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Abstract

Electronic health records (EHRs) have been widely adopted, and are a gold mine for clini-
cal research. However, EHRs, especially their text components, remain largely unexplored
due to the fact that they must be de-identified prior to any medical investigation. Existing
systems for de-identification rely on manual rules or features, which are time-consuming to
develop and fine-tune for new datasets. In this thesis, we propose the first de-identification
system based on artificial neural networks (ANNs), which achieves state-of-the-art results
without any human-engineered features. The ANN architecture is extended to incorporate
features, further improving the de-identification performance. Under practical considera-
tions, we explore transfer learning to take advantage of large annotated dataset to improve
the performance on datasets with limited number of annotations. The ANN-based system
is publicly released as an easy-to-use software package for general purpose named-entity
recognition as well as de-identification. Finally, we present an ANN architecture for re-
lation extraction, which ranked first in the SemEval-2017 task 10 (ScienceIE) for relation
extraction in scientific articles (subtask C).
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Chapter 1

Introduction

We investigate in this thesis several natural language processing methods to de-identify and

extract information from patient notes. In this chapter, we outline the motivations of our

work.

1.1 Background and Motivation

In many countries such as the United States, medical professionals are strongly encouraged

to adopt electronic health records (EHRs) and may face financial penalties if they fail to do

so [32, 128]. The Centers for Medicare & Medicaid Services have paid out more than $30

billion in EHR incentive payments to hospitals and providers who have attested to mean-

ingful use as of March 2015. As a result, EHR datasets are increasingly widely adopted, as

shown in Figure 1-1, and medical investigations may greatly benefit from them. One of the

key components of EHRs is patient notes: the information they contain can be critical for

a medical investigation because much information present in texts cannot be found in the

other elements of the EHR.

However, before patient notes can be shared with medical investigators, some types of

information, referred to as protected health information (PHI), must be removed in order

to preserve patient confidentiality. In this work, we present a new method to de-identify

clinical texts.

We also present a new method for information extraction. Once we have text data such

17



Figure 1-1: Percent of non-federal acute care hospitals with adoption of at least a basic EHR with notes
system and possession of a certified EHR. Source: [54]

as de-identified patient notes to use for research purposes, we often need to extract rele-

vant information from text. One of the most fundamental steps in information extraction

is named-entity recognition (NER). This can be tackled using the same model as the de-

identification, as de-identification is an instance of NER. After extracting named entities,

the next possible step in information extraction is to extract relations among the named en-

tities. For example, the patient notes not only contain description of the medical conditions,

test, and treatments, but also what the authors, i.e., medical practitioners think how these

relate to each other. This may include whether a medical treatment improved or worsened

a medical condition, or which test indicates a medical condition. Therefore, it would be

useful to extract relations among the entities of interest, which is the focus of the latter part

of this thesis.

1.1.1 De-identification

The task of removing PHI from a patient note is referred to as de-identification, since the

patient cannot be identified once PHI is removed. In the United States, the Health Insurance

Portability and Accountability Act (HIPAA) [89] defines 18 different types of PHI, ranging

from patient names to phone numbers.

De-identification can be either manual or automated. Manual de-identification means

18



that the PHI is labeled by human annotators. There are three main shortcomings of this ap-

proach. First, only a restricted set of individuals is allowed to access the identified patient

notes, thus the task cannot be crowdsourced. Second, humans are prone to mistakes. Nea-

matullah et al. [87] asked 14 clinicians to detect PHI in approximately 130 patient notes:

the results of the manual de-identification varied from clinician to clinician, with recall

ranging from 0.63 to 0.94. Third, human annotation is costly. Douglass et al. [35, 33]

reported that annotators were paid US$50 per hour and read 20,000 words per hour at best.

As a matter of comparison, the MIMIC dataset [45, 99, 57], which contains data from

50,000 intensive care unit (ICU) stays, consists of 100 million words. This would require

5,000 hours of annotation, which would cost US$250,000 at the same pay rate. Given

the annotators’ spotty performance, each patient note would have to be annotated by at

least two different annotators: it would therefore cost at least US$500,000 to de-identify

the notes in the MIMIC dataset. Consequently, the first and crucial step to explore patient

notes is automated de-identification.

1.1.2 Information extraction

Once physician notes can be made available thanks to the existence of efficient de-identification

programs, one can then extract medical information, and classify relations between the ex-

tracted content.

Concept extraction refers to the task of identifying useful concepts from natural lan-

guage text. For clinical texts, the concepts in consideration could be medical conditions,

treatments, and tests.

Relation extraction can be defined as the task of classifying the relationship between

given pairs of concepts. For example, relationships can exist between medical condition

and treatment (e.g., “Treatment X is administered for medical condition Y”, “Treatment

X is not administered because of medical condition Y”, “Treatment X improves medical

condition Y”), between medical condition and test (e.g., “Test X reveals medical condition

Y”, “Test X was conducted to investigate medical condition Y”), and between medical

conditions (e.g., “Medical condition X indicates the presence of medical condition Y”).

19



As mentioned in the previous section, much information is present in physician notes.

Leveraging concept and relation extraction techniques gives medical investigators access

to knowledge not present in the structured fields of EHRs. We give two specific examples

in the rest of this section. Concept extraction can be used for patient cohort identifica-

tion [121], which can, among other downstream applications, help investigators identify

individuals who may be eligible for clinical trials. It can also help conduct retrospective

studies to identify clinically significant patterns at much lower cost than prospective tri-

als [62], although retrospective studies do not have the same force of certitude as carefully

planned Randomized Controlled trials (RCTs). Extracted relations can also be used for a

variety of tasks such as the development of medical ontologies, question-answering sys-

tems, and clinical trials [43].

1.2 Contributions

Existing de-identification systems are either rule-based systems or machine learning sys-

tems based on manual features. The performance of these methods largely depends on the

quality of rules or features developed by human experts. However, quality rules or features

are challenging and time-consuming to develop, and do not scale well for new datasets.

Meanwhile, recent approaches to natural language processing (NLP) based on artificial

neural networks (ANNs) do not require handcrafted rules or features, as they can auto-

matically learn effective features. ANNs have shown promising results for various tasks

in NLP, such as language modeling [79], text classification [106, 59, 15, 67], question

answering [127, 125], and machine translation [6, 117, 113].

Inspired by the performance of ANNs for various other NLP tasks, we introduce a de-

identification and information extraction system based on ANNs that do not require manual

features, and also explore various extensions. The contributions of this thesis are as follows.

∙ We propose the first ANN architecture for de-identification, which achieves state-of-

the-art results without using any manual features. This work was published at the

Journal of American Medical Informatics Association (JAMIA) [31].

∙ We extend the ANN architecture for de-identification by adding the capability to
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utilize features. We show that incorporating high-quality features derived from elec-

tronic health records such as dictionaries of patient and doctor names further im-

proves de-identification performance. This work was published at the ClinicalNLP

workshop at COLING 2016 [70].

∙ We explore transfer learning of the ANN architecture for de-identification, by trans-

ferring the parameters learned from a large annotated dataset to smaller datasets with

a limited number of annotations. This work is under review [69].

∙ We publicly release the ANN de-identification program as an easy-to-use software

package for general purpose named-entity recognition as well as de-identification.

This work is under review [30].

∙ We develop an ANN architecture for relation extraction, which ranked first in the

SemEval-2017 task 10 (ScienceIE) [5] for relation extraction in scientific articles

(subtask C). This work was published at SemEval 2017 [68].

1.3 Organization

The rest of this thesis is organized as follows:

∙ Chapter 2 presents our work on de-identification of patient notes with ANNs.

∙ Chapter 3 presents our work on feature-augmented ANNs for de-identification.

∙ Chapter 4 presents our work on transfer learning.

∙ Chapter 5 presents our publicly-released software package for named-entity recogni-

tion and de-identification.

∙ Chapter 6 presents our work on relation extraction.

∙ Chapter 7 presents our conclusions and outlines fruitful problems for future investi-

gation.
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Chapter 2

De-identification of patient notes with

recurrent neural networks

As mentioned in the previous chapter, de-identification is a prerequisite for medical re-

search using patient notes. In this chapter, we propose the first ANN architecture for de-

identification. Our model achieves state-of-the-art results on two different datasets without

using any manual features. This work was published at JAMIA [31].

2.1 Introduction and Related work

The task of removing protected health information (PHI) from a patient note is referred to as

de-identification, since the patient cannot be identified once PHI is removed. In the United

States, the Health Insurance Portability and Accountability Act (HIPAA) [89] defines 18

different types of PHI, ranging from patient names to phone numbers. Table 2.1 presents

the exhaustive list of PHI types as defined by HIPAA.

Automated de-identification systems can be classified into two categories: rule-based

systems and machine-learning-based systems. Rule-based systems typically rely on pat-

terns, expressed as regular expressions and gazetteers, defined and tuned by humans. They

do not require any labeled data (aside from labels required for evaluating the system), and

are easy to implement, interpret, maintain, and improve, which explains their large pres-

ence in the industry [22]. However, they need to be meticulously fine-tuned for each new

23



PHI categories PHI types HIPAA i2b2 MIMIC
AGE Ages ≥ 90 x x x

Ages < 90 x

CONTACT Telephone and fax numbers x x x
Electronic mail addresses x x x
URLs or IP addresses* x x x

DATE Dates (month and day parts) x x x
Year x x
Holidays x x
Day of the week x

ID Social security numbers x x x
Medical record numbers x x x
Account numbers x x x
Certificate or license numbers x x x
Vehicle or device identifiers x x x
Biometric identifiers or full face photographic images* x x x

LOCATION Addresses and their components smaller than a state x x x
State x x
Country x x
Employers x x x
Hospital name x x
Ward name x

NAME Names of patients and family members x x x
Provider name x x

PROFESSION Profession x

Table 2.1: PHI types as defined by HIPAA, i2b2, and MIMIC. PHI categories are defined in the i2b2 dataset.
The PHI types marked with * do not appear in either dataset.

dataset, are not robust to language changes (e.g., variations in word forms, typographical

errors, or infrequently used abbreviations), and cannot easily take into account the context

(e.g., “Mr. Parkinson” is PHI, while “Parkinson’s disease” is not PHI). Rule-based systems

are described in [11, 7, 37, 42, 50, 84, 87, 98, 115, 118].

To alleviate some downsides of the rule-based systems, there have been many attempts

to use supervised machine learning algorithms to de-identify patient notes by training a

classifier to label each word as PHI or not PHI, sometimes distinguishing between different

PHI types. Common statistical methods include decision trees [116], log-linear models,

support vector machines [48, 123, 51], and conditional random fields [2], the latter being

employed in most of the state-of-the-art systems. For a thorough review of existing sys-
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tems, see [77, 110]. All these methods share two downsides: they require a decent sized

labeled dataset and much feature engineering. As with rules, quality features are challeng-

ing and time-consuming to develop.

Recent approaches to natural language processing based on artificial neural networks

(ANNs) do not require handcrafted rules or features, as they can automatically learn ef-

fective features by performing composition over tokens which are represented as vectors,

often called token embeddings. The token embeddings are jointly learned with the other

parameters of the ANN. They can be initialized randomly, but can be pre-trained using

large unlabeled datasets typically based on token co-occurrences [80, 24, 95]. The lat-

ter often performs better, since the pre-trained token embeddings explicitly encode many

linguistic regularities and patterns. As a result, methods based on ANNs have shown

promising results for various tasks in natural language processing, such as language mod-

eling [79], text classification [106, 59, 15, 67], question answering [127, 125], machine

translation [6, 117, 113], as well as named-entity recognition [24, 64, 63]. A few methods

also use vector representations of characters as inputs in order to either replace or augment

token embeddings [60, 64, 63].

Inspired by the performance of ANNs for various other NLP tasks, this article intro-

duces the first de-identification system based on ANNs. Unlike other machine learning

based systems, ANNs do not require manually-curated features, such as those based on

regular expressions and gazetteers. We show that ANNs achieve state-of-the-art results on

de-identification of two different datasets for patient notes, the i2b2 2014 challenge dataset

and the MIMIC dataset.

2.2 Methods and materials

We first present a de-identifier we developed based on a conditional random field (CRF)

model in Section 2.2.1. This de-identifier yields state-of-the-art results on the i2b2 2014

dataset, which is the reference dataset for comparing de-identification systems. This sys-

tem will be used as a challenging baseline for the ANN model that we will present in

Section 2.2.2. The ANN model outperforms the CRF model, as outlined in Section 2.3.
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2.2.1 CRF model

In the CRF model, each patient note is tokenized and features are extracted for each token.

During the training phase, the CRF’s parameters are optimized to maximize the likeli-

hood of the gold standard labels. During the test phase, the CRF predicts the labels. The

performance of a CRF model depends mostly on the quality of its features. We used a

combination of n-gram, morphological, orthographic, and gazetteer features. These are

similar to features used in the best-performing CRF-based competitors in the i2b2 chal-

lenge [130, 73]. In order to effectively incorporate context when predicting a label, the

features for a given token are computed based on that token and on the four surrounding

tokens.

2.2.2 ANN model

The main components of the ANN model are recurrent neural networks (RNNs). In partic-

ular, we use a type of RNN called Long Short Term Memory (LSTM) [55], as discussed in

Section 2.2.2.

The system is composed of three layers:

∙ Character-enhanced token embedding layer (Section 2.2.2),

∙ Label prediction layer (Section 2.2.2),

∙ Label sequence optimization layer (Section 2.2.2).

The character-enhanced token embedding layer maps each token into a vector represen-

tation. The sequence of vector representations corresponding to a sequence of tokens are

input to the label prediction layer, which outputs the sequence of vectors containing the

probability of each label for each corresponding token. Lastly, the sequence optimization

layer outputs the most likely sequence of predicted labels based on the sequence of proba-

bility vectors from the previous layer. All layers are learned jointly. Figure 2-1 shows the

ANN architecture.
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Figure 2-1: Architecture of the artificial neural network (ANN) model. RNN stands for recurrent neural
network. The type of RNN used in this model is Long Short Term Memory (LSTM). 𝑛 is the number of
tokens, and 𝑥𝑖 is the 𝑖𝑡ℎ token. 𝒱𝑇 is the mapping from tokens to token embeddings. ℓ(𝑖) is the number
of characters and 𝑥𝑖,𝑗 is the 𝑗𝑡ℎ character in the 𝑖𝑡ℎ token. 𝒱𝐶 is the mapping from characters to character
embeddings. e𝑖 is the character-enhanced token embeddings of the 𝑖𝑡ℎ token.

←→
d𝑖 is the output of the LSTM

of label prediction layer, a𝑖 is the probability vector over labels, 𝑦𝑖 is the predicted label of the 𝑖th token.

In the following, we denote scalars in italic lowercase (e.g., 𝑘, 𝑏𝑓 ), vectors in bold

lowercase (e.g., s, x𝑖), and matrices in italic uppercase (e.g., 𝑊𝑓 ) symbols. We use the

colon notations 𝑥𝑖:𝑗 and v𝑖:𝑗 to denote the sequence of scalars (𝑥𝑖, . . . , 𝑥𝑗), and vectors

(v𝑖,v𝑖+1, . . . ,v𝑗), respectively.

Bidirectional LSTM

An RNN is a neural network architecture designed to handle input sequences of variable

sizes, but it fails to model long term dependencies. An LSTM is a type of RNN that

mitigates this issue by keeping a memory cell that serves as a summary of the preceding el-

ements of an input sequence. More specifically, given a sequence of vectors x1,x2, . . . ,x𝑛,

at each step 𝑡 = 1, . . . , 𝑛, an LSTM takes as input x𝑡,h𝑡−1, c𝑡−1 and produces the hidden

state h𝑡 and the memory cell c𝑡 based on the following formulas:
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i𝑡 = 𝜎(𝑊𝑖 [x𝑡; h𝑡−1; c𝑡−1] + b𝑖)

c̃𝑡 = tanh(𝑊𝑐 [x𝑡; h𝑡−1] + b𝑐)]

c𝑡 = (1− i𝑡)⊙ c𝑡−1 + i𝑡 ⊙ c̃𝑡

o𝑡 = 𝜎(𝑊𝑜 [x𝑡; h𝑡−1; c𝑡] + b𝑜)

h𝑡 = o𝑡 ⊙ tanh(c𝑡)

where 𝑊𝑖,𝑊𝑐,𝑊𝑜 are weight matrices and b𝑖,b𝑐,b𝑜 are bias vectors used in the input gate,

memory cell, and output gate calculations, respectively. The symbols 𝜎(·) and tanh(·) refer

to the element-wise sigmoid and hyperbolic tangent functions, and ⊙ is the element-wise

multiplication. h0 = c0 = 0.

A bidirectional LSTM consists of a forward LSTM and a backward LSTM, where the

forward LSTM calculates the forward hidden states (
−→
h 1,
−→
h 2, . . . ,

−→
h 𝑛), and the backward

LSTM calculates the backward hidden states (
←−
h 1,
←−
h 2, . . . ,

←−
h 𝑛) by feeding the input se-

quence in the backward order, from x𝑛 to x1.

Depending on the application of the LSTM, one might need an output sequence corre-

sponding to each element in the sequence, or a single output that summarizes the whole se-

quence. In the former case, the output sequence h1,h2, . . . ,h𝑛 of the LSTM is obtained by

concatenating the hidden states of the forward and the backward LSTMs for each element

i.e.,
←→
h𝑡 = (

−→
h 𝑡;
←−
h 𝑡) for 𝑡 = 1, . . . , 𝑛. In the latter case, the output is obtained by concate-

nating the last hidden states of the forward and the backward LSTMs i.e.,
←→
h = (

−→
h 𝑛;
←−
h 𝑛).

Character-enhanced token embedding layer

The character-enhanced token embedding layer takes a token as input and outputs its vector

representation. The latter results from the concatenation of two different types of embed-

dings: the first one directly maps a token to a vector, while the second one comes from the

output of a character-level token encoder.

The direct mapping 𝒱𝑇 (·) from token to vector, often called a token (or word) embed-

ding, can be pre-trained on large unlabeled datasets using programs such as word2vec [80,
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78, 81] or GloVe [95], and can be learned jointly with the rest of the model. Token embed-

dings, often learned by sampling token co-occurrence distributions, have desirable proper-

ties such as locating semantically similar words closely in the vector space, hence leading

to state-of-the-art performance for various tasks.

While the token embeddings capture the semantics of tokens to some degree, they may

still suffer from data sparsity. For example, they cannot account for out-of-vocabulary

tokens, misspellings, and different noun forms or verb endings. One solution to remediate

some of these issues would be to lemmatize tokens before training, but this approach may

fail to retain some useful information such as the distinction between some verb and noun

forms.

We address this issue by using character-based token embeddings, which incorporate

each individual character of a token to generate its vector representation. This approach

enables the model to learn sub-token patterns such as morphemes (e.g., suffix or prefix)

and roots, thereby capturing out-of-vocabulary tokens, different surface forms, and other

information not contained in the token embeddings.

Let 𝑥𝑖,1, . . . , 𝑥𝑖,ℓ(𝑖) be the sequence of characters that comprise the 𝑖𝑡ℎ token 𝑥𝑖, where

ℓ(𝑖) is the number of characters in 𝑥𝑖. The character-level token encoder generates the

character-based token embedding of 𝑥𝑖 by first mapping each character 𝑥𝑖,𝑗 to a vector

𝒱𝐶(𝑥𝑖,𝑗), called a character embedding, via the mapping 𝒱𝐶(·). Then the sequence of vec-

tors 𝒱𝐶(𝑥𝑖,1), . . . ,𝒱𝐶(𝑥𝑖,ℓ(𝑖)) is passed to a bidirectional LSTM, which outputs the character-

based token embedding
←→
b𝑖

As a result, the final output e𝑖 of the character-enhanced token embedding layer for 𝑖𝑡ℎ

token 𝑥𝑖 is the concatenation of the token embedding 𝒱𝑇 (𝑥𝑖) and the character-based token

embedding
←→
b𝑖 . In summary, when the character-enhanced token embedding layer receives

a sequence of tokens 𝑥1:𝑛 as input, it will output the sequence of token embeddings e1:𝑛.

Label prediction layer

The label prediction layer takes as input the sequence of vectors e1:𝑛, i.e., the outputs of

the character-enhanced token embedding layer, and outputs a1:𝑛, where the 𝑡𝑡ℎ element of

a𝑛 is the probability that the 𝑛𝑡ℎ token has the label 𝑡. The labels are either one of the PHI
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types or non-PHI. For example, if one aims to predict all 18 HIPAA-defined PHI types,

there would be 19 different labels.

The label prediction layer contains a bidirectional LSTM that takes the input sequence

e1:𝑛 and generates the corresponding output sequence
←→
d1:𝑛. Each output

←→
d𝑖 of the LSTM

is given to a feed-forward neural network with one hidden layer, which outputs the corre-

sponding probability vector a𝑖.

Label sequence optimization layer

The label sequence optimization layer takes the sequence of probability vectors a1:𝑛 from

the label prediction layer as input, and outputs a sequence of labels 𝑦1:𝑛, where 𝑦𝑖 is the

label assigned to the token 𝑥𝑖.

The simplest strategy to select the label 𝑦𝑖 would be to choose the label that has the

highest probability in a𝑖, i.e. 𝑦𝑖 = argmax𝑘 a𝑖[𝑘]. However, this greedy approach fails

to take into account the dependencies between subsequent labels. For example, it may be

more likely to have a token with the PHI type STATE followed by a token with the PHI

type ZIP than any other PHI type. Even though the label prediction layer has the capacity

to capture such dependencies to a certain degree, it may be preferable to allow the model

to directly learn these dependencies in the last layer of the model.

One way to model such dependencies is to incorporate a matrix 𝑇 that contains the

transition probabilities between two subsequent labels. 𝑇 [𝑖, 𝑗] is the probability that a token

with label 𝑖 is followed by a token with the label 𝑗. The score of a label sequence 𝑦1:𝑛 is

defined as the sum of the probabilities of individual labels and the transition probabilities:

𝑠(𝑦1:𝑛) =
𝑛∑︁

𝑖=1

a𝑖[𝑦𝑖] +
𝑛∑︁

𝑖=2

𝑇 [𝑦𝑖−1, 𝑦𝑖].

These scores can be turned into probabilities of the label sequences by taking a softmax

function over all possible label sequences. During the training phase, the objective is to

maximize the log probability of the gold label sequence. In the testing phase, given an

input sequence of tokens, the corresponding sequence of predicted labels is chosen as the

one that maximizes the score.
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2.3 Experiments and results

2.3.1 Datasets

We evaluate our two models on two datasets: the i2b2 2014 and MIMIC de-identification

datasets. The i2b2 2014 dataset was released as part of the 2014 i2b2/UTHealth shared task

Track 1 [110]. It is the largest publicly available dataset for de-identification. Ten teams

participated in this shared task, and 22 systems were submitted. As a result, we used the

i2b2 2014 dataset to compare our models against state-of-the-art systems.

The MIMIC de-identification dataset was created for this work as follows. The MIMIC-

III dataset [57, 45, 99] contains data for 61,532 ICU stays over 58,976 hospital admissions

for 46,520 patients, including 2 million patient notes. In order to make the notes publicly

available, a rule-based de-identification system [34, 35, 33] was written for the specific

purpose of de-identifying patient notes in MIMIC, leveraging dataset-specific information

such as the list of patient names or addresses. The system favors recall over precision:

there are virtually no false negatives, while there are numerous false positives. To create

the gold standard MIMIC de-identification dataset, we selected 1,635 discharge summaries,

each belonging to a different patient, containing a total of 60.7k PHI instances. We then

annotated the PHI instances detected by the rule-based system as true positives or false

positives. We found that 15% of the PHI instances detected by the rule-based system were

false positives.

Table 2.1 introduces the PHI types and Table 2.2 presents the datasets’ sizes. For the

test set, we used the official test set for the i2b2 dataset, which is 40% of the dataset; we

randomly selected 20% of the MIMIC dataset as the test set for this dataset.

i2b2 MIMIC
Vocabulary size 46,803 69,525
Number of notes 1,304 1,635
Number of tokens 984,723 2,945,228
Number of PHIs 28,867 60,725
Number of PHI tokens 41,355 78,633

Table 2.2: Overview of the i2b2 and MIMIC datasets.
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2.3.2 Evaluation metrics

To assess the performance of the two models, we computed the precision, recall, and

F1-score. Let TP be the number of true positives, FP the number of false positives, and

FN the number of false negatives. Precision, recall, and F1-score are defined as follows:

precision = 𝑇𝑃
𝑇𝑃+𝐹𝑃

, recall = 𝑇𝑃
𝑇𝑃+𝐹𝑁

, and F1-score = 2*precision*recall
precision+recall . Intuitively, precision

is the proportion of the predicted PHI labels that are gold labels, recall is the proportion

of the gold PHI labels that are correctly predicted, and F1-score is the harmonic mean of

precision and recall.

2.3.3 Training and hyperparameters

The model is trained using stochastic gradient descent, updating all parameters, i.e., to-

ken embeddings, character embeddings, parameters of bidirectional LSTMs, and transition

probabilities, at each gradient step. For regularization, dropout is applied to the character-

enhanced token embeddings before the label prediction layer. Below are the choices of

hyperparameters and token embeddings, optimized using a subset of the training set:

∙ character embedding dimension: 25

∙ character-based token embedding LSTM dimension: 25

∙ token embedding dimension: 100

∙ label prediction LSTM dimension: 100

∙ dropout probability: 0.5

We selected the hyperparameters manually, though we could have used some hyperpa-

rameter optimization techniques [10, 27, 28]. We tried pre-training token embeddings on

the i2b2 2014 dataset and the MIMIC dataset1 using word2vec and GloVe. Both word2vec

and GloVe were trained using a window size of 10, a minimum vocabulary count of 5,

and 15 iterations. Additional parameters of word2vec were the negative sampling and the

model type, which were set to 10 and skip-gram, respectively. We also experimented with

the publicly available2 token embeddings such as GloVe trained on Wikipedia and Giga-

1For MIMIC, we used the entire dataset containing 2 million notes and 800 million tokens.
2http://nlp.stanford.edu/projects/glove/
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word 5 [92]. The results were quite robust to the choice of the pre-trained token embed-

dings. The GloVe embeddings trained on Wikipedia articles yielded slightly better results,

and we chose them for the rest of this work.

2.3.4 Results

All results were computed using the official evaluation script from the i2b2 2014 de-

identification challenge. Table 2.3 presents the main results, based on binary token-based

precision, recall, and F1-score for HIPAA-defined PHI only. These PHI types are the most

important since only those are required to be removed by law. On the i2b2 dataset, our ANN

model has a higher F1-score and recall than our CRF model as well as the best system from

the i2b2 2014 de-identification challenge, which was the Nottingham system [130]. The

only freely available, off-the-shelf program for de-identification, called the MITRE Iden-

tification Scrubber Toolkit (MIST) [2], performed poorly. Combining the outputs of our

ANN and CRF models, by considering a token to be PHI if it is identified as such by either

model, further increases the performance in terms of F1-score and recall.

It should be noted that the Nottingham system was specifically fine-tuned for the i2b2

dataset as well as the i2b2 evaluation script. For example, the Nottingham system post-

processes the detected PHI terms in order to match the offset of the gold PHI tokens, such

as modifying “MR:6746781" to “6746782" and “MWFS" to “M", “W", “F", “S".

On the MIMIC dataset, our ANN model also has a higher F1-score and recall than our

CRF model. Interestingly, combining the outputs of our ANN and CRF models did not

increase the F1-score, because precision was negatively impacted. However, the recall did

benefit from combining the two models. MIST was much more competitive on this dataset.

We calculated the statistical significance of the differences in precision, recall, and

F1-score between the CRF and ANN models using approximate randomization with 9999

shuffles. The significance levels of the differences in precision, recall, and F1-score are

0.37, 0.02, 0.22 for the i2b2 dataset, and 0.08, 0.00, 0.00 for the MIMIC dataset, respec-

tively.
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Model
i2b2 MIMIC

Precision Recall F1-score Precision Recall F1-score
Nottingham 99.000 96.680 97.680 - - -

MIST 95.288 75.691 84.367 97.739 97.164 97.450
CRF 98.560 96.528 97.533 99.060 98.987 99.023
ANN 98.320 97.380 97.848 99.208 99.251 99.229

CRF + ANN 97.920 97.835 97.877 98.820 99.398 99.108

Table 2.3: Performance (%) on the PHI as defined in the HIPAA. We evaluated the systems based on the
detection of PHI tokens versus non-PHI tokens (i.e., binary HIPAA token-based evaluation). The best per-
formance for each metric on each dataset is highlighted in bold. Nottingham is the best performing system
from the 2014 i2b2/UTHealth shared task Track 1. MIST, the MITRE Identification Scrubber Toolkit, is a
freely available de-identification program. CRF is the model based on Conditional Random Field, ANN is the
model based on Artificial Neural Network, and CRF+ANN is the result obtained by combining the outputs
of the CRF model and the ANN model. The Nottingham system could not be run on the MIMIC dataset, as
it is not publicly available.

2.3.5 Error analysis

Figure 2-2 shows the binary token-based F1-scores for each PHI category. The ANN model

outperforms the CRF model on all categories for both datasets, with the exception of the

ID category (which mostly contains medical record numbers) in the i2b2 dataset. This is

due to the fact that the CRF model uses sophisticated regular expression features that are

tailored to detect ID patterns such as “38:Z8912708G”.

Another interesting difference between the ANN and the CRF results is the PROFES-

SION category: the ANN significantly outperforms the CRF. The reason behind this result

is that the embeddings of the tokens that represent a profession tend to be close in the

token embedding space, which allows the ANN model to generalize well. We tried assem-

bling various gazetteers for the PROFESSION category, but all of them were performing

significantly worse than the ANN model.
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Figure 2-2: Binary token-based F1-scores for each PHI category. The evaluation is based on PHI types that
are defined by HIPAA as well as additional PHI types specific to each dataset. Each PHI category and the
corresponding PHI types are defined in Table 1. The PROFESSION category exists only in the i2b2 dataset,
and was removed from the graph to avoid distorting the y-axis: the F1-scores are 72.014, 82.035, and 81.664
with the CRF, ANN, and CRF+ANN, respectively. For the same reason, the AGE category in MIMIC was
removed: the F1-scores are 80.851, 81.481, and 92.308 with the CRF, ANN, and CRF+ANN, respectively.
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Table 2.4 presents some examples of gold PHI instances correctly predicted by the

ANN model that the CRF model failed to predict, and conversely. This illustrates that the

ANN model efficiently copes with the diversity of the contexts in which tokens appear,

whereas the CRF model can only address the contexts that are manually encoded as fea-

tures. In other words, the ANN model’s intrinsic flexibility allows it to better capture the

variance in human languages than the CRF model. For example, it would be challenging

and time-consuming to engineer features for all possible contexts such as “had a stroke

at 80”, “quit smoking in 08”, “on the 29th of this month”, and “his friend Epstein”. The

ANN model is also very robust to variations in surface forms, such as misspellings (e.g.,

“in teh late 60s”, “Khazakhstani”, “01/19/:0”), tokenizations (e.g., “Results02/20/2087”,

“MC # 0937884Date”), and different phrases referring to the same semantic meaning (e.g.,

“San Rafael Mount Hospital”, “Rafael Mount”, “Rafael Hospital”). Furthermore, the ANN

model is able to detect many PHI instances despite not having explicit gazetteers, as ex-

amples in the LOCATION and PROFESSION categories illustrate. We conjecture that

the character-enhanced token embeddings contain rich enough information to effectively

function as gazetteers, as tokens with similar semantics are closely located in the vector

representation [80, 24, 60].

On the other hand, CRF is good at rarely occurring patterns that are written in highly

specialized regular expression patterns (e.g., “38:Z8912708G”, “53RHM”) or tokens that

are included in the gazetteers (e.g., “Christmas”, “WPH”, “rosenberg”, “Motor Vehicle

Body Repairer”). For example, the PHI token “Christmas” only occurs in the test set, and

unless the context gives a strong indication, the ANN model cannot detect it, whereas the

CRF model could, as long as it is included in the gazetteers.
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PHI category ANN CRF

AGE had a stroke at 80 and died of ?another stroke at age 83. HPI: 53RHM who going to bed Wednesday was in usoh, but

PERSONAL DATA AND OVERALL HEALTH: Now 63, Tobacco: Quit at 38 y/o; ETOH: 1-2 beers/week; Caffeine:

FH: Father: Died @ 52 from EtOH abuse

Tobacco: smoked from age 7 to 15, has not smoked since 15.

History of Present Illness 86F reports worsening b/l leg pain.

CONTACT by phone, Dr. Ivan Guy. Call w/ questions 86383.

H/O paroxysmal afib VNA 171-311-7974
DATE During his May hospitalization he had dysphagia She is looking forward to a good Christmas. She is here today

Social history: divorced, quit smoking in 08, sober x 10 yrs,

She is to see him on the 29th of this month at 1:00 p.m.

He did have a renal biopsy in teh late 60s adn thus will

Results02/20/2087 NA 135, K 3.2 (L), CL 96 (L), CO2 30.6,

DD: 01/18/20 DT: 01/19/:0 DV: 01/18/20

ID 3/23 for bradycardia. P/G model # 5435, serial # 4712198, DD:05/05/2095 DT:05/05/2095 WK:65255 :4653
NotePt: Ulysses Ogrady MC # 0937884Date: 10/07/69 NO GROWTH TO DATE Specimen: 38:Z8912708G Collected

LOCATION Works in programming at Audiovox. Formerly at BrightPoint. 2nd set biomarkers (WPH): Creatine Kinase Isoenzymes

He has remote travel hx to the Rockefeller Centre, Hospitalized 2115 TCH for ROMI 2120 TCH new onset

History of Present Illness: Pt is a 59 yo Khazakhstani male,

who was admitted to San Rafael Mount Hospital following

nauseas and was brought to Rafael Mount ED.

Anemia: On admission to Rafael Hospital,
NAME ATCH: 655-75-45 Dear Harry and Yair: My thanks for Lab Tests Amador: the lab results show good levels of

Patient lives in Flint with his friend Epstein. 10MG PO qd : 05/10/2066 - 04/15/2068 ACT : rosenberg
Health care proxy-Yes, son (West) Allergies DUTASTERIDE 128 Williams Ct M OSCAR, JOHNNY Hyderabad, WI 62297

PROFESSION Social history: Married, glazier, 3 grown adult children Social history: He is retried Motor Vehicle Body Repairer.

Has VNA. Former civil engineer, supervisor, consultant.

He was formerly self-employed as a CPA and would often

Communications senior manager, marketing, worked for

and Concrete Finisher (25yrs). He is a veteran.

Former tobacco user, works part time in securities.

Table 2.4: Examples of correctly detected PHI instances (in bold) by the ANN and CRF models for the i2b2
dataset. The examples in the ANN column are only predicted by the ANN model and not predicted by the
CRF model, and conversely. Typographical errors are from the original text.
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2.3.6 Effect of training set size

Figure 2-3 shows the impact of the training set size on the performance of the models on the

MIMIC dataset. When the training set size is very limited, the CRF performs slightly better

than the ANN model, since the CRF model can leverage handcrafted features without much

training data. As the training set size increases, the ANN model starts to significantly out-

perform the CRF model, since the parameters including the embeddings are automatically

fine-tuned with more data, and therefore the features learned by the ANN model become

increasingly more refined than the manually handcrafted features. As a result, combining

the outputs of the CRF and ANN models increases the F1-score over the ANN model only

for small training set size and yields a less competitive F1-score than the ANN model for

bigger training set size.
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Figure 2-3: Impact of the training set size on the binary HIPAA token-based F1-scores on the MIMIC dataset.
100% training set size refers to using all of the dataset minus the test set.
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2.3.7 Ablation analysis

In order to quantify the importance of various elements of the ANN model, we tried 4

variations of the model, eliminating different elements one at a time. Figure 2-4 presents

the results of the ablation tests. Removing either the label sequence optimization layer,

pre-trained token embeddings, or token embeddings slightly decreased the performance.

Surprisingly, the ANN performed pretty well with only character embeddings and with-

out the token embeddings, and eliminating the character embeddings was more detrimental

than eliminating the token embeddings. This suggests that the character-based token em-

beddings may be capturing not only the sub-token level features, but also the semantics of

the tokens themselves.
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Figure 2-4: Ablation test performance based on binary HIPAA token-based evaluation. ANN is the model
based on Artificial Neural Network. “- seq opt” is the ANN model without the label sequence optimization
layer. “- pre-train” is the ANN model where token embeddings are initialized with random values instead
of pre-trained embeddings. “- token emb” is the ANN model using only character-based token embeddings,
without token embeddings. “- character emb” is the ANN model using only token embeddings, without
character-based token embeddings.
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2.4 Conclusions

We proposed the first system based on ANN for patient note de-identification. It outper-

forms state-of-the-art systems based on CRF on two datasets, while requiring no hand-

crafted features. Utilizing both the token and character embeddings, the system can au-

tomatically learn effective features from data by fine-tuning the parameters. It jointly

learns the parameters for the embeddings, the bidirectional LSTMs as well as the label

sequence optimization, and can make use of token embeddings pre-trained on large unla-

beled datasets. Quantitative and qualitative analysis of the ANN and CRF models indicates

that the ANN model better incorporates context and is more flexible to variations inherent

in human languages than the CRF model.

From the viewpoint of deploying an off-the-shelf de-identification system, our results

in Table 2.3 demonstrate recall on the MIMIC discharge summaries over 99%, which is

quite encouraging. Figure 2-2, however, shows that the F1-score on the NAME category,

probably the most sensitive PHI type, falls just below 98% for the ANN model. We antic-

ipate that adding gazetteer features based on the local institution’s patient and staff census

should improve this result, which will be explored in the next chapter.
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Chapter 3

Feature-augmented neural networks for

patient note de-identification

In the previous chapter, the first ANN-based de-identification system has been proposed,

yielding state-of-the-art results. Unlike other systems, it does not rely on human-engineered

features, which allows it to be quickly deployed, but does not leverage knowledge from

human experts or from EHRs. In this chapter, we explore a method to incorporate human-

engineered features as well as features derived from EHRs to the ANN-based de-identifica-

tion system. Our results show that the addition of features, especially the EHR-derived

features, further improves the state-of-the-art in patient note de-identification, including

some of the most sensitive PHI types such as patient names. This work was published at

COLING 2016 [70].

3.1 Introduction and related work

A naive approach to de-identification is to manually identify PHI. However, this is costly [35,

33] and unreliable [87]. Consequently, there has been much work developing automated

de-identification systems. These systems are either based on rules or machine-learning

models. Rule-based systems typically rely on patterns, expressed as regular expressions

and gazetteers, defined and tuned by humans [11, 7, 37, 42, 50, 84, 87, 98, 115, 118].

Machine-learning-based systems train a classifier to label each token as PHI or not PHI.
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Some systems are more fine-grained by detecting which PHI type a token belongs to. Dif-

ferent statistical methods have been explored for patient note de-identification, including

decision trees [116], log-linear models, support vector machines (SVMs) [48, 123, 51], and

conditional random field (CRFs) [2]. A thorough review of existing systems can be found

in [77, 110].

A more recent system discussed in Chapter 2 has introduced the use of artificial neural

networks (ANNs) for de-identification, and obtained state-of-the-art results [31]. The sys-

tem does not use any manually-curated features. Instead, it solely relies on character and

token embeddings. While this allows the system to be developed and deployed faster, it fails

to give users the possibility to add features engineered by human experts. Additionally, in

practical settings of de-identification, patient notes typically come from a hospital EHR

database, which contains metadata such as which patient each note pertains to, and other

information such as the names of all doctors who work at the hospital where the patient

was treated. The features derived from EHR databases may be useful for boosting the per-

formance of de-identification systems. In this chapter, we present a method to incorporate

features to this ANN-based system, and show that it further improves the state-of-the-art.

3.2 Method

The first model based on ANNs for patient note de-identification was introduced in Chap-

ter 2. We build upon this model, which utilizes both token and character embeddings to

learn effective features from data by fine-tuning the parameters. The main components

of the ANN model are Long Short Term Memories (LSTMs) [55], which are a type of

recurrent neural network (RNN).

The model is composed of three layers: a character-enhanced token embedding layer,

a label prediction layer, and a label sequence optimization layer. The character-enhanced

token embedding layer maps each token into a vector representation. The sequence of vec-

tor representations corresponding to a sequence of tokens are input to the label prediction

layer, which outputs the sequence of vectors containing the probability of each label for

each corresponding token. Lastly, the sequence optimization layer outputs the most likely
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sequence of predicted labels based on the sequence of probability vectors from the previous

layer. All layers are learned jointly. For more details on the basic ANN model, see [31].

We augment this ANN model by adding features that are human-engineered or derived

from our EHR database, as presented in Table 3.1. The majority of human-engineered fea-

tures are taken from [39], a few more features come from [130], and additional gazetteers

are collected using online resources. All features are binary and computed for each token.

The binary feature vector comprising all features for a given token is fed into a feedforward

neural network, the output vector of which is concatenated to the corresponding token em-

beddings, at the output of the character-enhanced token embedding layer, as Figure 3-1

illustrates.

Feature types Features

Note metadata

Hospital data

Patient’s first name, patient’s last name

Doctor’s first names, doctor’s last names

⎫⎪⎬⎪⎭ EHR features

Morphological Ends with s, is the first letter capitalized, contains a digit, is numeric, is alphabetic, is

alphanumeric, is title case, is all lower case, is all upper case, is a stop word

Semantic/Wordnet Hypernyms, senses, lemma names

Temporal Seasons, months, weekdays, times of the day, years, years followed by apostrophe,

festivity dates, holidays, cardinal numbers, decades, fuzzy quantifier (e.g., “approxi-

mately”, “few”), future trigger (e.g., “next”, “tomorrow”)

Gazetteers Honorifics for doctors, honorifics, medical specialists, medical specialties, first names,

last names, last name prefixes, street suffixes, US cities, US states (including abbrevi-

ations), countries, nationalities, organizations, professions

Regular expressions Email, age, date, phone, zip code, id number, medical record number

Table 3.1: Feature list. Note metadata and hospital data are derived from the EHR database. Morphological,
semantic/wordnet, and temporal features are commonly used features for NLP tasks. Gazetteers and regular
expressions are specifically engineered for the task.
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Figure 3-1: Feature-augmented token embeddings. Each token is mapped to a token embedding that is the
concatenation of three elements: the output of a feedforward neural network that takes the features as input,
a pre-trained token embedding, and the output of a bidirectional-LSTM (bi-LSTM) that takes the character
embeddings as input.

3.3 Experiments

We evaluate our model on the de-identification dataset introduced in Chapter 2, which is

a subset of the MIMIC-III dataset [45, 99, 57], using the same train/validation/test split

(70%/10%/20%). We chose this dataset as each note comes with metadata, such as the

patient’s name, and it is the largest de-identification dataset available to us. It contains 1,635

discharge summaries, 2,945,228 tokens, 69,525 unique tokens, and 78,633 PHI tokens.

The model is trained using stochastic gradient descent, updating all parameters, i.e.,

token embeddings, character embeddings, parameters of bidirectional LSTMs as well as

feedforward neural networks, and transition probabilities, at each gradient step. For regu-

larization, dropout is applied to the feature-augmented token embeddings before the label

prediction layer. We set the character embedding dimension to 25, the character-based

token embedding LSTM dimension to 25, the token embedding dimension to 100, the la-

bel prediction LSTM dimension to 100, the dropout probability to 0.5, and we use GloVe

embeddings [95] trained on Wikipedia and Gigaword 5 [92] articles as pre-trained token
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embeddings. For the feedforward network that takes binary features as input, its output

dimension is set to equal the input dimension, i.e. the number of binary features used. The

hyperparameters were optimized based on the performance on the validation set.

3.4 Results

Optimized by F1-score Optimized by recall
Precision Recall F1-score Precision Recall F1-score

No feature 99.103 99.197 99.150 98.557 99.376 98.965
EHR features 99.100 99.304 99.202 98.771 99.441 99.105
All features 99.213 99.306 99.259 98.880 99.420 99.149

Table 3.2: Binary HIPAA token-based results (%) for the ANN model, averaged over 5 runs. The metric
refers to the detection of PHI tokens versus non-PHI tokens, amongst PHI types that are defined by HIPAA.
“No feature” is the model utilizing only character and word embeddings, without any feature. “EHR features”
uses only 4 features derived from EHR database: patient first name, patient last name, doctor first name, and
doctor last name. “All features” makes use of all features, including the EHR features as well as other
engineered features listed in Table 3.1. “Optimized by F1-score” and “optimized by recall” means that the
epochs for which the results are reported are optimized based on the highest F1-score or the highest recall on
the validation set, respectively.

Table 3.2 presents the main results. The epochs for which the results are reported are

optimized based on either the highest F1-score or the highest recall on the validation set.

As expected, choosing the epoch based on the recall improves the recall on the test set,

while lowering the precision. Overall, adding features consistently improves the results.

Table 3.3 details the results for each PHI type. The system using only the EHR features

yields the highest recall for 6 out of 12 PHI types. Most importantly, the recall for patient

and doctor names are higher when using features than when using no feature: this is ex-

pected as the patient name of the note and the doctor names are used as features. In fact,

the two remaining false negatives for patient names are annotation errors. For example, in

the sentence “The patient responded well to Natrecor in the past, but the improvement dis-

appeared soon”, the drug name Natrecor was incorrectly marked as a patient name by the

human annotator. This result is highly remarkable as patient names are the most sensitive

information in a patient note [107].

Adding all features often lowers the recall compared to using EHR features only, al-

though the F1-score remains virtually unchanged. This is somewhat surprising, as we
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No feature EHR features All features
P R F1 P R F1 P R F1 Support

Zip 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 24
Date 98.90 99.77 99.33 98.95 99.79 99.36 98.99 99.69 99.34 20627
Phone 98.31 99.58 98.94 98.98 99.46 99.22 99.42 99.32 99.37 1438
Patient 96.89 98.34 97.61 98.62 99.14 98.88 99.21 99.27 99.24 302
ID 99.57 98.24 98.90 99.31 98.82 99.07 99.77 97.97 98.86 612
Doctor1 97.47 98.17 97.82 97.27 98.48 97.87 97.56 98.20 97.88 3676
Location 96.02 95.71 95.86 96.41 96.49 96.45 96.65 96.32 96.46 462
Age ≥ 90 75.12 94.29 83.60 77.04 95.72 85.35 78.93 93.57 84.80 28
Hospital1 94.78 95.39 95.08 94.77 95.52 95.14 95.53 95.50 95.51 1259
State1 99.36 94.33 96.76 99.68 94.03 96.73 99.39 91.94 95.49 67
Street 96.77 85.25 90.54 97.63 85.25 90.96 93.91 86.56 89.81 61
Country1 87.51 85.00 86.11 89.29 82.50 85.67 86.87 95.00 90.56 16
Binary 98.41 99.19 98.80 98.48 99.27 98.87 98.61 99.15 98.88 28572

Table 3.3: Binary token-based results (%). The reported results are optimized by recall, and averaged over 5
runs. The symbol 1 indicates that the PHI type is not required by HIPAA. The PHI type “location” designates
any location that is not a street name, zip code, state or country. P stands for precision, R for recall, and F1
for F1-score.

had expected that the features would help since using the same feature set with a CRF to

perform de-identification yields results comparable to the state-of-the-art ANN models as

discussed in Chapter 2. This could be explained as follows. Human-engineered features

tend to have higher precision than recall, as it is often hard to design regular expressions

or gazetteers that can detect all possible instances or variations of the desired entities. We

conjecture that as the ANN model learns to rely more on such features, it might lose the

ability to learn to pick up tokens that deviate from engineered features, resulting in a lower

recall. For example, we notice that the phone PHI tokens that are not detected by the model

using all features, but are detected by the other two models, are ill-formed phone numbers

such as “617-554-|2395”, or phone extensions such as “617-690-4031 ext 6599”. Since the

phone regular expressions do not capture these two examples, they are more likely to be

false negatives in the model that uses the phone regular expression features.
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3.5 Conclusion

In this chapter, we presented an extension of the ANN-based model for patient note de-

identification that can incorporate features. We showed that adding features results in an

increase of the recall, in particular features leveraging information from the associated

EHRs, namely patient names and doctor names. Our results suggest that constructing pa-

tient note de-identification systems should be performed using structured information from

the EHRs, the latter being available in a typical, real-life setting. We restricted our EHR-

derived features to patient and doctor names, but it could be extended to the many other

structured fields that EHR contain, such as patients’ addresses, phone numbers, email ad-

dresses, professions, and ages.
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Chapter 4

Transfer learning for de-identification

with neural networks

In the previous chapters, we introduced an architecture based on ANNs that shows promis-

ing results for de-identification. In order to achieve high performance, ANNs need to be

trained on a labeled dataset of decent size, but labels might be difficult to obtain for the

dataset on which the user wishes to perform de-identification. In this chapter, we analyze

to what extent transfer learning may address this issue. In particular, we demonstrate that

transferring ANN parameters trained on a large labeled dataset to another dataset with a

limited number of labels improves upon state-of-the-art results on two different datasets

for patient note de-identification. This work is under review [69].

4.1 Introduction

As introduced in the previous chapters, the task of removing PHI from a patient note is

referred to as de-identification. Existing de-identification systems are often rule-based ap-

proaches or feature-based machine learning approaches. However, these techniques require

additional lead time for developing and fine-tuning the rules or features specific to each new

dataset. Meanwhile, recent efforts using ANNs have yielded state-of-the-art performance

without using any manual features [31]. Compared to the previous systems, ANNs have a

competitive advantage that the model can be fine-tuned on a new dataset without the over-
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head of manual feature development, as long as some labels for the dataset are available.

However, it may still be inefficient to mass deploy ANN-based de-identification systems

in practical settings, since creating annotations for patient notes is especially difficult. This

is due to the fact that only a restricted set of individuals is authorized to access original

patient notes; the annotation task cannot be crowd-sourced, making it slow and expensive

to obtain a large annotated corpus. Medical professionals are therefore wary to explore

patient notes because of this de-identification barrier, which considerably hampers medical

research.

In this chapter, we analyze to what extent transfer learning may improve de-identification

performance on datasets with a limited number of labels. By training an ANN model on

a large dataset (MIMIC) and transferring it to smaller datasets (i2b2 2014 and i2b2 2016),

we demonstrate that transfer learning allows us to outperform the state-of-the-art results.

4.2 Related Work

Transfer learning has been studied for a long time. There is no standard definition of

transfer learning in the literature [71]. We follow the definition from [91]: transfer learning

aims at performing a task on a target dataset using some knowledge learned from a source

dataset. The idea has been applied to many fields such as speech recognition [126] and

finance [108].

The successes of ANNs for many applications over the last few years have escalated the

interest in studying transfer learning for ANNs. In particular, much work has been done

for computer vision [132, 90, 134]. In these studies, some of the parameters learned on

the source dataset are used to initialize the corresponding parameters of the ANNs for the

target dataset.

Fewer studies have been performed on transfer learning for ANN-based models in the

field of natural language processing. For example, Mou et al. [85] focused on transfer

learning with convolutional neural networks for sentence classification. To the best of our

knowledge, no study has analyzed transfer learning for ANN-based models in the context

of NER.
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4.3 Model

For the transfer learning experiments, we use the model introduced in Chapter 2 and Fig-

ure 2-1. The model is illustrated again as a component-centric view in Figure 4-1, in order

to clarify which of the six components are transferred for the experiments:

1. Token embedding layer maps each token to a token embedding.

2. Character embedding layer maps each character to a character embedding.

3. Character LSTM layer takes as input character embeddings and outputs a single vector

that summarizes the information from the sequence of characters in the corresponding

token.

4. Token LSTM layer takes as input a sequence of token vectors, which are formed by

concatenating the outputs of the token embedding layer and the character LSTM layer,

and outputs a sequence of vectors.

5. Fully connected layer takes the output of the token LSTM layer as input, and outputs

vectors containing the scores of each label for the corresponding tokens.

6. Sequence optimization layer takes the sequence of vectors from the output of the fully

connected layer and outputs the most likely sequence of predicted labels, by optimizing

the sum of unigram label scores as well as bigram label transition scores.

Figure 4-1 shows how these six components are interconnected to form the model.
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Figure 4-1: ANN model for NER. For transfer learning experiments, we train the parameters of the model
on a source dataset, and transfer all (Experiment 1) or some (Experiment 2) of the parameters to initialize the
model for training on a target dataset. For Experiment 2, we transfer the parameters of up to the six com-
ponents in the following order: token embedding layer, character embedding layer, character LSTM layer,
token LSTM layer, fully connected layer, and sequence optimization layer. Note that this figure illustrates the
same model as Figure 2-1, except that it indicates the clear boundaries and names of the six components.
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4.4 Experiments

4.4.1 Datasets

We use three de-identification datasets for the transfer learning experiments: MIMIC, i2b2

2014, and i2b2 2016. The MIMIC de-identification dataset was introduced in [31] and

also described in Chapter 2, and is a subset of the MIMIC-III dataset [57, 45, 99]. The

i2b2 2014 and 2016 datasets were released as part of the 2014 i2b2/UTHealth shared

task Track 1 [110] and the 2016 i2b2 CEGS N-GRID shared task, respectively. Table 4.1

presents the datasets’ sizes.

MIMIC i2b2 2014 i2b2 2016
Vocabulary size 69,525 46,803 61,503
Number of notes 1,635 1,304 1,000
Number of tokens 2,945,228 984,723 2,689,196
Number of PHI instances 60,725 28,867 41,142
Number of PHI tokens 78,633 41,355 54,420

Table 4.1: Overview of the MIMIC and i2b2 datasets. PHI stands for protected health information. Note that
this table is the same as Table 2.2, except with the addition of the third data set, i2b2 2016.

4.4.2 Transfer learning

The goal of transfer learning is to leverage the information present in a source dataset to im-

prove the performance of an algorithm on a target dataset. In our setting, we apply transfer

learning by training the parameters of the ANN model on the source dataset (MIMIC), and

using the same ANN to retrain on the target dataset (i2b2 2014 or 2016) for fine-tuning. We

use MIMIC as the source dataset since it is the dataset with the most labels. We perform

two sets of experiments to gain insights on how effective transfer learning is and which

parameters of the ANN are the most important to transfer.

Experiment 1 Quantifying the impact of transfer learning for various training set sizes

of the target dataset. The primary purpose of this experiment is to assess to what extent

transfer learning improves the performance on the target dataset. We experiment with
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different training set sizes to understand how many labels are needed for the target dataset

to achieve reasonable performance with and without transfer learning.

Experiment 2 Analyzing the importance of each parameter of the ANN in the transfer

learning. Instead of transferring all the parameters, we experiment with transferring differ-

ent combinations of parameters. The goal is to understand which components of the ANN

are the most important to transfer. The lowest layers of the ANN tend to represent task-

independent features, whereas the topmost layers are more task-specific. As a result, we

try transferring the parameters starting from the bottommost layer up to the topmost layer,

adding one layer at a time.

4.5 Results

Experiment 1 Figure 4-2 compares the F1-scores of the ANN trained only on the target

dataset against the ANN trained on the source dataset followed by the target dataset. Trans-

fer learning improves the F1-scores over training only with the target dataset, though the

improvement diminishes as the number of training samples used for the target dataset in-

creases. This implies that the representations learned from the source dataset are efficiently

transferred and exploited for the target dataset.

Therefore, when transfer learning is adopted, fewer annotations are needed to achieve

the same level of performance as when the source dataset is unused. For example, on the

i2b2 2014 dataset, performing transfer learning and using 16% of the i2b2 training set leads

to similar performance as not using transfer learning and using 34% of the i2b2 training set.

Transfer learning thus allows us to cut by half the number of labels needed on the target

dataset in this case.

For both the i2b2 2014 and 2016 datasets, the performance gains from transfer learning

are greater when the training set size of the target dataset is small. The largest improvement

can be observed for i2b2 2014 when using 5% of the dataset as the training set (consisting

of around 2k PHI tokens out of 50k tokens), where transfer learning increases the F1-score

by around 3.1 percent point, from 90.12 to 93.21. Even when all of the training set is used,
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the F1-score improves when using transfer learning, albeit by just 0.17 percent point, from

97.80 to 97.97.

Experiment 2 Figure 4-3 shows the importance of each layer of the ANN in transfer

learning. We observe that transferring a few lower layers is almost as efficient as transfer-

ring all layers. For i2b2 2014, transferring up to the token LSTM shows great improvements

for each layer, but there is less improvement for each added layer beyond that. For i2b2

2016, larger improvements can be observed up to the character LSTM and less so beyond

that layer.

The parameters in the lower layers therefore seems to contain most information that

is relevant to the de-identification task in general, which supports the common hypothesis

that higher layers of ANN architectures contain the parameters that are more specific to the

task as well as the dataset used for training.

Despite the observation that transferring a few lower layers may be sufficient for effi-

cient transfer learning, it is interesting to see that adding the topmost layers to the transfer

learning does not hurt the performance. When retraining the model on the target dataset,

the ANN is able to adapt to the target dataset quite well despite some the higher layers

being initialized to parameters that are likely to be more specific to the source dataset.
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Figure 4-2: Impact of transfer learning on the F1-scores. Baseline corresponds to training the ANN model
only with the target dataset, and transfer learning corresponds to training on the source dataset followed by
training on the target dataset. The target training set size is the percentage of training set in the whole dataset,
and 60% corresponds to the full official training set.
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Figure 4-3: Impact of transferring the parameters up to each layer of the ANN model using various training
set sizes on the target dataset: 5%, 10%, 20%, 40%, and 60% (official training set).
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4.6 Conclusion

In this chapter, we have studied transfer learning with ANNs for NER, specifically patient

note de-identification, by transferring ANN parameters trained on a large labeled dataset

to another dataset with limited human annotations. We demonstrated that transfer learn-

ing improves the performance over the state-of-the-art results on two datasets. Transfer

learning may be especially beneficial for a target dataset with small number of labels. Our

experiments show that transferring some of the lower layers can be as efficient as transfer-

ring all the layers, but one can simply transfer all the layers and retrain on the target dataset

without hurting the performance if an appropriate threshold is unknown.

58



Chapter 5

NeuroNER: an Easy-to-Use

Named-Entity Recognition Tool based

on ANN

In the previous chapters, we introduced the ANN architecture for the de-identification of

patient notes that outperforms existing systems. The de-identification task is a specialized

form of named-entity recognition (NER), which aims at identifying entities of interest in

a text. Therefore, the same ANN architecture can be applied more broadly to any kind of

NER task since it learns effective features from the data instead of relying on manually

engineered features. For example, it can be used to identify entities from newspaper arti-

cles, or medical concepts from clinical text. However, ANNs may be challenging to use

for the non-expert user. In this chapter, we present NeuroNER1, an easy-to-use named-

entity recognition tool based on ANNs. The user can annotate entities using a graphical

web-based user interface (BRAT): the annotations are then used to train an ANN, which in

turn predicts entities’ locations and categories in new texts. NeuroNER aims at making this

annotation-training-prediction flow smooth and accessible to anyone. This work is under

review [30].

1NeuroNER can be found online at: https://github.com/Franck-Dernoncourt/NeuroNER
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5.1 Introduction

Named-entity recognition (NER) aims at identifying entities of interest in the text, such as

location, organization and temporal expression. Identified entities can be used in various

downstream applications such as patient note de-identification and information extraction

systems. They can also be used as features for machine learning systems for other natural

language processing tasks.

Early systems for NER relied on rules defined by humans. Rule-based systems are time-

consuming to develop, and cannot be easily transferred to new types of texts or entities.

To address these issues, researchers have developed machine-learning-based algorithms

for NER, using a variety of learning approaches, such as fully supervised learning, semi-

supervised learning, unsupervised learning, and active learning. NeuroNER is based on a

fully supervised learning algorithm, which is the most studied approach [86].

Fully supervised approaches to NER include support vector machines (SVM) [4], max-

imum entropy models [17], decision trees [102] as well as sequential tagging methods such

as hidden Markov models [14], Markov maximum entropy models [61], and conditional

random fields (CRFs) [76, 120, 8, 38]. Similar to rule-based systems, these approaches

rely on handcrafted features, which are challenging and time-consuming to develop and

may not generalize well to new datasets.

More recently, artificial neural networks (ANNs) have been shown to outperform other

supervised algorithms for NER [24, 64, 70, 63]. The effectiveness of ANNs can be at-

tributed to their ability to learn effective features jointly with model parameters directly

from the training dataset, instead of relying on handcrafted features developed from a spe-

cific dataset. However, ANNs remain challenging to use for non-expert users.

Contributions NeuroNER aims at making ANN-based named-entity recognition avail-

able to anyone, by focusing on usability. To enable the users to create or modify annota-

tions for an new or existing corpus, NeuroNER interfaces with the web-based annotation

program BRAT [109]. NeuroNER makes the annotation-training-prediction flow smooth

and accessible to anyone, while leveraging the state-of-the-art prediction capabilities of
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ANNs. NeuroNER is open source and freely available online2.

5.2 Related Work

Existing publicly available NER systems geared toward non-experts do not use ANNs. For

example, Stanford NER [41], ABNER [103], the MITRE Identification Scrubber Toolkit

(MIST) [2], [16], BANNER [66] and NERsuite [23] rely on CRFs. GAPSCORE uses

SVMs [21]. Apache cTAKES [100] and Gate’s ANNIE [26, 75] use mostly rules. Neu-

roNER, the first ANN-based NER system for non-experts, is more generalizable to new

corpora due to the ANNs’ capability to learn effective features jointly with model parame-

ters.

Furthermore, in many cases, the NER systems assume that the user already has an

annotated corpus formatted in a specific data format. As a result, the user often has to

connect their annotation tool with the NER systems by reformatting annotated data, which

can be time-consuming and error-prone. Moreover, if the user wants to manually improve

the annotations predicted by the NER system (e.g., if they use the NER system to accelerate

the human annotations), they have to perform additional data conversion. NeuroNER aims

to streamline the process by incorporating BRAT, a widely-used and easy-to-use annotation

tool.

5.3 System Description

NeuroNER comprises two main components: an NER engine and an interface with BRAT.

NeuroNER also comes with real-time monitoring tools for training, and pre-trained models

that can be loaded to the NER engine in case the user does not have access to labelled

training data. Figure 5-1 presents an overview of the system.

2NeuroNER can be found online at https://github.com/Franck-Dernoncourt/NeuroNER
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Figure 5-1: NeuroNER system overview. In the NeuroNER engine, the training set is used to train the
parameters of the ANN, and the validation set is used to determine when to stop training. The user can
monitor the training process in real time via the learning curve and TensorBoard. To evaluate the trained
ANN, the labels are predicted for the test set: the performance metrics can be calculated and plotted by
comparing the predicted labels with the gold labels. The evaluation can be done at the same time as the
training if the test set is provided along with the training and validation sets, or separately after the training
or using a pre-trained model. Lastly, the NeuroNER engine can label the deployment set, i.e., any new text
without gold labels.
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5.3.1 NER engine

The NER engine takes as input three sets of data with gold labels: the training set, the

validation set, and the test set. Additionally, it can also take as input the deployment set,

which refers to any new text without gold labels that the user wishes to label. The files

that comprise each set of data should be in the same format as used for the annotation tool

BRAT and organized in the corresponding folder.

The NER engine’s ANN contains three layers:

∙ Character-enhanced token-embedding layer,

∙ Label prediction layer,

∙ Label sequence optimization layer.

The character-enhanced token-embedding layer maps each token to a vector represen-

tation. The sequence of vector representations corresponding to a sequence of tokens is

then input to label prediction layer, which outputs the sequence of vectors containing the

probability of each label for each corresponding token. Lastly, the label sequence opti-

mization layer outputs the most likely sequence of predicted labels based on the sequence

of probability vectors from the previous layer. All layers are learned jointly.

The ANN as well as the training process have several hyperparameters such as char-

acter embedding dimension, character-based token-embedding LSTM dimension, token

embedding dimension, and dropout probability. All hyperparameters may be specified in

a configuration file that is human-readable, so that the user does not have to dive into any

code. Listing 5.1 presents an excerpt of the configuration file.
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[dataset]

dataset_folder = dat/conll

[character_lstm]

using_character_lstm = True

char_embedding_dimension = 25

char_lstm_dimension = 50

[token_lstm]

token_emb_pretrained_file = glove.txt

token_embedding_dimension = 200

token_lstm_dimension = 300

[crf]

using_crf = True

random_initial_transitions = True

[training]

dropout = 0.5

patience = 10

maximum_number_of_epochs = 100

maximum_training_time = 10

number_of_cpu_threads = 8

number_of_gpus = 0

Listing 5.1: Excerpt of the configuration file used to define the ANN as well as the training process. Only

the dataset_folder parameter needs to be changed by the user: the other parameters have reasonable

default values, which the user may optionally tune.
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5.3.2 Real-time monitoring for training

As training an ANN may take many hours, or even a few days on very large datasets,

NeuroNER provides the user with real-time feedback during the training for monitoring

purposes. Feedback is given through two different means: plots generated by NeuroNER,

and TensorBoard.

Plots NeuroNER generates several plots showing the training progress and outcome at

each epoch. Plots include the evolution of the overall F1-score over time, confusion matrix

visualizing the number of correct versus wrong predictions for each class, and classification

report showing the F1-score, precision and recall for each class.

TensorBoard As NeuroNER is based on TensorFlow, it leverages the functionalities of

TensorBoard. TensorBoard is a suite of web applications for inspecting and understand-

ing TensorFlow runs and graphs. It allows the user to view in real time the performance

achieved by the ANN being trained. Moreover, since it is web-based, these performances

can be conveniently shared with anyone remotely. Lastly, since graphs generated by Ten-

sorBoard are interactive, the user may gain further insights on the ANN performances.

5.3.3 Pre-trained models

Some users may prefer not to train any ANN model, either due to time constraints or

unavailable gold labels. For example, if the user wants to tag protected health information,

they might not be able to have access to a labeled identifiable dataset. To address this need,

NeuroNER provides a set of pre-trained models. Users are encouraged to contribute by

uploading their own trained models. NeuroNER also comes with several pre-trained token

embeddings, either with word2vec [78, 80, 81] or GloVe [95], which the NeuroNER’s

engine can load easily once specified in the configuration file.
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5.3.4 Annotations

NeuroNER is designed to smoothly integrate with the web-based annotation tool BRAT,

so that non-expert users may create or improve annotations. Specifically, NeuroNER ad-

dresses two main use cases:

∙ creating new annotations from scratch, e.g. if the goal is to annotate a dataset for

which no gold label is available,

∙ improving the annotations of an already labeled dataset: the annotations may have

been done by another human or by a previous run of NeuroNER.

In the latter case, the user may use NeuroNER interactively, by iterating between man-

ually improving the annotations and running the NeuroNER’s engine with the new annota-

tions to obtain more accurate annotations.

NeuroNER takes as input datasets in BRAT format, and outputs BRAT-formatted pre-

dictions, which makes it easy to start training right from the annotations as well as visualize

and analyze the predictions. BRAT was chosen for two main reasons: it is easy to use, and

it can be deployed as a web application, which allows crowdsourcing. As a result, the user

may quickly gather a vast amount of annotations by using crowdsourcing marketplaces in

the Internet such as Amazon Mechanical Turk [19] and CrowdFlower [40].

5.3.5 System requirements

NeuroNER runs on Linux (tested with Ubuntu), Mac OS X, and Microsoft Windows. It

requires Python 3.5, TensorFlow 1.0 [1], and scikit-learn [94]. A setup script is provided

to make the installation straightforward. It can use the GPU if available, and the number of

CPU threads and GPUs to use can be specified in the configuration file.
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5.3.6 Performance

To assess the quality of NeuroNER’s predictions, we use two publicly and freely available

datasets for named-entity recognition: CoNLL-2003 and i2b2 2014. CoNLL-2003 [119] is

a widely studied dataset with 4 usual types of entity: persons, organizations, locations and

miscellaneous names. We use the English version.

The i2b2 2014 dataset [110] was released as part of the 2014 i2b2/UTHealth shared

task Track 1. It is the largest publicly available dataset for de-identification, which is a

form of named-entity recognition where the entities are protected health information such

as patients’ names and patients’ phone numbers. Ten teams participated in this shared task,

and 22 systems were submitted.

Table 5.1 compares NeuroNER with state-of-the-art systems on CoNLL-2003 and i2b2

2014. The performances of NeuroNER are on par with the state-of-the-art systems.

Model CoNLL-2003 i2b2 2014
Best published 90.9 97.9
Our model 90.5 97.6

Table 5.1: F1-scores (%) on the test set comparing NeuroNER with the best published methods in the litera-
ture, viz. Passos et al. [93] for CoNLL-2003 and Dernoncourt et al. [31] for i2b2 2014. Passos et al. [93] em-
ploys a CRF model with features comprising gazetteers and token embeddings trained with a skip-gram model
modified to use external lexicons. The result for Dernoncourt et al. [31] is also introduced as “CRF+ANN”
model in Table 2.3.

5.4 Conclusions

In this chapter, we have presented NeuroNER, an ANN-based NER tool that is accessible to

non-expert users and yields state-of-the-art results. Addressing the need of many users who

want to create or improve annotations, NeuroNER smoothly integrates with the web-based

annotation tool BRAT.
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Chapter 6

Relation extraction

In the previous chapter, we introduced the ANN architecture for extracting named entities

from natural language text. The next step toward more advanced information extraction

is to identify the relations among the extracted entities. In this chapter, we present a sys-

tem based on a convolutional neural network to extract relations. Our model ranked first

in the SemEval-2017 task 10 (ScienceIE1 [5]) for relation extraction in scientific articles

(subtask C). This work will be published at ACL 2017 [68].

6.1 Introduction and related work

The number of articles published every year keeps increasing [36, 65], with well over 50

million scholarly articles published so far [56]. While this repository of human knowledge

contains invaluable information, it has become increasingly difficult to take advantage of

all available information due to its sheer amount.

One challenge is that the knowledge present in scholarly articles is mostly unstructured.

One approach to organize this knowledge is to classify each sentence [58, 3, 53, 29]. An-

other approach is to extract entities and relations between them, which is the focus of the

ScienceIE shared task at SemEval-2017 [5].

Relation extraction can be seen as a process comprising two steps that can be done

jointly [72] or separately: first, entities of interest need to be identified, and second, the

1http://scienceie.github.io
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relation among the entities has to be determined. In this work, we concentrate on the second

step (often referred to as relation extraction or classification) and on binary relations, i.e.

relations between two entities. Extracted relations can be used for a variety of tasks such

as question-answering systems [96], ontology extension [101], and clinical trials [43].

In this chapter, we describe the system that we submitted for the ScienceIE shared

task. Our system is based on convolutional neural networks and ranked first for relation

extraction (subtask C).

Existing systems for relation extraction can be classified into five categories: sys-

tems based on hand-built patterns [131], bootstrapping methods [18], unsupervised meth-

ods [46], distant supervision [104], and supervised methods. We focus on supervised meth-

ods, as the ScienceIE shared task provides a labeled training set.

Supervised methods for relation extraction commonly employ support vector machines [122,

124, 82, 49], naïve Bayes [133], maximum entropy [111], or conditional random fields [114].

These methods require the practitioner to handcraft features, such as surface, lexical, syn-

tactic features [47] or features derived from existing ontologies [97]. The use of kernels

based on dependency trees has also been explored [20, 25, 137].

More recently, a few studies have investigated the use of artificial neural networks for

relation extraction [105, 88, 52]. Our approach follows this line of work.

6.2 Model

Our model for relation extraction comprises three parts: preprocessing, convolutional neu-

ral network (CNN), and postprocessing.

6.2.1 Preprocessing

The preprocessing step takes as input each raw text (i.e., a paragraph of a scientific article

in ScienceIE) as well as the location of all entities present in the text, and outputs several

examples. Each example is represented as a list of tokens, each with four features: the

relative positions of the two entity mentions, their entity types and part-of-speech (POS)

tags. Figure 6-1 shows an example from the ScienceIE corpus in the table on the left.
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Sentence and token boundaries as well as POS tags are detected using the Stanford

CoreNLP toolkit [74], and every pair of entity mentions of the same type within each

sentence boundary is considered to have a potential relation. We also remove any references

(e.g. [1, 2]), which are irrelevant to the task, and ensure that the sentences are not too long

by eliminating the tokens before the beginning of the first entity mention and after the end

of the second entity mention.

6.2.2 CNN architecture

The CNN takes each preprocessed sentence as input and predicts the relation between the

two entities. The CNN architecture, illustrated in Figure 6-1, consists of four main layers,

similar to the one used in text classification [24, 59, 67, 44].

1. the embedding layer converts each feature (word, relative positions 1 and 2, type of

entity, and POS tag) into an embedding vector via a lookup table and concatenates them.

2. the convolutional layer with ReLU activation transforms the embeddings into feature

maps by sliding filters over the tokens

3. the max pooling layer selects the highest feature value in each feature map by applying

the max operator.

4. the fully connected layer with softmax activation outputs the probability of each rela-

tion.
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Figure 6-1: CNN architecture for relation extraction. The left table shows an example of input to the model.

71



6.2.3 Rule-based postprocessing

The postprocessing step uses the rules in Table 6.1 to correct the relations detected by the

CNN, or to detect additional relations. These rules were developed from the examples in

the training set, to be consistent with common sense.

Examples Rule format Relations detected
transmission electron microscopy (TEM) A (B) If B is an abbreviation of A, then A and

B are synonyms.
high purity standard metals (Sn, Pb, Zn, Al,
Ag, Ni)

A (B, ... , Z) If any of B, ... , Z is a hyponym of A, then
all of them are hyponyms of A.

(TEMs), scanning electron microscopes (A) B A and B have no relation.
DOTMA/DOPE A/B A and B have no relation.

Table 6.1: Rules used for postprocessing. We considered B to be an abbreviation of A if the first letters of
each token in A form B. The examples are from the training and development sets

6.2.4 Implementation

During training, the objective is to maximize the log probability of the correct relation

type. The model is trained using stochastic gradient descent with minibatch of size 16,

updating all parameters, i.e., token embeddings, feature embeddings, CNN filter weights,

and fully connected layer weights, at each gradient descent step. For regularization, dropout

is applied before the fully connected layer, and early stop with a patience of 10 epochs is

used based on the development set.

The token embeddings are initialized using publicly available2 pre-trained token em-

beddings, namely GloVe [95] trained on Wikipedia and Gigaword 5 [92]. The feature

embeddings and the other parameters of the neural network are initialized randomly.

To deal with class imbalance, we upsampled the synonym and hyponym classes by

duplicating the examples in the positive classes so that the upsampling ratio, i.e., the ratio

of the number of positive examples in each class to that of the negative examples, is at least

0.5. Without the upsampling, the trained model would have poor performance.

2 http://nlp.stanford.edu/projects/glove/
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6.3 Experiments

6.3.1 Dataset

We evaluate our model on the ScienceIE dataset [5], which consists of 500 journal articles

evenly distributed among the domains of computer science, material sciences and physics.

Three types of entities are annotated: process, task, and material. The relation between

each pair of entities of the same type within a sentence is annotated as either “Synonym-

of”, “Hyponym-of”, or “None”. Table 6.2 shows the number of examples for each relation

class.

Relation Train Dev Test
Hyponym-of 420 123 95
Synonym-of 253 45 112
None 5355 1240 1503
Total 6028 1408 1710

Table 6.2: Number of examples for each relation class in ScienceIE. “Dev”: Development.

6.3.2 Hyperparameters

Table 6.3 details the experiment ranges and choices of hyperparameters. The results were

quite robust to the choice of hyperparameters within the specified ranges.

Hyperparameter Choice Experiment range
Token embedding dim. 100 50 – 300
Feature embedding dim. 10 5 – 50
CNN filter height 5 3 – 15
Number of CNN filters 200 50 – 500
Dropout probability 0.5 0 – 1
Upsampling ratio 3 0.5 – 5

Table 6.3: Experiment ranges and choices of hyperparameters. For these experiments, we used the official
training set as the training/development set with a 75%/25% split, and the official development set as the test
set.
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6.3.3 Argument ordering strategies

One of the main challenges in relation extraction is the ordering of arguments in relations,

as many relations are order-sensitive. For example, consider the sentences “A dog is an

animal" and "This animal is a dog". If we set “dog” to be the first argument and “animal”

the second, then the corresponding relation is “Hyponym-of”; however, if we reverse the

argument order, then the “Hyponym-of” relation does not hold any more. However, since

the words “animal” and “dog” may appear in text in either of the two possible orderings as

shown in the two examples, an algorithm has no way of knowing which entity is the first

argument and which is second if only the raw text is provided. Put differently, if we do not

specify the first and second arguments, the relation between them cannot be determined, at

least in case of an asymmetric relation such as “Hyponym-of”.

Therefore, it is crucial to ensure that 1) the CNN is provided with the information about

the argument order, and 2) it is able to utilize the given information efficiently. In our

work, the former point is addressed by providing the CNN with the two relative position

features compared to the first and the second argument of the relation respectively. In

order to verify the latter point, we experimented with four strategies for argument ordering,

outlined in Table 6.4.
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annotation A (arg1) is a Hyponym of (rel) B (arg2)
order in text ... A ... B ... ... B ... A ...

strategy rel arg1 arg2 rel arg1 arg2
correct order Hypo A B Hypo A B
correct order Hypo A B Hypo A B
w/ neg. smpl. None B A None B A
fixed order Hypo A B Hyper B A

any order Hypo A B Hyper A B
Hyper B A Hypo B A

annotation A (arg1) is a Synonym of (rel) B (arg2)
order in text ... A ... B ... ... B ... A ...

strategy rel arg1 arg2 rel arg1 arg2
correct order Synon A B Synon A B
correct order Synon A B Synon A B
w/ neg. smpl. Synon B A Synon B A
fixed order Synon A B Synon B A

any order Synon A B Synon A B
Synon B A Synon B A

Table 6.4: Argument ordering strategies. “w/ neg. smpl.”: with negative sampling [129], “rel”: relation,
“arg”: argument. “Synon”, “Hypo”, “Hyper”, and “None” refers to the “Synonym-of”, “Hyponym-of”,
“Hypernym-of”, and “None’ relations. Note that the “Hypernym-of” relation is the reverse of the “Hyponym-
of” relation, introduced in addition to the relations annotated for the dataset.

6.4 Results and Discussion

Table 6.5 shows the results from experimenting with various argument ordering strategies.

The correct order strategy performed the worst, but the negative sampling improved over

it slightly, while the fixed order and any order strategies performed the best. The latter

two strategies performed almost equally well in terms of micro-averaged F1-score. This

implies that for relation extraction it may be advantageous to use both the original relation

classes as well as their “reverse” relation classes for training, instead of using only the

original relation classes with the “correct” argument ordering (with or without the negative

sampling). Moreover, ordering the argument as the order of appearance in the text and

training once per relation (i.e., fixed order) is as efficient as training each relation as two

examples in two possible argument ordering, one with the original relation class and the
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Labels Training Evaluation Hyponym-of Synonym-of Micro-averaged
used strategy strategy P R F1 P R F1 P R F1

All

correct order any order 0.193 0.101 0.132 0.782 0.640 0.703 0.409 0.245 0.306
corr. w/ n. s. any order 0.431 0.127 0.196 0.826 0.756 0.788 0.638 0.295 0.404

any order any order 0.482 0.197 0.279 0.784 0.756 0.769 0.621 0.346 0.444
any order fixed order 0.486 0.195 0.278 0.773 0.753 0.763 0.621 0.345 0.443

fixed order any order 0.372 0.218 0.274 0.743 0.756 0.749 0.516 0.362 0.425
fixed order fixed order 0.425 0.213 0.283 0.803 0.753 0.777 0.578 0.358 0.441

Hyponym

correct order any order 0.108 0.069 0.084 - - - - - -
corr. w/ n. s. any order 0.215 0.115 0.148 - - - - - -

any order any order 0.384 0.246 0.299 - - - - - -
any order fixed order 0.410 0.235 0.298 - - - - - -

fixed order any order 0.385 0.249 0.301 - - - - - -
fixed order fixed order 0.409 0.237 0.297 - - - - - -

Synonym any order any order - - - 0.855 0.771 0.811 - - -
any order fixed order - - - 0.852 0.776 0.812 - - -

Hyp+Syn any + any any + fixed 0.385 0.228 0.285 0.857 0.771 0.812 0.553 0.373 0.445

Table 6.5: Results for various ordering strategies on the development set of the ScienceIE dataset, averaged
over 10 runs each. “corr. w/ n. s.”: correct order with negative sampling. Hyp+Syn is obtained by merging the
output of the best hyponym classifier and that of the best synonym classifier. For these experiments, we used
the official training set as the training/development set with a 75%/25% split, and the official development
set as the test set.

other with the reverse relation class (i.e., any order), despite the small size of the dataset.

The difference in performance between the correct order versus the fixed or any order

strategies is more prominent for the “Hyponym-of” relation than for the “Synonym-of” re-

lation. This is expected, since the argument ordering strategy is different only for the order-

sensitive “Hyponym-of” relation. It is somewhat surprising though, that the correct order

strategy performs worse than the other strategies even for order-insensitive “Synonym-of”

relation. This may be due to the fact that the model does not see any training examples with

the reversed argument ordering for the “Synonym-of” relation. In comparison, the nega-

tive sampling strategy, which learns from both the original and reversed argument ordering

for the “Synonym-of” relation, the performance is comparable to the two best performing

strategies.

We have also experimented with different evaluation strategies for the models trained

with the any order and fixed order strategies. When the model is trained with the any

order strategy, the choice of the evaluation strategy does not impact the performance. In
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contrast, when the model is trained with the fixed order strategy, it performs better if the

same strategy is used for evaluation. This may be the reason why the model trained with

the correct order strategy does not perform as well, since it has to be evaluated with a

different strategy from training, namely the any order strategy, as we do not know the

correct ordering of arguments for examples in the test set.

We have also tried training binary classifiers for the “Hyponym-of” and the “Synonym-

of” relations separately and then merging the outputs of the best classifiers for each rela-

tions. While the binary classifiers individually performed better than the multi-way clas-

sifier for each corresponding relation class, the overall performance based on the micro-

averaged F1-score did not improve over the multi-way classifier after merging the outputs

of the hyponym and the synonym classifiers.

Based on the results from the argument ordering strategy experiments, we submitted

the model trained using the fixed order strategy, which ranked number one in the challenge.

The result is shown in Table 6.6.

Relation Precision Recall F1-score
Synonym-of 0.820 0.813 0.816
Hyponym-of 0.455 0.421 0.437
Micro-averaged 0.658 0.633 0.645

Table 6.6: Result on the test set of the ScienceIE dataset, using the official train/dev/test split.

To quantify the importance of various features of our model, we trained the model by

gradually adding more features one by one, from word embeddings, relative positions, and

entity types to POS tags in order. The results on the importance of the features as well as

postprocessing are shown in Figure 6-2. Adding the relative position features improved the

performance the most, while adding the entity type improved it the least. Note that even

without the postprocessing, the F1-score is 0.63, which still outperforms the second-best

system with the F1-score of 0.54.
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Figure 6-2: Importance of features of CNN and postprocessing rules. w: word embeddings, rp: relative
positions to the first and the second arguments, et: entity types, pos: POS tags.

Figure 6-3 quantifies the impact of the two preprocessing steps, deleting brackets and

cutting sentences, introduced to compensate for the small dataset size. Cutting the sen-

tence before the first entity and after the second entity resulted in a dramatic impact on

the performance, while deleting brackets (i.e., removing the reference marks) improve the

performance modestly. This implies that the text between the two entities contains most of

the information about the relation between them.

0.50 0.55 0.60 0.65
F1-score

- sentence cutting

- bracket deletion

w+rp+et+pos

Figure 6-3: Impact of bracket deletion and sentence cutting. “w+rp+et+pos” represents the CNN model
trained using all features with both bracket deletion and sentence cutting during preprocessing. “-bracket
deletion” is the same model trained only without bracket deletion, and “-sentence cutting” only without
sentence cutting.
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6.5 Conclusion

In this chapter, we have presented an ANN-based approach to relation extraction, which

ranked first in the SemEval-2017 task 10 (ScienceIE) for relation extraction in scientific

articles (subtask C). We have experimented with various strategies to incorporate argument

ordering for ordering-sensitive relations, showing that an efficient strategy is to fix the

arguments ordering as appears on the text by introducing reverse relations. We have also

demonstrated that cutting the sentence before the first entity and after the second entity is

effective for small datasets.
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Chapter 7

Conclusions

7.1 Contributions

This thesis introduced several ANN architectures for information extraction. Most impor-

tantly, we have presented the first ANN-based de-identification system, which achieves

state-of-the-art results without any manual features. We have also explored several exten-

sions of the system.

Users of the de-identification system may have access to other information in EHRs,

such as metadata of patient notes or directories of doctors in the hospital, which can be

high-quality features for de-identification. We have extended the ANN architecture to in-

corporate features, further improving the de-identification performance when high-quality

features are utilized.

Another practical issue when performing de-identification may arise from the difficulty

of creating labels for the dataset to be de-identified. We have explored transfer learning to

take advantage of a large annotated dataset to improve the performance on datasets with a

limited number of annotations.

As the ANN automatically learns effective features instead of depending on hand-

crafted features, it can also be used for named-entity recognition or other tasks involving

sequential tagging such as part-of-speech tagging or chunking. The ANN-based system

has been publicly released as an easy-to-use software package for general purpose named-

entity recognition as well as de-identification.
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Finally, we have presented an ANN architecture for relation extraction, which is the

next step toward more advanced information extraction. Our system has ranked first in the

SemEval-2017 task 10 (ScienceIE) for relation extraction in scientific articles (subtask C).

7.2 Future work

Though we have shown promising results for de-identification using ANN-based systems,

our work leaves several research directions to be explored before it can be mass deployed

under practical settings. The main roadblock to the mass deployment is the cost of obtain-

ing enough annotations to ensure satisfactory performance. Our transfer learning experi-

ments have shown that leveraging large annotated datasets may lead to some performance

improvement on a target dataset with few annotations. However, even the improved results

are not yet on par with the case when there are plenty of annotations on the target dataset.

In order to meet the high standards for de-identification for preserving patients’ pri-

vacy without spending too many resources for creating annotations, the following research

directions may be worth exploring.

Multi-task learning Closely related to transfer learning, multi-task learning attempts to

improve the performance on a dataset by training an ANN model on multiple datasets si-

multaneously with mostly shared parameters and specialized parameters only for the last

layers. In a few NLP tasks, multi-task learning for ANNs has been shown to reduce gener-

alization errors, thus resulting in improved performance [9, 24].

Active learning Instead of annotating many training examples from scratch, active learn-

ing attempts to annotate as few examples as possible by predicting the most important ex-

amples to annotate using some algorithm, based on a small set of existing annotations.

Often the annotation step and the prediction step are alternated until desired scores are

achieved. In a notable recent work, Zhang et al. [136] presents a novel active learning ap-

proach for sentence classification where they select instances that contain words likely to

most affect the embeddings.
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Data augmentation One of the most naive solutions to the small size of training set for

machine learning algorithm is to boost the training data by creating synthetic examples

from the existing ones. Previous research has demonstrated that appropriate data augmen-

tation techniques are useful for controlling generalization error for deep learning models.

Although this technique is commonly used in image or speech recognition, it has not been

explored much for NLP tasks as modifying text cannot be done easily by using a straight-

forward signal transformation, unlike for image or speech data [135]. Zhang et al. [135]

have explored a naive technique for data augmentation in text classification by randomly

replacing words in the text by one of their synonyms, showing some improvement.

There are a few interesting research directions towards more advanced information ex-

traction in the medical domain.

Joint extraction of named entities and relations In our ANN models for NER and

relation extraction, the NER and relation extraction are done in two separate steps. More

specifically, our model for relation extraction assumes that the location of named entities

of interest are provided with the text for relation extraction. Many works without this

assumption often report significantly decreased performance due to cascading errors from

the entity recognition step [97], when relations are extracted from the output of NER. Miwa

et al. [83] have explored joint extraction of named entities and relations to improve the

performance over the two-step approach.

Clinical timeline extraction Once we have a system for extracting entities and relations

jointly, we can apply it to patient notes to extract a clinical timeline. There has been a lot of

interest in this domain, propelled by SemEval and i2b2 challenges [13, 12, 112], where the

goal is to extract temporal expressions and event expressions, as well as temporal relations

between them in patient notes. This task would be useful to support medical practitioners

to keep track of patients’ clinical history more efficiently, or to perform medical research

with information from text in addition to other components of patient records such as lab

results.
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The above are only few examples of the possible information extraction methods to

apply to clinical text, but there are plenty of opportunities where NLP techniques for infor-

mation extraction could help advance medical research. Once these techniques for informa-

tion extraction become more reliable, they would be extremely useful for helping medical

practitioners or researchers locate and utilize relevant information more efficiently. Fur-

thermore, more advanced information extraction techniques would lead to more accurate

predictive modeling for the clinical domain, by providing a way to incorporate information

from unstructured elements of EHRs to complement structured elements.
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