vector representation s of a short text x;.;.
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Figure 2-2: CNN architectures for generating the vector representation s of a short text x;.,. Conv refers to
convolution operations, and the filter height i = 3 is used in this figure.

2.1 Model

Our model comprises two parts. The first part generates a vector representation for each
short text using either the RNN or CNN architecture, as discussed in Section 2.1.1 and
Figure 2-1 as well as Figure 2-2. The second part classifies the current short text based on
the vector representations of the current as well as a few preceding short texts, as presented

in Section 4.2.1 and Figure 2-3.

We denote scalars with italic lowercase symbols (e.g., k, by), vectors with bold lower-
case symbols (e.g., s, X;), and matrices with italic uppercase symbols (e.g., Wr). We use

the colon notation v;.; to denote the sequence of vectors (v;, Vit1,...,Vv;). We will use
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Figure 2-3: Four instances of the two-layer feedforward ANN used for predicting the probability distribution
over the classes z; for the it short-text X,;. S2V stands for short text to vector, which is the RNN/CNN
architecture that generates s; from X,;. From left to right, the history sizes (di, dz) are (0,0),(2,0), (0,2)
and (1,1). (0,0) corresponds to the non-sequential classification case.

these notations in the rest of the thesis.

2.1.1 Short-text representation

A given short text of length ¢ is represented as the sequence of m-dimensional word vectors
x1.¢, which is used by the RNN or CNN model to produce the n-dimensional short-text

representation S.

RNN-based short-text representation

We use a variant of RNN called Long Short Term Memory (LSTM) [52]. For the t*" word
in the short-text, an LSTM takes as input x;, h; 1, c;_; and produces h;, c; based on the

following formulas:

i, = o(Wix; + Uihy_1 + by)

f, = oc(Wsx, + Ushy_1 + by)
¢; = tanh(W.x; + U.hy 1 + b,)
;=5 Oc_1+1;Oc¢

o; = oc(Wox; + Ushy—1 + b,)

h;, = o; ® tanh(c,)

where W; € R™™ U; € R"™" are weight matrices and b; € R" are bias vectors,

for j € {i, f,c,0}. The symbols o(-) and tanh(-) refer to the element-wise sigmoid and
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hyperbolic tangent functions, and © is the element-wise multiplication. hyg = ¢y = 0.

In the pooling layer, the sequence of vectors hy., output from the RNN layer are com-
bined into a single vector s € R" that represents the short-text, using one of the following
mechanisms: last, mean, and max pooling. Last pooling takes the last vector, i.e., s = hy,
mean pooling averages all vectors, i.e., s = % Zle h,, and max pooling takes the element-

wise maximum of h;.,.

CNN-based short-text representation

Using a filter W; € R"™™ of height h, a convolution operation on h consecutive word

vectors starting from ¢ word outputs the scalar feature

Cy — ReLU(Wf L] Xt;tJrh,l + bf)

where X451 € R"™™ is the matrix whose i*" row is x; € R™, and by € R is a bias. The
symbol e refers to the dot product and ReLU(+) is the element-wise rectified linear unit
function.

We perform convolution operations with n different filters, and denote the resulting
features as c; € R", each of whose dimensions comes from a distinct filter. Repeating the
convolution operations for each window of i consecutive words in the short-text, we obtain
C1.0—n+1- The short-text representation s € R™ is computed in the max pooling layer, as the
element-wise maximum of ¢y, 1. (We tried using mean-pooling instead of max-pooling,

but it yielded lower performance).

2.1.2 Sequential short-text classification

Let s; be the n-dimensional short-text representation given by the RNN or CNN architec-
ture for the i'" short text in the sequence. The sequence Si—dy—d, i 15 fed into a two-layer
feedforward ANN that predicts the class for the i*" short text. The hyperparameters d;, ds
are the history sizes used in the first and second layers, respectively.

The first layer takes as input s;_4, 4, .; and outputs the sequence y;_g4, .; defined as

24



d1
Y = tanh <Z W_q4 Sj—d+ bl) , VJ S [’L — dg, Z]

d=0

where Wy, W_1, W_,, € RF*" are the weight matrices, b; € RF is the bias vector, y; € R”
is the class representation, and k is the number of classes for the classification task.
Similarly, the second layer takes as input the sequence of class representations y;_4,.;

and outputs z; € R*:

do
z; = softmax (Z U_jyij+ b2>

J=0

where Uy, U_1,U_4, € R¥* and b, € R* are the weight matrices and bias vector.
The final output z; represents the probability distribution over the set of £ classes for
the i*" short-text: the j** element of z; corresponds to the probability that the i** short-text

belongs to the j" class.

2.2 Datasets and Experimental Setup

2.2.1 Datasets

We evaluate our model on the dialog act classification task using the following datasets:

e DSTC 4: Dialog State Tracking Challenge 4 [62, 63].

e MRDA: ICSI Meeting Recorder Dialog Act Corpus [55, 102]. The 5 classes are intro-
duced in [3].

e SwDA: Switchboard Dialog Act Corpus [60].

For MRDA, we use the train/validation/test splits provided with the datasets. For
DSTC 4 and SWDA, only the train/test splits are provided.! Table 2.1 presents statistics

on the datasets.

All train/validation/test splits can be found at https://github.com/Franck-Dernoncourt/
naacl2016

25


https://github.com/Franck-Dernoncourt/naacl2016
https://github.com/Franck-Dernoncourt/naacl2016

Dataset | |C

V| Train Validation |  Test

DSTC4 | 89 | 6k 24 (21k) 5 (5k) 6 (6k)

MRDA | 5 |12k | 51 (78k) 11 (16k) | 11 (15k)

SwDA | 43 | 20k | 1003 (193k) | 112 (23k) | 19 (5k)

Table 2.1: Overview of the datasets for dialogue act classification. |C] is the number of classes, |V| the
vocabulary size. For the train, validation and test sets, we indicate the number of dialogs (i.e., sequences)
followed by the number of utterances (i.e., short texts) in parenthesis.

2.2.2 Training

The model is trained to minimize the negative log-likelihood of predicting the correct dialog
acts of the utterances in the train set, using stochastic gradient descent with the Adadelta
update rule [123]. At each gradient descent step, weight matrices, bias vectors, and word
vectors are updated. For regularization, dropout is applied after the pooling layer, and early

stopping is used on the validation set with a patience of 10 epochs.

2.3 Results and Discussion

To find effective hyperparameters, we varied one hyperparameter at a time while keeping

the other ones fixed. Table 2.2 presents our hyperparameter choices.

Hyperparameter Choice | Experiment Range
LSTM output dim. (n) 100 50 - 1000
LSTM pooling max max, mean, last
LSTM direction unidir. unidir., bidir.
CNN num. of filters (n) 500 50 — 1000
CNN filter height (h) 3 1-10
Dropout rate 0.5 0-1

Word vector dim. (m) 200, 300 25 -300

Table 2.2: Experiment ranges and choices of hyperparameters. Unidir refers to the regular RNNs presented
in Section 2.1.1, and bidir refers to bidirectional RNNs introduced in [100].
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do LSTM
dy 0 1 2
0 | 63.1(62.4,63.6) 657 (65.6,657) 64.7 (63.9,65.3)
DSTC4 1 65.8 (65.5,66.1)  65.7 (65.3,66.1) 64.8 (64.6,65.1)
2 | 657 (65.0,662) 655 (64.4,66.1) 649 (64.6,65.2)
0 82.8 (82.4,83.1) 832 (82.9,83.4) 829 (82.4,83.4)
MRDA 1 83.2 (82.6,83.7) 83.8 (83.5,84.4) 83.6 (83.2,83.8)
2 | 84.1 (83.5,84.4) 839 (83.4,84.7) 83.3 (82.6,84.2)
0 | 663 (65.1,68.0) 67.9 (66.3,68.6) 67.8 (66.7,69.0)
SwDA 1 68.4 (67.8,68.8) 67.8 (65.5,68.9) 67.3 (65.5,69.5)
2 | 69.5 (68.9,70.2) 67.9 (66.5,69.4) 67.7 (66.9, 68.9)

Table 2.3: Accuracy (%) on different architectures and history sizes d;,ds. For each setting, we report
average (minimum, maximum) computed on 5 runs. Sequential classification (d; + d2 > 0) outperforms
non-sequential classification (d; = d2 = 0). We also tried gated recurrent units (GRUs) [15] and the basic
RNN, but the results were generally lower than LSTM. The numbers reported in bold correspond to the
largest values for each dataset.

We initialized the word vectors with the 300-dimensional word vectors pretrained with
word2vec on Google News [83, 86] for DSTC 4, and the 200-dimensional word vectors
pretrained with GloVe on Twitter [91] for MRDA and SwDA, as these choices yielded the
best results among all publicly available word2vec, GloVe, SENNA [17, 18] and RNNLM [85]

word vectors.

The effects of the history sizes d; and d, for the short-text and the class representations,
respectively, are presented in Tables 2.3 and 2.4 for both the LSTM and CNN models. In
both models, increasing d; while keeping d; = 0 improved their performance by 1.3-4.2
percentage points. Conversely, increasing ds while keeping d; = 0 yielded better results,
but the performance increase was less pronounced: incorporating sequential information at

the short-text representation level was more effective than at the class representation level.

Using sequential information at both the short-text representation level and the class
representation level does not help in most cases and may even lower performance. We
hypothesize that short-text representations contain richer and more general information
than class representations due to their larger dimension. Class representations may not
convey any additional information over short-text representations, and are more likely to

propagate errors from previous misclassifications.

Table 2.5 compares our results with the state-of-the-art. Overall, our model shows

competitive results, while requiring no human-engineered features. Rigorous comparisons
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CNN
di 0 1 2

U
N

0 | 64.1 (63.5,652) 654 (64.7,66.6) 65.1 (63.2,65.9)
DSTC4 1 65.3 (64.1,65.9)  65.1 (62.1,66.2) 64.9 (64.4,65.6)
2 | 65.7 (64.9,66.3) 658 (65.2,66.1) 654 (64.5,66.0)
0 83.2 (83.0,83.4) 83.5 (82.9,84.0) 83.8 (83.4,84.2)
MRDA 1 84.6 (84.5,84.9) 84.6 (84.4,84.8) 84.1 (83.8,84.4)
2 84.4 (84.1,84.8) 84.6 (84.5,847) 84.4 (84.2,84.7)
0 | 67.0(653,687) 69.1 (68.5,70.0) 69.7 (69.2,70.9)
SwDA 1 69.9 (69.1,70.9)  69.8 (69.3,70.6) 69.9 (68.8,70.6)
2 | 714 (704,73.1) 71.1 (70.2,72.1)  70.9 (69.7,71.7)

Table 2.4: Accuracy (%) on different architectures and history sizes dy,ds. For each setting, we report
average (minimum, maximum) computed on 5 runs. Sequential classification (dy + ds > 0) outperforms
non-sequential classification (d; = d2 = 0). The numbers reported in bold correspond to the largest values
for each dataset.

are challenging to draw, as many important details such as text preprocessing and train/-
valid/test split may vary, and many studies fail to perform several runs despite the random-

ness in some parts of the training process, such as weight initialization.

Model DSTC4 | MRDA | SwDA
CNN 65.5 84.6 73.1
LSTM 66.2 84.3 69.6
Majority class 25.8 59.1 33.7
SVM 57.0 - -
Graphical model - 81.3 -
Naive Bayes - 82.0 -
HMM - - 71.0
Memory-based Learning - - 72.3

Table 2.5: Accuracy (%) of our models and other methods from the literature. The majority class model
predicts the most frequent class. SVM: [29]. Graphical model: [56]. Naive Bayes: [76]. HMM: [107].
Memory-based Learning: [96]. All five models use features derived from transcribed words, as well as
previous predicted dialog acts except for Naive Bayes. For SwWDA, the Cohen’s kappa coefficient for the
interlabeler agreement is 0.84. The interlabeler agreement could not be obtained for MRDA, and DSTC 4
was labeled by a single annotator. For the CNN and LSTM models, the presented results are the test set
accuracy of the run with the highest accuracy on the validation set. The numbers reported in bold correspond
to the largest values for each dataset.
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2.4 Conclusion

In this chapter we have presented an ANN-based approach to sequential short-text classi-
fication. We demonstrate that adding sequential information improves the quality of the
predictions, and the performance depends on what sequential information is used in the
model. Our model achieves state-of-the-art results on three different datasets for dialog act

prediction.
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Chapter 3

Bidirectional Sequential Short-Text

Classification

In the previous chapter, we have explored new ANN-based models for forward sequential
short-text classification, i.e., ANN classifiers that use the preceding short texts. They have

two downsides:

e They purposedly do not use the succeeding short texts. This is convenient if the
application is real-time, such as a live dialogue, but in many cases the entire sequence
of short-texts can already be accessed when the classification starts.

e They classify one short texts at the time, in contrast to classifying all short texts of

the sequence at once, i.e., performing structured prediction.

In this chapter, we propose a model that remediates these two issues. Our model out-
performs the state-of-the-art results on two different datasets for the task of sequential
sentence classification in medical abstracts, which we have introduced and motivated in

the introduction of this thesis.

Our model makes use of both token and character embeddings for classifying sentences,
and has a sequence optimization layer that is learned jointly with other components of the
model. We evaluate our model on the NICTA-PIBOSO dataset as well as a new dataset we

compiled based on the PubMed database.

31



3.1 Related Work

Existing systems for sequential sentence classification are mostly based on naive Bayes [98,
53], support vector machine [81, 122, 51, 122], Hidden Markov models [77], and condi-
tional random fields (CRFs) [65, 48, 51]. They often require numerous hand-engineered
features based on lexical (bag-of-words, n-grams, dictionaries, cue words), semantic (syn-
onyms, hyponyms), structural (part-of-speech tags, headings), and sequential (sentence
position, surrounding features) information.

On the other hand, recent approaches to natural language processing (NLP) based on
artificial neural networks (ANNs) do not require manual features, as they are trained to
automatically learn features based on word as well as character embeddings. Moreover,
ANN-based models have achieved state-of-the-art results on various NLP tasks, including
the most relevant task of text classification [106, 66, 61, 124, 19, 121, 38]. For text clas-
sification, many ANN models use word embeddings [106, 66, 61, 43], and most recent
works are based on character embeddings [124, 19, 121]. Approaches combining word and
character embeddings have also been explored [38, 34].

However, most existing works using ANNSs for short-text classification do not use any
context. This is in contrast with sequential sentence classification, where each sentence
in a text is classified taking into account its context, i.e., the surrounding sentences and
possibly the whole text. One exception is our work on dialog act classification that we
introduced in the previous chapter, where each utterance in a dialog is classified into its
dialog act. However, only the preceding utterances were used, as the system was designed

with real-time applications in mind.

3.2 Model

3.2.1 ANN model

Our ANN model consists of three components: a hybrid token embedding layer, a sen-
tence label prediction layer, and a label sequence optimization layer. Figure 3-1 presents a

graphical overview of the model.
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Figure 3-1: ANN model for sequential sentence classification. x: token, t: token embeddings (300), z;: it
character of z, c;: character embeddings (25), c: character-based token embeddings (50), e;: hybrid token
embeddings (350), s: sentence vector (200), a;: sentence label vector (number of classes), y;: sentence label.
The numbers in parenthesis indicate the dimension of the vectors. Token embeddings are initialized with
GloVe [91] embeddings pretrained on Wikipedia and Gigaword 5 [89]. Replacing LSTMs with convolutional
neural networks did not improve the results: we therefore use LSTMs.
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Hybrid token embedding layer

The hybrid token embedding layer takes a token as an input and outputs its vector repre-
sentation utilizing both the token embeddings and as well as the character embeddings.

Token embeddings are a direct mapping Vr(-) from token to vector, which can be
pre-trained on large unlabeled datasets using programs such as word2vec [86, 83, 87] or
GloVe [91]. Character embeddings are also defined in an analogous manner, as a direct
mapping V¢ (+) from character to vector.

Let z1., be the sequence of characters that comprise a token x. Each character z; is
first mapped to its embedding c; = V¢ (z;), and the resulting sequence ¢y, is input to a

bidirectional LSTM, which outputs the character-based token embedding c.

The output e of the hybrid token embedding layer for the token x is the concatenation
of the character-based token embedding c and the token embedding t = Vr(z). Using

characters as input to the ANN has been explored by other works such as [67].

Sentence label prediction layer

Let 1., be the sequence of tokens in a given sentence, and ej.,, be the corresponding
embedding output from the hybrid token embedding layer. The sentence label prediction
layer takes as input the sequence of vectors e.,,, and outputs a, where the k" element of
a, denoted a[k|, reflects the probability that the given sentence has label k.

To achieve this, the sequence e.,, is first input to a bidirectional LSTM, which out-
puts the vector representation s of the given sentence. The vector s is subsequently input
to a feedforward neural network with one hidden layer, which outputs the corresponding

probability vector a.

Label sequence optimization layer

The label sequence optimization layer takes the sequence of probability vectors a;.,, from
the label prediction layer as input, and outputs a sequence of labels y;.,, where y; is the
label assigned to the token z;.

In order to model dependencies between subsequent labels, we incorporate a matrix 7’
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that contains the transition probabilities between two subsequent labels; we define T[i, j]
as the probability that a token with label 7 is followed by a token with the label j. The score
of a label sequence ., is defined as the sum of the probabilities of individual labels and

the transition probabilities:

n n

s(yrm) = > ailyi] + > Tlyi-1,vil-

i=1 i=2
These scores can be turned into probabilities of the label sequences by taking a softmax
function over all possible label sequences:

es(glin)

(Y1) = T e

es(y1n)
YLn€Y™
with Y being the set of all possible labels. During the training phase, the objective is to
maximize the log probability of the gold label sequence. In the testing phase, given an
input sequence of tokens, the corresponding sequence of predicted labels is chosen as the
one that maximizes the score.

Computing the denominator »_ y-» e*Win) can be done in O(n|C|?) time using dy-
namic programming (where |C| denotes the number of classes), as demonstrated below.
Let Ay, be the log of the sum of the scores of all the sequence of length n the last label
of which is y,,. Then:

def. s(y1:
Afngn) = log ( > e (y“‘))

yl:(nfl)eyn_l

= log Z es(yL(n1))+T(ynlvyn)+an(yn))

yl:('r1,7l)65/’n'71

= log Z ( Z 65(y1:(n1))) eT(ynhyn)J’_a’n(yn))
Y1:(

Yn—1€Y n,g)EY"72

— log Z eA(n—lyynfl) eT(ynfhyn)'Hln(yn)
Yn—1€Y

Since Ay, can be computed in O(|C|) time given { A¢,_1,, ,)|yn—1 € Y}, comput-

sYn—1
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Dataset Size Labels Manual | RCT | Available
[46] 200 PI y y email
[16] 327 IComp y y no
[12] 28631 | POIcomp n n no
[65] 1000 | PIBOSObj y n email
[54] 23472 PIO n n no
[95] 1356 Poe n y no
[125] 19893 | PIOSObj y n no
[20] 194 PICO n y public!
[53] 19854 PIO n y no
PubMed 20k RCT | 20000 | BObjSOC n y no

Table 3.1: Overview of existing datasets for sentence classification in medical abstracts. The size is expressed
in terms of number of abstracts. The “labels” column uses the following abbreviations: B: background; C:
conclusion; Comp: comparison; I: intervention; Icomp: intervention and comparison; O: outcome; Obj:
objective; P: population; Poe: patient-oriented outcome; S: study design (a.k.a. method) In the “manual”
column, “y” means that the dataset was manually annotated, “n” otherwise. In the RCT column, “y” means
that the dataset only contains RCTs, “n” otherwise. For [12], the size was inferred as follows: the paper
indicates that the training set contains 28631 abstracts and that it represents 90% of the data, which means

there are 25768/0.9 = 28631 abstracts in total.

13

ing {A(ny.)|yn € Y} takes O(|C|?) time given { A1, 1)|yn—1 € Y}. Consequently,
computing { A, ,.)|yn € Y} takes O(n|C|?) time.

3.3 PubMed 20k RCT

In this section, we present PubMed 20k RCT, a new dataset based on PubMed for sequential
sentence classification. The dataset consists of 20,000 abstracts of randomized controlled
trials (RCTs). Each sentence of each abstract is annotated with their role in the abstract
using one of the following classes: background, objectives, methods, results, or conclusion.
The dataset is freely available at https://github.com/Franck-Dernoncourt/
pubmed—-rct.

The purpose of releasing this dataset is two-fold. First, the majority of datasets for
sequential short-text classification are small: we hope that releasing a new large dataset
will help develop more accurate algorithms for that task. Second, from an application
perspective as we have mentioned before, clinical researchers and practitioners need better

tools to efficiently skim through the medical literature.
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3.3.1 Existing Datasets

Existing datasets for classifying sentences in medical abstracts are either small, not publicly
available, or do not focus on RCTs. Table 3.2 presents an overview of existing datasets.
The most studied dataset to our knowledge is the NICTA-PIBOSO corpus published
in [65]. This dataset was the basis of the ALTA 2012 Shared Task [2], in which 8 competing
research teams participated to build the most accurate classifier.
Only the dataset published in [20] is publicly available: half of the datasets can only
be obtained via email inquiries, and the other half are not accessible (unanswered email

requests or negative replies). The only public dataset is also the smallest one.

3.3.2 Dataset Construction
Abstract Selection

Our dataset is constructed upon the MEDLINE/PubMed Baseline Database published in
20162, which we will refer to as PubMed in this paper. PubMed is managed by the United
States National Library of Medicine (NLM) at the National Institutes of Health. It can
be accessed online by anyone, free of charge and without having to go through any reg-
istration. It contains 24,358,442 records. A record typically consists of metadata on one
article, as well as the article’s title and in many cases its abstract. Metadata information
may include the authors’ names, the authors’ affiliations, and more when available.

We use the following information from each PubMed record to build our dataset: the
article’s PubMed ID (PMID), the article’s abstract along with the abstract’s structure if
available, and the article’s Medical Subject Headings (MeSH) terms. MeSH is the NLM
controlled vocabulary thesaurus used for indexing articles for PubMed.

We select abstracts from PubMed based on the two following criteria:

e the abstract has to belong to an RCT. We rely on the article’s MeSH terms only to

select RCTs. Specifically, the MeSH term “D016449” corresponds to an RCT: if an

article does not have the MeSH term D016449, then its abstract is not included in our

ZnIm.nih.gov/databases/download/pubmed_medline.html
(mirror)
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dataset. 399,254 abstracts fit this criterion.
e the abstract has to be structured. In order to qualify as structured, it has to contain
between 3 and 9 sections (inclusive), and it should not contain any section labeled

(1324

as “None”, “Unassigned”, or “’ (empty string). Only 0.5% of abstracts have fewer
than 3 sections or more than 9 sections: we chose to discard these outliers. The
label of each section was originally given by the authors of the articles, typically
following the guidelines given by journals: as many labels exist, PubMed maps them
into a smaller set of standardized labels: background, objective, methods, results,

(1344

conclusions, “None”, “Unassigned”, or ‘”’ (empty string).

195,654 abstracts fit these two criteria, i.e., are both structured and belong to an RCT.
We choose 20k abstracts from them by taking the abstracts with the highest PMIDs, which
is a proxy for the publication date (in most cases, the higher the PMID, the more recently

published the article is).

Dataset Split

The dataset contains 20k abstracts and is randomly split into three sets: a training set
containing 15k abstracts, a validation set containing 2500 abstracts, a test set containing
2500 abstracts. We name this dataset PubMed 20k RCT, the prefix k meaning 1000, as
defined by the International System of Units [112].

Dataset Format

The dataset is provided as three text files: one file for the training set, one file for the vali-
dation set, and one file for the test set. Each file has the same format: each line corresponds
to either a PMID or a sentence with its capitalized label at the beginning. Each token is
separated by a space. Listing 3.1 shows an excerpt from these files.

For each abstract, sentence and token boundaries are detected using the Stanford CoreNLP

toolkit [79]. Digits were replaced by the character @ (at sign).
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OBJECTIVE: This study evaluated an eating disorder intervention multimedia program mod-
eled after self-help eating disorder treatment programs. It was hypothesized that women who
completed the program would increase their body satisfaction and decrease their preoccupa-
tion with weight and frequency of disordered eating behaviors.

METHOD: Participants were 57 undergraduate females randomly assigned to either the in-
tervention or control group. Psychological functioning was assessed at baseline, at 3 months
postintervention, and at 3 months follow-up.

RESULTS: Intervention group subjects significantly improved their scores on all psychologi-
cal measures over time. When compared to the control group, however, only the intervention
group’s improvements on the Body Shape Questionnaire were statistically significant.
DISCUSSION: This study has demonstrated that minimally effective eating disorder inter-
vention programs can be delivered. A revised program that eliminates interface problems
and increases the structure of the intervention is likely to be even better received and more
effective.

Figure 3-2: Example of structured RCT abstract, obtained from PubMed. This abstract was taken from [68]

###9813759

OBJECTIVE This study evaluated an eating disorder intervention [...]
OBJECTIVE It was hypothesized that women who completed the program [...]
METHODS Participants were @ undergraduate females randomly [...]
METHODS Psychological functioning was assessed at baseline , at [...]
RESULTS Intervention group subjects significantly improved their [...]
RESULTS When compared to the control group , however , only the [...]
CONCLUSIONS This study has demonstrated that minimally effective [...]

CONCLUSIONS A revised program that eliminates interface problems [...]

Listing 3.1: Example of one abstract as formatted in the PubMed 20k RCT dataset set. The PMID of the
corresponding article is 9813759; the article can be found that https://www.ncbi.nlm.nih.gov/
pubmed/9813759. Figure 3-2 presents the abstract as shown in PubMed.

3.3.3 Dataset Analysis

Figure 3-3 counts the number of sentences per label: the least common label (objective)
is approximately four times less frequent than the most common label (results), which
indicates that the dataset is not excessively unbalanced. Figure 3-4 shows the distribution

of the number of sentences per abstract. Figure 3-5 shows the distribution of the number of
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BACKGROUND

CONCLUSIONS
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RESULTS

METHODS
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Number of occurrences (total: 240387)

Figure 3-3: Number of sentences per label in PubMed 20k RCT

tokens the sentence.

3.4 Experiments

3.4.1 Datasets

We evaluate our model on the sentence classification task using the following two medical
abstract datasets, where each sentence of the abstract is annotated with one label. Table 3.2

presents statistics on each dataset.

NICTA-PIBOSO This dataset was introduced in [65] and was the basis of the ALTA
2012 Shared Task [2].

PubMed 20k RCT This corpus was introduced in the previous section. It is based on
the PubMed database of biomedical literature and uses 5 sentence labels: objectives, back-

ground, methods, results and conclusions
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Figure 3-4: Distribution of the number of tokens the sentence in PubMed 20k RCT. Minimum: 1; mean:
26.2; maximum: 338; variance: 227.6; skewness: 2.0; kurtosis: 8.7.

Dataset IC| | |V] Train Validation Test

NICTA-PIBOSO | 6 |17k | 722(8k) | 77 (0.9k) | 200 (2k)

PubMed 20k RCT | 5 | 68k | 15k (195k) | 2.5k (33k) | 2.5k (33k)

Table 3.2: Overview of the PubMed and the NICTA datasets for sentence classification. |C| denotes the
number of classes, |V| the vocabulary size. For the train, validation and test sets, we indicate the number of
abstracts followed by the number of sentences in parentheses.

3.4.2 Training

The model is trained using stochastic gradient descent, updating all parameters, i.e., to-
ken embeddings, character embeddings, parameters of bidirectional LSTMs, and transition
probabilities, at each gradient step. For regularization, dropout is applied to the character-
enhanced token embeddings before the label prediction layer. We selected the hyperpa-

rameters manually, though we could have used some hyperparameter optimization tech-
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Figure 3-5: Distribution of the number of sentences per abstract in PubMed 20k RCT. Minimum: 3; mean:
11.6; maximum: 51; variance: 9.5; skewness: 0.9; kurtosis: 2.6.

niques [8, 28].

3.5 Results and Discussion

The first baseline (LR) is a classifier based on logistic regression using n-gram features
extracted from the current sentence: it does not use any information from the surrounding
sentences. The baseline was implemented with scikit-learn [90].

The second baseline (Forward ANN) uses the model presented in [72]: it computes
sentence embeddings for each sentence, then classifies the current sentence given a few
preceding sentence embeddings as well as the current sentence embedding.

The third baseline (CRF) is a CRF that uses n-grams as features: each output variable
of the CRF corresponds to a label for a sentence, and the sequence the CRF considers is the

entire abstract. The CRF baseline therefore uses both preceding and succeeding sentences
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Model PubMed 20k | NICTA
LR 83.1 71.6
Forward ANN 86.1 75.1
CRF 89.5 81.2
Best published - 82.0
Our model 90.0 82.7

Table 3.3: Fl-scores on the test set with several baselines, the best published method [78] from the literature,
and our model. Since PubMed 20k RCT was introduced in this work, there is no previously published method
for this dataset. The presented results for the ANN-based models are the F1-scores on the test set of the run
with the highest F1-score on the validation set.

Model PubMed 20k | NICTA
Full model 89.9 82.7
- character emb 89.7 82.7
- pre-train 88.7 78.0
- token emb 88.9 77.0
- seq opt 85.0 72.8

3

Table 3.4: Ablation analysis. Fl-scores are reported. “- character emb” is our model using only token
embeddings, without character-based token embeddings. “- pre-train” is our model where token embeddings
are initialized with random values instead of pre-trained embeddings. “- token emb” is our model using only
character-based token embeddings, without token embeddings. “- seq opt” is our model without the label
sequence optimization layer. These numbers were averaged over 10 runs.

when classifying the current sentence. Lastly, the model presented in [78] developed a new
approach called feature stacking, which is a metalearner that combines multiple feature
sets, and is the best performing system on NICTA-PIBOSO published in the literature. The

baseline was implemented with CRFsuite [88].

Table 3.3 compares our model against several baselines as well as the best performing
model [78] in the ALTA 2012 Shared Task, in which 8 competing research teams partici-
pated to build the most accurate classifier for the NICTA-PIBOSO corpus.

The LR system performs honorably on PubMed 20k RCT (F1-score: 83.1), but quite
poorly on NICTA-PIBOSO (F1-score: 71.6): this suggests that using the surrounding sen-
tences may be more important in NICTA-PIBOSO than in PubMed 20k RCT.

The Forward ANN system performs better than the LR system, and worse than the
CREF: this is expected, as the Forward ANN system only uses the information from the

preceding sentences but do not use any information from the succeeding sentences, unlike

the CRF.
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Figure 3-6: Transition matrix learned on PubMed 20k RCT. The rows represent the label of the previous
sentence, the columns represent the label of the current sentence.

Sentence Predicted Actual
This study investigated whether oxytocin can affect attentional bias in social anxiety. | Background | Methods
The biological mechanisms by which oxytocin may be exerting these effects are [...] | Conclusions | Results
Leuprolide pharmacokinetics were characterized for 11.25 and 30 mg 3-month [...] | Conclusions | Results
While, 6%HES 130/0.4 (free flex 6%HES 130/0.4, Fresenius Kabi) infusion was [...] Results Methods
Arterial and central venous blood gas analyses were performed every 20 minutes [...] Results Methods
Cytokine responses accompanying [...] immunotherapy [...] have not previously [...] | Background | Objectives

Table 3.5: Examples of prediction errors of our model on PubMed 20k RCT. The “predicted” column indi-
cates the label predicted by our model for a given sentence. Our model takes into account all the sentences
present in the abstract in which the classified sentence appears. The “actual” column indicates the gold label
of the sentence.

Our model performs better than the CRF system and the system from [78]. We hypoth-

esize that the following four factors give an edge to our model:

No human-engineered features: Unlike most other systems, our model does not rely on
any human-engineered features.

No n-grams: While other systems heavily relies on n-grams, our model maps each token
to a token embedding, and feeds it as an input to an RNN. This helps combat data scarcity,
as for example “chronic tendonitis” and “chronic tendinitis” are two different bigrams, but
share the same meaning, and their token embeddings should therefore be very similar.
Structured prediction: The labels for all sentences in an abstract are predicted jointly,

which improves the coherency between the predicted labels in a given abstract. The abla-
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PubMed 20k RCT
Precision Recall Fl-score Support
Background 71.8 88.2 79.1 3621
Conclusion 93.5 92.9 93.2 4571
Methods 93.7 96.2 94.9 9897
Objectives 78.2 48.1 59.6 2333
Results 94.8 93.1 93.9 9713
Total 90.1 89.9 90.0 30135

Table 3.6: Results for each class obtained by our model on PubMed 20k RCT.

Backg. | Concl. | Methods | Obj. | Res.
Background | 3193 28 116 277 7
Conclusions | 55 4248 7 0 261
Methods 78 36 9523 35 | 225
Objectives 1112 1 95 1122 3
Results 11 232 426 1 19043

Table 3.7: Confusion matrix on PubMed 20k RCT obtained with our model. Rows correspond to actual la-
bels, and columns correspond to predicted the labels. For example, 116 background sentences were predicted
as method.

tion analysis presented in Table 3.4 shows that the sequence optimization layer is the most
important component of the ANN model.
Joint learning: Our model learned the features and token embeddings jointly with the

sequence optimization.

The sequence information is mostly contained in the transition matrix. Figure 3-6
presents an example of transition matrix after the model has been trained on PubMed 20k
RCT. We can see that it effectively reflects transitions between different labels. For exam-
ple, it learned that the first sentence of an abstract is most likely to be either discussing
objective (0.23) or background (0.26). By the same token, a sentence pertaining to the
methods is typically followed by a sentence pertaining to the methods (0.25) or the results
(0.17).

Tables 3.6 and 3.7 detail the result of our model for each label in PubMed 20k RCT.
The main difficulty the classifier has is distinguishing background sentences from objec-
tive sentences. In particular, a third of the objective sentences are incorrectly classified as

background, which causes the recall for objectives and the precision for background to be
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low. The classifier has also some difficulty in distinguishing method sentences from result
sentences.

Table 3.5 presents a few examples of prediction errors. Our error analysis suggests that
a fair number of sentence labels are debatable. For example, the sentence “We conducted a
randomized study comparing strategies X and Y.” belongs to the background according to

the gold target, but most humans would classify it as an objective.

We performed two additional experiments with our model on PubMed 20k RCT: shuf-

fling the sequences, and removing any content present in parentheses.

e In the first experiment, shuffling the sequences, within each abstract we shuffle all
sentences. The point of the experiments is to assess to what extent the model relies
on the sequential information to make its predictions. In that setting, our model
achieves an F1-score of 84.0, which is significantly lower than the F1-score of our
model when the sentences are not shuffled (90.0). This indicates that our model
efficiently leverages sentence order.

e In the second experiment, we removed any content present in parentheses. For exam-
ple, if the sentence is “all patients were reassessed (no dropouts) and no difference
between the PRP and the saline group could be observed.”, then it is transformed
into “all patients were reassessed no difference between the PRP and the saline group
could be observed.”. The motivation behind this experiment is to quantify the use-
fulness of the content in parentheses. In that setting, our model achieves an F1-score
of 89.9 which is slightly lower the F1-score when the content in parentheses is kept

(90.0).
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3.6 Conclusions

In this chapter we have presented an ANN architecture to classify sentences that appear in
sequence. We demonstrate that jointly predicting the classes of all sentences in a given text
improves the quality of the predictions. Our model outperforms the state-of-the-art results
on two datasets for sentence classification in medical abstracts.

We have also introduced PubMed 20k RCT, a dataset for sequential sentence classifi-
cation. We hope that the release of this dataset will help the development of algorithms for
sequential sentence classification and increase the interest of the text mining community in

the study of RCTs.
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Chapter 4

Neural Network Hyperparameter

Optimization

Systems based on artificial neural networks (ANNs) have achieved state-of-the-art results
in many natural language processing tasks. Although ANNs do not require manually engi-
neered features, ANNs have many hyperparameters to be optimized. The choice of hyper-
parameters significantly impacts models’ performance. However, the ANN hyperparame-
ters are typically chosen by manual, grid, or random search, which either requires expert
experience or is computationally expensive. Recent approaches based on Bayesian opti-
mization using Gaussian processes (GPs) is a more systematic way to automatically pin-
point optimal or near-optimal machine learning hyperparameters. Using the ANN model
presented in Chapter 2, which yields state-of-the-art results for dialog act classification, we
demonstrate that optimizing hyperparameters using GP further improves the results, and
reduces the computational time by a factor of 4 compared to a random search. Therefore
it is a useful technique for tuning ANN models to yield the best performance for natural

language processing tasks.
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4.1 Introduction and related work

Artificial neural networks (ANNs) have recently shown state-of-the-art results on various
NLP tasks including language modeling [84], named entity recognition [18, 70, 69], text
classification [106, 66, 10, 72], question answering [118, 116], and machine translation [4,
111]. Unlike other popular non-ANN-based machine learning algorithms such as support
vector machines (SVMs) and conditional random fields (CRFs), ANNs can automatically
learn features that are useful for NLP tasks, thereby requiring no manually engineered

features.

However, ANNs have hyperparameters that need to be tuned in order to achieve the best
results. The hyperparameters of an ANN model may define either its learning process (e.g.,
learning rate or mini-batch size) or its architecture (e.g., number of hidden units or layers).
ANNs commonly contain over ten hyperparameters [7], which makes it challenging to op-
timize. Therefore, most published ANN-based works on NLP tasks rely on basic heuristics

such as manual or random search, and sometimes do not even optimize hyperparameters.

Although most of them report state-of-the-art results without optimizing hyperparame-
ters extensively, we argue that the results can be further improved by properly optimizing
the hyperparameters. Despite this, one of the main reasons why most previous NLP works
do not thoroughly optimize hyperparameters is that it may represent a significant time in-
vestment. However, if we optimize them “efficiently”, we can find hyperparameters that

perform well within a reasonable amount of time, as shown in this chapter.

Like ANNs, other machine learning algorithms also have hyperparameters. The two
most widely used methods for hyperparameter optimization of machine learning algorithms
are manual or grid search [9]. Bergstra and Yoshua [9] show that random search is as good
or better than grid search at finding hyperparameters within a small fraction of computation
time and suggest that random search is a natural baseline for judging the performance of
automatic approaches for tuning the hyperparameters of a learning algorithm. However,
all above-mentioned methods for tuning hyperparameters have some downsides. Manual
search requires human experts or uses arbitrary rules of thumb, while grid and random

searches are computationally expensive [104].
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Recently, a more systematic approach based on Bayesian optimization with Gaussian
process (GP) [119] has been shown to be effective in automatically tuning the hyperparam-
eters of machine learning algorithms, such as latent Dirichlet allocation, SVMs, convolu-
tional neural networks [104], and deep belief networks [8], as well as tuning the hyper-
parameters that features may have [37, 27]. In this approach, the model’s performance for
each hyperparameter combination is modeled as a sample from a GP, resulting in a tractable
posterior distribution given previous experiments. Therefore, this posterior distribution is

used to find the optimal hyperparameter combination to try next based on the observation.
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Figure 4-1: The ANN model. A sequence of words w., corresponding to the i** utterance is transformed
into a vector u; using a CNN, consisting of a convolution layer (conv) and a max pooling layer (max pool).
Each utterance is then classified by a two-layer feedforward (ff) network with tanh and softmax activation
functions. The hyperparmeters that we optimize are circled: filter size i, number of filters n, dropout rate p,
history sizes di,ds. In the figure, h = 3, n = 4, p = 0.5, d; = 3, do = 2. The grey rows (u_1, ug, yo)
represent zero paddings.

In this work, we demonstrate the application of Gaussian Process (GP) to optimize
ANN hyperparameters on an NLP task, namely dialog act classification [107], whose goal
is to assign a dialog act to each utterance. The ANN model in [72] makes a good candidate
for hyperparameter optimization since it is a simple model with a few architectural hyper-
parameters, and the optimized architectural hyperparameters are interpetable and give some
insights for the task at hand. Using this model, we show that optimizing hyperparameters
further improves the state-of-the-art results on two datasets, and reduces the computational

time by a factor of 4 compared to a random search.
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4.2 Methods

The ANN model for dialog act classification was introduced in Chapter 2 and is briefly
repeated in Section 4.2.1. The GP used to optimize the hyperparameters of the ANN model

is presented in Section 4.2.2.

4.2.1 ANN model

Each utterance of a dialog is mapped to a vector representation via a CNN (Section 4.2.1).
Each utterance is then sequentially classified by leveraging preceding utterances (Sec-

tion 4.2.1). Figure 4-1 gives an overview of the ANN model.

Utterance representation via CNN

An utterance of length /¢ is represented as the sequence of word vectors wy., € R™. Given
the word vectors, the CNN model produces the utterance representation u € R".

Let h be the size of a filter, and the sequence of vectors vy.;, € R™ be the corresponding
filter matrix. A convolution operation on h consecutive word vectors starting from the ¢
word outputs the scalar feature ¢, = tanh <Z?:1 VI Wipio1 + bf> , where by € R is a bias
term.

We perform convolution operations with n different filters, and denote the resulting
features as ¢, € R", each of whose dimensions comes from a distinct filter. Repeating the
convolution operations for each window of h consecutive words in the utterance, we obtain
c1..—n+1.- The utterance representation u € R” is computed in the max pooling layer, as the
element-wise maximum of ¢y.,_p,11. During training, dropout with probability p is applied
on this utterance representation u.

The filter size h, the number of filters n, and a dropout probability p are the hyperpa-

rameters of this section that we optimize using the GP (Section 4.2.2).

Sequential utterance classification

Let u; € R" be the utterance representation given by the CNN architecture for the i‘"

utterance in the sequence of length r. The sequence u; ., is input to a two-layer feedforward
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neural network that classifies each utterance. The hyperparameters d;, do, the history sizes
used in the first and second layers respectively, are optimized using the GP (Section 4.2.2).

The first layer takes as input u;_4,;1.; and outputs y; € R*, where k is the number of
classes for the classification task, i.e. the number of dialog acts. It uses a tanh activation
function. Similarly, the second layer takes as input y;_4,11.; and outputs z; € R* with a
softmax activation function.

The final output z; represents the probability distribution over the set of £ classes for
the 7' utterance: the j'* element of z; corresponds to the probability that the i** utterance

belongs to the j'* class. Each utterance is assigned to the class with the highest probability.

4.2.2 Hyperparameter optimization using GP

Let X be the set of all hyperparameter combinations considered, and let f : X — R
be the function mapping from hyperparameter combinations to a real-valued performance
metric (such as Fl-score on test set) of a learning algorithm using the given hyperparameter
combination. Our interest lies in efficiently finding a hyperparameter combination x € X
that yields a near-optimal performance f(x). In this chapter, we use Bayesian optimization

of hyperparameters using GP, which we call GP search.

Comparison with other methods

A grid search is brute-forcefully evaluating f(x) for each x € X’ defined on a grid and then
selecting the best one. In a random search, one randomly selects an x € X and evaluates
the performance f(x); this process is repeated until an x with a satisfactory f(x) is found.
In a manual search, an expert tries out some hyperparameter combinations based on prior
experience until settling on a good one.

In contrast with the other methods mentioned above, a GP search chooses the hyper-
parameter combination to evaluate next by exploiting all previous evaluations. To achieve
this, we assume the prior distribution on the function f to be a Gaussian process, which
allows us to construct a probabilistic model for f using all previous evaluations, by calcu-

lating the posterior distribution in a tractable manner. Once the model for f is computed, it
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is used to choose an optimal hyperparameter combination to evaluate next.

GP search

In a GP search, we use a GP to describe a distribution over functions. A GP is defined
as a collection of random variables, any finite number of which have a joint Gaussian
distribution. A GP f(x) is completely specified by its mean function m(x) and covariance

function k(x,x’), also called kernel, defined as:

In our case f(x) is the Fl-score on the test set evaluated for the ANN model using the
given hyperparameter combination x € &', which is a 5-dimensional vector consisting of

filter size h, number of filters n, dropout rate p, and history sizes d;, ds.

Let X = (x1,...,%y), £ = (f(x1) ..., f(x)) and X* = (%441, ..., Xs), £ = (f(Xg41) - -

be the training inputs and outputs, and test inputs and outputs, respectively. X U X* = X,
and X N X* = (). Note that f is known, and f* is unknown. The goal is to find the distribu-
tion of £* given X*, X and f, in order to select among X * the hyperparameter combination

that is the most likely to yield the highest F1-score.

The joint distribution of f and f* according to the prior is

f N m K(X,X) K(X, X%
f* m*| | K(X*,X) K(X*,X%)
where m , m* is a vector of the means evaluated at all training and test points respectively,

and K (X, X*) denotes the ¢ X ¢* matrix of the covariances evaluated at all pairs of training

and test points, and similarly for K(X, X), K(X*, X) and K(X*, X*).

Conditioning the joint Gaussian prior on the observations yields f*| X*, X, f ~ A (u,X)

where
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p=m"—K(X* X)K(X,X) }(f —m), 4.1

3= K(X*, X*) - K(X*, X)K(X,X) 'K(X,X").

The choice of the kernel k(x,x’) impacts predictions. We investigate 4 different ker-

nels:
Linear: k(x,x") = x'x/

Cubic: k(x,x') =3 ((XTX/)Q +2 (xTx’)3)

Absolute exponential: k(x, x') = e*~¥

—0.5|x—x'|?

Squared exponential: k(x,x') = e

To initialize the GP search, one needs to compute the F1-score for a certain number of
randomly chosen hyperparameter combinations 7: we investigate what the optimal number
is. We then iterate over the following two steps until a specified maximum number of
iterations ¢ is reached. First, we find the hyperparameter combination in the test set with
the highest F1-score predicted by the GP. Second, we compute the actual F1-score, and

move it to the training set. This process is outlined in Algorithm 1.

4.3 Experiments

4.3.1 Datasets

We evaluate the random and GP searches on the dialog act classification task using the
Dialog State Tracking Challenge 4 (DSTC 4) [62, 63], ICSI Meeting Recorder Dialog Act
(MRDA) [55, 102], and Switchboard Dialog Act (SWDA) [60] datasets. DSTC 4, MRDA,
and SwDA respectively contain 32k, 109k, and 221k utterances, which are labeled with 89,
5, and 43 different dialog acts (we used the 5 coarse-grained dialog acts introduced in [3]
for MRDA). The train/test splits are provided along with the datasets, and the validation set

was chosen randomly except for MRDA, which specifies a validation set.!

ISee https://github.com/Franck-Dernoncourt/slt2016 for the train, validation, and test
splits.
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Algorithm 1 GP search algorithm

function GP-REGRESSION(X™, X, f)
compute p according to (4.1)
return g

end function

function GP-SEARCH(X = {xy,...,x,}, f(*), 7, 1)

X « (0)
X*%<X1,...,Xs>
fori=1,...,rdo

randomly choose x € X*
remove X from X*
addx to X and f(x)to f
end for
fori=r+1,...,tdo
p < GP-REGRESSION(X™, X, f)
J arg max i, X < X|[j”]
J=1,...|pl
remove X from X*

add x to X and f(x) to f
end for
return arg max, .y f(x)
end function

4.3.2 Training

For a given hyperparameter combination, the ANN is trained to minimize the negative
log-likelihood of assigning the correct dialog acts to the utterances in the training set, us-
ing stochastic gradient descent with the Adadelta update rule [123]. At each gradient de-
scent step, weight matrices, bias vectors, and word vectors are updated. For regularization,
dropout is applied after the pooling layer, and early stopping is used on the validation set
with a patience of 10 epochs. We initialize the word vectors with the 300-dimensional
word vectors pretrained with word2vec on Google News [83, 86] for DSTC 4, and the

200-dimensional word vectors pretrained with GloVe on Twitter [91] for SWDA.

4.3.3 Hyperparameters

For each hyperparameter combination, the reported F1-score is averaged over 5 runs. Ta-

ble 4.1 presents the hyperparameter search space.

56



Hyperparameter Values

Filter size h 3,4,5
Number of filters n 50, 100, 250, 500, 1000
Dropout rate p 0.1,0.2,...,09
History size d; 1,2,3
History size d» 1,2,3

Table 4.1: Candidate values for each hyperparameter. Since h, n, p, d1, and ds can take 3, 5, 9, 3, and 3
different values respectively, there are 1215 (= 3 X 5 X 9 x 3 x 3) possible hyperparameter combinations.

4.4 Results

GP search finds near-optimal hyperparameters faster than random search. Figure 4-
2 compares the GP searches with different kernels against the random search, which is
a natural baseline for hyperparameter optimization algorithms [9]. On all datasets, the
F1-score evaluated using the hyperparameters found by the GP search converges to near-
optimal values significantly faster than the random search, regardless of the kernels used.
For example, on SWDA, after computing the Fl-scores for 100 different hyperparameter
combinations, the GP search reaches on average 72.1, whereas the random search only
obtains 71.4. The random search requires computing over 400 F1-scores to reach 72.1: the
GP search therefore reduces the computational time by a factor of 4. This is a significant
improvement considering that computing the average F1-scores over 5 runs for 300 extra
hyperparameter combinations takes 60 days on a GeForce GTX Titan X GPU.

Squared exponential kernel converges more slowly than others. Even though the
GP search with any kernel choice is faster than the random search, some kernels result
in better performance than others. The best kernel choice depends on the choice of the
dataset, but the squared exponential kernel (a.k.a. radial basis function kernel) consistently
converges more slowly, as illustrated by Figure 4-2. Across the datasets, there were no
consistent differences among the linear, absolute exponential, and cubic kernels.

The number of initial random points impacts the performance. As mentioned in
Section 4.2.2, the GP search starts with computing the Fl-score for a certain number of

randomly chosen hyperparameter combinations. Figure 4-3 shows the impact of this num-
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Figure 4-2: Performance of GP search with different kernels and random search for hyperparameter opti-
mization on DSTC 4, MRDA, and SwDA. The x-axis represents the number of hyperparameter combinations
for which the F1-score has been computed, and the y-axis shows the best F1-score that has been achieved by
at least one of these hyperparameter combinations. Each data point is averaged over 100 runs of the specified
search strategy.
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Figure 4-3: Impact of the number of initial random hyperparameter combinations on the GP search. The
x-axis represents the number of hyperparameter combinations for which the F1-score has been computed,
and the y-axis shows the best Fl-score that has been achieved by at least one of these hyperparameter com-
binations. Each data point is averaged over 100 runs of the specified search strategy.
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ber on all three datasets. The optimal number seems to be around 10 on average, i.e. 1%
of the hyperparameter search space. When the number is very low (e.g., 2), the GP might
fail to find the optimal hyperparameter combinations: it performs significantly worse on
MRDA and SwDA. Conversely, when the number is very high (e.g., 50) it unnecessarily
delays the convergence.

GP search often finds near-optimal hyperparameters quickly. After evaluating the
F1-scores with 50 hyperparameter combinations, the GP search finds one of the 5 best
hyperparameter combinations almost 80% of the time on SwDA, as shown in Figure 4-4,
and even more frequently on DSTC 4 and MRDA. After computing 100 hyperparameter
combinations, the GP search finds the best one over 70% of the time, while the random
search stumbles upon it less 10% of the time.

Simple heuristics may not find optimal hyperparameters well. Compared to the
previous state-of-the-art results that use the same model optimized manually [72], the GP
search found more optimal hyperparameters, improving the Fl-score by 0.5 (= 66.3 —
65.8), 0.1 (= 84.7 — 84.6), and 0.7 (= 72.1 — 71.4) on DTSC 4, MRDA, and SwDA,
respectively. In [72], the hyperparameters were optimized by varying one hyperparame-
ter at a time while keeping the hyperparameters fixed. Figures 4-5 and 4-6 demonstrate
that optimizing each hyperparameter independently might result in a suboptimal choice of
hyperparameters. Figure 4-5 illustrates that the optimal choice of hyperparameters is im-
pacted by the choice of other hyperparameters. For example, a higher number of filters
works better with a smaller dropout probability, and conversely a lower number of filters
yields better results when used with a larger dropout probability. Figure 4-6 shows that, for
instance, if one had first fixed the number of filters to be 100 and optimized the dropout
rate, one would have found that the optimal dropout rate is 0.5. Then, fixing the dropout
rate at 0.5, one would have determined that 500 is the optimal number of filters, thereby

obtaining an F1-score of 70.0, which is far from the best F1-score (70.7).
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The faster convergence of the GP search may stem from the capacity of the GP to
leverage the patterns in the F1-score landscape such as the one shown in Figure 4-6. The

random search cannot make use of this regularity.

4.5 Conclusion

In this chapter we addressed the commonly encountered issue of tuning ANN hyperparam-
eters. Towards this purpose, we explored a strategy based on GP to automatically pinpoint
optimal or near-optimal ANN hyperparameters. We showed that the GP search requires 4
times less computational time than random search on three datasets, and improves the state-
of-the-art results by efficiently finding the optimal hyperparameter combinations. While the
choices of the kernels and the number of initial random points impact the performance of
the GP search, our findings show that it is more efficient than the random search regardless
of these choices. The GP search can be used for any ordinal hyperparameter; it is therefore

a useful technique when developing ANN models for NLP tasks.
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Figure 4-5: Parallel coordinate plot of all 1215 hyperparameter combinations for DSTC 4. Each hyperpa-
rameter combination in 5-dimensional search space is shown as a polyline with vertices on the parallel axes,
each of which represents one of the 5 hyperparameter. The position of the vertex on each axis indicates the
value of the corresponding hyperparameter. The color of each polyline reflects the F1-score obtained using
the hyperparameter combination corresponding to the polyline.
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Figure 4-6: Heatmap of the F1-scores on SWDA as the number of filters and the dropout rate vary. F1-scores

are averaged over all possible values of the other hyperparameters: as a result, F1-scores can be lower than
the ones in Figure 4-2.
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Chapter 5

Conclusions

5.1 Contributions

This thesis introduced several algorithms to perform sequential short-text classification,
which outperform state-of-the-art algorithms. One challenge in the algorithms we have
introduced is their number of hyperparameters. To facilitate the choice of hyperparameters,
we presented a method based on Gaussian processes, which allows us to choose optimal or
near optimal hyperparameters significantly faster than using random or grid search.

In order to foster research in sequential short-text classification as well as medical text
mining, we released PubMed 20k RCT, a new dataset for sequential sentence classification

in RCT abstracts.

5.2 Future work

Many directions can be investigated to further enhance medical text mining, and we have

initiated some work in several of these directions.

Interpretability One of the most frequently mentioned limitation of ANNSs is the lack of
interpretability of their predictions, i.e., the lack of understanding of how the ANNs make a
prediction given the input they receive. Since results directly impact health, clinicians have

come to expect healthcare applications to use interpretable models [14]. Moreover, the
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European Union is considering regulations that require algorithms to be interpretable [45].
We have explored a CNN-based method to perform patient phenotyping, and showed that
a simple method allows us to view the phrases associated with each phenotype [43]. Much
more work remains to be done in that direction to gain insights on what happens during
the forward pass in an ANN. For example, developing visualization tools can help, such as
LSTMVis [108], which is a visual analysis tool for recurrent neural networks with a focus

on understanding these hidden state dynamics.

Going beyond classification While we have focused on classification in this thesis, the
automated analysis of the medical literature requires other kind of NLP tasks as well.
To that end, we have performed some work on using ANN for named-entity recogni-
tion [34, 75, 32, 74] as well as relation extraction [73]. It would be interesting to perform
these two tasks jointly, as the performance of ANNs have been shown to improve when per-
forming joint tasks [47]. Aside from the automatic creation of a knowledge base, from the
user standpoint, tools to query knowledge bases need to be improved, e.g., by improving

question answering systems.

Automated ANN architectures design We have analyzed the use of Gaussian processes
to automatically determine of optimal or near-optimal hyperparameters. Beyond optimiz-
ing hyperparameters, one could explore algorithms that choose the entire ANN architecture,

e.g., based on evolutionary computation [6, 21, 59] or reinforcement learning [126, 5].

Leveraging full-text articles We have only used paper abstracts in this thesis. This is
largely due to the fact that most research papers are not open access, and even fewer can be
freely used for text mining purposes. The medical field is especially plagued by the lack of
open access. However, much information is present only in the body of the articles, and the
lack of open access is a major impediment to structuring the medical literature. Medical
researchers must think about the implications of not making research freely available when

deciding to publish in pay-walled venues.
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Exploring other types of literature We have focused on the medical literature, but most
of the literature would benefit from sentence classification and more generally any tool that

might make it more structured.
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Abbreviations

The following abbreviations are used in this thesis proposal:

ANN
ALTA
AUC
AUROC
CNN
CRF
DSTC 4
EACL
EBM
GP
GRU
HMM
12b2
ICU

LR
LSTM
MEDLINE
MRDA
NAACL
NB
NICTA
PIBOSO

PICO
RCT

Artificial neural network

Australasian Language Technology Association

Area under the curve

Area under the receiver operating characteristic curve
Convolutional Neural Network

Conditional random field

Dialog State Tracking Challenge 4 (dataset)

European Chapter of the Association for Computational Linguistics
Evidence-based medicine

Gaussian process

Gated Recurrent Unit

Hidden Markov Model

Informatics for Integrating Biology and the Bedside (dataset)
Intensive care unit

Logistic Regression

Long Short Term Memory network

Medical Literature Analysis and Retrieval System Online

ICSI Meeting Recorder Dialog Act Corpus (dataset)

North American Chapter of the Association for Computational Linguistics
Naive Bayes

National ICT Australia Ltd

Population (P), Intervention (I), Background (B), Outcome (O),
Study Design (S), and Other (O)

Population (P), Intervention (I), Comparison(C), and Outcome (O)
Randomized controlled trial
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RNN  Recurrent neural network

ROC  Receiver operating characteristic

SR Systematic Review

SVM  Support Vector Machines

SwDA  Switchboard Dialog Act Corpus (dataset)
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