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Abstract

We present work in identifying, modeling, and predicting the structure of influence in a com-

munication network. We focus on cellular phone data, which provides a near-global population

sample (in contrast to the relatively limited scope of social media and other internet-based datasets)

at the expense of losing any knowledge of the content of the communications themselves.

First, using inexact tree matching and hierarchical clustering, we propose a novel method for

extracting persistent patterns of communication among individuals, which we term persistent cas-
cades. We find the cascades are short in duration (“bursty”), exhibit habitual hierarchy and long-term

persistence, and reveal new roles in weekday vs. weekend spreading. We show that the persistent

cascades in the data are significantly di�erent than what is found in a random network, which we

illustrate both analytically and through simulation. We show that persistent cascade membership

increases the likelihood of receiving information spreading through the network, even after con-

trolling for overall call activity. Finally, we show that the method is extensible to other communi-

cation datasets by applying it to an email dataset. In this case study, we find our approach correctly

identifies key individuals, ignores noise, and identifies several interesting email chains.

Second, we propose a probabilistic model for the influence structure of a network, based on a

multivariate stochastic process called a Hawkes process. We develop a novel approach for parameter

estimation in this model that uses a Bayesian expectation-maximization (EM) schemewith a network

prior. We first apply the model in the univariate case to the group conversations identified using the

persistent cascades methodology. We find that the model performs well as a predictor, and also that

the estimated parameter values reveal two types of persistent cascades: low-activity conversations

with high temporal clustering, and high activity conversations with moderate temporal clustering.

We then apply the model in the multivariate case to samples of the cell phone data, finding that the

resulting estimate of the influence matrix extends our findings with the persistent cascades.
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Thesis Supervisor: Prof. Marta C. González
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1Introduction

In this thesis, we propose novel methodology for identifying and modeling the structure of influence
in a communication network, and we present findings of our methods in several city-scale mobile

phone datasets. This chapter will motivate and introduce our research question, introduce several

key concepts to our approach, and finally summarize our contributions and the outline of the thesis

itself.

1.1 Motivation

Imagine a community of individuals, either small-scale (like a club or classroom) or large-scale (like a

city or customer base). They are connected through various social, work, and familial relationships,

they communicate both in-person and over a growing array of digital mediums, they have opinions

and patterns of behavior — a population described in this way, as a set of measurable, describable

properties, we may broadly refer to as a network.
Now imagine we are interested in how an idea spreads through this network (or how we might

spread an idea ourselves). Who should we talk to? Who are the most e�ective information spreaders?

Who can influence his or her friends’ opinion?

Answering these questions requires something more than knowledge of who is friends with

who, or who communicates with who, that is, it requires more than understanding just the social

network. We are instead searching to understand the influence structure of the network.
And indeed, understanding the structure of influence of a network is at the heart of a broad

range of applications. For example, di�usion modeling (such as information or epidemic spread)

depends on an accurate depiction of the interpersonal influences that can drive the di�usion. Influ-

ence maximization seeks a subset of individuals, under such a di�usion model, to then “target” with

an idea to maximize the spread of some idea or behavior (such as adoption of a product or a political

viewpoint). The entire field of network centrality measures, which aim to provide a quantitative

measure of an individual’s importance in the network, depend on the fact that the structure they are

measuring is meaningful in the first place.

Therefore we focus on the question of understanding the structure of influence, and now elab-

orate our specific problem statement.

9



CHAPTER 1. INTRODUCTION

1.2 Problem Statement

The central question of this thesis is how can we identify and model the structure of influence in a com-
munication network?

In particular, we are interested in who influences who, as measured through observation of in-

terpersonal communication. For example, if A talks to B, does that increase the probability that B

will talk to C? How can we identify and model these relationships from large-scale communication

data? What is the e�ect of the resulting analysis on di�usion or centrality?

We divide this question into two parts. First, we examine how to identify meaningful commu-

nication patterns, and the resulting e�ect on our understanding of di�usion, the role of individuals

in information spread, and their influence in the network. Second, we pursue a model of the com-

munication network that allows us to describe the influence structure in a probabilistic way.

This is certainly a challenging problem, although the increasing availability of large-scale com-

munication data (for example: social media, emails) makes analysis possible at a larger scale than ever

before. We focus on cellular phone data, which provides a near-global population sample (in con-

trast to the relatively limited scope of social media and other internet-based datasets) at the expense

of losing any knowledge of the content of the communications themselves.

1.3 What is the data?

The advent and popularization of mass-usage technology like cellular phones, social media, and

wireless internet has accompanied advances in computing power and increasingly sophisticated the-

oretical machinery to facilitate a recent explosion of research in the field of complex networks, in

particular the study of human communication dynamics and social structure. We can use the ob-

served behavior of individuals in these mediums (cell phone use, social media, etc.) to infer the
answers to questions like: is A in contact with B? is A friends with B, and if so, how strong? are A

and B in the same community of friends? We can move beyond these first-order observations to

ask deeper questions like: does A influence B’s behavior (to adopt an opinion, change a behavioral

pattern, buy a product)? if A receives a piece of news, how many others will hear about it, and how

long will it take?

But what data is actually available for this task, and how can we use it to answer these queries?

1.3.1 The shortcomings of social media data

Consider the social media platform Twitter. On this platform, an individual can post short, public

messages (“tweets”) which then appear in a time-stamped, scrolling “feed” to other individuals who

have chosen to follow him/her. This translates easily to a network interpretation: if A follows B,

there is a directed edge from B to A (indicating B may exert influence on, or pass information to A

— sometimes termed: B “dominates” A). Twitter also provides a rich sense of information spread:

we can directly, explicitly monitor the spread of an idea (often helpfully codified with a hashtag

by users, e.g. #Election2016). We can observe, for example, who of an individual’s followers

“retweets” (reposts) his/her content. We can build models based on these observations to predict

what type of content is most likely to be spread, or most likely to generate new followers, etc.
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Figure 1.1: Why cell phone data? Cell phone users constitute a larger fraction of worldwide population than

any other communication platform, in particular social media. Depicted above is a comparison of monthly

active users on two social media sites against cellphone subscriptions, worldwide, by year, 2010-2015. Source:

ITU, worldbank.org

Furthermore, all this data is publicly available (with some rate-limiting constraints) with a publicly

available API to interact with the platform.

However, there is a catch. The size and scope of the individuals comprising the Twitter network

(the “Twitterverse”) is limited. There are approximately 330millionmonthly active users worldwide

— this is an enormous sample size by comparison with more traditional methods like surveys, but

it is still small compared to other available datasets that are on the order of billions, as we will see.

More critically, however, it represents a limited demographic. Twitter users are a narrow subset of

the population, they are underrepresented especially in developing parts of the world, and use of the

service requires internet access.

Other large-scale social media has similar strengths and shortcomings. Facebook has greater

worldwide penetration than Twitter, but it is again dependent on internet access, it is unavailable in

many parts of the world, and its data is strictly proprietary. Internet blogging data is public (in the

sense that it is collectable), and rich in content information, but extremely limited in size and scope.

1.3.2 The case for cellular phone data

By contrast, consider mobile cellular phones. The cellular phone was invented in the early 1970s

and has steadily gained in popularity since, to the point that by 2015 the number of cellphone

subscriptions account for over 95% of the world’s population. Even with careful consideration for

the inevitable double-counting that goes on with accumulating this kind of statistic (for example,

in India it is common to use two SIM cards per phone), estimates place the number of individ-

ual mobile phone users in the world at well over 5 billion. Cellphones have become pervasive as

they have become the epicenter of interpersonal communication. For one, the growing availability

of internet-enabled phones (“smartphones”) brings phones into the “internet of things” and allows

communication over a wide variety of internet based messaging mediums. However, smartphones

11
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Figure 1.2: How can we infer network influence structure? In large-scale communication metadata (e.g.

cell phone data), we have information about only the sender, the recipient, and the timestamp for each event.

The number of unique individuals is in the hundreds of thousands, and the number of events is in the tens to

hundreds of millions. The problem is to infer not only the social relationships, but the structure of influence,

from these anonymized, content-less sequences of events. That is, we are interested in not only that A often

contacts B, but instead questions like: does A calling B increase the probability that B calls C? does A’s call
carry more meaning for B than a call from C? do A or B have identifiable roles in spreading information to

others?

aside, the use of basic cellular services — namely, calls and SMS texts — over a cellular network

constitute a staggering amount of communication events on a daily basis, across the world.

Advantages. This omnipresence provides a near-universal sample of individuals in any demo-

graphic category or geographic area. In particular, it provides a sample of unfiltered communication

(and often, movement) activity of populations in otherwise-unreachable parts of the globe, such as

developing countries or impoverished areas without internet access. Other forms of data (like social

media, or census surveys) is sparse or non-existent in these areas.

A second advantage of cellular phone data is its anonymity. In social media, individuals know

that their activity is public, to some degree — your friends, followers, and in some cases (such as

Twitter or Instagram) anyone with an internet connection, can view and monitor your activity.

This creates an inherent filter on behavior that can be beneficial, in the sense that there is a higher

amount of social capital invested in each post or tweet which heightens the meaning and impor-

tance of each event, but is also limiting, since we are seeing a carefully curated version of the real

underlying social, influence, or communication structure of the network.

Cell phone data does not have this limitation. Cell phone users make their calls with the as-

sumption that it is a private call between two people. They trust that their service provider keeps

this information confidential, if they even think about it at all, and indeed, service providers only

provide researchers an anonymized version of the data with names and identities stripped in order

to maintain this trust. This allows the researcher an unfiltered and extremely granular perspective

into the daily interactions of individuals with their social and business contacts.

Limitation. The drawback, then, to using mobile phone data is that we do not have the luxury

of content knowledge that we do with social media data, or blog monitoring, or email datasets. We

have only an anonymized dataset giving the caller, the callee, and a timestamp. In most cases we

also have information about the call duration, and many times the location of the call, for example

12



CHAPTER 1. INTRODUCTION

what cellular tower the calls went through. So we may know A called B at 10:46 a.m., but we do

not know if it was to discuss a business merger, lunch plans, or if it was simply a wrong number.

Figure 1.2 illustrates this puzzle.

This is a serious limitation. Even in rich datasets with content knowledge, or demographic

information, or survey data, correctly representing the real underlying network structure is a tall

order. Removing all such layers of supplemental information increases the di�culty, and researchers

have spent much e�ort developing methodology that attempts to infer the correct network structure

and dynamics from this content-less metadata, as we will discuss in the next chapter.

Previous approaches and way ahead. We can imagine a few approaches to address this limita-

tion:

• Counting calls. A straightforward first-estimate is to count the number of observed calls

between two individuals, and set some threshold to infer there is a meaningful connection

between them: for example, at least 2 per month, or at least one pair of reciprocated calls (A

must call B and vice versa in order to establish a connection, [57]). This certainly implies

the connection is not just an accidental call, but it still does not give us a very good idea of

the strength, or influence, of the connection. We know A calls B three to four times every

month, but we do not know if it is a manager doing check-ins with a project leader, a student

calling to his favorite takeout restaurant, or just a resilient telemarketer.

• Observing post-emergency. Another technique is to focus observation on calling patterns

after an emergency event, such as an earthquake or bombing or major sporting event. It seems

reasonable to assume that calls made after such an event are more meaningful. So we can focus

our search, such as what subset of contacts does someone call post-emergency as opposed to

other times? who tends to initiate calls in crisis situations? if we observe a heightened volume

of call activity, how long does it last? Et cetera. Works like [8] in this vein also focus on

the post-crisis pattern of calls, which tends to be rapid cascades of communication (tree-like

spreading). However, limitations of this approach are that it restricts us to an overly specific

kind of information spreading, and, even worse, limits us to an extremely small portion of the

available data.

• Recurring patterns. The previous ideas of seeking recurring calls or meaningful patterns

can be generalized to looking for recurring patterns: when A calls B, B always calls C andD.

This type of pattern-mining approach allows us to use the entire dataset, it gives us ideas about

who tends to initiate di�erent types of patterns, and we can start to approximate the structure

of influence in the network. A common line of study is to search for recurring motifs, such
that the object of interest is the shape of the pattern, not the particular individuals involved

(e.g. [33]). Also common is to focus on identical (isomorphic) patterns. However, the focus

on motifs gives us only an abstract picture of influence structure at a population-level, and

the focus on isomorphic patterns seems to forget the noisy nature of human communication,

casting aside relevant information in the process.

• Probabilistic model. The pattern-mining approach unfortunately does not provide us with

anymodel of the patterns it finds, or of the connections themselves. For this, wemust construct
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a probabilistic model. For example, we might imagine there is some probability that A calls

B, and then some conditional probability that given A called B, what is now the probability

that B will call C. We formulate this model and estimate its parameters. In return, we have a

way of quantifying the network and, importantly, a way of predicting future behavior. (E.g.

see [19].) But we must be cautious with this approach: a network of hundreds of thousands of

individuals exchanging millions or billions of calls can quickly lead to an explosion of model

complexity.

Our thesis extends work in the latter two approaches by proposing new methodology which

answers the concerns mentioned, as we describe in the next section.

1.4 Approach and Contributions

Two related questions guide this thesis, as elaborated in the problem statement, and we address each

in its own chapter.

• In Chapter 2 (Background), we set the stage by introducing the rich history of researching

social and communication networks. We try to cast a wide net, while focusing on a select few

themes, namely: the strength of interpersonal ties, temporal networks, and network influence

structure.

• The first main chapter, Chapter 4 (Persistent Cascades), introduces a novel method for find-

ing patterns of information spread when we know nothing about the content of communica-

tion. We frame information spread as a cascading structure, and use methods of inexact tree

matching and hierarchical clustering to extract long-term, recurring group conversations we

term persistent cascades. Analysis of these persistent cascades reveals new roles in information

spreading and the influence of certain individuals. We also show the e�ect these group con-

versations have on notions of information spreading or centrality in the network. We perform

the majority of the analysis on three large mobile phone datasets. Finally, we show that the

methodology is extensible tomore general datasets by demonstrating its use in an email dataset

— this also allows us to test the claim that the persistent cascades are indicative of information

spread, since we have knowledge of the emails’ content.

• Chapter 5 (Modeling Influence Structure) takes a probabilistic modeling approach to this

problem of determining the influence structure and information spreading dynamics of a com-

munication network. Specifically, we frame the interactions of individuals as instantiations of

a multidimensional stochastic process, and show that by incorporating mutual-excitation in

this process we can capture the influence structure of real networks. We introduce two novel

extensions to existing work in this area: we derive a regularized expectation-maximization

(EM) algorithm that allows incorporation of a Bayesian prior on the influence structure, and

we apply a dyadic version of the model, that is we model each dimension as the pairwise in-

teractions of individuals.

The final chapter concludes and proposes avenues for future work, in the areas of pattern-

mining, identifying and modeling influence structure, and predicting behavioral influence.
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1.4.1 Notes on style

This thesis is written in the first-person plural, both to keep a technical tone and to reflect the collab-

orative nature of the work. None of the methods or analysis in this thesis would have been possible

without the constant advice and feedback of my advisors and colleagues in the MIT Operations

Research Center. The document was compiled with LATEX, using the free Bembo-like font fbb,

and with selected formatting from the classicthesis template. Nearly all the code was written in

Python, with the networkx package for networks and the add-on package seaborn for plots.
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2Background

This background chapter provides an overview of the relevant highlights of the history of applied

network science as it applies to our study of influence structure in a communication network. We

focus our review on three interrelated themes: (1) the strength of interpersonal ties (or, not all con-

nections are created equal), (2) the phenomenon of temporal clustering in interpersonal communi-

cation and its e�ect on di�usion dynamics (or, human beings are “bursty” and why that matters),

and (3) extracting the latent network using deterministic and probabilistic methods (or, how to infer

the real underlying structure from limited observations).

We aim to keep the discussion at a high level throughout, and leave more technical discussion

for the subsequent chapters to expand upon as it relates to their content.

2.1 Complex networks

The study of complex networks has its origins in the field of graph theory, which most consider to

have begun in the 18th century with Leonhard Euler’s well-known problem about navigating all

seven bridges of Königsberg without crossing any bridge twice (he proved it was not possible).

Graph theory introduced the concepts of nodes connected by edges, giving a powerful method of

abstracting a wide variety of problems. Many famous questions, such as the Traveling Salesman

problem (how can we find the shortest path that visits all cities in some geographic area?) or the

Four Color problem (is it possible to color the countries on a map with four or fewer colors without

any adjacent countries sharing a color?) can be readily reframed as graph theoretic problems.

By the 20th century, researchers in a large variety of fields — social science, biology, computer

science, economics, transportation, to list a few — were applying the high-level concepts in graph

theory to model and analyze problems in their discipline, under the more applied moniker of net-
work theory and complex networks. The transportation system of a city, the neural system of the brain,

the friendships in a social club, the trade agreements between countries, the structure of the inter-

net, the predator-prey interactions of an ecosystem — these, and countless others, are examples of

applied problems we can express and analyze using the rich field of network theory. That is, we

can reimagine individuals (or countries, neurons, etc.) as nodes in a graph, and we can represent

relationships (or roads, treaties, etc.) as edges between them.

Indeed, since these types of applied problems are typically large-scale (thousands or millions

of nodes), with non-trivial structure and nuanced interaction dynamics, we often refer to them as

complex networks, or more broadly, complex systems. This paradigm at once provides a beautiful
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abstraction and a large toolset of mathematical techniques for analysis.

In this thesis, we focus on a particular subset of problems dealing with the structure and dynamics

of influence in a human social network. We are interested in understanding things like the dynamics

of information spread, the role of individuals in their social communites, and the structure and

interplay of influential relationships.

Our line of study also leads us to emphasize two particular types of complex networks. First,

we will attempt to always incorporate temporal knowledge of the network; for example, we are

interested in not only that two individuals are social contacts, but when and for how long. This

focus on temporal networks has only recently become a common approach: early work tended to

rely on aggregated information, as we will discuss in the next chapter, despite its insu�ciency to

describe essentially temporal problems like influence and information spread dynamics. Second,

we will focus on the idea of communication networks (as opposed to social networks), to emphasize

the fact that we are doing all our inference (of influence, spreading dynamics, etc.) based on data

that is purely communication between individuals. Also, we will tend to avoid the term “social” to

emphasize that our aim is not to understand friendship and community, as much as to infer influence

through observation of interpersonal communication.

2.2 Strength of ties

In understanding the interactions of individuals in a communication network, at the most basic

level we seek to understand the dyadic, interpersonal relationship between two people. These two

individuals’ “strength of tie” simply refers to the flexible notion of the degree of friendship, or trust,

or collaboration present between them. It may be directed, it may be temporally dependent, it may

be binary or discrete or on a continuous spectrum. In networks, where individuals are nodes and

relationships are edges in a graph, we may attempt to codify this tie strength as an edge weight.
Granovetter, in a landmark 1973 paper [22], introduced the idea that interpersonal ties vary in

strength. He explored this idea out of an interest of understanding how micro-level processes could

a�ect macro-level change, and he postulated that weak ties are actually strong because of their im-

portance in spreading processes by connecting distant, tightly connected cliques. There are several

critical ideas here: first, the idea that “triadic closure” is inevitable in the presence of strong ties.

Second, the extension of this line of reasoning to the hypothesis that since strong ties beget strong

ties, creating tightly clustered communities, then the only ties connecting these communities (the

“bridges”) are weak. And so, these often-ignored weak ties are actually responsible for much of the

dynamics we see in spreading of information/disease/chain-letters; thus the “strength” of weak ties.

Researchers extended and ri�ed on this idea for several decades (see [14, 69, 3, 61, 4, 15, 23]).

Notably, Burt [13] introduced the concept of “structural holes” by pointing out that the “causal agent

in the phenomenon is not the weakness of the tie but the structural hole it spans.” So he frames the

discussion in terms of competitive advantage: one should position himself to be connected to non-

redundant communities, and in some way the gate-keeper for the inter-community bridges.. This

immediate interpretation in terms of competition extended to economic ideas like embeddedness,
such as in Uzzi’s finding [69] that strong interfirm networks rely on a mixture of “arms-length”

(contractual) and “embedded” (personal) relationships (e.g. lower detail and complexity through

arms-length ties vs. less robustness to change with only personal ties).
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However, Aral et al. in [6] point out that although weak bridging ties may provide the most

novel information, their “bandwidth” is inherently lower (fewer or less meaningful interactions),

while a strong tie has higher bandwidth but more redundant information. They test this idea on a

dataset of email exchanges and show that often, higher bandwidth access to redundant information

will outgain low bandwidth access to diverse information. This interesting counterpoint actually

has parallels in the literature of human communication patterns in the statistical physics community;

for example the influential work [57] finds weak social contacts are less important than mid-strength

social contacts in spreading dynamics due to the same issue of bandwidth.

In the context of collaboration and group diversity, Hansen [23] similarly observes that complex
information must travel over strong ties, so in general terms: weak ties speed up simple information

transfer, but slow down complex projects. His study used new development projects at an electronics

and technology company (c. 1994-8), and at heart, used a simple network survey to the R&D leads

(incorporating directionality), and enriches it with years active, licensing agreement info, budgets,

patents, etc., and using this structure to fit against the dependent variable, project completion time.

We note that here, Hanson focuses on the ability of ties to transfer knowledge across clusters, but

only mentions another challenge, that of unwillingness. This plays to the competitive subtext at play

in this sort of analysis, since for example, one cluster (team) may not want to let knowledge transfer

across a weak/strong tie because it lessens their competitive advantage.

To give another example, in his work on the role of peer thresholds in group dynamics, Gra-

novetter [21] points out the surprising importance of individual decisions (and distributions of

thresholds) on aggregate outcomes, with the colorful example of the 100 rioters in a square. He

then shows that social structure (heavier weights on strong ties) — among other considerations such

as sampling di�erences (missing key individuals in the group) and spatial consideration (individuals

moving from one area to another) — complicates the matter.

Nevertheless, often we decide to treat all ties are the same, typically for practical reasons. For

example, Watts [74] gives a mathematical formulation to the basic model presented in Granovet-

ter [21], and analyzes the e�ect of the distribution of thresholds, but not of di�erent tie strengths,

for reasons of analytic clarity. Domingos and Richardson [16] encode the e�ect of an individual’s

neighbors on his probability to adopt as P (Xi|Ni) where Xi is the boolean random variable con-

stituting i’s decision, and Ni are i’s neighbors; we note that this treats Ni as a single block entity,

without specific weighting for strong or weak interpersonal ties.

To summarize thus far, it is clear that central to the understanding of di�usion, collaboration,

information flow, opinion spread, and other processes on human networks, is an understanding of

the underlying interpersonal dynamics and tie strength. Although we can (and often do) encode

these interpersonal dynamics as a static, binary edge (i.e. present or absent), the studies just summa-

rized (and others) claim adamantly that this is an oversimplification in many cases, and at the very

least we should attempt to encode the interpersonal tie on a spectrum.

2.3 Interaction dynamics

Just as the non-homogeneous strength of ties is often assumed away out of interest for lack of data

or desire for a parsimonious model, researchers often make an assumption of Markovian behavior

when modeling human interaction patterns. That is, they model each interaction as depending only
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on the last, with no “memory” of the history of past events. This can be stated equivalently in many

cases as a “memoryless” or “Poisson” assumption, after the Poisson process which adheres to these

same properties (for example see [62, 21, 15, 29, 74]).

Consider some of the early work on di�usion, such as the ideas in Shelling [62] on “sorting

and mixing” which studies social sorting patterns under the over-arching hypothesis that individual

decisions lead to collective dynamics. His running example is with race: individual decisions of

where to sit at a cafeteria lead to tipping points, causing macro-patterns of segregation. He conjures

a model to explain this, using dimes and pennies on a grid, or in more technical parlance we might

say agents with two classes of decision rules in a lattice, and shows by example how equilibrium

or total segregation might arrive. This was a fascinating analysis that is at the heart of much later

research on behavioral contagion; however, it interestingly neglects the importance that the order
of these decisions has on the eventual outcome. In fact, Shelling says “it usually turns out the precise

order is not crucial to the outcome,” but we can imagine this is rarely actually the case— for example,

a chain reaction ripping through the center of the grid to start the game, seems like it will have a

very di�erent outcome than an equal number of interactions scattered uniformly across the grid

in random order. In fact, if these two scenarios did give the same final outcome, that would be a

surprising result.

It seems the timing of the decision is as important to the collective dynamics as the decision

itself, and the two shape each other. However, we must ask if this idea is borne out in reality. This

question leads us to the large body of work on the so-called “burstiness” of human activity patterns,

and its e�ect on network dynamics.

2.3.1 Temporal clustering (“burstiness”)

Similar to the shift in thinking about network density in the early 2000s resulting from the obser-

vation that real networks’ connectivity tend to follow a power-law distribution [10], or are small-

world [73], etc, there was a few years later a change in thinking about interaction patterns in works

like [9, 27, 28, 50, 48, 71]. Specifically, researchers observed that the time between interaction events

for a given individual was not exponential, but power-law distributed. In other words, individuals

tended to have bursts of communication activity followed by long periods of inactivity. Information

spread happens in bursts, the argument goes, because receiving (or generating) a piece of informa-

tion causes us to send it to others: an email about a meeting time change causes us to forward it to

several peers, a decision to change dinner plans causes us to call the other guests.

Barabasi [9] was one of the first to report on this phenomena, based on a dataset of email corre-

spondence, and he referred to it as “burstiness” of activity pattern. He focused on individual bursti-
ness, and postulated that the mechanism was humans’ natural tendency to prioritize: the highest

priority tasks get executed first (short inter-arrival times), while the low priority tasks sit for long

periods of time while the high priority tasks are completed (thus creating the long tails). Later work

focused on group burstiness, with the postulated mechanism being the causal nature of receiving and

relaying information ([50, 71, 27]).

Regardless of the mechanism, the basic observation of temporal clustering in human activity pat-

terns has been observed in widely di�erent contexts, and we note may refer to a pattern of clustering

at the individual level, dyadic (interpersonal) level, or even at a group level.
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2.3.2 E�ect of temporal clustering on spreading dynamics

Much of this early work on the temporal patterns of human activity patterns also pointed out the

slowing e�ect the patterns have on spreading dynamics. In other words, we tend to observe less total

spread (epidemic spread, reach of a viral email, etc.) under the actual order of events than we would

under a random reshu�ing of the same events.

Iribarren and Moro [27] showed the activity patterns in viral information spreading was well-

modeled as a non-Markovian branching process (in particular a Bellman-Harris branching model)

borrowed from biology, such that each email is a potential “ancestor,” with some probability of

creating o�spring, and so on. Branching processes naturally exhibit temporal clustering, as we will

investigate later, but can be understood intuitively by thinking of the treelike structure of such a

process and the densification that comes from multiplying o�spring. It also seems straightforward,

but is a stark shift from a typical model of population change such as the susceptible-infected model

from epidemic spread, i(t) ∼ i(0)ea0t, where i(t) represents the fraction of infected individuals. This

classical model makes the critical assumption that most of the di�usion occurs around the average

interarrival time, and therefore new di�usion by individuals that have already spread information (or,

have already infected others), is highly unlikely for large response times or interarrival times. This

type of branching process analysis in work like [71] and is related to the non-Poissonian stochastic

processes of a later section ([7, 24, 70]).

In [50], the authors give an interesting mathematical argument for why spreading may appear

“slowed” under the true, bursty dynamics compared to random interactions, and show why under

certain conditions it is actually more e�ective. In essence, when the infection rate is low, bursts of

activity are a more e�ective mechanism of spreading than randommixing, while the opposite is true

as the infection rate gets higher. (We cover this particular idea in more detail in Chapter 3.)

Now let us return to the e�ect this may have in research that makes the Poissonian assumption.

An example is the classic study by Steglich et al. [64], which attempts to disentangle selection (i.e.

edge formation) from influence. (E.g. did the teenager start smoking because he was friends with

smokers, or is that why he befriended them in the first place?) They examine this problem with

a classic experiment, a 3-year study of Scottish teenagers and substance use (drugs and alcohol),

and a model that incorporates both binary opinion spread and tie formation. They essentially try

to identify the magnitude of network influence (vs. the simple predisposition already present in an

individual) by fitting a network behavior model to survey data at multiple snapshots. However, their

networkmodel which is meant to “fill in the blanks” makes the assumption of Poissonian interaction,

and thus we know is allowing much more mixing of behavior than is likely to be occurring in

reality. In this way, it seems their model would systematically underestimate the role of network

e�ects, since they would be able to use very conservative parameters on the network’s role to capture

the real observed e�ects.

Lastly, however, we must temper our train of thought by remembering that observation of

temporal clustering does not equate to causal inference. Aral et al. [5] point out that much of the

temporal clustering observed in behavioral contagion of product adoption can be attributed to the

preexisting tendency for friends to think and act alike anyway — that is, we may observe several

friends buying the new iPhone within days of each other, and false attribute this temporal clustering

of adoption to peer influence, when in fact the friends were friends in the first place because they
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all share a love of the Apple ecosystem and buy any new products the day they are released. (This

property of friends being by nature like-minded is termed homophily.) On the other hand, this

finding of homophily clouding our ability to infer causality from temporal clustering is particularly

aimed at the scenario of product adoption and peer influence, and not the more general problem of

information spread.

2.4 Extracting the latent network

But how dowe determine which ties are strong or weak, and their temporal influence on each other?

Many of the papers just presented had access to rich data where we had access to things like personal

interviews asking “how much do you trust this friend,” but even this information doesn’t tell us

much about a question like: “Given that trusted friend A told you X, what and when do you tell

somewhat less trusted friend B?” Worse, if we have data like call records, or email communication,

or even if we have interviews and surveys but believe we cannot trust them completely, or if we are

doing thought experiments on a theoretical network where data does not exist, how do we make

any inference to the true underlying tie strength or temporal relationships?

This line of thinking leads us to frame the question as one of finding the latent network. We can

imagine there is a true network generating our observed data, with true interpersonal weights and

temporal influence dependencies, that we must infer.

2.4.1 Static networks: aggregated approach

A straightforward approach is to consider the network a static object and aggregate observations

over some time window to determine the edge weights. Much of the early work in analyzing

large-scale human activity and communication patterns throughmobile phone records, or call detail

records (CDRs), used some form of the this approach. For example, Barabasi, Onnela et al [57]

required that calls were reciprocated over the course of say, two weeks, to assign the two individuals

an edge. In [35] they experiment with di�erent time windows and find that one month provides

the most stable network.

2.4.2 Incorporating temporal knowledge

Later, the temporal nature of human social networks reentered the picture. Aggregating over a

month or year gives a falsely inflated sense of the number and strength of contacts that a person

maintains, as most people are constantly shifting the groups we most closely associate with — we

make new acquaintances, old ones move away, etc. Miritello et al. [49] give a remarkable exposition

of several of the e�ects of this temporal consideration, again using CDRs, by showing that people

have a “social capacity,” i.e. a relatively small number of friends they are actively communicating

with at any one time, even though in aggregate their contact list may be very large. They also

showed that people had tendencies to be “social explorers” or “social keepers,” with high or low

friend turnover, respectively. These roles have a direct e�ect on di�usion dynamics, and — perhaps

surprisingly — the social explorers tend to receive information (or infection) at a delayed clip than

the social keepers, evidently since their constant shifting of contacts is a slower mechanism than the

rapid, deep penetration seen among social keepers.

21



CHAPTER 2. BACKGROUND

2.4.3 Temporal motifs and deterministic methods

The importance of temporal consideration thus established, we can still imagine that we have a poor

approximation of the true network with this approach. For example, the chief executive may call

her o�ce front desk 2-3 times a week, but in terms of influence, this probably carries less weight

than the twice a month call to her regional director. How can we take the temporal knowledge into

account to learn the causal structure of the network?

One line of research into studying causal structure in the field of temporal networks is through

finding temporal motifs. If we see person A contact person B, who contacts person C, who calls back

person A, and we lots of other such time-respecting 3-cycles involving other users (D − E − F ,
X − Y −Z, etc.), we might be interested if this motif occurs more than we expect under some null

model, and if so, why? This is essentially an extension of the older idea of (static) network motifs

popularized by M.E.J. Newman and others, to temporal networks. Notable works in this vein are

[76] who introduce the idea and examine patterns in CDR and Facebook wall-post history data,

and find that certain communication motifs (such as the “2-person ping pong”) occur at a much

higher rate than found in a randomly generated network of the same size. In Kovanen et al. [33]

they provide a more robust framework for this problem, and in [34] follow up to link demographic

patterns to observed communication motifs (such as that all-female “star” and “chain” motifs are

more common than the respective all-male motifs). Leskovec et al. perform an analysis of motifs on

blog post data [39].

These are fascinating studies but, by focusing on population-scale patterns and abstract motifs,

still lack an ability to identify causal relationships at the individual and interpersonal level. The chain

motif tells us a meso-scale story, but very little about any of its constituent members. There are some

deterministic approaches to using this idea of recurrent patterns to examine temporal structure at

the individual level, for example finding frequently recurring “dynamic graphlets” such as [26] or

“heavy subgraphs” such as [12]. In addition, we will present a deterministic method of this family

in the next section as precursor to our proposed work.

2.4.4 Probabilistic models

However, this graph-mining and deterministic approach lacks an ability to model the network, or

quantify the observed structure in a probabilistic sense. We may extract a recurrent temporal struc-

ture, but we have no way of describing how sure we are about its various parts (back to the problem

of tie strength), or much less being able to predict the occurence of the structure in the future. For

this we turn to two more recent, and closely related approaches to the problem: (1) modeling the

networkwith conditional probabilistic structure (such as [19, 16, 20]), and (2) modeling the network

as a point process (such as [63, 58, 43, 72, 78]).

The first approach essentially views a recurrent pattern as a Bayesian network, or decomposi-

tion of a joint distribution: given that A called B, what’s the probability that B will call C? This

tells us something about each interpersonal relationship, and the joint distribution tells us about the

group as a whole. One well-known approach in this vein is due to Gomez-Rodriguez, Leskovec,

and Krause [19] who explore the closely related problem of having observed that A, B, and C all

received some piece of information, what is the most likely path that they received it? They avoid

the combinatorial di�culties of this search space through a clever application of the Independent
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Cascade model and the assumption that the information spreads in tree-like shapes. The early work

in influence-maximization, such as Domingos-Richardson [16] also took a version of this approach,

as they recognized that the probabilities of influence were inherent to the structure itself. Goyal et

al. [20] extend these models to both continuous- and discrete-time, and are able to e�ectively predict
future actions to within a time interval.

The second approach is to model the network as a point process: i.e. that each individual, or

dyadic relationship, or group, represents a stochastic process, and “events” (such as calls, or emails, or

blog reposts) are modeled as “arrivals” on that process. In some sense this is simply adding the flexible

modeling structure of stochastic processes to the idea of conditional interdependence from before,

since the probability of an arrival in the process is conditioned on previous arrivals, and possibly

even other arrivals in other parallel processes. Simma and Jordan [63] provide a model where each

event triggers a Poisson process of successor events, and they learn the parameters of each using a

(distributed) expectation-maximization approach. Perry and Wolfe [58] implement a multivariate

point process such that each process represents pairwise interactions (A to B or vice versa), and each

process’ intensity rate is influenced by its own history and select other processes. (They apply their

method to a corporate email dataset, and so also interestingly extend it for “multicast” events, such as

mass emails whereA callsB, C, andD simultaneously, which is not a concern with other mediums.)

TheHawkes process, which wewill use in this thesis, was first described in 1971 [24] and became

popular in microeconomics for modeling the interdependencies and volatility of stock fluctuations.

It is a highly flexible and robust framework, with widespread application: Veen and Schoenberg

[72] use a spatial version to predict seismic activity, Stomakhin, Short, and Bertozzi [65] predict

gang activity, Zipkin et al. [79] apply it to email correspondence among cadets at the U.S. Military

Academy, Pinto et al. [60] uses it for trend detection, Valera and Gomez-Rodriguez [70] for product

adoption, and others.

Interestingly to both these approaches, they are able to capture temporal clustering and tie

strength in an intrinsic way. Without specifying a model of interarrival times (e.g. power law,

exponential), these probabilistic models will settle upon parameters that capture the true temporal

clustering dynamics. Also, the resulting probabilities (or in the case of point processes, the process

intensities) give us an immediate, meaningful, and robust quantification of the tie strength. With

only observations of network activity, and no knowledge of content, we can infer simultaneously

strong and probabilistically grounded notions of both temporal activity patterns and interpersonal

tie strengths.

In summary, the problem ofmodeling network interactions, taking into account temporal struc-

ture and interpersonal tie strength, is gaining attention as researchers realize the importance to un-

derstanding the role and mechanisms of networks in a wide variety of applications.
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The datasets we use throughout this thesis are mobile phone datasets, sometimes referred to as Call

Detail Records (CDRs), from three cities and their greater metropolitan area. In this short chapter,

we give a description of the data to frame the analysis which follows in subsequent chapters.

3.1 Summary

The CDRs come from two mid-size European cities (“City A” and “City B”) and one Central

American city (“City C”). The data for City A and B covers a period of 13 months, while City C

covers 5 months (although it is higher volume).

Each event in the CDRs contains at minimum the caller, callee (who the caller called), times-
tamp, and duration. This level of information is standard in this type of data. A single event in the

CDRs corresponds to a single phone call or SMS event, as recorded by the carrier. (Specific technical

information about determining between these two type of events is proprietary to the carrier and

not disclosed.)

In two of the three CDRs (City A and B), we have additionally the nearest tower location for

the caller and also for the callee; this information is partially available for City C.We also have access

to the latitude/longitude for these tower locations indexed in a separate file.

For a given month, in City A, there are about 331k (331 × 103
) unique users, making a total

of 6.3 million call/SMS events. City B has about 258k unique users making 3.9 million call/SMS

events. City C sees about 1.7 million unique users each month, making 154 million call/SMS events.

Individuals in City A and B make an average of about 10-11 calls per neighbor per month, however

this is skewed high by a group of users with high activity. (This information was not collected for

City C.) See Table 3.1 for a complete listing of summary statistics for Cities A and B.

Figure 3.1 illustrates the predictable population-level patterns in overall call activity at a week

scale. We see that in general, individuals are about half as active onweekends compared to weekdays,

and that this pattern is highly predictable. (The only two weekday outliers (in mid-June and mid-

Table 3.1: Summary statistics for CDR datasets.

City

Unique IDs (×103) Calls (×103)
# months

Degree

(k), avg.
Calls /edge/mo.

(w), avg.avg. / mo. total avg. /mo. total

A 331.2 648.1 6,334.6 82,350.1 13 3.88 11.59

B 258.0 523.5 4,172.2 55,747.5 13 3.62 10.52
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Figure 3.1: Call activity follows predictable population-level patterns. This chart depicts the weekly

rhythm of weekend dips in overall activity, as compared to weekdays. Each point in the charts above corre-

sponds to the total activity for a single day in one of the CDR datasets. Two cities are shown, over a 3-month

period. Weekends are highlighted with gray bars. We see that in general, individuals are about half as ac-

tive on weekends compared to weekdays, and that this pattern is highly predictable. The only two weekday

outliers (in mid-June and mid-August) correspond to national holidays.
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Figure 3.2: Distributions of degree (number of neighbors) and edge weight (number of calls per neighbor) for

networks formed from datasets in City A and City B, on a log-log scale, follow well-known forms. Specifi-

cally, the degree distribution follows the “power law,” with exponential cuto� (i.e. it has the functional form

pk ∝ k−αe−k/κ), that was introduced in [10] and has been found in a wide array of social and communi-

cation networks (the internet, coauthor networks, social media). The edge weight distribution also exhibits

this power-law behavior.

August) correspond to national holidays.)

3.2 Network construction

We can readily construct a network of these users: let each unique user i be a node, and add an

edge between i and j whenever i and j have at least 2 calls between them in some period, say

a month. This construction follows conventions developed through experiment and described in

great depth in previous work (the requirement for two or reciprocated calls e.g. from [56] and a

one month period from [35]). In Figure 3.2 we see that the degree distribution generally follows

the so-called “power law,” with exponential cuto� (i.e. it has the functional form pk ∝ k−αe−k/κ),

and the number of calls per neighbor (sometimes termed the edge weights) also follow a power law,

matching many previous findings. We also note the distributions are remarkably similar between

cities — this consistency of population-level properties is a common trend observed in these type of

datasets (e.g. see [11]).
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Figure 3.3: Connectedness of the network. Choice of the minimum number of calls needed between

two individuals in order to place an edge between them a�ects the connectivity of the network. Depicted

is the proportion of the network that is part of the largest connected component, against the minimum

number of calls per month required for edge connectivity. (We remove any nodes with degree zero.) For low

minimum values, we find the majority of the network is part of a single “giant connected component” which

constitutes over 85% of the total individuals in the network. As we increase this threshold, the giant connected

component shrinks. We will follow previous literature and use small thresholds for edge connection, usually

two calls per month as validated in [56].

3.2.1 Large connected component

It is not obvious that a particular city-scale network constructed in this way should be fully con-

nected; i.e. that there exists a path from any i to any j. And in fact, we find that it is not fully
connected, but there does exist a giant connected component (GCC) that makes up about 80-90%

of the nodes in the graph. The size of this GCC is dependent on what assumptions we make on

network construction, such as how many calls are required to place an edge.

In Figure 3.3 we show this tradeo� in size of the GCC as we increase the minimum edge con-

nectivity threshold. For low minimum values, we find the majority of the network is part of a GCC

which constitutes over 85% of the total individuals in the network. As we increase this threshold,

the giant connected component shrinks to less than a majority of the population, and the network

becomes an archipelago of small- to medium-sized clusters. We will follow previous literature and

use small thresholds for edge connection, usually two calls per month, similar to the requirement

for reciprocal calls validated in [56].

3.2.2 “Snowball” sampling

We may choose to use samples of the network, either for clearer illustration of a concept or for

computational reasons when dealing with large graphs. In general we will sample the network using

a “snowball sampling” technique. This allows us to sample a network centered around a particular

individual, which in general is conducive to our analysis.

To extract a snowball sample, we will select some node c0, and collect the set of all individuals

{c(i)
1 } who communicated with c0, then all individuals {c(i)

2 } who communicated with any of the

c
(i)
1 , etc., to a final set {c(i)

k }. This creates k “layers” around c0, and is sometimes referred to as the

ego-k network. (For example, the ego-1 network of a node c0 is simply c0 and those he contacts.)

26



CHAPTER 3. DATA

(a) k = 2 layers

(b) k = 3 layers

Figure 3.4: Sampling the network. We will often use samples of the network, either for clearer illustration

of a concept or for computational reasons when dealing with large graphs. In general we will sample the

network using a “snowball sampling” technique. Shown are two example snowballs from the City A data:

we select a central individual (shown in red), and successively add those he contacts, those they contact, etc.

The left network has k = 2 layers, the right network has k = 3 layers. Nodes are sized according to their

degree (# of contacts/friends/neighbors).

In Figure 3.4, we show two examples of snowball samples from City A, with k = 2 and k = 3.

We see that in general the first layer has many interconnections, exhibiting the “triadic closure”

described in [22] and others, but that this strongly connected tendency wanes in the second and

third layers.

3.3 Conclusion

Mobile phone records provide an unfiltered view into the daily communication patterns of medium-

to large-scale populations. The process of transforming raw cell phone record metadata into a

network abstraction is well-studied, and so there are many useful previous results to guide our

e�orts, such as power-law degree distributions, sampling methods, and connectedness.
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4Persistent Cascades

In this chapter we pursue the first part of our problem statement: how can we identify the struc-

ture of influence and information spread in a communication network, given only large-scale and

content-less data interpersonal communication? Furthermore, what does this tell us about the role

and influence of individuals in the network on information spreading? We will initially focus on

extracting recurring patterns of interaction as a means of separating meaningful activity from ran-

dom or inconsequential events; we will then turn to examining the e�ect this view of the network

interactions has on analysis of spreading dynamics and centrality.

4.1 Introduction

4.1.1 Motivation

Our methodology is driven by a desire to better characterize information spread in temporal networks
using large-scale metadata. In general, much research on information spreading assumes a static net-

work and/or employs knowledge of the content of information to develop its model, as described

in previous chapters. We find that including temporal patterns of human communication signifi-

cantly changes our understanding of the network di�usion dynamics and centrality, and that these

patterns are evident even without knowledge of content.

Let us review the context and motivation behind these two focuses in more detail.

Large-scale metadata. In many cases, the available data is devoid of content knowledge — that

is, we have no Twitter hashtags, or email text, or blog content to guide our understanding, as in

such studies as [38, 39, 41] and others. Data in this category we refer to as communication metadata
and includes datasets like cell phone records or text/SMS messaging. Our methods attempt to bring

some knowledge of the true network into the data by extracting persistent structure from these

typically noisy datasets.

We focus our attention on mobile phone records, also termed call detail records (CDRs), because

they provide a unique opportunity to study the large-scale, unfiltered communication patterns of

individuals among their friends. Unfortunately, this breadth of knowledge — in time, space, and

demographics — comes at the expense of depth, since we have no information about the purpose or

content of communication as we might in social media or email records. Our approach attempts to

solve this problem by finding persistent patterns that strongly imply meaningful communication is

taking place.
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However, although our methodology is created with communication metadata (and specifically

CDRs) in mind, by abstracting our focus to rely only the individuals and events of a network, the
methods we describe extend to a wide variety of data and problems: emails, text messaging, product

adoption, stock fluctuations, gang activity — in all these cases we have an individual entity (person,

stock, gang) which generates some observable event (text, call, price change) that has an e�ect on

other individuals in the network, which we wish to detect. As evidence of this extensibility, we will

consider a case study in the final section using email data where content is known.

Temporal networks. Further, we are interested to go beyond a static understanding of our net-

work and better characterize the temporal structure of interactions. Early research in large scale

networks typically aggregated the observed interactions into a static network — for example, if we

saw A communicate with B at least n times in a period of length T , we connect A and B. This

threshold n and T is explicitly studied in works like [57], which requires communication to be re-

ciprocated in order to connect two individuals, and [35] which studies the stability of the static

network under di�erent period lengths. It is also implicitly assumed in many other studies on this

style of data, where the threshold is not always evident from the analysis, and is a sort of unstated

hyperparameter.

It is many times enough to simplify a communication network into a static object. However,

since information spreading is fundamentally time-dependent in nature, later research introduced

the importance of including temporal knowledge. As a simple example, perhaps A communicates

with B 10 times in a 3 month period, but all 10 events occurred in the first week and A has not

spoken to B since— this gives a very di�erent picture of the network structure that we lose under an

aggregated approach. Revelations abound under this new paradigm: [9] showed that contact tends

to be heavy-tailed (or “bursty”), [50, 28, 27] described the e�ect this has on information spread, and

[49, 48] showed that temporal consideration reveals new roles of individuals in the spreading process.

These and other works are described in more detail in the preceding chapter, but we emphasize it

again here to justify our focus on this more nuanced approach.

4.1.2 Approach

Wewill first take the view that information spreading is by nature a cascading pattern: an individual

has a piece of information that he/she spreads to others, who then pass to still others, etc. This elim-

inates the possibility of loops (since we are only interested in the information-passing edges, and we

can assume individuals received the information at the earliest possible call), and creates a rooted,

directed, tree structure. This is a well-worn approach: this structure is sometimes called a mini-
mum spanning temporal tree (see [25]), it follows from similar assumptions in [19, 59] on information

spreading, and has a close analogy to the rich field of epidemic spreading.

Our claim is that observation of similar information spreading structure among similar individu-

als over a long period of time is a strong indicator of information spread, and reveals new dynamics of

communication among the individuals involved. For example, consider an observed pattern where

person A calls persons B and C, who then call persons D, E and F, and then we observe this same

pattern, or something similar, repeated every few days or weeks.

We term these persistent cascades, and claim the pattern leads to two very reasonable claims: (1)
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it is more likely that calls in a persistent cascade indicate meaningful social interactions than calls

not observed in one, and (2) it is highly likely that persistent cascades correspond with information

spread.

4.1.3 Contributions

We first introduce a novel method to detect such recurrent patterns using techniques of inexact tree

matching and hierarchical clustering. This di�ers from existing work in that (1) we are focused

on recurring patterns among specific users, not network motifs (e.g. the prevalence of triangles

or other structures in the graph, regardless of individual), and (2) we allow for inexact matching

(not necessarily isomorphic graphs) to better account for the noisiness of human communication

patterns. We then analyze the resulting patterns, termed persistent cascades, finding short-duration

indicating burstiness, habitual hierarchy in the order that groups communicate within persistent

cascades, revealed roles in weekday vs. weekend spreading, and long-term persistence. We justify

several simplifying assumptions of our approach by comparing against an exhaustive search, finding

that only 2% of all data is a�ected by our assumptions.

Next, we show the significance of our findings by comparing them against a random network

model (specifically, a configuration model with interactions captured as an average rate). We rep-

resent this null model both through simulation and analytically. We find that the data exhibits

significantly more and larger persistent activity than is evident in a random model. We argue that

this result is evidence that the data necessitates a model which can capture the inherent temporal

clustering which we are observing in persistent cascades.

We then show the role of members of persistent cascades in information di�usion, borrowing

the susceptible-infected-recovered (SIR) model from epidemic spread. We find, through simulation,

that members of persistent cascades are more susceptible than non-members, and that this e�ect is

not simply correlated with overall call activity. We give a mathematical argument for why this

is so, which illustrates that when information is resistant to spread, persistent cascades provide the

necessary repeated exposure to cause spreading, whereas when information can spread freely this

e�ect is masked by the random mixing between non-cascade-members.

Finally, we show that the method is extensible to other communication datasets by applying it to

an email dataset. In this case study, we use the publicly available emails released during the govern-

ment’s investigation into Hillary Clinton’s use of a private email server, and find that the persistent

cascades approach as outlined correctly identifies key sta� members, ignores known “noise” in the

dataset (such as unlabeled emails), and identifies several interesting persistent email chains.

4.2 Methodology

Wenow present a methodology for detecting persistent patterns of information spread in large-scale

metadata, and present an analysis of findings and results in the mobile phone data.

4.2.1 Defining a cascade

Consider a temporal graph G = (V,E) which represents the communications between users over

some large time period T = [t
begin

, t
end

], such as one month. Let each node v ∈ V represent a
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user who participates in some number of communication events during period T , and let each edge

e ∈ E represent a communication event which we encode as a 4-tuple ei = (si, di, ti, δi) consisting

of the initiator (si), the receiver (di), the time of the event (ti), and its duration (δi).

We define a time-respecting path as any sequence of edges (e1, e2, ..., ek) such that for any con-

secutive pair ei, ej in the sequence, we have that di = sj and ti + δi ≤ tj . We define a ∆t-connected
path as a time-respecting path such that tk − t1 ≤ ∆t. From these definitions, one can construct

∆t-connected subgraphs that contain some time-respecting subset of all the events within ∆t (e.g.

[33]).

However, in pursuit of understanding information spread patterns, we make an assumption that

the information originates from a single user, and every user receives the information at the earliest
possible time. This implies there is a single in-edge to each user, and creates a rooted, directed tree

structure. Intuitively, this shifts focus from the structure of the call patterns to the structure of the

information spread, since we will only capture the first occurrence of “information” being passed.

Formally, this assumption leads to the construction of a rooted, directed, ∆t-connected tree

which we term a cascade. This term, and its construction, follows closely that in [59]. (These struc-

tures are also called the minimum spanning temporal tree and [25] gives some e�cient algorithms for

extracting them from a network both with and without edge weights.)

Denote a cascade with root r as Cr, denote the set of all cascades for root r with maximum time

interval ∆t and total time period T as Cr(T,∆t), and use superscripts as necessary to distinguish

multiple cascades with the same root. For example, we might have the set of all cascades for some

root a:

Ca(T = 1 mo, ∆t = 24 hrs) =
{
C1
a , C

2
a , C

3
a

}
(4.1)

Note we require that the intervals not overlap: i.e. no calls from C1
a can also be in C2

a , etc.

An example of cascade construction from a network with all temporal information is shown in

Figure 4.1, and the algorithm for extracting one for a given root r in a time interval ∆t is described

in Algorithm 1.

We make two notes about this definition before proceeding. First, notice that for any cascade,

its subtrees are also (usually) cascades. For example, in Figure 4.1, note that the cascade with root

a has a subtree corresponding to the cascade with root b. This is by design: we do not know the

true information originator, so we should consider each possible “root” user in his or her own right

in the analysis of persistence that follows. We can a�ord such an exhaustive search because we have

already greatly reduced the search space by requiring a cascade to have at minimum three members

and roots to havemade enough calls tomake the later persistence analysis possible. Also, although the

number of trees theoretically grows exponentially with the graph size |V |, the temporal requirement

greatly lowers this bound, and the minimum activity constraints just mentioned lower it again, so

the problem is highly tractable for even large datasets. (Typical runtime for extracting all cascades

for a network of 300,000 nodes over the course of a month is around 10 minutes.)

Second, consider a root node who is very consistent in the users he calls, but these users are then

subsequently very inconsistent. Then the overall cascades generated from this root will be dissim-

ilar, and therefore ignored in the subsequent analysis. This is again by design: we are concerned

with persistent information spread, not just consistent calls from a particular user to certain friends.

Cascades that are only similar in the first level may not indicate the root is a strong originator of
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Figure 4.1: Simplified illustration of cascade extraction from a temporal graph. For clarity, we examine

a network with only 6 nodes. (a) Full temporal information (∆t = 6 units, times depicted on edges). (b)
Three valid cascades given this temporal snapshot. Note that there is no time ordering of children within a

cascade. (c) Invalid cascade because: (c-b-e) is not a time-connected path, and missing the edge (c-f ).
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Algorithm 1 Cascade construction
Input: r, G(∆t), t

begin
, t

end

Output: Cr
Initialize (global) Cr = {r}
Run SUBTREE(r, t

begin
)

procedure SUBTREE(v, τ )
edges← ei ∈ G(∆t) : si = v, and τ < ti < t

end

for ei = (v, di, ti) in edges do
if ∃n ∈ Cr s.t. n = di then

if τn ≥ ti then
delete n

else
continue

add (edge) ei and (node) di to global Cr
assign τi = ti
SUBTREE(di, ti)

return

information. However, we will address this concern in a later section and show the minimal impact

of this assumption on the analysis.

4.2.2 Measuring similarity

Measuring similarity of cascades, as defined, is now an inexact tree matching problem. We now

define two similarity measures, both standard in the literature: normalized tree edit distance, and

reach set similarity (measured with a Jaccard index).

Tree edit distance

Edit distance is the process of counting the minimum number of insertions, deletions, or mutations

required to transform one string into another. One can extend this concept to trees. Denote the tree

edit distance between two trees (or cascades) C1 and C2 as TED(C1, C2), which maps two cascades

to a nonnegative integer. As an example, consider the following two trees:
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C1 : C2 :

a

b

d e

c

f

a

b c d

f

To changeC1 intoC2, we can delete d and e, mutate c into d, and add c again, givingTED(C1, C2) =

4 (note this is the same to change C2 into C1).

A canonical algorithm for computing this distance is due to Zhang and Shasha ([75]), which we

implement with the zss package available at https://github.com/timtadh/zhang-shasha. We

can now define a similarity measure using this distance as follows.

Definition 4.2.1. Tree Edit Distance similarity. Define the normalized tree edit similarity as

s
TED

(C1, C2)
def

= 1− 2 · TED(C1, C2)

|C1|+ |C2|+ TED(C1, C2)
. (4.2)

and note s
TED

lies on [0, 1].

This definition is due to [42], who also prove that the corresponding distance metric 1− s
NTED

meets the triangle inequality. Note we make every edit operation unit cost.

Using the example trees above, we now compute s
TED

= 1− 2·4
6+5+4 = 7

15 ≈ 0.47.

Reach set

Consider the un-ordered set of all nodes in a tree. For a cascade, this corresponds to all users who

the root reached during the time period ∆t, and potentially received some information. We term

this the reach set of a cascade (similar to concepts in [59, 19]).

A simple first approximation of the similarity of two cascades is by comparing their reach sets.

Let R(Ci) denote the reach set of a cascade Ci. Now, given two cascades C1 and C2, define the

similarity measure s
RS

as the Jaccard index of the two reach sets, that is

Definition 4.2.2. Reach Set similarity. Given two cascades C1 and C2, and their reach sets R(C1)

and R(C2), define

s
RS

(C1, C2)
def

=
|R(C1) ∩R(C2)|
|R(C1) ∪R(C2)| . (4.3)

and note s
RS

lies on [0, 1].

Continuing with the previous example, we have s
RS

(C1, C2) = 5
6 ≈ 0.83.

4.2.3 Persistence

We now would like to group cascades together which all share some minimum pairwise similarity,

and so are in a relaxed (but well-defined) sense the “same cascade.” This group now represents

various incarnations of some fundamental communication structure. We call these groups persistence
classes, and the elements of each group persistent cascades, and they are the main object of our analysis.

33

https://github.com/timtadh/zhang-shasha


CHAPTER 4. PERSISTENT CASCADES

Figure 4.2: Grouping similar cascades into persistence classes. Shown is an actual set of persistent cascades

for a root a over a 60-day period. Six persistent cascades are shown, each from temporal subgraphs with

∆t = 24 hours. Dotted rectangles depict the persistence class groupings. We see a clear set of “core friends”

(nodes b, c, d), and slight variations incorporating other groups. We also see the overlap that occurs when a

cascade appears to fit in multiple classes. Labeled above each cascade is the day of the week.
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Definition 4.2.3. Persistence class. Define the i-th persistence class of root r, similarity threshold `

in time period T over intervals ∆t, as the set

P ir(`, T,∆t) =
{
C1
r , C

2
r ∈ Cr(T,∆t) : s∗(C

1
r , C

2
r ) ≥ `

}
(4.4)

and the collection of all persistence classes for a particular root as Pr(`, T,∆t).

Definition 4.2.4. Persistent cascade. Define a persistent cascade as any cascade Cir such that Cir ∈
Pr(·), for some r.

Note we may also choose to ignore any persistence classes below a certain size. The minimum

size is 2 by construction, but we may decide based on the parameters T and ∆t that a minimum size

of 3 or more is appropriate.

To find these classes, our definition and Eq. (4.4) leads us directly to an agglomerative clustering

approach with complete-linkage — that is, define the similarity between two clusters U and V as

s(U, V ) = min s∗(Ui, Vj), ∀i ∈ U,∀j ∈ V

where Ui, Vj represent cascades within U and V . Then the clusters at iteration k, such that every

pairwise similarity within the cluster is ≥ sk, represent persistence classes with ` = sk.

However, this assumes that each cascade falls uniquely into one class, which we can imagine is

not always true: a spreading pattern among work friends may overlap with the pattern among social

friends, and there may be cascades that are not clearly in one class or the other.

So we instead adopt a graph-theoretic interpretation of the complete-linkage approach: rep-

resent each data point (cascade) as a vertex in a graph H(sk) such that each any two vertices with

similarity≥ sk are connected. Then the clusters at iteration k correspond to the maximal completely

connected subgraphs in H , also known as the maximal cliques.

Now, applying this technique, consider the collection of persistence classesPa depicted in Figure
4.2, taken from City A. Here, we see a core pattern consisting of root a calling b, c, and d, captured

in P2
a . Then, we see two variations on this core structure: P1

a which incorporates e, and P3
a which

incorporates f and g. Since they are mostly weekend calls, we might easily imagine this being a

core group of social friends, with variations possibly for family or work acquaintances.

We make two notes on our methodology of identifying persistence. First, we are only doing

pairwise comparison between cascades which share a root node, leaving out groupings such as dif-
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Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun

Figure 4.3: Examples of call activity within a persistence class. Three example persistent patterns are

shown, from City A. Each line corresponds to a persistence class, and each dot corresponds to the occurrence

of a cascade within that class (i.e. each dot represents multiple calls). The timelines suggest interpretations

of information spreading: for example, the third line appears to be friends whose communication crescendos

in Dec-Jan and then sharply drops o� (possibly event planning); the first line appears to be a group forming

(possibly post-holidays).

ferent initiators who disseminate information to the same people. It has the e�ect of maintaining

focus on analysis of the roots, instead of the broader role or persistence of a cascade pattern itself.

Second, note that it is conceivable that unrelated call events could happen consistently in the same

order among the same people and get picked up mistakenly as persistent. Not knowing the actual

content of the calls, we can only say that persistence, as defined, indicates a very high likelihood of

information spreading.

4.3 Findings in the data

4.3.1 Examples

Before proceeding to any thorough analysis of this method’s findings, let us take a look at a few

example patterns found in the data.

First, we find long-term persistence on the scale of months to a year (the entire length of the

available dataset). In Figure 4.3 we show three example long-term patterns in the data (City A).

Each line corresponds to a persistence class, and each dot corresponds to the occurrence of a cas-

cade within that class (i.e. each dot represents multiple calls). The timelines suggest interpretations

of information spreading: for example, the third line appears to be friends whose communication

crescendos in Dec-Jan and then sharply drops o� (possibly event planning); the first line appears to

be a group forming (possibly post-holidays).

These long-time-scale classes are typically only 3-4 users. However, we see large repeated pat-

terns of 10 or more users at the time scale of months. For example, Figure 4.4 shows two large

patterns: one of 10 distinct individuals (1 month period) and one of 9 distinct individuals (2-month

period).

Both the long-term persistence and the large cascades are remarkable, and both enable a strong

claim for meaningful communication and likely information spread. We now turn to more thor-

ough analysis of these patterns.

4.3.2 Size and connectedness of the persistent subnetwork

We find that most persistent cascades (e.g. 71% of the sample in City A) are among 3 contacts (the

minimum necessary to constitute a cascade). The largest persistent structures involve 20-30 people

(for example, in City A, we find a persistent class with cascades of 37-39 users, but note persistent
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Figure 4.4: Examples of large persistent patterns. Persistence class (from the data) of (a) 10 distinct indi-

viduals, over 1 month; and (b) 9 distinct individuals, over 2 months.

cascades with more than 6 people constitute less than 1% of the sample).

We also find that calls within a persistent cascade only account for about 10% of the entire dataset

for a given number of months. (For example, with ` = 0.8, the average in City A is 9.8% of calls

over a 1 year period, and with ` = 0.7, the average rises to 15.1% of calls.) On the other hand, over

20% of the network is involved in a persistent cascade (on average), which indicates that most of

the non-persistent call activity is high-volume. This leads us to wonder disconnected the persistent

cascades are from each other, and from the rest of the network. How sparse is this phenomenon?

One way to analyze this connectedness is to consider the induced network obtained by only

retaining persistent individuals (i.e. nodes that are a member of a persistent cascade). We can then

“loosen” the constraint to include individuals that have made (non-persistent) calls to cascade mem-

bers (k = 1 hop away from a cascade), or loosen again to k = 2 hops away, etc. We will denote the

resulting graph as the k-connected persistent subnetwork.
We find that with k = 0, the persistent subnetwork is highly disconnected: we only retain about

20% of nodes (as stated before), which are divided into over 12,000 subgraphs of no more than 180

nodes, and with an average size around 5. (These figures are approximations of results culled from

several months in both City A and B. Results are very consistent month to month.)

By contrast, with k = 1, a giant component suddenly emerges. The persistent subnetwork now

contains about half (average 50.6%) of the full network. With k = 2, the subnetwork contains

nearly 80% of the full network, and about 25.3% of nodes belonging to a persistent cascade. And

so with k = 2, we have nearly recovered the original network, indicating that despite persistent

cascades being an uncommon event, nearly the entire population is within 1 or 2 “hops” from these

persistent communication structures.

Figure 4.5 shows the distributions of persistent degree (number of persistent neighbors) and the

proportion of persistent neighbors, as we relax the connectedness constraint from k = 1 to 2. We

note the large jump in the distribution of neighbors for the non-cascade members: non-cascade
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Figure 4.5: Connectedness of the persistent cascade network. Members of persistent cascades constitute

only about 20% of the entire network. However, if we include non-cascade-members who are only k = 1
“hop” away, a giant component emerges that includes over 50% of the network. By including those at

most k = 2 hops away from a cascade member, the giant component constitutes nearly 80% of the full

network. The charts in this figure depict the change in distribution of persistent degree (number of persistent

neighbors) and the proportion of neighbors which are persistent, as we relax the connectedness constraint

from nodes being at most k = 1 hop away from a persistent cascade to k = 2 hops away. (The distributions

are separated by node type: persistent cascade members (“pers”), persistent cascade roots (“roots”), and non-

cascade members (“non-pers”).)This indicates that despite persistent cascades being an uncommon event,

nearly the entire population is within 1 or 2 “hops” from these persistent communication structures.

members link to graph at k = 1 with a single persistent contact, but by k = 2 this is completely

overwhelmed by non-cascade members with large non-persistent degree counts.

4.3.3 Cascade time and duration

Figure 4.6 shows the distribution of first and last call times in a (persistent) cascade, and the resulting

distribution of cascade durations. This was done on a random sample of 104
root users in all 3 cities

over a period of 1 month. The call times follow the expected workday pattern of a morning peak

around 9-10 a.m., and another peak before nightfall around 8 p.m.

We also see from the right plot in the figure that most persistent cascades are very short— usually

everyone is called within an hour—which echoes earlier work on the burstiness of communication.

There is also a large group of cascades with durations between 5-10 hours, suggesting information

spread is either very rapid, or unfolding over a morning or afternoon, but rarely lasting all day.

This evident short attention span in the cascades led us to avoid analysis of longer time periods

(48, 72 hours or longer). Longer time periods also may decrease the possibility of the cascade rep-

resenting information spread. It may be fruitful to consider a shorter interval, such as 12 hours, to

attempt to capture morning vs. evening cascading action (e.g. work vs. social), or a sliding window

approach. We leave exploration to future work.

4.3.4 Similarity measure correlation and habitual hierarchy

We now examine the relationship between the two similarity measures introduced before: tree edit

distance (TED) and reach set (RS). Based on a random sample of 5×104
pairs of cascades from City

B, the measures have a Pearson correlation coe�cient of ρ = 0.91. (We have chosen a single city

for illustration, but this coe�cient is similarly high for all cities: in City A it is 0.90 and in City C it

is 0.93.)
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Figure 4.6: Persistent cascade activity is circadian and “bursty.” Shown is the distribution of (left) call

times and (right) duration among persistent cascades. The left plot shows the distribution of times for the first
(i.e. earliest) and last (latest) calls in a cascade. These follow the well-known 24-hour circadian rhythm of

human activity. The right plot shows the resulting distribution of total duration of a cascade, and illustrates

that most persistent cascades happen rapidly, over the course of 1-2 hours.
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Figure 4.7: Habitual hierarchy of information spread. This heat map depicts the correlation between

tree edit distance (NTED) and reach set (RS) metrics on a sample of 5× 104 pairs of cascades with the same

root (over approximately 104 di�erent roots). Recall that NTED measures structural similarity, while RS

measures similarity of individuals (regardless of structure). The number of pairs where sRS(x, y) = 1.0 but

sTED(x, y) < 1.0 is surprisingly small — only about 0.5% of the sample — this suggests that cascades among

the same users tend to occur in the same order. Note: the colors are log-scaled for visualization. The Pearson

correlation coe�cient of this relationship is ρ = 0.91. We have chosen a single city (City B) for illustration,

but this coe�cient is similarly high for all cities: in City A it is 0.90 and in City C it is 0.93.
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Table 4.1: Persistent cascades reveal a tendency for weekend or weekday information spreading. This
table gives the percentage of individuals with call activity only on weekends, only on weekdays, or some

mix of both. The top half of the table shows this percentage without any analysis of persistence, and simply

illustrates that most people (> 99%) make calls throughout the week. The bottom half of the table shows

the percentage when we consider only calls within a persistent cascade, and reveals two new groups emerging:

a group that is only involved in persistent communication on weekdays, and another that is exclusive to

weekends. These roles in information spread are not evident without the persistence analysis.

Cascade type Dataset Only Weekend Mix Only Weekday

All

City A <1% 99.2% <1%

City B <1% 99.4% <1%

City C <1% 99.8% <1%

Persistent

City A 1.8% 82.5% 15.6%

City B 2.6% 83.8% 12.9%

City C 2.5% 84.2% 13.3%

Note. “Only” weekend/weekday signifies at least 90% of events. Fridays designated as the weekend.

It is possibly surprising that the correlation is so high. For example, consider the group of

cascades with s
RS

of 1.0 and s
TED

less than 1.0, and note that this group represents less than 0.5% of

the sample. This shows that when two cascades involve the same people, they nearly always involve

them in the same order. (And if not, we would see more pairs with dissimilar structure (low TED) but

similar reached users (high RS).) This observation suggests there is a habitual hierarchy of information

spread among social contacts.

Correlation used for performance speedup. As an important aside, the main performance bot-

tleneck in computing all persistence classes for a particular dataset is the TED measure. However,

the correlation between measures shows RS is a close approximation in most cases. It is also much

easier to compute. So, if computing P∗ under both measures, one can compute RS similarity first,

and only compute TED similarity as necessary for s
RS

above some low threshold. Finally, since

we are only considering classes with the same root, the clustering step is parallelizable. Using these

speedups, we could build all persistence classes for a single city, with both similarity measures and

T = 1 month, in about 30 minutes.

4.3.5 Tendency for weekday vs. weekend information spread

Consider the set of all cascades (not necessarily persistent) that a given (root) user initiates in the

course of some period T , for example a month. Since most active users tend to make some calls

every day, we might expect these cascades to be evenly distributed over each day of the week.

In Table 4.1 we examine all cascade initiators in each city with at least one persistent class and at

least 3 persistent cascades. If we consider all cascades of this group (not just persistent ones), we see

that there is an even mix throughout the week, as expected: nearly all users are generating cascades

(that is, making calls to multiple people) on some mix of both weekend and weekdays. Very few

users (< 1%) are active exclusively on weekdays and/or weekends.

However, if we examine only persistent cascades, two new groups emerge: a large portion of

root users who only initiate persistent cascades on weekdays, and a slightly smaller portion who

only initiate on weekends. These two extremes constitute over 15% of all root users, while the same
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extremes measured in all cascades are < 1%. This is a complement to the observation that people

have di�erent mobility similarities to weekend and weekday contacts, in [68].

In other words, for these two groups, although theymake calls throughout theweek, their role in

spreading information appears to be specialized: their only persistent patterns of information spread

happen during either weekday (i.e., work week) hours or weekend hours, but not both. Their other

communication is sporadic, or random, and one might easily conclude, not meaningful.

4.3.6 Long-term persistence

Now we turn our attention to observations of the persistent structures over longer periods of time

(T > 1 month). One property we expect to see emerge is the idea of long-term persistence. Specifi-
cally, if the persistent classes represent the fundamental underlying communication structure of the

network, we expect them to persist over long periods of time — that is, user’s should continue to

generate cascades which “fit” into existing classes.

First, in Figure 4.8(a), note the decline in the distribution of persistent classes as we increase

the minimum size requirement (i.e., for a user a, enforce that |P ia(·)| ≥ k, for all i, and increase

k = 2, 3, 4, ...). This is an expected e�ect of increasing requirements within a finite time. For a

minimum size of 4 cascades, only about a tenth of the population has even one persistent class.

If there were no long-term persistence of these classes, then we would see no class growth over

time, and the distributions of persistent classes would decline as we increase their minimum size

requirement, regardless of the time period.

However, in Figure 4.8(b), the opposite happens. As we increase the time period and the mini-

mum size requirement, the distribution of persistent classes increases somewhat and stays generally

the same, especially for the 90% of the population with 3 or fewer classes. This implies that our

intuition is correct, and many (if not most) of the persistent classes continue to grow as time goes

on.

We can also be more precise by checking, for example, howmany specific users with 1 persistent

class after 1 month, still have 1 persistent class after 2, 3, 4, and 5 months, etc. We find that about

65% of users with a single persistent class (of size ≥ 5) after 3 months of observation, will still have

a single persistent class (now of size ≥ 6) after 4 months of observation. And about 71% with a

single class after 4 months will again have a single class (now of size ≥ 7) after 5 months. This is

remarkable consistency, and suggests a strong predictability of calling habits.

4.3.7 Implementing exhaustive search

There are many families of patterns that we might imagine are present in the data, but that the

construction of our algorithm as defined will not “pick up.” For example:

1. A manager who makes a morning call to his/her secretary each day before initiating high-

importance cascades later in the day. The secretary’s subsequent high activity but non-

persistent calls will mask any activity from the manager.

2. A root who has two recurring patterns of communication, but they are large and intermingled

throughout the day, so even tree matching with relatively low thresholds of similarity will not

detect recurrence.
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Figure 4.8: Long-term persistence and predictability. We find that individuals in persistent cascades tend

to continue communicating in the same patterns, and do not generate more and more new patterns over

time. To illustrate this, we compare the distribution of the proportion of users with di�erent numbers of

persistence classes — first (a) we increase the minimum required cascades in a class, but fix T . We find that,

unsurprisingly, the number of people with a given number of classes decrease as we increase this threshold.

By contrast, in (b) we again increase the requirement for persistence (from 3 to 7 cascades in the class) and also

increase T from 1 to 5 months. Now the distributions are nearly identical, especially for users with 0-2 classes

(who constitute over 90% of the sample), suggesting long-term persistence and bounded social capacity. (The

black plot depicts the average over 5 samples of 5× 103 random users; samples depicted in light green.)
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3. A working partygoer who makes work-related reoccurring calls in the morning, but social-

related calls in the evening. Using a day-long period, we will attempt to group these into a

single cascade and likely miss many patterns.

4. A supervisor who makes a call to one project leader in the morning, and another in the

evening, with various midday patterns occurring on a more random (but high-activity) basis.

We will miss the morning-evening pattern because it is always split by unrelated intermediate

calls.

And there are certainly others. We can solve many of these dilemmas with slight modifications to

the algorithm: for example, for (1) we can try to eliminate some of the secretary’s noise by only

keeping high recurring calls, for (2) we can loosen our threshold of similarity to detect these large

intermingled patterns and do some post-hoc analysis to suss out the two classes, for (3) we can

introduce sliding time windows (instead of static disjoint time periods) to try to maximize stable

classes, and for (4) we can try randomly splitting each period and choose the splits that maximize

the resulting classes’ similarity, or size, etc. (similar to pruning a decision tree).

However, it would be helpful to understand whether these patterns are a large concern in the

data or merely rare events. To do this we will explore the only modification that will allow us to

detect any possible pattern: exhaustive search.
Specifically, we will proceed as before and extract each minimum spanning temporal tree from

every possible root individual in the network, over the interval of a day, for some period T like

a month. However, we will then split these cascades into all possible time-respecting, temporally

connected, subtrees rooted at the original root. Finally, we will repeat the clustering analysis of the

original algorithm, but now looking for clusters of subtrees, with the constraint that subtrees cannot

be clustered together with subtrees in the same interval. (This method still makes the assumption

that patterns do not occur across days.)
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Figure 4.9: Left plot depicts the distribution of class size and unique cascades per root user using the unmod-

ified method (black) and exhaustive search (cyan). Right plot depicts the increase, per root, in these statistics

by doing exhaustive search. We notice there is a nonnegative change for every user, but that the majority of

the sample sees no change.

This approach is prohibitively expensive in general: the number of temporal subtrees of a cascade

of size N is bounded above by 2N−1
. Consider a root with 5 cascades, each of about 10 members:

this leads to upwards of
1
2(5× 210)2 ≈ 12.5 million pairwise comparisons for the similarity matrix.

However, it is tractable on large samples in practice: the vast majority of full cascades are only 3-6

members (as described before), and since we are only doing clustering between days this reduces

the computational e�ort again.

The value of the exhaustive search extension to the algorithm will be to illuminate, in a sense,

how big of a problem we might have. That is, since the exhaustive search method will detect the

“missing patterns” we are concerned about, we can compare the results to the ones from the previous

section and get a sense for how rare these problematic patterns are.

We first implement both the original and the exhaustive search method on multiple samples of

1,000 individuals in the network and compare the distributions of class size and number of unique

cascades per root. Results are shown in Figure 4.9. We find that although the exhaustive search

finds a large number of new patterns (approximately a 30-40% increase in total cascades), these are

in general smaller cascades. We also find that although exhaustive search results, by construction, in

a nonnegative change in both class size and total unique cascades for every user, the majority of the

population sees no or negligible change.

We can also investigate the number of new call events are identified by this exhaustive search as

“persistent” calls. Figure 4.10 shows the percentage of all calls in the sample that are involved in a

persistent cascade event for both the original and exhaustive search method. We see a small increase,

from about 9-10% to just over 12% of calls. On one hand, this mirrors the 30-40% increase we saw

in the distributions of class sizes and unique cascades, but on a population level is a relatively mild

change.

In conclusion, although the problematic patterns we imagined are present in the data, they con-

tribute to only about 2-3% of all calls and are arguably not a serious shortcoming to the original

method.
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Figure 4.10: Increase in persistent cascade detection through exhaustive search. Depicted is the per-

centage of the data involved in persistent communication, using the original algorithm vs. exhaustive search.

This shows that only about 2-3% of the data is involved in persistent activity that we do not detect with our

algorithm as proposed.

4.3.8 Discussion

We have now introduced a novel methodology for extracting recurring patterns of information

spread, termed persistent cascades, from raw communication metadata, and analyzed the resulting

patterns in three city-scale mobile phone datasets. We found the persistent cascades are present on

long time scales of months to a year, and found examples of surprisingly large, recurrent structure

on the scale of months. We found the patterns tend to be short in duration (the majority last less

than 3 hours), which indicates a short attention span in spreading information and echoes previous

research in the “burstiness” of human communication. The individuals in a persistent cascade exhibit

a habitual hierarchy, in the sense that when the same individuals communicate, they do so in the same

order. We also found that our analysis reveals two new groups of individuals who have exclusive

roles of information spreading on either weekends or weekdays. Individuals tend to generate more

and more instances of the same pattern, and do not create new patterns, indicating predictability of

communication. Lastly, we justified several of our simplifying assumptions by comparing our results

against those obtained through an exhaustive search, finding that only 2% of the data is a�ected by

our assumptions.

4.4 Comparison to a random model

Motivation. To quantify the significance of the observed patterns in the data, we would like to

compare the distribution of their occurrence against some type of null model. Specifically, given

a random network with a degree distribution matching the real network, and with average inter-

individual call event rates also matching the real data, but without any of the temporal clustering

or mutually influencing e�ects we hypothesize are present in the data, what is the probability of a

cascade of s users occurring n times in a month?

We expect to find that in such a random network, recurring cascades of 3 and even 4 individuals

still occur with some regularity (2-3 times a month) by sheer chance. However, we also expect

that the likelihood of any of the larger cascades, or more frequently occurring cascade patterns, is

extremely low. Overall, the distributions of persistent cascade size or persistent class size will be

significantly di�erent in the data from the random graph model.

To this end we will adapt techniques from the rich fields of percolation theory and epidemic spread-
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ing. We are concerned with the dynamics of some contagion through a population with network

structure. In our application, the contagion is information, the initial infected population are the

cascade roots, and the outbreak is the cascade itself. Further, we may assume that the probability of

“infection” is only dependent on the rate of interaction between individuals (not on the infectivity

of some disease) — in this way we keep focus on the size and structure of the cascade.

Possibly the simplest model in this vein is the susceptible-infected or SI model, which considers

a population of susceptible individuals S and infected individuals I , who are fully mixing in con-

tinuous time (i.e. no network constraint), and with a parameter β representing the probability an

infected individual will infect a susceptible individual per unit time. We might think to apply this

to our problem by setting a single individual as “infected” (possessing some information), with β

representing the probability this seed will interact with his neighbors (e.g. the population average

rate of communication). Now let i(t) be the fraction of the population infected at time t, which in

our case would be 1/N , and we have the classic ordinary di�erential equation and its solution

di(t)

dt
= βi(t)(1− i(t)) ⇒ i(t) =

i(0)eβt

1 + i(0)(eβt − 1)
(4.5)

also known as the logistic equation, or S-curve. We might approximate the size of an information

cascade by simply calculating i(t) after some small time step representing, say, 24 hours.

However, a model like this falls short in modeling our problem for two main reasons: (1) it

cannot take into account network e�ects (other than something like average degree), and (2) it

models expected change at a population-level, not the discrete probability of particular outbreak sizes

or time periods. As a result, we will introduce some more sophisticated machinery that will allow us

to exactly model the probability distribution of recurring cascades, within a random graph model

that allows us to closely match the degree distribution and interaction rates of the real network.

Findings. We instead extend the methods in [53, 52, 47] to precisely describe the probability of a

particular outbreak (i.e. cascade), and subsequently the probability of its recurrence (i.e. persistence).

We will introduce the methods, then compare the analytic distribution to one obtained through

simulation, and against the distribution found in the data using the algorithm defined in the previous

sections.

We will first see that this analytical form closely matches that of simulation. Second, and most

crucially, we find that despite mirroring our real network’s degree distribution and pairwise average

rates of interaction, the distribution of persistence in the real network is significantly heavier-tailed

than the random model (both simulated and analytic).

4.4.1 Simulation model

We first propose a simulation method to test our hypothesis, and later show that this can also be

done analytically (with only minor approximations).

Network structure

Wewill first mimic the structure of the real network by creating a random network with a matching

degree distribution. Specifically, given an observed degree distribution p̄k in the data (i.e. p̄k is the
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Figure 4.11: Degree distribution comparison of the actual data and a synthetic network generated using the

same degree distribution, on 100,000 nodes.

proportion of nodes with degree k, which we construct from the static network over some observed

period, and use the normalized histogram of the resulting first-neighbor degree distribution), we

seek to generate a graph at randomwith an identical (or nearly identical) degree distribution pk. We

can accomplish by using the technique of the configuration model, which considers the family of all

graphs G(pk) with degree distribution pk, and is able to sample a graph at random from this family,

G(pk)i.

The configuration model has the benefit of capturing the network structure more closely than,

for example, an Erdös-Renyí (ER) model. In the ER model, we generate a network of n nodes such

that the probability of any two nodes being connected is independent, with probability λ/n. Then

the expected degree is simply λ, for large n. This is a highly tractable model. However, it is not a

very accurate depiction of a real communication network: one compelling reason is that it is easy

to show the resulting degree distribution is Poisson, whereas we know our network has closer to

power-law behavior. The configuration model, by contrast, allows us to specify this distribution

exactly to match the data, and as we will see, still provides a tractable framework.

Interaction rates

Second, we will mimic the interactions on each edge in the network by generating random events

(simple point process) with a matching average rate. These rates, in the data, follow some distribution

P̄ (r). We fit a Gamma distribution to this to infer a distribution P (r). We use the following form

for the Gamma distribution

Gamma(x; α, β) =
βα

Γ(α)
xα−1e−βx (4.6)

This distribution is a common choice for describing distribution of rates, because it is nonnegative

and conjugate with the exponential family.

We now consider an arbitrary 2-month period in the data. The comparison of the degree distri-
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butions in the real data and fitted model are shown in Figure 4.11. For the Gamma distribution we

find α = 0.82 and β = 2.94, and these parameters are very consistent regardless of which 2-month

period we choose.

We can now simulate a dataset by creating a random graph with this degree distribution, and

generating homogeneous, memoryless point processes on each edge with rate drawn from the esti-

mated Gamma distribution. We then run the persistent cascades algorithm on this generated dataset,

and the original data, and compare distributions of cascade size and recurrence. Before making this

comparison, we show that this entire process can be described analytically.

4.4.2 Analytical model

Now we will introduce framework to describe this model in a precise way, by extending results in

the field of percolation theory and epidemic spreading. We will make the same assumptions as in

the previous section (i.e. network structure and average rates of interaction fit to the data, but all

events iid). At a high level, we will:

1. derive a probability distribution of a cascade (outbreak) of size s happening after n steps,

denoted P
(n)
s ,

2. use this to upper bound the probability of a particular cascade occurring among a particular set
of users,

3. use this in a binomial distribution (coin flipping) to describe the probability of this cascade

occurring multiple times (i.e. persistence).

Overview

Recall that we will adapt epidemic modeling to our application such that the contagion is infor-

mation, the outbreak resulting from a single seed is a cascade, and the probability of “infection”

is determined only by the rate of interaction between the two involved individuals (and not any

notion of disease infectivity).

In [53, 51, 30] and others, the authors introduce analytic forms for the final size of an outbreak in

an SIR epidemic model for graphs with arbitrary degree distributions; that is, the probability of the

size of the outbreak after the disease has “run its course,” and all individuals are either susceptible or

recovered. A surprising finding in these papers (for example [53]) is that the probability distribution

of final outbreak sizes, Ps, sums to u =
∑

s Ps < 1, with the interpretation that 1− u represents the

probability of a population-wide outbreak (or “epidemic”), which is not captured by the model. The

argument goes that system-size outbreaks would contain loops that would invalidate the formalism

of their model.

Marder [47] proposes instead a model which tracks the stepwise size of the outbreak, as a dis-
tribution P

(n)
s representing the probability of an outbreak of size s after n steps. In doing so, he

finds that the distribution actually breaks into two parts: a piece which converges in the limit to a

finite outbreak, and a piece which grows exponentially in mean and variance as n increases. It is this

second piece which explains the possibility of epidemic spreading.
We will adapt Marder’s technique of stepwise outbreak tracking for two reasons: (1) it allows

us to capture the depth of a cascade, and (2) it gives a more accurate probability in the short-term,
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where we are interested. We will then extend this distribution to a distribution on the likelihood of

a particular outbreak happening multiple times during a time period — in other words, a persistent

cascade.

Epidemic size distribution.

The following derivation follows closely from [53] and [47]. Consider a random network with the

degree distribution di of any node i given by P(di = k) = pk for any i. Now define the generating

function

G0(x) =

∞∑
k=0

pkx
k

(4.7)

Generating functions are a common workhorse in the study of random graphs, as they encapsulate

an entire distribution in a manipulable form, as we will see. As an example, note that, given a gen-

erating function G, we can recover the underlying distribution pk by taking successive derivatives

and evaluating at zero:

pk =
1

k!

d
k
G

dx

∣∣∣
x=0

(4.8)

We can also recover the moments of the distribution. Note, for instance, that G′0(1) =
∑∞

k=0 kpk =

〈k〉, i.e. the average degree.
We may also consider the distribution of the degree of any vertex that we reach by traversing

an edge, not counting the vertex we started at (called the excess degree), and define its generating

function in terms of pk as

G1(x) =
G′0(x)

G′0(1)
(4.9)

see [53] for a derivation.

Now consider a network with a single infected individual. At each step, with unit probabil-

ity, infected individuals infect their susceptible neighbors. (Later we will extend this to when the

probability of infection is < 1.) The probability of having s infected after n steps call P
(n)
s . The

generating function for this distribution define as

H(n)(x) =

∞∑
s=0

P (n)
s xs (4.10)

So at step n = 0, we have H(0)(x) = x, and at n = 1 we have H(1) = xG0(x) since G0(x) gives

the probability of a node’s degree, and we started with one individual. Continuing, and using the

powers property in [53], we can show that H(2)(x) = xG0(xG1(x)), and so we have the recurrence

relation

H(n) = H(n−1)(xG1(x)) (4.11)

For easier iterative calculation, we will define

F (0)(x) = 1, F (n)(x) = G1(xF (n−1)(x)), H(n)(x) = xG0(xF (n−1)(x)). (4.12)

following [47].

We can then extract P
(n)
s by taking the appropriate derivative of H as previously mentioned.
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However, we need to resort to numerical di�erentiation here, and in practice, the recursive defini-

tion ofH and inherent small values leads to machine precision errors beyond the first 10 or so values

of s (see Newman, Marder). Instead, [53] recommends applying the Cauchy integral formula to

instead derive

P (n)
s =

1

s!

d
s
H

dxs
=

1

2πi

∮
γ

H(n)(z)

zs+1
dz (4.13)

with γ the unit circle (in the complex plane) |z| = 1. We can use the parameterization z(t) = e2πit

to rewrite this as

P (n)
s =

∫ 1

0
e−2πisθH(n)(e2πiθ)dθ. (4.14)

Following [47], we can evaluate this integral at some large number of points M around the unit

circle,m/M form = 0, 1, ...,M − 1, which will approximate the integral closely with the Riemann

sum, and is then in the form of an inverse discrete Fourier transform, that is

P (n)
s =

1

M

M−1∑
m=0

e−2πism/MH(n)
m =

1

M
F
DFT

(H,−1)[s] (4.15)

where H
(n)
m = H(e2πim/M ), and the notation [s] simply means retrieving the s-th element from

the returned spectra of the transform. We use the Python module numpy.fft to carry out this

calculation.

Example. As an example, consider a network with generating function G0(x) = 0.7x+ 0.2x2 +

0.05x3 + 0.04x4 + 0.01x5
(taken from [47]). Note that since z1 = G′0(1) = 1.46 and z2 = G′1(1) =

1.38 gives z1 > z2, i.e. the average excess degree is less than the average degree and it can be shown

that this implies an epidemic is not possible under the model [47, 53]. Indeed, in Figure 4.12(a) we

can see the probability distributions appear to approach a limit as n gets larger (shown are values

n = 1, 5, 10, 100). In fact, at P (100)
the distribution is already indistinguishable from the long-

term or “final” distribution given in [53] and others, as mentioned at the beginning of this section.

However, we note the distributions are quite di�erent in the short term.

In Figure 4.12(b), we consider a degree distribution such that z1 = 3.63 and z2 = 16.1, which

is closer to what we observe in the data. Now z1 < z2 and we know epidemic spreading is possible.

Here the di�erence between the stepwise method and the “long-term” method becomes more stark.

Specifically, we see that the stepwise model consists of two pieces: a finite element that is converging

to the long-term method as n increase, and a non-finite element that is increasing in mean and

variance exponentially with n, and allows for epidemic (population-level) spreading. [47] gives a

more complete treatment of this observation; for our purposes, we are simply interested in the fact

that the stepwise model, by being able to capture the entire spectrum of possible outcomes, is able

to more accurately capture short-term dynamics.

Transmissibility

Importantly, however, note that we assumed the probability of infection was 1 at each step in the

previous derivation, which we do not want to assume. For an infected individual i interacting with a

susceptible contact j, the probability of infection should be governed by the average rate of disease-
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Figure 4.12: Outbreak size modeling. Comparison of the stepwise [47] and final outbreak [53] models of

epidemic spreading, for networks with z1 > z2 (left) and z1 < z2 (right). We note that in general, the stepwise

model approaches the Newman model as n gets large. However, the stepwise model is able to capture more

precisely both short-term and long-term epidemic spreading.

causing contact — or in our case, the average rate of call activity between the users — which we

denote rij and varies from pair to pair. (Again, for purposes of our application, this has only to

do with the average rate of interaction, and nothing to do with a notion of the infectivity of the

information/disease itself.)

We can model the distribution of these rates as drawn from a distribution P (r), and we will

adopt a Gamma distribution form here for convenience. Furthermore, there is a ticking clock on

the infection due to our requirement that the cascade occur within a 24-hour period, denote this

τ . In the epidemic literature, this captures the recovery period wherein i is still “infective.” In our

application, it captures the short-term importance of the information being spread (and we note this

will lead to an upper bound on transmissibility, since in our algorithm we are actually giving each

successive member of a cascade a shorter and shorter recovery window before the end of a fixed time

window arrives).

So, as outlined in [53], denote the probability of transmission from i to j as Tij (and note it may

not be symmetric). The probability there is not infection is then

1− Tij = lim

δt→0
(1− rijδt)τ/δt = e−rijτ (4.16)

and therefore Tij = 1 − e−rijτ . However, since rij is iid for each pair in the network, then on a

population level it is su�cient to consider the average transmissibility T = 〈Tij〉 (see [53]), which

we can recover by averaging over all possible values of r,

T = 〈Tij〉 = 1−
∫ ∞

0
e−rtP (r)dr (4.17)

As a convenient form for P (r) we choose the Gamma distribution, defined in Eq. (4.6). We can
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then derive the value for T analytically (in the continuous case) as

T = 1−
∫ ∞

0
e−rτe−βrrα−1 βα

Γ(α)
dr

= 1− βα

(β + τ)α

∫ ∞
0

(β + τ)α

Γ(α)
rα−1e−r(β+τ)

dr

= 1− βα

(β + τ)α

This makes intuitive sense, as when τ gets larger (our period of interest gets longer), the transmissi-

bility goes toward one, and as the rates skew smaller with larger β, the transmissibility goes toward

zero.

As shown in [53], we can simply express the generating function for the degree and excess

degree distributions now as

G0(x) = G0(1 + T (x− 1)), G1(x) = G1(1 + T (x− 1)) (4.18)

to capture this e�ect. (Derivation involves a straightforward manipulation of the total probability’s

resulting binomial distribution and is omitted for brevity.)

Extending to persistence

To capture the probability that a particular outbreak (i.e. cascade) happened between the same set of

users multiple times (i.e. was persistent), we can take advantage of the fact that, given the outbreak

center and size, any set of users is equally likely. We will also discard any notion of approximate

similarity, and only consider outbreaks of exactly equal size.

The probability of a specific set χ(r) of users being in an outbreak rooted at r, with sχ(r) =

|χ(r)|, for any particular seed/root node r, is

q
(n)
χ(r) =

1

# ways to make χ(r)
P (n)
sχ(r)

≤ 1(
kr
sχ

)P (n)
sχ

with the inequality due to the fact that the actual number of ways to form a set of sχ(r) nodes is

bounded below by the number of ways to form this set from a node’s immediate neighbors, kr.

Now the probability of a particular pattern happening k times over the course of D disjoint

periods (for exampleD = 60 days) we will denote asQDχ , and we can upper bound it with a binomial

distributed with parameters D and q̂χ,

Q̂Dχ ∼ Binom(D, q̂χ).

As an example, consider a network with G′0(1) = 2.9 and G′1(1) = 16.1 and transmissibility

T = 0.28 (both of which mirror our real network, as we will discuss in the next subsection). Now

consider Figure 4.13. The distribution of outbreak sizes after 2 steps (which is a typical depth of a

persistent cascade), P
(2)
s , is shown on the left. We note this distribution seems to make sense given

the degree and excess degree: the probability peaks around the average first degree of 2-3, and

sharply drops o� after the average count of the first two levels, which is G′0(1) + G′1(1) ≈ 20. For
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Figure 4.13: Extending the outbreak model to recurring (persistent) outbreaks. (Left) Probability of

outbreaks of a size s, after 2 steps (P
(2)
s ). (Right) Binomial distribution Q̂ for the case of D = 60 days and

p = P
(2)
s for s = 3 and s = 4, i.e. cascades of size 3 and 4.

cascades of size s = 3 and s = 4, the corresponding distribution of number of reoccurrences is given

on the right of the figure (note we only consider occurrences of at least 3 or more, in anticipation of

our persistent cascade analysis that is to follow, and have renormalized the distribution accordingly).

This again matches our intuition: there is an approximately exponential dropo� in the likelihood of

higher reoccurrence in a random network with non-temporally-clustered interactions.

4.4.3 Findings in the network

We can now compare the resulting distributions of size and frequency of cascades in the real data,

simulation model, and analytical model. Recall that we are considering an arbitrary 2-month period

of data for this experiment.

Results are shown in Figure 4.14, for both the 3-node case (i.e. P3 and Q̂
(k)
3 ) and 4-node case

(P4, Q̂
(k)
4 ). We see the simulated data generally follows the model in both cases, although it drops o�

slightly more quickly in the 4-node case. In both cases, the real data exhibits a “heavy tail” of cascades

occurring 5+ times, in contrast with the random graph models, which exhibit zero probability of

reoccurrence past 4-5. In both cases, one can show that the di�erence in the simulated and real

distributions is significantly di�erent — for example using a simple χ2
-test, the significance is at a

99%+-level.

Conclusion. The results in Fig. 4.14 match our expectations at the beginning of this section in

both the 3-node and 4-node case — cascades in the data are larger and more recurrent than patterns

in simulated data or a modeled distribution even when mimicking exactly the network structure

and average rates of interaction. This allows us to reject the hypothesis that these factors are enough

to explain the patterns in the data, and leads us to pursue a model which can capture the mutually
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Figure 4.14: Patterns in the data are significantly di�erent than patterns in a random network. Com-

parison of cascade persistence (re-occurence of the same pattern) for cascades of size 3 (a) and size 4 (b), using
results from the actual data, a simulated data set on a scale-free network, and the epidemic model’s predicted

distribution. The x-axis represents the number of reoccurrences of the same pattern, and the y-axis shows

the proportion of all cascades with this amount of recurrence. We see the simulated data closely follows the

model in the 3-node case, but drops o� more quickly than expected in the 4-node case. In both cases, the real

data exhibits a “heavy tail” of cascades occurring 5+ times, in contrast with the random graph models, which

exhibit near-zero probability of reoccurrence past 4-5.

exciting nature of group interactions.

4.5 E�ects on centrality and di�usion

4.5.1 Di�usion: role of spreaders

What does the presence of cascades, and specifically persistent ones, have on information spreading?

For example, if information is seeded at an arbitrary point in the network, does cascade membership

increase the probability of receiving it?

We will again frame our problem in terms of epidemic modeling, where the “disease” again

represents in our case information, and “transmissibility” pertains to the ability of an individual to

pass information to a social contact. Let us first delve into the dynamics of spreading under this

model, develop a case for why cascades might see an increased probability of receiving information,

and then finally test our hypothesis through simulation on the real data.

Note that this section simulates the spread of information but uses the real order and timing of

interactions observed in the data. We of course do not have access to second-by-second tracking

of the spread of some real piece of information or news through the network (as we might in a

Twitter or internet blog or email dataset), but we are instead claiming that if such a spreading

process were occurring, where the probability of the news being passed was λ, our simulations

reveal the dynamics of what that spread would be.

Background

Several papers, as mentioned in Chapter 2, have shown evidence that the “bursty” nature of hu-

man interaction actually has a slowing e�ect on spreading dynamics. The intuition is that the long

tails of inactivity slow down population-level spreading; compare this with classical models where

we assume complete mixing of the population, which is closer to random activity. However, it is
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not immediately obvious that long tails of interarrival times would always slow down spreading:

wouldn’t bursts of rapid, e�cient activity assist spreading under a ticking-clock model like SIR,

since it would help the disease spread before the infected nodes recovered?

In [50], they give an interesting mathematical argument for this apparent paradox. We summa-

rize their findings here to set the stage for results by simulation in the next subsection.

Consider a simple SIR-type spreading process. An individual i is infected by some contact at

time tα, and there is some waiting time τij between this event ∗ → i and the next interaction i has

with some j, i→ j. Note this is di�erent than the interevent time δtij , and the distribution can be

approximated with

P (τij) =
1

δ̄tij

∫ ∞
τ

P (δtij)dδt

Note that then P (τ) “inherits” any properties of P (δt), such as being potentially heavy-tailed.

Insight #1. The burstiness of human communication slows down spreading due to the long tails

of inactivity; however, the causal nature of these bursts (since receiving communication usually

induces you to communicate to others) actually speeds up spreading, since an infected individual will

generate several quick secondary spreaders. These are counterbalancing forces.

So then consider (as in the previous section) the transmissibility Tij of an edge i− j, representing
the possibility of infection from i to j, which is a function of the rate of infection λ and the recovery

window T . This can be represented, for a single edge, as 1 − (1 − λ)nij(tα)
, where nij(tα) is the

number of i−j interactions in the time window [tα, tα+T ]. Then, the total probability of infection

is

Tij(λ, T ) =
∑

α∈{α∗}

P (tα = α) ·
(
1− (1− λ)nij(tα)

)
=
〈
1− (1− λ)nij(tα)

〉
α

where we can take the average if we assume each possible ∗ → i infection event is iid.

Now, note that when λ is small, 1 − (1 − λ)n ≈ λn. When λ is big, 1 − (1 − λ)n ≈ 1. So, we

have two “regimes” of transmissibility, depending on the parameter λ:

Tij(λ, T ) =

λ〈nij(tα)〉 if λ� 1

1− P 0
ij if λ ≈ 1

(4.19)

where P 0
ij = P (nij = 0;T ), and we can approximate with the density from before as P 0

ij =∫∞
T P (τij)dτij , basically measuring the probability of a relay time being longer than the recovery

period T . When P (τ) is heavy-tailed, P 0
ij will be larger (for large T ) than if P (τ) is exponentially

decaying. Note also that if there is causal correlation between ∗ → i and i→ j, then nij(tα) will be

higher in “real life” than in a randomized order of events.

Insight #2. We can see, when infection rate is very small, then real order of interactions will

actually lead to higher transmissibility on edges and thus increase the outbreak size, due to the higher

nij(tα). When infection rate is larger, the real order of interactions will lead to lower order of

interactions because it has a higher possibility of no interactions during T , that is P 0
ij is higher.
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Simulation

This analysis by [50] postulates that there are “information cascades” doing the heavy lifting of

spreading information, and whose e�ects are only masked under large infectivity λ. Now we claim

to have actually identified conversations displaying these cascading properties, the so-called persis-

tent cascades of this chapter. Our hypothesis is then that when λ is small and we follow the real

order of interactions, the persistent cascades will play a significant role in spreading and cascade

membership will contribute to higher probability of infection (i.e. receiving information). On the

other hand, when λ is large, the cascades’ importance will be masked by the high volume of random

calls and we will see no significant di�erence between cascade membership or not.

In another sense, we observe that there is both random and cascading activity occurring simulta-

neously in the real data, that we have identified the individuals constituting both groups, and so by

tracking the epidemic spread separately for both, we should see the contrast in infective dynamics

between regimes of λ without even randomizing the order of calls.

Experiment setup. We simulate the SIR model in the temporal social network resulting from

about a month of CDR data. We start each simulation by choosing at random 1,000 nodes, and

considering all other nodes as susceptible. We ensure there is an equal probability of cascade mem-

bers or non-members chosen as seeds in each simulation. We then step through the call data in order,

and in each call letting the caller infect the callee with probability λ. Infected nodes recover after a

period T , and cannot be infected again. We continue until all nodes are susceptible or recovered.

We repeat this for 100 simulations of 1,000 seeds spread across the network.

We consider two regimes of infectivity, λ = 0.05 and λ = 0.3, with the recovery period T = 3

days. We measure the probability that a node is infected by counting the fraction of times it is

infected over all simulations, and average this across all nodes in a particular type of cascade mem-

bership and range of call activity. We are controlling for number of total calls since we want to

separate out any increase in probability of infection from simply having more exposure in general.

The specific values of λ are chosen to be comfortably far away from the transition point (i.e.

when the spreading process tends to become population-scale) on each side. This transition point is

determined empirically to be approximately λ = 0.15 for this data.

Discussion. Results of this experiment are shown in Figure 4.15. We find that our hypothesis

appears to hold. First, in the case of small λ: cascade membership appears to signficantly increase the

probability of infections, especially for those with an above-average number of calls. It contributes

about a 1.5 to 3 times increase in probability regardless of activity level.

This is an interesting finding: those who contribute to persistent cascades are more likely to

receive a piece of information seeded randomly in the network than those who are not in this

club, and this property is mostly independent of their overall activity level. One may imagine an

o�ce where the director sends out a bi-weekly email with priorities for the day, which generates

a persistent cascade of emails between project managers. Our finding indicates that this group of

people is more likely to receive, say, a randomly seeded email virus (with low infectivity), than their

coworkers — even coworkers with much higher levels of activity— simply because of the persistent

nature of their communication. The intuition is that the random tra�c is not e�cient enough in
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Figure 4.15: Importance of persistent cascades in information spread. Here we compare the probability

of infection under SIR model given cascade membership or not (and controlling for di�erent levels of call

activity), for small (top) and large (bottom) values of λ. The left plots show the probability of infection
given a particular range of total call activity, with bins [10, 20], [20, 30], etc. (Note this is a series of conditional

probabilities, not a distribution.) We see that under the low infectivity regime (λ = 0.05) the cascademembers

are more likely to receive information due to the e�ectiveness and persistence of their call patterns. By

contrast, under a high infectivity regime (λ = 0.3) the random mixing masks this e�ect. Population average

across all simulations (not controlling for call activity) shown as a solid line, with two standard deviations

above and below shown as a shaded rectangle. The right plot gives the resulting increase due to cascade
membership and emphasizes that this e�ect is not simply correlated with higher call activity.

spreading the virus before the recovery period “kicks in.”

In the case of large λ, the e�ect of cascade membership is completely surpassed by random

calls, again as expected. Also, we note that this e�ect is still uncorrelated with overall activity.

Interestingly, the cascade members due surpass the non-cascade members in the case of low activity

nodes, but this appears to be minor and we do not investigate it further in this work.

Finally, note that the population average probability of infection (shown in Figure 4.15 as solid

lines in the left plots) do not reveal this regime change. At a population level, the persistent cascades

appear to always be more vulnerable to infection. However, it is evident from comparison to the

probabilities when controlling for overall call activity that this is simply the e�ect of cascademembers

tending to have more activity in general, which we know will necessarily increase the probability

for infection through sheer exposure.
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Table 4.2: Persistent cascade e�ect on notions of centrality. This table illustrates the di�erence in what

nodes are deemed “central” with or without the persistent cascade analysis. We separate individuals by

whether they are ranked in the top 10% or not of the network as measured using cascade-weighted de-

gree, or unweighted degree. The entry in bold corresponds to individuals who are in the top 10% of users in

the network using a cascade-weighted measure of degree, but are in the bottom 90% using an unweighted,

aggregated approach. In other words, this group (which constitutes 6.6% of the total population) is highly

central in information spread, but is unnoticed using a standard approach.

Weighted

ki (degree) rank Bottom ranked Top ranked

Unweighted

Bottom ranked 195,248 (83.9%) 15,357 (6.6%)
Top ranked 18,020 (7.7%) 10,261 (4.4%)

* Bottom rank = lower 90% of users, top rank = top 10% of users

4.5.2 Cascade-weighted network

Now consider applying this knowledge of persistent structure back to a static structure, and ob-

serving the e�ect on, in particular, centrality. Specifically, for a network G = (V,E), weight the

subset of edges EC that are present in at least one persistent cascade with wc = α ∈ [0.5, 1] and all

en ∈ E \ EC with wn = 1 − α. Now with α = 0.5 we recover the standard aggregated network,

and with α > 0.5 we are putting extra weight on the “persistent” edges which we claim carry more

meaning.

This results in a network of about 278k nodes and 505k edges, with about 45k users having at

least one persistent class of 2 or more cascades (counts are for City A). Setting α in [0.5, 1), we find

a giant connected component (GCC) comprising 80-85% of the total network for all three datasets

(cf. [57]). With α = 1, the GCC splits into several thousand smaller subgraphs, the largest usually

being about 2k nodes. This echoes previous results that show the inability of information to reach

any sort of macroscopic di�usion when traveling solely through information cascades [59], and is a

version of our earlier findings in this chapter on the connectedness of the k-persistent subnetwork.

We now consider the weighted degree (or node strength [54]) of a user i, defined ki =
∑

j Aij ,

where A is the adjacency matrix of G and Aij = wc if (i, j) ∈ EC , wn if (i, j) ∈ E \ EC , and 0

otherwise. We examine a 1-month time period in City A, for both the unweighted (i.e., α = 0.5)

and cascade-weighted (α > 0.5) networks. We use the s
TED

measure for this analysis, with ` = 0.8.

We observe the e�ects of the weighting in Table 4.2, which presents the overlap of central and

non-central users for both networks as measured by degree, when α = 0.5 against when α = 0.9.

We note several groups that emerge: first, the large group of users (about 7% of the total users)

that are only central in the cascade-weighted network. This suggests a group of users with unre-

markable importance as measured in a naïve way by counting calls, but who play a pivotal role in

the persistent communication patterns of their social network. Similarly, a large group of influential

users in the standard unweighted network disappears when we begin weighting cascades, implying

their centrality was only due to a web of edges corresponding to mostly random calls. And lastly,

we note that a large portion of the network has their status essentially unchanged.
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Figure 4.16: Persistent cascade e�ect on notions of centrality. Here we contrast the local network of a

typical user in the bottom left group of Table 4.2 against one in the top right group of the Table. The person-

of-interest is depicted as a red node, all others as light blue. Edges present in a persistent cascade depicted in

black, all others as gray. Sample includes friends and friends-of-friends. On the left, the person of interest

has a high number of di�erent social contacts (high unweighted degree), but none of which are actually

persistent. By contrast, on the right, the person of interest has close to the population average number of

di�erent social contacts, but is involved in a large number of persistent cascade activity. This right individual

is representative of a large group of users with unremarkable importance as measured in a naïve way by

counting calls, but who play a pivotal role in the persistent communication patterns of their local network.

(a) High unweighted degree (b) High cascade-weighted degree

4.6 Case study: HRC Emails

Our methodology thus far has been designed for metadata where we are inferring information

spread by extracting recurrent patterns in the data. It would be revealing to apply the method to

data where we do have access to the content: in this case, we could do the pattern matching as before,

keeping ourselves blind to the content, and then afterwards do an analysis with the content now at

hand. We are also interested to test whether the methodology is generalizable to other, non-mobile

phone, datasets.

To this end, we will conduct a case study of sorts, using a dataset of emails fromHillary Clinton’s

private email server, which were recently made public as part of a federal investigation.

4.6.1 Data

Hillary RodhamClinton (HRC)was theDemocratic nominee for President of theUnited States dur-

ing the 2016 campaign season. She was involved in a long-running and heavily politicized contro-

versy during this campaign regarding her use of a private email server during her previous tenure as
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Figure 4.17: Number of emails in the HRC emails dataset, by month. This only depicts emails for which we

have a timestamp (required for our analysis).

Secretary of State. There were a string of Freedom of Information lawsuits demanding a full release

of the emails, which crescendoed in mid-2016 with the State Department releasing approximately

7,000 of the confiscated email records. These are available from various sources, but we use the

publicly available set available at https://www.kaggle.com/kaggle/hillary-clinton-emails

because it has been reasonably cleaned and vetted from the original PDFs.

After doing some baseline data preparation to remove missing timestamps and resolve aliases

for the di�erent active users in the dataset (e.g. “Huma Abedin,” “abedinh@state.gov,” “Abendin”

[sic], etc.), we are left with 3,361 emails over a 1-year period in 2010. (See Figure 4.17.) There are

382 unique users, most with activity in the range of 100-200 emails. The full network is shown

in Figure 4.18, with the four individuals with highest activity labeled. These four individuals are:

Hillary Clinton (1); Jacob Sullivan (2), deputy chief of sta� during this period; Cheryl Mills (3), chief

of sta�; and Huma Abedin (4), deputy chief of sta�. There are also 280 emails with an unlabeled

sender/receiver, so we represent these unknowns as a single node in the network.

4.6.2 Persistent cascade analysis

We now apply the persistent cascades algorithm to this dataset. We find that, using a similarity

threshold of ` = 0.8 and thresholding at k = 3 cascades per class (cluster), there are 11 root users

generating persistent cascades with these minimum requirements. This is only about 2% of the

“population,” which is lower than the CDR dataset, but this is not surprising since this email network

is much more centralized (around one user, HRC).

Already, there are several interesting observations about these 11 roots. First, it includes the 4

high-activity individuals, but also several users with below-average activity, such as Judith McHale

(Under Secretary of State) and Richard Verma (Assistant Secretary of State for Legislative A�airs).

It also excludes the node representing unknown sender/receiver, which is encouraging since this

node was relatively high-activity, but should not be generating any sort of persistent events.

Distribution of class and cascade size. The distributions of both class size (i.e. how many per-

sistent cascades there are in a class) and cascade size (i.e. how many individuals are in a persistent

cascade) in Figure 4.19 looks very similar to what we saw in the CDRs, in that there is a long tail

of large classes, but most are only 3-4 cascades. This is again more than expected under a random

model, as we showed for the CDR data in a previous section.
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Figure 4.18: Communication network structure in the Hillary Clinton emails dataset. Labeled are the
four individuals with highest overall email activity: Hillary Clinton (1); Jacob Sullivan (2) and Huma Abedin

(4), deputy chiefs of sta�; and Cheryl Mills (3), chief of sta�. Edges appear wherever two individuals have

exchanged at least one email, and edge thickness denotes email activity within the pair (undirected).

Centrality. We now repeat the centrality analysis from the previous section. Recall that we will

compare the high-centrality nodes (e.g. top 10%) in the unweighted, aggregated network against

the high-centrality nodes when we place higher weight on edges involved in persistent communi-

cation. Using again α = 0.9 as our weight, we find a similar group of “hidden spreaders” emerges

(see Table 4.3). In the top 10% of individuals under both the weighted and unweighted analysis, we

find such high-activity and central users as HRC, Huma Abedin, and others already mentioned.

However, we find 11 individuals who are unremarkable (i.e. lower 90%) in terms of total degree,

but who are in the top 10% of individuals as weighted by membership in persistent cascade activity.

As an example, one of these individuals is Doug Band, whose email correspondence is limited but

about 80% of the time with HRC in a persistent cascade.

Table 4.3: Centrality analysis in the HRC email dataset. Contrast of top ranked users (by degree) in the

standard unweighted vs. cascade-weighted network, in the HRC Email dataset. Users in bold (2.8% of total

pop.) are highly central in information spread, but are unnoticed using a standard approach.

Weighted

ki (degree) rank Bottom ranked Top ranked

Unweighted

Bottom ranked 333 (87.2%) 11 (2.8%)
Top ranked 14 (3.7%) 24 (6.3%)

* Bottom rank = lower 90% of users, top rank = top 10% of users
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Figure 4.19: Persistent class membership and size is similar to mobile phone data. Distribution of (left
plot) class size (i.e. how many persistent cascades are in a class), and (right plot) persistent cascade size (i.e.
how many individuals are in a persistent cascade). This mirrors findings in the CDRs, in terms of the long

tail of large classes and number of individuals per cascade being higher than expected under a randommodel.

Example content. Finally, we will discuss a few examples of content within the discovered persis-

tent cascades, although we leave more in-depth analysis to future work (for example, bag-of-words

text comparison within a cascade against a random sample).

The following three examples are summaries of the structure and content of actual persistent
cascades in the dataset, and give a sense for the type of communication we observe:

• sbwhoeop (corresponding to Sid Blumenthal) emails Hillary, who in turn forwards the infor-

mation to Philip Reines or Jake Sullivan. Mr. Blumenthal’s emails are typically in the vein of

breaking-news, usually in foreign policy issues, which Hillary then ensures her deputy chief

of sta� is aware of (e.g. February 5th 2010, “FWD: Northern Ireland. FYI,” regarding a

“historic” power-sharing agreement in Northern Ireland).

• Anne-Marie Slaughter (Director of Policy Planning) emails Hillary, who then emails Jake Sul-

livan for opinion or situational awareness. For example, in early April, about a British planning

policy, or a project proposal read-ahead for “creating more leverage” (context unclear).

• Less high-profile, but relevant, is the multiple cascades that find a pattern of Cheryl Mills, Jake

Sullivan, or one of 3-4 other high-activity sta�ers, emailing Hillary, who then forwards the

informaiton to Lauren Jiloty (special assistant) and asks “Pls print.”

We do not do a comparison of text similarity in persistent cascade emails against a random

sample, for example by using a bag-of-words style analysis. This may be fruitful, and we expect

that content within persistent cascades is more similar than content from email chains on randomly

selected days and times. However, we wish to emphasize that the specific content of the emails

is not the aim of the persistent cascades analysis, as much as the observation that communication

in a persistent cascade is more meaningful than elsewhere. We expect this to be borne out by

visible information spreading from time to time, but in general we do not require a “viral message”

to be passed to be able to say something like “communication from Sid Blumenthal to Hillary is

meaningful, persistent, and tends to produce communication with Jake Sullivan.”
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4.7 Conclusion

In this chapter we introduced a novel method for extracting temporal patterns of information spread

from large-scale communication metadata, using methods of inexact tree matching and hierarchical

clustering. We showed that analysis of these so-called persistent cascades reveals new properties of

information spread, such as weekday-weekend roles, a habitual hierarchy of spreading, and long-

term persistence on the scale of months and years. We showed that these patterns are significant

by comparing them to both analytical and simulated models of the network, indicating that the

temporal clustering inherent in real communication patterns is critical to producing the persistent

cascading patterns we observe in the real data. We also showed that these persistent cascades play

a crucial role in information spreading through simulation of di�usion processes on the temporal

network — specifically, members of a persistent cascade are more likely to receive information

spreading through the network under realistic conditions of spreading. Lastly, we showed that this

analysis leads to new understanding of centrality and revealed a population of super-spreaders who

were otherwise unremarkable under an aggregated approach.

We also indicated directions for extension of the method: first, our assumptions about the struc-

ture of information spread limited our ability to detect all relevant patterns (as revealed through

an exhaustive search), and second, our pattern-mining method of identifying structure limited our

ability to describe the relationships in the network in a probabilistic way. In the next chapter, we

will introduce a probabilistic model for approaching this problem that addresses these concerns.
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Hawkes Processes

We now seek to answer the question: how can we model and predict the underlying influence struc-

ture of a communication network? We use a point process called a Hawkes process that can model

the important properties we observed in the previous chapter, such as temporal clustering and infor-

mation cascades, and also provides us with an interpretable, predictive influence network structure.

We propose a novel methodology for parameter estimation of this model, apply it to the mobile

phone datasets, and find it both extends our findings related to the persistent cascades and reveals

new properties.

5.1 Introduction

5.1.1 Motivation

The graph-mining approach presented in the previous section is designed to identify recurring

patterns indicative of information spread, and allows us to analyze the e�ect of those patterns on

di�usion and individual roles in the network. However, it is not designed to model the network,

or quantify the observed structure in a probabilistic sense. We may extract a recurrent temporal

structure, but we have no clear way of describing relative importance (such as tie strength), or being

able to predict the occurence of the structure in the future. As outlined in the background chapter,

previous work has been done in this vein using general probabilistic models (such as [19, 16, 20]),

and modeling the network as a point process (such as [63, 58, 43, 72, 78]).

The Hawkes process is a flexible point process we will implement in this chapter which allows

events to exert influence on future events. This influence is additive and decaying with time, and

may be extended to a multidimensional case where there are many di�erent streams of events.
The Hawkes process was proposed in 1971 [24], and many of its early application was in econo-

metric modeling, but its generalizability has since brought it wide use in modeling, for example:

• stock price fluctuation [7, 43],

• earthquake activity [72],

• gang violence [65],
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• neuron impulses in the brain [44],

• social networks [79, 58],

• trend detection [60, 17],

• and product adoption [70, 18].

This gives us a rich literature of techniques to draw on and gives our methodology broad applica-

bility.

5.1.2 Contributions

We o�er three methodological contributions. First, we present a technique to adapt the Hawkes

process, in the multivariate case, to model events on edges instead of nodes. We term this the Dyadic
Network Hawkes model, and we argue it is often a more sensible paradigm for communication and

influence networks where observations involve two individuals. Second, we introduce a Bayesian

maximum aposteriori (MAP) expectation-maximization (EM) approach which allows us to incor-

porate a prior distribution on the amount of influence between individuals. This regularization is

absolutely critical on networks of any size to prevent overfitting due to the large number of pa-

rameters, and our proposed methodology allows us to use the elegant framework of EM without

the heavy machinery of nuclear norm regularizers. Third, we propose a simple way to translate the

estimated influence matrix into an individual measure of influence and susceptibility.

We also demonstrate our proposed approach in real communication data. First, we apply the

method in the 1-dimensional case to the previously identified persistent cascades, which we now

reinterpret as single group conversations where each call represents an event. This analysis shows us

that the group conversations split into two clusters: one that is highly “excitable” but with relatively

low background intensity, and one that is moderately excitable with high background intensity.

Second, we apply the model in the multidimensional case to samples of the mobile phone data

without prefiltering with the persistent cascades methodology. We show that the method gives

interpretable estimates of the network influence structure. We then perform the persistent cascade

analysis on the same samples, allowing us to compare the distribution of estimated measures of

influence and susceptibility between persistent cascade members and non-members. We show that

persistent cascade members are both more influential and more susceptible than the population on

average.

5.2 Methodology

5.2.1 Theoretical preliminaries

Poisson process

A point process is a stochastic process that generates a random and finite series of events that are

governed by a probabilistic rule. For example, consider a series of points along the nonnegative real

line such that the probability of k points on any interval length n is given by a Poisson distribution
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Figure 5.1: Temporal clustering in Hawkes process is not present in Poisson process. Bottom chart

shows arrivals in a univariate Hawkes process (HP) contrasted with a Poisson process. Note the temporal

clustering and “burstiness” inherent in a Hawkes process, not apparent in the memoryless Poisson process.

Top chart shows the corresponding intensity function for the HP arrivals.

with parameter λn — this particular process is called the Poisson process (with rate λ). Because of

our application, we will always consider the real line to represent time, such as an interval [O, T ].

We may even consider a U-dimensional Poisson process, with U di�erent Poisson processes

generating events in RU , each with a di�erent rate λu. Now, the overall number of points in a

particular interval (or now more appropriately, volume) is again given by a Poisson distribution

with parameter λn, where the rate λ = λ1 + ... + λu (the Poisson superposition theorem). This

additive property allows us to compute the probability that a particular event originated from a

particular dimension ui as λui/λ.

One can also show that the number of events in disjoint subsets are independent of each other.

This leads to the critical observation that the Poisson process is memoryless. Another way to state

this is that the interarrival time between two successive events is an exponential random variable,

and therefore the probability of the next interarrival time is independent of the previous. This

memoryless property makes the Poisson process an extremely tractable, and universally applied,

modeling tool.

Hawkes process

However, the memoryless property of Poisson processes means that it is unable to capture a depen-

dence on history, or in other words, interaction between events. For example, we may want the

event of an arrival to increase the probability of arrivals in the next small interval of time. For this,

we introduce the Hawkes process ([24]), which gives an additive, decaying increase to the intensity

function for each new arrival. Now, the intensity function is only conditionally Poisson: that is, given
the history of events {ti} up to t, the conditional intensity at t λ(t|ti < t) is Poisson. [43, 36]

Definition 5.2.1 (Hawkes process). Consider a sequence of events {(ti, ui)}ni=1 consisting of a

time ti and dimension ui (i.e. the i-th event occurred at time ti in dimension ui), for ti ∈ R+
and

ui ∈ U = {1, 2, ..., U}. This sequence is a Hawkes process if the conditional intensity function has

the parameterized form

λu(t; Θ) = µu +
∑
i:ti<t

huui(t− ti; θuui) (5.1)
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Figure 5.2: Example of a nonstationary Hawkes process. When the excitation parameter α > 1, the
expected change in intensity tends to infinity and the process has the tendency to “blow up.” The example

above is a univariate example with µ = 0.1, α = 1.1, ω = 3.

where Θ = (µ, θ) are the model parameters and H = [hij ], h∗(t) : R+ → R+
is the matrix of

triggering kernels (also sometimes called the excitation function or decay kernel) which is varying with

u and ui.

Contrast with Poisson process. Note that when h ≡ 0, we recover the (homogeneous) Poisson

process with rate µ and the intensity is independent of the history H(t) = {ti : ti < t}. In contrast,

a Hawkes process with h > 0 is self-exciting: recent arrivals increase the value of the intensity

function, thereby generating more arrivals. This property results in stronger “clustering” of arrival

events than observed in homogeneous Poisson processes. As an example, consider Figure 5.1 which

shows a realization of a Hawkes process (top) and Poisson process (bottom). The Hawkes process

displays clear temporal clustering, also evident in the “sawtooth” behavior of its intensity (top of

chart).

Interpretation as superposition of Poisson process. On the other hand, we may also interpret

the Hawkes process as a superposition of multiple Poisson processes. One can imagine, in a single

dimension u, the base rate leading to a sequence of events (Poisson with parameter µu), and each

summand leading to a sequence of events (with parameter huui(t− ti)). In this way, the probability

that a particular event tj was the result of, say, the background rate, is:

P(tj background) =
µu

µu +
∑

i:ti<tj
huui(tj − ti)

(5.2)

or in other words, the fraction of the total rate at time tj that came from the background rate.

This property will be highly useful later when we introduce the idea of the Hawkes process as a

branching process and exploit this latent (i.e. unknown) structure in an expectation-maximization

scheme for parameter estimation.

Triggering functions, branching process, stationarity

The triggering function controls how much past events a�ect future ones, and should be defined

for all pairs (u, u′) over all u ∈ U . A common choice is a scaled exponential function (e.g. see

[70, 78, 72, 79, 24, 58, 17]), which is interpretable and computationally tractable. Other forms have
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been explored (e.g. power-law), although [79] show that choice of functional form is less critical to

performance than accurate parameter estimation. We therefore adopt the exponential form, defined

below.

Definition 5.2.2 (Exponential triggering function). Decompose the triggering kernel matrixH =

[hij ] into an influence matrix A = [αij ] and exponential decay kernel G(t) = [gij(t)], such that H =

A�G and

huu′(t; α, ω)
def

= αuu′g(t; ω), g(t; ω) = ωe−ωt. (5.3)

where we have set a global parameter ω, and let α∗ vary between dimensions.

This has the immediate interpretation that as an event becomes more distant, it has exponentially

less e�ect on the probability of a new event occurring. We can tune the ω parameter to adjust the

rapidity of this decay, and tune the α parameter to adjust the relative weights di�erent dimensions

place on each others’ activity (including αuu, the self-excititation of a dimension on itself ).

The practice of treating ω as a global parameter has precedent in [78, 70, 17] and allows us to

avoid the addition of U2
new parameters to the model.

The scaled exponential, as defined, also has an intuitive form if we interpret the Hawkes process

as a branching process. Consider the univariate case U = 1. Note that when the intensity λ(t) = µ,

we can consider any arrivals as parent events. Now some immediately subsequent event (where now

λ(t) > µ due to the excitation of h(·)) is either another parent event, or (more likely) an o�spring
that was caused by a previous parent event’s increase in the intensity function.

Under this interpretation, α > 0 controls the branching ratio, or likelihood of an arrival causing

another arrival.

Furthermore, we note that in the univariate case when α > 1, the process N is nonstationary;

i.e. E[N(t + δt) − N(t0)] → ∞ as t0 → ∞, for any choice of δt. This nonstationarity mirrors

standard results in branching processes (such as the Galton-Watson process), and is easily seen by

noting that, when α > 1, each parent event produces infinitely many o�spring in expectation. See

[36] for further discussion.

In the multivariate case, this has the natural extension to the matrix of A =
[
αij
]
, and one can

show that in order to ensure stationarity, the largest eigenvalue of A must be less than 1,

ρ(A)
def

= max

i
|λi| < 1 (5.4)

where λi here denotes the eigenvalues ofA. This again makes sense by considering that the expected

number of o�spring at each generation is related to the successive powers of A, which must be

constrained to have a largest eigenvalue less than one in order to be certain to converge. We refer

the reader to [43, 45, 36] for further discussion.

5.2.2 Simulation method

For learning the parameters Θ = (µ,A, ω) of this model, it will be useful to test our methods

on synthetic data generated from known parameters, where we can compare our results to some

“ground truth.” In this subsection we describe our method for simulating a multivariate Hawkes

process. We improve the standard algorithms with two small but important modifications.
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Simulation of a Hawkes process is nontrivial. A well-worn approach which we will adapt (with

some improvements) is known asOgata’s thinning method [55], which essentially generates new events

from an exponential distribution parameterized by theHawkes intensity at that time, but then rejects

some events with some probability that decreases as the time since the last event increases. In the

multivariate case, this is only slightly more complicated, since we must also attribute each generated

event to a particular dimension based on the proportional likelihood the new event came from that

dimension.

Algorithm 2 describes the details, but let us mention two important modifications.

The algorithm as typically described [66, 36] requires O(n2U2) operations to draw n samples

overU dimensions, which is prohibitive for large graphs. Instead, wemodify an approachmentioned

in [70]. Namely, given the rates at the last event tk (which note do not include e�ects of tk), we can

calculate λ(t) for t > tk by

λu(t) = µu + e−ω(t−tk)
(
auukω + (λu(tk)− µu)

)
(5.5)

which we can do in O(1), and only requires saving the rates at the most recent event. Note also that

when 0 < t− tk < ε, this reduces to

λu(t) = λu(tk) + auukω (5.6)

or in other words, the previous rate plus the maximum contribution the event tk can make since it

has just occurred.

Secondly, we find that texts describing the algorithm typically frame the attribution/rejection

test as finding an index n0 such that a uniformly random number on [0, 1] is between the normalized

successive sums of intensities around that index (see e.g. [66, 36]). We would like the reader to note

that this entire procedure amounts to a weighted random sample over the integers 1, 2, ..., U + 1

where the probabilities are the normalized rates, and selecting U + 1 is equivalent to the “rejection”

condition. This allows us to use optimized package software for weighted random samples, instead

of something like a for-loop (as is present in even production-level Hawkes process software), that

also slightly speeds up the procedure.

The algorithm, with these two speedups, is described in Algorithm 2. We can generate many

thousands of events in 1-2 seconds in this way.

5.2.3 Dyadic Network Hawkes

Problem setup and assumptions. We would like to apply this model to data where we believe

there is some network structure. Specifically, we are interested not only in whether A is in con-

tact with B, but what the influence A and B have on each other, and perhaps what influence this

interaction may have on other pairs of individuals in the network.

Let us first assume that the communications between individuals as captured in some large-

scale dataset like mobile phone or email records is a good proxy for observing the interpersonal

interactions between individuals. (This of course is not always true: many individuals may never

communicate through the medium under study, or there may be occasions when a cell phone call

generates an in-person meeting which we do not observe, etc.)
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Algorithm 2 Simulation of a multivariate Hawkes process

Input: µ = {µu}, A = [aij ], ω, horizon
Output: {(ti, ui)}ni=1

First event:
I∗ ←∑

u µu
t0 ∼ Exp(1/I∗)
u0 ← u w.p. µu/I

∗

λ(t0)← µ

General procedure:
k ← 0
Step 1

I∗ ←∑
u λu(tk) + ω

∑
u auuk

Step 2

t′ ← tk + s, s ∼ Exp(1/I∗)
if t′ > horizon then

return {(ti, ui)}
λ(t′)← µ+ e−ω(t′−tk)

(
Aukω + λ(tk)− µ

)
Step 3

u′ ← u w.p. µu/I
∗

if u′ is u+ 1 then
Step 2 (Reject)

else
tk+1 ← t′

uk+1 ← u′ (Attribute)
λ(tk+1)← λ(t′)
k ← k + 1
Step 1

Second, let us assume that when A and B communicate, this has the possibility of increasing

the probability that, say, B and C will communicate shortly thereafter. We say that this increase in

probability represents the influence thatA−B has onB−C. (Note that we are implying an undirected

model, and are not analyzing the more complicated case when A → B influences B → C, but not

C → B, for example.) Further, let us assume that this influential spike in probability decays over

time — if A−B last spoke two months ago, there is very low probability this event has any bearing

on the present.

Applying the Hawkes process model. Consider a network G = (V,E). As described already

in Eq. (5.3), we first separate the triggering kernel huu′ into two parts, a branching ratio αuu′ and

exponential decay kernel ωe−ωt.

Now one can interpret αuu′ as a quantified measure of the influence of u′ on u, and so A = [αij ]

becomes the weighted adjacency matrix of the network G. In this work, the nodes in the network

are individual entities (such as people, gangs, neurons, stocks), and theweights auu′ are the influences

between them. (In [43], he goes further to separate each α into a 0 − 1 element and a weighted

element, to setup expressing prior beliefs separately on the connectivity and influence structure of

the network.)
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However, since we are measuring influence through interpersonal communication (i.e. anony-

mous communication data), it does not make as much sense to measure the activity of a single person

on each dimension — each “event” involves two individuals already. We would prefer to measure

each dimension as an edge in the network — in other words, we would like our Hawkes process to

model events on each dyad of individuals, and determine the e�ect that activity on one dyad influ-

ences activity on another. We again emphasize we are considering the undirected version of this

interpretation.

We call this theDyadic Network Hawkesmodel. As the reader may suspect, it is a straightforward

process to move from one model to the other, as we will now show.

Definition 5.2.3 (Line graph). For an undirected graph G = (V,E), the line graph G′ = L(G) is

the graph such that each edge in G maps to a node in G′, and two nodes in G′ are connected if

the corresponding edges in G share an endpoint. We can compute the adjacency matrix A(G′) by

employing the incidence matrix of G, which is the m × n matrix B(G) =
[
bij
]
such that bij = 1 if

edge i is “incident with” (connected to) node j. Now,

A(G′) = B(G)B(G)T − 2I (5.7)

where I is the m×m identity matrix.

This is a simple operation and can be easily performed on graphs of hundreds of thousands of

nodes. It can also be extended to the directed case, but we do not pursue this in this chapter. There

is an analogy here to G being the primal graph, and G′ being the dual graph, but we point out that
the dual of the dual is not the primal in this case; that is, L(G′) 6= G (in general).

This formula allows us to simply apply the standard network Hawkes approaches, but with the

resulting matrix A corresponding to the adjacency matrix A(G′).

For completeness, we wish to mention that there is a unique correspondence between the line

graph G′ and the original graph G, and so it is also possible to move in the inverse direction and

recover the original graph given only G′. (This is true for all graphs except a special case when G is

the triangle graph on 3 vertices. [37]) There are several algorithms available for this task which can

be solved in linear time O(m), for example [37].

However, this is not relevant for our work for two reasons. First, the primary hurdle in such

an algorithm is determining which two nodes in G correspond to a node G′ — in our application,

this is already known, since our data provides this information. Second, our resulting estimated

influence matrix A = [αij ] will only rarely be symmetric, meaning we have a kind of directed line

graph which does not have an obvious interpretation in terms of G. This is an interesting property

that may merit future work, but we omit any further discussion in this thesis.

5.2.4 Parameter Estimation: Expectation-Maximization

Having defined the model, we now propose a method for estimating its parameters. Especially in the

multivariate case, the problem appears daunting in the sparsity of available information and the high

number of parameters. Wewill show that with using a straightforward application of Bayesian max-

imum aposteriori (MAP) expectation-maximization (EM) to the Dyadic NetworkHawkes problem,

we can achieve strong regularization customizable to known priors about the network.

69



CHAPTER 5. MODELING INFLUENCE STRUCTURE WITH HAWKES PROCESSES

0.2 0.4 0.6 0.8

α

2

4

6

8

ω

1.57

1.57

1.56

1.56

1.55

1.55

1.54

1.54

1.53

1.53

lo
g 

lik
el

ih
oo

d

Figure 5.3: Flat log-likelihood makes direct ML estimation di�cult. For a univariate process, we sim-

ulate synthetic events with known ground-truth parameters µ, α, ω. In this contour plot, we fix µ at the

ground-truth value, and show the contours of the log-likelihood function for varying α and ω. This illus-
trates the shallowness of the MLE objective function near the optimum.

Challenges in Direct Maximum-Likelihood (ML) Estimation

Before introducing the EM schemes, we present the maximum-likelihood estimator (MLE) for this

model and justify why we are avoiding it.

There is actually a convenient closed form of the log likelihood for a multivariate Hawkes pro-

cess. While in principle this should enable standard 1st or 2nd-order optimization schemes for

parameter estimation, in practice such methods pose many challenges. The main problem is the low

curvature near the local optimum, as shown in [72]. This low curvature leads to vanishing gradients

in 1st-order methods, and severe numerical instability associated with inverting near-degenerate

Hessians for second-order methods. For completeness, we introduce the likelihood function here,

visualize it, and discuss in more detail the obstacles to estimation, before motivating an EM-based

approach that circumvents these di�culties in the next subsection.

Consider a sequence of events {τi}Ni=1 where each τi = (ti, ui) corresponding to the time ti of

the event and the stream ui upon which it occurred. The likelihood of a given sequence τ = {τi} is
given by

L(A,µ) =
N∑
i=1

log
(
µui +

∑
tj<t

auiujg(ti − tj)
)
− T

U∑
u=1

µu −
U∑
u=1

N∑
j=1

auujG(T − tj) (5.8)

where G(t) =
∫ t

0 g(s)ds.

Our first concern is the large number of parameters (on the order m2
) and resulting tendency

for over-fitting. As a result, we need to introduce strong regularization on the parameters, such as

sparsity and/or low-rank regularization on A. We could then maximize the log-likelihood or

min

A,µ
− L(A,µ) +R(A,µ) (5.9)
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where R represents some regularization on A and/or µ to enforce sparsity, low-rank, etc.

However, in practice the function is extremely “flat” around the optimum, causing problems

with slow convergence in first ordermethods, and near-degenerateHessians for second-ordermeth-

ods. Figure 5.3 shows the situation in a one-dimensional process, with µ fixed and varying α and

ω. This phenomenon is noted in many works on this process, e.g. see [72].

Research with this approach typically introduces regularization on A and/or µ (such as an L2

norm in [70]) and highly sophisticated optimization machinery to handle the resulting non-linear

and unwieldy objective function. For example, [78] uses an alternating-direction method of mul-

tipliers (ADMM) scheme with with a majorization-minimization (MM) step at each iteration, and

both L1 and L∗ (nuclear) norm regularizers on A.

Regularized (Bayesian) Expectation-Maximization

Instead, we will use an Expectation-Maximization (EM) approach which, besides the advantage

of in our case having concise closed-form expressions for the parameter updates at each iteration,

makes beautiful use of the natural interpretation of branching structure in a Hawkes process. We will

introduce regularization on A by applying a Bayesian, maximum aposteriori (MAP) version of the

EM algorithm with a prior on the triggering function. The EM approach has much precedent

as a preferred means of parameter estimation for Hawkes processes (see [72, 79, 78]), but to our

knowledge, the particular MAP EM approach introduced here is novel for both the univariate and

multivariate case.

In general, the EM algorithm works by introducing some latent variable Q such that it is more

tractable to optimize the complete data likelihood — which is in terms of the data, the parameters,

and Q — than to optimize just the data likelihood, which does not include Q. Of course, we do

not knowQ, so EM proceeds by finding an expected value ofQ, and then maximizing the (expected)

complete data likelihood using this estimate of Q.

(Sidenote: There is an analogy, therefore, between EM and the projected gradient descent

method, whereby we take a step in the direction of the negative gradient and then project back

into the feasible space. In EM, the maximization step is in the direction of the optimal complete

data likelihood, and the expectation step projects back into the space of Q. In [40] they show a

correspondence between the two methods in the case of Hawkes processes.)

In our case, the latent variable is the branching matrix Q describing the parent-descendent re-

lationship of each event in the process, as described in the introductory section. Specifically, let

Q =
[
qij
]
represent the latent branching matrix such that qij = 1 if event i was caused by event j

(0 otherwise), and note qii = 1 implies i was a background event. We will see that expressing the

(complete) data likelihood using this extra information gives the problem extra structure that aids in

fast and accurate convergence.

We will take a Bayesian treatment of EM, so we seek to maximize the complete data posterior,

defined below.

Definition 5.2.4 (Complete data posterior of a Hawkes process.). For a sequence τ = {(ti, ui)}Ni=1,

branching matrix Q = [qij ], and parameters Θ, the complete data posterior is

p(Θ|τ,Q) ∝ p(τ,Q|Θ)p(Θ;V ) (5.10)
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where V are hyperparameters of our prior on Θ. Let

L(τ,Q; Θ, V ) = log p(τ,Q; Θ) + log p(Θ;V ) (5.11)

be the complete data log likelihood under the parameters Θ and hyperparameters V .

It now remains to express the complete data likelihood, that is, what is the likelihood of a par-

ticular sequence and branching matrix given the parameters Θ. Following [78], we can express the

complete data log-likelihood as

log p(τ,Q|Θ) =
N∑
i=1

pii log
µui
pii

+
N∑
i=1

i−1∑
j=1

pij log
αuiujg(ti − tj)

pij

− T
U∑
u=1

µu −
∑
u=1

N∑
j=1

αuujG(T − tj) (5.12)

where T is the end of the observed time interval [0, T ] and N is the number of events.

In the E-step of the EM algorithm, we compute a current distribution over the latent variable

Q. Since Q is a matrix of (Bernoulli) indicator variables, the distribution is expressed by the expected
branching matrix P = [pij ] based on the data τ and our current parameter estimate Θk

. Formally, we

compute

P (k+1) = E[Q|τ,Θ(k)] (5.13)

which will be

p
(k+1)
ii =

µ
(k)
ui

µ
(k)
i +

∑i−1
j=1 a

(k)
uiujg(ti − tj)

(5.14)

p
(k+1)
ij =

a
(k)
uiujg(ti − tj)

µ
(k)
i +

∑i−1
j=1 a

(k)
uiujg(ti − tj)

(5.15)

regardless of decay kernel g(t).

In theM-step of the algorithm, we use this to maximize the (expected) complete data posterior

log-likelihood:

Θ(k+1) = argmax

{
E[L(τ,Q(k); Θ, V ) | Q(k) = P (k+1)]

}
= argmax

{
E[log p(τ,Q(k); Θ) | Q(k) = P (k+1)] + E[log p(Θ(k);V )]

}
. (5.16)

Up to this point, we have not needed to specify our decay kernel g(t). We will now incorporate

the exponential decay kernel defined in Eq. (5.3) and show we can solve Eq. (5.16) in closed form

by taking the gradient and setting to zero.

Exponential triggering and Gamma regularization

We will choose a convenient form for our decay kernel to be g(t) = ωe−ωt, with ω fixed for the

entire process, as shown in a previous section. We will also use a Gamma prior on the influence

matrix A, which is conjugate with the Poisson random variables in the complete data likelihood and
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Figure 5.4: Examples of the Gamma distribution. The Gamma distribution Gamma(α, β) provides an

interpretable prior for entries of the influence matrixA = [αij ]. We see that larger β leads to values distributed
close to 0, while larger α increases the mean and variance. In the context of the A = [αij ] entries being
branching ratios, β represents a pseudocount of parent events, and α represents a pseudocount of child or

descendent events.

thus tractable, and also provides an intuitive explanation of hyperparameters as “pseudocounts.”

Specifically, consider the prior

p(A; V ) =
∏
i,j

p(aij ; Vij) =
∏
i,j

Gamma(aij ; sij , tij) (5.17)

with V = (S, T ) and where Gamma(·) is the standard gamma distribution

Gamma(x; a, b) =
ab

Γ(a)
xa−1e−bx (5.18)

with mean a/b and variance a/b2. See Fig. 5.4 for example distributions of Gamma for varying a

and b (in the figure, α and β).

Now we compute the stationarity condition
∂
∂Θ = 0 for the expected complete data posterior

log likelihood, which is su�cient for optimality due to convexity of Eq. (5.12) and (5.18), and find

µ(k+1)
u =

∑
i:ui=u

p
(k)
ii

T
(5.19)

α
(k+1)
uu′ =

∑
i:ui=u

∑
j:uj=u′,j<i

p
(k)
ij + suu′ − 1∑N

i=1

∑
j: uj=u′,j<i

G(T − tj) + tuu′
(5.20)

We can also approximate G(T − tj) ≈
∫∞

0 g(s)ds = 1 (see e.g. [79, 78]) and the denominator for

αuu′ becomes simply Nu + tuu′ where Nu denotes the number of events such that ui = u.

These updates have useful interpretations that illuminate the role of the hyperparameters V =

(S, T ). The first update sets µ(k+1)
equal to the expected number of background events per unit

time. The second update sets α(k+1)
equal to the expected proportion of events that are descendants

of a previous one, with the addition of t pseudo-observations of which s− 1 are descendant events.

In summary, by iterating between Eq. (5.15) and (5.20), we will converge to a parameter

estimate by properties of EM. In practice we will use the log-likelihood defined in Eq. (5.8) as
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our convergence criterion; for example, checking every 10 iterations whether |L(A(k), µ(k)) −
L(A(k−1), µ(k−1))| < ε for some ε > 0.

Note on hyperparameter selection. Note that under this scheme, ω is left as a hyperparameter of

the model along with V , that is, we must select these parameters prior to beginning the EM routine

and they are not estimated by the EM iterations themselves. We will employ the common practice

of separating the data into training and validation sets. We will iterate over a “grid” of possible values

for ω and V , each time fitting µ and A to the training data, then testing the predictive performance

of the model on the validation data. After this grid-search validation procedure is complete, we

select the ω and V which gave the highest predictive performance (as measured by Eq. (5.8)) on the

validation set.

Methodology with kernel updates

When U = 1, we may actually treat ω as a parameter of the model and learn it along with µ and

α, instead of as a hyperparameter. We will again apply a Gamma prior to ω, with hyperparameters

(u, v), incorporate it into the complete data posterior likelihood, take the gradient with respect to

ω, set to zero, and solve.

So in addition to the update equations in Eq. (5.20), we may incorporate the following update

step for ω:

ω(k+1) =

∑
j<i P

(k+1)
ij + u− 1∑

j<i P
(k+1)
ij (ti − tj) + v

. (5.21)

This update sets ω(k+1)
equal to the expected number of descendant events divided by the expected

total time between descendent events, and therefore has the expected units of a frequency. The

hyperparameter u plays the same role as s, while v may be interpreted as the total time between

descendant events in the pseudo-observations. When u = 1 and v = 0 (no regularization), we can

view ω(k+1)
as the reciprocal of the expected time between descendant events.

Stability and selection of priors

Recall from Eq. (5.4) that we require the spectral radius of the influence matrix A to be less than

one, to ensure stability of the process. We would like to set hyperparameters such that our prior

places little mass on unstable systems. Simplifying the method outlined in [43], we will accomplish

this by taking advantage of a property of stochastic matrices called the circular law.
A variation of the circular law states that the maximum eigenvalue of aK ×K stochastic matrix

with iid entries of mean µ > 0 and variance σ2
is asymptotically distributed as λmax ∼ N (Kµ, σ2)

where N (·) represents the Gaussian (normal) distribution. In our case, we have µ = E[αkk′ ] =

skk′/tkk′ , our two hyperparameters for the Gamma prior. Thus, we can help roughly ensure that

the entire matrix A = [αij ] is (asymptotically) stable by considering the K × K stochastic matrix

where each entry is iid selected from the single prior with the largest mean, and constraining the

distribution of this extreme case.
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Specifically, we should ensure that

Kµ+ 2σ2 = K

(
s0

t0

)
+ 2

(
s0

t20

)
< 1 (5.22)

With this in mind, we propose the following scheme. Consider the aggregated graph G formed

from the data by placing an edge wherever there is some threshold of activity between individuals,

and consider the associated line graph adjacency matrix A′ = [a
′
ij ] = A(L(G)). Now let

skk′ = 1 + a
′
kk′s0 (5.23)

tkk′ = t0 (5.24)

We may select all the a
′
kk′ through an exhaustive cross-validation procedure of all possible network

structures; we will instead use the line graph adjacency matrix in the validation data.

It now remains to find s0, t0 that give rise to a stable matrix. If we fix s0, we can compute a

lower bound for t0 using the formula from before as

t0 >
1

2

(
Ks0 +

√
(Ks0)2 + 8s0

)
. (5.25)

This allows us to adjust a single (hyper)parameter s0 and achieve a prior on the relationship of

each (k, k′) pair based on the first-order information gained from the aggregated network, and also

ensure that we are placing most of the mass of this prior on a stable matrix.

5.3 Univariate case: modeling persistent cascades as self-exciting pro-
cesses

Let us test the method in the univariate case on both synthetic and real data. For the real data, we

will consider an interesting tie-in with the work in the previous chapter: are the events within a

group conversation well-modeled by a self-exciting point process? That is, given the call events

within a persistence class, using the methodology in Chapter 3, can we estimate parameters µ, α,

and ω and predict future activity? Note this requires us to “collapse” the events of the cascades into

a single stream, but we expect is an important exercise as it may reveal properties or categories of

persistence classes that are quantifiable in a probabilistic way (which we cannot get from the graph-

mining approach outlined in the previous chapter).

As a short example, consider the following persistence class consisting of three similar cascades:

Day 1 Day 4 Day 5
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Figure 5.5: Three example sequences from the data resulting from the persistence cascade analysis.
Dots represent call events within a persistent cascade, and so are calls between approximately the same users,

in approximately the same order. There is remarkable consistency on the scale of months to a year. The

dashed lines show the 2-month period of missing data that we will use to split training/validation.
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Figure 5.6: Persistent cascades are not Poisson. In (a), we compare the distribution of interarrival times

in an actual sequence from the data against a Poisson sequence generated with rate equal to the average

interarrival time in the data (log-lin scale). A true exponential distribution is shown as a baseline. In (b) we
show a “lag scatter plot” of subsequent interarrival times in the Data (left) vs. a generated Poisson process

(right). It is clear that while there is no correlation in the memoryless Poisson scatter, the data exhibits a clear

pattern: long pauses always precede a burst of activity.

and the corresponding sequence of events:

{
1.0, 1.1, 1.2, 1.3, 1.4, 1.7, 4.1, ..., 5.2, 5.9

}
.

We begin by taking the persistent cascade structure and associated call sequence as given. That

is, we use the sequences of call events within these already identified persistent group conversations

as a starting point, and we focus on modeling, predicting, and analyzing them. Our (processed)

data therefore consists of D = {τ (i)} where each τ (i) = {t(i)1 , ..., t
(i)
ni } is the sequence of time stamps

corresponding to the sequence of call events in the ith group conversation.

To recall from the previous chapter, some examples of sequences τ (i)
are shown in Figure 5.5. We

note remarkable consistency on the scale of months to a year. We see interesting stories developing:

in the first sequence, a new group appears to form (possibly new friends from the holidays?); in the

third sequence, there is a crescendo of activity followed by the group completely vanishing (possibly

planning an event?). We also note the 2-month break in the data — we do not have observations

during this period, and will use this as a convenient way to separate our training and validation data.

5.3.1 Testing for fishiness: persistent cascades are not Poissonian

Before proceeding with analysis of the algorithm, let us do a few simple tests to show our data is

not well-modeled by a simple 1-dimensional point process, and thus justify our self-exciting model.
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Figure 5.7: Unregularized EM slightly skewed from ground truth values in synthetic tests. These

histogram depict the estimated parameters using unregularized EM on 100 synthetic univariate Hawkes pro-

cesses generated using the same ground truth values. Ground truth values represented with a dotted black

line. The EM estimates are slightly skewed, suggesting the need for regularization using validation-selected

hyperparameters.

There are many ways of testing whether a series of points form a Poisson process. We will show

two here, which albeit qualitative, give a convincing negative answer that the sequences in our data

are Poissonian.

A first test is to check the distribution of the interarrival times, ∆t = ti − ti−1. In a Poisson

process, these are distributed ∆t ∼ Exp(λ) for some rate λ. In Fig. 5.6(a) we compare the dis-

tribution of interarrival times (day scale) in an actual sequence from the data, against a generated

Poisson sequence generated with the same base rate. The exponential distribution curve is shown

for reference. We can see the Poisson sequence adhering to the exponential curve, while the actual

data is more “bursty” — i.e. many short interarrival times, and many very long ones.

A second test is to the check the correlation in subsequent ∆t, that is, the correlation between

ti − ti−1 and ti+1 − ti. If there is no correlation, we have reason to believe the generating process

is truly “memoryless” since the ∆t’s appear to be independent. Fig. 5.6(b) shows the stark contrast

between the real data and a sample Poisson process generated with the same base rate.

Taken together, these tests reassure us that there is temporal clustering occurring in the data

which merits a more nuanced model. (This echoes the finding in the previous chapter.)

5.3.2 Synthetic tests

Let us also examine the performance of EM on some generated sequences using our methodology.

In this way, we can compare the estimated parameters against what we know to be “ground truth.”

(This replicates experiments in [72, 79].)

We generate 100 sequences over a time interval of T = 1000, with ground truth parameters

µ = 1, α = 0.5, and ω = 1. We then run EM estimation on the resulting sequences, shown in

Figure 5.7. We find generally consistent results, but a slight leftward skew in all estimates. This

variance and skew decrease as we increase the sequence size (e.g. by increasing T ).

Since our data has similar number of arrivals to this generated experiment, we have reason to

believe the regularization procedure (with validation selected hyperparameters) will be beneficial.
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Figure 5.8: Regularization increases out-of-sample predictive performance. Shown are scatterplots of

the training log-likelihood (horizontal axis) and validation log-likelihood (vertical axis) for unregularized (left)

parameter estimates and optimal regularized (right) estimates found via grid-search. Introducing validation

leads to higher validation likelihoods and stronger correlation between training and validation scores.
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Figure 5.9: Parameter estimates (using regularized EM) reveal two groups of persistent cascades.
Shown are scatterplots of parameter estimates for µ, α, ω under regularization. Size of dot here indicates

size of the sequence. Two distinct clusters of persistent cascade type are evident in the α-µ plot: one with low

background activity (µ) but high self-excitation (α), and another with high background activity and mod-

erate self-excitation. The unstable-α group (i.e. α > 1) also tends to have much less rapid decay of influence

from each event. Taken together, this indicates the first cluster represents conversations that see dense activity

for long periods of time, followed by long periods of no activity. The second cluster is conversations that see

frequent, small bursts of activity.

5.3.3 Parameter estimation and analysis

Parameter estimation

We now investigate the results of parameter estimation using the Gamma-prior regularized MAP

EM scheme.

To review, we will fit the parameters Θ = (µ, α, ω) using the training data consisting of all

sequence data before the 2-month break, and select hyperparameters V = (s, t, v, u) using the vali-

dation data consisting of all sequence data after the 2-month break. We will focus on the predictive

performance of the method out-of-sample, and provide some interpretation of types of persistent
cascades we gain by clustering in the parameter space.
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Figure 5.10: Examples of the two types of persistent cascade. Depicted are the process events (black dots)

and estimated intensities using MAP parameters for sequences with low (top), median (middle) and high

(bottom) estimated branching ratios α̂. The bottom sequence corresponds to the non-stationary category

of persistent cascades, its nonstationarity reflected in the fact that the intensity is almost never at its baseline

value. We see, as expected, the top two sequences are characterized by frequent, small bursts of activity, while

the bottom sequence is characterized by long periods of dense activity.

E�ect of regularization on validation performance. Figure 5.8 illustrates the e�ect of the

Gamma prior regularization on performance in the validation set. In particular, we note that using

optimal hyperparameters in regularization (obtained through grid-search) corrects overfitting on a

large group of sequences and creates stronger correlation between training and validation scores.

Estimate comparison and non-stationary sequences. Figure 5.9 shows a comparison between

all three pairs of parameter estimates, which reveals some of the dynamics at play. Note that in these

plots, the dot size indicates the size of the sequence, |τ (i)|.
We first note the general trend of positive correlation in the last ω vs. µ plot, which indicates that

as the base rate leads to more and more expected arrivals, the e�ect of each arrival tends to decrease.

We also note that this is not limited to longer sequences, where we might expect the e�ect to be

necessary to prevent the sequence blowing up, but even in short sequences.

We now consider the first plot, of α against µ, that the cluster of sequences with non-stationary

α also has a much lower µ than the rest of the data. This indicates that the sequences simply have a

large number of events, and instead of capturing this with a high base intensity µ, the optimization

is using a non-stationary α. This is interesting, since it indicates that a highly temporally clustered

process (that is, higher α) is still a better predictor in this case than a simple process with high

intensity.

The second plot also shows this non-stationary group behavingwith di�erent dynamics as relates

to ω— the non-stationary group has very low values of trigger function decay, which is surprising

as we might expect the ω parameter to “compensate” for the high branching ratio by being even

higher.

Categories of persistent cascade by parameter cluster. The analysis just described gives an

indication there are two clear categories of persistent cascades: one with low background activity

(µ) but high self-excitation (α), and another with high background activity and moderate self-
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excitation. The unstable-α group (i.e. α > 1) also tends to have much less rapid decay of influence

from each event. Taken together, this indicates the first cluster represents conversations that see

dense activity for long periods of time, followed by long periods of no activity. The second cluster

is conversations that see frequent, small bursts of activity.

Figure 5.10 shows three example sequences from the data, with respectively low, median, and

high estimated values of α. The non-stationarity of the third sequence (α = 1.44) is reflected in

the fact that the intensity is almost never at its baseline value. We also see the slow decay exhibited

in this process observed in the previous plot. These examples bear out our expectation, that the top

two sequences are characterized by frequent, small bursts of activity, while the bottom sequence is

characterized by long periods of dense activity.

5.3.4 Discussion

We have shown that the persistent group conversations between individuals in a communication

network, introduced in the previous chapter, are by nature temporally clustered and therefore not

well-modeled by a homogeneous point process (i.e. a Poisson process). We introduced a regularized

MAP EM scheme for estimating parameters under such a model (in the univariate case), using a

Gamma prior and validation-selected hyperparameters. We demonstrated that this scheme works

well and produces interpretable results, despite relatively small and somewhat noisy datasets. We

also find that many real sequences in the data generate what appear to be non-stationary processes,

violating a necessary model assumption.

This leads us to our next steps. The non-stationarity found may be due to the construction

of the cascades, which requires that all events fall within a pre-defined time interval. This creates

perhaps unnecessarily dense temporal clustering e�ects — there are “follow-on” events outside the

time interval that are not captured, and may contribute to relaxed values of α and ω. As a result,

we will next apply the model in a more general case, to the entire dataset, which will overcome this

concern and allow us to capture all mutually exciting relationships in the data.

5.4 Multivariate case: Dyadic Network Hawkes

We now return to the more general model stated in the preliminary sections: a multidimensional

Hawkes process such that each dimension (or stream) corresponds to a pairwise relationship in the

network. Recall that under this model, each dimension is described by the variable intensity defined

in Eq. (5.1), and we are learning the parameters Θ = (µ,A), whereA = [αij ] represents the influence
matrix of the network and µ is the vector of background rates. We will let ω be a global parameter

controlling the rate of decay, following [70, 78, 77], and use the exponential triggering function

defined in Eq. (5.3).

First we will illustrate the model with some small synthetic examples, then apply it to the mobile

phone datasets from the previous chapter. Finally, we will analyze the resulting parameter estimates.

We will show how the resulting influence structure from this approach di�ers from that in the pre-

vious chapter, show how it quantifies ideas such as the “strength of weak ties,” and test its predictive

power on unseen data.
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Figure 5.11: Example network depiction. Consider a 4-node star network where interaction between

v0 − v1 increases the probability of interaction between v0 − v2, which in turn increases the probability of

interaction between v0 − v3. This would create cascading series of events like we observed in the persistent

cascade analysis. We can model this type of network relationship with a multidimensional Hawkes process,

where each dimension corresponds to an edge in the network.

5.4.1 Example from a small network

As a small example, consider a 4-node star network with nodes v0, ..., v3, and v0 at the center.

Imagine that in this group, v0 − v1 tend to interact in bursts, and when v0 − v1 interact (edge e0),

this triggers action between v0 − v2 (edge e1), which in turn triggers action between v0 − v3 (edge

e2). (Depicted in Figure 5.11.) This would create cascading patterns through the small network that

should be evident. We can engineer such a relationship by creating our influence matrix A such

that

α0,0 > 0, α1,0 > 0, α2,1 > 0,

and zero elsewhere. We can make the relationship crystal clear by setting µ0 > 0 and µ1 = µ2 = 0,

so that any events we see occur on edges e1 or e2 we know are due to e0.

This is all borne out in simulation, using parameters with this setup, in Figure 5.12. We see

that events occur according to some background rate in e0, but also can “self-excite” in little bursts.

We also observe that events on e0 lead directly to spikes in the intensity on e1, which increase the

likelihood of events. This in turn creates spikes on e2. This naturally cascading pattern is apparent

in Fig 5.13 which shows only the events, without rates.

5.4.2 Findings in the mobile phone data

Network sampling method

We encounter computational limitations to apply this method directly to large-scale data: the ex-

pected branching matrix P = [pij ] requires O(N2) entries, whereN is the number of events, which

may be in the millions for even small time periods of a city-scale mobile phone dataset, and not

feasible to hold in memory. We can start to minimize this limitation by noting that the only use-

ful entries of this matrix are close to the diagonal (for example, it is highly unlikely that an event

at the beginning of the month a�ects one at the end, for realistic triggering kernels) — this re-

duces the memory requirement to the order O(N), using sparse matrices. We do not pursue these

modifications, however, and leave this to future work.

Instead, we will use samples of the network using a snowball sampling approach. Specifically, we
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Figure 5.12: Example network: intensities and arrivals. Shown are events (dots) and corresponding rates

(black line plots) for each edge in a toy 4-node (3-edge) star network.
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Figure 5.13: Example network: arrivals-only. We now plot only arrivals for the same simulation, to draw

attention to the cascading tendencies in the network, beginning with e0.

will select some node c0, and collect the set of all individuals {c(i)
1 }who communicated with c0, then

all individuals {c(i)
2 } who communicated with any of the c

(i)
1 , etc., to a final set {c(i)

k }. This creates
k “layers” around c0, and is sometimes referred to as the ego-k network. (For example, the ego-1

network of a node c0 is simply c0 and those he contacts.)

Parameter estimation

We first select hyperparameters ω and s0 as described in the introductory section, using a cross-

validation scheme. Using 100 snowball samples of the network with the center node chosen uni-

formly at random from the network, we fit a multivariate Hawkes process (MHP) on 5 months of

data and test its performance on an unseen validation set of 2 months of data. We use a standard

grid-search approach with ω = 1, 2, 3, 4 and s0 = 5, 10, 50, 100. We find validation-optimal values

among this set at the pair (ω = 4, s0 = 50). Note that since we are using times on a day scale,

ω = 4 roughly corresponds to a decay with mean 1/4 or about 6 hours. This corresponds to the
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Figure 5.14: Hyperparameter selection. Validation log-likelihood for various combinations of hyperpa-

rameters ω and s0.
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Figure 5.15: Parameter fitting in mobile phone data. At left is the adjacency matrix of the line graph of

the aggregated network based on the training data; center is the prior on the influence matrix A; right is the
estimated parameter values for A. Color scale is the same for the middle and right plots. Note that the prior

is fairly weak, and only places a small amount of weight on the aggregated network. Note that despite this

weak prior, the estimated nonzero parameter values for A largely reflect the aggregated network, although

we get critical di�erences where the model is detecting influential relationships over edges that do not even

exist in the aggregated network. This shows that the estimated A is not simply a weak copy of the prior, and

is actually arising from the interactions in the data.

distribution of persistent cascades length, in a qualitative sense, that we saw in the previous chapter.

We also find s0 = 50, which indicates the need for a moderate prior using the aggregated network

information.

We now use these hyperparameters to fit Dyadic Network Hawkes models to snowball samples

of the network. Figure 5.15 shows an example of the fitted parameter values for A along with the

prior and aggregated network adjacency matrix for comparison. We note that the prior is fairly

weak, and only places a small amount of weight on the aggregated network. However we also

note that despite this weak prior, the estimated nonzero parameter values for A largely reflect the

aggregated network, although we get critical di�erences where the model is detecting influential

relationships over edges that do not even exist in the aggregated network.
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Figure 5.16: Persistent cascade members exhibit high influence and susceptibility. Comparing distribu-

tions of (left) total influence and (right) total susceptibility as observed in the fitted influence matrix using a

multivariate Hawkes process. We separate the distributions by whether the individuals were in a persistent

cascade or not using the analysis from the previous chapter. We see that individuals in persistent cascades

not only have higher average influence on others but also susceptibility in this model than the population in

general. This is interesting because (1) it reinforces the findings in the previous chapter that these are distinct

groups with quantifiably di�erent interaction patterns, and (2) it emphasizes that cascade membership is not a

forceful or one-way relationship, but an indicator that the person is more involved in his/her communication

network.

Quantifying influence

We would like to focus our attention on the influence matrix A, and leave analysis of the other

outputs of this model (such as the background rates µ or expected branching matrix P ) for future

work.

With an estimate of A in hand, what can we say about individuals in the network, and what can

we say about influential relationships in the network? The MHP model provides us a quantitative

measure for these questions.

Specifically, consider the value αuu′ . This gives the influence that edge u′ exerts on u. So,

one way to measure the influence of a particular pair k = (i, j) (or in other words how much they

influence others) and how susceptible a particular pair k = (i, j) is (or in other words howmuch they

are influenced by others), would be to look at the average of the column and row sums of A at k,

which we define:

Fe(k)
def

=
1

U

U∑
i=1

αik, Se(k)
def

=
1

U

U∑
j=1

αkj (5.26)

where the e-subscript stands for edge.
Now, to examine similar qualities for a particular individual i, we simply look at the average of

Fk and Sk over all k ∈ {e ∈ E : i ∈ e}, which we define for clarity as

Fn(i)
def

=
1

|N(i)|
∑
j∈N(i)

Fe((ij)), Sn(i)
def

=
1

|N(i)|
∑

j∈N(j)

Se((ij)) (5.27)

where the n-subscript stands for node and N(i) is the set of all i’s neighbors.
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Comparison to Persistent Cascades

Let us compare the distributions of Fn and Sn among nodes in two classes of nodes we have already

claimed have di�erent roles: namely, between the group of individuals in a persistent cascade and

those not.

For this we take repeated samples of the network, fit both the MHP model and the Persistent

Cascades algorithm on the same call data, and record both the Fn and Sn values and the root nodes

in the persistent cascade analysis. The resulting distributions of Fn and Sn for the two populations

and on average are shown in Figure 5.16. We see that individuals in persistent cascades not only

have higher average influence on others but also susceptibility in this model than the population

in general. This is interesting because (1) it reinforces the findings in the previous chapter that

these are distinct groups with quantifiably di�erent interaction patterns, and (2) it emphasizes that

cascade membership is not a forceful or one-way relationship, but an indicator that the person is

more involved in his/her communication network.

5.5 Conclusion

In this chapter we introduced a method for modeling the interpersonal communication patterns of

individuals using a multidimensional stochastic process called a Hawkes process, which is widely

used in diverse modeling applications such as seismology, neuronal impulses in the brain, crime

activity, and stock fluctuations. We showed that the estimated parameters governing the e�ect of

one dimension on another can be interpreted as a matrix representation of the influence structure of
the communication network. We extended existing work by applying the process to a dyadic version
of the network where each dimension represents the communication between two individuals. We

also propose and derive a novel method for parameter estimation using a BayesianMAP expectation-

maximization (EM) approach with a Gamma prior.

We then applied our method in the univariate and multivariate case on the mobile phone data.

First, in the univariate case, we reimagined calls within a persistent cascades (as introduced in the

previous chapter) as a single stream of events. We showed that clustering in the parameter space of

the resulting estimated parameters reveals two broad categories of persistent cascades: one with low

background rates but extremely high (and nonstationary) temporal clustering, and another with

high background rates but only moderate temporal clustering.

Second, in the multivariate case, we applied the Hawkes process to an entire network. We

showed that even a weak prior on the network structure is enough to reveal properties of the influ-

ence structure not apparent in a naïve, aggregated approach. We gave several examples of parameter

estimation on snowball samples of the city-scale network (on the order of 30-50 individuals over the

course of 4-6 months), and discussed ways to extend the method’s implementation to larger samples.

We introduced a simple metric for translating the estimated influence matrix into an individual met-

ric of influence and susceptibility. We found that members of persistent cascades, as identified using

the analysis in the previous chapter, tend to have both higher influence and susceptibility than non-

members in the network. This is interesting because it shows that persistent cascade membership

is not a forceful or one-way relationship, but an indicator that the individual is more involved in

his/her communication network.
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We have proposed several novel methodologies for identifying, modeling, and predicting the struc-

ture of influence in a communication network. Our methods are applicable to a wide range of data,

but we have focused on the case when content is unknown, and in particular cellular phone data,

because of its pervasive and unfiltered view of a near-global sample of the population. In this chapter,

we will summarize our contributions and outline avenues for future research.

6.1 Summary

6.1.1 Identifying influence structure with persistent cascades

In Chapter 4, we described a novel method for identifying and extracting temporal patterns of infor-

mation spread from large-scale communication metadata, using methods of inexact tree matching

and hierarchical clustering. We termed these recurring patterns persistent cascades, and showed that

they reveal new properties of information spread and individual influence roles.

Specifically, we found the persistent cascades are present on long time scales of months to a year,

and found examples of surprisingly large, recurrent structure on the scale of months. We found

the patterns tend to be short in duration (over 70% last less than 3 hours), which indicates a short

attention span in spreading information and echoes previous research in the “burstiness” of human

communication. The individuals in a persistent cascade exhibit a habitual hierarchy, in the sense

that when the same individuals communicate, they do so in the same order. We also found that our

analysis reveals two new groups of individuals who have exclusive roles of information spreading

on either weekends or weekdays. Individuals tend to generate more and more instances of the

same pattern, and do not create new patterns, indicating predictability of communication. Lastly,

we justified several of our simplifying assumptions by comparing our results against those obtained

through an exhaustive search, finding that only 2% of the data is a�ected by our assumptions.

We demonstrated that the discovered patterns are significantly di�erent than what is found un-

der a random model, in both the size of the cascades and their recurrence. We accomplished this

through both simulation and analytical methods. We represented the network with a so-called con-

figuration model that matches the real degree distribution of the observed data, and approximated

pairwise communication activity by sampling from a Gamma distribution fit to the actual average

pairwise rates of communication. Then, extending techniques from percolation theory and epi-

demic modeling, we showed that these inputs (matching degree distribution and average activity
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rates) are not enough to explain the persistence we observe in the data.

We then showed that these persistent cascades play a crucial role in information spreading

through simulation of di�usion processes on the temporal network — specifically, members of a

persistent cascade are more likely to receive information spreading through the network under re-

alistic conditions of spreading. We gave a mathematical argument for why this is so (due to [50]),

which in essence shows that when the possibility of information spread between individuals is low

(low infectivity), the recurring, temporally clustered patterns we find in persistent cascades are a

necessity for repeated, rapid exposure to the idea in order to achieve spreading. We also showed the

e�ect of the analysis on our understanding of centrality, and revealed a population of super-spreaders

who were otherwise unremarkable under an aggregated approach.

Lastly, we demonstrated that the method is applicable to a wide range of data by applying it

to an email dataset. In this case study, we used the publicly available emails released during the

government’s investigation into Hillary Clinton’s use of a private email server, which gives us the

sender-receiver-timestamp data we need as input to the algorithm, but also a sense of “ground-

truth” in terms of the email content, which we used to compare our results after the fact. We found

that the persistent cascades method correctly identified key sta� members, ignored known “noise”

in the dataset (such as unlabeled emails), and identified several interesting persistent email chains.

6.1.2 Modeling influence structure with Hawkes processes

In Chapter 5, we introduced a probabilistic method for modeling and predicting the communica-

tion patterns of individuals, using a multidimensional stochastic process called a Hawkes process.

The Hawkes process is widely used in diverse modeling applications such as seismology, neuronal

impulses in the brain, crime activity, and stock fluctuations. We adapated this work by showing that

the estimated parameters governing the e�ect of one dimension on another can be interpreted as a

matrix representation of the influence structure of the communication network. We then extended

existing work by applying the process to a dyadic version of the network where each dimension rep-

resents the communication between two individuals. We also proposed and derived a novel method

for parameter estimation using a Bayesian maximum aposteriori (MAP) expectation-maximization

(EM) approach with a Gamma prior.

We then applied our method in the univariate and multivariate case on the mobile phone data.

First, in the univariate case, we reimagined calls within a persistent cascades (as introduced in the

previous chapter) as a single stream of events. We showed that clustering in the parameter space of

the resulting estimated parameters reveals two broad categories of persistent cascades: one with low

background rates but extremely high (and nonstationary) temporal clustering, and another with

high background rates but only moderate temporal clustering.

Second, in the multivariate case, we applied the Hawkes process to an entire network. We

showed that even a weak prior on the network structure is enough to reveal properties of the influ-

ence structure not apparent in a naïve, aggregated approach. We gave several examples of parameter

estimation on snowball samples of the city-scale network (on the order of 30-50 individuals at a

time over the course of 4-6 months), and discussed ways to extend the method’s implementation to

larger samples. We introduced a simple metric for translating the estimated influence matrix into

an individual metric of influence and susceptibility. We found that members of persistent cascades,
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as identified using the analysis in the previous chapter, tend to have both higher influence and sus-

ceptibility than non-members in the network. This is interesting because it shows that persistent

cascade membership is not a forceful or one-way relationship, but an indicator that the individual

is more involved in his/her communication network.

6.2 Future work

The methodology presented for extracting persistent cascades makes several strong assumptions

about the structure of the cascading patterns whichmerit further attention. For example, it is possible

that a cascade does not take on a tree structure, and that it requires two individuals to initiate a

cascade. It is also possible that the relevant object is not a cascade at all, but simply a recurring

pattern of communication among social contacts. In this interpretation, it may be better to adopt

the temporal graphlet mining techniques as outlined in [33, 34], but adapted to user-specific forms

and not just motifs. We also note that the methods in these papers (and others on temporal motifs

such as [76]) require graph isomorphism, and so may benefit from the relaxed, inexact matching

techniques used in our approach.

We demonstrated that the persistent cascades were significantly di�erent, in their size and recur-

rence, from what is expected under a random network model. In our random network, we assumed

an average rate on each edge, or essentially modeled interpersonal interactions with a Poisson process.

We showed that this was insu�cient to capture the persistent patterns we observe in the data, and

then proceeded in the next chapter to investigate a more rigorous model (the Hawkes process) which

can capture temporal clustering through self-excitation. However, it may be possible to capture the

recurrent patterns we see in the data, or close to it, using only a simple non-homogeneous extension
of a Poisson process, similar to work in [46]. This would allow us to more faithfully represent the

vast di�erences in interaction rates between individuals in the middle of the afternoon vs the middle

of the night, for example. How much of the recurring patterns in the data can be attributed to these

circadian fluctations? Can such a condition be incorporated into the analytical model presented?

We also expect there is potential in coupling these insights of communication structure with the

knowledge of mobility that we get with many mobile phone datasets; for example, do we find high

similarity of mobility patterns [67] of users within most classes? Do information spreaders exert

observable influence on their social contacts’ movement habits?

Regarding the Hawkes process, it merits attention to compare the predictive ability of our sim-

plified method to the more robust framework in works like [43, 78]. It is also critical that we extend

our methods to be applicable to larger datasets. This appears to be primarily a coding challenge, us-

ing the approximation outlined of using only elements of the expected branching matrix P = [pij ]

that are along the diagonal, but it remains to be seen if this claim of a reasonable approximation can

be made rigorous, or a bound put on the resulting parameter estimate. This bound should depend

on the size of the sequence and the speed of the decay kernel, ω.

It would be interesting to extend the observations in this work to othermodels of di�usion— e.g.

opinion modeling like voter models, linear threshold models —where there are explicit considerations

for things like peer influence and thresholds of change. The classical work in this field assumes a

homogeneous Poissonian sequence of interactions (see [32, 31, 2, 1]). Does the burstiness we observe

in the data a�ect the conclusions of this work? For example, does the submodularity of the influence
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maximization problem vanish when interactions are no longer homogeneous, and do we lose the

bound on optimality outlined in [31]? Does burstiness a�ect consensus [1] even without “forceful”

actors?

Our work in identifying and modeling temporal dynamics and influence structure in large-

scale communication networks is a growing field. It continues to maintain importance because it

touches on such a wide variety of other research topics that build on this underlying question of how

individuals interact, and what that tells us about their relationships and influence on each other. We

expect this interest will hold, and we hope to continue to explore these questions.
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