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Abstract

This thesis discusses parameter estimation algorithms for a number of structures
for system representation that can be interpreted as different types of composition.
We refer to the term composition as the systematic replacement of elements in an
object by other object modules, where the objects can be functions that have a
single or multiple input variables as well as operators that work on a set of signals of
interest. In general, composition structures can be regarded as an important class of
constrained parametric representations, which are widely used in signal processing.
Different types of composition are considered in this thesis, including multivariate
function composition, operator composition that naturally corresponds to cascade
systems, and modular composition that we refer to as the replacement of each delay
element in a system block diagram with an identical copy of another system module.
There are a number of potential advantages of the use of composition structures in
signal processing, such as reduction of the total number of independent parameters
that achieves representational and computational efficiency, modular structures that
benefit hardware implementation, and the ability to form more sophisticated models
that can represent significantly larger classes of systems or functions.

The first part of this thesis considers operator composition, which is an alternative
interpretation of the class of cascade systems that has been widely studied in
signal processing. As an important class of linear time-invariant (LTI) systems,
we develop new algorithms to approximate a two-dimensional (2D) finite impulse
response (FIR) filter as a cascade of a pair of 2D FIR filters with lower orders, which
can gain computational efficiency. For nonlinear systems with a cascade structure,
we generalize a two-step parameter estimation algorithm for the Hammerstein model,
and propose a generalized all-pole modeling technique with the cascade of multiple
nonlinear memoryless functions and LTI subsystems.

The second part of this thesis discusses modular composition, which replaces each
delay element in a FIR filter with another subsystem. As an example, we propose
the modular Volterra system where the subsystem has the form of the Volterra
series. Given statistical information between input and output signals, an algorithm
is proposed to estimate the coefficients of the FIR filter and the kernels of the Volterra
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subsystem, under the assumption that the coefficients of the nonlinear kernels have
sufficiently small magnitude.

The third part of this thesis focuses on composition of multivariate functions. In
particular, we consider two-level Boolean functions in the conjunctive or disjunctive
normal forms, which can be considered as the composition of one-level multivariate
Boolean functions that take the logical conjunction (or disjunction) over a subset of
binary input variables. We propose new optimization-based approaches for learning
a two-level Boolean function from a training dataset for classification purposes, with
the joint criteria of accuracy and simplicity of the learned function.

Thesis Supervisor: Alan V. Oppenheim
Title: Ford Professor of Engineering
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Chapter 1

Introduction

Parametric representations are widely used in signal processing for modeling both

systems and signals. Examples of parametric representations include linear time-

invariant filters with rational transfer functions that are parameterized by the

coefficients of the numerators and the denominators, bandlimited periodic signals

that can be characterized by the fundamental frequency as well as the magnitude

and phase of each harmonic, and stochastic signal models with parametric proba-

bility distributions. Parameter estimation algorithms are usually needed for these

representations to obtain the parameters from empirical observations or statistical

information.

For certain classes of parametric models, the number of independent parameters

is smaller than that of a natural parametrization of the model, which can enable

an alternative and more compact parametrization. As an example, a class of two-

dimensional (2D) finite impulse response (FIR) filters is the separable filters [3], the

transfer functions of which satisfyH(z1, z2) = H1(z1)·H2(z2). IfH1(z1) andH2(z2) are

of orders N1 and N2, respectively, then the total number of independent parameters1

is N1 + N2 + 1. If we consider the impulse response as a natural parametrization of

H(z1, z2), then it has (N1 + 1) · (N2 + 1) parameters, and thus the parametrization

with H1(z1) and H2(z2) is more compact. As an example of signal representation,

1In fact, H1(z1) has N1 + 1 parameters and H2(z2) has N2 + 1 parameters. Since respectively
scaling H1(z1) and H2(z2) with c and 1/c leads to the same product, the number of independent
parameters is reduced by one.

17



sparse signals have most elements as zero and can be efficiently characterized by the

locations and values of the non-zero elements [4,5]. Moreover, low rank matrices are a

widely used model in applications such as recommendation systems [6,7], background

modeling for video processing [8, 9], and biosciences [10]; a low rank matrix can be

parameterized by the non-zero singular values and the associated singular vectors

from the singular value decomposition (SVD), which typically have fewer parameters

than the total number of elements in the matrix.

As we can see from these examples, the reduction of independent parameters

typically results from additional constraints on the parametric models, such as sepa-

rability of 2D filters, sparsity of signals, and the low rank property of matrices. These

additional constraints introduce dependence among the parameters in the natural

representation, and therefore the number of degrees of freedom is reduced. From a

geometric perspective, the feasible region of a constrained parametric model can be

regarded as a manifold in a higher dimensional space associated with the natural

parametrization. In signal processing, the reduction of independent parameters

could lead to system implementation with higher efficiency, more compact signal

representation, and efficient extraction of key information from high-dimensional data.

As a class of constrained parametric models, composition structures typically have

the form of systematic replacement of elements in an object with another object

module. By using proper composition structures for system and signal representation,

we can achieve the potential advantages of parameter reduction, modularity for

hardware implementation, and the ability to form more sophisticated models that can

represent significantly larger classes of systems or functions, which we will illustrate

in later sections of this chapter.

There are different types of composition with different choices of objects and

replacement approaches. As an example, function composition replaces the input

variable of a function with the output of another function. It has been well-studied in

theoretical and computational mathematics, spanning a wide range of topics such as

polynomial composition [11–14], rational function composition [15, 16], and iterated

functions that are generated by composing a function with itself multiple times [17,18].
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Other types of composition considered in this thesis include operator composition and

modular composition, where the latter refers to the replacement of each delay element

in a system block diagram with another subsystem.

The remainder of this chapter is organized as follows. Section 1.1 reviews the

different types of composition structures and presents a few examples of the signal

processing techniques that can be interpreted as a type of composition. After

discussing the potential advantages of utilizing composition structures for system

representation in Section 1.2, the focus and contributions of this thesis are summarized

in Section 1.3. Finally, the outline of this thesis is proposed in Section 1.4.

1.1 Types of Composition Structures

1.1.1 Univariate Function Composition

Function composition generally refers to the application of a function to the result of

another function. In particular, for univariate functions g(·) : A→ B and f(·) : B →

C, the composition (f ◦ g)(·) is a function from the set A to the set C, which satisfies

(f ◦ g)(x) , f(g(x)) for all x ∈ A. To ensure proper definition, the domain of the

outer function f(·) should include the image of the inner function g(·).

Function composition can be interpreted from the following two equivalent

perspectives:

• For any x ∈ A, we obtain v = g(x) and then obtain y = f(v). In other words,

we replace the input variable of f(·) with the output of g(·).

• The function f(·) corresponds to an operator Flc that maps the function g(·) to

a new function (f ◦ g)(·); similarly, the function g(·) corresponds to an operator

Grc that maps f(·) to (f ◦ g)(·). The latter operator Grc is linear and named as

the composition operator or the Koopman operator [19], which has been studied

in fields such as nonlinear dynamic systems and flow analysis [20,21].

The first interpretation will be used in Sections 1.1.2 and 1.1.3, while we will focus

on the second interpretation in Section 1.1.4.
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Univariate function composition may serve as a convenient description for a

number of signal processing methods and system structures. Frequency-warping

[22, 23] replaces the frequency variable in the spectrum with a warping function and

thus achieves non-uniform spectrum computation with the standard Fast Fourier

Transform algorithm. Moreover, time-warping [24, 25] applies a warping function to

the time variable and can be used for efficient non-uniform sampling. As an example

of system representations with a composition structure, as shown in Figure 1-1, if we

replace each delay element2 in a FIR filter F (z−1) with another filter G(z−1), then we

obtain a modular filter with the transfer function as the composition of the transfer

functions of the two filters F (z−1) and G(z−1). The design of such modular filters

has been studied in [1,2]. More detailed review on frequency-warping, time-warping,

and modular filter design will be presented in Section 2.1 of this thesis.

(a): FIR filter F (z−1)

(b): Modular filter (F ◦G)(z−1)

Figure 1-1: Modular filter with transfer function as (F ◦G)(z−1) [1, 2]

1.1.2 Operator Composition

Operator composition has the same core idea as univariate function composition,

with the only difference that functions are substituted by operators. In particular,

for operators G {·} : A→ B and F {·} : B→ C, the composition of the two operators

2Here each delay element z−1 (rather than z itself) is considered as the variable of the transfer
functions of FIR filters, in order that the transfer functions become polynomials.
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is defined as (F ◦G) {·} , F {G {·}}.

In signal processing, a system can be considered as an operator that works on

a set of signals of interest. Therefore, the cascade of two systems that respectively

correspond to the operators G {·} and F {·} can be naturally represented by the

operator (F ◦G) {·}. The systems in the cascade can almost be arbitrary, as long as

the system F {·} can take the output from the system G {·} as an input signal.

Cascade systems have been widely used and studied in signal processing. For

linear systems, the cascade implementation of one-dimensional (1D) infinite impulse

response (IIR) filters can improve the stability with respect to possible quantization

errors in the filter coefficients [26]. For nonlinear systems, the block-oriented models

are a useful and wide class of models that typically represents a nonlinear system

by the interaction of linear time-invariant (LTI) blocks and nonlinear memoryless

blocks [27], and the cascade nonlinear models are an important subclass of these

block-oriented models. More detailed review on the block-oriented nonlinear models

will be presented in Section 2.2.3 of this thesis.

1.1.3 Multivariate Function Composition

The composition of multivariate functions is a natural generalization of the univariate

function composition. For multivariate functions f(v1, · · · , vR) and gr(x1, · · · , xd)

(1 ≤ r ≤ R), the function f(g1(x1, · · · , xd), · · · , gR(x1, · · · , xd)) is referred to as the

generalized composite of f with g1, · · · , gR [28]. Since there could be multiple inner

functions gr, this multivariate function composition gains additional flexibility over

its univariate counterpart.

There are a number of important functions in signal processing that have the

form of multivariate composition. As an example, two-level Boolean functions

in the disjunctive normal form (DNF, “OR-of-ANDs”) or the conjunctive normal

form (CNF, “AND-of-ORs”) serve as a useful classification model and have wide

applications in signal processing [29–31] and machine learning [32–34]. A Boolean

function in DNF or CNF is a multivariate function with both the inputs and the
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output as binary variables, which has the following form of composition:

ŷ = F (G1(x1, · · · , xd), · · · , GR(x1, · · · , xd)), (1.1)

where (x1, · · · , xd) and ŷ denote the input and output variables, respectively. For

DNF, the functions F (v1, · · · , vR) and Gr(x1, · · · , xd) (1 ≤ r ≤ R) in (1.1) are defined

as

F (v1, · · · , vR) =
R∨
r=1

vr, Gr(x1, · · · , xd) =
∧
j∈Xr

xj, (1.2)

where each Xr (1 ≤ r ≤ R) is a subset of the index set {1, 2, · · · , d}, and the symbols

“∨” and “∧” denote the logical “OR” (i.e. disjunction) and “AND” (i.e. conjunction),

respectively. For CNF, we swap the logical “OR” and “AND”, and the functions F

and Gr (1 ≤ r ≤ R) are defined similarly as follows.

F (v1, · · · , vR) =
R∧
r=1

vr, Gr(x1, · · · , xd) =
∨
j∈Xr

xj. (1.3)

For simplicity, we refer to the individual functions F (v1, · · · , vR) and Gr(x1, · · · , xd)

as one-level Boolean functions, and thus the two-level functions are composition of

the one-level functions.

The two-level Boolean functions in DNF and CNF have a number of benefits. Since

any Boolean function can be represented in DNF and CNF3 [34], these two forms have

high model richness and are widely used in applications such as binary classification

[34] and digital circuit synthesis [35]. When the two-level Boolean functions are used

in real-world classification problems where each input and output variable corresponds

to a meaningful feature, the variables selected in each subset Xr in (1.2) and (1.3) can

naturally serve as the reason for the predicted output; therefore, a two-level Boolean

function model that is learned from a training dataset can be easily understood by

the user, which may gain preference over black-box models, especially in fields such

as medicine and law where it is important to understand the model [33,36–38].

3We assume that the negation of each input variable is available.
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1.1.4 Modular Composition

The composition forms in previous sections focus on the replacement of the input

information of a function or an operator by the output from another function or

operator. In contrast, this section considers a generalization of composition by

replacing elements in a system block diagram with identical copies of another system

module, which we refer to as modular composition. In another perspective, the latter

system module is embedded into the former system. For tractability, we focus on the

example of replacing each delay element of a FIR filter F (z−1) in the direct form

structure [26] with a time-invariant system G {·}, as shown in Figure 1-2.

(a): FIR filter F (z−1) in direct form structure

(b): Modular system

Figure 1-2: Embedding system G {·} into the FIR filter F (z−1) in the direct form
structure.

The modular system in Figure 1-2 (b) is a natural generalization of the modular

filter in Figure 1-1 (b), by allowing the system G {·} to be a general nonlinear module

such as the Volterra series model [39, 40].

Now we consider the mathematical description of the modular composition

process. For simplicity, we denote the set of signals of interest as S. The original

subsystem G {·} is an operator that maps an input signal in S to an output in S,

i.e. G {·} : S→ S. After embedding G {·} in F (z−1), the modular system is another

operator that maps from S to S. Thus, if we define the set of all operators from S to
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S as

U , {H {·} : S→ S} , (1.4)

then the system F (z−1) corresponds to a higher-level4 operator F that maps from

U to U . In summary, the modular composition process generally has the following

mathematical description: the system within which we embed another module creates

a higher-level operator, which has both its input and output as lower-level operators

on the set of signals; we refer to this description as operator mapping, on which further

discussion can be found in Appendix A.

1.2 Potential Benefits of Composition Structures

for System Representation

As briefly mentioned before, there are a number of potential advantages of the

use of structures that can be interpreted as a type of composition for system

representation purposes. In this thesis, we consider structures that have the following

potential benefits: parameter reduction, modularity for hardware implementation,

and improved model richness, which are illustrated as follows.

• Parameter Reduction: If a given signal or system can be represented

or approximated by a composition structure that has fewer independent

parameters than the original signal or system, then this composition structure

achieves representational compression or computational efficiency. As an

example, a 2D FIR filter can be represented or approximated by a cascade of a

pair of 2D FIR filters that have lower orders. If the cascade system retains

the same order as the original 2D filter, then the cascade system typically

has fewer independent parameters compared with the original 2D filter [41].

We will discuss the cascade approximation of 2D FIR filters in Chapter 3.

Similarly, approximating a univariate polynomial by the composition of two

4The operator G {·} works on the set of signals while F works on the set of operators, and
therefore F can be considered as a higher-level operator while G {·} is lower-level.
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polynomials with lower orders reduces the number of independent parameters

and can potentially be applied to the compact representation of 1D signals,

which is explored in [2,42] and will be reviewed in Section 2.1 of this thesis. In

addition, multiple layers of composition can achieve compact system structures

by reducing the overall complexity. A class of examples is artificial neural

networks that can be viewed as function composition of multiple layers, which is

an efficient model for compact representations of a dataset and for classification

tasks [43,44]; as suggested by [45–47], reducing the number of layers in a neural

network may significantly increase the total number of neurons that are needed

to have a reasonable representation.

• Modularity for Hardware Implementation: The modular systems in

Section 1.1.4 use identical copies of a system module, which thus has a

structured representation and achieves modularity. This modular structure can

simplify the design and verification for the hardware implementation with very-

large-scale integration (VLSI) techniques [2, 48, 49]. As an example, we refer

to a modular Volterra system as the system obtained by embedding a Volterra

series module [39,40] into a FIR filter, which will be studied in Chapter 5.

• Improved Model Richness: Taking the composition of simple parametric

models of systems or functions may result in a new model that is able to

represent a significantly larger class of systems or functions, i.e. the model

richness is improved. As is discussed in Section 1.1.3, the one-level Boolean

functions can model only a subset of all Boolean functions; in contrast, the

two-level Boolean functions, which are the composition of one-level functions,

can represent all Boolean functions if the negation of each input binary variable

is available. Chapter 6 of this thesis considers algorithms to learn two-level

Boolean functions from a training dataset. As another example for signal

representation, the model of a bandlimited signal composed with a time-warping

function can express signals that are in a significantly larger class than the

bandlimited signals [24], which can enable efficient sampling methods for those
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signals.

1.3 Focus and Contributions

Parameter estimation is a central problem for the utilization of the benefits of

composition structures for system representation. If we aim to use a composition

structure to approximate a target system and signal, and if we choose the optimality

criterion as the approximation error, then this performance metric is generally a

nonlinear and potentially complicated function with respect to the parameters in the

structure, which may make efficient parameter estimation challenging.

This thesis focuses on parameter estimation for composition structures. Since

an efficient parameter estimation algorithm for general and arbitrary composition

structures is unlikely to exist, this thesis proposes algorithms for the following classes

of structures that have high importance for signal processing purposes: for the

operator composition that corresponds to cascade systems, we consider the cascade

approximation of 2D FIR filters and the block-oriented models for nonlinear systems;

for modular composition, we propose the modular Volterra system; for multivariate

function composition, we focus on algorithms to learn the two-level Boolean functions

from a training dataset. We summarize the goals and the main contributions for each

class of structures as follows.

• Operator Composition: As an example of cascade linear systems, we consider

the approximation of a 2D FIR filter by the cascade of a pair of 2D FIR filters

that have lower orders, which can achieve computational efficiency for spatial

domain implementation. In the transform domain, the cascade approximation

becomes approximate bivariate polynomial factorization, for which this thesis

introduces new algorithms. Simulation results show that our new algorithm

based on the idea of dimensional lifting of the parameter space outperforms

the other methods in comparison. In addition, this technique can also be

applied to the approximation of a 2D signal by the convolution of a pair of

2D signals with shorter horizontal and vertical lengths, which can result in

26



compact representation of 2D signals.

For cascade structures of nonlinear systems, we consider the block-oriented

representations of discrete-time nonlinear systems, where the goal is parameter

estimation using statistics or empirical observations of the input and output

signals. In particular, we focus on two structures. The first structure is

a Hammerstein model [50] that is the cascade of a nonlinear memoryless

module followed by a LTI subsystem, where the nonlinear module is a weighted

combination over a basis of known functions and the LTI subsystem has no extra

constraints. This setup is more general than the LTI subsystems considered in

existing literature on the Hammerstein model estimation, which typically are

constrained to be FIR filters [51] or filters with rational transfer functions [52].

We generalize the two-step parameter estimation method in [52] from a finite-

dimensional to an infinite-dimensional parameter space. The second structure

for nonlinear system is used for modeling a black-box nonlinear system by its

inverse, where the inverse system is a cascade of multiple nonlinear functions and

LTI subsystems. This second structure can be considered as a generalization of

the all-pole signal modeling [26] by introducing nonlinear blocks.

• Modular Composition: The modular Volterra system is obtained by

replacing each delay element in a FIR filter with a Volterra series module.

If the Volterra series module has only the linear kernel, then the resulted

modular system belongs to the class of modular filters in [1, 2]. In addition to

modularity, the incorporation of nonlinear kernels in the Volterra series module

has the additional benefit of capturing nonlinear effects and providing more

flexibility over modular filters. In this thesis, we consider parameter estimation

for the modular Volterra system using the statistical information between the

input and output signals. In particular, we focus on the situation where the

coefficients of the nonlinear kernels of the Volterra module have sufficiently

smaller magnitude compared with those of the linear kernel, i.e. weak nonlinear

effects. An estimation algorithm is provided by first obtaining the coefficients of
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the linear kernel and then the nonlinear kernels, which is shown to be effective by

numerical evaluation when the order and the number of states (i.e. the maximum

delay) of the system are not high.

• Multivariate Function Composition: In contrast to the above systems

that have continuous-valued input and output signals, the two-level Boolean

functions mentioned in Section 1.1.3 have binary input and output variables.

Our goal is to learn two-level Boolean functions in the CNF or DNF [53]

for classification purposes, with the joint criteria of accuracy and function

simplicity. We propose a unified optimization framework with two formulations,

respectively with the accuracy characterized by the 0-1 classification error and

a new Hamming distance cost. By exploring the composition structure of

the two-level Boolean functions, we develop linear programming relaxation,

block coordinate descent, and alternating minimization algorithms for the

optimization of the formulations. Numerical experiments show that two-level

functions can have considerably higher accuracy than one-level functions, and

the algorithms based on the Hamming distance formulation obtain very good

tradeoffs between accuracy and simplicity.

In summary, Figure 1-3 shows the framework of this thesis.

1.4 Outline of Thesis

The remainder of this thesis is organized as follows. After a high-level review of the

related concepts and background in Chapter 2, we consider each class of systems as

mentioned above. For cascade structures that correspond to operator composition,

the cascade approximation of 2D FIR filters is presented in Chapter 3, and the

block-oriented cascade models for nonlinear systems are studied in Chapter 4. For

modular composition, the modular Volterra systems are introduced in Chapter 5.

For multivariate function composition, learning two-level Boolean functions in CNF

or DNF is considered in Chapter 6. In each chapter, the concrete form and the
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Figure 1-3: Framework of this thesis.
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applications of the composition structures are presented, the parameter estimation

problem is formulated, related existing work is reviewed, new parameter estimation

algorithms are proposed, and simulation results are shown to evaluate the algorithms.

Finally, conclusion and future work are provided in Chapter 7.
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Chapter 2

General Background

This chapter provides a brief review of fundamental concepts and existing works

on a few important topics that are related to this thesis. Some of the reviewed

techniques and system structures will be further discussed in later chapters, where

a more detailed review will be presented for specific problems. Section 2.1 of this

chapter reviews existing signal processing techniques and system structures that can

be interpreted as a type of composition. Since both the Volterra series [39] and the

block-oriented models [27] for nonlinear systems will be heavily used in later chapters

of this thesis, Section 2.2 provides a brief review on these models for nonlinear systems

and the associated parameter estimation approaches.

2.1 Systems with a Composition Structure

First, we review the work [2] that is the closest work to this thesis. In [2], Demirtas

introduces the first work that systematically studies function composition and

decomposition for signal processing purposes, which are applied to the interpretation

of existing techniques and the development of new algorithms, from both analysis and

synthesis perspectives. The utilization of function composition and decomposition

provides the benefits of compact representation and sparsity for signals, as well as

modularity and separation of computation for system implementation. In particular,

there are three main focuses in [2], namely univariate polynomial decomposition, the
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design of modular filters by frequency response composition, and the representation

of multivariate discrete-valued functions with a composition structure, each of which

will be reviewed as below.

• Univariate Polynomial Decomposition: Univariate polynomial decom-

position generally refers to the determination of a pair of polynomials f(x)

and g(x) so that their composition f(g(x)) equals or approximates a given

polynomial h(x). Approximating a given polynomial h(x) by the composition

f(g(x)) generally reduces the total number of independent parameters. Since

the z-transform of a 1D signal is a polynomial, polynomial decomposition

can be used for compact representation of 1D signals. A challenge with

polynomial decomposition is the highly nonlinear dependence of the coefficients

of h(x) on those of g(x). Practical decomposition algorithms are proposed

in [2, 42, 54] and compared with existing works [12–14, 55], for both the exact

decomposition where the given polynomial h(x) is guaranteed decomposable

and the approximate decomposition where a decomposable polynomial is used

to approximate a given indecomposable polynomial. These algorithms can work

with either the coefficients or the roots of the given polynomial h(x) as the

input information. As shown by [14], univariate polynomial decomposition can

be converted to bivariate polynomial factorization, where the latter is related to

Chapter 3 of this thesis. In addition to decomposition algorithms, sensitivity of

polynomial composition and decomposition is studied in [2,56] by characterizing

the robustness of these two processes with respect to small perturbations in the

polynomials; the sensitivity is defined as the maximum magnification ratio of

the relative perturbation energy of the output polynomial over that of the input

polynomial. A method of reducing the sensitivity by equivalent decomposition

has been proposed in [2, 56], which improves the robustness for polynomial

composition and decomposition.

• Modular Filters by Frequency Response Composition: As mentioned in

Section 1.1.1, modular filters are obtained by replacing each delay element in
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an outer discrete-time filter with an identical copy of an inner filter module;

the frequency response of the modular filter is the composition of the transfer

function of the outer discrete-time filter and the frequency response of the inner

filter module. The modular filter in [1, 2] can be potentially considered as a

systematic generalization of the filter sharpening technique [57], which uses

multiple copies of a low quality filter to improve the quality of approximation

for a given specification. In particular, two choices of the inner filter module

are considered in [2]: the first is a linear phase discrete-time FIR filter, and the

second is a continuous-time filter. With the optimality criterion as the minimax

error in the magnitude response, algorithms are proposed for the modular filter

design for both choices above. The modular filter design will be further discussed

in Section 5.2.

• Multivariate Discrete-valued Functions with a Composition Struc-

ture: The third focus of [2] is the composition and decomposition of multivari-

ate discrete-valued functions. Using proper composition can reduce representa-

tional complexity and simplify the computation for the marginalization process,

where the marginalization process has applications in topics such as nonlinear

filtering and graphical models in machine learning and statistical inference. In

particular, the work [2] proposes a composition form for multivariate functions

by introducing a latent variable that summaries a subset of the input variables.

In this framework, a function f(x1, · · · , xn) is represented as f̃(x1, · · · , xm, u)

where the latent variable u = g(xm+1, · · · , xn) (1 ≤ m < n). If the alphabet

size of u is sufficiently small, then representational efficiency is gained since the

functions f̃ and g have fewer parameters than the original function f ; similarly,

computational efficiency is achieved for marginalization. A generalization of the

above composition form is proposed in [2], where a low rank approximation is

used for a matrix representation of the multivariate function, which may also

potentially reduce the number of independent parameters.
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In addition to the topics that are explored in [2], there are a number of other

techniques that can be interpreted from the perspective of composition structures.

Here we list a few examples of such techniques, some of which have already been

briefly mentioned in Chapter 1.

• Time-warping and Efficient Sampling: As briefly mentioned in Section

1.1.1, replacing the time-variable of a signal f(t) with a function w(t) yields

a composed function g(t) = f(w(t)), where w(t) is monotonic and can be

considered as a time-warping function. If the signal f(t) is non-bandlimited,

then a periodic sampling process will lead to information loss and cannot recover

f(t) without additional information. However, for certain signals f(t), there

may exist a proper time-warping function w(t) such that f(w(t)) becomes

bandlimited, which thus enables periodic sampling without information loss.

The work [24, 25] explores the signal representation technique with a proper

time warping before periodic sampling, where the time warping function is also

estimated from the input signal and aims to reduce the out-of-band energy

before sampling.

• Frequency Transformation and Filter Design: A filter design problem

can have the specification in a nonlinear scale of the frequency variable; as

an example, the audio equalizer may have a logarithm scale specification [23].

If we convert the specification to a linear scale of frequency, then there are

potential sharp ripples in the target frequency response where the frequency

is compressed. This can lead to a high order of the designed filter and a lack

of robustness in implementation. A possible solution to the problem above is

the frequency warping technique [23], which approximates the nonlinear scale

of frequency axis by replacing the delay elements in a filter with a proper

system. This frequency warping process prevents the shape ripples in the

target frequency response, leading to lower orders of the designed filters and

higher implementation robustness. As briefly mentioned in Section 1.1.1, this

idea of frequency warping has also been applied to the non-uniform spectrum
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computation with the standard Fast Fourier Transform algorithm [22]. In

addition to the above warping function that rescales the frequency axis, there are

other frequency transformation functions that map the low frequency region to

other frequency intervals; therefore, by the composition with a proper frequency

transformation function, a prototype lowpass filter can be utilized to design a

highpass or a bandpass filter with flexible choices of band-edges [58,59].

• Efficient Representation of Nonlinear Systems: For certain autonomous

dynamical systems that have a nonlinear evolution on the state variables, there

can be a simplified description of the system by utilizing proper function

composition [60]. In particular, we consider an autonomous discrete-time

dynamical system with the evolution as g : V → V where V ⊆ RN is the

set of all possible state variables. If x[n] is the state variable at time n, then

the system satisfies x[n + 1] = g(x[n]). For any observable (i.e. a function of

the state variables) f : V→ C, we consider the Koopman operator G such that

G {f} (·) = (f ◦g)(·), which is a linear operator that forms function composition.

If we interpret f(x[n]) as the observation at time n, then G maps the function

from the current state to current observation to the function from the current

state to the next observation. For certain dynamical systems, the evolution

of the state variables x[n] has a simplified description by using a special set

of observables, which bypasses the potentially complicated nonlinear function

g(·). This simplified description has the following steps [60]. First, we consider

the eigenfunctions fk(x) of the Koopman operator G, namely

G {fk} (·) = µk · fk(·), 1 ≤ k ≤ K,

where µk are the singular values, and K can be either finite or infinite. This

equation is named the Schröder’s equation [61], which along with other similar

equations involving function composition has been well-studied in mathematics
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[18]. Then, with the assumption that the identical function1 I(x) = x is in the

range of the function space spanned by fk(x), i.e.

x = I(x) =
K∑
k=1

vk · fk(x), ∀x ∈ V,

where vk (1 ≤ k ≤ K) are fixed vectors in V, the evolution of the system can

be equivalently described in the following expansion

g(x) = G {I} (x) = G

{
K∑
k=1

vk · fk

}
(x) =

K∑
k=1

vk ·G {fk} (x) =
K∑
k=1

vk ·µk ·fk(x).

This expansion of the state evolution g(·) can be considered as a simplified

representation of the system, since the dynamic in the space of the observables

fk(·) (1 ≤ k ≤ K) is linear; as a result, the state at any time n (n ≥ 0) with

the initial state x[0] at time 0 can have the following simple expression

x[n] = g[n](x[0]) =
K∑
k=1

vk · µnk · fk(x[0]), n ≥ 0,

where g[n](·) denotes the nth iterate of the function g(·). The above expression

converts the nonlinear and potentially complicated evolution of the state

variables into a weighted combination of the fixed functions fk(·), where the

weights has an exponential relationship with the time. In the study of the

Koopman operator, the three elements µk, fk(·), and vk have the terminologies

of Koopman eigenvalues, eigenfunctions, and modes, respectively [60]. The

estimation of these three elements is the critical step for utilizing the above

efficient representation of nonlinear systems. With various setup of available

information, there have been a number of works on the estimation of the three

elements or a subset of them, such as the generalized Laplace analysis [62,63] and

the dynamic mode decomposition with its extensions [60,64,65]. In addition to

1Since the identical function has a vector output, we can consider each scalar element of the
output and then stack them into a vector.
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discrete-time systems, this representation technique with the Koopman operator

has also been generalized to continuous-time systems [62,66].

2.2 Models for Nonlinear Systems

Since nonlinear systems are defined by the lack of linearity, there is no unified

parametric description for a general nonlinear system. In contrast, various models for

different classes of nonlinear systems have been proposed. This section reviews three

widely used models, namely the Volterra series [39], the Wiener series [67], and the

block-oriented models [27].

2.2.1 Volterra Series Model

The Volterra series model [39, 40, 68, 69] is applicable to represent a wide class of

nonlinear systems. For a discrete-time time-invariant system, the Volterra series

model represents each output sample y[n] as a series expansion of the input samples

x[n]:

y[n] = H {x[n]} =
∞∑
k=0

H(k) {x[n]} , (2.1)

where H(k) {·} is the kth-order operator of the Volterra system, which satisfies

H(k) {x[n]} =
∑

i1,i2,...ik

h(k)[i1, i2, . . . , ik] · x[n− i1] · x[n− i2] · · · x[n− ik], (2.2)

where the fixed discrete-time function h(k)[i1, i2, . . . , ik] is referred to as the kth-order

Volterra kernel. If the system is causal, the kernels h(k)[i1, i2, . . . , ik] are nonzero only

if all iq ≥ 0 (1 ≤ q ≤ k).

There are multiple perspectives to interpret the Volterra series model. If the

system is memoryless, then the Volterra series recovers the Taylor series; therefore,

the Volterra series could be regarded as a generalization of the Taylor series with

memory effects. While the Taylor series can represent a wide class of functions,

the Volterra series can be considered as a representation of operators that map the

37



input signal to the output signal. The Taylor series may be inefficient and have slow

convergence if there is discontinuity in the function or its derivatives; similarly, the

Volterra series is more effective to model systems if the input-output relationship is

smooth and if the nonlinear properties can be effectively captured in low order terms.

The kth-order operator H(k) {·} in the Volterra series model is kth-order homo-

geneous with respect to scaling of the input signal. In other words, if we replace

x[n] by c · x[n], then the output term satisfies H(k) {c · x[n]} = ck ·H(k) {x[n]}. The

Volterra series model can be regarded as a generalization of the linear system; for a

linear system, the first-order Volterra kernel is the same as the impulse response of

the system, and kernels of the other orders are all zero.

From another perspective with a dimensionally lifted signal space, the Volterra

series represents the output of the nonlinear system as the summation across all the

orders of the diagonal results from the multi-dimensional linear filtering of the kernels

and the outer-products of the input signal. More specifically, we can construct the

outer-products of the input signal in the k-dimensional space as

x̃(k)[n1, n2, . . . , nk] ,
k∏
q=1

x[nq]. (2.3)

If we filter this signal with the kth-order kernel h(k)[i1, i2, . . . , ik] and then take the

diagonal elements, we obtain the term H(k) {x[n]} in (2.2). Finally, as shown by

(2.1), the output signal y[n] is the summation of H(k) {x[n]} across all orders k ≥ 0.

From this perspective, the kernel h(k)[i1, i2, . . . , ik] could be regarded as a generalized

impulse response in the k-dimensional space for the Volterra system. Moreover, it is

clear that the output signal is linearly dependent on the kernels h(k)[i1, i2, . . . , ik].

By constraining both a finite order and a finite delay (i.e. a finite number of state

variables), the Volterra model becomes simplified and more practical, which can be

expressed as

ŷ[n] =
K∑
k=0

N∑
i1=0

N∑
i2=0

· · ·
N∑
ik=0

h(k)[i1, i2, . . . , ik] · x[n− i1] · x[n− i2] · · · x[n− ik], (2.4)
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whereK and N are the highest order and the maximum time delay (i.e. the number of

state variables), respectively. By increasing K and N in (2.4), this truncated Volterra

series model can approximate a nonlinear system y[n] = HNL {x[n]} with any specified

accuracy, as long as the nonlinear system satisfies the following constraints [70]:

• The operator HNL {·} is causal, time-invariant, continuous, and has fading

memory as defined in [70];

• The input signal x[n] is upper and lower bounded.

Despite its high model richness, a disadvantage of the Volterra model results from

the large number of parameters in the kernels. If we fix the maximum delay of the

system, then the number of parameters in the kth-order kernel is exponential with

respect to k. Therefore, these kernels may require sufficiently long observed signals

in order to avoid overfitting for the parameter estimation.

The Volterra series model can also be applied to representing continuous-time

nonlinear systems. For a time-invariant system, the output signal y(t) can be

expressed in terms of the input signal x(t) and the Volterra kernels h(k)(t1, t2, . . . , tk)

in the form below:

y(t) =
∞∑
k=0

H(k) {x(t)} , where

H(k) {x(t)} =

∫
· · ·
∫ (

h(k)(t1, t2, . . . , tk) · x(t− t1) · x(t− t2) · · · x(t− tk)
)
dt1dt2 · · · dtk.

We can see that the summations in (2.2) for discrete-time systems are replaced by

the integrations in the equation above for continuous-time systems.

A number of techniques have been developed to estimate the kernels in both the

discrete-time and continuous-time Volterra models, with the tools of the higher-order

correlations, orthogonal expansions, and frequency domain methods [71]. Here is

a brief review on a few existing kernel estimation techniques. In addition to the

following techniques, the Volterra series model can be reorganized into the Wiener

series model [67] that is reviewed in Section 2.2.2, for which there are other kernel

estimation approaches.
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For a discrete-time Volterra system with a finite order and a finite delay, the

output signal has linear dependence on the kernels. As a result, if the higher-order

statistics [72] of the input and output signals are available, then the minimization of

the power of the estimation error in the output can be formulated as a linear regression

problem, and thus the kernels can be estimated by the least squares solution. Despite

the simplicity of this approach, it may require heavy computation when the order

or the delay is big. Generally, the kernels of different orders in the Volterra series

are correlated with each other, and therefore all of the kernels need to be estimated

simultaneously by solving a set of high-dimensional linear equations.

For continuous-time Volterra systems, the minimization of the mean squared error

in the output involves integration equations that are generally challenging to solve

directly. A special situation where the integration equations have a straightforward

solution is Volterra series with kernels only up to the second order and with white

Gaussian input signals [71]. An approach for general continuous-time Volterra kernel

estimation is to expand the kernels on an orthogonal function basis and then estimate

the expansion coefficients [67,71], where the latter step can be achieved by approaches

such as gradient-based techniques [73, 74] and pattern recognition methods [75]. As

an alternative approach for kernel estimation, if we consider the Laplace or Fourier

transform of the kernels, then the associated multi-dimensional transfer functions

can be estimated with the higher-order spectra between the input and output signals

[76,77], and efficient transform algorithms can be applied to reduce the computational

complexity [78].

2.2.2 Wiener Series Model

The kernels of the Volterra series can be reorganized in order to achieve mutual

orthogonality. Here the orthogonality is in the statistical sense and considers the

cross-correlation between different terms in the series expansion of the output signal,

where the input signal is a stochastic process with a specified probability distribution

and autocorrelation properties. As a famous example, the Wiener series [67, 69, 79]
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has the kth term2 W (k) {·} as a linear combination of kernels with orders no higher

than k. If the input signal x[n] is a white Gaussian process with mean zero and

variance σ2
x, then the kth Wiener term W (k) {·} is orthogonal to any homogeneous

Volterra kernel H(m) {·} where m < k, namely

E
{
W (k) {x[n]} ·H(m) {x[n]}

}
= 0, for m < k and white Gaussian process x[n].

(2.5)

Since W (m) {x[n]} is a linear combination of kernels with orders no higher than m,

this orthogonality property (2.5) automatically guarantees that two Wiener terms

with different orders are orthogonal. For discrete-time systems, the Wiener terms of

the lowest few orders have the following forms:

W (0) {x[n]} = w(0),

W (1) {x[n]} =
∑
i1

w(1)[i1] · x[n− i1],

W (2) {x[n]} =
∑
i1,i2

w(2)[i1, i2] · x[n− i1] · x[n− i2]− σ2
x ·
∑
i1

w(2)[i1, i1],

W (3) {x[n]} =
∑
i1,i2,i3

w(3)[i1, i2, i3] · x[n− i1] · x[n− i2] · x[n− i3]

−3 · σ2
x ·
∑
i1,i2

x[n− i1] · w(3)[i1, i2, i2],

where w(k)[i1, · · · , ik] is named as the kth-order Wiener kernel [67,79] and we assume

that each kernel is a symmetric function of its arguments, i.e. swapping any two

arguments does not change the value of the kernel. From these examples, it can

be observed that the kth Wiener term W (k) {·} includes the kth-order Wiener kernel

w(k)[i1, · · · , ik] as well as lower order kernels that are obtained by systematically

marginalizing w(k)[i1, · · · , ik] into dimension m, where m is smaller than k and has

the same parity as k. For a general Wiener term W (k) {·}, the coefficients can be

obtained from the Hermite polynomials [67, 79]. By replacing the summations with

integrations, the Wiener series can also represent continuous-time nonlinear systems.

Since the symmetry of the Gaussian distribution ensures that all odd order

2The terms W (k) {·} are referred to as the Wiener G-functionals [67, 79].
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moments are zero, the orthogonality property (2.5) holds if m and k have different

parity. When m and k have the same parity, the orthogonality property can be shown

with the properties of the high order moments of Gaussian variables. As an example,

we show the orthogonality property (2.5) for the situation when k = 3 and m = 1:

E
{
W (3) {x[n]} ·H(1) {x[n]}

}
=

∑
j1

w(3)[j1, j1, j1] · h(1)[j1] · E
{
(x[n− j1])

4
}

+
∑
i2 ̸=j1

(
w(3)[i2, i2, j1] + w(3)[i2, j1, i2] + w(3)[j1, i2, i2]

)
· h(1)[j1] · E

{
(x[n− i2])

2
}
· E
{
(x[n− j1])

2
}

−3 · σ2
x ·
∑
i1,i2

w(3)[i1, i2, i2] · h(1)[i1] · E
{
(x[n− i1])

2
}

=
∑
j1

w(3)[j1, j1, j1] · h(1)[j1] · 3 · σ4
x + 3 ·

∑
i2 ̸=j1

w(3)[j1, i2, i2] · h(1)[j1] · σ4
x − 3 ·

∑
i1,i2

w(3)[i1, i2, i2] · h(1)[i1] · σ4
x

= 0.

where we apply the property E {x4} = 3 · (E {x2})2 for a Gaussian variable x with

zero mean.

With mutual orthogonality, each kernel can be estimated independently. There-

fore, if we increase the order of the Wiener series, the lower order terms remain the

same and do not need to be updated; however, we should notice that in general

the mth-order Wiener kernel from W (m) {·} does not fully determine the mth-order

homogeneous kernel of the nonlinear system, since the term W (k) {·} with k > m can

contribute to the mth-order homogeneous kernel. An approach for the estimation of

the Wiener kernels is to further expand each kernel onto an orthogonal function basis

and then to estimate the expansion coefficients [67, 69]. As an example, if we use

the multi-dimensional Laguerre polynomials as the orthogonal basis for a continuous-

time Wiener series model, then the estimation for each expansion coefficient has the

following steps [67]. First, an auxiliary nonlinear system is created with the kernel

as the Wiener G-functional applied to a function in the orthogonal basis. Then, the

input signal is processed with this auxiliary nonlinear system. Finally, the expansion

coefficient is the correlation between the output of this auxiliary system and the true

system output. For this approach, the synthesis of the auxiliary systems may require

excessive resources.

42



A widely-used approach for the Wiener kernel estimation is the Lee-Schetzen

method and its variants [79–82], which uses the cross-correlation between the true

system output y[n] and the delayed input signals. If the true system exactly satisfies

the Wiener series model, then as is shown in [79], the coefficients of the kth-order

Wiener kernel can be estimated as follows

w(k)[i1, · · · , ik] =
1

k! · σ2k
x

· E

{(
y[n]−

k−1∑
m=0

W (m) {x[n]}

)
· x[n− i1] · · · x[n− ik]

}
.

In addition, if the indices i1, i2, · · · , ik are mutually different, then the result above

can be further simplified as [79]

w(k)[i1, · · · , ik] =
1

k! · σ2k
x

· E {y[n] · x[n− i1] · · · x[n− ik]} .

More rigorous analysis and deeper discussion about the applicability of the Lee-

Schetzen approach can be found in [80,81].

2.2.3 Block-oriented Models

The block-oriented models [27,50,67] represent a nonlinear system by the interaction

between two types of blocks, namely the memoryless nonlinear functions and the

linear time-invariant (LTI) systems. Compared with the Volterra series model,

the block-oriented models typically compromise model richness to reduce the total

number of independent parameters, which potentially simplifies the process of system

identification. Another potential advantage of the block-oriented models is that each

block in the structure may explicitly correspond to a physical property of the device

or system that is modeled [27], which can result in improved model accuracy and

physical interpretability.

As the most fundamental structures in this model class, the Hammerstein model

[50] as shown in Figure 2-1 (a) is the cascade of a nonlinear memoryless block

followed by a LTI subsystem, and the Wiener model [67] as shown in Figure 2-1

(b) is the cascade of the same blocks in the reverse order. Although relatively
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simple, the Hammerstein and Wiener models are able to accurately capture the

nonlinear properties and dynamics in systems such as power amplifiers [83, 84],

chemical processes [85, 86], and biological systems [87].

If the nonlinear functions in the Hammerstein or Wiener models are polynomials,

then the associated Hammerstein or Wiener models can also be represented by

Volterra series. However, there are nonlinear systems that can be represented by

Volterra series but not by the Hammerstein or Wiener models.

Using these two fundamental models, more general structures include the Hammerstein-

Wiener model in Figure 2-1 (c) that has a LTI system between two memoryless

nonlinear functions, and the Wiener-Hammerstein structure in Figure 2-1 (d) with a

nonlinear function between two LTI systems. In addition, parallel structures where

each branch is one of the models above have also been proposed [88,89]. In particular,

any discrete-time Volterra or Wiener series model with a finite delay and a finite order

can be represented as the General Wiener Model [67,69], which is a cascade of three

blocks: the first block is a single-input multi-output linear system with memory, the

second block is a multi-input multi-output nonlinear memoryless system with adders

and multipliers, and the third block is a multi-input single-output system where the

output is a weighted combination of its inputs.

Parameter estimation for the block-oriented models has attracted considerable

interest in nonlinear signal processing, and various branches of methods under

different conditions have been proposed [27]. The first branch utilizes the time domain

stochastic properties of the input signal, such as the joint Gaussian distribution or

the invariance property, which disentangle the estimation of the nonlinear function

and the LTI subsystem [90, 91]. The second branch that is based on the frequency

domain probes the Hammerstein system by a pure sinusoid input signal, where the

frequency of the signal is swept to fully characterize the system [92]. The third branch

applies inference and machine learning techniques, such as the maximum likelihood

estimation [93] and the support vector machines [94,95]. The fourth branch includes

blind methods for parameter estimation, where the output signal is observed but not

the input [96,97].
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(a) Hammerstein model

(b) Wiener model

(c) Hammerstein-Wiener model

(d) Wiener-Hammerstein model

Figure 2-1: Fundamental block-oriented models for nonlinear systems.
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Chapter 3

Cascade Approximation of

Two-dimensional FIR Filters

The cascade structure for filter implementation has been important and well-studied

for both one-dimensional (1D) and two-dimensional (2D) filters [26,41], which can be

described by the operator composition in Section 1.1.2. This chapter considers the

approximation of a 2D finite impulse response (FIR) filter by the cascade of a pair

of 2D FIR filters of lower orders, which can reduce the total number of independent

parameters and lead to computational efficiency for spatial domain implementation

[41]. In addition, if we consider a 2D signal as the impulse response of a 2D filter,

then the cascade approximation of a 2D filter is equivalent to the approximation

of a 2D signal by the convolution of a pair of 2D signals with shorter horizontal

and vertical lengths, which can achieve representational compression for 2D signals.

Since the transfer function of a 2D FIR filter is a bivariate polynomial, the cascade

approximation of a 2D FIR filter corresponds to approximate bivariate polynomial

factorization, which is the focus of this chapter.

Bivariate polynomial factorization has fundamental differences from univariate

polynomial factorization. Every univariate polynomial is guaranteed factorizable

into degree-one factors with complex coefficients; in contrast, almost all bivariate

polynomials are not exactly factorizable into polynomials with strictly lower degrees,

which shows the importance of approximate factorization. If we ensure that the
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order1 of the cascade system equals that of the original filter, then the cascade form

of a 1D filter retains the same number of independent parameters as the original 1D

filter, while a cascade representation of a 2D filter can reduce the total number of

independent parameters.

The main contribution of this chapter includes the proposal of two new algorithms

for bivariate polynomial factorization, which we refer to as the zero-sum mixed integer

programming and the lifted alternating minimization. In addition, the robustness of

bivariate polynomial factorization is characterized with respect to perturbations in

the factors. The content of this chapter is as follows. Section 3.1 motivates this work

by showing the cascade representation yields parameter reduction for a 2D FIR filter,

and then the main problem is formulated in Section 3.2. After reviewing existing

algorithms for bivariate polynomial factorization in Section 3.3, Section 3.4 proposes

and evaluates the two new algorithms. A method is then proposed in Section 3.5

in order to retain certain desirable symmetric properties of the 2D filters in the

factorization, and the sensitivity of the factorization process is studied in Section

3.6 in order to characterize the robustness. Section 3.7 concludes this chapter and

proposes future work.

3.1 Motivation

We denote the transfer function of a 2D causal FIR filter with order (P,Q) as

H(z1, z2) =
P∑

k1=0

Q∑
k2=0

h[k1, k2] · z−k11 · z−k22 ,

which has (P + 1) · (Q+ 1) parameters in total.

If H(z1, z2) could be exactly represented or reasonably approximated by the

cascade of a pair of 2D FIR filters with transfer functions as F (z1, z2) and G(z1, z2),

i.e. H(z1, z2) ≈ F (z1, z2) · G(z1, z2), then for the cascade representation where

F (z1, z2) and G(z1, z2) are in tandem, the total number of independent parameters is

1For a 2D filter, we consider the order for each dimension.
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(PF + 1)(QF + 1) + (PG + 1)(QG + 1) where (PF , QF ) and (PG, QG) are respectively

the orders of the two subfilters.

If the order of the cascade approximation is the same as that of the original filter,

i.e. P = PF + PG and Q = QF + QG, then the difference of the total number of

parameters between the original and cascade representations is

(P + 1)(Q+ 1)− ((PF + 1)(QF + 1) + (PG + 1)(QG + 1))

= (PF + PG + 1)(QF +QG + 1)− (PF + 1)(QF + 1)− (PG + 1)(QG + 1)

= PF ·QG + PG ·QF − 1, (3.1)

which we can show is a positive number if P ≥ 2, Q ≥ 2, and neither of F (z1, z2)

and G(z1, z2) is a constant (i.e. the cascade is non-trivial). Consequently, a non-

trivial cascade approximation with P ≥ 2 and Q ≥ 2 has a smaller total number

of parameters than the original 2D filter and achieves computational efficiency for

spatial domain implementation [41]. To explore this computational efficiency, it is

meaningful to develop algorithms to obtain the factors F (z1, z2) and G(z1, z2), the

product of which is close in some appropriate sense to the target bivariate polynomial

H(z1, z2). In addition, as implied in (3.1), the computational saving of the cascade

approximation depends on the orders of the two subfilters in the cascade, and thus

it would be desirable for the polynomial factorization algorithm to have control over

the degrees of the two factors.

A related approach to reduce the computational complexity of 2D filters is to

design separable filters, which generally satisfy H(z1, z2) = H1(z1) ·H2(z2) [3]. Such

separability can be regarded as a special case of bivariate polynomial factorization

with the additional constraints (PF , QF ) = (P, 0) and (PG, QG) = (0, Q), i.e. each

factor depends on only a single variable. A 2D FIR filter can be implemented in

a parallel form where each branch is a separable filter [3]. There are other filter

structures related to the separable filters above, such as 2D polar separable filters [98]

and 2D fan filters [99, 100]. In this chapter, we focus on the general factorization of

bivariate polynomials instead of the separable form.
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3.2 Problem Formulation

This section formulates the main problem and defines the notations in this chapter.

The main goal is to exactly or approximately factorize the bivariate polynomial

H(x, y) into two factors F (x, y) and G(x, y); in other words, the coefficients of the

polynomials F (x, y) and G(x, y) are the parameters to be estimated. The degree of

the input polynomial is deg (H) = (P,Q), which means that P is the degree of H(x, y)

when we consider x as the main variable while y as a parameter, and Q is the degree

when y is the main variable.

If we choose the ℓ2-norm of the approximation error as the criterion, then the

main goal of this chapter can be formulated as

min
F (x,y), G(x,y)

∥H(x, y)− F (x, y) ·G(x, y)∥2 , (3.2)

s.t. deg (F ) = (PF , QF ), deg (G) = (PG, QG), (3.3)

PF + PG = P, QF +QG = Q, (3.4)

where the degrees of the two factors (PF , QF ) and (PG, QG) are fully specified. In

addition, the ℓ2-norm in (3.2) of a polynomial E(x, y) =
∑

i,j ei,jx
iyj is defined as

∥E(x, y)∥2 =
√∑

i,j e
2
i,j.

3.3 Review of Existing Work

Bivariate polynomial factorization has drawn considerable attention in computational

and symbolic mathematics [101–107]. Most existing approaches focus on exact

factorization of bivariate polynomials that are known to be factorizable; approximate

factorization algorithms for non-factorizable polynomials seem to work only if the

input polynomials are close to factorizable ones, and they generally lack useful analysis

or guarantees on the performance.

For the purpose of the cascade representation of 2D filters, we consider only

algorithms that work with real-valued (rather than integer, rational, or complex)

coefficients, and in particular focus on four main branches of approaches.
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The first branch applies alternating minimization to both factors [102], which

we refer to as the direct alternating minimization algorithm. This algorithm takes

iterations, each of which consists of two steps: optimization over F (x, y) with G(x, y)

fixed, and vice versa. Since the product H(x, y) has a bilinear relationship2 with the

factors F (x, y) and G(x, y), if we consider the ℓ2-norm of the approximation error

as the criterion, then the optimization of a factor with the other one fixed becomes

a linear least squares problem and has a straight-forward solution. An advantage

of this simple algorithm is the direct control over the degrees of the factors, which

can enable a flexible tradeoff between computational complexity of the associated

filter implementation and approximation accuracy. However, if we consider the

optimization over both factors, the formulation generally is non-convex and locally

optimal solutions are likely obtained by this algorithm. This algorithm is evaluated

in Section 3.4.3.

The second branch converts the factorization of bivariate polynomials into rank

deficient matrix approximation [104, 106, 107]. Specifically, as is shown in [104, 106],

a bivariate polynomial is exactly factorizable if and only if an associated partial

different equation (PDE) has a non-trivial solution; the solution to this PDE further

corresponds to the null space of a structured matrix with elements related to the

coefficients of the bivariate polynomial, where the matrix is referred to as the Ruppert

matrix [104]. Therefore, the rank deficiency status of the Ruppert matrix determines

whether the bivariate polynomial is exactly factorizable; as is proposed in [106, 107],

the null space of the Ruppert matrix can be used to obtain the factors of the

polynomial. In addition, approximate bivariate polynomial factorization corresponds

to a rank deficient approximation of the structured Ruppert matrix, which can be

solved by algorithms such as structured total least squares [108, 109] or Riemann

singular value decomposition [110]. Although this approach has profound theoretical

background, it does not seem to have a sufficiently flexible control over the degrees of

2If we consider the bivariate polynomials as z-transforms of 2D signals, then the multiplication
of the two polynomials becomes the z-transform of the convolution of the two signals. The bilinear
property of the convolution shows the bilinear dependence of the product H(x, y) on the factors
F (x, y) and G(x, y).
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the factors that would be important for the computational efficiency of the cascade

implementation of 2D filters, as is discussed in Section 3.1. As a related application

of the Ruppert matrix in signal processing, univariate polynomial decomposition has

been explored in [2, 42] with algorithms utilizing the Ruppert matrix.

The third branch of algorithms tracks the root contour of the bivariate polynomial,

where one variable is considered as the main variable while the other is a parameter

fixed at a few constant values [105]. IfH(x, y) = F (x, y)·G(x, y) where x is considered

as a variable and y is fixed at a constant value, then the roots of H(·, y) are the union

of the roots of F (·, y) and G(·, y). For simplicity, we suppose that all roots at this

fixed y are single roots, which guarantees that F (·, y) and G(·, y) do not share a

common root. For a root of H(·, y) that is also a root of F (·, y), if we continuously

perturb the value of y, then the corresponding root is also perturbed and forms a

contour; within sufficiently small perturbations of y, the root contour of x entirely

is a root contour of F (·, y). Each obtained root pair (xr, yr) satisfies F (xr, yr) = 0,

which forms a linear equation with respect to the coefficients of F (·, ·). With the

root contour, sufficient linear equations can be established and thus the coefficients

of F (x, y) can be solved. In the last step, the other factor G(x, y) can be obtained by

a least squares solution with F (x, y) available.

The fourth branch of approaches uses the zero-sum property of the roots of

bivariate polynomials, which again considers one variable as the main variable and the

other as a parameter [101, 103]. Similar to the previous approach, this method uses

the fact that the roots of H(x, y) with respect to x are implicit functions3 of y, which

can be referred to as root functions x = ϕi(y) (1 ≤ i ≤ degx (H) where degx (H) is the

degree of H(x, y) with respect to x). With the root functions, bivariate polynomial

factorization is converted to determining a partition among the root functions, so that

the multiplication4 of the factors (x − ϕi(y)) with the root functions ϕi(y) in each

partition forms a polynomial factor. As is shown in [103], certain power summation of

3Again, we suppose all roots are single roots in the discussion. If there are multiple roots, then
choosing a different value of y can avoid this issue.

4More precisely, an extra polynomial of y may also be needed in this multiplication in addition
to the factors (x− ϕi(y)), the details for which are discussed in Section 3.4.1.
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the root functions in each partition should also be polynomials, which is guaranteed

to have all coefficients as 0 for orders above certain threshold (i.e. the “zero-sum”

property). Finally, determining the partition of the root functions that satisfies the

zero-sum property obtains the factors for the original bivariate polynomial. Since

this method can have control over the degrees of factors, we use the idea of zero-sum

property and further propose a new factorization algorithm in Section 3.4.1.

3.4 Algorithms for Bivariate Polynomial Factor-

ization

This section proposes two new algorithms for bivariate polynomial factorization,

which we refer to as the zero-sum mixed integer programming algorithm in Section

3.4.1 and the lifted alternating minimization algorithm in Section 3.4.2. The

numerical evaluation for these algorithms is in Section 3.4.3.

3.4.1 Zero-sum Mixed Integer Programming Algorithm

This section introduces a mixed integer programming (MIP) algorithm based on the

zero-sum property that is introduced in [101]. Instead of working with the coefficients

directly, this algorithm considers the root functions of the bivariate polynomials.

Before describing the algorithm, we first review the zero-sum property of the root

functions associated with a bivariate polynomial [101]. A bivariate polynomialH(x, y)

can be expressed in the form of a univariate polynomial of x where the coefficients

are polynomials of the parameter y, namely

H(x, y) =
P∑
i=0

hi(y) · xi, (3.5)

where P = degx (H) is the degree of H(x, y) in x. If we fix a value of the parameter y

and factorize with respect to x, then we have P roots5. Perturbation of the value of

5For simplicity, we assume that all the P roots of x are single roots, otherwise we choose a
different value of y.
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y continuously changes the associated roots of x, and thus we can denote continuous

functions ϕ̃i(y) (1 ≤ i ≤ P ) as the ith root of the univariate polynomial in x that

depends on the value of y. As a result, the bivariate polynomial H(x, y) can be

expressed as

H(x, y) = hP (y) ·
P∏
i=1

(x− ϕ̃i(y)). (3.6)

By the implicit function theorem [111], it can be shown that the functions ϕ̃i(y)

are smooth at values of y where H(x, y) has only single roots in x. Typically, these

root functions are not necessarily polynomials and may have complicated expressions,

however, some combination of these functions are guaranteed polynomials as will be

discussed below [103].

By Vieta’s theorem that states the relationship between the coefficients and the

roots of a polynomial [112], the J th elementary symmetric function of the root

functions ϕ̃i(y) satisfies

∑
k1<k2<···<kJ

J∏
j=1

ϕ̃kj(y) = (−1)J · hP−J(y)

hP (y)
, 1 ≤ J ≤ P. (3.7)

Furthermore, by Newton’s identities [113] that relate the elementary symmetric

functions to the power summations, the power summations of the root functions

satisfy
P∑
i=1

(
ϕ̃i(y)

)J
=

h̃J(y)

(hP (y))
J
, 1 ≤ J ≤ P, (3.8)

where h̃J(y) are polynomials of degrees6 no higher than QJ where Q = degy (H).

The coefficients of h̃J(y) depend on hP−j(y) for 0 ≤ j ≤ J . Finally, we see that

(hP (y))
J ·

(
P∑
i=1

(
ϕ̃i(y)

)J)
= h̃J(y), 1 ≤ J ≤ P, (3.9)

which is a polynomial in y with degree no higher than QJ , despite the possibly

complicated expressions of the root functions ϕ̃i(y).

6A tighter upper bound for the degrees of h̃J(y) is in [101].
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To avoid directly using the complicated root functions, it is possible to replace

ϕ̃i(y) in (3.9) by its truncated Taylor expansion up to order R, which is denoted by

ϕi(y). Then, the coefficient of yr remains 0 in the summation in (3.9) for QJ ≤ r ≤ R,

since the truncation of Taylor series affects only the terms with orders higher than R.

Next, we consider the factorization H(x, y) = F (x, y) · G(x, y). If all roots of

H(x, y) are single roots at the fixed y, then the union of the root functions of F (x, y)

and G(x, y) forms the root functions of H(x, y). With a similar derivation as above,

for the left-hand-side of (3.9), if we take the summation over only the root functions

that correspond to F (x, y) (or G(x, y)), then the coefficient of the term yr in this

summation still remains 0 for QJ ≤ r ≤ R; we can notice that the range of J in (3.9)

becomes 1 ≤ J ≤ PF for F (x, y) (and 1 ≤ J ≤ PG for G(x, y)), where PF and PG

are the degrees with respect to x for F (x, y) and G(x, y), respectively. The statement

above is the zero-sum property that is mentioned in [101], and we have completed

the review of this property.

With the zero-sum property, the problem of factorization is converted to the

determination of a subset of the root functions, where the subset satisfies the zero-

sum property. If H(x, y) is approximately factorizable, then the coefficients of terms

within a certain range of orders of y in the summation (3.9) should be close to 0. In

order to determine the subset of the root functions, we propose a new mixed integer

program formulation. Binary variables bi (1 ≤ i ≤ P ) are used to indicate whether

the ith root function of H(x, y) is also a root function of F (x, y) (when bi = 0) or

G(x, y) (when bi = 1). A possible choice of the objective function is the absolute

summation of the coefficients in the left-hand-side of (3.9) over the range of orders

of y where the coefficients should be 0 (if H(x, y) is exactly factorizable), for both

F (x, y) and G(x, y). Finally, the following MIP formulation is introduced.

min
bj ,ψ

(F )
J,k ,ψ

(G)
J,k

PF∑
J=1

∑
k∈RJ

∣∣∣ψ(F )
J,k

∣∣∣+ PG∑
J=1

∑
k∈RJ

∣∣∣ψ(G)
J,k

∣∣∣ (3.10)

s. t.
P∑
i=1

bi = PG, (3.11)
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ψ
(F )
J,k = coeff

[
(hP (y))

J ·

(
P∑
i=1

(1− bi) · (ϕi(y))J
)
, yk

]
, for k ∈ RJ , 1 ≤ J ≤ PF ,

(3.12)

ψ
(G)
J,k = coeff

[
(hP (y))

J ·

(
P∑
i=1

bi · (ϕi(y))J
)
, yk

]
, for k ∈ RJ , 1 ≤ J ≤ PG,

(3.13)

bi ∈ {0, 1}, for i = 1, 2, ..., P. (3.14)

For a given J , the set RJ in the formulation above denotes the range of orders of y in

the left-hand-side of (3.9) (i.e. the J th power summation), for which the coefficients

should be 0 if H(x, y) is exactly factorizable; the largest element in RJ depends on

the highest order in the truncated Taylor series ϕi(y). As a result, the cost in (3.10)

is the total residue coefficients in the power summations for both factors F (x, y) and

G(x, y). The constraint (3.11) controls the degrees of both factors. Constraints (3.12)

and (3.13) define the actual coefficients in the power summations of the root functions

for F (x, y) and G(x, y), respectively, where the notation “coeff
[
h(y), yk

]
” denotes

the coefficient of the term yk in the polynomial h(y). In practice, ψ
(F )
J,k and ψ

(G)
J,k can

be complex numbers, and the absolute values in (3.10) is interpreted as the absolute

summation of the real and the imaginary parts; in addition, the coefficients in (3.12)

and (3.13) can be weighted in the cost function to avoid the cost function favoring

higher order terms that typically have coefficients with larger magnitude, which may

improve robustness.

The solution to the MIP formulation in (3.10) provides a partition of the root

functions that correspond to F (x, y) and G(x, y), and additional steps are necessary

to convert the partition of the root functions to the coefficients of F (x, y) and G(x, y).

First, we consider the simple case where the leading polynomial hP (y) = hP is a

constant and independent of y. For this case, the coefficients of the factors are already

available from the partition of the root functions, which are naturally obtained by

multiplying the terms (x−ϕi(y)) that correspond to F (x, y) and G(x, y), respectively.

Since the Taylor expansions ϕi(y) typically have high orders, we need to truncate the
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product of (x− ϕi(y)) with a specified degree of y. The scaling hP can be applied to

either of the factors and does not influence the approximation performance.

For the more challenging situation where the leading polynomial hP (y) is not a

constant, it is less straight-forward to directly obtain the coefficients of the factors

from the partition of the root functions. In this case, the polynomial hP (y) can be

approximately factorized into two parts, each of which is incorporated into F (x, y)

or G(x, y). In other words, we approximately factorize hP (y) ≈ h
(F )
P (y) · h(G)

P (y), and

then compute

F̃ (x, y) = h
(F )
P (y) ·

∏
i:bi=0

(x− ϕi(y)), (3.15)

G̃(x, y) = h
(G)
P (y) ·

∏
i:bi=1

(x− ϕi(y)). (3.16)

Since the Taylor expansions ϕi(y) have higher orders than the final factors, the final

step is again to truncate F̃ (x, y) and G̃(x, y), in which different factorization of hP (y)

may have different approximation performance. Typically, the optimal factorization

of hP (y) may be challenging to obtain; since the total number of the factorization pairs

h
(F )
P (y) and h

(G)
P (y) increases exponentially with the degree of hP (y), it is generally

inefficient to sweep over all possibilities of factorization. As a heuristic approach,

an alternating minimization is applied to the coefficients of h
(F )
P (y) and h

(G)
P (y),

which aims to minimize the ℓ2-norm of error between H(x, y) and the factorizable

approximation.

The zero-sum mixed integer programming algorithm is summarized as follows.

Zero-sum Mixed Integer Programming Algorithm

(1) Fix a value y = y0 at which H(x, y0) has single roots only.

(2) Factorize H(x, y0) and obtain the Taylor expansions ϕi(y) at each root

of H(x, y0) by properly matching the coefficients in H(x, y) and in the

product hP (y) ·
∏P

i=1(x− ϕi(y)).

(3) Formulate and solve the MIP (3.10).

(4) If the leading polynomial hP (y) is not a constant, then determine

57



h
(F )
P (y) and h

(G)
P (y) by alternating minimization.

(5) The factors F (x, y) and G(x, y) are obtained by truncating F̃ (x, y)

and G̃(x, y) in (3.15) and (3.16) up to the specified degrees of y.

A potential challenge with this algorithm is the computation of the Taylor

expansion ϕi(y) that is also used in [101]; for certain polynomials, the coefficients

of the Taylor series may expand with the orders, which reduces the robustness of our

new MIP algorithm. In addition, the current algorithm uses only a single value of

y, which may also reduce the robustness of the algorithm. An approach is proposed

in [101] to utilize lower-order Taylor series at multiple nearby values of y to gain

robustness, and a possible direction for future work is to incorporate this idea in our

new MIP formulation.

3.4.2 Lifted Alternating Minimization Algorithm

Based on the idea of simplifying constraints via lifting the problem to a higher

dimensional parameter space, this section introduces an alternating minimization

algorithm in a dimensionally lifted space, which works on the coefficients of the

polynomial factors. If we list the coefficients of the factors F (x, y) and G(x, y) into

column vectors f and g, respectively, then the matrix

M = f · gT (3.17)

contains the coefficients of individual terms in the multiplication F (x, y) · G(x, y)

without combining similar terms (i.e. terms with the same orders). The matrix M

in (3.17) is an outer product and therefore has rank one. In order to combine the

similar terms after multiplication, we denote the index sets

C(i, j) =
{
(a, b) : Ma,b corresponds to x

iyj in F (x, y) ·G(x, y)
}

(3.18)

that contains all the indices of the elements in the matrix M that contribute to the

term xiyj in the product F (x, y)·G(x, y). Since the degrees of the factors satisfy (3.4),
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we know that the index sets C(i, j) with (0, 0) ≤ (i, j) ≤ (P,Q) form a partition of

the indices (a, b) of all the elements in M. If we denote

H(x, y) =
P∑
i=0

Q∑
j=0

hi,j · xiyj,

then an exact factorization matches the coefficients, i.e.

hi,j =
∑

(a,b)∈C(i,j)

Ma,b, for all (0, 0) ≤ (i, j) ≤ (P,Q). (3.19)

As a result, for a factorizable polynomial H(x, y), its factors correspond to a matrix

M that is in the intersection of the set of rank-one matrices and the linear space with

constraints (3.19). For simplicity of description, the two sets of matrices above are

denoted as follows,

Urank =
{
M ∈ Rdim(f)×dim(g) : M has rank 1

}
, (3.20)

Ucoeff =

M ∈ Rdim(f)×dim(g) :
∑

(a,b)∈C(i,j)

Ma,b = hi,j for (0, 0) ≤ (i, j) ≤ (P,Q)

 ,

(3.21)

where dim (f) and dim (g) are the dimensions of the vectors f and g in (3.17),

respectively.

For a general polynomial H(x, y) that is not guaranteed factorizable, the

formulation (3.2) in the dimensionally lifted7 parameter space of the matrix M ∈

Rdim(f)×dim(g) becomes

min
M ∈ Urank

Vpoly(M) ,
P∑
i=0

Q∑
j=0

hi,j − ∑
(a,b)∈C(i,j)

Ma,b

2

. (3.22)

7The total number of parameters of the matrix M is dim (f)×dim (g), while the two polynomials
F (x, y) and G(x, y) have a total of dim (f) + dim (g) coefficients. We can see that the matrix M is
in a higher dimensional space than the space of the coefficients in F (x, y) and G(x, y), and we refer
to the former as a dimensionally lifted space.
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If we have the optimal matrix M, then the two vectors f and g in (3.17) are

directly applicable for the construction of the factors F (x, y) and G(x, y). Since

(3.22) has a low rank constraint, the existing algorithms on low rank approximation

can be applied to this formulation. As a few examples of these algorithms, the

nuclear norm minimization [114], the singular value projection (SVP) [115], and the

atomic decomposition for minimum rank approximation [116] are briefly reviewed in

Appendix B.

From an alternative perspective, it is possible to avoid solving for (3.22) directly,

but instead we aim to determine the pair of the closest elements between the set of

rank-one matrices Urank and the linear space Ucoeff that exactly matches the coefficients

of H(x, y). Thus, we propose the following formulation (3.23), where the Frobenius

norm8 is chosen as the criterion for mathematical tractability,

min
M̃ ∈ Urank, M̂ ∈ Ucoeff

VFro(M̃, M̂) ,
∥∥∥M̂− M̃

∥∥∥2
F
. (3.23)

Relationship between the Formulations (3.22) and (3.23)

Before developing the algorithm to solve (3.23), we first discuss the relationship

between the two formulations (3.22) and (3.23). Generally, the optimal solutions and

the associated minimal objective values of these two formulations are not identical.

However, there is a mutual bound between the minimal objective values in the

formulations (3.22) and (3.23), which will be established in this section.

First, we introduce a theorem that obtains the optimal matrix M̂ in the linear

space Ucoeff that minimizes (3.23), where the rank-one matrix M̃ is fixed. The proof

for Theorem 3.1 is in Appendix C.

Theorem 3.1. For a fixed matrix M̃ ∈ Urank, we denote the matrix in Ucoeff that

minimizes (3.23) as

M̂proj = argmin
M̂ ∈ Ucoeff

VFro(M̃, M̂). (3.24)

8The Frobenius norm of a matrix S is ∥S∥F =
√∑

a

∑
b S

2
a,b.
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This optimal matrix M̂proj has the closed form expression as below,

M̂proj
a,b = M̃a,b +

R(i, j)

|C(i, j)|
, for (a, b) ∈ C(i, j), and (0, 0) ≤ (i, j) ≤ (P,Q), (3.25)

where

R(i, j) = hi,j −
∑

(a′,b′)∈C(i,j)

M̃a′,b′ . (3.26)

Theorem 3.1 obtains the projection of a matrix9 onto the linear space Ucoeff with

respect to the Frobenius norm, which will later be used in our algorithm. The result

(3.25) has a nice interpretation: we can obtain the projection of a matrix M̃ onto

Ucoeff in two steps – first in (3.26) we obtain the difference of the coefficients of the

term xiyj between the input polynomial H(x, y) and the polynomial associated with

the matrix M̃, and then in (3.25) we equally distribute this difference onto all the

elements of the matrix M̃ that contribute to xiyj (for each (0, 0) ≤ (i, j) ≤ (P,Q)).

From another perspective, if we list the elements of the matrix M̃ as a vector

m̃, then the Frobenius norm in the matrix space of M̃ becomes the ℓ2-norm in the

vector space of m̃. The formulation (3.24) becomes the projection of a vector m̃

onto a linear space with respect to the ℓ2-norm, for which an alternative approach is

to use the Moore-Penrose pseudo-inverse [117, 118] of an associated matrix A. This

matrix A maps from the vector space of m̃ to the space of vectors hM with elements

as coefficients of the bivariate polynomial that corresponds to M̃ (i.e. hM = A · m̃).

Our result (3.25) implicitly solves this pseudo-inverse problem without constructing

m̃ or A, and in addition it has a nice interpretation as mentioned above.

With Theorem 3.1, we can have the following bounds between the objective

functions in (3.22) and (3.23), for a fixed rank-one matrix and for the global optimal

objective values. The proof is again in Appendix C.

Theorem 3.2. For a fixed matrix M̃ ∈ Urank, the objective values in (3.22) and

9Actually, for Theorem 3.1 to hold, the matrix M̃ does not need to be rank-one and can be a
general matrix of the same size.

61



(3.23) have the bounds below,

(
min
(i,j)
|C(i, j)|

)
· VFro(M̃, M̂proj) ≤ Vpoly(M̃) ≤

(
max
(i,j)
|C(i, j)|

)
· VFro(M̃, M̂proj),

(3.27)

where |C(i, j)| is the cardinality of the index set C(i, j); M̂proj is defined in (3.24)

and associated with the rank-one matrix M̃. Furthermore, if we denote the minimal

objective values of the formulations (3.22) and (3.23) as V opt
poly and V opt

Fro , respectively,

then these two minimal values are mutually bounded as below:

(
min
(i,j)
|C(i, j)|

)
· V opt

Fro ≤ V opt
poly ≤

(
max
(i,j)
|C(i, j)|

)
· V opt

Fro . (3.28)

Theorem 3.2 implies that if the dynamic range of |C(i, j)| is small, then the two

formulations (3.22) and (3.23) are mutually close in terms of the objective values.

In the special situation where |C(i, j)| = 1 for all (0, 0) ≤ (i, j) ≤ (P,Q), Theorem

3.2 shows that the two formulations are identical, which can also be seen from the

definition of the objective functions in (3.22) and (3.23).

Algorithm for the Formulation (3.23)

The formulation (3.23) is generally challenging to solve due to the non-convexity

of the rank-one matrix set Urank. A possible method to solve (3.23) is an iterative

alternating minimization algorithm, where each iteration has two projections between

Urank and Ucoeff with respect to the Frobenius norm. One of the projections is from

the current matrix towards the set of rank-one matrices Urank. As shown by the

Eckart-Young-Mirsky theorem [119], the rank-one approximation that is closest in the

Frobenius norm to the current matrix is achieved by performing the singular value

decomposition (SVD) and taking only the largest singular value with its corresponding

singular vectors. The other projection is towards the linear space of matrices Ucoeff ,

the result for which actually has been provided in Theorem 3.1. As a result, both

projections in an iteration are exactly solved, and the algorithm is summarized as
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follows.

Lifted Alternating Minimization Algorithm

(1) Initialize M̃(0) = 0. Let k = 1.

(2) In the kth iteration, perform the following two projections:

(3) Obtain the projection onto the linear space Ucoeff :

Compute R(k)(i, j) as in (3.26) with the current matrix M̃(k−1),

and then compute the projection M̂(k) by (3.25).

(4) Obtain the projection onto the set of rank-one matrices Urank:

Compute the singular value decomposition of M̂(k), and construct

the projection as M̃(k) = u
(k)
1 · σ

(k)
1 ·

(
v
(k)
1

)T
, in which σ

(k)
1 is the

largest singular value of M̂(k), and u
(k)
1 and v

(k)
1 are the

corresponding left and right singular vectors, respectively.

(5) k ← k + 1.

(6) Iterate until the results between consecutive iterations have difference

smaller than a threshold, or a threshold on the iteration steps is reached.

(7) Let f = u
(k)
1 and g = σ

(k)
1 · v

(k)
1 , and obtain F (x, y) and G(x, y).

We have a few remarks on this lifted alternating minimization algorithm. First,

since each projection is theoretically precise, the Frobenius norm in the objective

(3.23) is monotonically non-increasing with the iteration step. Second, since the rank-

one matrix forms a non-convex set, there is generally no guarantee for this algorithm

to converge to the global optimum; the same as general alternating minimization

algorithms, the final result depends on the initialization of the matrix, and an initial

value M̃(0) that is closer to the global optimum is typically beneficial for better

approximation. Third, the objective function (3.23) defined between matrices in the

dimensionally lifted space is related while different from the squared ℓ2-norm of the

polynomial approximation error in (3.22), which implies that there could be other

cost functions for the alternating minimization algorithm with higher faithfulness to

the criterion (3.22) that we generally care more.
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Finally, we want to point out a special situation where the lifted alternating

minimization algorithm could be non-iterative and be guaranteed optimality with

the criterion (3.23) (and also with (3.22)). If all the index sets C(i, j) have a single

element10, i.e. |C(i, j)| = 1 for all (i, j), then the formulation (3.23) (and (3.22)) is

significantly simplified and has a closed form solution. Under this assumption, the

goal becomes to obtain the rank-one approximation for the matrix H = [hi,j] that is

closest in the Frobenius norm. The Eckart-Young-Mirsky theorem [119] shows that

the optimal solution in this situation is the product of the largest singular value of

H and the associated singular vectors. In fact, we can show that the steps (1)-(4) in

the lifted alternating minimization algorithm exactly obtain the optimal solution in

this situation, and therefore no more iterations are needed.

The condition |C(i, j)| = 1 for all (i, j) implies that every term in F (x, y) ·G(x, y)

(without combining the similar terms) has a unique order among all terms in the

product. When the degrees of the two factors satisfy deg (F ) = (P, 0) and deg (G) =

(0, Q), i.e. a separable factorization with one factor depending only on x and the

other only on y, the condition |C(i, j)| = 1 is guaranteed; in this special situation, our

algorithm is essentially equivalent to the SVD approach for the design of separable 2D

FIR filters [3]. The separable factorization is not the only situation with |C(i, j)| = 1;

for non-separable factorization, the condition |C(i, j)| = 1 (for all (i, j)) typically

requires that some terms are guaranteed missing in the two factors, in order to ensure

that the product F (x, y)·G(x, y) does not have two terms with exactly the same order.

In this case, prior knowledge on which terms are missing in the two factors is needed

to simplify the lifted alternating minimization algorithm.

3.4.3 Numerical Evaluation

Setup

This section evaluates the algorithms by factorizing synthetic bivariate polynomials.

Each synthetic polynomial Hinput(x, y) is obtained by an exactly factorizable poly-

10Here we can consider only the values (i, j), for which the term xiyj corresponds to at least an
element in the matrix M = f · gT.
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nomial with two randomly generated factors plus random noise, i.e. Hinput(x, y) =

Finput(x, y) · Ginput(x, y) + Hnoise(x, y); the coefficients of both the factors and the

additive noise follow independent and zero-mean Gaussian distribution.

We define the input signal-to-noise-ratio (SNR) as the energy11 of the factorizable

polynomial Finput(x, y)·Ginput(x, y) over the energy of the additive noise. Three values

of input SNR are used in simulation, namely 40dB, 60dB, and noiseless.

The algorithms in our comparison and their abbreviations in the figures are as

follows:

• the direct alternating minimization algorithm between the two polynomial

factors [102] (“Direct Alter Min”), which is reviewed in Section 3.3,

• the zero-sum MIP algorithm in Section 3.4.1 (“Zero-sum MIP”),

• the nuclear norm minimization algorithm [114] for low rank matrix approxima-

tion (“Lifted Nuc Norm”),

• the singular value projection algorithm [115] for low rank matrix approximation

(“Lifted SVP”),

• the atomic decomposition for minimum rank approximation algorithm [116] for

low rank matrix approximation (“Lifted ADMiRA”),

• the lifted alternating minimization algorithm proposed in Section 3.4.2 (“Lifted

Alter Min”).

The last four algorithms in the list above are all for low rank matrix approximation,

which are applied to the dimensionally lifted parameter space with the formulations

proposed in Section 3.4.2. The nuclear norm minimization [114], the singular value

projection [115], and the atomic decomposition for minimum rank approximation [116]

are briefly reviewed in Appendix B.

11We refer to the energy of a polynomial as the squared ℓ2-norm of the vector that contains all
the coefficients in the polynomial.
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The parameter settings for the algorithms above are as follows. For the “Direct

Alter Min” algorithms, the upper limit on the iteration steps is 500. For the “Zero-

sum MIP” algorithm, the MIP formulation in (3.10) is solved by IBM CPLEX version

12 [120] on a computer with 8.0GB RAM and Intel i7-4700MQ CPU @ 2.40GHz and

2.39GHz, with the time limit for each MIP as 60 seconds. For the “Lifted Nuc Norm”

algorithm, the weighting parameter λ in formulation (B.4) in Appendix B.1 is set

as 0.1. For the “Lifted SVP” algorithm in Appendix B.2, we use a small step size

µ = 0.01 in order to reduce the likelihood of divergence, and we set the upper limit on

the iteration steps as high as 50000 to counteract the slow convergence caused by the

small step size. In addition, we terminate the “Lifted SVP” algorithm if the rank-

one matrices obtained in two consecutive iterations (denoted as M(k−1) and M(k))

are sufficiently close; without loss of generality, we set this termination condition as∥∥M(k) −M(k−1)
∥∥2
F
≤ 10−12 ·

∥∥M(k)
∥∥2
F
where ∥ · ∥F denotes the Frobenius norm of a

matrix. For the “Lifted ADMiRA” and “Lifted Alter Min” algorithms, we set the

upper limit on the iteration steps as 500.

We apply each algorithm to each input bivariate polynomial Hinput(x, y), obtain

the two approximate factors Foutput(x, y) and Goutput(x, y), compute their product as

Houtput(x, y), and then measure the approximation error between the input polynomial

Hinput(x, y) and the output result Houtput(x, y). In particular, if the output SNR (i.e.

the energy ratio between the input polynomial and the approximation error) is no

less than a threshold, then we consider the approximate factorization is successful.

As an example, we set this threshold as 20dB in the simulation.

There are in total four degrees of the two polynomial factors, namely degx (Finput),

degy (Finput), degx (Ginput), and degy (Ginput). In the experiments, we use the following

options for the parameter setting.

• Option (i): Fix degx (Finput) = degy (Ginput) = 5.

Keep degy (Finput) = degx (Ginput), and sweep12 degy (Finput) from 1 to 15.

• Option (ii): Fix degx (Ginput) = 4 and degy (Ginput) = 6.

12Because of the relatively heavy computational resources that are needed by the zero-sum MIP
approach, we sweep only 1 ≤ degy (Finput) ≤ 13 for this algorithm.
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Keep degx (Finput) + degy (Finput) = 10, and sweep degx (Finput) from 0 to 10.

Parameter setting option (i) tests the performance of the algorithms with respect to

the increase of the polynomial degrees, while option (ii) shows the performance when

the factors have fixed total degrees. For each degree and each value of input SNR,

100 examples of polynomials Hinput(x, y) are generated, and we record the percentage

of successful factorizations for each algorithm. The results for option (i) and (ii) are

shown in Figures 3-1 and 3-2, respectively.

Observations

We can have the following observations from the simulation results.

First, the lifted alternating minimization approach has the highest success rates

compared with the other algorithms in our simulation, followed by the lifted SVP

algorithm. These two algorithms generally outperform the other algorithms by a

large margin. Compared with the direct alternating minimization algorithm, the

dimensionally lifting step in the lifted alternating minimization and lifted SVP

algorithms could simplify the problem and possibly reduce the extent to which

the iterations are trapped by local minimums, which leads to overall improved

performance.

Second, by a comparison of the performance with different input SNR, the zero-

sum MIP algorithm seems the most sensitive to additional noise among all the

algorithms in simulation. In fact, for noiseless input polynomials, the zero-sum MIP

can have higher success rates than the direct alternating minimization and the lifted

nuclear norm minimization algorithms, but it has relatively lower success rates when

the SNR is low. The zero-sum MIP method uses Taylor series of the root functions

that may be sensitive to the noise in the coefficients of the polynomials, and thus

lower SNR significantly reduces the success rates of this algorithm. The performance

of the other algorithms does not show much difference between different SNR levels.

Third, for the lifted alternating minimization and the lifted SVP algorithms, the

success rate seems to be reduced if the two factors have exactly the same (or very

similar) degrees, i.e. degx (Finput) = degx (Ginput) and degy (Finput) = degy (Ginput).
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This observation is supported by the troughs around degy (Finput) = degx (Ginput) = 5

in Figure 3-1 and around degx (Finput) = 4 in Figure 3-2, at which the two polynomial

factors Finput and Ginput have the same degrees in the respective settings. In

addition, this phenomenon happens even if the input polynomials are noiseless.

Although the exact reason for this phenomenon is not clear, we have some possible

conjectures. One possible explanation is the non-uniqueness of the optimal solution

to the formulations (3.23) and (3.22) when the two factors have the same degrees13

but different coefficients (up to a scaling). Suppose the input polynomial is exactly

factorizable; if the two factors have the same degrees, then swapping their coefficients

retains their product but transposes the corresponding matrix M̃. If the coefficients

of the two factors are not identical (up to a scaling), then both M̃ and M̃T (with the

corresponding M̂proj and
(
M̂proj

)T
) are optimal solutions to the formulations (3.23)

and (3.22). In this situation, the formulations (3.23) and (3.22) have multiple optimal

solutions, which may result in a complex geometric structure in the solution space and

make the algorithms less effective. For the lifted alternating minimization algorithm,

we have another possible explanation for the reduced performance when factors have

identical degrees, which relates to the cardinality of the index sets C(i, j) defined in

(3.18). As discussed in Section 3.4.2, if all the index sets satisfy |C(i, j)| = 1, then

the formulation (3.23) becomes easily solvable with SVD. Therefore, the cardinality

|C(i, j)| could possibly be related to the difficulty of solving (3.23). With the

parameter setting option (ii), the maximum cardinality maxi,j |C(i, j)| happens to

achieve the highest value when degx (Finput) = 4 and decreases as degx (Finput) is away

from 4. We can observe that the success rates of the lifted alternating minimization

algorithm in Figure 3-2 happen to decrease as the increase of maxi,j |C(i, j)|, although

we have not established a causal relationship between the former and the latter.

Fourth, as shown by Figure 3-1, polynomials with higher degrees are generally

more challenging to approximately factorize than those with lower degrees, which

may result from the fact that higher degree polynomials can have higher reduction

13When the factors have different degrees, we have not shown whether the optimal solution is
unique; however, the two factors cannot be swapped as in the following argument.
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in the total number of parameters from the original polynomial to the factorized

representation. As a result, the successful factorization rates of the direct alternating

minimization, the zero-sum MIP, the lifted nuclear norm minimization, and the lifted

atomic decomposition for minimum rank approximation algorithms generally decrease

with higher degrees of the polynomials. The success rates of the lifted alternating

minimization and the lifted SVP algorithms do not show this monotonic trend in the

current parameter setup, which is possibly due to the following reasons. One reason is

the reduced success rate for these two algorithms when the two factors have identical

degrees, which happens at degy (Finput) = degx (Ginput) = 5 in Figure 3-1. The other

possible reason is the current parameter setting and the choice of the criterion for

a successful factorization (i.e. no less than 20dB SNR in the output product); as an

example, if we reduce the upper limit of the iteration steps from 500 to 100 for the

lifted alternating minimization algorithm, then its success rates generally decrease

with the degrees of the polynomials (in the range degy (Finput) > 5), which seems to

imply that the polynomials with higher degrees need more iterations for the algorithm

to converge.

Fifth, when the parameter setting option (ii) is used, the results in Figure 3-2 seem

to suggest that the zero-sumMIP algorithm has better performance when degx (Finput)

is low, which could result from the fact that our algorithm considers x as the main

variable and y as the parameter; when degx (Ginput) = 4 is fixed, a larger degx (Finput)

leads to a larger degx (Hinput), and thus the factorization and the root functions of

Hinput(·, y) can be more difficult to obtain. In contrast, all the other algorithms seem

to have better performance when either degx (Finput) or degy (Finput) is close to 0 in

Figure 3-2.

3.5 Factorization with Symmetric Properties

In contrast to general bivariate polynomials, 2D FIR filters can have additional sym-

metric properties that are desirable for certain signal processing purposes. Therefore,

it is meaningful to retain these properties in the factorizable approximation, i.e. the
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(c) Input SNR= 40dB

Figure 3-1: Comparison of the factorization algorithms with different input SNR.
Parameters are set as option (i): fix degx (Finput) = degy (Ginput) = 5, and sweep
degy (Finput) = degx (Ginput) from 1 to 15; for the zero-sum MIP algorithm, the results
for degy (Finput) at 14 and 15 are unavailable because of over-heavy computational
resource requirement.
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(c) Input SNR= 40dB

Figure 3-2: Comparison of the factorization algorithms with different input SNR.
Parameters are set as option (ii): fix deg (Ginput) = (4, 6), and sweep degx (Finput) =
10− degy (Finput) from 0 to 10.
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cascade approximation for the filter. A possible approach for this goal is to ensure

that each of the two obtained factors retains these symmetric properties, which can

be more restrictive but may have a higher tractability.

This section considers a method for retaining certain symmetric properties in

the factors by applying a proper change of variables. In particular, we discuss the

following types of symmetric properties.

• (a) H(x, y) = H(y, x). The 2D filter with such a transfer function is symmetric

with respect to the line y = x. In this case, if we use the change of variables

r = x · y and s = x + y, then the bivariate polynomial with the property

H(x, y) = H(y, x) is guaranteed to be a finite degree bivariate polynomial

H̃(r, s) with the new variables14. In addition, an arbitrary bivariate polynomial

with the variables r and s is guaranteed to have the symmetryH(x, y) = H(y, x)

when expressed with x and y. As a result, we can perform factorization on

H̃(r, s) without considering the symmetric property, and then changing the

variables back to x and y obtains the factors that satisfy the above symmetric

property.

• (b) H(x, y) = H(x−1, y). In this type of symmetry, we allow each term in

the bivariate polynomial H(x, y) to have either positive or negative15 powers of

x and y. A polynomial with H(x, y) = H(x−1, y) remains the same after the

spatial reversal along the x axis. If we use the change of variables r = x+ x−1

and s = y, then the polynomial with the symmetry H(x, y) = H(x−1, y) is

guaranteed expressible as a polynomial in r and s. In addition, any polynomials

in r and s have symmetry H(x, y) = H(x−1, y) after the inverse change of

variables. As a result, factorization can be performed on the polynomial

expressed with r and s in order to retain the above symmetric property.

• (c) H(x, y) = H(x−1, y) = H(x, y−1) = H(x−1, y−1). This is the generalization

of item (b) for both x and y axes. As a result, we can use the change of

14It can be shown by the method of mathematical induction.
15The corresponding filters with such transfer functions are generally noncausal, however, a proper

shift in the spatial domain will make them causal and therefore such an assumption is reasonable.
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variables r = x+ x−1 and s = y + y−1, and the polynomial with the symmetry

H(x, y) = H(x−1, y) = H(x, y−1) = H(x−1, y−1) is guaranteed expressible as a

polynomial in r and s.

3.6 Sensitivity Analysis

This section evaluates the robustness of bivariate polynomial multiplication and

factorization from the perspective of sensitivity16. We consider the multiplication

process first. For a factorizable polynomial H(x, y) = F (x, y) · G(x, y), if the factor

F (x, y) has a slight perturbation while G(x, y) remains the same, then the product

H(x, y) also has a perturbation; however, the energy of the perturbation in F (x, y)

and in H(x, y) is generally different. To characterize the robustness with respect

to perturbations, we define the multiplication sensitivity as the maximum expansion

ratio of the normalized perturbation energy from F (x, y) toH(x, y); if we organize the

coefficients of the polynomials F (x, y) and H(x, y) into vectors f and h, respectively,

then the sensitivity becomes

SF→H = max
∆f

∥∆h∥22/∥h∥22
∥∆f∥22/∥f∥22

, (3.29)

where ∆f and ∆h correspond to the perturbations in F (x, y) and H(x, y), respec-

tively, and ∥ · ∥2 denotes the ℓ2-norm of a vector. The value of SF→H indicates the

robustness in the multiplication process with a fixed polynomial G(x, y); lower value

of the sensitivity indicates higher robustness. Due to the symmetry between F (x, y)

and G(x, y), the sensitivity SG→H can be defined in the same approach.

Similarly, sensitivity can be defined for the factorization process to characterize the

robustness from the product to its factors, i.e. the worst magnification of normalized

energy from a perturbation in the product to that in the factors. However, a

challenge is that a perturbation in the product may generally result in a non-

factorizable polynomial or a polynomial factorizable into different degrees, which

16As a related topic, the sensitivity of univariate polynomial composition and decomposition is
studied in [56].
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makes the perturbation of the factors undefined. Therefore, this section considers

only the perturbation in the product that retains the degrees of the factors. With

this constraint, the sensitivity from the product to the factor becomes

SH→F = max
∆f

∥∆f∥22/∥f∥22
∥∆h∥22/∥h∥22

=

(
min
∆f

∥∆h∥22/∥h∥22
∥∆f∥22/∥f∥22

)−1

. (3.30)

Similar with the multiplication process, lower factorization sensitivity SH→F corre-

sponds to higher robustness of the factors when their product is perturbed. The

sensitivity SH→G can be defined similarly.

The bilinear relationship of H(x, y) with F (x, y) and G(x, y) implies the following

matrix representation for polynomial multiplication,

h = G · f , (3.31)

where the matrix G summarizes the linear dependence of h on f with a fixed

polynomial G(x, y). Similarly, the perturbations in F (x, y) and in H(x, y) satisfy

∆h = G ·∆f . Thus, the norm ratio between the two perturbations has the upper

and lower bounds as

σG,min ≤
∥∆h∥2
∥∆f∥2

≤ σG,max, (3.32)

where σG,min and σG,max are the minimal and maximal singular values of the matrix

G, respectively. Both the bounds in (3.32) are tight and achieved when ∆f (up to a

scaling factor) is the singular vector of G associated with the maximal or the minimal

singular value, respectively.

The bounds in (3.32) simplify the sensitivities in (3.29) and (3.30), namely

SF→H = σ2
G,max ·

∥f∥22
∥h∥22

, and SH→F =
1

σ2
G,min

· ∥h∥
2
2

∥f∥22
.

A natural bound for the two sensitivities above with a fixed polynomial G(x, y) is

SF→H ≤
σ2
G,max

σ2
G,min

, SH→F ≤
σ2
G,max

σ2
G,min

,
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which follows from the relationship (3.31).

Finally, we show empirical evaluation of the sensitivities in both the multiplication

and the factorization processes. We use randomly generated polynomials F (x, y)

and G(x, y), where each coefficient satisfies the standard Gaussian distribution. For

simplicity, we use the same degrees for both x and y and for both factors F (x, y) and

G(x, y), i.e. degx (F ) = degy (F ) = degx (G) = degy (G). The degrees are swept from

1 to 15; at each degree, 100 pairs of factors are generated and the sensitivities are

evaluated.

Figure 3-3 shows the median sensitivity among the 100 examples at each degree,

with the vertical bars denoting the minimal and maximal sensitivity achieved. We

can see that the sensitivity generally increases with the degrees of polynomials at

a moderate rate, which seems to suggest that bivariate polynomial multiplication

and factorization may have reasonable robustness with respect to perturbations17.

In addition, the factorization sensitivity is generally higher than the multiplication

sensitivity, which may imply that factorization is less robust with respect to input

noise.

3.7 Chapter Conclusion and Future Work

This chapter considers the cascade approximation of 2D FIR filters, which is an

example of the linear systems that can be described by the operator composition in

Section 1.1.2. This cascade structure gains computational efficiency by the reduction

of the total number of independent parameters. Equivalently, the same technique can

potentially be applied to the convolutional approximation of 2D signals that achieves

representational compression.

The cascade approximation of 2D FIR filters becomes the approximate bivariate

polynomial factorization in the transform domain, which this chapter focuses on.

Two new factorization approaches are proposed, namely the zero-sum MIP and

17Again, for factorization, we assume that the perturbed polynomial is factorizable and the degrees
of factors remain the same.
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Figure 3-3: Sensitivities v.s. degrees of polynomials.

76



the lifted alternating minimization algorithms. Numerical simulations compare

these approaches with baseline algorithms for low rank matrix approximation and

another approach that performs alternating minimization of error directly on the

two factors. A method is proposed to keep certain symmetric properties in the

factorizable approximation, and the sensitivity of bivariate polynomial multiplication

and factorization is characterized and evaluated.

Simulation results suggest that the lifted alternating minimization algorithm

noticeably outperforms the other factorization algorithms, followed by the lifted SVP

algorithm. The zero-sum MIP algorithm is sensitive to additional noise in the input

polynomial while the other algorithms have relatively low sensitivity. Empirically,

the lifted alternating minimization and the lifted SVP algorithms have higher success

rates if the degrees of the two factors are not very close; if the two factors have the

same degrees, then there are typically multiple optimal solutions to the formulation

in the dimensionally lifted parameter space, possibly resulting in more complicated

geometric structure of the solution space and lower efficiency of these algorithms.

There are a few directions that have potential for future work. First, there are

approximation criteria for the 2D FIR design other than the ℓ2-norm of error, e.g.

the minimax error among all frequencies, with which new factorization algorithm

can be explored. Second, for the zero-sum MIP algorithm, it is interesting to

incorporate an idea in [101], which utilizes lower-order Taylor series at multiple points,

aiming for potential improvement of robustness. Third, we would like to consider

alternative cost functions in the lifted alternating minimization algorithm, which

may still be tractable and more faithful to the approximation error in the polynomial

coefficients. Fourth, we would like to have theoretical analysis on the lifted alternating

minimization algorithm, with possible topics including the uniqueness of solution in

the dimensionally lifted parameter space (when the two factors do not have the same

degrees) and the convergence rate of the algorithm. Fifth, this chapter considers only

the approximation of a bivariate polynomial with a single factorizable polynomial,

and it would be interesting to consider the generalized situation where a summation

of multiple factorizable polynomials is used in the approximation, which is related to
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the parallel form for 2D filter representation with each branch as a separable filter [3].
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Chapter 4

Cascade Representation of

Nonlinear Systems

This chapter continues the discussion on systems that can be interpreted as the

operator composition in Section 1.1.2, and shifts the focus from linear systems to

block-oriented representations of nonlinear systems; as is reviewed in Section 2.2.3,

the block-oriented representations [27, 71] typically model a nonlinear system with

an interaction of memoryless nonlinear functions and linear time-invariant (LTI)

subsystems. We propose parameter estimation approaches for two discrete-time

block-oriented nonlinear models, with the available information as the statistics or

empirical observations of the input and output signals. The first block-oriented

nonlinear model in Section 4.1 is a Hammerstein model [50] that is the cascade of

a nonlinear memoryless module followed by a LTI subsystem, where the nonlinear

module is a weighted combination over a basis of known functions and the LTI

subsystem has no extra constraints. This setup is more general than the LTI

subsystems considered in most existing works on the Hammerstein model estimation,

which typically are constrained to be FIR filters [51] or filters with rational transfer

functions [52]. A generalization of the two-step parameter estimation method in [52]

is proposed and the optimal solution is derived with the respective criterion that is

used in each of the two steps. For the second block-oriented nonlinear system in

Section 4.2, we aim for modeling a black-box nonlinear system by its inverse, where
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Figure 4-1: A Hammerstein model with the nonlinear module as a weighted
combination of given functions.

the inverse system is a cascade of multiple nonlinear functions and LTI subsystems.

This structure can be considered as a generalization of the all-pole signal modeling [26]

by introducing nonlinear blocks. Parameter estimation algorithms are proposed for

each block in the cascade.

4.1 Hammerstein Model with a General LTI Sub-

system

4.1.1 Problem Formulation

In this section, the aim is to model a pair of input signal x[n] and output signal

y[n] with a Hammerstein structure as shown in Figure 4-1. As mentioned above, a

Hammerstein model is a cascade of two blocks, where the first block is a memoryless

nonlinear function F (·) and the second is a LTI subsystem H(ejω) with impulse

response h[n]. For simplicity, we assume that the memoryless nonlinear module is a

weighted combination of given functions, i.e.

F (x) =
L∑
l=1

al · fl(x), (4.1)

where fl(·) are the known functions and al are the weights that will be estimated.

With the input signal as x[n], the estimated output signal from the model in Figure

4-1 becomes

ŷ[n] = h[n] ∗ û[n] = h[n] ∗ F (x[n]). (4.2)

This section considers the estimation of the weights al in the nonlinear function
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and the impulse response h[n] of the LTI subsystem, with the goal of making the

estimated output signal ŷ[n] close to the true output y[n]. The input x[n], the

output y[n], and all fl(x[n]) with 1 ≤ l ≤ L are assumed to be wide-sense stationary

stochastic signals. Without loss of generality, we assume that the mean of all the

mentioned signals is zero, i.e.

E {x[n]} = E {y[n]} = E {fl(x[n])} = 0, for all 1 ≤ l ≤ L. (4.3)

In addition, we assume that all auto-correlation and cross-correlation functions among

y[n] and fl(x[n]) (1 ≤ l ≤ L) are known, which are denoted as follows,

Ry,fl [m] = E {y[n+m] · f ∗
l (x[n])} , 1 ≤ l ≤ L, (4.4)

Rfl,fk [m] = E {fl(x[n+m]) · f ∗
k (x[n])} , 1 ≤ l ≤ L, 1 ≤ k ≤ L, (4.5)

in which the superscript “∗” denotes the complex conjugate. The corresponding

power spectral density functions of Ry,fl [m] and Rfl,fk [m] are denoted as Sy,fl(e
jω)

and Sfl,fk(e
jω), respectively. For simplicity, we further assume that all power spectral

density functions are continuous, and the matrix

S(ejω) ,


Sf1,f1(e

jω) · · · Sf1,fL(e
jω)

...
. . .

...

SfL,f1(e
jω) · · · SfL,fL(e

jω)

 (4.6)

has full rank at each value of ω over the interval [−π, π].

A possible criterion for the difference between y[n] and ŷ[n] is the mean squared

error, namely E {|y[n]− ŷ[n]|2}. However, the direct minimization of this cost

function is challenging, since it is nonlinear with respect to the variables al and

h[n] due to the multiplicative terms between them.

To tackle this challenge, we consider a two-step parameter estimation algorithm,

which is an extension of the method in [52]: in the first step, we obtain the optimal

parameters in a dimensionally lifted space that corresponds to a more flexible system,
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where the objective function is the mean squared error of the output signal; in

the second step, we determine the projection of the optimal parameters in the

dimensionally lifted space (i.e. of the more flexible system) onto the subset that is

consistent with the Hammerstein structure in Figure 4-1, where the approximation

criterion is the difference of the parameters in the dimensionally lifted space. The

details of this algorithm are in Section 4.1.3.

4.1.2 Relation to Existing Work

The closest work to our algorithm is [52], which proposes an over-parametrization

method for certain Hammerstein structures. However, we would like to point out

that there are noticeable differences between our work and the work [52]. First, the

work [52] focuses on LTI subsystem with a rational transfer function, and consequently

the parameter space has a finite dimension. Although LTI systems with rational

transfer functions have many advantages including simple implementation, however,

there are important LTI systems that do not have a rational transfer function, such as

the ideal low-pass filters. In contrast to [52], we consider an arbitrary LTI subsystem

and thus generalize the over-parametrization approach into systems with an infinite

dimensional parameter space, which is less restrictive and does not require the choice

of order of the rational transfer function. As a second difference between our work and

[52], time-domain parameter estimation is used in [52], while our approach considers

the over-parametrization in the frequency domain. More review on the parameter

estimation for general block-oriented nonlinear models can be found in Section 2.2.3,

which is less directly related to this section.

4.1.3 Two-step Parameter Estimation Algorithm

This algorithm has two steps with two different optimization criteria. In the first

step, we consider a system with L parallel branches, where the lth branch has a

filter Hl(e
jω) with the input as ũl[n] , fl(x[n]), which is shown in Figure 4-2. This
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Figure 4-2: A parallel Hammerstein model with a dimensionally lifted parameter
space.

system in Figure 4-2 can be regarded as to have a dimensionally lifted space1 of the

parameters compared with the system in Figure 4-1, since the latter is the special

situation of the former with the additional constraints

Hl(e
jω) = al ·H(ejω), 1 ≤ l ≤ L. (4.7)

The criterion in this first step is to minimize the mean squared error between y[n]

and the estimated output ỹ[n] in Figure 4-2, as is formulated below:

min
H1(ejω),...,HL(ejω)

E
{
|y[n]− ỹ[n]|2

}
. (4.8)

In the dimensionally lifted parameter space, the formulation (4.8) is a linear least

squares problem and the solution is the multi-input single-output Wiener filter [121,

122]. As presented in Appendix D, if the matrix S(ejω) in (4.6) has full rank at each

1Precisely speaking, both systems in Figure 4-1 and Figure 4-2 have countably infinite parameters;
however, since the former system is a constrained form of the latter and the additional constraints
(4.7) introduce dependence among the parameters, it is convenient to consider the dimension of the
latter system to be higher than the former, in order to emphasize the additional flexibility of the
latter system.
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Figure 4-3: An equivalent block diagram for the system in Figure 4-1.

−π ≤ ω < π, then the optimal solution to (4.8) is [121,122]


Hopt

1 (ejω)
...

Hopt
L (ejω)

 =
(
S∗(ejω)

)−1 ·


Sy,f1(e

jω)
...

Sy,fL(e
jω)

 . (4.9)

where the superscript “∗” again denotes the complex conjugate; the power spectral

density functions Sy,fl(e
jω) are associated with the correlation functions in (4.4).

In the second step of the parameter estimation algorithm, the goal is to

approximate the multi-branch system in Figure 4-2 with the simpler system in Figure

4-1. Since the system in Figure 4-1 is equivalently represented as Figure 4-3, a possible

optimization criterion for this step is the total squared difference in the LTI blocks

in each branch between Figure 4-2 and Figure 4-3, which is formulated as follows

min
a1,...,aL,H(ejω)

L∑
l=1

∥∥Hopt
l (ejω)− al ·H(ejω)

∥∥2 , (4.10)

where the squared difference between two spectrums is defined as

∥∥Hopt
l (ejω)− al ·H(ejω)

∥∥2 ,
∫ π

−π

∣∣Hopt
l (ejω)− al ·H(ejω)

∣∣2 dω (4.11)

= 2π ·
∞∑

n=−∞

∣∣hoptl [n]− al · h[n]
∣∣2 ,
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where hoptl [n] is the impulse response of Hopt
l (ejω), and the last step applies Parseval’s

theorem.

The formulation (4.10) still involves multiplicative terms between al and H(ejω),

which could be a challenge for optimization approaches such as gradient descent.

Furthermore, the parameter space of the variables in (4.10) has an infinite dimension.

However, there is a nice generalization of the singular value decomposition (SVD)

technique from finite-dimensional to infinite-dimensional matrices, which can be

utilized to solve (4.10). First, we define the following quasimatrix 2 M ∈ C[−π,π]×L

M =


| |

Hopt
1 (ejω) · · · Hopt

L (ejω)

| |

 . (4.12)

Then, the problem (4.10) becomes the generalized rank-one approximation of the

quasimatrix M with the generalized Frobenius norm3.

As a continuous analogue of the singular value decomposition of regular matrices,

if each column of a quasimatrix is a continuous function, then this quasimatrix can

also have a SVD factorization as stated by the theorem below [124–126].

Theorem 4.1. [124–126] A quasimatrix M = [M1(ω), · · · ,ML(ω)] with each column

as a continuous function over the interval ω ∈ [ωa, ωb] has the singular value

decomposition as below

M = U ·Σ ·V†, (4.13)

where U , [U1(ω), · · · , UL(ω)] is an [ωa, ωb] × L quasimatrix with orthonormal

columns4, Σ is an L × L real-valued diagonal matrix with diagonal elements σ1 ≥

2A quasimatrix [123] generally is a bivariate function where the first variable takes values from
an interval and the second has a finite alphabet, i.e. each column of a quasimatrix is a function
of a continuous-valued variable. A quasimatrix can also be regarded as an infinite-dimensional
continuous analogue of a regular matrix.

3In the Frobenius norm, we replace the summation over indices of regular matrices by the
integration over the continuous-valued variable of quasimatrices; for the matrix M in (4.12), its

Frobenius norm is ∥M∥F =
√∑

l

∫
|Hopt

l (ω)|2dω.
4In this section, we define the inner product between continuous functions over the interval

[ωa, ωb] as ⟨H1(ω),H2(ω)⟩ ,
∫ ωb

ωa
H∗

1 (ω) ·H2(ω)dω.
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σ2 ≥ · · · ≥ σL ≥ 0, V , [v1, · · · ,vL] is an L×L unitary matrix, and the superscript

“ †” denotes the conjugate transpose.

In addition, the generalized SVD for a quasimatrix provides its low-rank approx-

imation that is optimal in the Frobenius norm, as shown by [126]:

Theorem 4.2. [126] If the quasimatrix M has each column as a continuous function

and has the SVD as in (4.13), then the partial summation

Pk ,
k∑

m=1

σm · Um(ω) · v†
m (4.14)

is the optimal rank-k approximation to the quasimatrix M that minimizes the

Frobenius norm of error ∥M−Pk∥F.

Now we apply the above results on quasimatrices to the problem (4.10). Since we

assume that all power spectral density functions are continuous, the quasimatrixM in

(4.12) has each column as a continuous function. As a result, the optimal parameters

a1, · · · , aL and H(ejω) in (4.10) may be obtained by the generalized SVD of M and

taking the singular vectors associated with the largest singular value, i.e.

aoptl = v∗l,1, 1 ≤ l ≤ L, (4.15)

Hopt(ejω) = σ1 · U1(ω), −π ≤ ω ≤ π, (4.16)

where vl,1 is the lth element of the column vector v1 from the matrix V in (4.13).

The above approach for the optimal parameters in (4.15) and (4.16) requires a

direct computation of the SVD of the infinite-dimensional quasimatrix M, which

might be a conceptual or computational challenge. To simplify the solution, we can

have an alternative approach to obtain the optimal parameters without explicitly

computing the SVD of the quasimatrix, as we will show below. If we consider the
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following product

M† ·M =


⟨Hopt

1 (ejω), Hopt
1 (ejω)⟩ · · · ⟨Hopt

1 (ejω), Hopt
L (ejω)⟩

...
. . .

...

⟨Hopt
L (ejω), Hopt

1 (ejω)⟩ · · · ⟨Hopt
L (ejω), Hopt

L (ejω)⟩

 , (4.17)

where ⟨·, ·⟩ denotes the inner product, then applying the SVD (4.13) in (4.17) leads

to

M† ·M = V ·Σ ·U† ·U ·Σ ·V† = V ·Σ2 ·V† (4.18)

where the last step uses the fact that U is orthonormal. Therefore, V ·Σ2 ·V† is the

SVD representation of the matrix
(
M† ·M

)
, which has the finite dimension of L×L.

As implied by (4.15), the optimal parameters aoptl are available from the SVD of the

finite dimensional matrix
(
M† ·M

)
.

The optimal LTI system Hopt(ejω) can then be directly obtained after aoptl are

available. From (4.10) and (4.11), the optimal LTI system with fixed parameters aoptl

satisfies

Hopt(ejω) = argmin
H(ejω)

L∑
l=1

|Hopt
l (ejω)− aoptl ·H(ejω)|2

= argmin
H(ejω)

(
L∑
l=1

|aoptl |
2

)
·

∣∣∣∣∣H(ejω)−
∑L

l=1(a
opt
l )∗ ·Hopt

l (ejω)∑L
l=1 |a

opt
l |2

∣∣∣∣∣
2

+
L∑
l=1

|Hopt
l (ejω)|2 − |

∑L
l=1(a

opt
l )∗ ·Hopt

l (ejω)|2∑L
l=1 |a

opt
l |2

=

∑L
l=1(a

opt
l )∗ ·Hopt

l (ejω)∑L
l=1 |a

opt
l |2

=
L∑
l=1

vl,1 ·Hopt
l (ejω), (4.19)

in which the last step uses (4.15) as well as the fact that ∥v1∥ = 1 for the unitary

matrix V. In this alternative approach to obtain aoptl and Hopt(ejω), we avoid

explicitly computing the SVD of the infinite-dimensional quasimatrix M.

In summary, the two-step parameter estimation algorithm for the Hammerstein
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system in Figure 4-1 is as follows.

Parameter Estimation for a Hammerstein System in Figure 4-1

(1) First step: with the goal as (4.8), compute the optimal solution

in the dimensionally lifted space according to (4.9).

(2) Second step: The goal is (4.10).

(2.1) Compute
(
M† ·M

)
in (4.17).

(2.2) Compute the SVD of the matrix
(
M† ·M

)
= V ·Σ2 ·V†.

(2.3) The optimal parameters aoptl are provided in (4.15), where vl,1

(1 ≤ l ≤ L) are the elements from the matrix V.

(2.4) The optimal LTI system Hopt(ejω) is given in (4.19).

As a final comment, if all signals x[n], fl(x[n]), and y[n] are real-valued, then

the symmetry properties of the Fourier transform show that the impulse responses

hoptl [n] in the first step of the parameter estimation procedure are real-valued. In the

second step,
(
M† ·M

)
is a real matrix, and thus the parameters aoptl from SVD are

real-valued. Finally, the impulse response hopt[n] of the LTI subsystem is guaranteed

real, which is consistent with our intuition.

4.2 Modeling a System by its Inverse with a

Cascade Structure

This section considers modeling an invertible black-box nonlinear system by its

inverse, where the inverse system is modeled by a cascade of multiple nonlinear

functions and LTI subsystems. Inspired by the all-pole modeling [26] for which the

estimation error formulated with the inverse system is easier to optimize than that

with the original system, we consider the nonlinear systems whose inverse has simpler

structures or can enable potentially easier parameter estimation. For simplicity, we

focus on nonlinear systems whose inverse is a cascade of invertible blocks, each of

which is either a memoryless monotonic polynomial or a FIR filter. Figure 4-4 shows

the systems that we are interested in as well as the notations.

88



Figure 4-4: A block-oriented cascade model for the inverse system.

There are in total M subsystems in the model for the inverse system, and d(m)[n]

denotes the output signal of the mth subsystem. Memoryless monotonic polynomials

F (m)(·) and FIR filters H(m)(ejω) alternate in the cascade5, and we assume the first

subsystem in the modeled inverse is a memoryless polynomial in Figure 4-4. For

simplicity, we assume that the memoryless polynomials have only odd-order terms

with non-negative coefficients to ensure monotonicity, i.e.

F (m)(x) ,
L∑
l=1

β
(m)
2l−1 · x

2l−1, β
(m)
2l−1 ≥ 0, (4.20)

where (2L−1) is the degree of the polynomial. The FIR filter H(m)(ejω) has order N

and impulse response h(m)[n] (0 ≤ n ≤ N). All FIR filters are assumed to be minimum

phase, since the inverse filter of each FIR will be used to model the unknown black-

box system in Figure 4-4. The input and output signals of the original black-box

nonlinear system are denoted as g[n] and s[n], respectively. The output signal of the

modeled inverse system is ĝ[n]. All signals in Figure 4-4 are assumed to be wide-sense

stationary stochastic signals.

The goal of this section is to estimate the coefficients β
(m)
l and the impulse

responses h(m)[n] that minimize6 E {|e[n]|2}, where e[n] , g[n] − ĝ[n] denotes the

residue error. If the parameter estimation could be performed for each subsystem in

the inverse system in Figure 4-4, then the original black-box system can be modeled

by the cascade of the inverse of each subsystem in the reverse order, i.e. the cascade

of the filter with transfer function 1/H(M)(ejω), the inverse function of F (M−1)(·), . . .,

5If two consecutive subsystems are of the same type (polynomials or FIR filters), then we can
combine them into a single subsystem of this type.

6In this thesis, we assume that all stochastic processes involved are ergodic, so that we do not
explicitly distinguish between the ensemble average (i.e. average over the probability space) and the
time average.
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and the inverse function of F (1)(·).

For each individual subsystem, sufficient statistical information between its input

and output signals typically enables simple estimation of its parameters; as an

example, the optimal solution is available with the criterion as the minimal mean

squared error in the output signal of the subsystem under consideration, since the

output depends linearly on the parameters with a given input signal. However, the

intermediate signals d(m)[n] (1 ≤ m ≤ M − 1) are usually not available in reality;

since the cascade of multiple subsystems results in nonlinear dependence of the output

signal ĝ[n] on the parameters, the estimation is challenging when only s[n] and g[n]

are known.

There are a few parameter settings which result in simpler solution compared with

the general formulation. First, if there is only a single FIR block in the inverse system

in Figure 4-4, then our formulation becomes the standard all-pole modeling problem

to which there is well-studied solution [26]. Second, if there are no more than three

subsystems in the cascade, then the inverse system belongs to the Hammerstein,

the Wiener, the Hammerstein-Wiener, or the Wiener-Hammerstein models, all of

which have been studied for parameter estimation [27]. Compared with the special

parameter settings above, a general system in Figure 4-4 has higher flexibility and thus

may model a larger class of nonlinear systems, which therefore is worth exploration.

However, to the best of the author’s knowledge, cascade models with more than

three subsystems have been seldom studied; some existing work assumes that certain

intermediate signals in addition to the input and output signals are also available for

parameter estimation [127, Chapter 2.5], which is not always a practical assumption

and thus limits the application of the associated algorithms.

A topic related to our problem is the inversion of a Volterra series model [69], where

the goal is to design an inverse system so that the cascade of the original and the

inverse systems approximates the identity system. There are two main branches for

Volterra series inversion, namely the pth-order inverse [128] and the indirect learning

method [84, 129]. The pth-order inverse aims to nullify all the kernels from the 2nd-

order to the pth-order in the cascade of the two systems, which typically assumes the
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knowledge of the Volterra kernels of the original system and has a different criterion as

our problem. The indirect learning method aims to solve the pre-distortion problem

(i.e. the original system follows the designed inverse system in the cascade); typically,

the core idea is replacing the pre-distortion task with a post-distortion problem (i.e.

the cascade in the reverse order) and applying adaptive filtering techniques to the

latter problem. In contrast to the indirect learning approach, our problem focuses on

the system structure in Figure 4-4 that is already formulated with the post-distortion

setup; in addition, we use a special cascade structure for the inverse system instead

of a general Volterra model.

In Section 4.2.1, three algorithms are presented for the parameter estimation of

the cascade model. The first algorithm solves the Yule-Walker equations [130, 131]

to estimate the FIR subsystems and formulates quadratic programs to determine the

monotonic polynomial blocks. The second algorithm is a block coordinate descent

algorithm that updates the parameters in a single subsystem with those in the other

subsystems fixed. The third approach is the gradient descent approach for nonlinear

optimization [132]. These algorithms will be evaluated and compared in Section 4.2.2.

4.2.1 Parameter Estimation Algorithms

Parameter Estimation using the Yule-Walker Equations

This algorithm performs parameter estimation for the mth subsystem from m = 1

to m = M in the cascade inverse model in Figure 4-4. In this sequential estimation

process, each FIR filter is obtained by the solution to the Yule-Walker equations

[130, 131], and each monotonic polynomial block F (m)(·) is solved by a quadratic

program that minimizes E
{
|g[n]− d(m)[n]|2

}
.

The Yule-Walker equations are used in the all-pole modeling formulation [26],

which does not involve the nonlinear subsystems that are used in our problem. The

solution to the Yule-Walker equation is guaranteed to be minimum phase [26], which

is an advantage in our setup since inverting the modeled inverse system requires that

the FIR subsystems be minimum phase.

91



Black-box System 

Figure 4-5: A special black-box system for which all-pole modeling can be desirable.

We first consider a special situation in which the solution to the Yule-Walker

equations has potentially desirable properties. In this special situation, the original

black-box system in Figure 4-4 is indeed a cascade of a memoryless monotonic

nonlinear function F
(2)
BB(·) and a causal filter H

(1)
BB(e

jω) plus an independent zero-mean

observation noise v[n], as shown by Figure 4-5. Without loss of generality, we assume

that the impulse responses of H
(1)
BB(e

jω) and H(1)(ejω) satisfy h
(1)
BB[0] = h(1)[0] = 1.

Using this setup, a possible criterion7 for the estimation of the FIR filter H(1)(ejω) is

min
h(1)[n]

E
{
|d(1)[n]− r(1)[n]|2

}
(4.21)

s.t. h(1)[0] = 1

where r(1)[n] is the signal in the black-box system between the nonlinear function and

the causal filter.

If the signal r(1)[n] is white and has zero-mean, then the objective function in (4.21)

is equivalent as the minimization of the signal power E
{
|d(1)[n]|2

}
[26]. Specifically,

the function in (4.21) can be simplified as

E
{
|d(1)[n]− r(1)[n]|2

}
= E

{
|d(1)[n]|2

}
+ E

{
|r(1)[n]|2

}
− 2 · E

{
d(1)[n] · r(1)[n]

}
= E

{
|d(1)[n]|2

}
+ E

{
|r(1)[n]|2

}
− 2 · E

{
s[n] · r(1)[n]

}
(4.22)

= E
{
|d(1)[n]|2

}
+ E

{
|r(1)[n]|2

}
− 2 · E

{
|r(1)[n]|2

}
(4.23)

= E
{
|d(1)[n]|2

}
− E

{
|r(1)[n]|2

}
, (4.24)

7The criterion (4.21) can be different from the mean squared error in g[n], i.e. E
{
|g[n]− ĝ[n]|2

}
.
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where the step (4.22) uses the constraint h(1)[0] = 1 as well as E
{
s[n−m] · r(1)[n]

}
=

0 (for m ≥ 1) which results from the assumption that r(1)[n] is a white sequence and

uncorrelated with the zero-mean observation noise v[n]; these properties on correlation

and the constraint h
(1)
BB[0] = 1 are applied similarly in the step (4.23).

Since E
{
|r(1)[n]|2

}
in (4.24) is independent of the FIR filter H(1)(ejω), the

objective function in (4.21) is the same as the minimization of the signal power

E
{
|d(1)[n]|2

}
; by the same derivation as the all-pole modeling, the optimal parameters

are the solution to the Yule-Walker equations with the auto-correlation function of

the signal s[n].

In terms of the signal g[n] that we have access to, a sufficient condition to ensure

r(1)[n] be a white and zero-mean sequence is: (i) g[n] is an i.i.d. sequence, (ii) the

probability density function of g[n] is symmetric with respect to the origin, and (iii)

the nonlinear function F
(2)
BB(·) is an odd function. If F

(2)
BB(·) is the inverse function of

the class of the parametric functions in (4.20), then it is an odd function and (iii) is

satisfied.

For the system in Figure 4-5, after obtaining the system H(1)(ejω) from the Yule-

Walker equations, the parameter estimation for the system F (2)(·) can be performed

by minimizing the difference between the model output ĝ[n] and the true input signal

to the black-box system g[n], with the constraints β
(2)
2l−1 ≥ 0 where the parameters

β
(2)
2l−1 are defined in (4.20). Since an estimate of the input signal d(1)[n] of the system

F (2)(·) is available, this formulation is a quadratic programming problem8, for which

there are various solvers available [133, 134]. As a result, we have established a

parameter estimation algorithm for the system in Figure 4-5 under the condition that

r(1)[n] is a white and zero-mean sequence, for which the solution to the Yule-Walker

equations can potentially be justified since it minimizes the cost in (4.21).

For a system more general than that in Figure 4-5, the above method can also be

used for parameter estimation, with FIR filters and monotonic polynomial blocks

obtained by the solution to the Yule-Walker equations and associated quadratic

programs, respectively. However, for a general system, we are not aware of potential

8It is not the standard linear least squares problem due to the constraints β
(2)
2l−1 ≥ 0.
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justification that is similar to the formulation (4.21).

Block Coordinate Descent Algorithm

As mentioned previously, knowledge of all the intermediate signals d(m)[n] (1 ≤ m ≤

M−1) would simplify the parameter estimation problem for all subsystems in Figure

4-4. In fact, if all intermediate signals are known and the criterion is set as the mean

squared error in the output signal of each subsystem, then the formulation becomes

a constrained quadratic program. Although the true values of the intermediate

signals are unavailable, we could use an estimation of those signals in the parameter

estimation process.

A possible iterative approach for parameter estimation is to update the parameters

in a single subsystem while fixing the current parameters in all other subsystems,

i.e. the block coordinate descent method if the parameters in a single subsystem is

regarded as a block of coordinates. In an iteration to update the parameters in themth

subsystem in Figure 4-4, its input signal d(m−1)[n] can be estimated by passing s[n]

through the (m− 1) preceding subsystems with their respective current parameters;

an estimate for its output signal d(m)[n] is available by passing the signal g[n] through

the inverse of each subsystem following the mth subsystem, with the reverse order as

in the cascade in Figure 4-4. With the estimated input and output signals of the

mth subsystem, the problem is simplified as the parameter estimation for a single

subsystem, which can be solved as follows.

As discussed in the method above that is based on the Yule-Walker equations,

for a nonlinear function F (m)(·), the minimization of the mean squared error in its

output signal d(m)[n] is formulated as a linearly constrained quadratic program when

both its input and output signals are available, for which we can apply optimization

solvers [133, 134]. However, for a FIR subsystem H(m)(ejω), a direct minimization

of the mean squared error in its output signal (i.e. the least squares solution) may

result in a potentially non-minimum-phase FIR filter, which does not have a stable

and causal inverse system and thus is improper for our purpose of modeling the black-

box system in Figure 4-4. Furthermore, solving the least squares formulation with

94



the minimum-phase constraint is generally a non-convex optimization problem and

seems challenging. Therefore, the following heuristic is used: for a zero of the FIR

filter from the least squares solution that is outside the unit circle, we replace it with

its conjugate reciprocal. By this replacement procedure, the obtained FIR filter are

guaranteed minimum phase and the magnitude response remains the same as the FIR

from the least squares solution.

This block coordinate descent algorithm makes use of the special cascade structure

of the system in Figure 4-4; however, since different iterations have essentially different

objectives to minimize (i.e. the energy of the output signal error of the subsystem to

be updated), we are unaware of convergence guarantees of this algorithm. In addition,

this algorithm considers locally optimal points, and thus the result is not necessarily

the globally optimal parameters.

Gradient Descent Approach

The gradient descent approach for nonlinear optimization [132] can be applied to our

parameter estimation problem with the objective function chosen as E {|g[n]− ĝ[n]|2}.

Due to the cascade structure of the system in Figure 4-4, the output signal ĝ[n] can

be expressed as the following function composition in terms of the parameters of each

subsystem

ĝ[n] = h(M)[n] ∗ F (M−1)
(
h(M−2)[n] ∗ F (M−3)

(
· · · h(2)[n] ∗ F (1) (s[n]) · · ·

))
,

where “∗” denotes convolution. From this function composition structure, the

gradient with respect to the parameters of each subsystem can be efficiently computed

by repeatedly applying the chain rule of the derivatives, which has also be utilized in

the back-propagation technique for training a neural network model [135].

This algorithm has the benefit of a unified objective function for optimization.

With a sufficiently small step size for each gradient descent iteration, this method

generally converges to a local minimum. On the other hand, a small step size

may reduce the speed of convergence. Furthermore, this algorithm may also require
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additional steps to ensure that the estimated FIR filters are minimal-phase and the

nonlinear functions have all coefficients satisfying β
(m)
2l−1 ≥ 0, in order to guarantee

system invertibility.

4.2.2 Numerical Evaluation

This section evaluates the three algorithms above by using synthetic signals and

systems, with the following parameter settings. Synthetic signals s[n] are generated

by passing a white Gaussian signal g[n] through a black-box system, whose inverse

system is a cascade of nonlinear functions F (m)(·) and FIR filters H(m)(ejω) as in

Figure 4-4. In addition to noiseless synthetic signal, we also consider noisy signals by

adding independent noise on s[n] with SNR at 40dB.

For data generation, the cascade inverse system in Figure 4-4 has the following

parameter settings. The total number of subsystems M takes the values 2, 4, and

6. The first subsystem in the cascade inverse can either be a memoryless nonlinear

function or a FIR filter (denoted by “Poly” and “FIR” in the “First System” column

in Table 4.1, respectively). The order of each FIR filter is either N = 1 or N = 2

(i.e. length of its impulse response is 2 or 3), and the roots of each FIR are uniformly

distributed in the circle centered at the origin with radius 0.9 in the z-transform

domain. The variable L in (4.20) takes the values of 2 and 3, and the coefficients β
(m)
l

follow the Gaussian distribution (on non-negative values only). For each parameter

setting, a total of 50 test trails are generated by creating 10 examples of the systems

in Figure 4-4 and applying 5 randomly generated input signals g[n] to each system.

The aim is to determine the parameters in each block of the cascade inverse system,

in order that the output signal ĝ[n] of the cascade inverse with input signal s[n] is close

to the true synthetic signal g[n]. In particular, we consider the parameter estimation

is successful if the SNR between the signal g[n] and the error signal (g[n] − ĝ[n])

is larger than or equal to 20dB. The block coordinate descent algorithm has the

maximum iteration as 100M steps9; the gradient descent algorithm has the step size

9Each iteration updates a single subsystem in the block coordinate descent algorithm, and 100M
steps of iteration update every subsystem 100 times.
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as 2× 10−5 and the maximum iteration10 as 1000 steps.

The percentage of successful parameter estimation among the 50 trails at each

parameter setting is recorded and displayed in Table 4.1. The columns with “Alg:

Y-W”, “Alg: BCD”, and “Alg: GD” respectively correspond to the percentage of

successful parameter estimation of the method based on the Yule-Walker equations,

the block coordinate descent, and the gradient descent algorithms; for the two

percentage values in each grid of these three columns, the first is the value for noiseless

signal s[n] and the second for noisy signal s[n] with 40dB SNR.

We can have the following observations from Table 4.1. First, as the increase of

the total number of subsystems in the cascade and the orders of each subsystem, the

challenge of parameter estimation increases. Second, the gradient descent algorithm

has the highest overall empirical performance among the three algorithms when the

cascade system has more than two subsystems, possibly due to the unified objective

function that is used in the optimization process; however, when the cascade has

two subsystems, the block coordinate descent algorithm seems slightly superior than

the gradient descent algorithm. Third, comparing the performance of the approach

based on the Yule-Walker equations with different parameter settings, this method

has the best performance for situations where the inverse system is a Wiener model

(i.e.M = 2, and the first system is “FIR”), possibly due to the justification in Section

4.2.1. In contrast, for other settings the above justification does not apply and thus

the success rate substantially reduces.

4.3 Chapter Conclusion and Future Work

This chapter considers two nonlinear models that can be interpreted as operator

composition in Section 1.1.2. Both models are block-oriented representations

for nonlinear systems by a cascade of memoryless nonlinear functions and LTI

subsystems, and parameter estimation algorithms are developed for each of these

10Each iteration in the gradient descent approach is much more efficient than that in the block
coordinate descent algorithm, so the comparison is fair with more iterations allowed in the gradient
descent approach.
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Table 4.1: Success percentage of the parameter estimation algorithms for cascade
inverse systems in Figure 4-4. The two percentage values in each grid of the last
three columns correspond to noiseless signal s[n] and noisy signal s[n] with 40dB
SNR, respectively.

M First System N L Alg: Y-W Alg: BCD Alg: GD

2 FIR 1 2 94 / 94 100 / 100 100 / 100

2 FIR 1 3 92 / 92 100 / 100 100 / 100

2 FIR 2 2 88 / 86 100 / 100 90 / 88

2 FIR 2 3 76 / 66 100 / 90 86 / 88

2 Poly 1 2 40 / 40 100 / 100 100 / 100

2 Poly 1 3 30 / 30 100 / 100 100 / 92

2 Poly 2 2 10 / 10 100 / 80 90 / 70

2 Poly 2 3 20 / 20 100 / 88 100 / 80

4 FIR 1 2 16 / 14 18 / 8 74 / 72

4 FIR 1 3 0 / 0 24 / 20 44 / 40

4 FIR 2 2 0 / 0 20 / 20 38 / 28

4 FIR 2 3 0 / 0 10 / 0 2 / 0

4 Poly 1 2 22 / 16 50 / 50 90 / 56

4 Poly 1 3 30 / 24 80 / 60 60 / 50

4 Poly 2 2 8 / 6 30 / 24 70 / 48

4 Poly 2 3 0 / 0 10 / 0 58 / 26

6 FIR 1 2 2 / 0 10 / 8 40 / 34

6 FIR 1 3 0 / 0 0 / 0 4 / 0

6 FIR 2 2 0 / 0 0 / 0 0 / 0

6 FIR 2 3 0 / 0 0 / 0 0 / 0

6 Poly 1 2 0 / 0 10 / 10 20 / 20

6 Poly 1 3 4 / 2 10 / 10 18 / 14

6 Poly 2 2 0 / 0 0 / 0 22 / 20

6 Poly 2 3 0 / 0 0 / 0 0 / 0
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models.

The first model belongs to the Hammerstein structure, in which the nonlinear

function is constrained to be a weighted combination of known functions and the

linear subsystem is a general filter. We generalize the two-step dimensionally lifting

parameter estimation procedure for this problem, where the parameter space is infinite

dimensional. The first step obtains the parameters in a modified system with a

dimensionally lifted parameter space, and the goal is to minimize the mean squared

error of the output signal. The second step projects the parameters of the modified

system to those of the original Hammerstein system with the criterion as the difference

in the parameter space. The theoretical optimal solution for the respective criterion

in each of the two steps is derived under mild conditions; although the second step

involves a generalized SVD of an infinite dimensional quasimatrix, it is shown that the

SVD can be equivalently performed with a regular matrix of finite dimensions. There

are a few directions for future work. Since the second step in the parameter estimation

algorithm uses a different criterion (i.e. the difference in the parameter space) from the

squared error of the output signal, it is interesting to identify conditions under which

the criterion in the parameter space is equivalent to or a reasonable approximation

for the output squared error. It is also meaningful to consider other criteria that are

different from the squared error for parameter estimation.

The second model in this chapter considers modeling a nonlinear system by its

inverse, where the model for the inverse system has the structure of a cascade of

multiple subsystems with alternated nonlinear memoryless functions and FIR filters.

This may be considered as a generalization of the all-pole modeling technique, and the

introduction of nonlinear functions makes the model more flexible while the parameter

estimation generally becomes more challenging. Three methods are presented, namely

the algorithm based on the Yule-Walker equations, the block coordinate descent

approach, and the gradient descent method. The approach based on the Yule-Walker

equations is justified for a special situation, where the cascade inverse system belongs

to the Wiener model and the signals satisfy various symmetry properties. The

other two approaches may converge to locally optimal solutions. From simulation
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results, the gradient descent method overall outperforms the other two approaches;

the parameter estimation task becomes challenging with the increase of the total

number of blocks in the cascade and the order of each subsystem, which leaves room

for further improvement. Future work include alternative methods for the estimation

of FIR filters to ensure the minimum-phase property, as well as parameter estimation

with a different criterion. The proper choice of the step size in the gradient descent

method also worths further consideration.
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Chapter 5

Modular Volterra System

Following the discussion on nonlinear systems in the previous chapter, this chapter

focuses on themodular Volterra system that refers to the system obtained by replacing

each delay element in a FIR filter F (z) with an identical copy of a Volterra series

module G{·}, where the Volterra series model is reviewed in Section 2.2.1. This

modular Volterra system corresponds to modular composition as is discussed in

Section 1.1.4. When each Volterra module G{·} has only the linear kernel, the

modular Volterra system becomes the modular FIR filter that is systematically

studied in [1,2]. As an advantage of this modular Volterra structure, it achieves system

modularity that enables simpler design and verification for hardware implementation

with very-large-scale integration (VLSI) techniques [2, 48,49].

In this chapter, we consider parameter estimation for a modular Volterra system,

using statistical information between the input and output signals. As will be

discussed later, the output signal of the modular system can potentially have

a complicated nonlinear dependence on the kernels, which makes the parameter

estimation challenging in the general setting. The Volterra series module G{·} is

a superposition of a linear operator and nonlinear operators; for simplification, we

assume that the magnitude of the coefficients of the nonlinear kernels is sufficiently

smaller than that of the linear kernel. This assumption enables an efficient two-step

algorithm to approximately estimate the parameters, where the first step estimates

the coefficients of the linear kernel of G{·} and the FIR filter F (z), and the second
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step obtains the coefficients of the nonlinear kernels of G{·}.

(a): FIR filter F (z)

(b): Modular Volterra system H {·}

Figure 5-1: Modular Volterra system with F (z) and G {·}.

5.1 Problem Definition

We focus on the modular Volterra system H {·} as shown in Figure 5-1 (b). In this

system, the FIR filter in Figure 5-1 (a) has the transfer function

F (z) =
M∑
m=0

am · z−m

and is implemented in the direct form structure. The kth-order kernels of the

Volterra module G {·} and the modular system H {·} are denoted as g(k)[i1, . . . , ik]

and h(k)[i1, . . . , ik], respectively. We assume that the highest order of the kernels of

G {·} is K; each kernel in G {·} is causal and has the maximum time delay (i.e. the

number of state variables) of N . For simplicity, we further assume that the system

module G {·} has the constant offset as G(0) = 0, and therefore its lowest-order kernel

is the linear kernel.

The goal of this chapter is to estimate the coefficients of the kernels of G {·} and ai
(0 ≤ i ≤M) of the FIR filter F (z), using the statistical information between the input

signal x[n] and the output signal y[n]; as an example, the statistics can be in the form
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of higher-order correlation functions or equivalently higher-order spectra [72,136]. For

simplicity, we assume that all involved stochastic signals are stationary in terms of

the higher-order statistics.

A general Volterra module G {·} may result in complicated kernels of the modular

system H {·}. As an example, the cascade of an order-P and an order-Q Volterra

kernels becomes a Volterra kernel with order-(PQ). Therefore, a kernel of a cascade

Volterra system may have a complicated relationship with the lower-order kernels

of each individual subsystem in the cascade. Since the modular Volterra system

involves a cascade of Volterra modules, the kernels ofH {·} typically have complicated

dependence on those of G {·}, which may make parameter estimation for G {·}

challenging.

To avoid the mentioned complication for parameter estimation, a possible method

is to assume that the coefficients of the nonlinear kernels of the module G {·}

have sufficiently smaller magnitude compared with those of the linear kernel;

mathematically, the coefficients of the nonlinear kernels satisfy

|g(k)[i1, . . . , ik]| ≤ ε ·
(
max
0≤i≤N

|g(1)[i]|
)
, for all i1, . . . , ik, k ≥ 2, (5.1)

where ε≪ 1. In other words, if the linear kernel has coefficients g(1)[i] = O(1), then

the coefficients of the nonlinear kernels satisfy g(k)[i1, . . . , ik] = O(ε), which has an

equivalent expression as

g(k)[i1, . . . , ik] = ε · g(k)nrm[i1, . . . , ik],

where we refer to g
(k)
nrm[i1, . . . , ik] as the normalized coefficients of the nonlinear kernels,

which satisfy g
(k)
nrm[i1, . . . , ik] = O(1).

We further assume that all signals in the entire modular Volterra system are

uniformly bounded, and this bound is sufficiently small1; moreover, the input signal

x[n] is assumed not in the null space of the linear operator of the Volterra module

1Precisely, the bound on the signal magnitude is assumed to guarantee that the terms rq(·) in
the later Equation (5.2) satisfy rq(·)≪ 1/ε.
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Figure 5-2: Modular Volterra system with linear and nonlinear branches for each
module.

G {·}, which is denoted as G(1) {·}.

Under the above assumptions, the output signal y[n] of the modular Volterra

system can be expanded as the following power series with respect to ε,

y[n] =
∞∑
q=0

rq
(
x[n− l], ai, g(1)[i], g(k)nrm[i1, . . . , ik]

)
· εq, (5.2)

where the coefficients rq(·) of this power series are functions of the input signal x[n−l]

(0 ≤ l ≤ NM), the coefficients of the FIR filter F (z) and the linear kernel of G {·},

and the normalized coefficients g
(k)
nrm[i1, . . . , ik] of the nonlinear kernels of G {·}. In

this power series expansion, r0(·) is the output signal of the modular Volterra system

when each Volterra module has only the linear operator G(1) {·}. If we fully expand

the functions rq(·) into summation of the product terms of the input signal and the

coefficients in F (z) and G {·}, then each term in rq(·) has exactly q factors that

belong to the normalized coefficients g
(k)
nrm[i1, . . . , ik]. Consequently, the truncated

approximation below

y[n] ≈
1∑
q=0

rq
(
x[n− l], ai, g(1)[i], g(k)nrm[i1, . . . , ik]

)
· εq (5.3)

corresponds to the terms in the output signal that involve at most a single coefficient

of the nonlinear kernels of G {·}.

As is shown in Figure 5-2, each Volterra module G {·} can be represented as a

parallel system with two branches, one with the linear operator G(1) {·} and the other

with the nonlinear operator GNL {·}. Intuitively, for the system in Figure 5-2, the
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approximation (5.3) consists of the terms generated by “passing”2 the input signal

through at most one nonlinear operator. Due to the sufficiently small magnitude of

the coefficients of the nonlinear kernels, if the input signal passes through at least

two nonlinear operators, then the corresponding term in the output signal involves

the multiplication of at least two small coefficients and thus can be neglected. The

approximation in (5.3) will be used for our parameter estimation method.

5.2 Review of Related Work

The most relevant work of this chapter is the modular filter that is systematically

studied in [1, 2], which is briefly reviewed in Section 2.1 of this thesis. The modular

filter replaces every delay element in a FIR filter by another filter, where the inner

filter module can be either a discrete-time or continuous-time filter. The filter design

problem is considered in [1, 2] with the minimax criterion. For discrete-time linear-

phase FIR modular filter, the First Algorithm of Remez [137] is applied to obtain the

optimal minimax approximation. It is shown that the modular filter outperforms the

direct form filter if the total number of degrees of freedom is the same between the two

structures. If the inner module is a continuous-time filter, then there is an additional

challenge that the phase response is generally unavailable in the specification of the

filter design problem; therefore, an alternating minimization algorithm is proposed

which alternates between the coefficients and the target phase response of the modular

filter. The minimax error is shown to reduce in each iteration, although the theoretical

guarantee for convergence to the globally optimal solution remains unknown.

With each module as a FIR filter, the modular filter design problem in the z-

transform domain is also related to univariate polynomial decomposition, which refers

to the determination of polynomials f(z) and g(z) so that their composition f(g(z))

equals or approximates a given polynomial h(z). In addition to modular filter design,

2Since a nonlinear operator introduces multiplication among its input signal samples, it may be
not fully clear to define the branches in Figure 5-2 that the input signal “passes” through to yield a
specific term in the output signal. However, a more precise analysis and formulation will be provided
in Section 5.3.2.
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polynomial decomposition can also be applied to efficient signal representation and

is explored in [2]. There are a number of algorithms for polynomial decomposition,

some of which work with the coefficients of the polynomial [13, 14, 42] and others

work with the roots [54, 55]. As an example of efficient approximate polynomial

decomposition algorithms that work with the coefficients, the method in [13] takes

iterations, each of which has two steps: optimization over f(z) with the current g(z),

and approximate least squares solution for g(z) to a truncated Taylor series expansion

of the cost function with the current f(z). In addition, this algorithm initializes the

two component polynomials by using another polynomial decomposition method [12],

which matches the coefficients of the terms of h(z) with the highest degrees and

obtains the coefficients of g(z) sequentially from higher to lower degrees.

Prior to [2], there are a number of methodologies that implicitly utilize systems

with modular structures. As an example, the filter sharpening method [57]

utilizes special linear combinations of the cascade of a fixed filter to enhance the

approximation performance with respect to a specified frequency response.

In another thread, the Volterra series model has been widely used in modeling

nonlinear systems and a number of parameter estimation techniques have been

proposed [39,40,69], which have been briefly reviewed in Section 2.2. However, these

techniques do not consider the modular structure in this chapter and thus are not

directly applicable.

5.3 Parameter Estimation Algorithm

We propose a parameter estimation algorithm in this section under the weak

nonlinearity assumption, i.e. the coefficients of the nonlinear kernels of G {·} have

sufficiently smaller magnitude compared with those of the linear kernel. The

algorithm has two steps: the first step obtains the linear kernel coefficients g(1)[i1] and

the coefficients of F (z), and the second step estimates the nonlinear kernel coefficients

g(k)[i1, . . . , ik] for k ≥ 2.
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Figure 5-3: Simplified modular system with the linear kernel only.

5.3.1 First Step: Linear Kernel Estimation

In this step, we temporarily neglect the nonlinear kernels in each Volterra module,

and the modular system is simplified as in Figure 5-3.

The simplified modular system becomes a modular FIR filter with the transfer

function as the polynomial composition F (G1(z)), where G1(z) is the z-transform of

the linear operator G(1) {·}. Since the orders of the filters F (z) and G1(z) are M and

N , respectively, the composed polynomial F (G1(z)) has the degree of MN . The goal

in this step becomes approximate univariate polynomial decomposition to obtain F (z)

and G1(z), with given statistical information between the input and output signals.

A possible performance criterion is to minimize the mean squared output error

E
{
|y[n]− ŷ[n]|2

}
, where ŷ[n] is the output signal of the system in Figure 5-3. Since

the mean squared error still has a nonlinear dependence on the coefficients of G1(z), a

direct estimation of the parameters may remain challenging. A possible algorithm is

to take iterations, each of which performs alternate approximate optimization for F (z)

(or G1(z)) with the current G1(z) (or F (z)), which is similar to the approach in [13].

Alternatively, we can directly apply univariate polynomial decomposition algorithms

as follows: first, we obtain a FIR filter Ĥ1(z) with order-(MN) using the second-

order correlation functions between the input and output signals, which minimizes

the mean squared error in the output; then, approximate polynomial decomposition

is performed on Ĥ1(z) to obtain the component polynomials F (z) and G1(z) such

that Ĥ1(z) ≈ F (G1(z)). As is reviewed in Section 5.2, there are various polynomial

decomposition methods available to obtain the components F (z) and G1(z) from

Ĥ1(z); as an example, we can choose the algorithm in [13], which will be used in the
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(a): Original cascade Volterra system with M = 4 modules

(b): Approximation of the cascade Volterra system

Figure 5-4: Approximation of a cascade Volterra system under the weak nonlinearity
assumption. The total number of modules is M = 4.

simulation later.

5.3.2 Second Step: Nonlinear Kernel Estimation

In this step, the coefficients of the nonlinear kernels of the Volterra module G {·} are

estimated, with the linear kernel g(1)[i1] and the coefficients of F (z) that are available

from the previous step.

We first simplify the cascade of the Volterra module G {·}, under the weak

nonlinearity assumption. Similar to the Taylor expansion (5.2) in terms of ε defined

in (5.1), for the cascade system3 in Figure 5-4 (a), if we denote the O(1) component

of the signals um[n] (0 ≤ m ≤ M) as u0,m[n], then it can be observed that u0,m[n] is

the output signal by filtering u0,m−1[n] with G1(z), i.e.

u0,m[n] = G(1) {u0,m−1[n]} ,

where u0,0[n] = x[n]. We then consider the O(ε) component of um[n], which is denoted

3To simplify, we use a cascade of 4 modules as an example in Figure 5-4.
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as u1,m[n]. Since

GNL {um−1[n]} = GNL {u0,m−1[n] +O(ε)} = GNL {u0,m−1[n]}+O(ε2),

where we use the fact that the coefficients of the nonlinear kernels are O(ε), it can

be seen that

u1,m[n] = G(1) {u1,m−1[n]}+GNL {u0,m−1[n]} .

If we define

vm[n] , u0,m[n] + u1,m[n],

then vm[n] is a reasonable approximation of um[n] with the residue error satisfying

um[n]− vm[n] = O(ε2). Combining the results above, it can be shown that

vm[n] = G(1) {u0,m−1[n]}+G(1) {u1,m−1[n]}+GNL {u0,m−1[n]} = G(1) {vm−1[n]}+GNL {u0,m−1[n]} ,

where the last step uses the linearity of the operator G(1) {·}. Finally, the above

equation can be implemented by the system in Figure 5-4 (b), where the signals

vm[n] (0 ≤ m ≤M) are the approximation of um[n] in Figure 5-4 (a) up to the order

of O(ε).

Then, we consider the approximation of the modular Volterra system in Figure

5-1. Since the output of the modular Volterra system is a linear combination of the

signals um[n] (0 ≤ m ≤ M) in Figure 5-4 (a), and each um[n] can be approximated

by vm[n], it can be shown from Figure 5-4 (b) that the modular Volterra system can

be approximated by the structure4 in Figure 5-5.

For parameter estimation, a possible choice of the performance criterion is the

mean squared error E
{
|y[n]− ỹ[n]|2

}
. Since the input signal of each module GNL {·}

in Figure 5-5 depends only on the signal x[n] and the FIR filter G1(z) that is

already available, the signals ỹi[n] (1 ≤ i ≤ M) in Figure 5-5 depend linearly on

the coefficients of the nonlinear kernels. The final output signal ỹ[n] is a linear

combination of ỹi[n], so it also has a linear dependence on the coefficients of the

4Again, we use M = 4 as an example in Figure 5-5.
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Figure 5-5: Approximation of a modular Volterra system under the weak nonlinearity
assumption, with parameter M = 4.

nonlinear kernels in GNL {·}, which enables least squares estimation for GNL {·} using

the higher-order statistics between the input and output signals.

In summary, the parameter estimation algorithm for the modular Volterra system

in Figure 5-1 is described as follows, which is under the assumption that the linear

kernel dominates the nonlinear kernels in the Volterra module G {·}.

Parameter Estimation Algorithm for Modular Volterra System

(1) Using the second-order correlation functions, obtain an order-(MN)

FIR filter Ĥ1(z) that minimizes the mean squared error of the output.

(2) Apply approximate polynomial decomposition algorithms to obtain FIR

filters F (z) and G1(z) such that Ĥ1(z) ≈ F (G1(z)).

(3) Using higher-order statistics between the input and output signals,

obtain the least squares estimation of the nonlinear kernels in GNL {·}

in the approximate system shown in Figure 5-5.

Since the filter F (z) and the linear kernel of G {·} are estimated without

considering the nonlinear kernels of G {·}, there is generally no guarantee for global

optimality of the algorithm above. In addition, if the nonlinear kernels of G {·} have

coefficients that are comparable in magnitude to those of the linear kernel, or if the

input signal x[n] has sufficient large magnitude, then the above algorithm may have

noticeable estimation error since the weak nonlinearity assumption does not hold.
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5.4 Numerical Evaluation

5.4.1 Setup

This section evaluates the parameter estimation algorithm using synthetic modular

Volterra systems, where the coefficients of both the Volterra module Gsyn {·} and the

FIR filter Fsyn(z) are randomly generated and follow zero-mean Gaussian distribution.

To ensure weak nonlinearity, the average magnitude of the coefficients of the nonlinear

kernels of Gsyn {·} is 1/20 of that of the linear kernel. The input signals to the

synthetic modular Volterra systems are white random processes with length 20000,

where each element follows uniform distribution5 between −1 and 1. Observation

noise with SNR 40dB is added to the synthetic output signal of the modular Volterra

systems. The highest order K of the Volterra module Gsyn{·}, the maximum delay

(i.e. the number of state variables) of Gsyn{·}, and the order of the FIR filter Fsyn(z)

are all swept between 2 to 4. At each parameter setting, 100 random examples of

the FIR filter Fsyn(z), the Volterra module Gsyn{·}, and input-output signal pairs are

generated.

We apply the two-step algorithm to obtain the coefficients of the estimated FIR

filter Fest(z) and the kernels of the estimated Volterra module Gest{·}. Then, we

obtain the estimated output signal by feeding the input signal into the estimated

modular Volterra system. For comparison purposes, we consider the following two

structures for the estimated system: (1) the modular Volterra system where the

order and delay of the estimated systems Gest{·} and Fest(z) are equal to those of the

synthetic systems Gsyn {·} and Fsyn(z), which is the setup for system identification; (2)

the modular FIR system where Fest(z) has the same order as Fsyn(z) while Gest {·} has

only the linear kernel, and we ensure that Gest {·} has the same number of degrees

of freedom as the synthetic Volterra module Gsyn {·}. In other words, this second

setting has the estimated system with a mismatched structure. Since the estimated

system can have a different structure from the true synthetic system, it is inconvenient

5In order to avoid input signals with big magnitude that can violate the weak nonlinearity
assumption in this chapter, the uniform distribution is chosen due to its strict limit on the magnitude
of the input signals.
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to evaluate the estimation performance in terms of the differences in the kernels;

instead, we consider the error between the estimated output signal and the original

noisy synthetic output signal. If the SNR between these two output signals is higher

than a threshold, then we consider the estimated system is sufficiently close to the

true synthetic system in terms of input-output relationship and thus the parameter

estimation is successful. Without loss of generality, we choose this threshold of SNR

as 20dB in the simulation.

5.4.2 Results and Observations

We show the success percentage using the two structures for the estimated system,

namely the modular Volterra system and the (mismatched) modular FIR filter, in

Table 5.1.

We can have the following observations from Table 5.1. First, the success rates

reduce as the increase of the delay and order of the modular system. In our current

setting, the increase of the delay and order generally introduces stronger nonlinear

effects of the modular system, which makes the weak nonlinearity assumption less

precise and causes the parameter estimation to become more challenging. Second,

the success rates using the mismatched modular FIR structure are noticeably lower

than those using the correct structure. We can then conclude that the nonlinearity

introduced by the Volterra modules is not efficiently represented by a modular FIR

filter, even with the same number of degrees of freedom. This observation may

potentially suggest the necessity of nonlinear kernels in order to precisely model or

identify a modular Volterra system, despite the weak nonlinearity assumption. Third,

for a fixed order of F (z) and a fixed structure of the estimated system, the success

rates generally seem to decrease with the number of degrees of freedom of G{·}.

5.5 Chapter Conclusion and Future Work

This chapter considers the modular Volterra system that corresponds to modular

composition in Section 1.1.4. We consider the modular Volterra system that is created
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Table 5.1: Success rates of the parameter estimation algorithm for modular Volterra
system.

Success Percentage Using
Structural Parameters of

Different System Structures
the Synthetic System in Estimation

Order Order of Delay of Degrees of Modular
of FIR Module Module Freedom of Volterra

Modular

Fsyn(z) Gsyn{·} Gsyn{·} Gsyn{·} System FIR

2 2 2 10 100 68

2 2 3 15 100 60

2 2 4 21 100 42

2 3 2 20 100 48

2 3 3 35 98 16

2 3 4 56 84 6

2 4 2 35 96 23

2 4 3 70 70 7

2 4 4 126 35 2

3 2 2 10 99 26

3 2 3 15 96 10

3 2 4 21 95 5

3 3 2 20 67 10

3 3 3 35 19 1

3 3 4 56 10 0

3 4 2 35 27 0

3 4 3 70 3 0

3 4 4 126 1 0

4 2 2 10 87 10

4 2 3 15 59 3

4 2 4 21 38 0

4 3 2 20 23 1

4 3 3 35 4 0

4 3 4 56 1 0

4 4 2 35 3 0

4 4 3 70 0 0

4 4 4 126 0 0
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by replacing each delay element in a FIR filter F (z) in the direct form implementation

with an identical copy of a Volterra series module G{·}. Since the modular Volterra

system uses identical modules, it can benefit hardware implementation especially for

VLSI technology. In addition, if the Volterra module G{·} has only the linear kernel,

the modular Volterra system becomes the modular FIR filter that is systematically

studied in [2].

Given statistical information between input and output signals, a two-step

parameter estimation algorithm is proposed to obtain the coefficients of F (z) and

G{·}, where we assume weak nonlinearity of G{·}. The first step neglects the

nonlinear kernels in G{·} and simplifies the modular Volterra system into a modular

FIR filter with the transfer function as the polynomial composition of F (z) and the

linear kernel of G{·}. Therefore, approximate polynomial decomposition algorithms

can be utilized to determine these parameters. In the second step, the nonlinear

kernels of G{·} are estimated with the available F (z) and the linear kernel of G{·}.

Due to the weak nonlinearity assumption, a linear equation can be approximately

established between the output signal and the unknown coefficients of the nonlinear

kernels of G{·}, to which the least squares solution is available. Simulation results

have shown that this parameter estimation algorithm is effective when the order

and delay (i.e. the number of state variables) of F (z) and G{·} are not high; in

addition, the estimated system with the correct nonlinear structure has significantly

better performance than that with a mismatched modular FIR structure, although

the number of degrees of freedom is maintained.

There are a number of directions for further development on the modular Volterra

system. First, it would be very interesting to identify physical devices or systems

which naturally create a modular nonlinear structure, which can serve as concrete

applications of the proposed algorithm. Second, the current setup of numerical

evaluation is still limited. A more general setup can be the comparison among a

modular Volterra system, a modular FIR filter, and a Volterra system that all have

the same number of degrees of freedom, where the goal is to approximate a nonlinear

system that does not have a Volterra representation with a finite number of terms or
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to design a system with specifications in terms of input-output higher-order statistics.

Third, the current parameter estimation algorithm could be interpreted as a linearized

approximation for the modular Volterra system. Similar to the Taylor expansion of a

function, the zeroth-order approximation in our problem is the modular FIR system

without the nonlinear kernels, and the first-order approximation has the extra terms

that involve a single coefficient of the nonlinear kernels. However, there could be

higher-order approximations of the modular Volterra system that consider nonlinear

interactions between the coefficients of the nonlinear kernels, which could potentially

improve the precision of parameter estimation and thus is worth further study.

Fourth, although challenging, the parameter estimation without the assumption of

weak nonlinearity is worth considering, which might potentially be applied to a wider

class of nonlinear systems. Fifth, we use the mean squared error in the output signal as

the error criterion of the estimation, and it would be interesting to consider alternative

criteria. Sixth, the modular Volterra system in this thesis replaces each delay element

in a FIR filter with a Volterra module, and it would be interesting to further consider

using IIR filters with feedback loops for modular systems instead of FIR filters.
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Chapter 6

Learning Two-level Boolean

Functions

In contrast to the systems in the previous chapters that have continuous-valued input

and output signals, this chapter focuses on systems with multi-dimensional binary

input variables and a single binary output, i.e. Boolean functions1. In particular,

we focus on learning two-level Boolean functions from a dataset for classification

purposes, with the joint criteria of accuracy and function simplicity. The Boolean

functions we consider are in the conjunctive normal form (CNF, “AND-of-ORs”)

or disjunctive normal form (DNF, “OR-of-ANDs”) [53]; as is discussed in Section

1.1.3, these functions belong to the multivariate composition of one-level Boolean

functions. This composition significantly improves the model richness, and the two-

level functions can represent any Boolean function [34] when the negation of each

input variable is available.

The two-level Boolean function is an important subclass of rule-based classifiers,

which have wide applications in various signal processing fields such as speech

recognition [29], smart grid [30], and expert systems [31]. Typically, a Boolean

function connects a subset of the binary input variables with the logical conjunction

(“AND”), disjunction (“OR”), and negation (“NOT”) to form the prediction of the

binary output variable. To simplify description and avoid potential confusion, the

1The majority of the content in this chapter is included in [138].
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terminologies feature and label will be used in this thesis to denote each dimension

of the input variables and the output variable, respectively. For instance, a Boolean

function in [33] for the prediction of 10-year coronary heart disease (CHD) risk for a

male at the age of 45 is as follows:

IF 1. NOT smoke; OR

2. (total cholesterol < 160) AND (systolic blood pressure < 140);

THEN (10 year CHD risk < 5%)=TRUE.

The example above is a two-level Boolean function in DNF, where in the lower level,

conjunctions of binary features build clauses (i.e. one-level Boolean functions) and

in the upper level, the disjunction of the clauses forms the predictor. As shown in

the example above, continuous-valued features may be incorporated by converting

them to binary with threshold comparisons. In this chapter, we assume that both

the input and output variables are fully provided in the dataset. In other words, we

do not consider the design for conversion from general variables to binary ones.

As is discussed in Section 1.1.3, a two-level Boolean function in CNF or DNF has

the following multivariate function composition structure:

ŷ = F (G1(x1, · · · , xd), · · · , GR(x1, · · · , xd)), (6.1)

where (x1, · · · , xd) and ŷ denote the input and output variables, respectively, and

each Gr(x1, · · · , xd) (1 ≤ r ≤ R) corresponds to a clause. For DNF, the functions

F (v1, · · · , vR) and Gr(x1, · · · , xd) (1 ≤ r ≤ R) in (6.1) are defined as

F (v1, · · · , vR) =
R∨
r=1

vr, Gr(x1, · · · , xd) =
∧
j∈Xr

xj, (6.2)

where each Xr (1 ≤ r ≤ R) is a subset of the index set {1, 2, · · · , d}, and the symbols

“∨” and “∧” denote the logical disjunction (“OR”) and conjunction (“AND”),

respectively. By swapping the logical disjunction and conjunction, we obtain the
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functions F and Gr (1 ≤ r ≤ R) for CNF as follows.

F (v1, · · · , vR) =
R∧
r=1

vr, Gr(x1, · · · , xd) =
∨
j∈Xr

xj. (6.3)

The goal of this chapter is to learn a two-level Boolean function for classification

from a given training dataset by determining all the functions Gr(x1, · · · , xd) for

1 ≤ r ≤ R in (6.1) (or equivalently, the subsets Xr in (6.2) and (6.3)). In addition

to the classification accuracy on the dataset, the simplicity of the Boolean function

is also important for the two reasons below. First, if we measure the simplicity of

a Boolean function by the total number of features used
∑

r |Xr|, then a function

with a small total number of features used yields the benefit of interpretability [32],

which is attracting considerable attention in machine learning and has substantial

importance in a wide range of applications such as law and medicine [33, 36–38].

In these fields, predictions from classification models are generally presented to a

human decision maker/agent who makes the final decision. Such a decision maker

often needs an understanding of the reasons for the prediction before accepting

the result; thus, high prediction accuracy without providing the reasons is not

sufficient for the model to be trusted. For example, convincing reasons are legally

required in fraud detection [38] to establish a claim of fraud. In addition to directly

learning interpretable models (e.g. decision lists [139], decision trees [140]) from data,

researchers have also been interested in constructing interpretable approximations for

black-box models (e.g. neural networks), which provide insights and interpretability

while remaining faithful to the black-box models [141,142]. The second reason to favor

simple functions is to avoid overfitting; since real world datasets inevitably have noise,

excessively complicated functions may overfit and model the random noise instead of

the fundamental relationship in the data, which leads to low predictive performance

on general untrained data.

Despite the importance of Boolean functions, learning two-level Boolean functions

with high accuracy and simplicity from a dataset is a considerable challenge since it

is inherently combinatorial [143,144]. Even a simpler problem of learning a one-level
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Boolean function (i.e. a single conjunctive or disjunctive clause) is already NP-hard in

certain formulation [145]. In addition, two-level Boolean functions are substantially

more expressive than one-level functions. As mentioned in Section 1.1.3, if the input

features are binary and we include all negations, then two-level functions can represent

any Boolean function of the input features [34], which does not hold for one-level

functions. The expressiveness of two-level functions also suggests that they are more

challenging to learn than one-level functions. Due to this complexity, as we overview

in Section 6.1, existing methods are mostly heuristic and/or greedy and there has

been limited work on principled yet tractable approaches.

This chapter introduces a unified optimization framework for learning two-level

Boolean functions from a dataset that achieves good balance between the joint

criteria of accuracy and function simplicity. We propose two formulations. The

first formulation aims to minimize a weighted combination of the total number of

classification errors and the total number of features used. Based on this formulation,

a linear programming relaxation approach is developed, which explicitly utilizes the

composition structure of the two-level Boolean functions. The second formulation

replaces the 0-1 classification error with the Hamming distance from the current

two-level function to the closest function that correctly classifies a training example.

With this second formulation, block coordinate descent and alternating minimization

algorithms are developed, which iteratively update a certain part in the composed

two-level function. Experiments show that two-level functions can have considerably

higher accuracy than one-level functions. The two algorithms based on the Hamming

distance formulation obtain very good tradeoffs between accuracy and simplicity. In

addition, we tackle the issue of fractional optimal solutions to linear programming

relaxations and introduce a new binarization method to convert the solutions of the

linear programs into binary values.

The remainder of this chapter is organized as follows. Section 6.1 reviews existing

work on two-level Boolean function learning. After the problem formulations in

Section 6.2, optimization approaches are introduced in Section 6.3 and evaluated

in Section 6.4. Section 6.5 concludes this chapter and presents future work.
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6.1 Review of Existing Work

The two-level Boolean functions in this chapter are examples of decision rule lists

[139], which have been extensively studied in various fields such as pattern recognition

and machine learning, where a number of strategies have been proposed [34]. The

covering strategy [139, 146–150] sequentially constructs each clause in a two-level

Boolean function; in each step, it builds a new clause generally in a greedy manner,

and then removes the newly covered training examples or adjusts the weights on

all training examples for future steps. The bottom-up strategy [151–153] successively

combines more specific clauses into more general clauses according to local criteria like

pairwise similarity. A more flexible multi-phase strategy [154–156] is to first discover

a large set of candidate local patterns (i.e. clauses), then heuristically select a subset

of informative clauses, and finally construct a two-level function by considering the

selected clauses as new binary features. A fourth strategy is to convert trained decision

trees into decision lists [140,157]. Unlike our proposed approach, the above strategies

lack a single, principled objective to drive the learning process. Moreover, they employ

heuristics that leave room for improvements on both accuracy and function simplicity.

In addition to the symbolic approaches above, Bayesian approaches in [33] and

[158] apply approximate inference algorithms to produce posterior distribution over

decision lists; however, the assignment of prior and likelihood may not always be clear,

and certain approximate inference algorithms may have high computational cost. In

contrast to two-level Boolean functions which combine clauses with logical conjunction

or disjunction, more general classifiers can also take a weighted combination of learned

clauses [159, 160]. Although the flexibility of weighted combination may improve

accuracy, the weighted model may reduce interpretability compared with two-level

Boolean functions [37].

There has been some prior work on optimization-based formulations for two-level

Boolean function learning. To our best knowledge, the most relevant prior work

is [145], where a linear programming framework is proposed to learn a clause, based

on which two other algorithms are used for rule set learning, namely set covering
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[150] and boosting. Although we apply this clause learning method as a component

in some of our algorithms, there are significant differences between our work and

[145]. As mentioned before, two-level functions that we consider are significantly more

expressive and much more challenging to learn than a single clause. In addition, the

greedy style of the set covering method in [145] leaves room for improvement, and

the weighted combination of clauses in boosted classifiers reduces interpretability.

Another work on DNF learning [161] provides a mixed integer program formulation

named OOA (Optimized Or’s of And’s) and a different heuristic formulation OOAx

(Optimized Or’s of And’s with Approximations). The mixed integer program in

OOA is similar to our first formulation with the 0-1 error but without the relaxation

to linear programming, which may thus result in quite high computational complexity.

OOAx is similar to the multi-phase strategy above in using heuristic approaches to

discover and select clauses before an optimization formulation is used to build a DNF

with the selected clauses.

Boolean functions in CNF and DNF have also been studied in other fields

that are either less related to this chapter or have a different setup. From the

theoretical perspective, learnability of Boolean formulae is considered in [144] within

the framework of probably approximately correct learning. Different from our

problem, the setup of [144] and related work typically assumes positive or negative

training examples can be generated on demand and without noise. In the field of

digital circuit design, simplifying a function in DNF or CNF that exactly matches a

given truth table can lead to implementation efficiency [35]. However, for our problem,

it is neither needed nor desirable to have a two-level Boolean function exactly match

a noisy dataset. In the work on functional composition [2], a composed representation

of multivariate discrete-valued functions is proposed, where the individual functions

to form the composition can be arbitrary. In contrast, each individual function in

the composed form of the two-level Boolean functions in this chapter has to be either

conjunction or disjunction of its input variables, which trades off flexibility with a

more principled structure. An arbitrary discrete-valued function with a finite alphabet

can be converted to a binary function by indicators; since two-level Boolean functions

122



can represent any Boolean function, restricting our focus to CNF and DNF does not

necessarily reduce the expressiveness of the function class.

6.2 Problem Formulation

We consider the binary supervised classification, where the training dataset has n

labeled examples. The ith example has a binary output label yi ∈ {0, 1} and in total

d input binary features2 ai,j ∈ {0, 1} (1 ≤ j ≤ d). The goal is to learn a classifier ŷ(·)

in the Conjunctive Normal Form (“AND-of-ORs”) that can generalize well to unseen

input feature combinations. Recall the two-level Boolean function in (6.1), where in

the lower level each clause is formed by the disjunction of a selected subset of input

features Xr (1 ≤ r ≤ R), and in the upper level the final predictor is formed by the

conjunction of all clauses. We introduce the binary decision variables wj,r ∈ {0, 1} to

represent whether to include the jth feature xj in the rth clause, i.e. wj,r = 1 if and

only if j ∈ Xr. From (6.3), the output of the rth clause for the ith training example is

v̂i,r = Gr (ai,1, · · · , ai,d) =
∨
j∈Xr

ai,j =
d∨
j=1

(ai,jwj,r) , for 1 ≤ i ≤ n, 1 ≤ r ≤ R. (6.4)

Then, the predictor ŷi satisfies

ŷi = F (v̂i,1, · · · , v̂i,R) =
R∧
r=1

v̂i,r, for 1 ≤ i ≤ n. (6.5)

To mitigate the need for careful specification of the model parameter R, a mechanism

to “disable” a clause can be introduced to reduce the total number of actual clauses

if the assigned R is too large. For a CNF Boolean function, a clause can be regarded

as disabled if its output is always 1. Thus, we can pad the input feature matrix with

a trivial “always true” feature ai,0 = 1 for all training examples, and also include the

corresponding decision variables w0,r for all clauses; if w0,r = 1, then the rth clause has

output 1 and is thus disabled in the CNF Boolean function. Using this mechanism,

2We assume the negation of each feature is included as another input feature; if not, we can pad
the input features with negations.
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the parameter R becomes the maximum number of clauses.

From (6.4) and (6.5), the goal of learning two-level Boolean functions is converted

to the determination of the binary parameters wj,r (0 ≤ j ≤ d, 1 ≤ r ≤ R), which

will be the focus of the parameter estimation algorithms below.

In certain cases, DNF functions could be more preferable than CNF. An algorithm

for CNF can be used to learn DNF by De Morgan’s laws:

y =
R∨
r=1

( ∧
j∈Xr

xj

)
⇔ y =

R∧
r=1

( ∨
j∈Xr

xj

)

where y and xj mean the negation of binary variables y and xj, respectively. To learn

a DNF function with a CNF learning algorithm, we can first negate both features and

labels of all training examples, then learn a CNF function with the negated features

and labels, and finally use the decision variables wj,r with the original features to

construct a DNF function. Since the formulations of CNF are slightly more concise,

Sections 6.2 and 6.3 focus on CNF only.

Two formulations are introduced with different accuracy costs in Section 6.2.1 and

6.2.2, respectively.

6.2.1 Formulation with 0-1 Error

A natural choice for the accuracy term in the objective is the total number of

misclassifications (i.e. 0-1 error for each training example). With the regularization

term as the sum of the number of features used in each clause, a formulation is as

below

min
wj,r

n∑
i=1

|ŷi − yi|+ θ ·
R∑
r=1

d∑
j=1

wj,r (6.6)

s.t. ŷi =
R∧
r=1

(
d∨
j=1

(ai,jwj,r)

)
, for 1 ≤ i ≤ n, (6.7)

wj,r ∈ {0, 1}, for 1 ≤ j ≤ d, 1 ≤ r ≤ R,
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where the regularization parameter θ controls the tradeoff between accuracy and

function simplicity. For the decision variables w0,r from the mechanism to “disable”

a clause that is mentioned before, the regularization cost for w0,r can be lower than

other variables or even zero. In addition, this clause disabling mechanism can also

be regarded as a part of the regularization, whereby the cost of activating a clause is

weighed against the accuracy improvement that it brings.

6.2.2 Formulation with Minimal Hamming Distance

Instead of using the 0-1 error to measure accuracy, it may be desirable to have a more

fine-grained measure such as the minimal Hamming distance that will be explained

below. For instance, consider two Boolean functions in CNF, both with two clauses,

predicting the same training example with ground truth label yi = 1. Suppose both

clauses in the first function predict 0, while only one clause in the second function

predicts 0 and the other predicts 1. Although both CNF functions misclassify this

training example after taking “AND” of their two clauses, the second CNF function

is closer to correct than the first one. If we use an iterative algorithm to refine the

learned function, it might be beneficial for the accuracy cost term to favor this second

CNF function, which could push the solution towards being correct. An additional

motivation for the Hamming loss is to avoid identical (and thus redundant) clauses,

by training each clause with a different subset of training examples, as done in [149].

In this second formulation, the accuracy cost for a single training example is the

minimal Hamming distance from a given CNF function to an ideal CNF function,

where the latter means a function that correctly classifies this training example.

The Hamming distance between two CNF functions is the total number of wj,r

that are different in the two functions. An intuitive explanation of this minimal

Hamming distance is the smallest number of modifications (i.e. negations) of the

decision variables wj,r in the current CNF function that are needed to correct a

misclassification on a training example, i.e. how far is the function from being correct.

For mathematical formulation, we introduce ideal clause outputs vi,r with 1 ≤ i ≤

n and 1 ≤ r ≤ R to represent the clause outputs of a CNF function that correctly
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classifies the ith training example. The values of vi,r are always consistent with the

ground truth labels, i.e. yi =
∧R
r=1 vi,r for all 1 ≤ i ≤ n. We let vi,r have a ternary

alphabet {0, 1,DC}, where vi,r = DC means that we “don’t care” about the value of

vi,r; the conjunction with DC satisfies 0 ∧ DC = 0 and 1 ∧ DC = DC ∧ DC = DC.

With this setup, if yi = 1, then vi,r = 1 for all 1 ≤ r ≤ R; if yi = 0, then vi,r0 = 0 for

at least one value of r0, and we can have vi,r = DC for all r ̸= r0. In implementation,

vi,r = DC implies the removal of the ith training example in the training or updating

for the rth clause, which leads to a different training subset for each clause.

Denote ηi as the minimal Hamming distance from the current CNF function wj,r

to an ideal CNF function for the ith training example. We derive ηi for positive and

negative training examples, respectively. Since yi = 1 implies vi,r = 1 for all r, for

each clause with output 0 in the current function, at least one positive feature needs

to be included to match vi,r = 1. Thus, the minimal Hamming distance for a positive

training example is the number of clauses with output 0:

ηi =
R∑
r=1

max

{
0,

(
1−

d∑
j=1

ai,jwj,r

)}
, for yi = 1.

For yi = 0, we first consider for fixed r the minimal Hamming distance between

the rth clauses of the current function and an ideal function where vi,r = 0. We need

to negate wj,r in the current function for j with wj,r = ai,j = 1 to match vi,r = 0,

and thus the minimal Hamming distance of this clause is
∑d

j=1 ai,jwj,r. Then, since

vi,r = 0 needs to hold for at least one value of r while all other vi,r can be DC, the

minimal Hamming distance of the CNF function is given by the minimum over r, i.e.

setting vi,r0 = 0 with

r0 = argmin
1≤r≤R

(
d∑
j=1

ai,jwj,r

)
. (6.8)

Combining all analysis above, the new formulation with the minimal Hamming

distance cost is as below

min
wj,r

n∑
i=1

ηi + θ ·
R∑
r=1

d∑
j=1

wj,r (6.9)
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s.t. ηi =
R∑
r=1

max

{
0,

(
1−

d∑
j=1

ai,jwj,r

)}
, for yi = 1, (6.10)

ηi = min
1≤r≤R

(
d∑
j=1

ai,jwj,r

)
, for yi = 0, (6.11)

wj,r ∈ {0, 1}, for 1 ≤ j ≤ d, 1 ≤ r ≤ R.

To simplify description of algorithms later, we show a formulation (6.12) below,

which is equivalent to (6.9) but involves both vi,r and wj,r. Taking the minimization

over vi,r in (6.12) with fixed wj,r eliminates the variables vi,r, and (6.12) becomes

identical to (6.9).

min
wj,r, vi,r

n∑
i=1

R∑
r=1

[
1vi,r=1 ·max

{
0,

(
1−

d∑
j=1

ai,jwj,r

)}

+ 1vi,r=0 ·
d∑
j=1

ai,jwj,r

]
+ θ ·

R∑
r=1

d∑
j=1

wj,r (6.12)

s.t.
R∧
r=1

vi,r = yi, for 1 ≤ i ≤ n, (6.13)

vi,r ∈ {0, 1,DC}, for 1 ≤ i ≤ n, 1 ≤ r ≤ R,

wj,r ∈ {0, 1}, for 1 ≤ j ≤ d, 1 ≤ r ≤ R.

The binary variables wj,r can be relaxed to 0 ≤ wj,r ≤ 1. The minimum over r in

(6.11) implies the non-convexity of such continuous relaxation with R > 1, making the

exact solution challenging. Letting R = 1 in formulation (6.9) after the relaxation, it

can be seen that we recover the formulation for one-level Boolean function learning

in [145].

Although the Hamming distance formulation is a more fine-grained measure that

can potentially be more effective for improving the learned function in an iterative

algorithm, the accuracy cost in (6.9) is higher than or equal to the cost of the 0-1 error

formulation in (6.6) when the decision variables wj,r are binary, i.e. the Hamming

distance formulation may over-penalize the accuracy cost. In certain parameter

settings, the Hamming cost may potentially not always be balanced between the
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positive and negative training examples. For instance, when R = 1, the accuracy cost

ηi for positive training examples in (6.10) happens to be equivalent to the 0-1 cost,

while the cost for negative training examples in (6.11) can be higher than 1. We can

observe that the Hamming cost might potentially over-penalize misclassifications for

negative training examples when R = 1.

Conditions for Tight Relaxation of wj,r in the Noiseless Formulation

In this section, we show conditions under which the optimal solution to the relaxation

of a variant Hamming distance formulation is guaranteed to be binary, i.e. the

relaxation is tight. Two relaxations are considered, namely 0 ≤ wj,r ≤ 1 and wj,r ≥ 0.

To simplify, we assume that the input dataset is noiseless and modify our goal as

determining the function in CNF that has perfect accuracy and uses the smallest

total number of features. With this modified goal, a variant of the Hamming distance

formulation is as follows.

min
wj,r

R∑
r=1

d∑
j=1

wj,r (6.14)

s.t.
R∑
r=1

max

{
0,

(
1−

d∑
j=1

ai,jwj,r

)}
= 0, for yi = 1, (6.15)

min
1≤r≤R

(
d∑
j=1

ai,jwj,r

)
= 0, for yi = 0, (6.16)

wj,r ∈ {0, 1}, for 1 ≤ j ≤ d, 1 ≤ r ≤ R. (6.17)

This variant formulation is obtained by setting ηi = 0 (1 ≤ i ≤ n) in (6.9). All

the feasible solutions to (6.14) have perfect accuracy, and the optimal solution has

the minimal total number of features. To avoid binary optimization, the constraint

(6.17) can be relaxed to 0 ≤ wj,r ≤ 1 or even wj,r ≥ 0. The focus here is conditions

under which the original and the relaxed formulations for (6.14) have identical optimal

solutions (up to a permutation of the clauses).

First, we organize all the input features for all the training examples as a feature
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matrix A = [a1, . . . , ad], where each row represents a training example and each

column corresponds to a dimension of the features. The K-disjunct and K-conjunct

properties3 that characterize feature similarity are reviewed as follows [145].

Definition 1. [145]. A binary matrix A = [a1, . . . , ad] satisfies the K-disjunct

property if the union of the 1’s in any K columns4 does not cover all the 1’s in a

different (K + 1)-th column, i.e.
∨K
i=1 aki does not cover all the 1’s in ak0 where

k0 ̸= ki for 1 ≤ i ≤ K. The matrix A satisfies K-conjunct property if the union of

the 0’s in any K columns does not cover all the 0’s in a different (K + 1)-th column,

i.e.
∧K
i=1 aki does not cover all the 0’s in ak0 where k0 ̸= ki for 1 ≤ i ≤ K.

If a feature matrix A is K-conjunct (or K-disjunct), then for a given feature and

other K features, there is at least one training example to distinguish the former from

the conjunction (or disjunction) of the latter. Moreover, if the 0’s of a feature column

are covered by another, then the matrix cannot satisfy the K-conjunct property for

any K, which can limit the application of the K-conjunct property. As an extension

of the K-conjunct property to matrices with a column covering another, we define

the generalized K-conjunct property as follows.

Definition 2. A binary matrix A = [a1, . . . , ad] satisfies the generalized K-conjunct

property, if the union of the 0’s in any K columns does not cover all the 0’s in a

(K + 1)-th column unless the 0’s in this (K + 1)-th column are covered by a single

column among the K columns. More explicitly, if the 0’s in ak0 are not covered by

any of aki, then
∧K
i=1 aki does not cover all the 0’s in ak0. A similar definition is

available for the generalized K-disjunct property.

Second, we define the augmented feature matrix EM(A) for a feature matrix A.

Definition 3. For a binary feature matrix A, its augmented feature matrix EM(A)

has each column as the disjunction of m features from A where 1 ≤ m ≤M . All the

combinations of m features with 1 ≤ m ≤M are incorporated in EM(A).

3In [145], tight relaxation conditions are proposed for their formulation to learn one-level Boolean
functions, which utilize these properties.

4These K columns are not necessarily mutually distinct, i.e. we choose the K columns with
replacement.
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In other words, the augmented feature matrix lists the output values of each

disjunctive clause containing at mostM features as a new feature column. ForM ≥ 2,

since there always exists a column in EM(A) that covers all the 0’s in another column,

the matrix EM(A) cannot satisfy the K-conjunct property; however, EM(A) can still

satisfy the generalized K-conjunct property as we will discuss later.

The following theorem shows a sufficient condition for the relaxed formulation for

(6.14) to have the same optimal solution as the original binary program.

Theorem 6.1. Denote W∗ = [w∗
1, . . . ,w

∗
R] as the true CNF function that generates

the training dataset, i.e. yi =
∧R
r=1

(∨d
j=1(ai,jw

∗
j,r)
)
for all 1 ≤ i ≤ n. In addition,

each clause w∗
r has at most M features where M < d, and none of the clauses is

redundant (i.e. the 1’s in the output of the rth1 clause on the dataset are not covered

by the rth2 clause for all r1 ̸= r2). If all the three following assumptions hold,

(a) the feature matrix A is M-disjunct,

(b) the augmented feature matrix EM(A) is generalized R-conjunct,

(c) each clause w∗
r is exactly “exemplified” by the negation of (at least) a training

example; i.e. for each 1 ≤ r ≤ R, there is some i such that w∗
j,r = ai,j for all

1 ≤ j ≤ d,

then we have the two following guarantees:

(i) the feasible solutions to the relaxed formulation for (6.14) with 0 ≤ wj,r ≤ 1

only consist of the true CNF function W∗ up to a permutation of the clauses,

(ii) the optimal solutions to the relaxed formulation for (6.14) with wj,r ≥ 0 exactly

recover W∗ up to a permutation of the clauses.

The proof for Theorem 6.1 is in Appendix E. We have the following remarks on

Theorem 6.1:

(i) There are a number of possibilities to improve Theorem 6.1 in the current

form. First, the assumption (c) seems to limit the application of the theorem.
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In fact, the formulation (6.14) becomes the disjunctive clause (i.e. one-level

Boolean function) recovery problem in [145] if we set R = 1; however, the

assumption (c) is not needed for the tight relaxation condition for one-level

Boolean function recovery in [145] and thus Theorem 6.1 is not a generalization

of the results in [145], which may leave room for improvement. Second, the

theorem assumes no noise in the dataset, and it is interesting to explore

tight relaxation conditions with noisy dataset. Third, the theorem considers

only the effects of the relaxation of the binary variables wj,r, however, the

relaxed formulation remains non-convex for R ≥ 2 and thus challenging to

solve precisely. As a result, performance bound of the algorithms that are used

for solving the non-convex relaxed formulation should be useful.

(ii) Roughly speaking, theK-disjunct or conjunct properties indicate the differences

among features; if the features are sufficiently independent in the dataset, then

these property would be satisfied [145]. An extreme case is that the dataset

includes every 2d binary patterns of the features, which satisfies all assumptions

(a)-(c).

(iii) If we consider another variant Hamming distance formulation to directly

construct DNF instead of CNF, then the assumption (c) may become slightly

more natural: each clause w∗
r is exactly “exemplified” by a training example

(instead of the negation of the example).

(iv) The assumption (b) in Theorem 6.1 uses the generalized R-conjunct property of

the augmented matrix EM(A). However, this property can be directly tested on

the input data matrix A without explicitly constructing the entire augmented

matrix EM(A), as shown by Theorem 6.2 below.

Theorem 6.2. A sufficient condition for the generalized R-conjunct property of the

augmented matrix EM(A) is: for any two disjoint subsets of features P and Z ⊆

{1, . . . , d} with cardinality constraints 1 ≤ |P| ≤ min{R, d} and 1 ≤ |Z| ≤ M , there

exists a training example ai,j that satisfies ai,j = 1 for all j ∈ P and ai,j = 0 for
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all j ∈ Z. Furthermore, if the matrix A is M-disjunct, then this condition is also

necessary.

The proof for Theorem 6.2 is in Appendix E. From Theorem 6.2, we can have the

following sufficient but not necessary condition for the assumptions (a) and (b) in

Theorem 6.1. The proof for Theorem 6.3 is omitted.

Theorem 6.3. If for any subsets S ⊆ {1, . . . , d} with cardinality |S| = min{R +

M,d}, the data matrix A contains at least a training example for each of the 2|S|

binary patterns of the features within the subset S, then the assumptions (a) and (b)

in Theorem 6.1 both hold.

6.3 Optimization Approaches

This section discusses various optimization approaches to the two-level Boolean

function learning problem, i.e. the estimation of the binary parameters wj,r in (6.4).

Based on the formulation (6.6) in Section 6.2.1, we develop a linear programming

relaxation approach in Section 6.3.1. Based on the formulation (6.12) in Section 6.2.2,

we propose the block coordinate descent algorithm in Section 6.3.2 and the alternating

minimization algorithm in Section 6.3.3. All algorithms use linear programming

relaxations and the dimensions of the resulting linear programs are analyzed in Section

6.3.4. Section 6.3.5 considers the binarization problem for the case of non-binary

solutions to the linear programs.

6.3.1 Two-level Linear Programming Relaxation

This approach considers the 0-1 error formulation (6.6) and explicitly utilizes the

composition structure of the two-level functions as shown in (6.1). By applying the

idea of replacing binary operations “AND” and “OR” with linear-algebraic operations,

a linear programming relaxation will be finally formulated.

If we consider “AND” and “OR” as functions, then they are defined only on

binary inputs. Consequently, there are various interpolations of these functions to
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the continuous domain, and both convex and concave interpolations exist for both

functions. The “OR” function has the following interpolations [162]

d∨
j=1

xj = max
1≤j≤d

{xj} = min

{
1,

d∑
j=1

xj

}
,

where the first is convex and the second is concave, both of which are the respective

tightest interpolations. The logical “AND” function also has the tightest convex and

concave interpolations as [162]

d∧
j=1

xj = max

{
0,

(
d∑
j=1

xj

)
− (d− 1)

}
= min

1≤j≤d
{xj}.

As shown by (6.1), the output ŷi of the two-level Boolean function is a composition

of one-level Boolean functions. By a proper composition of the interpolations of each

one-level Boolean function, we can obtain convex and concave interpolations of ŷi.

Specifically, from (6.4) and (6.5), a convex interpolation of ŷi is

ŷi = max

{
0,

(
R∑
r=1

max
1≤j≤d

{ai,jwj,r}

)
− (R− 1)

}
,

and a concave interpolation can also be obtained similarly.

Denote the 0-1 error cost for the ith training example as ψi , |ŷi − yi|. Since the

errors ψi in (6.6) should be minimized, if yi = 1, then ψi = 1− ŷi and thus we need the

concave interpolation for ŷi; if yi = 0, then ψi = ŷi and thus the convex interpolation

is needed. Finally, the formulation in (6.6) can be exactly converted into a mixed

integer program:

min
wj,r,ψi,βi,r

n∑
i=1

ψi + θ ·
R∑
r=1

d∑
j=1

wj,r (6.18)

s.t. ψi ≥ 0, 1 ≤ i ≤ n,

ψi ≥ 1−
d∑
j=1

ai,jwj,r, for yi = 1, 1 ≤ r ≤ R,
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ψi ≥

(
R∑
r=1

βi,r

)
− (R− 1), for i s.t. yi = 0,

βi,r ≥ ai,jwj,r, for i s.t. yi = 0, 1 ≤ j ≤ d, 1 ≤ r ≤ R,

wj,r ∈ {0, 1}, 1 ≤ j ≤ d, 1 ≤ r ≤ R.

Relaxing the decision variables to 0 ≤ wj,r ≤ 1 leads to a linear program.

Unfortunately, numerical results suggest that this linear programming relaxation

is likely to have fractional values in the optimal solution wj,r, and the optimal ψi may

possibly be all close to 0, which may be undesirable since ψi aims to represent the 0-1

error cost term. A possible reason is that the gap between the convex and concave

interpolations may loosen the linear program and enable fractional results with lower

costs than binary solutions.

6.3.2 Block Coordinate Descent Algorithm

We now propose an algorithm that iteratively updates a single subset of features Xr

with a fixed r, where Xr is defined in the two-level Boolean function (6.3). In other

words, this algorithm considers the decision variables in a single clause (wj,r with a

fixed r) as a block of coordinates, and performs block coordinate descent to minimize

the Hamming distance cost in (6.12). Each iteration updates a single clause with

all the other clauses fixed, using the one-level Boolean function learning algorithm

in [145]. We denote r0 as the clause to be updated.

The optimization of (6.12) even with (R − 1) clauses fixed still involves a joint

minimization over wj,r0 and the ideal clause outputs vi,r for yi = 0 (vi,r = 1 for yi = 1

and thus fixed), so the exact solution could still be challenging. To simplify, we fix

the values of vi,r for yi = 0 and r ̸= r0 to the actual clause outputs v̂i,r in (6.4) with

the current wj,r (r ̸= r0). Now we assign vi,r0 for yi = 0: if there exists vi,r = v̂i,r = 0

with r ̸= r0, then this training example is guaranteed to be correctly classified and

we can assign vi,r0 = DC to minimize the objective in (6.12); in contrast, if v̂i,r = 1

holds for all r ̸= r0, then the constraint (6.13) requires vi,r0 = 0.

This derivation leads to the updating process as follows. To update the rth0 clause,
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we remove all training examples that have label yi = 0 and are already predicted as

0 by at least one of the other (R − 1) clauses, and then update the rth0 clause with

the remaining training examples using the one-level function learning algorithm.

There are different choices of which clause to update in an iteration, such as

cyclical or random updating. We can also try the update for each clause and then

greedily choose the one with the minimum cost, as is used in our experiments.

The initialization of wj,r also has different choices. For example, one option is the

set covering method, as is used in our experiments. Random or all-zero initialization

can also be used.

6.3.3 Alternating Minimization Algorithm

This section proposes the alternating minimization algorithm that uses the Hamming

distance formulation (6.12). This algorithm alternately minimizes between the

decision variables wj,r and the ideal clause outputs vi,r. Each iteration has two steps:

update vi,r with the current wj,r, and update wj,r with the new vi,r. The latter step

is simpler and will be first discussed.

With fixed values of vi,r, the minimization over wj,r is relatively straight-forward:

the objective in (6.12) is separated into R terms, each of which depends only on a

single clause wj,r with a fixed r. Thus, all clauses are decoupled in the minimization

over wj,r, and the problem becomes parallel learning of R one-level clauses. Explicitly,

the update of the rth clause removes training examples with vi,r = DC and then uses

the one-level Boolean function learning algorithm [145].

The update over vi,r with fixed wj,r follows the discussion in Section 6.2.2: for

positive training examples yi = 1, vi,r = 1, and for the negative training examples

yi = 0, vi,r0 = 0 for r0 defined in (6.8) and vi,r = DC for r ̸= r0. For negative

training examples with a “tie”, i.e. non-unique r0 in (6.8), tie breaking is achieved by

a “clustering” approach. First, for each clause 1 ≤ r0 ≤ R, we compute its cluster

center in the feature space by taking the average of ai,j (for each j) over training

examples i for which r0 is minimal in (6.8) (including ties). Then, each training

example with a tie is assigned to the clause with the closest cluster center in ℓ1-norm
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among all minimal r0 in (6.8).

Similar to the block coordinate descent algorithm, various options exist for

initializing wj,r in this algorithm. The set covering approach is used in our

experiments.

6.3.4 Complexity of the Linear Programming Formulations

We now consider computational complexity of the proposed algorithms by charac-

terizing the dimensions of the linear programming formulations. If we denote n1

and n0 as the numbers of training examples with yi = 1 and yi = 0, respectively,

then the two-level linear program in (6.18) has O(Rd + Rn0 + n) variables and

O(Rn1 + Rdn0) constraints. The block coordinate descent and the alternating

minimization algorithms are both iterative, and require solving R linear programs

per iteration. However, each single linear program does not use all the training

data; if nr denotes the number of training examples used for updating a clause, then

the linear program to update that clause has O(d + nr) variables and O(d + nr)

constraints. Thus, despite having to solve multiple linear programs, the reduction in

the dimensions of each single linear program can still result in greater overall efficiency

compared with the non-iterative two-level linear programming formulation.

6.3.5 Redundancy Aware Binarization

This section discusses a solution to a potential issue with the linear programming

relaxation that is widely used in this chapter. If the optimal solution to a linear

program turns out to have fractional values, then we need to convert them into binary.

If a linear program already yields a binary optimal solution, then the binarization

methods here will not change it.

A straight-forward binarization method is to compare each wj,r from the linear

programs with a specified threshold. However, empirical results suggest that the

resulting binarized function may have redundancy, making the function unnecessarily

complex.
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The following improved binarization method considers three types of redundan-

cies, each associated with a set of binary features that we call a redundancy set.

Among the features in each redundancy set, no more than one feature will appear in

any single clause of an optimal CNF function5.

The first type of redundancy set corresponds to nested features. If binary features

ai,j1 and ai,j2 satisfy ai,j1 ≤ ai,j2 for all training examples, then these two features

cannot both appear in a single clause in the optimal CNF function; otherwise, since

ai,j1
∨
ai,j2 = ai,j2 , removing ai,j1 from the clause keeps the same output and reduces

the total number of features, leading to a better function. If there is a nested set

ai,j1 ≤ ai,j2 ≤ . . . ≤ ai,jP (∀1 ≤ i ≤ n), then at most one feature from this set can be

selected in a single clause in the optimal CNF function.

The second type consists of complementary binary features and applies when

we use the mechanism to “disable” a clause as explained in Section 6.2. Since

complementary features ai,j1 and ai,j2 satisfy ai,j1
∨
ai,j2 = 1 (∀1 ≤ i ≤ n), the optimal

CNF function cannot have both of them in a single clause, otherwise disabling this

clause by w0,r = 1 and wj,r = 0 (j > 0) keeps the output and improves function

simplicity.

The third type also applies only when we use the mechanism to disable a clause.

This type can happen with two nested sets that are pairwise complementary, and an

example of such sets is binary features obtained by thresholding continuous-valued

features. To illustrate, suppose we have six binary features from thresholding the

same continuous feature ci with thresholds τ1 < τ2 < τ3:

ai,1 = (ci ≤ τ1) , ai,2 = (ci ≤ τ2) , ai,3 = (ci ≤ τ3) ,

ai,4 = (ci > τ1) , ai,5 = (ci > τ2) , ai,6 = (ci > τ3) .

The “zigzag” path (ai,4, ai,5, ai,2, ai,3) forms a redundancy set, since at most one

out of the four features can be selected in a fixed clause of the optimal CNF

function, otherwise either the first or the second redundancies above will happen

5This statement holds for both formulations (6.6) and (6.12); for simplicity, we will focus on the
formulation (6.6) for illustration.
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and thus the function is not optimal. There are typically multiple “zigzag” paths,

e.g. (ai,4, ai,1, ai,2, ai,3) and (ai,4, ai,5, ai,6, ai,3).

The new binarization approach takes the above types of redundancies into account.

For illustration, suppose all binary features are obtained by thresholding continuous-

valued features. For a given clause and a single continuous-valued feature, we may

sweep over all non-redundant combinations of the binary features induced by this

continuous feature and obtain the one with minimal cost. Since the total number of

non-redundant combinations for nested and zigzag features is linear and quadratic

with the number of thresholds, respectively, the sweeping is efficient with a single

continuous feature. However, for multiple continuous features, joint minimization is

combinatorial and challenging. Thus, to simplify matters, we first sort continuous

features in decreasing order as determined by the sum of corresponding decision

variables in the optimal solution to the linear programming relaxation. Then the

decision variables corresponding to each continuous feature are sequentially binarized

as described above.

6.4 Numerical Evaluation

6.4.1 Setup

This section evaluates the algorithms with UCI repository datasets [163]. To facilitate

comparison with the most relevant prior work [145], we use the same 8 datasets as

in that work: Indian liver patient dataset (ILPD), Ionosphere (Ionos), BUPA liver

disorders (Liver), Parkinsons (Parkin), Pima Indian diabetes (Pima), connectionist

bench sonar (Sonar), blood transfusion service center (Trans), and breast cancer

Wisconsin diagnostic (WDBC). Each continuous-valued feature is converted to binary

using 10 quantile-based thresholds.

The goal is to learn a DNF function (“OR-of-ANDs”) from each dataset. We use

stratified 10-fold cross validation and then average the test and training error rates.

All linear programs are solved by IBM CPLEX version 12 [120]. The regularization
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Table 6.1: Ten-fold average test error rates (unit: %). Standard error of the mean is
shown in parentheses.

Dataset TLP BCD AM OCFL SC DList C5.0 CART

ILPD 28.6(0.3) 28.6(0.2) 28.6(0.2) 28.6(0.2) 28.6(0.2) 36.5(1.4) 30.5(2.0) 32.8(1.3)

Ionos 8.3(1.2) 9.4(1.1) 11.4(1.1) 9.7(1.5) 10.5(1.3) 19.9(2.3) 7.4(2.1) 10.8(1.2)

Liver 44.9(0.9) 37.1(3.2) 39.1(2.5) 45.8(2.2) 41.7(2.8) 45.2(2.6) 36.5(2.4) 37.1(2.5)

Parkin 14.4(1.4) 12.8(2.2) 15.9(2.9) 16.4(2.1) 14.9(1.9) 25.1(3.3) 16.4(2.7) 13.9(2.9)

Pima 26.8(1.8) 26.8(1.7) 23.8(2.0) 27.2(1.5) 27.9(1.5) 31.4(1.6) 24.9(1.7) 27.3(1.5)

Sonar 31.3(3.2) 29.8(3.0) 25.5(2.4) 34.6(2.7) 28.8(2.9) 38.5(3.6) 25.0(4.2) 31.7(3.5)

Trans 23.8(0.8) 23.8(0.1) 23.8(0.1) 23.8(0.1) 23.8(0.1) 35.4(2.4) 21.7(1.2) 25.4(1.7)

WDBC 7.6(1.1) 6.2(1.2) 6.5(0.9) 9.3(2.0) 8.8(2.0) 9.7(0.8) 6.5(1.1) 8.4(1.0)

parameter is θ = A×10B where we sweep A = 1, 2, 5 and B = −4,−3,−2,−1, 0, 1, for

a total of 18 values. We use the redundancy aware binarization and the mechanism

to “disable” a clause.

Algorithms in comparison and their abbreviations are: two-level linear program-

ming relaxation (TLP), block coordinate descent (BCD), alternating minimization

(AM), one-level conjunctive function learning (OCFL, equivalent to setting R = 1

for BCD or AM) and set covering (SC), the last two from [145], decision list in

IBM SPSS (DList), and decision trees (C5.0: C5.0 with rule set option in IBM SPSS,

CART: classification and regression trees algorithm in Matlab’s classregtree function).

The maximum number of iterations in BCD and AM is set as 100. Without loss of

generality, we set the maximum number of clauses R = 5 for TLP, BCD, AM, and

SC.

We show the test error rates, the total number of features used in the functions,

and Pareto fronts indicating the tradeoff between accuracy and simplicity.

6.4.2 Accuracy and Function Simplicity

In this section, we apply a second cross validation within the training partition to

choose the optimal parameter θ among the 18 values that has the highest accuracy,

and then evaluate its performance on the test partition. The mean test error rates

and the standard error of the mean are listed in Table 6.1. We refer the reader

to [145] for results from other classifiers that are not interpretable; the accuracy of
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Table 6.2: Ten-fold average numbers of features

Dataset TLP BCD AM SC DList C5.0

ILPD 4.8 0.0 0.0 0.0 5.4 45.5

Ionos 30.9 12.4 12.9 11.1 7.7 13.6

Liver 6.5 9.3 7.7 5.2 2.2 46.6

Parkin 9.0 8.2 12.6 3.2 2.1 16.6

Pima 15.3 2.2 2.0 2.4 8.6 38.2

Sonar 27.8 14.2 23.6 9.0 1.9 27.3

Trans 3.5 0.0 0.0 0.0 3.8 6.7

WDBC 21.8 13.6 11.9 8.7 4.0 15.8

our algorithms is generally competitive with them.

Table 6.2 provides the 10-fold average of the total number of features in the learned

functions as a measure for function simplicity. No features are counted if a clause is

disabled.

Table 6.1 shows that two-level functions obtained by our algorithms (TLP, BCD,

and AM) are more accurate than the one-level functions from OCFL for most datasets,

which demonstrates the expressiveness of two-level functions.

Among optimization-based two-level Boolean function learning approaches, BCD

and AM generally have superior accuracy to TLP and SC. All these four approaches

substantially outperform DList in terms of accuracy on all datasets. Compared with

C5.0, BCD and AM obtain simpler functions (i.e. smaller total numbers of features)

with quite competitive accuracy. Compared with CART, BCD has higher or equal

accuracy on all datasets, and AM is also superior overall. In addition, AM achieves

the highest accuracy on the Pima dataset among the interpretable models in Table

6.1, and BCD obtains the highest accuracy on the Parkin and WDBC datasets.

To evaluate the new redundancy aware binarization, we compare the numbers of

features in the learned functions of the BCD, AM, and SC algorithms with R = 5

using the simple threshold comparison (threshold at 0.2) and the new binarization

methods. Table 6.3 shows the average results over 10 folds and across all the datasets.

We can see that the redundancy aware binarization substantially reduces the number

of features and thus improves function simplicity.
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Table 6.3: Average numbers of features with different binarization

Binarization Method BCD AM SC

Threshold Comparison 11.9 11.2 12.3

Redundancy Aware 7.5 8.8 5.0

As a brief evaluation of the clause disabling mechanism, we consider the number of

“active” clauses (i.e. not disabled by setting w0,r = 1) in the learned functions, again

averaged over 10 folds and 8 datasets. BCD, AM, and SC use on average 2.1, 2.4,

and 1.7 active clauses, respectively, showing that clause disabling is effective when the

maximum number of clauses R = 5 is larger than needed. In addition, the average

number of clauses for DList is 2.7; thus, BCD and AM outperform DList in function

simplicity if we consider the total number of clauses as an alternative measure.

6.4.3 Pareto Fronts

A DNF function can be considered dominated by another function if the former has

higher error rate and uses more features than the latter. For a fixed algorithm, if we

learn DNF functions with each of the 18 values of θ, then the pairs of accuracy and

total number of features of the DNF functions that are not dominated by any other

DNF function constitute the Pareto front for this algorithm [164], which shows the

optimal tradeoff boundary in the space of accuracy v.s. function simplicity achieved

by varying the regularization parameter. The Pareto fronts of the BCD, AM, and SC

algorithms are shown in Figure 6-1, where we include the results for both using and

not using the clause disabling mechanism for each algorithm. For ease of visualization,

the dominated points are not shown and non-dominated points are connected by line

segments. We use the Liver and Pima datasets as illustrating examples.

Comparing the Pareto fronts in Figure 6-1, we can have the following observations.

For the more difficult Liver dataset where R = 5 clauses are not too many, using or

not using clause disabling (i.e. more or less regularization) accesses different parts of

the space of accuracy v.s. function simplicity, as shown in Figure 6-1 (b). In contrast,

R = 5 is already unnecessarily large for the simpler Pima dataset, so clause disabling
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allows a much improved tradeoff (Pareto fronts to the lower left in Figure 6-1 (d)).

In addition, the Pareto fronts clearly show the superiority of BCD and AM to SC.

6.5 Chapter Conclusion and Future Work

This chapter focuses on the two-level Boolean functions as an example of the

multivariate function composition that is discussed in Section 1.1.3. By composing

the simpler model of one-level Boolean functions, the two-level functions significantly

improve the model richness and can represent any Boolean function if the negation

of each input feature is available.

We provide two optimization-based formulations for learning two-level Boolean

functions from a dataset. The first formulation is based on 0-1 classification error

and the second on Hamming distance. Based on these formulations, we propose

algorithms based on linear programming relaxation, block coordinate descent, and

alternating minimization. For a variant of the Hamming distance formulation in the

noiseless case, sufficient conditions are provided for the relaxed formulation to have

binary optimal solutions, although the relaxed formulation remains non-convex and

possibly challenging to solve precisely.

Numerical results show that two-level Boolean functions typically have consid-

erably lower error rates than one-level functions. In addition, the block coordinate

descent and alternating minimization algorithms provide very good tradeoffs between

accuracy and function simplicity.

The clause disabling mechanism is effective for improving the accuracy-simplicity

tradeoff on simple datasets when the specified number of clauses is too large. The

new redundancy-aware binarization has been shown to reduce the total number of

features compared with simple thresholding binarization.

There are a few directions for future work. First, alternative accuracy cost can

be used in the problem formulation. For instance, the Hamming distance cost

empirically improves the performance of the iterative algorithms; however, the 0-1

error cost is naturally used for performance evaluation in many situations. Since the
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Hamming cost may over-penalize the classification error, formulations that combine

the Hamming cost and the 0-1 cost are possibly useful to further improve the

performance. Second, alternative initializations can be used for the block coordinate

descent and alternating minimization algorithms, and it is also interesting to test

the sensitivity of these algorithms on the initialization. Third, other binarization

methods can be explored that yield binary variables with potentially less modification

to the fractional solutions of the linear programming relaxation. Another interesting

and more sophisticated approach to obtain binary solutions is to utilize integer

programming techniques such as branch-and-bound. Fourth, there are opportunities

from the theoretical perspective. It would be interesting to consider conditions more

general than the theorems in Section 6.2.2, which guarantee that the optimal solutions

to the relaxed formulation remain binary. Moreover, although more challenging, it

is useful to characterize the gap between the solutions obtained by our algorithms

and the optimal solution to the non-convex formulation with the Hamming distance

cost. Fifth, we can design methods for the conversion from general feature variables to

binary variables other than the quantile-based thresholding that is used in simulation,

which may improve the overall performance.
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Figure 6-1: Pareto fronts: (a) Liver training error rate, (b) Liver test error rate, (c)
Pima training error rate, (d) Pima test error rate. All figures use the same legends
as in (a).
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Chapter 7

Conclusion and Future Work

In this thesis, parameter estimation algorithms are provided for structures for system

representation that can be viewed as a type of composition, which includes operator

composition, modular composition, and multivariate function composition. These

composition structures all belong to constrained parametric representations, which

have wide applications in signal processing. We focus on a few important classes

of systems with a composition structure, which include both linear and nonlinear

systems with continuous-valued signals, as well as Boolean functions that have binary

input and output variables. Utilizing proper composition can potentially lead to

a number of advantages in signal processing, including the reduction of the total

number of independent parameters that achieves computational and representational

efficiency, structural modularity that can benefit hardware implementation, and

improvement of model richness with the ability to form more sophisticated models of

systems or functions by the composition of simple ones.

The first part of this thesis considers operator composition that naturally

corresponds to a cascade of systems, where each system corresponds to an operator

that works on the set of signals of interest. The cascade representations of both

linear and nonlinear systems are discussed in this thesis, where the former focuses on

the example of 2D FIR filters, and the latter considers the nonlinear block-oriented

models with a cascade of memoryless nonlinear functions and LTI blocks. For the 2D

FIR filters, the aim is to approximate a 2D filter by the cascade of a pair of 2D filters
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with lower orders, which can reduce the total number of independent parameters and

achieve computational efficiency for spatial domain implementation. Equivalently, a

2D signal can be approximated by the convolution of a pair of 2D signals with shorter

horizontal and vertical lengths, which can result in representational compression. In

the transform domain, these two problems both become the approximate bivariate

polynomial factorization. We formulate the factorization problem into rank-one

matrix approximation in a dimensionally lifted parameter space, and propose a new

algorithm that is referred to as lifted alternating minimization. This new algorithm

is shown to outperform the other methods in comparison in our simulation with

synthetic polynomials, followed by the existing singular value projection algorithm

that also works with the low rank matrix formulation. An opportunity for future

improvement on the algorithms based on low rank matrix approximation is in the

situation where the two polynomial factors have exactly the same degrees, since this

situation leads to empirically reduced performance possibly due to higher geometrical

complication in the solution space. In addition, alternative criteria for approximation

other than the ℓ2-norm or Frobenius-norm of error could be a possible direction for

future work.

For the block-oriented cascade representations of nonlinear systems, we focus on

the following two structures. The first structure is a discrete-time Hammerstein model

in which the linear subsystem is general, and we generalize an existing estimation

procedure from a finite-dimensional to an infinite-dimensional parameter space, using

a generalized SVD technique for infinite-dimensional quasimatrices. For the second

structure, we aim to model a nonlinear system by its inverse, where the model for

the inverse system is a cascade of memoryless nonlinear functions and FIR filters.

This may be considered as a generalization of the all-pole modeling technique with

additional flexibility due to the introduction of nonlinear functions. In numerical

simulation, the gradient descent method overall outperforms the other approaches we

consider. However, the parameter estimation problem becomes challenging with the

increase of the total number of blocks in the cascade, which leaves room for future

improvement.
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The second part of this thesis discusses modular composition that refers to the

replacement of each delay element in a system block diagram with an identical copy of

another system module. We focus on the example of modular Volterra system, which

has structural modularity that can potentially simplify the design and verification for

hardware implementation. Under the assumption that the coefficients of the nonlinear

kernels of the Volterra module have sufficiently smaller magnitude compared with

those of the linear kernel, we propose a two-step parameter estimation algorithm using

the statistical information between the input and output signals. The first step of

this algorithm neglects the nonlinear kernels and estimates the remaining parameters,

and then the second step fills in the estimation of the nonlinear kernels. Numerical

evaluation shows that the algorithm is effective when the order and delay (i.e. the

number of state variables) of the modular system are not high. In addition, two

structures for the estimated system are used in numerical evaluation: one is modular

Volterra system with the correct structural parameters, and the other is modular

FIR filter without the nonlinear kernels but with the same number of degrees of

freedom. A comparison between these two structures shows that the former structure

has much better performance and thus modeling the nonlinear kernels is of significant

importance. Possible directions for future work include parameter estimation in the

more challenging situation without the assumption of weak nonlinearity, as well as

determining the physical devices and systems that naturally have a modular Volterra

structure.

The third part of this thesis focuses on learning two-level Boolean functions

from a training dataset with the joint criteria of accuracy and function simplicity,

where the two-level Boolean functions can be interpreted as the composition of

certain one-level multivariate Boolean functions. These two-level functions can

represent any Boolean function when the negation of each input variable is available,

which thus have significantly higher model richness compared with the one-level

functions. Two optimization-based formulations are provided with the first based

on the 0-1 classification error and the second on Hamming distance. With these

formulations, we propose algorithms that utilize linear programming relaxation, block
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coordinate descent, and alternating minimization. For a variant of the Hamming

distance formulation in the noiseless case, sufficient conditions are provided for

the relaxed formulation to have binary optimal solutions. Numerical results show

that two-level Boolean functions typically have considerably lower error rates than

one-level functions. The block coordinate descent and alternating minimization

algorithms provide very good tradeoffs between accuracy and function simplicity.

These two algorithms overall outperform the other algorithms except for C5.0 in

terms of accuracy; compared with C5.0, the block coordinate descent and alternating

minimization algorithms have similar accuracy and much better function simplicity.

Moreover, the clause disabling mechanism is effective for improving the accuracy-

simplicity tradeoff on simple datasets when the specified number of clauses is too

large, and the new redundancy-aware binarization has been shown to reduce the

total number of features compared with simple thresholding binarization. Directions

for future work include alternative accuracy cost in the formulation, alternative

initialization approaches for the iterative algorithms, and alternative methods for

the conversion from continuous-valued feature variables to binary variables.
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Appendix A

Further Discussion on Operator

Mapping

This appendix shows further discussion on operator mapping in Section 1.1.4 that is

used to mathematically describe the modular composition. In particular, we focus

on the modular composition by replacing each delay element in a FIR filter F (z−1)

with an identical copy of another system module G {·}, as is shown in Figure 1-2. In

Section 1.1.4, we have introduced that the modular composition can be interpreted

from the following perspective of operator mapping: the system within which we

embed another module creates a higher-level operator, which has both its input and

output as lower-level operators that work on the set of signals.

For a FIR filter F (z−1) in the direct form structure, the higher-level operator F

has a close relationship with the transfer function F (z−1). If we denote F⟨G⟩ {·} as

the system obtained by embedding G {·} into F (z−1), then the operator F associated

with Figure 1-2 (b) satisfies

F⟨G⟩ {x[n]} = a0 · x[n] + a1 ·G {x[n]}+ a2 · (G ◦G) {x[n]}+ · · ·+ aM ·G[M ] {x[n]}

=
M∑
m=0

am ·G[m] {x[n]}

=

(
M∑
m=0

am ·G[m]

)
{x[n]} , (A.1)
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where G[m] {·} denotes the cascade system with m modules of G {·}. Consequently, if

we symbolically substitute z−m in F (z−1) with G[m] (i.e. interpreting the mth power

of the independent variable as the mth iterate of the operator), then F (z−1) becomes

F⟨G⟩.

For other block diagram structures of the FIR system F (z−1) that are different

from Figure 1-2 (a), the relationship (A.1) does not necessarily hold. Generally, the

modular system F⟨G⟩ {·} with an arbitrary module G {·} depends not only on the

transfer function F (z−1) but also on the block diagram structure1. As an example,

Figure A-1 (a) shows the transposed structure of the direct form [26], which has the

same transfer function as Figure 1-2 (a); however, the modular systems in Figure

A-1 (b) and Figure 1-2 (b) are typically different for a general module G {·}. While

this structure-dependent property may cause potential challenges in obtaining the

closed-form operator expression for a general modular system, it also introduces

potential flexibility to represent different systems with the same key blocks and

different interconnections.

Since the modular filter in Figure 1-1 (b) can be recovered from the modular

system in Figure 1-2 (b) with the additional constraint that G {·} is a LTI filter, we

revisit the modular filter from the perspective of operator mapping. Since G {·} is

a linear filter, its multiple cascade G[m] {·} has the transfer function as (G(z−1))
m
.

Thus, applying the relationship (A.1), the transfer function of the system F⟨G⟩ {·}

becomes exactly the function composition (F ◦ G)(z−1). In addition, when G {·} is

a LTI filter, the modular systems generated from different block diagram structures2

of F (z−1) have the same transfer function and are thus structure-independent.

Finally, we have a few remarks on the operator mapping that is discussed above.

(a) The operator mapping could be considered as a generalization of the matrix

polynomial [165] in linear algebra, which refers to a polynomial with square

1For simplicity, the influence of initial states of delay elements is not considered in our discussion,
i.e. we assume that all delay elements are initial-rest.

2We assume that the block diagrams have only delay elements, scaling coefficients, and addition
blocks. The conclusion may not hold for more sophisticated structures with expanders or decimators,
e.g. polyphase decomposition [26].
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(a): FIR filter F (z−1) in the transposed structure of the direct form

(b): Modular system with the transposed structure of F (z−1)

Figure A-1: Embedding G {·} into the FIR filter F (z−1) in the transposed structure
of the direct form.

matrices as variables and using matrix multiplication rules. Each matrix

naturally corresponds to a linear operator; however, the operators in our

discussion can be nonlinear and do not need to correspond to a matrix.

(b) The operator mapping could be considered as a generalization of the second

interpretation of univariate function composition at the beginning of Section

1.1.1, if we substitute the operator Flc that works on set of functions by the

higher-level operator F that works on the set of lower-level operators U in

(1.4).

(c) For clarity, we compare cascade system and modular system in Table A.1 on

both the description from the perspective of operators and the property of

the transfer functions in the special situation where the systems involved are

constrained to be LTI systems.

Table A.1: Comparison between cascade and embedded systems
System Operator Transfer Function if
Structure Description the Systems are LTI

Cascade System Operator Composition Multiplication
Modular System Operator Mapping Function Composition

151



152



Appendix B

Alternative Low Rank Matrix

Approximation Algorithms

This appendix reviews three existing algorithms for low rank matrix approximation,

namely nuclear norm minimization [114], singular value projection (SVP) [115], and

atomic decomposition for minimum rank approximation (ADMiRA) [116]. These

algorithms are applied to our problem of bivariate polynomial factorization and

compared in the numerical simulation in Section 3.4.3. The formulation (3.22) with

the squared ℓ2-norm of approximation error is used for the algorithms in this appendix,

namely

min
M

Vpoly(M) ,
P∑
i=0

Q∑
j=0

hi,j − ∑
(a,b)∈C(i,j)

Ma,b

2

, (B.1)

s.t. M is rank one, (B.2)

where the index sets C(i, j) are from (3.18).

B.1 Nuclear Norm Minimization

The nuclear norm minimization algorithm considers a convex formulation that is

related to the low rank matrix approximation problem [114]. In particular, the rank
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constraint (B.2) is converted into the objective function as follows:

min
M

√√√√√ P∑
i=0

Q∑
j=0

hi,j − ∑
(a,b)∈C(i,j)

Ma,b

2

+ λ · rank (M) , (B.3)

where λ is the weight of the rank term.

Since the rank of a matrix is a non-convex function, it can be replaced by the

convex nuclear norm, which refers to the summation of the singular values of a matrix,

i.e.

min
M

√√√√√ P∑
i=0

Q∑
j=0

hi,j − ∑
(a,b)∈C(i,j)

Ma,b

2

+ λ · ∥M∥∗ , (B.4)

where ∥M∥∗ denotes the nuclear norm. The convex formulation (B.4) is already

solvable by existing optimization solvers such as CVX [133]. From the perspective

of convex approximation, the relationship between the nuclear norm and the rank of

a matrix [114] is similar to that between the ℓ1-norm and the ℓ0-norm of a vector,

where the latter relationship has been widely used in compressive sensing [4]. More

generally, the approximation techniques of both the nuclear norm and ℓ1-norm belong

to the class of atomic norms [166].

B.2 Singular Value Projection

The singular value projection (SVP) algorithm has an iterative process [115]. In

the kth iteration, gradient descent is performed at the current solution M(k−1) with

respect to the objective function (B.1), and then the result is projected to the rank-

one matrix set by taking SVD and keeping only the largest singular value. A detailed

description of this algorithm is as follows.

Singular Value Projection [115]

(1) Initialize M(0) = 0. Let k = 1.

(2) In the kth iteration, perform the following steps:

(3) Compute the gradient: G
(k)
M = d

dM
Vpoly(M

(k−1)).
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(4) Perform gradient descent: M
(k)
temp = M(k−1) − µ ·G(k)

M .

(5) Project the result onto the set of rank-one matrices:

Compute the singular value decomposition of M
(k)
temp, and construct

the projection as M(k) = u
(k)
temp · σ

(k)
temp ·

(
v
(k)
temp

)T
, in which σ

(k)
temp

is the largest singular value of M
(k)
temp, and u

(k)
temp and v

(k)
temp are

the corresponding left and right singular vectors, respectively.

(6) k ← k + 1.

(7) Iterate until the results between consecutive iterations have difference

smaller than a threshold, or a threshold on the iteration steps is reached.

(8) Let f = u
(k)
temp and g = σ

(k)
temp · v

(k)
temp, and obtain F (x, y) and G(x, y).

Certain conditions are proposed in [115] for the SVP algorithm to converge to the

optimal solution with high probability; however, these conditions generally are not

guaranteed in our problem.

Practically, in Step (4) that performs gradient descent, the choice of the step size µ

has a tradeoff between possibly reducing the likelihood of divergence and potentially

improving the convergence rate. A small step size µ makes it less likely to diverge

while requires more steps to converge. However, due to the projection in Step (5)

onto the set of rank-one matrices, the precise analysis of the convergence criterion

with respect to µ in a general setting seems unclear.

B.3 Atomic Decomposition for Minimum Rank

Approximation

The atomic decomposition for minimum rank approximation algorithm (ADMiRA)

[116] takes iterations to obtain the solution. It can be high-levelly regarded as a

generalization of the Compressive Sampling Matching Pursuit (CoSaMP) algorithm

[167] from the sparse signal recovery problem to low rank matrix approximation.

The ADMiRA algorithm keeps track of a set of candidates for special rank-one

matrices (referred to as “atoms” in [116]), and aims to determine a rank-r matrix
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M with low error from the available linear observations ∥h−H(M)∥2, where h is the

vector of observations and H(·) is a linear operator from the space of matrices to the

observations. In the problem of bivariate polynomial factorization, h is the vector of

reorganized coefficients of the input polynomial H(x, y), and H(·) corresponds to the

summation of elements of the matrix M in (3.17) that correspond to similar terms.

Each iteration in ADMiRA consists of three main steps: first, new atoms are

added to the set of candidates by the reduction of the current approximation error,

so the set is enlarged and has more candidates than the target rank of the solution

matrix; second, a least squares solution is obtained within the space spanned by the

atoms in the enlarged candidate set; third, the solution in the second step is projected

to the rank-r matrix set using SVD, and the candidate set is also updated to have

only r atoms. A detailed description of this algorithm with the special setting r = 1

is as follows.

Atomic Decomposition for Minimum Rank Approximation [116]

(1) Initialize M(0) = 0. Let k = 1.

The candidate set of rank-one matrices O = ∅.

(2) In the kth iteration, perform the following steps:

(3) Enlarge the candidate set O:

(3.1) Compute the matrix ∆M = H∗ (h−H(M(k−1))
)
, where H∗ is the

adjoint operator of H.

(3.2) Obtain the SVD of ∆M, and use the singular vectors associated

with each of the two largest singular values to construct two

rank-one matrices referred to as E1 and E2.

(3.3) Let O = O ∪ {E1,E2}.

(4) Least squares solution in the span of O:

M
(k)
temp = argminM∈span(O) ∥h−H(M)∥2.

(5) Project the result onto the set of rank-one matrices:

(5.1) Compute the singular value decomposition of M
(k)
temp.

(5.2) Construct the projection as M(k) = u
(k)
temp · σ

(k)
temp ·

(
v
(k)
temp

)T
, in which

σ
(k)
temp is the largest singular value of M

(k)
temp, and u

(k)
temp and v

(k)
temp are

156



the corresponding left and right singular vectors, respectively.

(5.3) Update the candidate set O =

{
u
(k)
temp ·

(
v
(k)
temp

)T}
.

(6) k ← k + 1.

(7) Iterate until the results between consecutive iterations have difference

smaller than a threshold, or a threshold on the iteration steps is reached.

(8) Let f = u
(k)
temp and g = σ

(k)
temp · v

(k)
temp, and obtain F (x, y) and G(x, y).

For performance guarantee, there are conditions in [116] for the ADMiRA

algorithm to obtain a low rank solution that is very close to the optimal matrix;

however, similar to the situation with the SVP algorithm, these conditions generally

are not guaranteed in our problem.
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Appendix C

Proofs for Theorems 3.1 and 3.2

This appendix demonstrates Theorems 3.1 and 3.2 in Section 3.4.2, which establish

the relationship between the formulations (3.22) and (3.23).

First, we show the proof for Theorem 3.1.

Proof for Theorem 3.1: Define D = M̂− M̃ as the difference between a matrix M̂ in

the linear space Ucoeff and the fixed matrix M̃ ∈ Urank. Then, our goal is to minimize

∥D∥2F =
∑
a

∑
b

D2
a,b =

P∑
i=0

Q∑
j=0

 ∑
(a,b)∈C(i,j)

D2
a,b

 , (C.1)

where in the last step we utilize the fact that the index sets C(i, j) form a partition

of all the elements in the matrix D. Therefore, if we could minimize
∑

(a,b)∈C(i,j)D
2
a,b

for each (i, j), then the Frobenius norm of D is minimized. From the definition of

Ucoeff in (3.21), we know that D satisfies

∑
(a,b)∈C(i,j)

Da,b = hi,j −
∑

(a,b)∈C(i,j)

M̃a,b.

The Cauchy’s inequality implies that

∑
(a,b)∈C(i,j)

D2
a,b ≥

1

|C(i, j)|
·

 ∑
(a,b)∈C(i,j)

Da,b

2

=
1

|C(i, j)|
·

hi,j − ∑
(a,b)∈C(i,j)

M̃a,b

2

,

(C.2)
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with the equality achieved when

Da,b =
hi,j −

∑
(a′,b′)∈C(i,j) M̃a′,b′

|C(i, j)|
(C.3)

holds for all (a, b) ∈ C(i, j).

In summary, the matrix M̂proj that minimizes (3.23) has the expression below

M̂proj
a,b = M̃a,b +

R(i, j)

|C(i, j)|
, for (a, b) ∈ C(i, j), for all (0, 0) ≤ (i, j) ≤ (P,Q),

where

R(i, j) = hi,j −
∑

(a′,b′)∈C(i,j)

M̃a′,b′ .

As a result, Theorem 3.1 is proved. �

Then, we show the proof for Theorem 3.2.

Proof for Theorem 3.2: From the proof for Theorem 3.1 above, we see that for a

rank-one matrix M̃ ∈ Urank, its projection M̂proj onto the linear space Ucoeff achieves

the equality in (C.2),

hi,j − ∑
(a,b)∈C(i,j)

M̃a,b

2

= |C(i, j)| ·
∑

(a,b)∈C(i,j)

(
M̂proj

a,b − M̃a,b

)2
.

If we take the summation over all (0, 0) ≤ (i, j) ≤ (P,Q), then it results in

Vpoly(M̃) =
P∑
i=0

Q∑
j=0

hi,j − ∑
(a,b)∈C(i,j)

M̃a,b

2

=
P∑
i=0

Q∑
j=0

|C(i, j)| · ∑
(a,b)∈C(i,j)

(
M̂proj

a,b − M̃a,b

)2 .

As a result, we obtain the following bounds

(
min
(i,j)
|C(i, j)|

)
·

P∑
i=0

Q∑
j=0

 ∑
(a,b)∈C(i,j)

(
M̂proj

a,b − M̃a,b

)2 ≤ Vpoly(M̃)
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≤
(
max
(i,j)
|C(i, j)|

)
·

P∑
i=0

Q∑
j=0

 ∑
(a,b)∈C(i,j)

(
M̂proj

a,b − M̃a,b

)2 ,

and further combining the fact that the sets C(i, j) form a partition of all the elements

in the dimensionally lifted matrices results in

(
min
(i,j)
|C(i, j)|

)
·
∥∥∥M̂proj − M̃

∥∥∥2
F
≤ Vpoly(M̃) ≤

(
max
(i,j)
|C(i, j)|

)
·
∥∥∥M̂proj − M̃

∥∥∥2
F
.

Applying the definition of VFro(M̃, M̂) from (3.23) into the equation above, we have

arrived at the statement (3.27).

In order to show (3.28), the optimal solutions to the formulations (3.22) and (3.23)

are denoted as

Mpoly = argmin
M ∈ Urank

Vpoly(M), (C.4)(
M̃Fro, M̂Fro

)
= argmin

(M̃, M̂) ∈ Urank×Ucoeff

VFro(M̃, M̂). (C.5)

Letting M̃ in (3.27) take the value of M̃Fro, we know that M̂Fro becomes the

corresponding M̂proj, which says

Vpoly(M̃
Fro) ≤

(
max
(i,j)
|C(i, j)|

)
· VFro(M̃Fro, M̂Fro) =

(
max
(i,j)
|C(i, j)|

)
· V opt

Fro .

The optimality of Mpoly implies

V opt
poly = Vpoly(M

poly) ≤ Vpoly(M̃
Fro) ≤

(
max
(i,j)
|C(i, j)|

)
· V opt

Fro .

Letting M̃ in (3.27) take the value of Mpoly, we know that

V opt
poly = Vpoly(M

poly)

≥
(
min
(i,j)
|C(i, j)|

)
· VFro(Mpoly, M̂proj)
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≥
(
min
(i,j)
|C(i, j)|

)
· VFro(M̃Fro, M̂Fro)

=

(
min
(i,j)
|C(i, j)|

)
· V opt

Fro .

Consequently, the statement (3.28) is demonstrated. As a result, we have

completed the proof for Theorem 3.2. �
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Appendix D

Derivation of the Optimal Solution

(4.9)

This appendix presents the derivation of the optimal solution (4.9) to the formulation

(4.8), under the assumption that the matrix S(ejω) in (4.6) has full rank for each ω. In

fact, we present the derivation of the multi-input single-output (MISO) Wiener’s filter

[121, 122]. Figure 4-2 shows that ỹl[n] is the output of the LTI system Hl(e
jω) with

the input ũl[n] = fl(x[n]), and thus the following correlation functions are obtained

from the basic properties of correlation functions [26],

Ry,ỹl [m] , E {y[n+m] · ỹ∗l [n]} = Ry,fl [m] ∗ h∗l [−m],

Rỹl,ỹk [m] , E {ỹl[n+m] · ỹ∗k[n]} = Rfl,fk [m] ∗ hl[m] ∗ h∗k[−m],

where Ry,fl [m] and Rfl,fk [m] are introduced in (4.4) and (4.5), respectively; the

superscript “∗” denotes the complex conjugate; hl[m] is the impulse response of the

LTI system Hl(e
jω).

The corresponding power spectral density functions satisfy

Sy,ỹl(e
jω) = Sy,fl(e

jω) ·H∗
l (e

jω),

Sỹl,ỹk(e
jω) = Sfl,fk(e

jω) ·Hl(e
jω) ·H∗

k(e
jω).
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Since the output signal ỹ[n] =
∑L

l=1 ỹl[n], the power spectral density functions with

ỹ[n] satisfy

Sy,ỹ(e
jω) =

L∑
l=1

Sy,ỹl(e
jω) =

L∑
l=1

Sy,fl(e
jω) ·H∗

l (e
jω), (D.1)

Sỹ,ỹ(e
jω) =

L∑
l=1

L∑
k=1

Sỹl,ỹk(e
jω) =

L∑
l=1

L∑
k=1

Sfl,fk(e
jω) ·Hl(e

jω) ·H∗
k(e

jω). (D.2)

For simplification of the notations, we introduce the vectors h(ejω) and d(ejω) as

h(ejω) ,


H1(e

jω)
...

HL(e
jω)

 , (D.3)

d(ejω) ,


Sy,f1(e

jω)
...

Sy,fL(e
jω)

 . (D.4)

We can see that (D.1) and (D.2) become

Sy,ỹ(e
jω) = h†(ejω) · d(ejω), (D.5)

Sỹ,ỹ(e
jω) = h†(ejω) · ST(ejω) · h(ejω) = h†(ejω) · S∗(ejω) · h(ejω), (D.6)

in which the superscripts “T” and “†” indicate the transpose and the conjugate

transpose, respectively; the matrix S(ejω) is introduced in (4.6), and in the last step

of (D.6) we apply the property Sfl,fk(e
jω) = S∗

fk,fl
(ejω) and thus ST(ejω) = S∗(ejω).

In the first step of the parameter estimation procedure in Section 4.1.3, the

objective function is (4.8), which can be simplified as

E
{
|y[n]− ỹ[n]|2

}
= E {y[n]y∗[n]− ỹ[n]y∗[n]− y[n]ỹ∗[n] + ỹ[n]ỹ∗[n]}

= Ry,y[0]−Rỹ,y[0]−Ry,ỹ[0] +Rỹ,ỹ[0]
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= Ry,y[0] +
1

2π

∫ π

−π

(
−Sỹ,y(ejω)− Sy,ỹ(ejω) + Sỹ,ỹ(e

jω)
)
dω

= Ry,y[0] +
1

2π

∫ π

−π

(
− d†(ejω) · h(ejω)− h†(ejω) · d(ejω) + h†(ejω) · S∗(ejω) · h(ejω)

)
dω,

(D.7)

where the step (D.7) utilizes (D.5) and (D.6), as well as the fact that Sỹ,y(e
jω) =

S∗
y,ỹ(e

jω).

Since each frequency in the objective function (D.7) is independent of all the other

frequencies, the objective function (D.7) can be minimized over h(ejω) pointwisely

for each frequency, i.e.

hopt(ejω) = argmin
h(ejω)

(
−d†(ejω) · h(ejω)− h†(ejω) · d(ejω) + h†(ejω) · S∗(ejω) · h(ejω)

)
.

(D.8)

We first show that the matrix S∗(ejω) is positive semidefinite. By definition, we

aim to show that for any q ∈ CL, it holds that q† ·S∗(ejω) · q ≥ 0. If we consider the

stochastic signal f̃ [n] below,

f̃ [n] ,
L∑
l=1

ql · fl(x[n]),

then the auto-correlation function of f̃ [n] is

Rf̃ ,f̃ [m] =
L∑
l=1

L∑
k=1

ql · q∗k · E {fl(x[n+m]) · f ∗
k (x[n])} =

L∑
l=1

L∑
k=1

ql · q∗k ·Rfl,fk [m].

We then see that the power spectral density of f̃ [n] is

Sf̃ ,f̃ (e
jω) =

L∑
l=1

L∑
k=1

ql · q∗k · Sfl,fk(ejω)

=
L∑
l=1

L∑
k=1

ql · q∗k · S∗
fk,fl

(ejω)

= q† · S∗(ejω) · q.

165



Since the power spectral density of the stochastic signal f̃ [n] is always non-negative,

the result above shows that

q† · S∗(ejω) · q ≥ 0

and thus S∗(ejω) is positive semidefinite.

Moreover, with the assumption that S(ejω) always has full rank, the matrix S∗(ejω)

at each frequency is actually positive definite. As a result, we can factorize the matrix

S∗(ejω) as

S∗(ejω) = Q†(ejω) ·Q(ejω),

where Q(ejω) ∈ CL×L is an invertible matrix. We can then simplify (D.8) as

hopt(ejω) = argmin
h(ejω)

∥∥∥Q(ejω) · h(ejω)−
(
Q†(ejω)

)−1 · d(ejω)
∥∥∥2
2
−d†(ejω)·

(
S∗(ejω)

)−1·d(ejω),

where d(ejω) is introduced in (D.4). We can observe that the optimal solution to the

formulation above is

hopt(ejω) =
(
Q(ejω)

)−1 ·
(
Q†(ejω)

)−1 · d(ejω) =
(
S∗(ejω)

)−1 · d(ejω),

which completes the derivation of the optimal solution (4.9).

Finally, we can obtain the minimal value of the objective function in (4.8).

Applying (4.9) in (D.7), it can be seen that

min
h(ejω)

E
{
|y[n]− ỹ[n]|2

}
= Ry,y[0]−

1

2π

∫ π

−π

(
d†(ejω) ·

(
S∗(ejω)

)−1 · d(ejω)
)
dω,

which is the minimal mean squared error in the first step of the parameter estimation

algorithm in Section 4.1.3.
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Appendix E

Proofs for Theorems 6.1 and 6.2

This appendix shows the proofs for Theorems 6.1 and 6.2 in Section 6.2.2, which

propose sufficient conditions under which the relaxation with 0 ≤ wj,r ≤ 1 or wj,r ≥ 0

for the variant Hamming distance formulation (6.14) is guaranteed to have binary

optimal solutions.

First, we show the proof for Theorem 6.1.

Proof for Theorem 6.1: The key part of this proof aims to show that for any feasible

solution W̃ to the relaxed formulation for (6.14) with wj,r ≥ 0, each clause in W∗

corresponds to a clause in W̃; more specifically, for the rth clause w∗
r in the true

CNF function, there is a clause w̃r′ in any feasible solution such that (i) w̃j,r′ = 0 if

w∗
j,r = 0, and (ii) w̃j,r′ ≥ 1 if w∗

j,r = 1. Since there are no redundant clauses in the

true CNF function, the above mapping between clauses in the true CNF and in any

feasible solution is bijective.

Without loss of generality, this proof focuses on the rth clause w∗
r . We define

P∗
r = {j : w∗

j,r = 1} and Z∗
r = {j : w∗

j,r = 0} as the index sets of positive and zero

items in this clause.

First we show that in any feasible solution W̃ to the formulation (6.14) with

relaxation wj,r ≥ 0, there is a clause satisfying w̃j,r′ = 0 for all j ∈ Z∗
r . We know

from assumption (c) that there exists a training example i such that w∗
j,r = ai,j for

all 1 ≤ j ≤ d. It is clear that the rth clause of this training example has value 0,

and therefore its true output label is yi = 0. From the constraint (6.16), any feasible
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solution W̃ to the relaxed formulation has a clause w̃r′ that satisfies

d∑
j=1

ai,jw̃j,r′ = 0.

Since ai,j = w∗
j,r and w̃j,r ≥ 0, it is shown that w̃j,r′ = 0 for all j ∈ Z∗

r .

The next step is to show that w̃j,r′ ≥ 1 for all j ∈ P∗
r . For each j0 ∈ P∗

r , we

introduce an auxiliary clause ŵ with elements

ŵj′ =

w
∗
j′,r for j′ ̸= j0,

0 for j′ = j0.

We aim to show that there exists a training example al,j with yl = 1 in the dataset,

on which the clause ŵ has output 0. Combining the M -disjunct property from

assumption (a) and the fact |P∗
r | ≤M , we know that there exists a training example

with ai′,j0 = 1 and ai′,j′ = 0 for all j′ ∈ P∗
r \{j0}, on which ŵ has output 0 while w∗

r

has output 1; in the corresponding columns in EM(A), the 0’s in the column of w∗
r do

not cover the 0’s for ŵ. Since we assume that the true CNF has no redundant clauses,

the 0’s for clause w∗
t with t ̸= r do not cover the 0’s for w∗

r and thus do not cover

the 0’s for ŵ. Consequently, the 0’s for ŵ are not covered by any individual clause

in W∗; with the generalized R-conjunct property of the augmented feature matrix

EM(A), the 0’s for ŵ are not covered by the union of all the 0’s for w∗
t (1 ≤ t ≤ R),

where the latter is the 0’s in the true labels. Consequently, we see that there exists a

training example al,j with yl = 1, on which the clause ŵ has output 0.

Since ŵ has output 0 for the lth training example, we know al,j′ = 0 for all

j′ ∈ P∗
r \{j0}; combined with the fact that w̃j′,r′ = 0 for j′ ∈ Z∗

r , the constraint (6.15)

indicates
d∑

j′=1

al,j′w̃j′,r′ =
∑
j′∈P∗

r

al,j′w̃j′,r′ = al,j0w̃j0,r′ ≥ 1,

which leads to w̃j0,r′ ≥ 1. Since j0 is an arbitrary item in P∗
r , it follows that w̃j,r′ ≥ 1

for all j ∈ P∗
r .
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Up to now, we have shown that any feasible solution W̃ to the formulation (6.14)

with relaxation wj,r ≥ 0 is guaranteed to have the following properties: for the rth

clause w∗
r , there exists a corresponding clause w̃r′ such that w̃j,r′ = 0 when w∗

j,r = 0,

and w̃j,r′ ≥ 1 when w∗
j,r = 1. The non-redundancy property of the true CNF function

shows that two clauses in W∗ cannot correspond to the same clause in W̃, which

leads to a bijective mapping between the clauses in W∗ and W̃.

The last step to establish the two claims in Theorem 6.1 is as follows:

(i) If we use the relaxation 0 ≤ wj,r ≤ 1, then any feasible solution has

corresponding clauses satisfying w̃j,r′ ≥ 1 and w̃j,r′ ≤ 1 for j such that w∗
j,r = 1.

We then have w̃j,r′ = w∗
j,r for all 1 ≤ j ≤ d, i.e. the corresponding clauses

are identical. The bijective clause mapping argument shows that any feasible

solution W̃ is identical to the true CNF function W∗ up to a permutation of

the clauses.

(ii) If we use the relaxation wj,r ≥ 0, then any feasible solution W̃ satisfies

d∑
j=1

w̃j,r′ =
∑
j∈P∗

r

w̃j,r′ ≥ |P∗
r | .

Therefore, taking the summation over 1 ≤ r′ ≤ R, we know the objective in

(6.14) satisfies
R∑

r′=1

d∑
j=1

w̃j,r′ ≥
R∑
r=1

|P∗
r | =

R∑
r=1

d∑
j=1

w∗
j,r.

As a result, the minimal objective value is
∑R

r=1 |P∗
r |; the optimal solution has

to satisfy w̃j,r′ = 1 for j ∈ P∗
r . Combined with the results above, we have finally

shown that any optimal solution to (6.14) with relaxation wj,r ≥ 0 is identical

to the true CNF function up to a permutation of the clauses.

This has completed the proof for Theorem 6.1. �
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Next, we show the proof for Theorem 6.2.

Proof for Theorem 6.2: First we show the sufficiency. For any (R + 1) columns in

the augmented matrix EM(A), their corresponding disjunctive clauses are denoted

as ŵ0, . . . , ŵR, and we consider the coverage of the 0’s for ŵ0 by the union of the 0’s

for the other R clauses. If the 0’s for ŵ0 are not covered by the 0’s for any of ŵr

(1 ≤ r ≤ R), then the selected features in ŵr are not covered by ŵ0. We denote xjr

as a feature that is selected in ŵr but not in ŵ0, and construct the feature subsets

P = {jr : 1 ≤ r ≤ R}. In addition, we define Z = {j : xj is selected in ŵ0}.

These two subsets are disjoint by construction and satisfy 1 ≤ |P| ≤ min{R, d} and

1 ≤ |Z| ≤ M , so there exists a training example ai,j that satisfies ai,j = 1 for all

j ∈ P and ai,j = 0 for all j ∈ Z. For this training example, ŵr has output 1 for all

1 ≤ r ≤ R, while ŵ0 has output 0; consequently, the 0’s for ŵ0 are not covered by the

union of the 0’s for ŵr (1 ≤ r ≤ R), implying the generalized R-conjunct property of

EM(A).

Then we show the necessity of this condition when A is M -disjunct. We denote

P = {j1, j2, . . . , j|P|} and define ŵr as the clause that selects a single feature xjr

(1 ≤ r ≤ |P|). We define another clause ŵ0 that takes the disjunction of all features

in the subset Z. For each fixed 1 ≤ r ≤ |P|, since jr ̸∈ Z, the M -disjunct property

of the matrix A implies that there exists a training example on which ŵ0 has output

0 while the jthr feature is 1, and therefore the 0’s for ŵ0 are not covered by those for

ŵr. Since |P| ≤ R, the generalized R-conjunct property of EM(A) implies that there

exists a training example ai,j on which ŵ0 has output 0 and all ŵr (1 ≤ r ≤ |P|) have

output 1. By definition, this training example has ai,j = 1 for all j ∈ P and ai,j = 0

for all j ∈ Z. �
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Epilogue

A Ph.D. journey typically has much richer and broader experience than the pure

development of technical contents in the thesis. Even if constrained to the technical

perspective, the path that leads to the final shape of the thesis can be rather

“nonlinear”, with fun stories and significant deviation from the order in which the

contents are presented. Looking back the six years at MIT working with Al, this

epilogue is concerned with some memories of my pleasant experiences and especially

the development of this thesis.

After coming to MIT in 2011, I completed my master’s program in the first two

years. My master’s thesis was on polynomial decomposition algorithms in signal

processing, for which I was in a close collaboration with Dr. Sefa Demirtas, who

was a Ph.D. candidate in the same group as me and then became one of my Ph.D.

thesis committee members a few years later. We learned and proposed algorithms

for univariate polynomial decomposition, among which a method noticed by Sefa

was based on the rank-deficient Ruppert matrix approximation. Although this

method seemed to have certain numerical challenges for polynomial decomposition,

it inspired me to think about other topics later in my Ph.D. program. I performed

two internships during my master’s program, one with Dr. Davis Y. Pan at Bose

Corporation and the other with Dr. Arthur J. Redfern at Texas Instruments. Both

managers are great and very nice people, with whom I had a lot of awesome

experiences not only for the projects but also for after-work activities such as sailing

and playing golf.

In Fall 2013, my Ph.D. research started in the direction of nonlinear signal

processing, with Al’s question “What are interesting nonlinear phenomena that can
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benefit signal processing?” As a result, I was exposed to Volterra models, inversion

of a nonlinear system, and various creative methods developed by Digital Signal

Processing Group alumni (e.g. Dr. Kevin M. Cuomo, Dr. Steven H. Isabelle, Dr.

Andrew C. Singer, and Dr. Wade P. Torres) that made use of chaotic systems

or nonlinear differential equations for signal processing purposes, which I fully

appreciated. Aside from research, I was one of the teaching assistants for Al’s course

Discrete-time Signal Processing. Al’s lectures in that semester were videotaped for

a MOOC (massive open online course) on edX, and it was a pleasant experience to

participate in the development of new techniques and materials that were used in the

MOOC.

In Spring 2014, I took the course Information Acquisition and Processing offered

by Dr. Petros T. Boufounos. Inspired by the topic of compressive sensing that was an

important part of the course, I investigated the problem of sparse signal recovery with

nonlinear observations, where in particular each observed variable had a quadratic

form with respect to the sparse signal. In fact, this problem had been explored in

the compressive sensing community; related to the traditional compressive sensing

problem, two possible methods to this problem were convex relaxation and greedy

approaches. Although this problem was not directly related to my thesis, the low rank

matrix approximation formulation for bivariate polynomial factorization in this thesis

may be considered as high-levelly related to the compressive sensing problem. In the

following summer, I had a pleasant internship at A9.com, a subsidy of Amazon.com,

working with Dr. Simant Dube on fun computer vision problems.

Inspired by the fact that Fourier series can be a better approximation than Taylor

series when the criterion is the global approximation error on an interval rather than

locally at a single point, I considered alternative criteria for the approximation of

nonlinear systems other than the commonly used ℓ2-norm of error. As an example, I

considered the minimax approximation of a higher-order Volterra system with a lower-

order system. As Al suggested, we started with the most tractable situation where the

lower-order Volterra system is a linear system. Similar to the alternation theorem that

characterizes the minimax approximation of a one-dimensional function, I discovered a
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sufficient and necessary condition for a given linear system to be the optimal minimax

approximation for a nonlinear Volterra system with finite memory states. However,

the generalization of this result seemed challenging if a more sophisticated lower-order

Volterra system was used in approximation.

As the exploration evolved, the direction of my Ph.D. project gradually moved

towards a combination of nonlinear systems and composition structures. As a

motivating problem, I was interested in modeling a nonlinear or time-variant system

with the cascade of nonlinear blocks, time-warping blocks, and linear filters, where

the cascade can be interpreted as the composition of operators. Another contributing

motivation for nonlinear systems in composition structures was the work of Dr. Pablo

Mart́ınez Nuevo (my office mate) and Hsin-Yu (Jane) Lai on amplitude sampling,

which represents a signal with a series of timestamps at which the value of the

signal crosses a set of pre-specified thresholds. There turned out to be a pair of

signals that are related in a nonlinear pattern and can be conveniently described by

function composition. Then I noticed that there were existing works on iterative

function equations, some of which had been applied in signal processing and system

representation. Aside from research, I served as a teaching assistant for a second time

in Spring 2015, for Prof. Gregory W. Wornell and Prof. Stefanie S. Jegelka who taught

the course Inference and Information. In addition to the enjoyable TA experience, I

personally gained much deeper understanding on the related topics including decision

and estimation theory, inference algorithms, information geometry, and asymptotics,

which I found really attractive.

In Summer 2015, I had a terrific internship at IBM Research, working with Dr.

Dennis Wei, Dr. Kush R. Varshney, and Dr. Dmitry M. Malioutov. The project

for the internship was to learn two-level Boolean functions from a dataset as a

human-interpretable classifier, where the two-level Boolean function has the form

of multivariate function composition; Chapter 6 of my thesis originated from this

internship project. Feeling attracted, I further developed this project after coming

back to MIT from the internship, especially on the theoretical analysis for the noiseless

formulation. With exploration of the disjunct and conjunct properties, I came up with
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the sufficient conditions that guarantee the optimal solution to the relaxed formulation

be binary, which was shown in Theorem 6.1 in Section 6.2.2.

The thesis topic became more inclined to composition structures as time went by,

for which I personally considered that cascade systems would be unified as operator

composition. The exploration of operator composition led me to an interesting

observation that a cascade representation of a two-dimensional FIR filter achieves

parameter reduction if the order in each dimension is maintained, which other

researchers had already discovered. I then became more interested in bivariate

polynomial factorization, which was gradually developed into Chapter 3 of this thesis.

Initially, I considered the bivariate polynomial factorization algorithm that utilizes

the rank-deficient approximation of the Ruppert matrix, which was explored in my

master’s thesis on univariate polynomial decomposition. As mentioned, when applied

to univariate polynomial decomposition, the empirical issues of numerical precision

associated with this algorithm limited the degrees of the input polynomials. However,

I was curious about the performance of this algorithm on bivariate polynomial

factorization, which could have a different empirical performance from that of

polynomial decomposition. Unfortunately, the direct application of this algorithm

was actually not smooth; moreover, this algorithm does not control the degrees of the

two factors, which is different from our problem formulation. Therefore, we decided

not to stick with this algorithm.

Seeking for other methods for bivariate polynomial factorization, I noticed the

approaches that use the zero-sum properties of the root functions. Interestingly, my

master’s thesis also proposed an algorithm for univariate polynomial decomposition,

which is based on related zero-sum properties of roots and formulates a mixed integer

program. In the spirit of combining integer program with zero-sum properties for

bivariate polynomial factorization, I developed the zero-sum mixed integer program

algorithm in Section 3.4.1 of this thesis, which turned out not robust for noise on the

polynomial coefficients.

A new method for bivariate polynomial factorization was inspired from a weekly

meeting with Al in a manner characterized by “free association”, which has occurred
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commonly and is valued by Al’s style. There was a seminar on optimization that

could be interpreted from the concept of dimensional lifting, which Al mentioned

in an individual meeting and connected to a few past techniques developed by

DSPG alumni. Though it was not clear at the first glance whether the concept of

dimensional lifting could be technically related to bivariate polynomial factorization,

later I came up with the idea of using the outer product of two coefficient vectors,

which was developed into the low rank matrix formulation and the lifted alternating

minimization algorithm in Section 3.4.2. For simplicity, the initial parameters in

the simulation were chosen as degx (F ) = degy (F ) = degx (G) = degy (G), and

this new algorithm unfortunately yielded low successful factorization percentage. As

I summarized up the work on bivariate polynomial factorization, Al suggested to

include the existing works on separable filters in references and to articulate the

relationship between polynomial factorization and separable filters, i.e. the separable

filters can be considered as a special situation of factorization with each polynomial

factor dependent on a single variable. Although this special situation did not seem

to be core from a technical perspective, to my surprise, after a few weeks I suddenly

realized that the separable filters should be guaranteed the optimal solution for my

formulation with a single SVD step, which is the first step in the lifted alternating

minimization algorithm. The guaranteed optimality for this special case triggered me

to conjecture that the lifted alternating minimization algorithm might have a more

satisfactory performance than its low success rate in my previous simulation. By a

deeper thinking of the low rank matrix formulation, I finally came up with a possible

reason why the situation with deg (F ) = deg (G) could be especially challenging –

in this situation, the two factors can be swapped with different matrices (i.e. the

outer product of associated vectors) in the dimensionally lifted parameter space but

with the same product polynomial, and therefore the solution space could have a

complicated geometrical structure. As shown in Section 3.4.3, simulation results with

deg (F ) ̸= deg (G) typically yielded considerably improved performance compared

to those with deg (F ) = deg (G), which was used in my first round of simulation.

This improved performance showed the usefulness of the low rank formulation for
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bivariate polynomial factorization. After further discussion with Petros, I searched

and compared with some existing works on low rank matrix approximation.

Thinking of a combination between nonlinear signal processing and operator

composition, I explored more deeply in the thread of the blockwise cascade rep-

resentations of nonlinear systems. Inspired by the over-parametrization approach

for Hammerstein systems where the LTI block has a rational transfer function, I

was curious about whether this thought can be applied to a Hammerstein system

with a general LTI filter, where the latter problem should be more challenging since

it has an infinite-dimensional parameter space. Surprisingly, there was already an

existing mathematical method for quasimatrix approximation that could be used for

the problem that I considered, which led to the results in Section 4.1. Since the study

of blockwise cascade models for nonlinear systems typically considered no more than

three blocks, the more general situation with more than three blocks in cascade was

studied in Section 4.2, with the focus of nonlinear system inversion.

Since Sefa’s thesis was on function composition and decomposition, the articula-

tion of the concept of composition under consideration has been brought up multiple

times in individual and group meetings over the past years, including whether or

how to distinguish function and operator composition. As Al and Sefa suggested, an

interpretation of composition could be the replacement of variables of a function

or modules of a system, and the modular Volterra system in Chapter 5 can be

considered as a combination of this interpretation with nonlinear systems. After

developing the parameter estimation algorithm for a modular Volterra system under

the weak nonlinearity assumption, I later observed that such modular composition

with a nonlinear Volterra module can be described by neither function nor operator

composition in the traditional sense. Instead, it may correspond to operator mapping

that is mentioned in Section 1.1.4.

After the development of the technical materials, the last stage of my Ph.D.

journey focused on the theme and story of the thesis, which Al referred to as the

design of “patch quilt”. Although the thesis was developed with the general concept

of composition, multiple iterations were taken among Al, George, Sefa, and me to
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articulate the focus of the thesis and to have a unified perspective summarizing the

different parts. The key words of this thesis could be composition and parameter

estimation, and Al suggested in a group meeting that the composition structures can

be viewed as a special and important class of constrained parametric models, which

I feel is a really nice perspective.

As a fun exercise, Al encourages his students to summarize the development of

thesis in a “six-word novel”. In retrospect, I feel when looking for a research topic

or a solution to a problem, opportunities can occasionally be hidden in an area too

familiar to be noticed; after becoming familiar with numerous existing works in a

specific area, it may be natural to have the misleading impression that all interesting

problems or all useful solutions in this area have already been sufficiently discovered,

which can usually turn out not the case. However, the discovery of these nearby

opportunities might not result from logical thinking in a focused pattern, but rather

from sudden inspiration that results from making free association and considering

seemingly unrelated problems. Another personal feeling of mine is that when a

method does not get a satisfactory performance, the cause may possibly not be the

uselessness of the algorithm but the settings for evaluation, such as what happened to

the lifted alternating minimization algorithm for bivariate polynomial factorization

with the parameter setting deg (F ) = deg (G). In this case, a simple adjustment of

peripheral settings could possibly result in a related problem for which the same

algorithm has satisfactory performance, i.e. finding the right nail for a hammer.

Notwithstanding, the motivation to make such a simple but important adjustment

may be observations obtained from freely considering a totally different problem that

seems far from the core target. As a summary of these two feelings, my six words

would be: free association discovers hidden opportunities nearby.
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