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Abstract

The use of autonomous vehicles in air, land and water has grown in recent years,
with increased attention given to heavily transited areas. For the case of autonomous
underwater vehicles, these regions of interest include harbors and river basins where
the risk of collision rapidly increases with the number of ships. This thesis presents

a collision avoidance system based on passive acoustic sensing, which may be used

to alert an AUV's autonomy software of the threat that an approaching vessel may

represent in such shallow water environments. Experiments were conducted to collect
and process data from static and vehicle-mounted hydrophone arrays, and preliminary

measurements were post-processed using various signal smoothing and data-fitting

techniques. Results were then compared with a mathematical model used to describe

the expected sound propagation profile, to identify how the system was limited by
disturbances in the test conditions, such as variable ship speed and bearing, with
respect to the vehicle's frame of reference. The benefits and limitations of each data
processing approach were identified, and are herein discussed through three separate

case studies to highlight the benefit of parallel-model fitting. A Bluefin SandShark

AUV was used for a series of deployments performed to test the vehicle's ability to

change behaviors in response to approaching vessels that present a chance of collision,
relying exclusively on this passive sensing system as the alarm trigger. During the

final autonomous behavior-response experiments spanning six distinct deployments,
a total of 21 successful alarm triggers were recorded in the vehicle logs, along with a

cumulative 142 minutes of acoustic data.

Thesis Supervisor: Henrik Schmidt
Title: Professor of Mechanical and Ocean Engineering
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1 Introduction

The use of autonomous vehicles in air, land and water has increased over the last

few decades, for their ability to perform critical tasks in hazardous or remote envi-

ronments. The advantages of airborne operations have become a matter of popular

knowledge in the wake of a worldwide aviation industry and the recent rise of drones,

while land-based autonomous activity is gaining ground in the view of the layman

thanks to advances in the self-driving car industry. The marine subset of autonomous

vehicles has similarly gained attention in recent years, with applications in oil spill

mapping [5] and containment [4], environmental sensing and the observation of marine

populations [6], in addition to military and defense needs [8].

The growth seen in marine robotics stems, in part, from advances in computer

systems and vehicle technology. Historically, marine vehicles remained a part of

a niche field, of interest predominantly for military and specialized ocean sciences

applications, a trend often associated with the difference in cost of entry even beyond

the merely monetary sense. Air and land are within reach of anyone who might wish

to operate such vehicles; users can operate autonomous or semi-autonomous air and

land vehicles as close as their own homes or backyards. Access to suitable bodies of

water tends to be far more restrictive for those looking to operate one of the existing

marine robotics platforms. While some small scale and low-cost remotely operated

vehicle (ROV) designs, such as the OpenROV project, help lower the bar into aquatic

experimentation, autonomous underwater vehicles (AUVs) have typically been larger

vessels with higher cost of ownership and operation. However, recent improvements

in computer hardware and sensing technologies have led companies in the field of

marine robotics to the development of small-scale, lower-cost platforms such as the

Bluefin SandShark [2], which aim to further facilitate entry for research and industry

applications.

The emergence of lower-cost AUV platforms such as the SandShark arrives in

time to meet an increased demand for systems of this kind. Some applications for

15



these smaller vehicles include monitoring of more accessible and often more heavily

transited areas, such as river basins, littoral zones and harbors [1]. Beyond environ-

mental and defense uses, these vehicles may serve research groups focused in subjects

such as human-robot interaction (HRI); teams in the field have taken to the water,

seeking to exploit the challenges posed by such environments to push their studies in

team coordination and the psychological effects of HRI systems to the next level [9].

However, the nature of such an actively changing, shallow-water environment requires

that AUVs operating in the area be capable of responding to the presence of unknown

ships to avoid possible collision scenarios. Furthermore, the limitations of underwater

communications, and the variability of equipment and resources onboard the third-

party vessels involved, calls for a system capable of alerting the AUV of potential

threats without the need for two-way communication or pre-established identifying

signatures.

This thesis expands on the subject of collision avoidance for AUVs by using a

passive acoustic system fully contained onboard an unmanned vehicle, and pairing

the sensor system with online processing to trigger behavioral responses in the auton-

omy middleware managing the active mission. The system is based on the algorithm

presented by Prof. Henrik Schmidt and Dr. Michael Benjamin under project name

ALPACA' [10, 11], and extends prior work on algorithm validation [13]. The system

has been adapted for discretized sampling time windows and live data processing

during mission deployments, considering various signal filtering solutions. Field tests

were performed with ground-fixed and AUV-mounted hydrophone arrays, and colli-

sion avoidance behaviors were successfully triggered onboard the AUV in response to

approaching motorized vessels during autonomous mission deployments.

'The ALPACA technology is owned by MIT. A patent has been issued under United States of
America Serial No. 8830793, "System And Method For Collision Avoidance In Underwater Vehicles"
by Henrik Schmidt and Michael Richard Benjamin. Patent issued on September 9, 2014.
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2 Background

2.1 Acoustics

A study of acoustics typically begins with discussion of a case most readers can relate

to: the sound produced by string instruments such as guitars or pianos. Drawing

from the perception of sound coming from such an instrument, and the visual aid of

the string's motion, this approach provides a baseline upon which an understanding

of waves can be built [7]. From the mathematical description of string vibration as

waves, the discussion advances to observing pressure waves in a medium. In order to

properly describe these pressure fluctuations, the principles of conservation of mass

and conservation of momentum are used to derive the wave equation. For an ideal fluid

with coupled density and pressure, the adiabatic relation between these terms must

also be considered in the derivation [3]. As explained in Section 2.1.2 of [3], "[t]he

linear approximations, which lead to the acoustic wave equation, involve retaining

only first-order terms in the hydrodynamic equations."

The wave equation may be expressed in different forms to solve for the pressure

field, particle velocity, the velocity potential or displacement potential. Furthermore,

the time-domain wave equation may be transformed into the Helmholtz equation,

in frequency-domain, by using the corresponding frequency-time Fourier transform

pair. Eq. 2.1 and 2.2 show the solutions to the Helmholtz equation in a homoge-

neous medium, for the cases of a plane wave and an omnidirectional point source

respectively.

{Aeik.r
O(x, y,z)= Be-k-r (2.1)

(A/r)eik.r

()= { (/r)ekr (2.2)
(B/r)e-ik-r
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In acoustics, quantities are most often expressed in decibels (dB), a ratio of two

values expressed in terms of a base-10 logarithmic scale. It is for this reason that

the sonar equation takes its form in the dB scale, where a given acoustic field can

generally be expressed as separate additive terms with respect to reference values

and length scales, such that the effect of aspects such as range from a source on the

perceived amplitude at a receiver location may be treated separately. Reducing the

system to an ideal scenario with no noise, the simple sonar equation can be expressed

as Eq. 2.3, where L is the sound pressure level at a given receiver location, L, is

the source level, and TL is the transmission loss. This simplified form constitutes

the foundation for the mathematical model (Sec. 3) upon which the present work is

based. For additional information on the sonar equation, the reader may refer to

Chapter 10, Section 10.2.2 of [3].

LP= Ls - TL (2.3)

2.1.1 Useful dB-scale expressions

The following are some useful expressions used in acoustics, based on the dB scale

(Eq. 2.4). The sound pressure level L, used in the sonar equation as given in Eq. 2.3,

relates the pressure p at a receiver location, to a reference pressure Pref. Similarly, the

power level Lw expresses the power W of a given source with respect to a reference

power Wref. The power level Lw and source level L, are related to each other by a

function of the reference terms.

LP = 10 logo Y I) dB re pref

Lw = 10 log (Vg) dB re Wref (2.4)

Lw = Ls +10 log pref ) dB re Wref

Parameters like the medium density po and the speed of sound c vary across

different fluid media. The reference pressure Pref also differs for different fluids. Eq. 2.5

provides the typical values for the reference parameters used above.

18



Wref = 1W

rref = 1m (2.5)

1pPa, water
Pref=

t 20pPa, air

The expressions relating the intensity I and power W with the root mean square

(RMS) of the pressure, expressed as Ipl, and the acoustic impedance, given as the

product poc, are also used throughout this work (Eq. 2.6).

poC (2.6)
Area

19



20



3 Mathematical Model

As mentioned in Sec. 2.1, the model implemented in this thesis stems from the simple

sonar equation (Eq. 2.3, revisited in Eq. 3.1), where LP is the sound pressure level,

L. is the source level, and TL represents the transmission loss. For the cases of ideal

spherical and cylindrical spreading, the transmission loss is given by Eq. 3.2, as a

function of range r from the source.

LP L, - T L (3.1)

L 20log 0  , spherical spreading
TL = ef (3.2)

10 log1 o ' , cylindrical spreading

Because this project focuses on the use of AUVs in shallow-water environments

(such as littoral areas, harbors and river basins), the assumptions and simplifications

used in the field of ocean acoustics for this type of setting are used to further define

the mathematical model.

3.1 Propagation Model for Shallow Water

The propagation of acoustic waves in shallow-water environments is principally af-

fected by two defining characteristics. First, the sound speed profile in the water

column is typically downward-refracting or near-constant, which means that for long-

range propagation, most paths will likely involve boundary interactions (particularly,

bottom interactions). Second, the properties of the boundary layers are spatially

varying, and generally difficult to characterize with sufficient detail to enable long-

range predictions. These properties of shallow-water acoustics aren't without merit,

however, as "transmission is generally better than free-field propagation (20 log r) at

short and intermediate ranges [...]" [3]. In these shorter ranges, the transmission loss

is better described by cylindrical spreading, rather than spherical propagation.
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3.2 ALPACA Intercept-Time Estimation

Expressing the simple sonar equation in terms of intensities, Eq. 3.1 becomes Eq. 3.3.

This expression assumes cylindrical spreading, per the forms given in Eq. 3.2. The

term Io represents the source intensity in dB, and IdB represents the intensity observed

by a receiver at a given range r from the source, in the same logarithmic scale.

IdB 10 - TL

- Io - 10 logo(r) (3.3)

- 10 log()- 0 ~ og(10)

As explained in [10, 11, 13], the core of the Autonomous Littoral Passive Acoustic

Collision Alarm (ALPACA) system and method is based on this relationship between

the acoustic intensity and the range-dependent transmission loss. While the corre-

sponding range r and source level constant Io might not be known, the time-derivative

of the measurements taken by a receiver (Eq. 3.4) can nonetheless be related to the

intercept time dT (Eq. 3.5).

A-d~dB
dt

-
1

dB dr
ar dt (3.4)

ar
10v

log(10)r

r _ 10
dT = (3.5)

v log(10)A

3.3 Ideal Model Representation

This section provides a sample case based on the mathematical model described above,

in order to introduce the data visualization tools used in later sections of this work.

For a source, selected such that the source intensity level is equal to the cor-

responding reference intensity (that is, 1o = 0), the receiver intensity IdB can be

equated to the transmission loss directly. Fig. 3-1 shows the corresponding intensity
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field for a 100m by 100m square grid, where the source is located at the origin. The

intensity values are then plotted for ranges of 1m and greater, where TL(,_,rf) = 0

and otherwise vary based on cylindrical propagation.

0

-5

-- 1

-30

-10100

-550

0 -50
Uh) 50

100 -100

Figure 3-1: Intensity field in a 100m by 100m grid, based on cylindrical propagation.
This form highlights the behavior of the source as a mathematical singularity.

The ALPACA intercept-time estimation is based on the correlation between time,

acoustic intensity and the range between a source and the receiver. To better under-

stand the profiles expected for the experimentation stage, and the effect of spatial

offsets on the sensor data, consider the assumption of a ship traveling at constant

speed along three straight travel lanes: one on a direct radial path over the AUV,

and two others with different offsets from the radial path at their closest point of

approach to the autonomous vehicle. This can be equally expressed as moving the

AUV or receiver along the paths defined by x = [0, 10, 20]m, y = Om, on the grid

shown in Fig. 3-1. The intensities recorded by the sensor system would then be as

shown in Fig. 3-2, with respect to the sensor's position along the x-axis.
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Figure 3-2: Intensity along 3 straight travel
different offsets from the source at the closest
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Figure 3-3: Intensity along 3 straight travel lanes with different offsets at the closest
point of approach, for a constant ship speed of v = 2m/s.
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Using the Cartesian XY plane to build this example scenario is a sensible choice

to start from, as it preserves the spatial meaning of range-dependent propagation.

However, the relative range will be unknown to the receiver in the system during real

deployment; this is, in fact, one of the underlying motivations for using this passive

acoustic detection method. By converting the data using a constant velocity v, the

intensity values can then be expressed as will be perceived by the vehicle, with respect

to time (Fig. 3-3).

The transformation of observed intensities in this model to time-domain is a nec-

essary step to proceed with the ALPACA algorithm, as Eq. 3.4 calls for the time-

derivative of the measurements. From there, it may be remarked that the behavior of

the intensity differential around the singularity, at t = 0, is of particular importance

given the reciprocal relation between A and the intercept time dT. Fig. 3-4 shows

how even a small offset at the closest point of approach will allow for a smooth func-

tion in the derivative space, while a direct path model over the source will peak due

to the singularity.
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Figure 3-4: Gradient of intensity versus time, for a ship moving along 3 straight travel
lanes with distinct offsets at their closest range.
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Figure 3-5: Estimated intercept time, for a ship moving along 3 straight travel lanes
with different offsets from the source at their closest range.

Feeding the gradient results to Eq. 3.5 yields the estimated intercept time, as

shown in Fig. 3-5. Here, it may be observed how the behavior of the singularity

changes with the transformation from derivative space into intercept-time estimates.

Where a slight offset from the source led to smooth functions in the intensity measure-

ment and differential forms, the same shift translates to a discontinuity in estimated-

time space.

3.4 Effect of Noisy Signal on ALPACA

During experimentation, the system will be susceptible to multiple sources of noise.

From the disturbance introduced due to sensor error, to the effect of electronics and

voltage fluctuations, and ever more so all the acoustic noise sources to be encountered

during deployment, no two sets of measurements will likely be the same. Further-

more, the dependence of the algorithm on the derivative of the measurements and

the reciprocal relation presented in Section 3.3 mean that understanding the effect
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of noise in the algorithm makes an important part of the implementation process, to

enable decision-making and to trigger behaviors during vehicle operations. Fig. 3-6

shows the radial-path signal presented earlier, along with a simulation of noisy mea-

surements for the same scenario. The noise shown here is modeled as Gaussian, with a

standard deviation of a- = 0.001, in the absolute intensity space. Note that units here

are driven by the reference intensity Iref; using a reference magnitude of Iref =1W/m 2

sets these same units for the magnitudes shown in Fig. 3-6. Using the logarithmic

relationship, Fig. 3-7 presents the same pair of signals in the decibel scale.

1.0
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0.6 V

.4a
C

0.4-

0.2-

0.0
60 -40 -20 0

Time (s)
20 40 60

Figure 3-6: Intensity along a radial path of approach. Noisy signal simulated as
Gaussian, with o- = 0.001.

As explained in Section 3.2, the intercept-time estimation system depends on the

time-derivative of the intensity measurements. Given this mathematical relation, the

effect of noise in the intensity signal may be amplified when using a point-to-point

difference method to compute the gradient. Such a method may noticeably affect the

performance of the algorithm, as shown in Figs. 3-8 and 3-9. Section 5.1.1 discusses

various methods used to address this issue.
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Figure 3-7: Intensity (dB) along a radial path of approach. Noisy signal simulated as
Gaussian in the absolute intensity space, with o = 0.001.
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Figure 3-8: Gradient of intensity versus time, comparing ideal and noisy signals.
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Figure 3-9: Estimated intercept time for a radial path of approach, comparing ideal
and noisy signals.
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3.5 Pressure Form of ALPACA

As part of this work, an alternate form has been derived to express the intercept-time

estimation from pressure values, in place of intensity measurements. This approach

stems from the nature of the sensors used, as the hydrophones output a voltage signal

proportional to pressure, and relies on the acoustic impedance relation provided in

Eq. 2.6. Assuming a constant acoustic impedance p0 c, the derivation follows from

Eq. 3.6 as shown in Eq. 3.7 to relate pressure and range. The intensity IdB at the

receiver has been renamed as the measured intensity 'In, given in the decibel scale.

Figs. 3-10 and 3-11 show how the pressure and intensity magnitudes relate, normalized

by the constant scaling factor p0c.

1l log(r)
I'r = 1o10 log ) (3.6)

log(10)

10 - Im = 101gio (IP 2 / IPm = 20 logO ( I)oI 10 log M
Pgoe ~Pooc g10  ImI log(10)

log1O(IpM|) - logi0 (|pol) = logjp.l) log(po1) 1 log W (3.7)log(1) log(10) 2 log(10)

~~ ' -log (r)

Taking the derivative yields Eq. 3.8 (Figs. 3-12 and 3-13).

d (log(lpml) - log(jpoj)) = - 1 d

Ldpn = 1 (3.8)
pmn dt 2 r

r - l PM
v 2 p'

The intercept time dT can then be expressed in terms of the pressure as shown

in Eq. 3.9 (Figs. 3-14 and 3-15). The intercept times for both ideal and noisy signals

are a match between the intensity and pressure forms, up to a small rounding error.

dT= 1 Pm (3.9)
2 p'
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Figure 3-10: Magnitudes of intensity and pressure along a radial path of approach,
to a constant p0c.
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Figure 3-11: Magnitudes of intensity and pressure along a radial path of approach,
to a constant poc. Noisy signal simulated as Gaussian, with a = 0.001.
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Figure 3-13: Gradient of intensity and pressure versus time, along a radial path of
approach. Noisy signal simulated as Gaussian, with -= 0.001.
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Figure 3-14: Estimated intercept time using intensity and pressure forms of ALPACA,
along a radial path of approach.
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Figure 3-15: Estimated intercept time using intensity and pressure forms of ALPACA,
along a radial path of approach. Noisy signal simulated as Gaussian, with a- = 0.001.
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4 Experimental Configuration

The present chapter addresses the different sensor systems and experiments conducted

during this work. Given the focus on shallow-water environments, and for the merit

of easy access, experiments were conducted in the Charles River Basin. The MIT

Marine Autonomy Bay, located at the Institute's Sailing Pavilion, served as the home

of operations during vehicle deployments for this project. A prototype Bluefin Sand-

Shark was used as the AUV platform for autonomous deployments, while a standalone

system based on the vehicle's payload was used for additional data acquisition with

a different hydrophone array.

In order to facilitate the implementation of the system, some historical data avail-

able from prior work [13] was used for the initial software development. From there,

an evolving series of deployments were used to collect additional datasets and to

assess the performance of the system. Ultimately, a number of autonomous deploy-

ments were performed to test the system's ability to change behaviors in response to

an approaching vessel.

4.1 Sensor Systems

4.1.1 Single Hydrophone Setup

The dataset used for initial development of the software modules necessary to run

ALPACA online during autonomous missions was based on a single data channel,

recorded in continuous mode at a rate of 44100Hz, using a dedicated desktop com-

puter. These recordings formed part of prior work on this subject and were obtained

from the preceding project's data archives, dating back to 2013. For that experiment,

"the hydrophone was installed approximately 35m away from the dock, at a depth of

approximately 2m in the water column" [13].

Data acquisition onboard the payload computer uses a triggered and windowed
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recording frame, stored as separate files per trigger instance. For this reason, the

legacy files had to be preprocessed in order to replicate the vehicle's data structure.

The payload computer uses a GPS-synchronized pulse-per-second (PPS) signal to

trigger the recording of a predefined number of samples per channel starting at the

beginning of each second (see Sec. 4.1.2, 4.1.3 for more details). To match the pay-

load data log format used in the earlier stages of this work, the audio files from

2013 were resampled to 37500Hz, and cropped to include only the first 8000 samples

of each second'. The resulting files were then stored following the aforementioned

data structure, and used as the basis for developing the software modules used in

subsequent experiments.

4.1.2 Hydrophone Line Array

The hydrophone line array was built using a total of six elements mounted on an

angle bracket, with ropes and weights used to adjust the array's depth and orientation

from a boat or dock (Fig. 4-1). The hydrophones were connected via an analog high-

pass filter circuit to a Measurement Computing Corporation USB-1608FS-Plus data

acquisition system. The latter was then attached to a Raspberry Pi 3 single-board

computer, used as a standalone testbed computer by running the same autonomy

software employed onboard the SandShark payload.

Audio recording onboard the vehicle is triggered from a GPS-synchronized signal

in order to provide a global reference frame in the time domain, for collaborative or

localization systems based on time-of-flight. In order to enable use of such systems,

and to replicate the AUV systems as closely as possible, the standalone system also

used a globally synchronized PPS to trigger data acquisition. Because the computer

enclosure for this system was built to remain above water, the PPS signal was obtained

directly from the system's GPS module, for which a GARMIN GPS 18x LVC was

used. Fig. 4-2 provides a data flow chart for this line array system. Further details

on the development of this standalone testbed may be found in [12].

'Later code revisions have made these values configurable thru mission parameters.
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Figure 4-1: Line array with 6 channels and adjustable spacing.
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Figure 4-2: Data flow chart for line array with 6 channels and adjustable spacing.
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4.1.3 Tetrahedral Array

A number of differences separate the AUV's hydrophone array from the line array

used with the standalone test system. First and foremost among them, from a visual

standpoint, is the array geometry, consisting of a 4-channel tetrahedral arrangement

(Fig. 4-3). This particular configuration is of value for signal processing techniques

such as beamforming (see Sec. 7.4). The element spacing used on the SandShark

prototype also differs from the various distances tested with the adjustable line array.

However, the most critical distinction for the purposes of this project may well be that

the vehicle's system needs an additional timing module to provide the PPS trigger

signal, since the GPS module will lose satellite contact while underwater. In order

to preserve the global frame of reference, a GPS-synchronized chip-scale atomic clock

(CSAC) was used onboard the prototype SandShark payload (Fig. 4-4). As with

the line array testbed, additional information about the vehicle payload used for this

experiment may be found in [12].

Figure 4-3: Tetrahedral array with 4 channels.
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Figure 4-4: Data flow chart for tetrahedral array with 4 channels. Data from GPS

module, shown in brackets, only available when vehicle is at the surface.

4.2 Experiments Conducted

In addition to using various sensor configurations, experiments were conducted in an

escalating manner, to provide a measure of control over the increasing complexity

of the system for data processing. This gradual stepping served to build upon the

system by comparing the various measurements with the mathematical model and its

physical meaning, as was detailed in Section 3. The various experiments conducted

are detailed as follows.

4.2.1 Static-Receiver Collection

The static-receiver experiments were used as a basis for software development and

data processing, and consisted of anchoring the sensor system in a fixed location for

the duration of the experiment. This category includes the measurements taken from

prior work (from the 2013 experiments), as well as the data collected with the line

array system.

Holding the sensor array in place served two purposes. First, it provided a reliable

basis for relative range computation when GPS data from the vessel used as a noise

source was available, as the receiver location was known and non-changing. Second,
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it provided a dataset with reduced noise, in the absence of the array carrier vessel.

The two features drawn from a static receiver facilitated progress of the software

modules, to ensure proper processing of the acoustic signals onboard the AUV. Ad-

ditionally, they provided supplementary datasets during AUV deployment missions.

4.2.2 Moving-Receiver Collection

Moving-receiver data acquisition was conducted with the AUV-mounted tetrahedral

array during missions not yet responsive to approaching threats. Basic missions such

as racetracks and loiters, as well as more advanced autonomous missions defined in

the repositories of the Laboratory for Autonomous Marine Sensing Systems, were

used as the basis for vehicle behavior during these tests.

The collection of data using the AUV, in the absence of behavior triggering, was

used to develop a better understanding of the effect the vehicle's own noise, added to

its displacement, may have on the measurements. These results were considered when

defining the thresholds selected for the subsequent behavior-triggering experiments.

4.2.3 Behavior-Triggering Experiments

The behavior-triggering experiments sit at the heart of this work. Ultimately, the

purpose of implementing the ALPACA intercept-time estimator is to enable collision

avoidance responses based on the system's detections. As such, this last set of tests

mark the project's turning point, where an AUV's active behavior is directly affected

in response to an approaching threat throughout the duration of an autonomous

mission.

To select and assemble the test scenarios, the following idea was first considered:

autonomous missions cover a wide range of objectives, and the vehicle's decision

capabilities are generally built to fit the various probable scenarios foreseen by the

operator. In the purview of this work, even simple path-based objectives serve as

suitable examples of AUV deployment in shallow water. A lawnmower path could be

used to collect measurements, or perform imaging or scanning, over a given area. A
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racetrack may be chosen for extended monitoring, or a loiter path may be used as

a station-keeping behavior. These path-based behaviors define sensible and realistic

use scenarios, while their simplicity make them easier to implement, and thus they

served as the building blocks for the experiments herein detailed.

Two of the path behaviors previously mentioned were selected, such that one

would serve as the vehicle's main mission and the other would correspond to the

collision avoidance mode. The secondary behavior was triggered by the ALPACA

module through an alarm control variable on the MOOSDB. For this basic test scenario,

a timer feature was used in order to reset the alarm flag after the countdown ended.

Once the state of alarm was reverted, the vehicle was allowed to resume its original

behavior until another intercept event occurred, or the AUV's mission was completed.

Prior to vehicle deployment, the various behaviors and mission processes were

tested within a computer simulation environment, to verify that all software modules

were operating as intended. For these virtual experiments, the data collected from

earlier measurements with both receiver geometries (tetrahedral and line array) were

used as input for the simulated acoustic sensor. Figs. 4-5 and 4-6 show the vehicle

responding to the acoustic data input. Once sufficient simulation testing had been

completed, the software was transferred to the vehicle computer for in-water testing.

The final tests were performed with the Bluefin SandShark AUV in the Charles

River Basin. Motorboats from the MIT Sailing Pavilion were used as noise sources

during operations. Additional acoustic sources tested included a jet-drive kayak, as

well as an underwater speaker configured to emit a frequency-ramping chirp every

second. Tests with the motorized vessels were conducted such that different ship

speeds and closest ranges of approach were recorded. Numerous passes were per-

formed for each case. When available, the surface ship's position was recorded with

a GPS logging system. The speaker-based tests were conducted while holding the

acoustic source in place, and observing the effect that the AUV's own displacement

would have on the intercept module; this was done in giving consideration to scenarios

where known noise sources may be present as part of an acoustic navigation system

(see 7.4).
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Figure 4-5: Simulation of SandShark deployment, with the main mission set to tracing
a loiter path. ALPACAALARM set to FALSE.
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Figure 4-6: Simulation of SandShark deployment, with the alarm-triggered behavior
set to following a racetrack path that extends outside of the loiter field. ALPACAALARM
set to TRUE.
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/2 712
Figure 4-7: SandShark AUV, during preparations for deployment in the Charles River
Basin to perform behavior-triggering experiments.
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5 Results and Discussion

When testing a sensor system, many variables come into play. Some of these changes

can be well accounted for within the base model, while others deviate significantly

from the original assumptions. For a system intended to further facilitate autonomous

operation of an underwater vehicle during deployment, as is the case with this project,

understanding how real measurements may deviate from the base scenario can lead

to significant improvements in the system's responsiveness and reliability. In order

to better illustrate the increments in complexity of the system, and the development

progression used through this work, the results are presented in direct comparison to

the model described in Section 3 through a series of case studies. Thereafter follows a

discussion of the challenges seen in online signal processing during AUV deployment.

5.1 Post-Processing of Static-Array Acoustic Logs

Prior to implementing an online version of the ALPACA system on an AUV, data

obtained from the preceding 2013 experiment's archive and acoustic logs collected

with the different arrays described in Section 4 were used to develop the software

modules needed. This section presents a sample case-study performed during post-

processing to evaluate the performance of the system. This type of analysis began

with a visual inspection of the acoustic data in the form of root mean square (RMS)

of the voltage per second. Fig. 5-1 shows the data collected with the dock-mounted

line array during a 20-minute span.

Under the scenario discussed earlier, of a motorboat moving along a travel lane

at near-constant speed, each slow-rising peak reflects a gradual increase in acoustic

power that could be associated with an approaching vessel. The narrow spikes may

be associated with a wide range of transient events, of acoustic or electronic nature

alike, but are too brief to correspond with a nearing ship. Fig. 5-2 shows the event

occurring around t = 434s in the previous dataset. The event peak is marked by the

45



0.012

0.010 -

0.008

>

0.006

0.004

0.002

0.0090

..--. Input channel

------------ ---------

..... ...... .. .. .. ... .. ..

...........................

------- -------- -- -....................

~fr4w

400 600
Time (s)

-----------............

800 1000 1200

Figure 5-1: RMS of hydrophone voltage measurements collected in the Charles River
Basin with a 6-ch line array, during a 20-min span on Aug. 2, 2016.

red vertical line. Looking closely at the signal from the various channels, it may be

observed that there is a small difference in gain for each input, but they otherwise

exhibit similar features for the RMS voltage. The average of all channels for each

measurement cycle in time is given by V.

Hydrophones provide a roughly proportional correlation between sensed pressure

P and the output voltage V, with some edge effects related to saturation. Where

valid, this ratio P/V = a will carry over through the RMS and gradient computations.

Thus, under the assumption that the sensor's boundary effects may be dismissed, the

pressure form of the ALPACA system and its intercept-time estimation (Eq. 3.9)

may be expressed in terms of the voltage measurements directly. Following the same

approach as was presented in Section 3, Fig. 5-3 shows the gradient of the RMS

voltage for the event presented above. As addressed in Section 3.4, noise in the input

signal can introduce significant variation to the intercept time estimation and may

render the results ineffective. Such results are presented in Fig. 5-4.
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Figure 5-2: RMS of hydrophone voltage measurements collected in the Charles River
Basin with a 6-ch line array. Single event case study.
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Figure 5-3: Gradient of RMS voltage measurements collected in the Charles River
Basin with a 6-ch line array.
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Figure 5-4: Intercept time estimates based on point-to-point gradient of RMS voltage.

5.1.1 Signal Processing

Given that the ALPACA estimator is highly sensitive to noise, appropriate signal

processing is fundamental to achieve results upon which the AUV may base behavioral

decisions. Various methods exist to perform signal smoothing, or to account for

outliers in a set of measurements. This section discusses the various approaches

evaluated during this work.

Desirable for its simplicity, a running average method can smooth out the fluctu-

ations in the signal and provide a sense of the slow-evolving trends sought in this in-

tercept alert system. However, this approach presents two notable limitations. First,

the size of the observation window introduces either a delay or lag in the signal, de-

pending on how the local average is aligned with the observation window's time range.

The second limitation is that it may be affected by extreme outliers. Figs. 5-5 and 5-6

show the 10-point running average of V. In the 500-550s time frame, the effects of the

single extreme outlier can be observed for both the amplitude and gradient values.
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Figure 5-5: RMS of hydrophone voltage measurements, using
average smoothing window.

0

4I-
0

4-I

0.0020

0.0015

0.0010

0.0005

0.0000

-0.0005

-0.0010

-0.0015

0.002 3
350 400 450

Time (s)
500

550 600

a 10-point running-

550 600

Figure 5-6: Gradient of RMS voltage measurements, using a 10-point running-average
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Despite its limitations, the running average method carries notable advantages

against the unsmoothed output. Fig. 5-7 isolates the V values from Fig. 5-4, while

Fig. 5-8 shows the intercept time estimated from the smoothed signal. While it may

be difficult to discern a trend in the former, the latter exhibits a more apparent

cluster around the reference line of unit slope near the intercept point. Comparing

the latter figure with Fig. 3-9, it may be noted that the convergence behavior observed

approximates the model's expectation.
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Figure 5-7: Intercept time estimates based on point-to-point gradient of RMS voltage.

Regarding the use of an observation window, as may be the case for the AUV

with its data buffer, it is worth noting that the length of the span used will have

a significant effect on the system's output. Drawing from the limitations described

earlier for the running average, it was noted that the effect of an extreme outlier

certainly carries over in the amplitude and derivative values. The spreading effect

that the running average has on the data introduces an argument for compromise

between the system's sensitivity and responsiveness. In other words, a larger window

will do a better job of softening out the outliers, but will also make the system slow

to respond. Because the acoustic profile expected by the mathematical model is non-
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Figure 5-8: Intercept time estimates based on smoothed gradient of RMS voltage,
using a 10-point running-average of the measurements.

linear, the slow response of the windowed average might also render the estimator

ineffective as the incoming vessel draws near.

The manner in which a slow response may harm the system's performance might

not be readily apparent. Fig. 5-9 shows how a wider observation might suggest

a suitable prediction in a more timely fashion. However, the data represented in

the figure is centered on the observation window as it travels along the dataset.

Consequently, the vehicle would have to account for the half window length of time

that separates the prediction from then-current time. Furthermore, the figure shows

how the windowed average causes the predicted intercept time to diverge near the

singularity. This stems from the cropping effect the smoothed values have on the real

acoustic peak (Fig. 5-10). This phenomenon causes the smoothed data to more closely

approximate the case of a further offset travel lane, as was presented in Fig. 3-2. The

divergence around the critical point also reflects the corresponding shift induced by

the averaging method. Furthermore, because of the window width, the vehicle would

only have access to the estimates shown, after a delay of half the window length.
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Figure 5-9: Intercept time estimates based on smoothed gradient of RMS voltage,
using a 60-point running-average of the measurements. Average values centered on
observation window; intercept estimate reported to vehicle would have a 30s delay.
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Figure 5-10: Intercept time estimates based on smoothed gradient of RMS voltage,
using a 60-point running-average of the measurements. Average values centered on
observation window.
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5.1.2 Model-Based Curve Fitting

The expected profile, as given by the mathematical model, is characterized for its

single peak at the point of closest approach. In order to compare the performance

of a running average method with an alternate curve-fitting approach, a Lorentzian

function was used as the base model. Given by its peak amplitude A, its full-width

at half-max F, its center t, and a constant offset C, the Lorentzian function can be

expressed as Eq. 5.1.

(L)F)2
L~t)= A(t - to)2 + (-'F)2.+C

0.006

c 0.003 -

> 0.002

0.001 1

0.009,30

.... .... .... .... ... .... ... ..
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(5.1)

600

Figure 5-11: Overlay of an observation window fed to a curve-fitting routine, and the
extended time-series of RMS voltage measurements. Actual peak (red) and estimated
intercept time (green) shown.

Using an observation window method, as with the running average, the visible

measurements where fed to a curve-fitting routine based on the Lorentzian function

above. The parameters found by the optimization routine were then used to com-

pute the corresponding voltage amplitude at the then-current time. Designating the

leading edge of the window as t = 0 for each step, the peak center t, was then di-
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rectly related to the estimated time to arrival dT. Fig. 5-11 shows the overlay of

a 20-point observation window over the dataset, the model fitted to the data set,
and the projected intercept time. The series of leading-edge values were then plot-

ted as in Fig. 5-12, for visual inspection of the curve-fitting performance. Intercept

times obtained from the curve-fitting routine are shown in Fig. 5-13 for the average

measurement series V, and in Fig. 5-14 for all channels individually.
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30 '0 350 400 450
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Figure 5-12: RMS voltage based on curve-fitting model with a 20-point observation
window. Fit per channel and fit to average measurement V shown.

Comparing the model fitting output with the preceding results, a few notable dif-

ferences appear. Unlike the running average method, the curve-fitting routine does

not readily introduce a measurement delay due to the window size. Instead, parame-

ters are provided based on the leading edge of the observation window, corresponding

to the true then-current time from the vehicle's perspective. On the other hand,

because the Lorentzian function describes a single peak, the estimator may tend to

track a trailing peak, identifying it as the latest event of interest until enough addi-

tional information shifts the windowed data towards a new maximum (see Sec. 5.2

for more on local peaks). This can be identified by the drop in amplitude shown on
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Figure 5-13: Intercept time estimates based on model fit of
using a 20-point observation window.

average RMS voltage V,

the right-hand side of the leading edge in Fig. 5-11, marking a local peak.

The shift to negative values of dT, as shown in Fig. 5-13 and Fig. 5-14, indicate

that the curve-fitting routine is converging on a solution centered on the local peak.

This shift can be observed to the right of the leading edge in the intercept time plots.

It may be remarked, however, that a noteworthy cluster of reliable and actionable

measurements are available to the vehicle by this point, as seen left of the leading edge

in the aforementioned figures. Furthermore, a double-cycle approach may be used

to determine whether the threat has passed, by checking the predictions preceding

the latest peak. Should the predictions align with the local maximum, it may be

determined that the threat of collision has passed. However, should the predictions

computed prior to the local peak point to a time in the future, the vehicle could

assume that the threat might still be underway. Tracking the latest event of interest,

then, tells the system what predictions it should act upon for decision-making, until

enough additional measurements have been collected or enough time has passed.

In order to account for the presence of small local peaks, tests were performed
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Intercept time estimates based on model fit of V, the RMS voltage per

by changing the span of the observation window. However, as discussed earlier, this

parameter may introduce various unwanted effects. Instead, a variation of the model

was also tested. Working on the assumption that any approaching vessel would neces-

sarily pass dangerously close to the receiver, the model was conditioned to exclusively

reflect radial approaches. By forcing the model directly over the singularity, the es-

timator would struggle to converge on the departure segment of a passing vehicle,

but would likewise be less sensitive to smaller local peaks on the approach leg. The

results obtained with the radial model are shown in Fig. 5-15.

5.2 Variable Travel Lanes

The mathematical model used for this work starts from the assumption that a given

boat is operating at a constant speed, such that its acoustic source level may be

assumed constant. Further, the base scenario described was that of a vessel traveling

on a straight path. Even when the AUV may be moving, so long as it too follows a

56

- -~

- -

-.. .

- .

..1.. .............

60 .

40 - -

20 -I-w

0

-201

-40

300 350 600

- dTvi model fit

----------.. . . . . ....... .....
~-

........--------..................-

----------------- ............

.............

.................

.............

.......... ...A

t
S

AN



100

400

dTvy radial-only model
...............................................-......... . ..

-......

-------

--------------

-............

-... . --- -- ----

--.. ........

450
Time (s)

80

60

40

20

500 550

Figure 5-15: Intercept time estimates based on radial-only model fit of V, the RMS
voltage per channel.

linear path, the relative velocity vectors remain unchanged. However, expecting both

ship and AUV to follow such a pattern at all times is both unreasonable and unlikely.

There will be times when either vessel will change course or adjust their speed while

in range of this acoustic detection system, which will ultimately alter the results.

An interesting scenario to consider would be that of a ship gradually changing

course, as if following a curved path or even driving in circles. By changing course

and therefore varying the relative velocity vector between the two vessels, the ship

would necessarily alter its time of closest approach, or intercept time. Similarly,

discrete changes in speed may alter the motor noise power, as well as the relative

vector. This type of pattern was encountered during the various tests, and one such

case taken from the 20-minute is presented in Figs. 5-16 through 5-19.

It must be noted here that while the occurrence of a variable path profile in the

case study shown above is consistent with both the theory and the notes taken during

the experiment, the exact ship path and speed could not be determined from the data

logs due to loss of signal on the motorboat's tracking device during this stage of the
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Figure 5-16: RMS voltage based on curve-fitting model with a 20-point observation
window. Fit per channel and fit to average measurement V shown. Variable path
case study.

experiment. However, the figures above exhibit a number of features worth discussing

in the scope of this work, even in the absence of GPS tracking data.

Following the sequence used in earlier sections, the first step was to perform a

visual inspection of the voltage amplitudes. In Fig. 5-16, three distinct peaks may be

observed in the 900-950s timeframe. In the subsequent figures, the various intercept

estimation methods reflect a similar clustering trend: the estimates tend to converge

around a unit slope line prior to each peak, and then shift forward after passing the

local maximum. This shift of the prediction groups suggest that a defining parameter

in the environment is changed. A number of possibilities exist to induce this type

of behavior, of which the following are two possibilities described to illustrate the

complexity of the system. A single change in the motorboat's course would not cause

the amplitude to drop unless the vehicle steered away from the receiver, but an evasion

maneuver could point the ship away from the receiver for a brief moment and then

back on approach as it resumed course. A change in speed could drop the source
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Figure 5-17: Intercept time estimates based on model fit of average RMS voltage V,
using a 20-point observation window. Variable path case study.

level, causing a drop in amplitude and likewise delaying the intercept time.

To further expand on possible changes along the travel path, the cases shown in

Fig. 5-12 and Fig. 5-16 may be compared. The local maxima in the latter translated

to significant shifts in the intercept time prediction and is reasonably explained by

the scenarios described above. The former exhibits a similar behavior around its

local maximum, where the measurements reflect a change in the approaching ship.

Consider, for this purpose, the separation between the projected intercept time and

the maximum measurements as was previously shown in Fig. 5-11, compared with

the width of the valley around t = 410s.
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5.3 Vehicle Array Data Processing

Understanding the limitations and responsiveness of the various estimation methods,

as well as some of the more likely scenarios to be encountered by the AUV during

deployment, is necessary in order to assemble a decision scheme for autonomous mis-

sions. Determining when a prediction is reliable and should be acted upon is the first

step in the process of autonomous operation, followed by the determination of what

may constitute an appropriate response. While there are many complex situations

that may be of interest in the field, the AUV deployment tests performed for this

work parted from the bimodal scenario described in Section 4.2.3 as a foundational

framework to assess the ability of the AUV's systems to respond to an incoming vessel

based solely on this passive acoustic detection system.

Given the incremental approach undertaken throughout this work, and the limita-

tions imposed upon field work by seasonal conditions, the vehicle deployment experi-

ments were performed between Summer and late Fall of 2016. The code implemented

on the SandShark AUV during the test missions was based on the running-average

approach. Decisions were triggered based on three key conditions, which could be ad-

justed for each distinct mission. First, the estimated intercept time should be below

a configurable threshold, to avoid triggering on minimal-risk conditions. Second, the

standard deviation of the predictions, projected to global time, should also remain

below an adjustable limit to avoid triggering to random background noise. The third

condition stemmed from the availability of a 4-element array onboard the vehicle, and

the fact that the sensors may occasionally be subject to measurement spikes due to

electronic as well as external factors. Thus, the last requirement was that a minimum

of three out of the four channels have approximately equal time estimates.

Numerous preliminary tests were performed with the AUV and the line array,

leading to a final experiment series to validate the vehicle's behavioral response. This

last set consisted of six 20-30min deployments in the Charles River Basin, using loiter

and racetrack path-based behaviors. A motorboat was used as the noise source, and

was driven on approximately linear paths spanning a distance of approximately 400m,
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from the western end of the Charles River Yacht Club towards the Harvard bridge.

The short length of the travel path used meant that the time between throttle start

and the closest point of approach - as recorded onboard the motorboat by visual

contact - was less than 60s, giving the vehicle only a limited set of measurements to

predict an intercept time and respond to the threat.

5.3.1 Behavior Triggering Case Study

The dataset shown in Fig. 5-20 corresponds to the second deployment performed on

October 31, 2016, as part of the behavior-triggering experiments. The set contains

three alarm triggers recorded on the AUV mission logs, at times t = [284, 532, 919]s.

Fig. 5-21 shows the second event in the data set, where the moment of behavior

switching marked by the green dashed line. It may be observed that the first 50s of

the set are generally dominated by background noise. After maneuvering to align with

the travel lane, the motorboat began its approach after the 500s mark. Following the

approach introduced in earlier sections, Figs. 5-22 through 5-27 show the measurement

gradients and dT estimates for the point-to-point and running average methods.

In Fig. 5-27, the clustering behavior of the intercept time estimates indicates a di-

vergence from the linear path of approach. Indeed, as was discussed in Section 5.2, a

variable path may affect the relative velocity vector, inducing changes in the trends ob-

served for the dT estimates. A nearly constant guess for the time to arrival correlates

with a nearly constant rate of change for the intensity measurements. Considering

the surface shown in Fig. 3-1, this would correspond to a type of spiraling approach,

which stands as a reasonable description of the test conditions given that the AUV's

base mission is to hold a loiter path. After the SandShark triggers the alarm and

switches to a racetrack behavior, the vessels' motion starts looking more like a linear

path of approach and, accordingly, the intercept time estimates ultimately appear to

converge towards a unit-slope linear relation. The effect of the singularity, as dis-

cussed in Section 3, can be clearly seen in the divergence of dT near the red line

indicative of the measurement peak.
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Figure 5-20: RMS of hydrophone voltage measurements collected with a 4-ch tetra-
hedral array mounted on a Bluefin SandShark AUV, during a 20-min mission on Oct.
31, 2016.
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Figure 5-21: RMS of hydrophone voltage measurements collected with a 4-ch tetrahe-
dral array mounted on a Bluefin SandShark AUV. Single event case study. Vehicle's
intercept alarm triggered at time shown by green dashed line.
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Figure 5-24: RMS of hydrophone voltage measurements, using a 10-point running-
average smoothing window. Data shown obtained by post-processing of acoustic logs.
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Figure 5-25: Gradient of RMS voltage measurements, using a 10-point running-
average smoothing window.
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Figure 5-26: Intercept time estimates based on point-to-point gradient of RMS volt-
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The effect that a spiraling approach has on the measurements collected, in addition

to the noise in the signal, provides an excellent opportunity to evaluate the limitations

of the Lorentzian model curve-fitting routine. Because the data is much more linear,

the fully described single-peak model has difficulty adapting with new measurements,

and instead tends to lock on outliers and local maxima when present. This behavior

can be seen in Figs. 5-28 through 5-31. However, by constraining the model to a radial-

only form, disallowing any offset from the singularity, the curve-fitting routine begins

to better match the running-average results. In Fig. 5-32, the reduced model function

exhibits similar trends to those seen in Fig. 5-27, with a number of roughly constant

measurements clustered to the left of the alarm marker, then shifting upwards and

following the unit-slope line.
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Figure 5-28: Overlay of an observation window fed to a curve-fitting routine, and the
extended time-series of RMS voltage measurements. Actual peak (red) and estimated
intercept time (magenta, dashed) shown. Vehicle's alarm trigger time (green, dashed)
also shown.
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Figure 5-29: RMS voltage based on curve-fitting model with a 20-point observation
window. Fit per channel and fit to average measurement V shown.
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Figure 5-30: Intercept time estimates based on model fit of average RMS voltage V,
using a 20-point observation window.
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Figure 5-31: Intercept time estimates based on model fit of V, the RMS voltage per
channel.
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Figure 5-32: Intercept time estimates based on radial-only model fit of Vi, the RMS
voltage per channel.
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6 Conclusions

The deployment of a new sensor system or signal processing method for autonomous

vehicles demands, by its very nature, that a significant series of testing be performed

to validate the system's performance. Accounting for every possible situation is very

nearly impossible, but by performing an increasing number of tests, a foundational

decision scheme may be devised and improved upon. Throughout this work, a se-

quence of experiments was used to understand the principal aspects of the acoustic

profiles observed in real operations areas, building up to onboard intercept time esti-

mation. Numerous AUV deployments were performed in order to demonstrate fully

autonomous responses to approaching threats based on the passive detection system

herein presented. The final set of experiments consisted of six behavior-triggering

tests with durations between 20-30min each, adding up to 142 minutes of acoustic

data where a total of 21 successful response triggers were recorded.

The datasets collected throughout the different experimental stages were post-

processed to assess the system performance and the validity of various estimation

methods. A running average approach was compared with a fully described single-

peak function and a reduced-form of the same function, constrained to direct radial

approaches. This comparison shed some light on the effect of ambient noise, travel

path variations and boundary reflections on the various estimates, thereby remarking

the limitations of each method and the advantages attainable from using a parallel

multi-model approach. The running-average method is subject to delays and peak

damping, while the single-peak curve fit tends to fix on local peaks, often yielding

unclear results during spiraling approaches; the radial function chosen exhibited a

tendency to diverge when the measurement peaks were passing through the obser-

vation window. Furthermore, the effect of extreme outliers throughout the dataset

affected the stability of each estimation method in different ways. By considering the

different estimates in unison, however, an accurate description of the system could be

drawn.
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7 Future Work

Having proved that the system can be successfully operated during an autonomous

mission deployment, a number of opportunities for improvement have been identified.

7.1 Parallel-Model Estimation

Following the local-maximum tracking ability of the single-peak function fit as was

discussed in Section 5, the different models could be used to determine the best

solution. Going a step further, the models could be not just considered in parallel

but also combined to achieve a higher-confidence estimate. An example of this multi-

model cross-over would be accounting for the latest point of interest as given by the

Lorentzian model, such that the intercept time corresponding to the local-maximum

time can be projected forward from all solutions to determine whether a response is

necessary, according to the risk sensitivity of the mission.

7.2 Earliest-Detection Assessment

The behavior-triggering experiments proved the ability of the intercept estimation

system to help the AUV respond to incoming threats. However, the short length of

the travel lanes used by the motorboat during AUV deployment tests limited the time

available for the SandShark to respond. Additional experiments should be performed

to characterize the earliest detection times attainable with this passive system.

7.3 Frequency Filtering & Outlier Detection

In order to preserve the generality of the algorithm, the estimation methods were

tested based on the full set of measurements. However, the nature of the phenomena

sought by this system is limited by the ship speed, and may be generally considered
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to have a slow rate of change. This information may be used to identify and remove

extreme outliers in the measurement, which can improve the system's performance

and stability. Furthermore, if the characteristic frequencies of the ship or ships in the

area are known, a band-pass filter may be used to constrain the signal and account

for variations in the desired frequency range alone.

7.4 Beamforming & Bearing-Based Filtering

Tests and signal processing throughout this work have been based on the premise of a

single-channel system, and extended to multichannel measurements by using a simple

time-bucket averaging of all channels. However, using more detailed methods such as

conventional or adaptive beamforming can help further improve the signal-to-noise

ratio by weighting the signal with an appropriate array gain. Besides its advantages

in noise reduction, the additional bearing information obtained can also be used to

account for sources with known signatures, such as those used for acoustic localization

systems, or to enable tracking of multiple sources. This type of method provides an

optimal way to combine the measurements from multiple sensors when their spatial

configuration is known, as tends to be the case for AUV's, and should therefore be

prioritized and integrated in future efforts on this work.
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