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Abstract

The Naval Research Laboratory (NRL) requested the design of a two-axis gimbal
device for the shipboard support of a sensor payload. Previous design efforts presented
a low-mass two-axis (pan and tilt) machine. Vibration and shock testing induced
failure in the interface between the payload and the tilt shaft, through which the
control cabling connected to the sensors, taking the system out of service and creating
a hazard for Sailors. This thesis proposes a tapered, hollowed shaft and flange
interface connected by an interference fit that is preloaded and retained by a single
hollowed bolt for ease of maintenance at sea.

This simplified design is a departure from existing rotary tapered interfaces,
such as seen in machine tooling, and focuses on connecting massive payloads to
their actuators when subjected to severe loading. This design is uniquely suited to
withstand large bending moments and loading as demanded by military standards for
shock. A custom rig was designed and constructed to subject reduced-scale designs
to military standard environmental testing for shock in the laboratory. These test
results were analyzed using moving average filtering to develop confidence intervals
to validate the design mathematics. A full-scale prototype was manufactured and
subjected to shock testing and analysis. The design exceeded all requirements and
is ready for immediate integration into the gimbal. This research also revealed the
potential for tapered interfaces to connect massive payloads to their actuators in
industry.

Thesis Supervisor: Alexander H. Slocum
Title: Pappalardo Professor of Mechanical Engineering
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Chapter 1

Introduction

This design thesis was inspired by a system design problem put forth by the

sponsor, the Naval Research Laboratory (NRL). In 2014, the NRL asked the Precision

Engineering Research Laboratory (PERG) to "design, build, and test a two-axis

pan tilt mechanism for shipboard use to support an NRL project" on which a "key

feature is that the elevation mechanism's axis of rotation will be based on a large

diameter bearing such that the payload be placed at and project through the elevation

mechanism." [Slocum, 2014] The resulting directional device machine is meant to

focus in a specific direction along the azimuth and elevation as commanded by

precision motor controllers. The machine must be design for exposure to green

water (seawater which washes over the deck of a ship), wind loading, vibrations,

and shock. The NRL is developing the payload, for which specifications are classified.

All discussions of the payload in this thesis refer only to geometry and mass without

detail of capability or purpose.

From 2015-2016, Nathan Mills brought the project through prototyping and initial

testing. This testing revealed component failures that required new designs in order

to meet NRL specifications. Critical among these design failures was the interface
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Figure 1-1: Gimbal model [Mills, 2016]

joining the payloads to the horizontal shaft actuator (tilt shaft) that controls the

rotation of the payloads to their zenith.

This thesis details the research, design, prototyping, and testing of an improved

interface between the payloads and the tilt shaft, and its possible applicability beyond

the mechanism specified by the NRL. This thesis also discusses the design of rigs to

test the interface to the specified military standards within the laboratory. This thesis

is unclassified.

The design process began with a review of literature on mechanical interfaces in

robust systems, found in chapter 2. This ranged from patents for aviation components

to discussions of high-speed tooling machinery. This research provided a baseline for

the development of innovative interface designs and provided exposure to the existing

methods for connecting payloads to shafts on rotating systems. It also ensured that

no design effort would be duplicative or infringe on existing design patents.

From this effort came several candidate design solutions, detailed in section 3.1.

These were analyzed for compliance to the NRL specifications as well as for simplicity,

part count, maintainability, and weight. Section 3.2 discusses the design process

14
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and the development of mathematical models to facilitate rapid analysis of different

designs, and section 3.5 reviews the manufacturing process for the reduced-scale

model.

Sections 3.4 and 3.6 detail the design and manufacture of shock tests intended for a

reduced-scale prototype in the laboratory and for a full-scale model. Due to the large

mass of the actual payloads, different testing rigs were required for the reduced-scale

and full-scale interfaces. This chapter also discusses the characterization of these rigs

in order to control each experiment.

Chapter 4 presents the results and analysis of those shock tests, with observations

about features of the test rigs and interfaces that influenced the data. This chapter

also discusses the applicability and integration of this design to the NRL gimbal,

and the potential applicability of this interface design for other systems connecting

massive payloads to actuators. It concludes with a discussion of future work.

1.1 Requirements

1.1.1 Sponsor Requirements

Table 1.1 is a summary of the sponsor requirements pertinent to this research.

Of particular importance to this thesis are the angular accelerations, payload size

and mass, wind loading, wave loading, vibration, and shock requirements. The

geometry of the payload was approximated from a mock-up model provided by the

sponsor. This allowed for fairly accurate assumptions in calculating moments of

inertia, distances, and other geometric quantities. The angular accelerations, wind

and wave loading values, and the vibration and shock standards were used to calculate

the maximum forces and moments on the machine.
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Table 1.1: NRL requirements

Criteria Threshold Objective

Max angular speed [deg/s] 50 100
Max angular speed [deg/s2 ] 50 100

Payload mass total [ibm] 130 170
Payload dimensions each [in] 9 x 7.5 x 6

Green water loading 6 [psi] on full frontal area
Wind loading without damage 115 [kts] sustained, 120 [kts] gust

4-15Hz: table amplitude 0.030in
16-25Hz: table amplitude 0.020in

Vibration Resistance to MIL-STD-167-1A 26-33Hz: table amplitude 0.010in
Shock Resistance MIL-S-901D

Cable Bundle 20 [mm] diameter

1.1.2 Derived Requirements

My experience at sea as a Naval Officer informed several requirements, as did the

lean principle of poka-yoke, or the reduction of chances for operator error. Simplicity

was critical for assembly and disassembly on a moving vessel in a variety of conditions.

Simplicity also informs maintainability - the ease with which Sailors could work on

the interface while at sea. Ships spend the majority of their time far from their supply

depots, and have limited cargo space for spare and replacement parts. For this reason,

a reduced part count - another component of simplicity - was essential. All design

efforts favored manufacturability where possible in order to reduce cost.

The interface design was developed from a mathematical model that predicted

the ability of the interface to hold the payloads through all requirements. In order

to validate this mathematical model, I designed and constructed a shock test in the

laboratory. The full-scale model also required testing. Both of these tests had to

impart large shock loads, meaning they were constructed to withstand those loads

while providing a stable platform for measurement. Additionally, the accelerometer

sensors used were bandwidth limited, meaning that they had a specific frequency
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Figure 1-2: The model and shock test results for the old interface

range over which they could operate and collect data. This meant designing the tests

to control for the time interval of the shock test impulse to ensure the accelerometers

would gather multiple data points across the peak acceleration. Chapter 3 discusses

these test requirements in detail.

1.2 Characterizing the Problem

In the first iteration of the gimbal [Mills, 2016], the payloads connected to the tilt

shaft via a circular 6-bolt pattern. These bolts were driven into the flat of the circular

end face of the cylindrical shaft. During vibration and shock testing, this interface

failed when the bolts sheared, causing the payloads to partially sever from the tilt

shaft.

The existing geometry of the gimbal tilt housing constrained the general solutions

for redesigning the tilt shaft. For example, the bearings on which the tilt shaft

sit in the tilt housing defined the maximum shaft diameter and thus the maximum

diameter of the tapered interface. These constraints are enumerated in section 3.7.

The challenge was to redesign the shaft and interfacing components to withstand

the required forces and moments while maintaining simplicity, manufacturability,

17



maintainability, and a low part count. In addition I avoided adding mass to the

system and to reduced the number of parts required.

1.3 Executive Summary

The Naval Research Laboratory (NRL) requested the design of a two-axis gimbal

device for the shipboard support of a sensor payload. Previous design efforts (Mills,

2016) presented a low-mass two-axis (pan and tilt) machine. Vibration and shock

testing induced failure in the interface between the payload and the tilt shaft, through

which the control cabling connected to the sensors, taking the system out of service

and creating a hazard for Sailors. This thesis proposes a tapered, hollowed shaft

and flange interface connected by an interference fit that is preloaded and retained

by a single hollowed bolt for ease of maintenance at sea. This simplified design is a

departure from existing rotary tapered interfaces, such as seen in machine tooling,

and focuses on connecting massive payloads to their actuators when subjected to

severe loading. This design is uniquely suited to withstand large bending moments

and loading as demanded by military standards for shock.

The first iteration of the interface was a circular bolted pattern as pictured, which

failed in shear during vibration and shock testing of the full gimbal. The gimbal was

required to withstand green water loading, wind loading, select MIL-STD-167-1A

vibrations, and MIL-S-901D shock. This interface, which moves the payloads, also

needed to provide enough torque to do so without slipping circumferentially or axially.

The shock requirement is the most demanding of these requirements, so I focused on

that noting that the other requirements would be met as a result. I also derived several

requirements from my own experience at sea and from the lean principle of poka-yoke,

or the reduction of chances for operator error. Manufacturability, simplicity and
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repeatability in assembly and disassembly, and a low part count were critical.

To meet these requirements I considered and rejected several potential solutions:

a larger shaft and bolt pattern (bearing restricted), a helicopter-style rotary joint (too

complex), a wind turbine joint (too many parts), and others. The optimal solution

was a tapered interference fit, which facilitated repeated removal and replacement of

the connecting flange while still providing a substantial retaining force and resisting

shock-induced bending moments. Utilizing a commercially available flat head screw

to provide the pre-load and retention reduced cost and part count while keeping the

design familiar to the maintaining Sailor.

The design of the interface required examining existing tapers, such as those used

for high-speed tooling, in automotive work, and in fastening ship propellers to their

shafts. From these areas I obtained standards for tapers that could guide my design,

though this use was unique in featuring multi-directional forces and moments and in

seeking a reduced footprint. Solving by hand at first, I developed an equation for the

ability of the taper to resist a bending moment due to shock. In the equation below,

M represents that resisting moment for 90 degrees of the taper revolved around the

x-axis, for a total resistance of four times that value.

The design required readily available shock testing, as the formal testing previously

conducted was costly, time-intensive, and not local. I researched and rejected explosive

testing (dangerous, difficult to setup, difficult to repeat) and simple drop testing

(generally limited by bandwidth of available accelerometers) before settling on impact

testing. Inspired by Charpy testing machines, I developed a mathematical spreadsheet

that calculated the acceleration experienced by a mass on a fully characterized physical

pendulum released from a given angle. I specified, designed, machined, and assembled

a pendulum rig and components that contacted a large compression spring at the

bottom of its arc, creating a known acceleration as a function of the spring constant
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and geometric and mass properties.

The pendulum rig and the predicted accelerations were validated using a test

mass bolted to the pendulum arm, on which two accelerometers were attached. The

pendulum rig was bolted in place and stiffened to ensure the accelerometers did not

get poor data from movement of the system. Even so, the data collected was noisy

from vibrations in the pendulum arm and the sensor mount. After adding a damper

to the pendulum arm, I passed all results through a smoothing filter to account for

the outlying data points. This filter used a moving mean. To determine the window

over which the mean would be calculated, I plotted the sum of absolute differences

between the smoothed and noisy data for different window sizes and identified the

knee in the curve, noting that the maximum acceptable window was equivalent to the

number of data points collected during the total impulse time. These results were

then compared to the predicted values to develop confidence intervals for the test

data.

After thus validating the pendulum, I had a reduced scale taper shaft and flange

manufactured for testing. The pre-load was derived from the Propeller Installation

Calculations for US Navy Ships [Shepstone, 2005], while the rest of the design incorporated

other research and deviations from the standards surrounding tapers. The pre-load

was designed to "fail" when subjected to a 20 g-force acceleration, meaning that it

would come loose from the shaft. The flanges were pressed onto the shaft, and the

bolts partly backed out to permit movement while securing the flanges from leaving

the test rig entirely. As predicted, the model came loose at 20 g-force.

After validating the design code mathematics, I developed the full-scale model.

This model was designed to meet the existing tilt shaft housing parameters, and thus

was partially geometrically defined, such as in diameter where the bearings sit. Taking

advantage of the additional resistance afforded by the hollowed bolt, and the ability

20



to increase the pre-load if desired, I reduced the engagement length of the interface

to decrease the footprint of the gimbal. The full-scale tilt shaft was manufactured

partially solid in the center to permit shock testing without collapse or other damage.

The full scale model was too massive for testing on the pendulum rig and required

a drop test. For this, I developed a simply-supported beam that acted as a spring

in series with the tilt shaft "beam," from which I could predict the acceleration when

dropped from a given height. The intent of this test was to prove 60 g-force capability

and then continue upwards until unable due to system failure or inability to test

further. The tilt shaft and payload system was rigged to a shop crane using a tumble

hitch, a stable quick-release knot used to support heavy loads without jamming.

Neither the interface nor the simply supported beam failed during testing, and I was

forced to conclude when I could no longer lift the shaft and payloads higher.

The data collected from the full-scale drop test was plotted and found to be

significantly less noisy than the pendulum rig data. The impulse time contained

approximately 26 data points, and the peaks of the 500 g-force accelerometer results

comprised upwards of 17 points, indicating reliable maximum value data. For comparison,

I still plotted a moving average of the data using the window size dictated by the sum

of absolute differences plot.

This tapered interface successfully met the requirements for the gimbal and may

be utilized in the prototype machine. It reduces the part count and the time required

for maintenance and repair. It could be further reduced in size, but that would require

an increase in pre-load and thus application torque. This design proves that tapers are

a feasible method to connect massive loads to their actuators, and can use different

geometry than established in automotive and marine industries. There is potential

to use this technology with large actuators in industry. Future work on this project

could include making a graphic user interface for the code such that a designer could
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input some parameters and have a taper design iterated from the code.
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Chapter 2

Literature Review

2.1 Introduction

The ubiquity of shafting interfaces in machine tooling and the marine industry

has generated a substantial amount of analysis and research into their design and

development. Although the literature covers a wide variety of analysis, this review will

focus on three major themes that emerged throughout the research. These themes are:

types of interfaces, interface mathematics, design, and dimensioning, and interface

manufacturing. In addition, this literature review examines shock testing mechanical

systems as required by this thesis. From this review, I developed potential interface

designs and parameters to address the gimbal interface failure. While there were many

resources relating interface design to torque, very little was available that explicitly

discussed bending moment resistance. In fact, bending moments were listed as a

tertiary function of tapered interfaces [Bossmanns and Tu, 2002].
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2.2 Types of Interfaces

There are a variety of shafting interfaces used, mostly either bolted or tapered.

Tapered interfaces range from the German HSK to the American CAT [Agapiou,

2005]. As the popularity of tapered tooling interfaces increased, designs such as 7/24

[Bossmanns and Tu, 2002] and KM [Lewis, 1999] were developed. Yet another article

discussed the Japanese-designed BT shank and the attempts at standardizing taper

designs geographically, as the author predicted the decline of steep-taper systems in

the face of cheaper, quality standard tapers [Kocherovsky, 2000]. All of these tapered

interfaces are designed for transmitting torque in rotating systems. While some of

these systems build in protection through intentional slip, that is not a desired feature

for the gimbal tilt shaft interface. These articles did not explore the bending moment

resistance of these interface designs.

2.3 Interface Mathematics, Design, and Dimensioning

2.3.1 Mathematics

In addition to presenting the existing interfaces, the literature explored the mathematical

models used to create resilient designs for specific purposes. While presenting a

potential wind turbine joint design, one paper offered a way to assess the effects of

the interference fit, such as the stress and displacement on the hub connecting the load

to the cylindrical shaft [Kang et al., 2015]. A structural member can experience axial,

torsion, and bending stresses and strains simultaneously. This combined loading can

be determined using superposition [Vable, 2002]. The US Navy has sought solutions

for securing propellers to tapered shafts. This can be solved using the required thrust

and the geometry of the shaft and propeller hub. This provides the interface pressure
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and the required push-on force [Shepstone, 2005]. For the purpose of the gimbal tilt

shaft interface, this was invaluable information for designing the axial loading screw.

2.3.2 Design

Equally important to the design process as the equations surrounding the design

were the lessons on critical features of shafting interfaces. Tapered interfaces are

favorable to cylindrical because they are able to be re-tensioned, are detachable, do

not significantly weaken the shaft, and are great for centering. Tapers ratios smaller

than 1:10 in particular are detachable only with difficulty [Bosch, 2004], rendering

them appropriate for a system that will be occasionally disassembled for maintenance.

In addition to being optimal for joint centering, tapered interfaces can be most simply

and effectively preloaded using a thread, such as the single large screw ultimately used

in this design [Creitaru and Grigore, 2011]. Despite these advantages, the stiffest

shaft tapers require end contact with the flange, for which the precision requirement

is critical [Bossmanns and Tu, 2002].

2.3.3 Dimensioning and Components

While the marine industry has established a standard for long engagement lengths

[DNV, 2015,LR, 1982], research shows that longer shaft lengths lead to more vibration

[Bashir Asdaque and Behera, 2014]. Combined with the requirement to maintain a

small footprint for the gimbal, this suggested that I explore decreasing the size of the

taper engagement length. In machining, the tooling structure - the tapered connection

- is the weakest link, underscoring the importance of designing a stiff joint [Agapiou,

2005]. Again the axial load from a threaded fastener rose to the top of possible ways

to address this design need. Good taper designs are relatively minimal, generally
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including three major couplings [Bossmanns and Tu, 2002].

2.4 Interface Manufacturing

It was noted that "improving the stress distribution of the hub is an effective

approach to strengthen" a connection [Ling Xiong et al., 2013], suggesting that

the design be manufactured to a precision finish and fit. Furthermore, "if precise

tolerances are not achieved on the taper and face, both on the male and female taper

forms, there can be a negative impact on the performance of the connection." [Hanna

et al., 2002]. While press-fit connections can halve the endurance limit of the shaft

material, a rolled interface increases endurance [Peterson and Wahl, ]. This dictated

the manufacturing process to ensure and resilient and robust design.

2.5 Shock Testing

Shock tests are rapid events requiring extensive planning prior to execution. Some

are more intensive than others, such as the multiple contact drop test designed to

mimic the stresses of dropping small objects like mobile phones [Goyal and Buratynski,

2000]. Even the most simple drop test must be carefully setup. Accelerometers

are best mounted with screws and must be chosen with due consideration to the

bandwidth limitations of the sensor. Even dropping a 10 gram sensor from 1 m high

can result in 30,000 g-forces [Endevco, 2016]. Explosive tests, while realistic, are

dangerous, complex to setup, and risk limiting the test sample size to one [Schauer,

1962].
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2.6 Conclusion

The literature review revealed best practices for the design of a torque-transmitting

tapered interface, and established a tapered interface as the best option for the gimbal

tilt shaft interface to the payloads. There was little information available on bending

moments for these tapers, which were focused largely on small interfaces for tooling

and not on connecting massive payloads to bi-directional actuators. Providing more

information on bending moments for massive payload interfaces became a focal point

for this thesis.
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Chapter 3

Methods

As noted in Table 1.1, the tilt shaft and payload interface components must transmit

torque for elevation positioning, provide axial retention against centripetal forces

during azimuth positioning, vibration, or shock loading parallel to the tilt shaft, and

resist the bending moment from loading the payloads orthogonally to the tilt shaft

by water, wind, vibration, or shock. After observing the original interface fail during

testing, Mills noted in his thesis:

The most destructive forces may be externally imposed due to wave impact

or inertial due to shock. Both are expected to be exacerbated as payloads

grow in size and weight. The machine . . . began to fail at the relatively

benign shock level of 20g. [Mills, 2016]

Of those external forces, shock loading per MIL-S-901D was calculated to be

the largest by an order of magnitude. Therefore the bending moment due to shock

loading became the primary design concern, as resisting that moment would ensure

the interface exceeded the other requirements. As noted in Chapter 2, most shaft to

payload interface literature has been dedicated to torque, as in high-speed machining
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and automotive design, suggesting that this design effort would be relatively unique.

In addition, this design would only be successful if simple to assemble and maintain

on a ship at sea. Keeping the design intuitive was critical.

3.1 Analysis of Alternatives: Interface

The first step was to identify different means for connecting payloads to shafts. The

literature review discussed in Chapter 2 identified or inspired a field of torque-transferring

designs found in wind turbine construction, railroad cars, helicopter rotary wing

attachments, and high-speed tooling for machinery. These ranged from cylindrical

interference fits, to bolted features, to multi-part taper systems to establish the

connecting friction forces.

Larger Shaft and Bolt Pattern The diameter of the shaft was defined by the

bearings on which it rides in the tilt housing, holding it to a maximum 50 mm. A

bolted feature mimicked that of the original design which failed shock testing, and

was eliminated for predicted failure in shear stress.

Welded Flanges While this solution would offer a very strong connection between

the payload flanges and the shaft, it would require a complete redesign of the much

more complex tilt housing in order to split the housing and install the shaft. Installation

from one end would not longer be possible.

Threaded Tilt Shaft A threaded shaft would allow the payload interface to be

screwed on and off. However, such a design could easily be misaligned given the

difficult of controlling the end position of a threaded fastener. This design would also

induce a high stress concentration at the root of the internal thread on the payload
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flange. This would require a removable alignment pin, which - along with the threads

themselves - would present an entry point for salt water.

Cylindrical Interference Fit These are attached by either a press fit, requiring

an arbor press or similar machinery, or a shrink fit, requiring an intensive heating

operation. As this pan-tilt system is meant to be maintained - including possible

assembly and disassembly - by Sailors on a ship at sea, such a design was either

not possible or not practical. The repeatability of a cylindrical press fit was also a

concern, as misalignment is easy and can cause galling on the surfaces of the mating

components.

It became clear that a tapered interface would better meet the functional requirements.

However, existing designs were overly complex and high part-count.

Helicopter Rotary Joint The literature review identified a patent for a coupling

flange system for a hollow shaft connecting a helicopter main rotor and tail rotor.

This design used five components that connected a cylinder

to a flange via an expanding tapered element internal to the '

shaft cylinder. However, this requires numerous parts that - -

would be complex to manufacture, a tedious assembly, and

provided no means of repeatably aligning the two interfaces
Figure 3-1: Patent

of the tilt shaft. Additionally the massive nut used to tighten drawing for a tapered
rotary joint [Mermoz,

the system would induce high stress concentrations, and the 2007]

nut could not be backed off while maintaining pressure.

Wind Turbine Joint An article on transmitting torque for a wind turbine proposed

using a two-piece tapered collar on a cylindrical shaft, tightened by a bolted flange.
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Figure 3-2: Diagram
and solid model of
wind turbine joint
[Kang et al., 2015]

It featured a tapered ring, a split tapered ring, and a flange

that attached externally to the shaft cylinder. However, it was

secured by a twelve bolt circular pattern, making it a laborious

assembly and disassembly process even before connecting the

payloads. It offered no features for repeatable alignment port

and starboard.

High-Speed Tooling This space of machine design has long relied on tapers to

securely and precisely hold tool heads, using technologies such as HSK, BT, CAT, and

KM [Lewis, 19991. However, these tools are often "pulled" into the taper from the

opposite side, such as when a collet is installed in a milling machine. The symmetry

of the tilt shaft design required that each interface be assembled independently of the

other.

ieSK BSuI. Nonitwe
Part 1-Form A, DUU3

F"YKtno

WAcm

~M/M

Figure 3-3: HSK Basic Nomenclature [Lewis, 1999]

Marine Joints Like high-speed tooling, propeller interfaces to shafts are designed

to transmit torque, albeit at lower speeds and much larger values. The marine
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industry has long been using tapered interfaces, for which standards have been

provided by several international classification societies such as DNV. These are used

for rudder connections, propeller connections, and other interfaces in the ship control

systems. These standards often rigidly define the geometry of the taper, and are

designed for complex assembly and disassembly using numerous components.

wautaon

m*cunng
0 - plat for

nut

Figure 3-4: Cone Coupling with Key [DNV, 2015]

3.1.1 Selection of Optimal Solution

The interface I was designing needed to be easily manipulated by maintainers ashore

and at sea, meaning that alignment, assembly, and removal must be repeatable with

basic hand-portable tools and a relatively low complexity/low part-count for when

working in austere environments. A keyed taper allowed for a press fit that could be

aligned by hand and pushed on. The small key way would ensure alignment between

the two payloads. The press fit ensured that the interface would be capable of resisting

the bending moment due to shock, of transmitting torque, and of resisting penetration
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during green water events. The taper made alignment for installation easy, sticking to

poka-yoke principle and reducing the opportunity for the maintainer to induce galling

of the material.

The next step was to design a simple tapered interface that could withstand the

bending moment due to shock. The first iteration of this idea is seen in figure 3-5.

Drawing on the best elements of the helicopter, wind turbine, and propeller designs,

I developed an interface wherein the shaft and flange themselves are tapered. The

axial force comes from a single large hollow screw that is threaded into the hollow tilt

shaft. This permits the control cabling to connect to the payloads, allows a sailor to

press on the flange with hand tools, and provides a pre-load to assist the interference

fit through vibration and shock.

F-ig- A- Is

Figure 3-5: Initial design sketch

3.2 Development of the Interface Mathematical Model

3.2.1 Hand Calculations

The holding strength of a tapered interface is dependent upon the pressure exerted

between the mating surfaces P, the coefficient of friction IL, the engagement length

between the mating surfaces L, the maximum radius of the engaged shaft taper rma,
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and the taper angle a~ as defined in Figure 3-6.

TZ Le _ on

a

f LI11 I I I

Figure 3-6: Diagram of shaft interface for hand calculations

Integrating over the engaged surface of the shaft taper revealed the governing

equation for resisting the bending moment, seen in equation 3.1. The full derivation

is included in appendix A.

2 2 C e 2
Mresist = 4- L sec -(L tan - 3Lrmax tan - + 3r ax) (3.1)

3 2 2 2

In order to determine the pressure in equation 3.11 turned to the process used for

propeller installation on US Navy ships. This process uses the larger of the required

thrusts forward and astern and the dimensions of the taper in a quadratic equation to

determine the interface pressure to prevent slip [Shepstone, 2005]. For this design, I

determined that the maximum axial shock load - 60 g-force acting on the payload pass

- was the required thrust. From this interface pressure and the contact area of the

shaft and flange the push-on force was calculated. The next step was to consolidate

these mathematical processes.

3.2.2 MATLAB Script

To capture all of the variables contributing to both the Shepstone math and

the bending moment equation to facilitate iterating the design through different

parameters and scales, I consolidated these calculations in a MATLAB script found
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in appendix B. This code also assessed the material ability of all components - shaft,

flange, and hollow screw - to ensure no component would fail during operation.

This script drew heavily on threaded fastener equations from Shigley's Mechanical

Engineering Design 9th Edition and Fastenal Engineering & Design Support's Screw

Thread Design.

In order to validate the mathematics used to design the tapered interface to

withstand 60 g-force, I needed to create a shock test that could be conducted locally

and without the expense of commercial testing. The script concluded that the

full-scale interface design would be able to withstand the shock requirements, as

seen in appendix B. In order to validate this model, I iterated to a small version

of the shaft and flange with a decreased push-on force and interface pressure. This

reduced-scale model was designed to fail at far below the shock requirements. If the

prototype performed as predicted, the same mathematics could be used for the larger

model.

3.3 Analysis of Alternatives: Shock Testing

Researching shock testing led me to explosive testing, drop testing, and various

forms of impact testing.

Explosive Testing Explosive testing is used for subjecting materials and systems

to extreme environmental loading, with high heat, forces, and impulses. In particular,

U.S. Navy ships are subject to shock testing after construction [Schauer, 1962].

Explosive testing presented concerns around access, safety, cost, complexity, and

repeatability. Explosive testing facilities were not readily available and would add cost

to the project. I considered conducting testing myself, but the risk and complexity
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was prohibitive. Finally, explosive testing would risk the repeatability of the test if

any components were to be damaged, jeopardizing the schedule and the tests.

Drop Testing Drop testing offered a more viable solution than explosive testing,

using gravity as the means to accelerate the shaft and payload before bringing them

to a sudden stop. Numerous methods have been explored in the mobile phone space

[Goyal and Buratynski, 2000], but the masses and forces involved in testing this

interface are much greater.

I first calculated the parameters of a test wherein I dropped the subsystem (connected

shaft and payloads) onto a very stiff surface of known physical characteristics, in this

case a steel plate. Using the natural frequency to calculate the impulse forces, time,

acceleration, and deflection [Endevco, 2016], I soon recognized that the impulses seen

in materials as stiff as the steel of the interface were too rapid. A successful test

would require dropping the subsystem from impossibly low heights [Kausel, 2016].

Even if set up, the bandwidth of the available accelerometers would not capture the

peak or not collect enough data points during the impulse to present valid data.

WAU -

Figure 3-7: Notes on accelerations of dropped objects, applied to the tilt shaft and
payload [Kausel, 2016]

In order to develop a more reasonable test, I had to extend the time over which

the impact force acted. I could achieve this by attaching a more forgiving material
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of known spring constant to the bottom of the payloads, and then dropping the

subsystem onto a much stiffer material such as thick steel. The material would act

as a spring, slowing the impulse and allowing for a higher drop. The process to

characterize the test was as follows:

1. Identify a material of known modulus of elasticity, E

2. Calculate the spring constant K from the modulus of elasticity and the area

and thickness of the material, where

K = (3.2)
H

3. Solve for the natural frequency,

W = K (3.3)
Vm

4. Solve for the initial velocity at impact,

UO 60* g (3.4)
-wn

5. Solve for the drop height using conservation of energy,

1
gh = -'o2 (3.5)

2

However, accelerometers are bandwidth limited, meaning the peak acceleration

impulse could occur in between data points. While a laser interferometer or high-speed

camera could capture such a peak, the equipment is costly and difficult to source,
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and accelerometers are readily available in the laboratory. In order to fall within the

bandwidth of those accelerometers, I considered various spring systems.

Attaching a spring to each payload would create a measurable

acceleration. The large mass of the subsystem dictated using

heavy-duty coil springs, such as used in automobiles, or even

leaf springs as seen in figure 3-8. While these spring systems

did control the impulse time, they left unresolved the issue of Figure 3-8: A single

maintaining a perfectly parallel drop such that both payload stage multi leaf

springs struck the contact plate simultaneously. If one spring spring [Akar, 2017]

contacted before the other, the accelerations experienced on each end would not

match the objective of the test. The added time and complexity of manufacturing

linear bearings and flexures to precisely control the drop test rendered this method

untenable.

Impact Testing A pendulum can easily be characterized, allowing a researcher

to know the kinetic and potential energies at any point along its arc, as well as its

velocity. This presented an opportunity to develop a repeatable test wherein the shaft

and payload system acted as the mass, which was then released from a known angular

displacement to contact a spring of known constant, inducing the desired acceleration

for the shock test on the interface. However, a simple pendulum on a wire or string

does not offer torsional control of the mass, and an essential component of this test

was that the shaft strike perpendicular to the spring, including a bending moment at

the interface to the payload. Charpy impact tests, used to determine the amount of

energy absorbed by a material during fracture, offer an example of a controlled and

repeatable test using a physical pendulum to contact another object.

Inspired by Charpy testing rigs, I developed a mathematical design spreadsheet
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Figure 3-9: A Charpy impact test machine [NIST, 2017]

that calculated the acceleration experienced by a mass on a physical pendulum from

a given angular displacement. The physical pendulum was a viable solution to create

a repeatable shock test, and was selected for design and manufacture.

3.4 Development of the Reduced-Scale Shock Test

3.4.1 Requirements

The physical pendulum shock test rig needed to meet several derived requirements

in order to facilitate local testing:

1. Physically small enough to be safely operated with the laboratory and easily

manipulated and moved

2. Withstand the resultant forces and stresses of a low mass test interface released

from up to 90 degrees angular displacement

3. A pendulum arm that prevented torsion of the test interface when released

4. A backstop to halt the pendulum arc and induce the required acceleration while

maintaining alignment of the points of contact

5. Accommodate sensors, cabling, and interfaces required to capture the acceleration

data
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6. Controlled release of the test interface from a given angular displacement

7. Manufacturable on MIT campus with readily available materials and parts

3.4.2 Development

After considering a large pendulum rig for testing outdoors, it became clear than

such an endeavor would challenge the manufacturing spaces available and would

jeopardize the schedule as I was machining and assembling this rig. A smaller, local

system was preferred. The optics table in the PERG laboratory was the ideal space

to mount this system, as it provided a stable surface with mounting holes that could

secure the pendulum rig from moving during testing. This space limited the pendulum

arm to little more than 1.3 meters.

With the critical dimension of the pendulum arm determined I developed free

body diagrams illustrating the forces experienced by the shock rig during testing

from maximum angles, such as that seen in figure 3-10. These forces did not exceed
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Figure 3-10: Free body diagram and sketch of shock pendulum concept

the specifications of the 80-20 T-slotted aluminum framing in the laboratory and

ubiquitous in experimental structures. In order to minimize the moments on the
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bolted joints of the structure, I minimized the width of the pendulum support structure,

choosing to connect the uprights supporting the arm, and all other structural members,

to a single large beam that would, in turn, be mounted to the optics table.

6061 aluminum square tubing was selected for the pendulum arm in order to

maintain a low mass while ensuring alignment of the test interface and contact

point by prohibiting twisting during travel. The tubing was treated as a simply

supported beam, conservatively point loaded in the center at the time of impact.

These calculations ensured that the pendulum arm would not fail or deform during

maximum acceleration testing. The pendulum arm needed to be securely fastened

to the pivot shaft. Circumferential clamps provide very good torque transmission,

low stress concentration, and are easily milled [Slocum, 2008]. For this component

attachment, a split-housing circumferential clamp ensured nearly continuous contact

between the square tubing of the pendulum arm and the pivot shaft, which was

sized to the inner dimension of the tubing. The pivot shaft itself was secured to

minimize deflections utilizing Saint-Venant's principle, which states that "several

characteristic dimensions away from an effect, the effect is essentially dissipated."

Maxwell's reciprocity then suggests that an effect will dominate a system when

applied over three to five characteristic dimensions of a system [Slocum, 2008]. The

pivot shaft bearings with positioned accordingly, ensuring that the bearings would

effectively resist moments applied to the shaft. I specified self-aligning bearings rated

to withstand the calculated testing forces.

I considered attaching the spring to the swinging test subject but determined

that machining it into the backstop at the bottom of the arc would simplify the

manufacturing process and avoid potential inconsistency between test subjects, as

only one mount would be required. The spring could have been in the forms discussed
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previously as leaf springs, coils, or Belleville washer. Knowing that

d2 9 L
I d 2 + ( marmg + Lmtestg)sin(0) = 0 (3.6)

and that the kinetic energy of a physical pendulum is

KEp = 1( d20 2  (3.7)

and assuming no losses, I was able to determine the energy transfered into the

spring. This provided the displacement of the spring, from which the force and then

acceleration could be determined. The calculated displacements and the complexity

of mounting a leaf spring or Belleville washer directed the use of a tempered steel

jumbo compression spring.

Figure 3-11: Shock test compression spring and cap for tooling ball [McMaster-Carr,
2017]

Furthermore, each of these spring mechanisms presented a large contact area. The

compression spring, with closed and ground flat ends, provided a means to mount a

Hertzian contact point that would eliminate errors from minor misalignment. This

was accomplished by machining a tapered cap that was mounted to the compression
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spring, into which a steel tooling ball was inserted. Using a Hertzian contact design

spreadsheet [Slocum, 2011], I determined that the contact at maximum acceleration

would induce yielding in the aluminum of the pendulum arm. While repeated contact

yielding would lead to a cold-formed spherical pocket upon repetition, I wanted to

eliminate the possibility of unaccounted travel distance during spring compression.

The test model mount required a bolt through the pendulum arm, so I located this

bolt to be the contact point. The bolt head, also steel, would not deform from the

Hertzian contact stresses.

In order to ensure accurate data on the acceleration of the test piece, the pendulum

arm had to accommodate sensors aligned with the interface model and the point of

contact. The mount also needed to be stiff in the direction of the acceleration to

prevent the accelerometers from experiencing different accelerations than the test

model. A simple bracket mount located the accelerometers directly behind the

pendulum arm over the bolt used to both secure the test model and as the point of

contact to the spring-mounted tooling ball as seen in figure 3-12.

This sensor platform was large enough to accommodate

multiple sensors simultaneously for calibration and comparison

while setting up the initial experiment to validate the testing

-iff model. From this sensor platform I ran the cabling up

Figure 3-12: Sensor the pendulum arm to the pivot, securing the cables with
mount concept
sketch enough slack to account for all angular displacements before

connecting the cables to the sensor interface mounted on an upright.

The arm of the shock test rig needed to be released from a consistent angular

displacement for each test, which required a release mechanism. Drop tests often

incorporate electronic release systems. The shipping industry has informed the development

of release hooks designed for massive systems, specified up to thousands of pounds
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[IDM, 2013]. These systems are expensive and require power connections to operate.

Always seeking simplicity and a tie-in the nautical nature of this project, I decided

to use a quick-release knot that can be untied under tension with a simple tug on the

bitter end. The tumble hitch, seen in figure 3-13 is the most stable variation of the

highwayman's hitch, securely supporting large loads without jamming when released.

Figure 3-13: A tumble hitch [AnimatedKnots, 2016]

3.4.3 Manufacturing

All of the machined components of the shock testing rig were made of aluminum.

The base was a 80-20 aluminum slotted beam measuring 9 cm by 9 cm, to which

two 140 cm tall uprights were attached on either side with four brackets each. I

drilled through the base beam and two pieces of 170 cm long aluminum angle stock

to create triangular supportive brackets for the uprights, spaced using spare 80-20

slotted stock. The uprights were also connected by the 3/4 inch pivot shaft, which

ran between a mounted ball bearing with cast iron housing on each upright. Those
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bearings, as the brackets, were attached by end-feed fasteners in the T-slots. I milled

a matching hole for the shaft in the top of the pendulum arm and a smaller 1/2 inch

bolt hole above and orthogonal to that hole, then split the square tubing using a

slot cutter on the mill to create a circumferential clamp. On the mass end of the

pendulum arm I milled a 3/4 hole for a bolt to mount the test interface model, sensor

platform, and act as the contact point. The sensor platform was an aluminum 900

angle stock into which I milled holes for the mounting bolt and each of the sensor

connection bolts (10-32 and 4-40 screws requiring #7 and #30 drill bits for the 25

and 70 g-force accelerometers, respectively).

The coil spring needed a block into which it could be mounted and then attached

to the double bracket securing it to the base beam. For this I faced a 2 in by 3.5 in by

2.5 in block of aluminum and then used a CNC mill to bore a 2.437 in diameter blind

hole into which the spring could be mounted. I drilled and tapped the back of the

block so that it could be attached to the double bracket using four 1/4-20 bolts. The

final component was the tapered cap to hold the tooling ball and create the Hertzian

contact point. I faced a 1.5 in long section of 2.5 in diameter aluminum bar stock,

then used the lathe to create a boss matching the coil spring inner diameter at 1.687

in. The lathe taper function facilitated tapering to the 1 in diameter tooling ball face,

into which I drilled a 1.25 in deep blind hole using a 25/64 drill bit to ensure a press

fit. Once this was mounted, the machine was ready for testing with a control mass

that would simulate the interface test model and validate the calculated relationship

between mass, angular displacement of the pendulum arm, and acceleration upon

contact with the spring.
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3.5 Designing the Reduced-Scale Interface

3.5.1 Computer Modeling

The first iteration of the reduced-scale design was a shortened shaft and a cup-like

flange designed to hold standard lifting weights on the end to permit testing at

various payload masses. The center of the shaft was machined flat to sit flush on

the pendulum arm, and the sides of that flat served to prevent twisting. In order to

increase the mass of the flange/payload pieces and simplify manufacturing, I worked

with Professor Slocum to design a more robust small shaft featuring chamfers instead

of fillets wherever possible, and increased the flanges to hold Olympics weights.

09D

Figure 3-14: Exploded isometric view of the reduced-scale model

3.5.2 Manufacturing

The model was sent out for quotes and the manufacturing contract awarded to

Startsomething LLC. During the quote process, I received feedback on the drawings

and requests for clarification on the design, such as the surface finish requirement and
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any tolerances. This was an important learning point for the future, full-scale design,

for which tolerances and finishes were critical.

Figure 3-15: Reduced scale model mounted to the pendulum rig

3.6 Development of the Full-Scale Shock Test

The full scale prototype of the interface design required a test using the payload

models provided by the NRL, at a mass of 38.55 kg each. The laboratory shock rig

was not designed to accommodate these forces, compelling me to develop a second

shock test. Returning to the concept of a drop test, I examined the potential of

utilizing the full scale model shaft and a simply-supported beam as springs in series

to control the impulse.

3.6.1 Requirements

In order to facilitate local testing the drop test needed:

1. to be physically small enough to be moved into and safely operated within a

campus space.
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2. to withstand the resultant forces and stresses of a nearly 80 kg subsystem

experiencing 60 g-forces.

3. to accommodate sensors, cabling, and interfaces required to capture the acceleration

data.

4. a controlled release of the test model.

5. to be manufactured on MIT campus with readily available materials and parts.

3.6.2 Development

A testing solution to ensure the precise alignment concern was to drop the shaft

and payload subsystem onto a simply supported cylindrical beam such that the shaft

being tested contacted the supported beam. The simply supported beam acted as a

spring where

K = 48E (3.8)

and the tilt shaft behaved as a beam cantilevered from the point of contact, which is

a spring where
3E1

K = . (3.9)

Treating these as springs acting in series, I solved for an equivalent spring constant

where
1 1 1

- -+ (3.10)
Keq K8s Kshaft

and determine the height from which to drop the shaft and payloads. This method

permitted large spring constants that made it a viable candidate for testing the full

scale interface from a drop height that did not exceed the length of the accelerometer

cables.
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Both the simply supported beam and the shaft containing the developed interface

needed to withstand the stress of the impact without plastic deformation or failure.

The maximum flexural stress in a beam of symmetric cross-section can be calculated

using the equation

-max = MC (3.11)

where M is the applied moment, I is the moment of inertia of the cross-sectional

area, and c is the maximum distance from the neutral axis - in this case, the radius.

The maximum shear stress in a beam of circular cross-section is given by

Tmax = 4V (3.12)
3A

where V is the shear force and A is the cross-sectional area of the beam. These

stresses were calculated for the interface shaft and compared to the yield and shear

yield stresses for 1018 steel. In order to ensure the strength of the test shaft, I

determined to keep it solid through testing, after which it could be hollowed for the

required control cabling and installed in the prototype pan-tilt machine. The stresses

for the simply supported spring beam were calculated and compared similarly in a

custom design spreadsheet, using the Von Mises stress to ensure the material would

not yield during testing. The Hertzian contact stresses experienced by the two shafts

in contact were calculated using the Hertzian contact design spreadsheet to confirm

that the shafts would not deform. Finally, I calculated the stress at the pin of the

simple support to verify that it would not shear, nor would it cause failure of the

beam at the joint.

The sensors now had to be attached to the payloads. This was achieved by tapping

the payloads for 10-32 and 4-40 screws to mount the 25 and 70 g-force accelerometers,
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Figure 3-16: Simply-supported beam for full scale test

respectively. The cabling ran clear of the drop area. As with the pendulum shock

rig, a tumble hitch provided a controlled release. Because two cylindrical shafts were

colliding at a Hertzian contact point, the acceleration experienced by the payloads

was not affected if the tilt shaft was not parallel to the ground at contact.

3.6.3 Manufacturing

The beam was turned from steel round bar stock. Two upright steel supports were

welded to a base plate, on which a third support was placed orthogonal to the first

two. The beam was pinned between the parallel supports and allowed to rest on the

orthogonal support as seen in figure 3-16. This simply supported structure was then

placed beneath a shop crane that was used to hold the shaft and payload subsystem.

The interface was raised to the appropriate height for the test.

3.7 Designing the Full-Scale Interface

3.7.1 Computer Modeling

This model was designed to meet the existing tilt shaft housing parameters, and

thus was partially geometrically defined, such as in diameter where the bearings sit.
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Figure 3-17: Full scale shock test setup

Taking advantage of the additional resistance afforded by the hollowed bolt, and the

ability to increase the pre-load if desired, I reduced the engagement length of the

interface to decrease the footprint of the gimbal. To compensate for this reduction

in engagement length, I reduced the taper angle as well. As discussed, the model

for testing was not hollow throughout to prevent damage when point loaded at the

midpoint of the beam, something that will not happen in the gimbal. The drop test

model also did not include any external features, such as the elevation hard stop or

the cable entry. Figure 3-18 shows the version as ready for use in the gimbal.
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.4-
Figure 3-18: Exploded isometric and cross-section views of the tilt shaft and payload
interface design

3.7.2 Manufacturing

The model was manufactured by the MIT Central Machine Shop over the course

of a week. The shaft taper and flange taper were completed to a 16 surface finish and

tested with engineer's blue to ensure complete contact throughout.
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Chapter 4

Results

4.1 Pendulum Rig Validation Results

I tested the pendulum rig using a known mass in order to characterize the system

for conducting future tests. I conducted five swings at ten degree intervals between

ten and seventy degrees. The first data collected was noisy from the vibrations of the

pendulum arm, so I added material as a damper with two sided tape as seen in figure

4-1.

I used a moving average to filter the data. A moving -

average depends upon the window size used. I determined

the maximum window size from the impulse time of the shock

test, selecting as many points at 10 kHz sampling rate would

fit into that period. In order to determine the window size

choice, I used the code in appendix C to plot the sum of

absolute differences between the filtered and raw data over Figure 4-1: Damped

every window size up to the predetermined maximum. Where pendulum arm
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the curve steadied was the window size used. An example of this, performed on the

tests at twenty degrees, is seen in figure 4-2.

0 10dO20O o
3 __________________________________ _____ --
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Figure 4-2: Determining window size using SAD at 20 degrees

After filtering the data, I was able to determine the peak acceleration for each

swing at each angle. These, in turn, were analyzed in a normal distribution to

determine the average and the 95% confidence interval of the results. Finally, the

averages were plotted over each angle with a best-fit curve as seen in figure 4-3.

The pendulum rig was successful in delivering the required smaller shocks necessary

to test the reduced-scale model. Even with the added damping and bolting the system

in place there was substantial vibration and noise. A future design should explore

a more stiff pendulum arm and increased lateral support for the pivot point of the

pendulum.
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Figure 4-3: Test mass results for the pendulum shock rig

4.2 Reduced-Scale Shock Test Results

After thus validating the pendulum, I tested the reduced-scale model. The push-on

force was calculated such that the interface would "fail" when subjected to a 20 g-forces

acceleration, meaning that the flange would come loose from the shaft. The flanges

were pressed onto the shaft, and the bolts backed out partly to permit movement

while securing the flanges from leaving the test rig entirely.

During the first tests, the model did not "fail" as predicted. I returned first to the

push-on force calculations, iterating them to a very low push on force (and thus very

low required torque to apply - too low, in fact, for the wrenches available). I used a

force gauge to push on the flanges with ever lower forces, finally inducing failure on

a swing. Returning to the MATLAB code, the source of the error became obvious

immediately. The distance used to calculate the bending moment of the payload at

impact had not been scaled down to match the test shaft and flange dimensions, and

thus was predicted to be much larger than actually experienced during testing.

I corrected the MATLAB code moment arm inputs, and proofed the code for

other errors. Running the code again predicted failure at 20 g-forces using the same
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push-on force originally desired. I secured the flanges, marked the intersection of the

flange ends and the shaft, and then backed the screws out several turns so that any

loosening would be readily apparent but would prevent the flanges from departing

the shaft entirely. This test proved successful, suggesting that the math was correct

and that a larger scale design was feasible.

Figure 4-4: Acceleration plot from 20 degree test

4.3 Full-Scale Shock Test Results

The full scale drop test used both a 70 and a 500 g-force accelerometer. As the

results rapidly exceeded 70 g-forces, the data presented here is only that from the 500

g-force sensor. Additionally, the 70 g-force sensor cable severed during the third test,

rendering it unusable for the last two tests.

The data collected from the full-scale drop test was significantly less noisy than the

pendulum rig data. The impulse time contained approximately 26 data points, and

the peaks of the 500 g-force accelerometer results comprised upwards of 17 points,

indicating reliable maximum value data. For comparison, I still plotted a moving
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average of the data using the window size dictated by comparing the sum of absolute

differences to the window size. This analysis can be found in appendix D.
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Figure 4-5: Test 1

4.4 Conclusion

This tapered interface successfully met the requirements for the gimbal and may be

utilized in the prototype machine. It reduces the part count and the time required for

maintenance and repair. It could be further reduced in size, but that would require an

increase in pre-load and thus application torque. This design proves that tapers are

a feasible method to connect massive loads to their actuators, and can use different

geometry than established in automotive and marine industries. There is potential

to use this technology with large actuators in industry. Future work on this project

could include making a graphic user interface for the code such that a designer could

input some parameters and have a taper design iterated from the code.
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Appendix A

Hand Calculations

I calculated the taper retaining moment and that of a cylinder with only 30 degrees

of contact on either side to see how the two compared. Those calculations are shown

in figures A-1 and A-2, respectively.
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Appendix B

Interface Mathematical Model

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This code determines the interface's ability to withstand all

% loading and force requirements, as well validating that the shaft,

% flange, and screw will not fail materially in the process.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clf

close all

clear all

clc

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Physical Contraints

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

g=9. 81; %gravity [m/s^2l
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18

19 E=200E9; %Young's Modulus of AISI 4340 Stainless Steel [Pa]

20 nu=0.29; %Poisson's Ratio of AISI 4340 Stainless Steel

21 rho=7850; %Density of AISI 4340 Stainless Steel [kg/m^3]

22 sigma-yield=972E6; %Tensile Yield tSrength of AISI 4340 SS [Pa]

23

24 mu=0.213650328; %measured coefficient of friction for flange and shaft [Pa]

25

%tensile strength of screw [Pa]

screwtensile=convpres(120000, 'psi', 'Pa');

%shear yield stress of screw per Shigley Eqn 5-21 [Pa]

screwshear=0.577*screwtensile;

% Requirements

37 shock=60*g;

38

39

40

41

42

43

44

45

46

47

48

%shock requirement [m/s^2]

%max angular velocity [rad/s]

omega-req-max=convangvel(100, 'deg/s', 'rad/s');

%max angular acceleration [rad/s^2]

alpha-reqgmax=convangacc(100, 'deg/s^2', 'rad/s^2');

d_tiltinner=0.020;

r_tiltinner=dtilt inner/2;

%clearance for control cabling [m]

%clearance for control cabling [m]
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28

29

30

31

32

33
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Tilt Shaft and Payload Dimensions

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

%mass of each payload [kg]

%distance to center of gravity of payload [m]

%large end diameter of tilt shaft to fit bearing [m]

%large end radius of tilt shaft [m]

%TILT FLANGE AND HOUSING

t_r=0.013; %retainer thickness [m]

t_b=0.016; %tilt shaft bearing thickness [m]

L_offset=0.002; %prevents flange from exceeding taper [m]

t_flange=0.015; %flange vertical thickness [m]

d_flange-outer=0.05988; %outer diameter of flange hub on taper [m]

r_flange-outer=d flangeouter/2; %outer radius of flange hub on taper [m]

chamferflange=0.002; %chamfer [m]

%FLANGE SCREW

%pitch diameter of 1 1/4-12 3A screw [m]

d_m_bolt=convlength(1.1959, 'in', 'im');

%minor diameter of 1 1/4-12 3A screw [m]

d_minorbolt=convlength(1.1508, 'in', 'im');

r_minorbolt=dminor-bolt/2; %minor radius of 1 1/4-12 3A screw [m]

lead=convlength(1/12, 'in', 'im'); %inverse of threads per inch [m]

thread-angle=60; %UNC thread angle [degrees]
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%PAYLOAD

m-payload=77.1107/2;

LCG-payload=0.2;

%TILT SHAFT

d_tilt=0.05;

r_tilt=dtilt/2;



%flange screw average collar diameter [m]

d_c=convlength((2.438+1.25)/2, 'in', 'im');

screwlength=convlength(3, 'in', 'Im'); %screw length [m]
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81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Shepstone Taper Input Variables

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

M-a=mpayload*shock;

t=16;

L_interface=.038;

%thrust of axial shock on payload [N]

%inverse of shaft taper

%length of interface between flange and shaft [m]

%distance from tilt shaft bearing to payload center of gravity [m]

L_moment=(.5*t-b) + t-r + Loffset + Linterface + tflange + LCG-payload;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Shepstone Taper Calculated Variables

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

1o5 ctiltmin=l/t;

106

107

108

109

%shaft taper (diameter to length)

%taper angle from edge to shaft centerline [deg]

taper-angle=atand(1/(2*t));

110 da=dtilt-(Linterface*ctilt_min); %small end diameter tilt shaft [m]

70

screw_threadlength=convlength(3-.683, 'in', 'im'); %threaded length [m]

screwhead-height=convlength(O.683, 'in', 'IM'); %head height of screw [m]

screwheaddiameter=convlength(2.438,'in','m'); %diameter of screw head [m]

99

100

101

102

103

104



ill d_m=dtilt-(Linterface/(2*t));

112

113 %max radius of shaft taper contacting flange [ml

114 rtilt-taper-max=(dtilt/2)-chamfer-flange*tand(taper-angle);

115 rtilt-tapermin=da/2;

116

117 % Shepstone Quadratic Equation Constants [non-dimensional]

118 a=(mu^2)*cosd(taperangle)^ 2-sind(taper-angle)^ 2;

119 b=-(mu^2+1)*2*Ma*cosd(taper-angle)*sind(taper-angle);

120 c_tilt_min=(mu*M-a*sind(taper-angle) )^ 2-(M_a*cosd(taper-angle) ) 2;

121

122 %required radial force to prevent slip for axial thrust [N]

123 Mi=(-b+sqrt(b^2-4*a*c_tiltmin))/(2*a);

124

125 area=pi*Linterface*d-m; %contact area of flange and shaft [m^2]

126

127 p=M_i/area; %required average interface pressure [Pa]

128

129 %required push on force [N]

130 Fd=M-i*(sind(taper-angle)+mu*cosd(taper-angle))/...

131 (cosd(taperangle)-mu*sind(taper-angle));

132

133

134 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

135 % Calculate Screw Torque with Shigley Equation 8-25a

136 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

137

138 Torque=(F-d*d_m_bolt/2) * ( (lead+pi*mu*d_m_bolt*secd(thread angle)) ...

139 /(pi*dm_bolt-mu*lead*secd(thread-angle)))+(Fd*mu*dc/2);% [N*m]

140

141

71

%mean shaft diameter [ml



142 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

143 % Check that screw and internal threads will not yield

144 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

145

146 nt=screwthreadjlength/lead; %number of threads engaged on screw (all)

147

148 %minimum major diameter of internal threads [m]

149 dinternal_thread=convlength(l.25, 'in', 'im');

150

151 %cross-sectional area through which internal thread shear occurs calculated

152 %from Fastenal Engineering and Design Support "Screw Thread Design"

153 %document using INCH units to match the equation. 12 is the threads per

154 %inch, 3 is the engagement length, 1.2386 is the minimum major diameter of

155 %external threads from efunda, 1.2019 is the maximum pitch diameter of the

156 %internal threads [in^2]

157 areainternalthreads=pi*12*3*1.2386*((l/(2*12))+0.57735*(1.2386-1.2019));

158

159 %convert cross-sectional area of internal threads to metric [m^2]

160 areainternalthreads=areainternalthreads*convlength(1, 'in', 'mI)A2;

161

162 %axial stress in screw per Shigley Eqn 8-8 [Pa]

163 axialstressscrew=F-d/(pi*(r-minorbolt^2-r_tiltinnerA2));

164

165 %bending stress at root of thread per Shigley Eqn 8-11 [Pa]

166 bending-stressscrew=(6*F-d)/(pi*dminorbolt*n-t*lead);

167

168 %transverse shear stress at center of thread root per Shigley Eqn 8-12 [Pa]

169 shearscrewthread=(3*F-d)/(pi*d minorbolt*nt*lead);

170

171 %shear stress at internal thread per Fastenal Eng & Design Support [Pa]

172 shearinternal=F-d/areainternalthreads;
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173

174 if axialstressscrew>screwtensile I bending-stressscrew>screwtensile...

175 11 shearscrewthread>screw shear 11 shear_internal>screwshear

176 display('Screw will not provide pre-load.')

177 else display('Screw will provide pre-load.')

178 end

179

180

181 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

182 % Check that taper will transmit torque

183 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

184

185 Ixx=484265.17; %from SolidWorks mass properties [lbm*mm^2]

186 Ixx=Ixx*convmass(l, 'lbm', 'kg')*(1/1000)^2; %convert to metric [kg*m^2]

187

188 Torque-tilt=Ixx*alpha-req_max; %max torque required [N*m]

189

190 if Mi*d_m<Torque-tilt

191 display('Taper will not transmit actuating torque.')

192 else display('Taper will transmit actuating torque.')

193 end

194

195

196 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

197 % Check that centripetal force will not unseat payload

198

199

200 %centripetal force at payload LCG [N]

201 Fcentripetal=mpayload*Lmoment* (omega-reqmax^2);

202

203 if Fcentripetal>M-a
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display('Taper will be unseated by centripetal force.')

else display('Taper will withstand centripetal force.')

end

% Check that shock bending moment will not unseat payload

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

213 Mshock=m-payload*L moment*shock;

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

%bending moment due to shock [N*m]

%taper retaining moment per integration in design notebook p.20 [N*m]

M-taperhold=4* ( (p*mu) /3) *L-interface*secd(taperangle) * (Linterface^2*..

(tand(taper-angle))^2-3*L_interface*rtilttapermax*...

tand(taper-angle)+3*r tilttaper-maxA2);

M_totalhold=abs (Mtaperhold) + (screw-tensile* (pi* (r-minorbolt^2-...

rtiltinner^2))*d-c);

if Mshock>Mtotalhold

display('Taper will not hold shock moment.')

else

display('Taper will hold shock moment.')

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Check that large diameter of taper will not yield

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

234 % Centroidal Moment of Inertia for Hollow Shaft [mA4]
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235 I_x=(pi/64)*(r-tilt-taper-max^4-r_tiltinner^4);

236

237 Mstress=m-payload*g*Lmoment; %bending moment [N*m]

238 c_d_tilt=rtilt-taper-max; %distance to neutral axis [m]

239

240 circumstress_d_tilt=-((r-tilt-taper-max^2+rtiltinner^2)*p)/...

241 (r-tilttaper-max^2-r_tiltinner^2); %circumfrential stress [Pa]

242 radialstress_d_tilt=-p; %radial stress [Pa]

243 bendstress_d_tilt=Mstress*c_d_tilt/Ix; %bending stress [Pa]

244

245 if bendstress_d_tilt>sigma-yield 11 circum_stress_d_tilt>sigma-yield ||

246 radialstress_d_tilt>sigma-yield

247 display('Tilt shaft will yield at large end of taper.')

248 else display('Tilt shaft will not yield at large end of taper.')

249 end

250

251

252 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

253 % Check that small diameter of taper will not yield

254 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

255

256 c_d_a=rtilt-taper-min; %distance to neutral axis [m]

257

258 circumstress_d_a=-((r-tilt-taper-min^2+r tilt_inner^2)*p)/ ...

259 (r-tilttaper-min^2-r_tilt_innerA2); %circumfrential stress [Pa]

260 radialstress_d_a=-p; %radial stress [Pa]

261 bendstress_d_a=Mstress*c_d-a/Ix; %bending stress [Pa]

262

263 if bendstress_d_a>sigma-yield 1 1 circumstress_d_a>sigma-yield I .

264 radialstress_d_a>sigma-yield

265 display('Tilt shaft will yield at small end of taper.')
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266 else display('Tilt shaft will not yield at small end of taper.')

267 end

268

269

270

271 % Check that open hub of flange will not yield

272 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

273

274 %flange thickness at large end of taper [m]

275 t-flange hubmin=rflange-outer-r tilttaper-max;

276

277 %inner flange radius at larage diameter taper [m]

278 r-flange-innermax=rtilt-taper-max;

279 r-flange-outermax=rflange-outer; %outer flange radius (constant) [m]

280

281 I_x_flange=(pi/64)*(r-flange-outerA4-r_flange_innermax^4); %[m^4]

282 cjflange=rflangeouter-max; %distance to neutral axis [m]

283

284 %circumfrential stress [Pa]

285 circumstress_r-flange-max=((r-flange-outer maxA2+rflange-inner-max^2)*p)/...

286 (r-flange-outer max^2-r_flange-inner-max^2);

287

288 radialstress_rflange-max=-p; %radial stress [Pa]

289 bendstress_r_flange-max=M stress*cflange/IUx-flange; %bending stress [Pa]

290

291 if bendstress_r-flange-max>sigma-yield I circumstress_r_flangemax...

292 >sigma_yield 11 radial_stress_rflange-max>sigma-yield

293 display('Flange will yield at open end of hub.')

294 else display('Flange will not yield at open end of hub.')

295 end

296
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297 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

298 % Check that closed hub of flange will not yield

299 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

300

301 %flange thickness at small end of taper [m]

302 tflangejhub max=rflange-outer-r tilt-taper-min;

303

304 %inner flange radius at larage diameter taper [m]

305 rflangeinner min=rtilttaperjmin;

306

307 I_x-flange-min=(pi/64)*(r-flange-outer^4-r-flange-innermin^4); %[m"4]

308

309 %circumfrential stress [Pa]

310 circumstress_r_flange-min=((rjflange-outer max^2+r-flange-innermin^2)*p)/

311 (rflangeouter max^2-r-flange-inner min^2);

312

313 radialstress_r_flange-min=-p; %radial stress [Pa]

314

315 %bending stress [Pa]

316 bendstress-r-flange min=Mstress*c-flange/I-x-flange-min;

317

318 if bendstress_r_flangejmin>sigma-yield 11 circumstress_r-flangemin...

319 >sigmayield 11 radial_stress_rflange-min>sigma-yield

320 display('Flange will yield at closed end of hub.')

321 else display('Flange will not yield at closed end of hub.')

322 end

323

324 %%%%%%%%%%%%%%%%

325 % End of Script

326 %%%%%%%%%%%%%%%%
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Appendix C

Shock Testing Analysis Mathematical

Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This script analyzes the shock rig confidence tests with damper

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clf

clear all

close all

clc

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 10 Degrees

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

15 % Create matrices for time and accelerometer
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16 TestlO = csvread('l0Degrees.csv',1,0);

17 Test10_time = TestlO([l:end], [1]);

18 TestlO_1 = TestlO([l:end], [3]);

19 TestlO_2 = TestlO([1:end], [6]);

20 TestlO_3 = TestlO([1:end], [9]);

21 TestlO_4 = TestlO([1:end], [12]);

22 TestlO_5 = TestlO([l:end], [15]);

23

24 % Determine window size for moving average by plotting the sum of absolute

25 % differences for different window sizes and finding the knee in the curve,

26 % where the window is smallest and the curve seems to flatten. Maximum

27 % window size is calculated from a 10 kHz sample rate over the duration of

28 % the impulse.

29 windowSizes = 1 : 1 : 89;

30 for k = 1 : length(windowSizes);

31 smoothedi = movmean(TestlO_, windowSizes(k));

32 sadl(k) = sum(abs(smoothedl - TestlO_1));

33 smoothed2 = movmean(Test1O_2, windowSizes(k));

34 sad2(k) = sum(abs(smoothed2 - TestlO_2));

35 smoothed3 = movmean(Test1O_3, windowSizes(k));

36 sad3(k) = sum(abs(smoothed3 - TestlO_3));

37 smoothed4 = movmean(TestlO_4, windowSizes(k));

38 sad4(k) = sum(abs(smoothed4 - TestlO_4));

39 smoothed5 = movmean(TestlO_5, windowSizes(k));

40 sad5(k) = sum(abs(smoothed5 - Test1O_5));

41 end

42

43 figure('Name','10 Degrees - SAD')

44 subplot(5,1,1);

45 plot(windowSizes, sadl, 'b*-', 'LineWidth', 2);

46 title('SAD 10-1')
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47 grid on;

48 xlabel('Window Size');

49 ylabel('Sum of Absolute Differences');

5o subplot(5,1,2);

51 plot(windowSizes, sad2, 'b*-', 'LineWidth', 2);

52 title('SAD 10-2')

53 grid on;

54 xlabel('Window Size');

55 ylabel('Sum of Absolute Differences');

56 subplot(5,1,3);

57 plot(windowSizes, sad3, 'b*-', 'LineWidth', 2);

58 title('SAD 10-3')

59 grid on;

6o xlabel('Window Size');

61 ylabel('Sum of Absolute Differences');

62 subplot(5,1,4);

63 plot(windowSizes, sad4, 'b*-', 'LineWidth', 2);

64 title('SAD 10-4')

65 grid on;

66 xlabel('Window Size');

67 ylabel('Sum of Absolute Differences');

68 subplot(5,1,5);

69 plot(windowSizes, sad5, 'b*-', 'LineWidth', 2);

70 title('SAD 10-5')

71 grid on;

72 xlabel('Window Size');

73 ylabel('Sum of Absolute Differences');

74

75 % Moving Average Filter

76 Test10_1smooth = smoothdata(Test10_1, 'movmean',44);

77 Test10_2smooth = smoothdata(Testl0_2,'movmean',44);
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78 Test10_3smooth = smoothdata(Testl0_3,'movmean',44);

79 Test10_4smooth = smoothdata(Testl0_4,'movmean',44);

8o Test10_5smooth = smoothdata(Testl0_5,'movmean',44);

81

82 % Find maximum accelerations of each run, then average

83 Max10_1 = max(abs(max(TestlO_1)),abs(min(TestlO_1)));

84 MaxlOsmooth = max(abs(max(TestlOlsmooth)),abs(min(TestlOsmooth)));

85 Max10_2 = max(abs(max(TestlO_2)),abs(min(TestlO_2)));

86 MaxlO_2smooth = max(abs(max(TestlO_2smooth)),abs(min(TestlO_2smooth)));

87 MaxlO_3 = max(abs(max(TestlO_3)),abs(min(Testl0_3)));

88 Max10_3smooth = max(abs(max(TestlO_3smooth)),abs(min(TestlO_3smooth)));

89 MaxlO_4 = max(abs(max(Testl0_4)),abs(min(TestlO_4)));

90 Max10_4smooth = max(abs(max(TestlO_4smooth)),abs(min(TestlO_4smooth)));

91 Max10_5 = max(abs(max(TestlO_5)),abs(min(TestlO_5)));

92 Max10_5smooth = max(abs(max(TestlO_5smooth)),abs(min(TestlO_5smooth)));

93

94 M_10 = [MaxiO_1 Maxl0_2 MaxiD_3 Max10_4 Maxl0_5];

95 M_10 = mean(M_10);

96

97 G_1 = [Maxl0_ismooth; Maxl0_2smooth; Maxl0_3smooth; Maxl0_4smooth; ...

98 Maxl0_5smooth];

99 G_10 = mean(G_1);

100

101 % Determine 95% confidence interval of data

102 pd1O = fitdist(G_1,'Normal');

103 cilO = paramci(pdlO);

104

105 % Plot raw and smooth data

106 figure('Name','10 Degrees')

107 plot(TestlOtime,TestlO_3,'-','LineWidth',1)

108 hold on
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109 plot(TestlOtime,TestlO_3smooth, '-','LineWidth',1)

11o hold on

1il xlim([-0.01 0.09])

112

113 title('Acceleration v. Time for 10 Degrees at 10 kHz')

114 xlabel('Time [s]')

115 ylabel('Acceleration [G-forces]')

116 legend('Data','Smoothed Data')

117 str = {'Max Measured Acceleration =' M_10,...

118 'Mean Moving Average Acceleration =' G_10};

119 annotation('textbox',[.5 .7 .1 .1],'String',str,'FitBoxToText','on');

120

121

122 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

123 % 20 Degrees

124 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

125

126 % Create matrices for time and accelerometer

127 Test20 = csvread('20Degrees.csv',1,0);

128 Test20_time = TestlO([l:end],[l]);

129 Test20_1 = Test20([1:end], [3]);

130 Test20_2 = Test20([l:end], [6]);

131 Test20_3 = Test20([1:end], [9]);

132 Test20_4 = Test20([1:end], [12]);

133 Test20_5 = Test20([1:end], [15]);

134

135 % Determine window size for moving average by plotting the sum of absolute

136 % differences for different window sizes and finding the knee in the curve,

137 % where the window is smallest and the curve seems to flatten. Maximum

138 % window size is calculated from a 10 kHz sample rate over the duration of

139 % the impulse.
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windowSizes = 1 : 1 : 89;

for k = 1 : length(windowSizes);

142 smoothedi = movmean(Test20_l, windowSizes(k));

sadl(k) =

smoothed2

sad2(k) =

smoothed3

sad3(k) =

smoothed4

sad4(k) =

smoothed5

sad5(k) =

sum(abs(smoothedl -

= movmean(Test20_2,

sum(abs(smoothed2 -

= movmean(Test20_3,

sum(abs(smoothed3 -

= movmean(Test20_4,

sum(abs(smoothed4 -

= movmean(Test20_5,

sum(abs(smoothed5 -

Test20_1));

windowSizes(k));

Test20_2));

windowSizes(k));

Test20_3));

windowSizes(k));

Test20_4));

windowSizes(k));

Test20_5));

end

figure('Name','20 Degrees - SAD')

subplot(5,1,1);

plot(windowSizes, sadl, 'b*-', 'LineWidth', 2);

title('SAD 20-1')

grid on;

xlabel('Window Size');

ylabel('Sum of Absolute Differences');

subplot (5,1,2);

plot(windowSizes, sad2, 'b*-', 'LineWidth', 2);

title('SAD 20-2')

grid on;

xlabel('Window Size');

ylabel('Sum of Absolute Differences');

subplot(5,1,3);

plot(windowSizes, sad3, 'b*-', 'LineWidth', 2);

title('SAD 20-3')

grid on;
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171 xlabel('Window Size');

172 ylabel('Sum of Absolute Differences');

173 subplot(5,1,4);

174 plot(windowSizes, sad4, 'b*-', 'LineWidth', 2);

175 title('SAD 20-4')

176 grid on;

177 xlabel('Window Size');

178 ylabel('Sum of Absolute Differences');

179 subplot(5,1,5);

180 plot(windowSizes, sad5, 'b*-', 'LineWidth', 2);

181 title('SAD 20-5')

182 grid on;

183 xlabel('Window Size');

184 ylabel('Sum of Absolute Differences');

185

186 % Moving Average Filter

187 Test20_1smooth = smoothdata(Test20_l,'movmean',44);

188 Test20_2smooth = smoothdata(Test20_2,'movmean',44);

189 Test20_3smooth = smoothdata(Test20_3,'movmean',44);

190 Test20_4smooth = smoothdata(Test20_4,'movmean',44);

191 Test20_5smooth = smoothdata(Test20_5,'movmean',44);

192

193 % Find maximum accelerations of each run, then average

194 Max20_1 = max(abs(max(Test201) ),abs(min(Test20_l)));

195 Max20_1smooth = max(abs(max(Test20_lsmooth)),abs(min(Test2Olsmooth)));

196 Max20_2 = max(abs(max(Test20_2)),abs(min(Test2O_2)));

197 Max20_2smooth = max(abs(max(Test20_2smooth)),abs(min(Test2O_2smooth)));

198 Max20_3 = max(abs(max(Test20_3)),abs(min(Test2O_3)));

199 Max20_3smooth = max(abs(max(Test20_3smooth)),abs(min(Test2O_3smooth)));

200 Max20_4 = max(abs(max(Test20_4) ),abs(min(Test20_4)));

201 Max20_4smooth = max(abs(max(Test20_4smooth)),abs(min(Test2O_4smooth)));
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202 Max20_5 = max(abs(max(Test20_5)),abs(min(Test20_5)));

203 Max20_5smooth = max(abs(max(Test20_5smooth) ), abs(min(Test20_5smooth)));

204

205 M_20 = [Max20_l Max20_2 Max20_3 Max20_4 Max20_5];

206 M_20 = mean(M_20);

207

208 G_2 = [Max20_lsmooth; Max20_2smooth; Max20_3smooth; Max20_4smooth; ...

209 Max20_5smooth];

210 G_20 = mean(G_2);

211

212 % Determine 95% confidence interval of data

213 pd20 = fitdist(G2,'Normal');

214 ci20 = paramci(pd20);

215

216 % Plot raw and smooth data

217 figure('Name','20 Degrees')

218 plot(Test20_time,Test2O_3,'-','LineWidth',1)

219 hold on

220 plot(Test20_time,Test2O_3smooth,'-','LineWidth',1)

221 hold on

222 xlim([-0.01 0.09])

223

224 title('Acceleration v. Time for 20 Degrees at 10 kHz')

225 xlabel('Time [s]')

226 ylabel('Acceleration [G-forces]')

227 legend('Raw Data','Smoothed Data')

228 str = {'Max Measured Acceleration =' M_20,...

229 'Mean Moving Average Acceleration =' G_201;

230 annotation('textbox',[.5 .7 .1 .1],'String',str,'FitBoxToText','on');

231

232
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233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

% Determine window size for moving

% differences for different window

% where the window is smallest and

% window size is calculated from a

% the impulse.

windowSizes = 1 : 1 : 89;

252 for k = 1 :

average by plotting the sum of absolute

sizes and finding the knee in the curve,

the curve seems to flatten. Maximum

10 kHz sample rate over the duration of

length(windowSizes);

smoothedl

sadl(k) =

smoothed2

sad2(k) =

smoothed3

sad3(k) =

smoothed4

sad4(k) =

smoothed5

sad5(k) =

= movmean(Test30_l,

sum(abs(smoothedl -

= movmean(Test30_2,

sum(abs (smoothed2 -

= movmean(Test30_3,

sum(abs(smoothed3 -

= movmean(Test30_4,

sum(abs (smoothed4 -

= movmean(Test30_5,

sum(abs (smoothed5 -

windowSizes(k));

Test30_1));

windowSizes(k));

Test30_2));

windowSizes(k));

Test30_3));

windowSizes(k));

Test30_4));

windowSizes(k));

Test30_5));
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% 30 Degrees

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Create matrices for time and accelerometer

Test30 = csvread('30Degrees.csv',1,0);

Test30_time = Test30([1:end],[1]);

Test30_1 = Test30([l:end], [3]);

Test30_2 = Test30([l:end], [6]);

Test30_3 = Test30([l:endl],[9]);

Test30_4 = Test30([l:end], [12]);

Test30_5 = Test30([1:end], [15]);

253

254

255

256

257

258

259

260

261

262

263 end



264

265 figure('Name','30 Degrees - SAD')

266 subplot(5,1,1);

267 plot(windowSizes, sadl, 'b*-', 'LineWidth', 2);

268 title('SAD 30-1')

269 grid on;

270 xlabel('Window Size');

271 ylabel('Sum of Absolute Differences');

272 subplot(5,1,2);

273 plot(windowSizes, sad2, 'b*-', 'LineWidth', 2);

274 title('SAD 30-2)

275 grid on;

276 xlabel('Window Size');

277 ylabel('Sum of Absolute Differences');

278 subplot(5,1,3);

279 plot(windowSizes, sad3, 'b*-', 'LineWidth', 2);

280 title('SAD 30-3')

281 grid on;

282 xlabel('Window Size');

283 ylabel('Sum of Absolute Differences');

284 subplot(5,1,4);

285 plot(windowSizes, sad4, 'b*-', 'LineWidth', 2);

286 title('SAD 30-4')

287 grid on;

288 xlabel('Window Size');

289 ylabel('Sum of Absolute Differences');

290 subplot(5,l,5);

291 plot(windowSizes, sad5, 'b*-', 'LineWidth', 2);

292 title('SAD 30-5')

293 grid on;

294 xlabel('Window Size');
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295 ylabel('Sum of Absolute Differences');

296

297 % Moving Average Filter

298 Test30_lsmooth = smoothdata(Test30_l,'movmean',52);

299 Test30_2smooth = smoothdata(Test30_2,'movmean',52);

3o Test30_3smooth = smoothdata(Test30_3,'movmean',52);

301 Test30_4smooth = smoothdata(Test30_4, 'movmean',52);

302 Test30_5smooth = smoothdata(Test30_5,'movmean',52);

303

304 % Find maximum accelerations of each run, then average

305 Max30_1 = max(abs(max(Test30_l)),abs(min(Test3Ol)));

306 Max30_lsmooth = max(abs(max(Test30_lsmooth)),abs(min(Test30_ssmooth)));

307 Max30_2 = max(abs(max(Test30_2)),abs(min(Test3O_2)));

308 Max30_2smooth = max(abs(max(Test30_2smooth)),abs(min(Test3O_2smooth)));

309 Max30_3 = max(abs(max(Test30_3)),abs(min(Test3O_3)));

310 Max30_3smooth = max(abs(max(Test30_3smooth)),abs(min(Test3O_3smooth)));

311 Max30_4 = max(abs(max(Test30_4)),abs(min(Test3O_4)));

312 Max30_4smooth = max(abs(max(Test30_4smooth)),abs(min(Test3O_4smooth)));

313 Max30_5 = max(abs(max(Test30_5)),abs(min(Test3O_5)));

314 Max30_5smooth = max(abs(max(Test30_5smooth)),abs(min(Test3O_5smooth)));

315

316 M_30 = (Max30_1 Max30_2 Max30_3 Max30_4 Max30_5];

317 M_30 = mean(M_30);

318

319 G_3 = [Max30_lsmooth; Max30_2smooth; Max30_3smooth; Max30_4smooth; ...

320 Max30_5smooth];

321 G_30 = mean(G_3);

322

323 % Determine 95% confidence interval of data

324 pd30 = fitdist(G_3,'Normal');

325 ci30 = paramci(pd30);
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326

327 % Plot raw and smooth data

328 figure('Name','30 Degrees')

329 plot(Test30_time,Test30_3,'-','LineWidth',1)

330 hold on

331 plot(Test30_time,Test30-3smooth,'-','LineWidth',1)

332 hold on

333 xlim([-0.01 0.09])

334

335 title('Acceleration v. Time for 30 Degrees at 10 kHz')

336 xlabel('Time [s]')

337 ylabel('Acceleration [G-forces]')

338 legend('Raw Data','Smoothed Data')

339 str = {'Max Measured Acceleration =' M_30,...

340 'Mean Moving Average Acceleration =' G_30};

341 annotation('textbox',[.5 .7 .1 .1],'String',str,'FitBoxToText','on');

342

343

344 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

345 % 40 Degrees

346 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

347

348 % Create matrices for time and accelerometer

349 Test40 = csvread('40Degrees.csv',1,0);

350 Test40_time = Test40([l:end],[l]);

351 Test40_1 = Test40([1:end], [3]);

352 Test40_2 = Test40([1:end],[6]);

353 Test40_3 = Test40([l:end], [9]);

354 Test40_4 = Test40([1:end], [12]);

355 Test40_5 = Test40([1:end], [15]);

356
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357 % Determine window size for moving average by plotting the sum of absolute

358 % differences for different window sizes and finding the knee in the curve,

359 % where the window is smallest and the curve seems to flatten. Maximum

360 % window size is calculated from a 10 kHz sample rate over the duration of

361 % the impulse.

362 windowSizes = 1 : 1 : 89;

363 for k = 1 : length(windowSizes);

364 smoothedi = movmean(Test40_l, windowSizes(k));

365 sadl(k) = sum(abs(smoothedl - Test40_l));

366 smoothed2 = movmean(Test40_2, windowSizes(k));

367 sad2(k) = sum(abs(smoothed2 - Test40_2));

368 smoothed3 = movmean(Test40_3, windowSizes(k));

369 sad3(k) = sum(abs(smoothed3 - Test40_3));

370 smoothed4 = movmean(Test40_4, windowSizes(k));

371 sad4(k) = sum(abs(smoothed4 - Test40_4));

372 smoothed5 = movmean(Test40_5, windowSizes(k));

373 sad5(k) = sum(abs(smoothed5 - Test40_5));

374 end

375

376 figure('Name','40 Degrees - SAD')

377 subplot(5,1,1);

378 plot(windowSizes, sadl, 'b*-', 'LineWidth', 2);

379 title('SAD 40-1')

380 grid on;

381 xlabel('Window Size');

382 ylabel('Sum of Absolute Differences');

383 subplot(5,1,2);

384 plot(windowSizes, sad2, 'b*-', 'LineWidth', 2);

385 title('SAD 40-2')

386 grid on;

387 xlabel('Window Size');
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ylabel('Sum of Absolute Differences');

subplot (5,1,3);

plot(windowSizes, sad3, 'b*-', 'LineWi

title('SAD 40-3')

grid on;

xlabel('Window Size');

ylabel('Sum of Absolute Differences');

subplot (5,1,4);

plot(windowSizes, sad4, 'b*-', 'LineWi

title('SAD 40-4')

grid on;

xlabel('Window Size');

ylabel('Sum of Absolute Differences');

subplot(5,1,5);

plot(windowSizes, sad5, 'b*-', 'LineWi

title('SAD 40-5')

grid on;

xlabel('Window Size');

ylabel('Sum of Absolute Differences');

% Moving Average

Test40_lsmooth =

Test40_2smooth =

Test40_3smooth =

Test40_4smooth =

Test40_5smooth =

Filter

smoothdata(Test40_l,

smoothdata(Test40_2,

smoothdata (Test40_3,

smoothdata(Test40_4,

smoothdata(Test40_5,

% Find maximum accelerations of each run, then average

Max40_1 = max(abs(max(Test40_l)),abs(min(Test40_1)));

Max40_lsmooth = max(abs(max(Test4O_1smooth) ) ,abs(min(Test40_1smooth)));

Max40_2 = max(abs(max(Test40-2)),abs(min(Test4O_2)));

92

dth', 2);

dth', 2);

dth', 2);

'movmean'

'movmean'

'movmean'

'movmean'

'movmean'

52)

52);

52);

52);

52);

414

415

416

417

418



419 Max40_2smooth = max(abs(max(Test402smooth) ) ,abs(min(Test40_2smooth)));

420 Max40_3 = max(abs(max(Test40_3)) ,abs(min(Test40_3)));

421 Max40_3smooth = max(abs(max(Test40_3smooth)),abs(min(Test4O_3smooth)));

422 Max40_4 = max(abs(max(Test40_4)),abs(min(Test4O_4)));

423 Max40_4smooth = max(abs(max(Test40_4smooth)),abs(min(Test4O_4smooth)));

424 Max40_5 = max(abs(max(Test40_5)),abs(min(Test40_5)));

425 Max40_5smooth = max(abs(max(Test40_5smooth)),abs(min(Test4O_5smooth)));

426

427 M_40 = [Max40_1 Max40_2 Max40_3 Max40_4 Max40_5];

428 M_40 = mean(M_40);

429

430 G_4 = [Max40_lsmooth; Max40_2smooth; Max40_3smooth; Max40_4smooth;...

431 Max40_5smooth];

432 G_40 = mean(G_4);

433

434 % Determine 95% confidence interval of data

435 pd40 = fitdist(G_4,'Normal');

436 ci40 = paramci(pd40);

437

438 % Plot raw and smooth data

439 figure('Name','40 Degrees')

440 plot(Test40_time,Test40_3,'-','LineWidth',l)

441 hold on

442 plot(Test40_time,Test4O_3smooth,'-','LineWidth',1)

443 hold on

444 xlim([-0.01 0.09])

445

446 title('Acceleration v. Time for 40 Degrees at 10 kHz')

447 xlabel('Time [s]')

448 ylabel('Acceleration [G-forces]')

449 legend('Raw Data','Smoothed Data')
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450 str = { 'Max Measured Acceleration =' M_40, ...

451 'Mean Moving Average Acceleration =' G_40};

452 annotation('textbox',[.5 .7 .1 .1],'String',str,'FitBoxToText','on');

453

454

455

456 % 50 Degrees

457 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

458

459 % Create matrices for time and accelerometer

46o Test50 = csvread('50Degrees.csv',1,0);

461 Test50_time = Test50([l:end], [1]);

462 Test50_1 = Test50([1:end], [3]);

463 Test50_2 = Test50([1:end], [6]);

464 Test50_3 = Test50([l:end], [9]);

465 Test50_4 = Test50([1:end],[12]);

466 Test50_5 = Test50([1:end], [15]);

467

468 % Determine window size for moving average by plotting the sum of absolute

469 % differences for different window sizes and finding the knee in the curve,

470 % where the window is smallest and the curve seems to flatten. Maximum

471 % window size is calculated from a 10 kHz sample rate over the duration of

472 % the impulse.

473 windowSizes = 1 : 1 : 89;

474 for k = 1 : length(windowSizes);

475 smoothedi = movmean(Test50_l, windowSizes(k));

476 sadl(k) = sum(abs(smoothedl - Test50_l));

477 smoothed2 = movmean(Test50_2, windowSizes(k));

478 sad2(k) = sum(abs(smoothed2 - Test50_2));

479 smoothed3 = movmean(Test50_3, windowSizes(k));

480 sad3(k) = sum(abs(smoothed3 - Test50_3));
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481 smoothed4 = movmean(Test50_4, windowSizes(k));

482 sad4(k) = sum(abs(smoothed4 - Test50_4));

483 smoothed5 = movmean(Test50_5, windowSizes(k));

484 sad5(k) = sum(abs(smoothed5 - Test50_5));

485 end

486

487 figure('Name','50 Degrees - SAD')

488 subplot(5,1,1);

489 plot(windowSizes, sadl, 'b*-', 'LineWidth', 2);

490 title('SAD 50-l')

491 grid on;

492 xlabel('Window Size');

493 ylabel('Sum of Absolute Differences');

494 subplot(5,1,2);

495 plot(windowSizes, sad2, 'b*-', 'LineWidth', 2);

496 title('SAD 50-2')

497 grid on;

498 xlabel('Window Size');

499 ylabel('Sum of Absolute Differences');

5oo subplot(5,1,3);

5o plot(windowSizes, sad3, 'b*-', 'LineWidth', 2);

502 title('SAD 50-3')

503 grid on;

504 xlabel('Window Size');

5o5 ylabel('Sum of Absolute Differences');

506 subplot(5,1,4);

507 plot(windowSizes, sad4, 'b*-', 'LineWidth', 2);

5o8 title('SAD 50-4')

509 grid on;

51o xlabel('Window Size');

511 ylabel('Sum of Absolute Differences');
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512 subplot(5,1,5);

513 plot(windowSizes, sad5, 'b*-', 'LineWidth', 2);

514 title('SAD 50-5')

515 grid on;

516 xlabel('Window Size');

517 ylabel('Sum of Absolute Differences');

518

519 % Moving Average Filter

520 Test50_lsmooth = smoothdata(Test50_l,'movmean',52);

521 Test50_2smooth = smoothdata(Test50_2,'movmean',52);

522 Test50_3smooth = smoothdata(Test50_3,'movmean',52);

523 Test50_4smooth = smoothdata(Test50_4,'movmean',52);

524 Test50_5smooth = smoothdata(Test50_5,'movmean',52);

525

526 % Find maximum accelerations of each run, then average

527 Max50_1 = max(abs(max(Test50_l)),abs(min(Test5O_1)));

528 Max50_1smooth = max(abs(max(Test50lsmooth)),abs(min(Test5O_lsmooth)));

529 Max50_2 = max(abs(max(Test50_2)),abs(min(Test5O_2)));

530 Max50_2smooth = max(abs(max(Test50_2smooth)),abs(min(Test5O_2smooth)));

531 Max50_3 = max(abs(max(Test50_3)),abs(min(Test5O_3)));

532 Max50_3smooth = max(abs(max(Test50_3smooth)),abs(min(Test5O_3smooth)));

533 Max50-4 = max(abs(max(Test50_4)),abs(min(Test5O_4)));

534 Max50_4smooth = max(abs(max(Test50_4smooth)),abs(min(Test5O_4smooth)));

535 Max50_5 = max(abs(max(Test50_5)),abs(min(Test5O_5)));

536 Max50_5smooth = max(abs(max(Test50_5smooth)),abs(min(Test5O_5smooth)));

537

538 M_50 = [Max50_1 Max50_2 Max50_3 Max50_4 Max50_5];

539 M_50 = mean(M_50);

540

541 G_5 = [Max50_lsmooth; Max50_2smooth; Max50_3smooth; Max50_4smooth;...

542 Max50_5smooth];
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543 G_50 = mean(G_5);

544

545 % Determine 95% confidence interval of data

546 pd50 = fitdist(G_5,'Normal');

547 ci50 = paramci(pd50);

548

549 % Plot raw and smooth data

55o figure('Name','50 Degrees')

551 plot(Test50_time,Test50_3,'-','LineWidth',l)

552 hold on

553 plot(Test50_time,Test50_3smooth,'-','LineWidth',1)

554 hold on

5ss xlim([-0.01 0.09])

556

557 title('Acceleration v. Time for 50 Degrees at 10 kHz')

558 xlabel('Time [s]')

559 ylabel('Acceleration [G-forces]')

560 legend('Raw Data','Smoothed Data')

561 str = { 'Max Measured Acceleration =' M_50,...

562 'Mean Moving Average Acceleration =' G_50};

563 annotation('textbox',[.5 .7 .1 .1],'String',str,'FitBoxToText','on');

564

565

566 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

567 % 60 Degrees

568 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

569

570 % Create matrices for time and accelerometer

571 Test60 = csvread('60Degrees.csv',1,0);

572 Test6Otime = Test60([l:end],[l]);

573 Test60_1 = Test60([l:end], [3]);
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Test6O_2 = Test6O([l:endl,[6]);

Test6O_3 = Test6O([l:end], [9]);

Test6O_4 = Test6O([1:end], [12]);

Test6O_5 = Test60([1:end], [15]);

574

575

576

577

578

579

580

581

582

583

584

585

586 smoothedi = movmean(Test60_l, windowSizes(k));

sadl(k) =

smoothed2

sad2(k) =

smoothed3

sad3(k) =

smoothed4

sad4(k) =

smoothed5

sad5(k) =

sum(abs(smoothedl

= movmean(Test6O-

sum(abs(smoothed2

= movmean(Test60_

sum(abs(smoothed3

= movmean(Test60_

sum (abs (smoothed4

= movmean(Test60_

sum(abs(smoothed5

end

figure('Name','60 Degrees - SAD

subplot (5,1,1);

plot(windowSizes, sadi, 'b*-',

title('SAD 60-l')

grid on;

xlabel('Window Size');

ylabel('Sum of Absolute Differe

- Test60_1));

2, windowSizes(k));

- Test6O-2));

3, windowSizes(k));

- Test60_3));

4, windowSizes(k));

- Test6O_4));

5, windowSizes(k));

- Test6O_5));

')

'LineWidth', 2);

nces');
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% Determine window size for moving average by plotting the sum of absolute

% differences for different window sizes and finding the knee in the curve,

% where the window is smallest and the curve seems to flatten. Maximum

% window size is calculated from a 10 kHz sample rate over the duration of

% the impulse.

windowSizes = 1 : 1 : 89;

for k = 1 : length(windowSizes);

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604



605 subplot(5,1,2);

606 plot(windowSizes, sad2, 'b*-', 'LineWidth', 2);

607 title('SAD 60-2')

608 grid on;

609 xlabel('Window Size');

610 ylabel('Sum of Absolute Differences');

611 subplot(5,1,3);

612 plot(windowSizes, sad3, 'b*-', 'LineWidth', 2);

613 title('SAD 60-3')

614 grid on;

615 xlabel('Window Size');

616 ylabel('Sum of Absolute Differences');

617 subplot(5,1,4);

618 plot(windowSizes, sad4, 'b*-', 'LineWidth', 2);

619 title('SAD 60-4')

620 grid on;

621 xlabel('Window Size');

622 ylabel('Sum of Absolute Differences');

623 subplot(5,1,5);

624 plot(windowSizes, sad5, 'b*-', 'LineWidth', 2);

625 title('SAD 60-5')

626 grid on;

627 xlabel('Window Size');

628 ylabel('Sum of Absolute Differences');

629

630 % Moving Average Filter

631 Test60_ismooth = smoothdata(Test60_l,'movmean',52);

632 Test60_2smooth = smoothdata(Test60_2,'movmean',52);

633 Test60_3smooth = smoothdata(Test60_3,'movmean',52);

634 Test60_4smooth = smoothdata(Test60_4,'movmean',52);

635 Test60_5smooth = smoothdata(Test60_5,'movmean',52);
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636

637 % Find maximum accelerations of each run, then average

638 Max60_1 = max(abs(max(Test60_l)),abs(min(Test60_1)));

639 Max60_1smooth = max(abs(max(Test60lsmooth)),abs(min(Test6O_lsmooth)));

640 Max6O_2 = max(abs(max(Test60_2)),abs(min(Test60_2)));

641 Max6O_2smooth = max(abs(max(Test60_2smooth)),abs(min(Test6O_2smooth)));

642 Max60_3 = max(abs(max(Test60_3)),abs(min(Test6O_3)));

643 Max60_3smooth = max(abs(max(Test60_3smooth)),abs(min(Test6O_3smooth)));

644 Max60_4 = max(abs(max(Test60_4)),abs(min(Test6O_4)));

645 Max60_4smooth = max(abs(max(Test60_4smooth)),abs(min(Test60_4smooth)));

646 Max60_5 = max(abs(max(Test60_5)),abs(min(Test6O_5)));

647 Max60_5smooth = max(abs(max(Test60_5smooth)),abs(min(Test6O_5smooth)));

648

649 M_60 = [Max60_l Max60_2 Max60_3 Max60_4 Max60_5];

650 M_60 = mean(M_60);

651

652 G_6 = [Max60_1smooth; Max60_2smooth; Max60_3smooth; Max60_4smooth;...

653 Max60_5smooth];

654 G_60 = mean(G_6);

655

656 % Determine 95% confidence interval of data

657 pd60 = fitdist(G_6,'Normal');

658 ci60 = paramci(pd60);

659

660 % Plot raw and smooth data

661 figure('Name','60 Degrees')

662 plot(Test60_time,Test6O_3,'-','LineWidth',l)

663 hold on

664 plot(Test60_time,Test6O_3smooth,'-','LineWidth',l)

665 hold on

666 xlim([-0.01 0.09])

100



667

668 title('Acceleration v. Time for 60 Degrees at 10 kHz')

669 xlabel('Time [sI')

670 ylabel('Acceleration [G-forces]')

671 legend('Raw Data','Smoothed Data')

672 str = {'Max Measured Acceleration =' M_60,...

673 'Mean Moving Average Acceleration =' G_601;

674 annotation('textbox',[.5 .7 .1 .1],'String',str,'FitBoxToText','on');

675

676

677 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

678 % 70 Degrees

679 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

680

681 % Create matrices for time and accelerometer

682 Test70 = csvread('70Degrees.csv',1,0);

683 Test70_time = Test70([1:end],[1]);

684 Test70_1 = Test70([1:end], [3]);

685 Test70_2 = Test70([l:end], [6]);

686 Test70_3 = Test70([1:end], [9]);

687 Test70_4 = Test70([1:end], [12]);

688 Test70_5 = Test70([1:end], [15]);

689

690 % Determine window size for moving average by plotting the sum of absolute

691 % differences for different window sizes and finding the knee in the curve,

692 % where the window is smallest and the curve seems to flatten. Maximum

693 % window size is calculated from a 10 kHz sample rate over the duration of

694 % the impulse.

695 windowSizes = 1 : 1 : 89;

696 for k = 1 : length(windowSizes);

697 smoothedl = movmean(Test72_1, windowSizes(k));
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sum(abs(smoothedi

= movmean(Test70_

sum (abs (smoothed2

= movmean(Test70_

sum (abs (smoothed3

= movmean(Test70_

sum (abs (smoothed4

= movmean(Test70_

sum(abs(smoothed5

sadl(k) =

smoothed2

sad2(k) =

smoothed3

sad3(k) =

smoothed4

sad4(k) =

smoothed5

sad5(k) =

figure('Name','70 Degrees - SAD')

subplot (5,1,1);

plot(windowSizes, sadl, 'b*-', 'LineWi

title('SAD 70-l')

grid on;

xlabel('Window Size');

ylabel('Sum of Absolute Differences');

subplot (5,1,2);

plot(windowSizes, sad2, 'b*-', 'LineWi

title('SAD 70-2')

grid on;

xlabel('Window Size');

ylabel('Sum of Absolute Differences');

subplot(5,1,3);

plot(windowSizes, sad3, 'b*-', 'LineWi

title('SAD 70-3')

grid on;

xlabel('Window Size');

ylabel('Sum of Absolute Differences');

subplot (5,1,4);

102

- Test70_1));

.2, windowSizes(k));

- Test70_2));

3, windowSizes(k));

- Test70_3));

4, windowSizes(k));

- Test70_4));

.5, windowSizes(k));

- Test70_5));

end

dth', 2);

dth', 2);

dth', 2);



729 plot(windowSizes, sad4, 'b*-', 'LineWidth', 2);

730 title('SAD 70-4')

731 grid on;

732 xlabel('Window Size');

733 ylabel('Sum of Absolute Differences');

734 subplot(5,1,5);

735 plot(windowSizes, sad5, 'b*-', 'LineWidth', 2);

736 title('SAD 70-5')

737 grid on;

738 xlabel('Window Size');

739 ylabel('Sum of Absolute Differences');

740

741 % Moving Average Filter

742 Test70_1smooth = smoothdata(Test70_l,'movmean',52);

743 Test70_2smooth = smoothdata(Test70_2, 'movmean',52);

744 Test70_3smooth = smoothdata(Test70_3,'movmean',52);

745 Test70_4smooth = smoothdata(Test70_4,'movmean',52);

746 Test70_5smooth = smoothdata(Test70_5,'movmean',52);

747

748 % Find maximum accelerations of each run, then average

749 Max70_1 = max(abs(max(Test70_l)),abs(min(Test7O_1)));

750 Max70_1smooth = max(abs(max(Test70_lsmooth)),abs(min(Test7Olsmooth)));

751 Max70_2 = max(abs(max(Test70_2)),abs(min(Test7O_2)));

752 Max70_2smooth = max(abs(max(Test70_2smooth)),abs(min(Test7O_2smooth)));

753 Max70_3 = max(abs(max(Test70_3)),abs(min(Test7O_3)));

754 Max70_3smooth = max(abs(max(Test70_3smooth)),abs(min(Test7O-3smooth)));

755 Max70_4 = max(abs(max(Test70_4)),abs(min(Test7O_4)));

756 Max70_4smooth = max(abs(max(Test70_4smooth)),abs(min(Test7O_4smooth)));

757 Max70_5 = max(abs(max(Test70_5)),abs(min(Test7O_5)));

758 Max70_5smooth = max(abs(max(Test70_5smooth)),abs(min(Test7O_5smooth)));

759
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760 M_70 = [Max70_1 Max70_2 Max70_3 Max70_4 Max70_5];

761 M_70 = mean (M_7 0);

762

763 G_7 = [Max70_lsmooth; Max70_2smooth; Max70_3smooth; Max70_4smooth;...

764 Max70_5smooth];

765 G_70 = mean(G_7);

766

767 % Determine 95% confidence interval of data

768 pd70 = fitdist(G_7,'Normal');

769 ci70 = paramci(pd70);

770

771 % Plot raw and smooth data

772 figure('Name','70 Degrees')

773 plot(Test70_time,Test7O_3,'-','LineWidth',1)

774 hold on

775 plot(Test70_time,Test7O_3smooth,'-','LineWidth',1)

776 hold on

777 xlim([-0.01 0.09])

778

779 title('Acceleration v. Time for 70 Degrees at 10 kHz')

780 xlabel('Time [s]')

781 ylabel('Acceleration [G-forces]')

782 legend('Raw Data','Smoothed Data')

783 str = {'Max Measured Acceleration =' M_70,...

784 'Mean Moving Average Acceleration =' G_70};

785 annotation('textbox',[.5 .7 .1 .1],'String',str,'FitBoxToText','on');

786

787

788 % Plot the acceleration versus angle

789

790 Angle = [10; 20; 30; 40; 50; 60; 70];
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791 Acc = [G_10; G_20; G_30; G_40; G_50; G_60; G_70];

792 myfit = fit(Angle,Acc,'poly2');

793

794 figure('Name','Acceleration v. Angle')

795 plot(Angle,Acc,'+')

796 hold on

797 plot(myfit)

798 hold on

799 title('Acceleration v. Time for 70 Degrees at 10 kHz')

8oo xlabel('Angle [deg]')

8o1 ylabel('Acceleration [G-forces]')

802 legend('Location','northwest','Mean Maximum Accelerations')
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Appendix D

Full Scale Testing Analysis

Mathematical Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This script plots the results of the full scale drop test

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clf

clear all

close all

clc

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Run 1 Results with 70G and 50OG Sensors

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

15 % Create matrices for time, 70G data, and 500G data
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10

11

12

13

14



16 Runi = csvread('Runl.csv',1,0);

17 Runitime = Runl([1:end],[1]);

18 Runltime = Runitime - Runitime(1,1);

19 Run1_70 = Runl([l:end], [2]);

20 Runi_500 = Run1([1:end], [3]);

21

22 % Determine window size for moving average by plotting the sum of absolute

23 % differences for different window sizes and finding the knee in the curve,

24 % where the window is smallest and the curve seems to flatten. Maximum

25 % window size is calculated from a 10 kHz sample rate over the duration of

26 % the impulse.

27 windowSizes = 1 : 1 : 26;

28 for k = 1 : length(windowSizes);

29 smoothed70 = movmean(Runl_70, windowSizes(k));

30 sad70(k) = sum(abs(smoothed70 - Runl_70));

31 smoothed500 = movmean(Run1_500, windowSizes(k));

32 sad500(k) = sum(abs(smoothed500 - Runl_500));

33 end

34

35 figure('Name','Run 1 - SAD')

36 %subplot(2,1,1);

37 %plot(windowSizes, sad70, 'b*-', 'LineWidth', 2);

38 %title('SAD Run 1 70G')

39 %grid on;

40 %xlabel('Window Size');

41 %ylabel('Sum of Absolute Differences');

42 %subplot(2,1,2);

43 plot(windowSizes, sad500, 'b*-', 'LineWidth', 2);

44 title('SAD Run 1 50OG')

45 grid on;

46 xlabel('Window Size');

108



47 ylabel('Sum of Absolute Differences');

48

49 % Moving Average Filter

5o Runi_70smooth = smoothdata(Runl_70,'movmean',4);

Si Runi_500smooth smoothdata(Runl_500,'movmean',7);

52

53 % Find maximum accelerations captured by each sensor

54 Max_70_1 = max(abs(max(Runl_70)),abs(min(Runl_70)));

55 Max_500_1 = max(abs(max(Runl_500)),abs(min(Run1_500)));

56 Max_70_1_smooth = max(abs(max(Runl_70smooth)),abs(min(Runl_70smooth)));

57 Max_500_1_smooth max(abs(max(Runl_500smooth)),abs(min(Runl_500smooth)));

58

59 % Plot raw and smooth data on single figure each

60 % figure('Name','Run 1 - 70G Sensor')

61 % plot(Runltime,Runl_70,'-o','LineWidth',l,'color','k')

62 % hold on

63 % plot(Runltime,Run1_70smooth, '-d','LineWidth',l,'color','r')

64 % hold on

65 %

66 % title('Acceleration v. Time for Full Scale Drop Test from 0.04445 m')

67 % xlabel('Time [s]')

68 % ylabel('Acceleration [G-forces]')

69 % legend('70G Sensor Data','70G Moving Average')

70 % str = {'Max Measured Acceleration 70G=' Max_70_1,...

71 % 'Max Moving Average Acceleration 70G=' Max_70_1_smooth};

72 % annotation('textbox',[.2 .75 .1 .1],'String',str,'FitBoxToText','on');

73

74 figure('Name','Run 1 - 500G')

75 plot(Runltime,Runl_500,'-o','LineWidth',l,'color','k')

76 hold on

77 plot(Runltime,Runl_500smooth,'-d','LineWidth',l,'color','r')

109



78 hold on

79

8o title('Acceleration v. Time for Full Scale Drop Test from 0.04445 m')

81 xlabel('Time [s]')

82 ylabel('Acceleration [G-forces]')

83 legend('500G Sensor Data','500G Moving Average')

84 str = {'Max Measured Acceleration 500G=' Max_500_1,...

85 'Max Moving Average Acceleration 500G=' Max_500_1_smooth};

86 annotation('textbox',[.2 .75 .1 .1],'String',str,'FitBoxToText','on');

87

88

89 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

90 % Run 2 Results with 70G and 500G Sensors

91 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

92

93 % Create matrices for time, 70G data, and 500G data

94 Run2 = csvread('Run2.csv',1,0);

95 Run2_time = Run2([l:end],[l]);

96 Run2_time = Run2_time - Run2_time(l,l);

97 Run2_70 = Run2([l:end],[2]);

98 Run2_500 = Run2([l:end], [3]);

99

100 % Determine window size for moving average by plotting the sum of absolute

101 % differences for different window sizes and finding the knee in the curve,

102 % where the window is smallest and the curve seems to flatten. Maximum

103 % window size is calculated from a 10 kHz sample rate over the duration of

104 % the impulse.

105 windowSizes = 1 : 1 : 26;

106 for k = 1 : length(windowSizes);

107 smoothed70 = movmean(Run2_70, windowSizes(k));

108 sad70(k) = sum(abs(smoothed70 - Run2_70));
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smoothed500 = movmean(Run2_500, windowSizes(k));

sad500(k) = sum(abs(smoothed500 - Run2_500));

end

figure('Name','Run 2 - SAD')

% subplot (2,1,1);

% plot(windowSizes, sad70, 'b*-', 'LineWidth', 2);

% title('SAD Run 2 70G')

% grid on;

% xlabel('Window Size');

% ylabel('Sum of Absolute Differences');

% subplot(2,1,2);

plot(windowSizes, sad500, 'b*-', 'LineWidth', 2);

title('SAD Run 2 500G')

grid on;

xlabel('Window Size');

ylabel('Sum of Absolute Differences');

% Moving Average Filter

Run2_70smooth smoothdata(Run2_70,'movmean',4);

Run2_5OOsmooth = smoothdata(Run2_500,'movmean',7);

% Find maximum accelerations captured by each sensor

Max_70_2 = max(abs(max(Run2_70)),abs(min(Run2_70)));

Max_500_2 = max(abs(max(Run2_500)),abs(min(Run2_500)));

Max_70_2_smooth = max(abs(max(Run2_70smooth)),abs(min(Run2_70smooth)));

Max_500_2_smooth = max(abs(max(Run2_500smooth)),abs(min(Run2_500smooth)));

% Plot raw and smooth data on single figure each

% figure('Name','Run 2 - 70G')

% plot(Run2_time,Run2_70,'-o','LineWidth',1,'color','k')
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140 % hold on

141 % plot(Run2_time,Run2_70smooth,'-d','LineWidth',l, 'color','r')

142 % hold on

143 %

144 % title('Acceleration v. Time for Full Scale Drop Test from 0.2 m')

145 % xlabel('Time [s]')

146 % ylabel('Acceleration [G-forces]')

147 % legend('70G Sensor Data','70G Moving Average')

148 % str = {'Max Measured Acceleration 70G=' Max_70_2,...

149 % 'Max Moving Average Acceleration 70G=' Max_70_2-smooth};

15o % annotation('textbox',[.2 .75 .1 .1],'String',str,'FitBoxToText','on');

151

152 figure('Name','Run 2 - 500G')

153 plot(Run2_time,Run2_500,'-o','LineWidth',l,'color','k')

154 hold on

155 plot(Run2_time,Run2_500smooth,'-d','LineWidth',1,'color','r')

156 hold on

157

158 title('Acceleration v. Time for Full Scale Drop Test from 0.2032 m')

159 xlabel('Time [s]')

160 ylabel('Acceleration [G-forces]')

161 legend('500G Sensor Data','500G Moving Average')

162 str = {'Max Measured Acceleration 500G=' Max_500_2,...

163 'Max Moving Average Acceleration 500G=' Max_500_2_smoothl;

164 annotation('textbox',[.2 .75 .1 .1],'String',str,'FitBoxToText','on');

165

166

167 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

168 % Run 3 Results with 500G Sensor (70G Cable Severed During Run 3)

169 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

170
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171 % Create matrices for time and 50OG data

172 Run3 = csvread('Run3.csv',1,0);

173 Run3_time = Run3([1:end], [1]);

174 Run3_time = Run3_time - Run3_time(1,1);

175 Run3_500 = Run3([l:end], [3]);

176

177 % Determine window size for moving average by plotting the sum of absolute

178 % differences for different window sizes and finding the knee in the curve,

179 % where the window is smallest and the curve seems to flatten. Maximum

180 % window size is calculated from a 10 kHz sample rate over the duration of

181 % the impulse.

182 windowSizes = 1 : 1 : 26;

183 for k = 1 : length(windowSizes);

184 smoothed500 = movmean(Run3_500, windowSizes(k));

185 sad500(k) = sum(abs(smoothed500 - Run3_500));

186 end

187

188 figure('Name','Run 3 - SAD')

189 plot(windowSizes, sad500, 'b*-', 'LineWidth', 2);

190 title('SAD Run 3 500G')

191 grid on;

192 xlabel('Window Size');

193 ylabel('Sum of Absolute Differences');

194

195 % Moving Average Filter

196 Run3_5OOsmooth = smoothdata(Run3_500,'movmean');

197

198 % Find maximum accelerations captured by each sensor

199 Max_500_3 = max(abs(max(Run3_500)),abs(min(Run3_500)));

200 Max_500_3_smooth = max(abs(max(Run3_500smooth)),abs(min(Run3_5OOsmooth)));

201
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202 % Plot raw and smooth data on single figure

203 figure('Name','Run 3 - 500G')

204 plot(Run3_time,Run3_500,'-+','LineWidth',l,'color','k')

205 hold on

206 plot(Run3_time,Run3_5OOsmooth,'-d','LineWidth',l,'color','r')

207 hold on

208

209 title('Acceleration v. Time for Full Scale Drop Test from 1.524 m')

210 xlabel('Time [s]')

211 ylabel('Acceleration [G-forces]')

212 legend('500G Sensor Data','500G Moving Average')

213 str = {'Max Measured Acceleration 500G=' Max_500_3,...

214 'Max Moving Average Acceleration 500G=' Max_500_3_smooth};

215 annotation('textbox',[.2 .75 .1 .l],'String',str,'FitBoxToText','on');

216

217

218 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

219 % Run 4 Results with 50OG Sensor (70G Cable Severed During Run 3)

220 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

221

222 % Create matrices for time and 50OG data

223 Run4 = csvread('Run4.csv',1,0);

224 Run4_time = Run4([l:end],[l]);

225 Run4_time = Run4_time - Run4_time(1,1);

226 Run4_500 = Run4([l:end], [2]);

227

228 % Determine window size for moving average by plotting the sum of absolute

229 % differences for different window sizes and finding the knee in the curve,

230 % where the window is smallest and the curve seems to flatten. Maximum

231 % window size is calculated from a 10 kHz sample rate over the duration of

232 % the impulse.
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233 windowSizes = 1 : 1 : 26;

234 for k = 1 : length(windowSizes);

235 smoothed500 = movmean(Run4_500, windowSizes(k));

236 sad500(k) = sum(abs(smoothed500 - Run4_500));

237 end

238

239 figure('Name','Run 4 - SAD')

240 plot(windowSizes, sad500, 'b*-', 'LineWidth', 2);

241 title('SAD Run 4 500G')

242 grid on;

243 xlabel('Window Size');

244 ylabel('Sum of Absolute Differences');

245

246 % Moving Average Filter

247 Run4_5OOsmooth = smoothdata(Run4_500,'movmean');

248

249 % Find maximum accelerations captured by each sensor

250 Max_500_4 = max(abs(max(Run4_500)),abs(min(Run4_500)));

251 Max_500_4_smooth = max(abs(max(Run4_500smooth)),abs(min(Run4_5OOsmooth)));

252

253 % Plot raw and smooth data on single figure

254 figure('Name','Run 4 - 500G')

255 plot(Run4_time,Run4_500,'-+','LineWidth',l,'color','k')

256 hold on

257 plot(Run4_time,Run4_5OOsmooth,'-d','LineWidth',l,'color','r')

258 hold on

259

260 title('Acceleration v. Time for Full Scale Drop Test from 0.8128 m')

261 xlabel('Time [s]')

262 ylabel('Acceleration [G-forces]')

263 legend('500G Sensor Data','500G Moving Average')
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264 str = { 'Max Measured Acceleration 500G=' Max_500_4, . ..

265 'Max Moving Average Acceleration 500G=' Max_500_4_smooth};

266 annotation('textbox',[.2 .75 .1 .1],'String',str,'FitBoxToText','on');
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Appendix E

Drawings
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