
From Data to Decisions in Healthcare:
An Optimization Perspective

by

Alexander Michael Weinstein

B.A., Yale University (2009)

Submitted to the Sloan School of Management
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Operations Research

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2017

c� Massachusetts Institute of Technology 2017. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sloan School of Management

May 15, 2017

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Dimitris Bertsimas

Boeing Leaders for Global Operations Professor
Co-Director, Operations Research Center

Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Patrick Jaillet

Dugald C. Jackson Professor
Department of Electrical Engineering and Computer Science

Co-Director, Operations Research Center



2



From Data to Decisions in Healthcare:

An Optimization Perspective

by

Alexander Michael Weinstein

Submitted to the Sloan School of Management

on May 15, 2017, in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy in Operations Research

Abstract
The past few decades have seen many methodological and technological advances in

optimization, statistics, and machine learning. What is still not well understood is

how to combine these tools to take data as inputs and give decisions as outputs.

The healthcare arena offers fertile ground for improvement in data-driven decision-

making. Every day, medical researchers develop and test novel therapies via random-

ized clinical trials, which, when designed efficiently, can provide evidence for efficacy

and harm. Over the last two decades, electronic medical record systems have become

increasingly prevalent in hospitals and other care settings. The growth of these and

other data sources, combined with the aforementioned advances in the field of opera-

tions research, enable new modes of study and analysis in healthcare. In this thesis,

we take a data-driven approach to decision-making in healthcare through the lenses

of optimization, statistics, and machine learning.

In Parts I and II of the thesis, we apply mixed-integer optimization to enhance

the design and analysis of clinical trials, a critical step in the approval process for

innovative medical treatments. In Part I, we present a robust mixed-integer optimiza-

tion algorithm for allocating subjects to treatment groups in sequential experiments.

By improving covariate balance across treatment groups, the proposed method yields

statistical power at least as high as, and sometimes significantly higher than, state-

of-the-art covariate- adaptive randomization approaches. In Part II, we present a

mixed-integer optimization approach for identifying exceptional responders in ran-

domized trial data. In practice, this approach can be used to extract added value

from costly clinical trials that may have failed to identify a positive treatment ef-

fect for the general study population, but could be beneficial to a subgroup of the

population.

In Part III, we present a personalized approach to diabetes management using elec-

tronic medical records. The approach is based on a k-nearest neighbors algorithm. By

harnessing the power of optimization and machine learning, we can improve patient

outcomes and move from the one-size-fits-all approach that dominates the medical

landscape today, to a personalized, patient-centered approach.
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Chapter 1

Introduction

Recent decades have brought many methodological and technological advances in

optimization, statistics, and machine learning. What is still not well understood is

how to combine these tools to take data as inputs and give decisions as outputs.

The healthcare arena offers fertile ground for improvement in data-driven decision-

making. Every day, medical researchers develop and test novel therapies via random-

ized clinical trials, which, when designed efficiently, can provide evidence for efficacy

and harm. Over the last two decades, electronic medical record systems have become

increasingly prevalent in hospitals and other healthcare settings. The growth of these

and other data sources, combined with the aforementioned advances in the field of

operations research enable new modes of study and analysis in healthcare.

In this thesis, we take a data-driven approach to decision-making in healthcare

through the lenses of optimization, statistics, and machine learning. In Section 1.1,

we introduce two practical applications in which we use analytics to make an im-

pact on decision-making in healthcare. In Section 1.2, we briefly discuss some of the

methodological approaches that underlie our work. Finally, in Section 1.3, we sum-

marize the main contributions of the studies presented in Chapters 2, 3, and 4 of the

thesis. Chapter 5 contains some concluding remarks.
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1.1 Practical Challenges in Healthcare

The thesis considers two broad areas of decision-making in healthcare. In Chapters

2 and 3 of the thesis, we apply mixed-integer optimization to enhance the design and

analysis of clinical trials, a critical step in the approval process for innovative medical

treatments. In Chapter 4, we approach the problem of personalized medicine through

the lens of machine learning and optimization.

1.1.1 Design and analysis of clinical trials

In Chapter 2 of the thesis, we consider a problem in the design of clinical trials,

namely, how to allocate subjects sequentially to treatment groups. The classical ap-

proach of randomized assignment can yield an accidental bias identified by Efron

[1971], in which there is an imbalance in the distributions of known or hidden covari-

ates across treatment groups. State-of-the-art methods address this accidental bias

via covariate-adaptive randomization [Rosenberger and Sverdlov, 2008, Antognini and

Zagoraiou, 2011, Kapelner and Krieger, 2014]. We take a different perspective by ap-

plying robust-mixed integer optimization to develop the first covariate-adaptive op-

timization algorithm. By improving covariate balance across treatment groups, the

proposed method yields statistical power at least as high as, and sometimes signifi-

cantly higher than, state-of-the-art covariate- adaptive randomization approaches.

In Chapter 3, we shift our attention to a problem in the analysis of clinical trial

data. Because of the high cost of clinical trials, there may be value in identifying

subgroups of the study population for which an exceptionally large positive or negative

response was observed. We present the first mixed-integer optimization approach

for identifying exceptional responders in randomized trial data. In practice, this

approach could extract value from costly clinical trials that may have failed to identify

a positive treatment effect for the general study population, but could be beneficial

to a subgroup of the population.
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1.1.2 Personalized medicine

In Chapter 4, we present a personalized approach to diabetes management using elec-

tronic medical records (EMR). Existing clinical guidelines for the treatment of type

2 diabetes are largely one-size-fits-all [Rodbard et al., 2009]. We propose a novel

approach that harnesses the power of machine learning to improve patient outcomes

and shift the landscape of diabetes care to a personalized, patient-centered focus.

Our approach is based on a k-nearest neighbors algorithm that uses historical data

from existing EMR systems to make personalized treatment recommendations based

on patient-specific demographic, medical, and treatment history factors. The algo-

rithm’s recommendations, and the evidence supporting these recommendations, can

be summarized for providers in an intuitive, interactive software dashboard. Using

data from Boston Medical Center, we demonstrate the algorithm is effective in im-

proving post-treatment levels of glycated hemoglobin, a measure of blood glucose

level. Our personalized approach to diabetes management can serve as a model for

how to use machine learning and increasingly available data from historical records

to improve care across the disease spectrum.

1.2 Analytical Background

Our work draws on several modes of analysis that have been enabled by recent de-

velopments in mathematical research and computational technology. First, we use

mixed-integer optimization (MIO) to model problems in the design and analysis of

clinical trials in Chapters 2 and 3. Methodological and software development in the

implementation of MIO solvers, such as Gurobi [Gurobi Optimization, Inc., 2016],

combined with massive speed-ups in computational processing power, have made it

possible to find optimal or near-optimal solutions to MIO formulations in timeframes

that are practical for real-world settings, such as ours. Second, to handle uncer-

tainty in the data inputs when designing clinical trials, we incorporate techniques

from the burgeoning field of robust optimization in Chapter 2. Third, the ability to

draw statistical inferences from a randomized trial or observational EMR data runs

17



throughout this work. Specifically, in Chapters 2, 3, and 4, we draw on the potential

outcomes framework of Rosenbaum and Rubin [1983] as a way to understand individ-

uals’ responses to treatment. Finally, from the machine learning literature, we draw

on algorithms for supervised learning, including k-nearest neighbors, regularized lin-

ear regression, classification and regression trees (CART), and random forests. These

methods are used in Chapter 4 to generate personalized treatment recommendations.

Recursive partitioning schemes, such as CART, are also relevant to the discussion of

how to identify exceptional responders in Chapter 3.

1.2.1 Mixed-integer optimization

In Chapters 2 and 3, we use mixed-integer optimization, specifically mixed-binary

linear optimization, to model problems related to the design and analysis of clinical

trials. In mixed-binary linear optimization, the aim is to find an optimal vector

solution (x,y) to problems of the following form:

min

x,y
c

0
x+ d

0
y

subject to Ax+By = b

x,y � 0

x 2 {0, 1}p,

where A and B are data matrices, b, c, and d are data vectors, x is a decision vector

of dimension p that takes binary values, and y is a decision vector that can take

continuous values.

The use of binary decision variables x makes it possible to indicate a choice be-

tween two alternatives, such as whether or not to assign an individual to a given

treatment group. There are many modeling techniques in integer optimization that

enable one to define complex relationships between variables [Bertsimas and Tsitsik-

lis, 1997]. For instance, in Chapter 3, we use mixed-binary optimization to indicate

whether a subject is located in the best subset of exceptional responders as determined
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by the choice of lower and upper bounds for the subset in each covariate dimension.

Cutting planes and branch-and-bound algorithms can be used to solve complex

mixed-integer linear optimization problems efficiently using software, such as Gurobi

[Gurobi Optimization, Inc., 2016].

1.2.2 Robust optimization

In Chapter 2, we tackle an online optimization problem in which we aim to assign

clinical trial subjects to treatment groups in order to balance covariates across groups

without knowing a priori the covariate data of future subjects. We show that this

optimization under uncertainty can be modeled using MIO combined with robust

optimization. In robust optimization, one has a vector of uncertain variables w,

which are known with high probability to take values in the uncertainty set U . The

goal of robust optimization is to solve the problem:

min

x2X
max

w2U
f(x,w),

where X is the feasible set for the outer minimization problem.

Depending on the specific properties of the formulation, various techniques exist

to solve this problem tractably [Ben-Tal et al., 2002, Bertsimas et al., 2011, Bandi

and Bertsimas, 2012]. In Chapter 2, we use a choice of uncertainty set that allows us

to solve the sub-problem, max

w2U
f(x,w), explicitly for any fixed x. Therefore, we can

model the sequential assignment problem as a deterministic optimization problem

that accounts for future uncertainty in the data.

1.2.3 Causal inference

Throughout this thesis, we refer to the potential outcomes framework of Rosenbaum

and Rubin [1983]. Using this framework of causal inference, each subject, indexed by

i = 1, . . . , n, receives a treatment assignment Ti 2 T , where T is a set of treatment

alternatives. For instance, in a placebo-controlled randomized clinical trial, we may

have T = {0, 1}, where Ti = 1 would indicate subject i was assigned to the treat-
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ment group, and Ti = 0 would indicate subject i was assigned to the control group.

According to the potential outcomes framework, we observe each subject’s response

vi to treatment Ti, but we cannot observe the counterfactual response(s), which the

subject would have experienced if she had been assigned to a treatment other than

Ti. In the example where T = {0, 1}, each subject i has a pair of potential outcomes

(v
(1)

i , v
(0)

i ), where the superscript indicates treatment (1) or control (0). We have

the following relationship between the observed response and the potential outcomes:

vi = v
(1)

i Ti + v
(0)

t (1� Ti).

We adopt the potential outcomes framework in two different contexts. In Chapters

2 and 3, we apply a hypothesis testing approach with Fisher’s sharp null hypothesis

[Fisher, 1935], which states that each individual subject would have had the same

response to treatment regardless of which treatment she was assigned. In our example,

under the sharp null hypothesis, we have vi = v
(1)

i = v
(0)

i , i = 1, . . . , n. Thus, under

the sharp null hypothesis, we not only observe the true response to treatment, but

also, by construction, we learn each subject’s complete set of potential outcomes.

The second context in which we apply potential outcomes is in Chapter 4 when

making personalized treatment recommendations. In this setting, we cannot observe

a subject’s counterfactual outcomes under alternative treatment options. To impute

these unobserved potential outcomes, we test and evaluate various algorithms for

supervised machine learning.

1.2.4 Supervised machine learning

Supervised machine learning algorithms are used to estimate unknown response values

based on a separate labeled set of training data. Training data consist of pairs (wi, v),

where wi is a vector of side information, referred to as covariates, and vi is a scalar

response value, referred to as a label. By using the labeled training data to learn

relationships between the covariates and response, one can then apply these learned

functions to make a prediction, v̂j, for the unknown response value given an unlabeled

covariate vector wj. When the supervised learning problem involves predicting a

continuous response value, we refer to the problem as regression; when the response
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comes from a discrete set of values or classes, such as a binary variable, we refer to

the problem as classification.

For instance, in a classical supervised learning approach called multiple linear

regression, one uses labeled data to learn the coefficient vector � that minimizes the

error terms ✏i among the training data in the following linear function:

vi = �0
wi + ✏i.

In Chapter 4, we test several common algorithmic approaches in supervised learn-

ing to impute unknown potential outcomes in response to various pharmacological

regimens for treatment of diabetes. First, we test a simple algorithm called k-nearest

neighbors, which estimates the response, vj, by taking the average response among

a set of k labeled subjects who are closest to the unlabeled subject j, as measured

by some pre-defined distance metric on the covariate space [Cover and Hart, 1967].

Second, we consider a regularized version of multiple linear regression called LASSO

regression [Tibshirani, 1996]. Finally, we consider random forests, which is an en-

semble method that generates multiple regression trees [Breiman et al., 1984] and

then takes the mean prediction across trees [Breiman, 2001]. The recursive parti-

tioning scheme that underlies classification and regression trees [Breiman et al., 1984]

also inspires our development of a fast heuristic to identify exceptional responders in

Chapter 3.

1.3 Main Contributions

Our contributions in this thesis can be summarized as follows, listed by chapter.

Chapter 2. Covariate-Adaptive Optimization in Online Clinical Trials

• We present a robust mixed-integer optimization algorithm that achieves strong

covariate balance in the sequential allocation of subjects to treatment groups

in randomized clinical trials.
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• Our method yields statistical power at least as high as, and sometimes sig-

nificantly higher than, state-of-the-art covariate-adaptive randomization ap-

proaches. In one example with a nonlinear covariate-response relationship, our

method achieved a desired level of statistical power at a sample size 25-50%

smaller than other state-of-the art methods.

• The optimization approach compares favorably with state-of-the-art methods in

regard to common experimental biases, including selection bias and accidental

bias with respect to observed and hidden covariates.

• The CA-RO algorithm is computationally tractable for instances of practical

size, despite taking the form of a nonlinear mixed-integer optimization prob-

lem that cannot be solved using off-the-shelf commercial solvers. Our choice

of uncertainty set allows us to extract a closed-form solution for the robust

constraints. Hence, we are able to solve the optimization by enumeration with

computational complexity that is independent of the sample size.

Chapter 3. Identifying Exceptional Responders in Randomized Trials via

Mixed-Integer Optimization

• We present an optimization approach for identifying the subset in randomized

trial data with the largest or smallest average treatment effect.

• Despite a fractional objective function, we show that the problem can be trans-

formed into a tractable mixed-integer linear optimization problem.

• The approach has many practical applications in the analysis of randomized tri-

als. Investigators could use our method to revisit long-terminated clinical trials

and search for opportunities to revive the testing of failed drugs in promising

subgroups. Even for trials that were initially successful, subgroup identification

could point investigators to the prevalence of adverse events arising from the

use of new or existing drugs in subpopulations.
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• In simulation experiments where a subset with large positive treatment response

was known to exist, our method correctly identified the subset with high accu-

racy and high positive predictive value despite additive noise. When no such

subset existed, our method falsely identified a significant subset in only a small

percentage of cases.

• Using data from a randomized clinical trial for the use of estrogen in treating

late-stage prostate cancer, we find a subgroup in which the treatment effect in

terms of survival days is substantially larger than for the general study popu-

lation.

Chapter 4. Personalized Diabetes Management Using Electronic Medical

Records

• Our study is the first of its kind to use machine learning to develop an algorithm

for personalized treatment recommendations using electronic medical records.

• Based on simulations with data from Boston Medical Center, we estimate that

the use of our algorithm could improve outcomes for patients with type 2 dia-

betes by reducing post-treatment glycated hemoglobin levels relative to current

practice.

• The algorithm can be integrated into existing EMR systems to dynamically sug-

gest personalized treatment paths for each patient based on historical records.

• We prototype an intuitive, interactive dashboard that summarizes the evidence

for each recommendation, including the expected distribution of outcomes under

alternative treatments.

• We believe this integrated, interactive approach has the potential to reshape

medical practice across the disease spectrum.
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Chapter 2

Covariate-Adaptive Optimization in

Online Clinical Trials

This work has been submitted for review at Biometrics, with co-authors Dimitris Bert-

simas and Nikita Korolko.

Pharmaceutical companies spend tens of billions of dollars each year to operate multi-

year clinical trials needed for the approval of new drugs. In this chapter, we present a

novel covariate-adaptive optimization algorithm for online allocation in clinical trials

that leverages robust mixed-integer optimization. In all tested scenarios, the proposed

method yields statistical power at least as high as, and sometimes significantly higher

than, state-of-the-art covariate-adaptive randomization approaches. We present a

setting in which our algorithm achieves a desired level of power at a sample size 25-50%

smaller than that required with randomization-based approaches. Correspondingly,

we expect that covariate-adaptive optimization could substantially reduce both the

duration and operating costs of clinical trials in many commonly observed settings,

while maintaining computational efficiency and protection against experimental bias.
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2.1 Introduction

The annual expenditure of global pharmaceutical companies on research and devel-

opment was $46.4 billion in 2010; of this, $32.5 billion was due to the high expense of

clinical trials [Berndt and Cockburn, 2013]. Drug approval requires multiple phases

of clinical trials that typically take years to complete [U.S. Food and Drug Adminis-

tration, 2015]. We present an algorithm that can decrease the sample size needed to

conduct a clinical trial by as much as 25-50% in certain settings, and thus substan-

tially reduce both the cost of conducting clinical trials and the time it takes for novel

effective therapies to reach patients.

The study of treatment allocation for controlled experiments dates back to Fisher

[1935]. Randomization has been favored historically as a way to control for selection

bias. However, randomization can yield another accidental bias identified by Efron

[1971], in which there is an imbalance in the distributions of known or hidden covari-

ates across randomly assigned treatment groups. There have been many attempts in

the literature to address this accidental bias in both the offline and online allocation

settings. For the offline problem, some prominent mechanisms are pairwise matching

[Rosenbaum and Rubin, 1985, Greevy et al., 2004], rerandomization [Morgan and

Rubin, 2012], and the finite selection model [Morris, 1979]. Bertsimas et al. [2015]

used an alternative offline optimization-based approach.

For the online sequential allocation problem, Rosenberger and Sverdlov [2008]

provide an excellent review of the available heuristics for covariate-adaptive random-

ization, including prestratification and biased coin designs. Many of the existing

heuristics stem from variations of the biased coin design first introduced by Efron

[1971], including nonrandomized minimization [Taves, 1974], randomized minimiza-

tion [Pocock and Simon, 1975], and designs that attempt to minimize the variance

of the treatment effect [Atkinson, 1982] or minimize loss of information [Antognini

and Zagoraiou, 2011]. These biased coin designs outperform pure randomization and

represent the current state of the art for online allocation. More recently, Kapelner

and Krieger [2014] introduced a pooled sequential matching algorithm, which discards
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covariate data as soon as each subject is matched. Bhat, Farias, and Moallemi [2015]

propose a dynamic programming algorithm for sequential allocation that comes with

computational challenges for which they provide an approximation algorithm.

In this paper, we develop a novel covariate-adaptive optimization mechanism for

online allocation, which outperforms state-of-the-art covariate-adaptive randomiza-

tion methods. We extend the offline mixed-integer optimization (MIO) approach

presented in Bertsimas et al. [2015] to the online setting in which patients arrive se-

quentially and each patient’s covariate data cannot be observed until the time of her

arrival. The new algorithm takes the form of a sequence of mixed-integer nonlinear

optimization problems. The uncertainty about future subjects is modeled by robust

optimization techniques with a quadratic uncertainty set [Ben-Tal, Nemirovski, and

Roos, 2002, Bertsimas, Brown, and Caramanis, 2011].

The new method, henceforth referred to as the covariate-adaptive robust opti-

mization (CA-RO) algorithm, delivers the following benefits:

1. In all tested scenarios, the CA-RO method achieved statistical power at least

as high as, and sometimes significantly higher than, covariate-adaptive ran-

domization (CA-RAND) approaches. We present an example of a nonlinear

covariate-response setting for which the CA-RO method achieved a desired level

of statistical power at a sample size 25-50% smaller than that required with the

best CA-RAND approach.

2. We present theoretical and empirical evidence that the optimization approach

compares favorably with CA-RAND methods with respect to three advantages

of complete randomization described by Efron [1971]: freedom from selection

bias; freedom from accidental bias with respect to observed and hidden covari-

ates; and, a reasoned basis for inference.

3. The algorithm is sufficiently general to produce assignments among multiple

groups p = 1, . . . ,m with multiple observed covariates per subject. The CA-RO

algorithm can also be extended to the setting where it is possible to aggregate

subjects into small clusters of size r prior to making group assignments.
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4. The CA-RO algorithm is computationally tractable for instances of practical

size, despite taking the form of a nonlinear mixed-integer optimization prob-

lem that cannot be solved using off-the-shelf commercial solvers. Our choice

of uncertainty set allows us to extract a closed-form solution for the robust

constraints. Hence, we are able to solve the optimization by enumeration with

complexity O(mr
), which does not depend on the sample size N . In all observed

instances, CA-RO provides the decision-maker with a high-quality assignment

recommendation instantaneously via enumeration.

The rest of the paper is organized as follows. In Section 2.2, we briefly revisit

the optimization-based allocation algorithm for the offline setting from Bertsimas,

Johnson, and Kallus [2015] This offline algorithm will form the basis for the online

CA-RO approach we develop in Section 2.3. At the end of Section 2.3, we present

computational results from experiments demonstrating the effectiveness of CA-RO

in reducing between-group covariate imbalance. In Section 2.4, we provide empirical

evidence that the CA-RO algorithm achieves a high level of statistical power with

much smaller sample size as compared to CA-RAND methods when the covariate-

response relationship is nonlinear. In Section 2.5, we discuss the experimental bias

and inference properties of the CA-RO approach and demonstrate that it compares

favorably with CA-RAND methods. Section 2.6 contains concluding remarks.

2.2 Offline Optimization Approach

In this section, we describe a MIO approach to assign groups for the setting when

pre-treatment covariate values of all subjects are known ahead of time (Bertsimas

et al., 2015). The decision-maker knows a priori the total number of subjects N in

the experiment and the respective covariates w = (w
1

, . . . , wN) of all subjects. Thus,

she can make treatment allocations using this full information. This may be the case,

for example, in laboratory cancer drug testing on mice.

The decision-maker will assign k := N/m subjects to each of m � 2 treatment

groups. The objective of the assignment is to minimize the maximum discrepancy
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between any two groups in the weighted sum of the first and second moments of the

covariates. Without loss of generality, we assume that the vector of covariates w

is normalized and has zero sample mean and unit sample variance. The parameter

⇢ regulates the relative weight of the first and the second moments. The binary

decision variables are x = {xip | i = 1, . . . , N, p = 1, . . . ,m}, where xip = 1 if subject

i is assigned to group p, and xip = 0, otherwise. We can express the mean and second

moment of each of the groups p 2 {1, . . . ,m} as follows:

µp(x) =
1

k

N
X

i=1

wi xip and �2

p(x) =
1

k

N
X

i=1

w2

i xip.

Hence, the optimal offline assignment can be found using the following MIO problem,

which we henceforth refer to as the OPT algorithm:

min

x

max

p<q
|µp(x)� µq(x)|+ ⇢|�2

p(x)� �2

q (x)| =

min

x,d
d

s.t. 8p < q = 1, . . . ,m :

d � µp(x)� µq(x) + ⇢�2

p(x)� ⇢�2

q (x)

d � µp(x)� µq(x) + ⇢�2

q (x)� ⇢�2

p(x)

d � µqx)� µp(x) + ⇢�2

p(x)� ⇢�2

q (x)

d � µq(x)� µp(x) + ⇢�2

q (x)� ⇢�2

p(x)

xip 2 {0, 1}
N
X

i=1

xip = k, 8p = 1, . . . ,m

m
X

p=1

xip = 1, 8i = 1, . . . , N

xip = 0 8i < p.

The final constraint reduces the redundancy due to permutation symmetry in group

numbering.
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In all tested scenarios from Bertsimas et al. [2015], the OPT method generates

groups with covariate discrepancy that is exponentially lower in the group size k

than those created by randomization. The expected average covariate discrepancy

decreases from O(k�1/2
) for randomization to O(2

�k
) for the OPT algorithm. Fur-

thermore, the OPT algorithm demonstrates exceptional precision in estimating small

treatment effects and superior statistical power given a fixed treatment effect.

For the remainder of this paper, the OPT algorithm will serve as a prescient

benchmark for the performance of methods in the setting of sequential online alloca-

tion.

2.3 Covariate-Adaptive Optimization Algorithms

In this section, we introduce the proposed CA-RO algorithm, show that the the algo-

rithm is tractable, develop an extension in which aggregation of decisions is allowed,

and describe the results of empirical experiments comparing the covariate balance of

CA-RO versus CA-RAND methods.

2.3.1 CA-RO algorithm

To extend the model from Section 2.2 to the online setting, we consider the problem

of N subjects arriving sequentially. The decision-maker knows a priori the number

of subjects k that will be assigned to each of m � 2 treatment groups, such that

N = km.

At each time-step t = 1, . . . , N , where t indexes both the period and the subject,

the decision-maker observes the covariate vector wt 2 RS
, where S is the number

of covariates observed for each subject. We assume that this sequence of random

covariate vectors is exchangeable, such that any ordering of the subjects’ arrival is

equally likely. The decision-maker then sets a decision {xtp}mp=1

2 {0, 1}m, where

xtp = 1, if the decision-maker assigns subject t to group p 2 {1, . . . ,m}, and xtp = 0,

otherwise. In the CA-RO algorithm, the choice of {xtp}mp=1

is made by solving one

instance of robust MIO formulation (3.1) at each time-step. The data for the opti-
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mization at time-step t include the covariate observations {wi}ti=1

and assignments

ˆ

x := {x̂ip

�

� i = 1, . . . , t � 1, p = 1, . . . ,m} 2 {0, 1}(t�1)⇥m
made at all previous time-

steps. We define expressions for the sample mean

¯

wt and the empirical covariance

matrix ⌃t at time-step t as follows:

¯

wt :=
1

t

t
X

i=1

wi and ⌃t :=
1

t

t
X

i=1

(wi � ¯

wt)(wi � ¯

wt)
>.

We also define uncertain parameters

˜

w := { ˜wi 2 RS}Ni=t+1

, which represent the

unknown covariates for future subjects.

The objective of the CA-RO algorithm is to produce m groups whose covariate

distributions are as similar as possible. We measure the proximity between two groups

p and q in terms of the mean µs
p and approximated variance �s

p of group p = 1, . . . ,m

with respect to covariate s = 1, . . . , S. At time-step 1  t  N , these sample statistics

are defined as follows:

µs
p :=

1

k

n

t�1

X

i=1

ws
i x̂ip + ws

txtp +

N
X

i=t+1

w̃s
ixip

o

,

�s
p :=

1

k

n

t�1

X

i=1

(ws
i � w̄s

t )
2x̂ip + (ws

t � w̄s
t )

2xtp +

N
X

i=t+1

(w̃s
i � w̄s

t )
2xip

o

,

where x := {xip 2 {0, 1} �� i = t, . . . , N, p = 1, . . . ,m} are the binary assignment

decision variables. We model the decision at each time-step t = 1, . . . , N by the

following optimization problem:

min

x

max

p<q

S
X

s=1

|µs
p � µs

q|+ ⇢|�s
p � �s

q |. (2.1)

Given that the values of future covariates

˜

w are unknown, we employ robust opti-

mization (Ben-Tal et al., 2002) to model formulation (2.1) under uncertainty:

min

x,M,V,z
z
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s.t. z �
S
X

s=1

M s
pq + ⇢V s

pq, 8p < q

M s
pq � µs

p � µs
q, 8p < q, s = 1, . . . , S, 8 ˜w 2 Uw

M s
pq � µs

q � µs
p, 8p < q, s = 1, . . . , S, 8 ˜w 2 Uw

V s
pq � �s

p � �s
q , 8p < q, s = 1, . . . , S, 8 ˜w 2 Uw (2.2)

V s
pq � �s

q � �s
p, 8p < q, s = 1, . . . , S, 8 ˜w 2 Uw

t�1

X

i=1

x̂ip + xtp +

N
X

i=t+1

xip = k, 8p = 1, . . . ,m

m
X

p=1

xip = 1, 8i = t, . . . , N

In this formulation, we use the uncertainty set Uw defined as follows:

Uw =

n

˜

w 2 R(N�t)⇥S
�

�

˜

wi = ¯

wt + (⌃t)
1
2 "i, i = t+ 1, . . . , N, " 2 U"

o

,

where perturbation vector " = ("t+1

, . . . , "N) belongs to the ellipsoidal uncertainty

set U":

U" =

n

" 2 R(N�t)⇥S
�

�

�

||"||
2

=

v

u

u

t

N
X

i=t+1

S
X

s=1

("si )
2  �

p

(N � t)S
o

. (2.3)

The robustness parameter � controls the size of the ellipsoid and represents the level

of conservatism of the uncertainty set. In order to protect against experimental biases,

we suggest that � should be chosen independently at random for each time-step (see

Section 2.5).

Formulation (3.1) takes the form of a mixed-binary quadratic robust optimization

problem with conic uncertainty set, which cannot be solved using off-the-shelf com-

mercial solvers. We overcome this computational challenge by finding an efficient way

to solve the following auxiliary optimization problems with respect to the uncertain

variables w̃:

max

˜

w2Uw

�

µs
p � µs

q

�

and max

˜

w2Uw

�

�s
p � �s

q

�

. (2.4)
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The objectives of optimization problems (2.4) are to maximize a linear or quadratic

function, respectively, over an ellipsoid. The unique structure of these problems allows

us to derive closed-form solutions by applying Karush-Kuhn-Tucker conditions along

with eigenvalue optimization. Therefore, formulation (3.1) is equivalent to a mixed-

binary optimization problem, described in Section 2.3.2, that can be solved via simple

enumeration of m scenarios.

2.3.2 Tractability of the CA-RO algorithm

Lemma 1. Consider robust optimization problem (3.1) with ellipsoidal uncertainty

set U" as defined in (2.3). To find the optimal objective value of this discrete op-

timization problem and the optimal current assignment at time t, it is sufficient to

inspect the following easily specified set X consisting of not more than m points:

X :=

m
[

p=1

�

xtp = 1;

xtq = 0, 8q = 1, . . . ,m, q 6= p;

xiu = 0, 8i = t+ 1, . . . , N, u = 1, . . . ,m;

t�1

X

i=1

x̂ip + xtp  k
 

.

Proof. In order to model the constraints for each p, q, s from optimization problem

(3.1) that should hold for all possible realizations of uncertain vector

˜

w 2 Uw, we will

find a closed-form solution to the following auxiliary optimization problems, repeated

from (2.4):

max

˜

w2Uw

(µs
p � µs

q) and max

˜

w2Uw

(�s
p � �s

q).

Step 1. Optimization of the linear term.

Let us define a parameter

˜

� := �

2

(N � t)S, where � is the robustness parameter

from (2.3). Then, for any fixed values of p, q, s, and

˜

�, we consider the optimization
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problem

max

˜

w2Uw

(µs
p � µs

q). (2.5)

We have

k(µs
p � µs

q) =

t�1

X

i=1

ws
i (x̂ip � x̂iq) + ws

t (xtp � xtq) +

N
X

i=t+1

w̃s
i (xip � xiq),

where only the last term of the right-hand side depends on uncertain

˜

w. Therefore,

we need to solve the following optimization problem for fixed values of components

of x:

max

˜

w2Uw

N
X

i=t+1

w̃s
i (xip � xiq) = max

"2U"

N
X

i=t+1

(w̄s
t + v

>
(s)"i)(xip � xiq)

= w̄s
t

N
X

i=t+1

(xip � xiq) + max

"2U"

N
X

i=t+1

(v

>
(s)"i)(xip � xiq).

where v

(s) denotes the s-th row of the matrix (⌃t)
1
2
. The optimization problem

max

"2U"

N
X

i=t+1

(v

>
(s)"i)(xip � xiq)

can be rewritten in the following form:

max

"
(a

pqs
)

>" (2.6)

s.t. ">"  ˜

�,

where vector a

pqs
of dimension (N � t)⇥ S is defined by (a

pqs
)is0 = (xip � xiq)(⌃

1
2
t )ss0

for i = t+ 1, . . . , N, s0 = 1, . . . , S.

Application of the Karush-Kuhn-Tucker conditions yields that the optimal value
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of the optimization problem (2.6) is equal to

p

˜

� · kapqsk
2

=

p

˜

�

v

u

u

t

S
X

s0=1

N
X

i=t+1

(xip � xiq)
2

((⌃

1
2
t )ss0)

2

=

p

˜

�kv
(s)k2

v

u

u

t

N
X

i=t+1

(xip � xiq)
2.

The last factor can be simplified and expressed in terms of the current time-step

decision variables as follows:

N
X

i=t+1

(xip�xiq)
2

=

N
X

i=t+1

(x2

ip�2xipxiq+x2

iq) =

N
X

i=t+1

(xip+xiq) = 2k�
t�1

X

i=1

(x̂ip+x̂iq)�(xtp+xtq),

where the second equality is due to the fact that xip and xiq are binary variables with

xipxiq = 0. Thus, the analysis of optimization problem (2.5) allows us to write a

closed-form counterpart of the linear terms in (3.1) that depends only on the current

time-step decision variables xtp for p = 1, . . . ,m, such that:

M s
pq � µs

p � µs
q, 8 ˜w 2 Uw ()

kM s
pq �

t�1

X

i=1

(ws
i � w̄s

t )(x̂ip � x̂iq) + (ws
t � w̄s

t )(xtp � xtq)+

+

p

˜

�kv
(s)k2

v

u

u

t

2k �
t�1

X

i=1

(x̂ip + x̂iq)� (xtp + xtq).

Step 2. Optimization of the variance term.

Similarly to Step 1, we fix values of p, q, s and

˜

� and consider the optimization problem

max

˜

w2Uw

(�s
p � �s

q). (2.7)

As before, only the term representing the future time periods depends on the uncertain

parameters ". Therefore, the primary goal of this step is to find a closed-form solution

to the auxiliary optimization problem

max

"2U"

N
X

i=t+1

(v

>
(s)"i)

2

(xip � xiq) = max

k"k22˜

�

">A" =

˜

� · �
max

(A). (2.8)

35



In (2.8), �
max

(A) denotes the maximum eigenvalue of the square block matrix A:

A =

2

6

6

6

6

6

6

4

(xt+1,p � xt+1,q)B 0 0 . . . 0

0 (xt+2,p � xt+2,q)B 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . (xNp � xNq)B

3

7

7

7

7

7

7

5

,

where matrix B = v

(s)(v(s))
>
.

The maximum eigenvalue �
max

(A) depends not only on the values of x, but also

on the dimension S of the covariate space.

• Case 1. S � 2. In this case, the eigenvalues of matrix B are 0 and kv
(s)k2

2

, and

the maximum eigenvalue of matrix A can be determined as a function of x as

follows:

�
max

(A) =

8

>

<

>

:

0, if xip � xiq  0 for all i = t+ 1, . . . , N,

kv
(s)k2

2

, if xip � xiq = 1 for at least one i = t+ 1, . . . , N.

By construction, the condition xip � xiq = 1 for at least one i = t + 1, . . . , N

holds if and only if group p is not full after the current time-step assignment,

i.e.,

k �
t�1

X

i=1

x̂ip � xtp � 1.

Thus, optimization problem (2.8) has the following closed-form solution that

depends only on the current time-step decision variables:

max

"2U"

N
X

i=t+1

(v

>
(s)"i)

2

(xip � xiq) =
˜

� · kv
(s)k2

2

· I
n

k �
t�1

X

i=1

x̂ip � xtp � 1

o

.

Now we can exploit the closed-form solution for optimization problem (2.7)

within (3.1), as follows:

V s
pq � �s

p � �s
q , 8 ˜w 2 Uw ()
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k V s
pq �

t�1

X

i=1

(ws
i � w̄s

t )
2

(x̂ip � x̂iq) + (ws
t � w̄s

t )
2

(xtp � xtq)+

+

˜

� · kv
(s)k2

2

· I
n

k �
t�1

X

i=1

x̂ip � xtp � 1

o

.

• Case 2. S = 1. In this case, matrix B is one-dimensional and its only eigenvalue

is kv
(s)k2

2

. Hence,

�
max

(A) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

kv
(s)k2

2

, if xip = 1 for at least one i = t+ 1, . . . , N,

�kv
(s)k2

2

, if xip = 0 and xiq = 1 for all i = t+ 1, . . . , N,

0, if xip = 0 for all i = t+ 1, . . . , N and

xiq = 0 for at least one i = t+ 1, . . . , N.

This is equivalent to the formulation: �
max

(A) = kv
(s)k2

2

·⇥pq(ˆx,x), where

⇥pq(ˆx,x) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

1, if k �
t�1

P

i=1

x̂ip � xtp � 1,

�1, if k �
t�1

P

i=1

x̂ip � xtp = 0 and

t�1

P

i=1

x̂iq + xtq + (N � t) = k,

0, if k �
t�1

P

i=1

x̂ip � xtp = 0 and

t�1

P

i=1

x̂iq + xtq + (N � t) > k.

(2.9)

Thus, optimization problem (3.1) modeling the CA-RO algorithm with ellipsoidal

uncertainty set has the following closed form for S � 2:

min

x,M,V,z
z

s.t. z �
S
X

s=1

M s
pq + ⇢V s

pq, 8p < q

8p < q, s = 1, . . . , S :

kM s
pq �

t�1

X

i=1

(ws
i � w̄s

t )(x̂ip � x̂iq) + (ws
t � w̄s

t )(xtp � xtq)+
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+

p

˜

�kv
(s)k2

v

u

u

t

2k �
t�1

X

i=1

(x̂ip + x̂iq)� (xtp + xtq)

kM s
pq �

t�1

X

i=1

(ws
i � w̄s

t )(x̂iq � x̂ip) + (ws
t � w̄s

t )(xtq � xtp)+ (2.10)

+

p

˜

�kv
(s)k2

v

u

u

t

2k �
t�1

X

i=1

(x̂ip + x̂iq)� (xtp + xtq)

k V s
pq �

t�1

X

i=1

(ws
i � w̄s

t )
2

(x̂ip � x̂iq) + (ws
t � w̄s

t )
2

(xtp � xtq)+

+

˜

� · kv
(s)k2

2

· I
n

k �
t�1

X

i=1

x̂ip � xtp � 1

o

k V s
pq �

t�1

X

i=1

(ws
i � w̄s

t )
2

(x̂iq � x̂ip) + (ws
t � w̄s

t )
2

(xtq � xtp)+

+

˜

� · kv
(s)k2

2

· I
n

k �
t�1

X

i=1

x̂iq � xtq � 1

o

t�1

X

i=1

x̂ip + xtp  k, 8p = 1, . . . ,m

m
X

p=1

xtp = 1

xip 2 {0, 1}, 8i = t, . . . , N, p = 1, . . . ,m.

The second-to-last constraint guarantees that no group will be assigned more than k

subjects and is therefore a sufficient replacement for the second-to-last constraint of

formulation (3.1).

A similar formulation for the case S = 1 is given by

min

x,M,V,z
z

s.t. z �
S
X

s=1

M s
pq + ⇢V s

pq, 8p < q

8p < q, s = 1, . . . , S :

kM s
pq �

t�1

X

i=1

(ws
i � w̄s

t )(x̂ip � x̂iq) + (ws
t � w̄s

t )(xtp � xtq)+
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+

p

˜

�kv
(s)k2

v

u

u

t

2k �
t�1

X

i=1

(x̂ip + x̂iq)� (xtp + xtq)

kM s
pq �

t�1

X

i=1

(ws
i � w̄s

t )(x̂iq � x̂ip) + (ws
i � w̄s

t )(xiq � xip)+ (2.11)

+

p

˜

�kv
(s)k2

v

u

u

t

2k �
t�1

X

i=1

(x̂ip + x̂iq)� (xtp + xtq)

k V s
pq �

t�1

X

i=1

(ws
i � w̄s

t )
2

(x̂ip � x̂iq) + (ws
t � w̄s

t )
2

(xtp � xtq)+

+

˜

� · kv
(s)k2

2

·⇥pq(ˆx,x)

k V s
pq �

t�1

X

i=1

(ws
i � w̄s

t )
2

(x̂iq � x̂ip) + (ws
t � w̄s

t )
2

(xtq � xtp)+

+

˜

� · kv
(s)k2

2

·⇥qp(ˆx,x)

t�1

X

i=1

x̂ip + xtp  k, 8p = 1, . . . ,m

m
X

p=1

xtp = 1

xip 2 {0, 1}, 8i = t, . . . , N, p = 1, . . . ,m,

where ⇥pq(ˆx,x) and ⇥qp(ˆx,x) are as defined in (2.9).

Formulations (2.10) and (2.11) depend only on current time-step decisions xtp, for

p = 1, . . . ,m. Given that these variables are binary and the subject with index t must

be assigned to exactly one group, it is sufficient to inspect the set X , with cardinality

at most m, to solve (3.1) for the optimal current assignment. ⇤

2.3.3 Aggregated CA-RO algorithm

The development of a partially online method is motivated by the opportunity pre-

sented when multiple subjects enroll in a clinical trial within a short period of time.

Under these circumstances, the decision-maker may be able to make a joint decision

regarding the simultaneous assignment of this sub-cohort of subjects to treatment

groups.
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For this analysis, we will distinguish the notion of time from the arrival of subjects.

Time will be indexed by periods t = 1, . . . , T . Subjects will be indexed separately

by i = 1, . . . , N with covariate vectors wi 2 RS, where N � T . Both the number of

periods T and the number of subjects N are known a priori. We assume that at time

t the decision-maker has observed the covariate values for rt � 1 unassigned subjects

who have arrived during time period t. Let us define nt :=

Pt
j=1

rj to represent

the number of subjects who have arrived as of time t. We also introduce the vector

rt := {rj}tj=1

. We can then define the following expressions to represent the sample

mean and approximated variance of group p with respect to covariate s at time t:

µs
p(rt) =

1

k

n

nt�1
X

i=1

ws
i x̂ip +

nt
X

i=nt�1+1

ws
ixip +

N
X

i=nt+1

w̃s
ixip

o

, and

�s
p(rt) =

1

k

n

nt�1
X

i=1

(ws
i � w̄s

t )
2x̂ip +

nt
X

i=nt�1+1

(ws
i � w̄s

t )
2xip +

N
X

i=nt+1

(w̃s
i � w̄s

t )
2xip

o

.

In the aggregated CA-RO algorithm, we solve formulation (3.1) at each time-

step t, but we replace the expressions µs
p and �s

p with their generalized counterparts

µs
p(rt) and �s

p(rt), respectively. The optimal solutions {x⇤
ip 2 {0, 1} | i = nt � rt +

1, . . . , nt, p = 1, . . . ,m} to the corresponding MIO problem are used to make the

assignments at period t for rt subjects. The problem can be solved at time t by

enumeration with complexity O(mrt
), and is therefore computationally tractable for

instances of practical size.

If the aggregation level is uniform across time such that rt = r for all t = 1, . . . , T�
1 and rT = N � (T � 1)r, we define the CA-RO(r) algorithm with aggregation level

r. We observe that the CA-RO(1) algorithm is equivalent to the fully online CA-RO

algorithm and the CA-RO(N) algorithm is equivalent to the OPT algorithm from

Section 2.2.

It is reasonable to assume that larger values of the aggregation parameter r lead

to better performance of the partially online algorithm in terms of both covariate

balance and statistical power. With a higher level of aggregation, the decision-maker

has more information at the time of each decision. In Section 2.3.5, we provide
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empirical evidence for this relationship.

2.3.4 Practical considerations

When using the CA-RO algorithm in practice, we suggest a few modifications and

parameter selection guidelines.

1. At the beginning of the assignment process, group indices p = 1, . . . ,m can

be randomly assigned to each of the treatment conditions. In this way, the

CA-RO algorithm is used to identify groups that are well-balanced with respect

to observed covariates, but plays no role in determining which group should

receive which treatment.

2. In the objective of formulation (3.1), the parameter ⇢ controls the tradeoff

between imbalance in the sample mean and the approximated variance. In

practice, to facilitate an intuitive choice of ⇢, it is convenient to substitute the

objective max

p<q

S
P

s=1

h

M s
pq + ⇢

p

V s
pq

i

, which puts the expressions for first and sec-

ond moments on the same scale. This substitution of a nonlinear objective is

tractable because we are able to solve the optimization efficiently by enumera-

tion. In the experiments that follow, we use this nonlinear objective with ⇢ = 6,

which we found to yield strong results across many instances that were robust

to perturbations of ⇢.

3. At the beginning of the time horizon, we ensure that all groups have been

randomly assigned at least one subject before we apply the optimization in

formulation (3.1).

4. Toward the end of the time horizon, we set the robustness parameter � = 0 so

as to make our algorithm more greedy and avoid overly conservative assignment

decisions.

In all tested experiments, the CA-RO(r) algorithms for r 2 {1, 3, 5} produced

assignment recommendations instantaneously, which suggests that the method can
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be used not just for clinical trials, but also for settings requiring real-time decisions,

such as Internet applications.

2.3.5 Empirical performance

In this subsection, we evaluate the empirical performance of the CA-RO algorithm.

First, we review four state-of-the-art CA-RAND methods, which serve as benchmarks

for the CA-RO algorithm. Second, we compare the performance of the CA-RO al-

gorithm at various aggregation levels with pure randomization and these CA-RAND

methods.

When evaluating the performance of CA-RO, we consider pure randomization

(RAND) along with the matching on-the-fly algorithm of Kapelner and Krieger [2014]

(KK), and three biased coin designs: the minimization method of Pocock and Si-

mon [1975] (PS), the DA-optimal design of Atkinson [1982] (DA), and the covariate-

adaptive biased coin design of Antognini and Zagoraiou [2011] (AZ). The biased coin

design methodology with m = 2, generically defined as

�t = Pr

⇣

xt1 = 1

�

�

�

x̂

1

, . . . , x̂t�1

; w

1

, . . . ,wt

⌘

= F
⇣

x̂

1

, . . . , x̂t�1

; w

1

, . . . ,wt

⌘

,

forms the basis of the PS, DA and AZ methods, with function F (·) defined separately

for each method. For the PS method,

�t =

8

>

>

>

>

>

<

>

>

>

>

>

:

1

2

, if D(t) = 0,

p, if D(t) < 0,

1� p, if D(t) > 0,

where p is the bias parameter and D(t) represents the covariate imbalance between
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the two groups after t� 1 subjects have been assigned. For the DA method,

�t =
(1� ⇣)2

(1� ⇣)2 + (1 + ⇣)2
, where ⇣ =

wt

t�1

P

i=1

wi(xi1 � xi2)

t�1

P

i=1

w2

i

for the case of one-dimensional covariates. For the AZ method, we have �t =

Gj(Dt(!j)), where

Gj(⇣) =

8

>

<

>

:

1

2

, 0  ⇣  1,

(⇣J + 1)

�1, ⇣ > 1,

and Gj(�⇣) +Gj(⇣) = 1, 8⇣ 2 Z,

for discrete levels of the covariate space indexed by j = 0, . . . , J . In this description,

Dt(!j) denotes the imbalance between the two groups within the level !j. In the KK

method, subjects are either randomized to treatment groups or paired via a matching

criterion based on the pairwise Mahalanobis distance. In the latter case, the new

paired subject is assigned to the treatment opposite its pair in order to balance the

groups.

We now discuss the empirical performance of the various algorithms with respect

to covariate balance. For N 2 {20, 60, 100} and m = 2, we simulated 3,000 unique

sets of covariate values drawn i.i.d. from a standard normal distribution. We evalu-

ated nine algorithms - RAND, PS, DA, AZ, KK and CA-RO(r) (with four different

values of r) - to measure the average worst pairwise difference in generalized moments

across groups (Table 2.1). For this and all subsequent experiments when evaluating

the CA-RO algorithm at any level of aggregation, we chose the robustness parameter

� in uncertainty set (2.3) independently and uniformly at random from the interval

[0.5, 4] at each time-step. In terms of the discrepancy in the first moment, CA-RO

was always among the best methods. The discrepancy in the second moment, which

closely approximates the discrepancy in the variance in this setting, was always lower

for CA-RO than for the best CA-RAND method. The discrepancy in higher mo-

ments, as well as generalized moments of log(|w|) and 1/w, for CA-RO methods was
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always comparable with other CA-RAND algorithms. As we expected, the advantage

of optimization increases with r, and the offline OPT algorithm has starkly better

performance than other approaches.

Table 2.1: Average between-group absolute discrepancy in moments under allocation

algorithms with m = 2 and S = 1.

Moment

N Algorithm 1 2 3 4 5 log(|w|) 1/w
20 RAND 0.358 0.498 1.321 2.955 8.108 0.387 13.521

PS 0.260 0.509 1.120 2.872 7.389 0.524 13.150

DA 0.167 0.616 0.931 3.172 6.953 0.719 13.492

AZ 0.286 0.553 1.228 3.070 7.881 0.558 13.143

KK 0.221 0.416 1.046 2.706 7.186 0.305 13.307

CA-RO(1) 0.250 0.269 1.179 2.196 7.759 0.335 13.439

CA-RO(3) 0.251 0.226 1.228 2.033 8.022 0.340 13.639

CA-RO(5) 0.254 0.186 1.224 1.954 7.969 0.343 13.621

OPT 0.024 0.010 0.960 1.517 7.348 0.354 13.702

60 RAND 0.205 0.292 0.793 1.869 5.396 0.224 10.020

PS 0.125 0.250 0.625 1.640 4.746 0.257 9.850

DA 0.092 0.350 0.560 1.935 4.700 0.408 9.990

AZ 0.125 0.278 0.663 1.788 4.981 0.257 9.763

KK 0.172 0.274 0.708 1.788 5.144 0.214 9.853

CA-RO(1) 0.099 0.139 0.629 1.378 4.992 0.214 9.979

CA-RO(3) 0.095 0.090 0.645 1.176 5.044 0.210 9.999

CA-RO(5) 0.096 0.067 0.653 1.128 5.112 0.206 10.028

OPT 0.001 3.33⇥ 10

�4

0.531 1.046 4.668 0.272 10.255

100 RAND 0.161 0.225 0.604 1.470 4.257 0.177 10.507

PS 0.083 0.178 0.438 1.242 3.619 0.182 10.251

DA 0.072 0.274 0.436 1.538 3.816 0.324 10.080

AZ 0.088 0.190 0.482 1.320 3.839 0.181 9.933

KK 0.133 0.218 0.544 1.449 4.107 0.171 10.195

CA-RO(1) 0.066 0.116 0.479 1.132 4.034 0.168 10.223

CA-RO(3) 0.063 0.073 0.488 0.984 4.091 0.165 10.368

CA-RO(5) 0.064 0.051 0.485 0.901 4.041 0.163 10.551

OPT 0.001 1.14⇥ 10

�4

0.402 0.806 3.692 0.218 10.240

We found similar results from additional experiments in which the covariates were

generated from alternative distributions, including uniform and long-tailed Cauchy

distributions.
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2.4 Statistical Power of CA-RO Algorithm

A common pre-condition for the approval of any clinical trial is to demonstrate that

the trial will have a sample size sufficient to make sound statistical inferences with

high probability. These inferences include both statistical power, the ability to detect

a positive treatment effect when one exists, and a low type I error rate, the ability to

correctly identify an ineffective treatment. In classical statistical models, the power

of a randomized controlled trial can be derived from the sample size and significance

level, given an estimated treatment effect. Randomized allocation can yield an acci-

dental imbalance in covariates between treatment groups that can impact the ability

to make experimental inferences. Traditionally, when estimating treatment effects,

practitioners have been satisfied to control for this covariate imbalance a posteriori

via regression methods (Lin, 2013).

We provide strong empirical evidence that such post hoc adjustments may produce

suboptimal effect estimation, particularly when the relationship between covariates

and response is nonlinear. By testing a variety of covariate-response models, we

show that, at any fixed sample size, the statistical power of a clinical trial is at least

as high when covariate-adaptive optimization is used rather than covariate-adaptive

randomization. In settings where the covariate-response relationship is nonlinear,

we observe that the power under the CA-RO algorithm is significantly higher than

for state-of-the-art CA-RAND methods. Therefore, in certain settings, the use of

covariate-adaptive optimization could allow decision-makers to achieve desired levels

of statistical power with significantly smaller sample size as compared with CA-RAND

mechanisms. Given the high cost of enrolling human subjects in clinical trials, the

ability to achieve needed statistical power with much smaller sample size can result

in significant cost savings for the healthcare industry and society at large.

2.4.1 Test for statistical power

In order to compare statistical power under CA-RAND and CA-RO online allocation

procedures, we apply a hypothesis testing framework based on simulation (Bertsimas
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et al., 2015).

Let us assume there are m = 2 groups: a treatment group, which will be admin-

istered a given therapy, and a control group, which will be administered a placebo.

There are N subjects in the trial, such that k = N/2 subjects will be assigned to each

of the groups. At each time-step t = 1, . . . , N , the decision-maker observes the values

of a covariate vector wt and makes a binary assignment xt, where xt = 1 indicates

the treatment group (1) and xt = 0 indicates the control group (0). Let vt be the

response measured after the assigned treatment was administered for subject t. We

adopt the potential outcomes framework of Rosenbaum and Rubin [1983], such that

each subject has a pair of potential outcomes (v
(1)

t , v
(0)

t ), where the superscript indi-

cates treatment or control and only one of these two outcomes can be observed. Under

this framework, we have the following relationship between the observed response and

the potential outcomes: vt = v
(1)

t xt + v
(0)

t (1� xt).

Given vt for each subject t = 1, . . . , N , we can estimate the average treatment

effect

ˆ�. We adopt two estimators for

ˆ�, unadjusted and regression-adjusted, from

Lin [2013]:

1.

ˆ�unadj :=
1

k

h

PN
t=1

vtxt �
PN

t=1

vt(1� xt)

i

2.

ˆ�adj := �x, where �x is the estimated coefficient on xt in the ordinary least

squares regression vt = �
0

+ �xxt + �>
wwt.

We can also consider a modification of

ˆ�adj in which the linear regression contains

quadratic terms in wt. We hypothesize that this modified estimator may control for

covariates in the first and second moments a posteriori.

To test the significance of this observed effect

ˆ�, we adopt Fisher’s sharp null

hypothesis [Fisher, 1935], which states that every subject t = 1, . . . , N would have

had the same response to treatment regardless of which treatment was assigned. In

other words, under the sharp null hypothesis, we have vt = v
(1)

t = v
(0)

t . Equipped

with a complete set of potential outcomes for each subject, we can estimate the

average treatment effect under alternative random allocations of subjects 1, . . . , N . If

we compute the average treatment effect �b as our test statistic for each alternative
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allocation b = 1, . . . , B, we can then estimate the p-value for our observed

ˆ�, using a

two-sided test, as

p =

1

1 + B

⇣

1 +

B
X

b=1

I
h

�

��b
�

� � �

�

ˆ�
�

�

i⌘

.

We reject the null hypothesis if p  ↵ for some pre-specified significance level ↵;

otherwise, we accept the null hypothesis.

In order to estimate the statistical power under a given algorithm A, we generate Q

random samples of N subjects with covariates drawn i.i.d. from a fixed distribution.

We apply the hypothesis test described above for all random samples, and measure

the number of samples Qreject for which the null hypothesis is rejected. We evaluate

the probability that the null hypothesis will be rejected by computing the ratio � :=

Qreject/Q. If the true treatment effect �
0

is nonzero, then � estimates the power of

the experiment; otherwise, � estimates the type I error rate.

The alternative allocations for the hypothesis test can be generated randomly

using Monte Carlo simulation to approximate the distribution of possible allocations

under random assignment mechanism A. If Monte Carlo simulation does not yield

a sufficiently diverse set of allocations within computational limits, one can generate

bootstrapped resamples of covariate vectors w

b
t , t = 1, . . . , N drawn uniformly at

random from the set W = {w
1

, . . . ,wN} (Efron and Tibshirani, 1994). Based on

the observations from the original experiment and under the null hypothesis, we have

complete mappings v(1)(·) : W ! R and v(0)(·) : W ! R, which represent the

potential outcomes under treatment and control, respectively, for individuals with

covariates in W . Therefore, for each subject in a given bootstrapped sample, we

observe the response under her random allocation xb
t as vbt = v(1)(wb

t) · xb
t + v(0)(wb

t) ·
(1� xb

t).

2.4.2 Computational results

To evaluate the statistical power of the CA-RO algorithm relative to CA-RAND

methods, we simulated clinical trials under three different hidden realities, each char-

acterized by a unique model relating treatment response to subject covariates. We
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assumed each subject t = 1, . . . , N had a covariate vector wt = (w1

t , w
2

t ) of dimension

S = 2, whose components were drawn i.i.d. from a standard normal distribution.

The covariate-response models were as follows:

• Nonlinear (NL): vt = �
0

xt + (w1

t )
2 � (w2

t )
2

+ ✏t ,

• Linear (LIN): vt = �
0

xt + 2(w1

t ) + 2(w2

t ) + ✏t ,

• No relationship (NR): vt = �
0

xt + ✏t ,

where �
0

is the ground-truth additive treatment effect and ✏t is a Gaussian noise term

with mean 0 and standard deviation 0.75.

For each covariate-response model, we evaluated statistical power � under the

CA-RAND and CA-RO algorithms by applying the hypothesis test described in Sec-

tion 2.4.1 with both estimators

ˆ�unadj and

ˆ�adj (Figure 2-1). We considered N 2
{40, 80, 120} with �

0

= 0.5, Q = 800, B = 500, and significance level ↵ = 0.05. For

all scenarios, the power of the experiment increases with N .

• In the NR scenario, post hoc regression adjustment does not improve power for

any of the methods. All methods yield similar power since there is no benefit

from covariate balance.

• Conversely, in the linear response setting (LIN), regression adjustment increases

statistical power substantially for all methods. When using the

ˆ�unadj estima-

tor, CA-RO(1) yields higher power relative to randomization and CA-RAND

methods. However, post hoc regression adjustment using ordinary least squares,

which exactly replicates the covariate-response model with additive treatment

effect, reduces the need for the a priori covariate balance provided by CA-RO.

Power evaluated using

ˆ�adj is equally high across all methods.

• Finally, in the nonlinear response scenario described above (NL), there is vir-

tually no benefit to using regression adjustment. In this setting, CA-RO(1)

yields much higher statistical power than pure randomization and CA-RAND

methods. The advantage of CA-RO grows with the sample size N .
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Figure 2-1: Statistical power (with 95% confidence intervals) under CA-RO(1) vs.

CA-RAND methods.

Results are shown for N 2 {40, 80, 120} under various response models (NL, LIN, NR),
using both adjusted and unadjusted treatment effect estimators.
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We conducted additional experiments under a variety of nonlinear models and found,

in all tested scenarios, that CA-RO had power at least as high as (and often higher

than) randomization-based methods. The NL scenario is an example in which the

benefit of CA-RO was particularly dramatic. When the nonlinear models included

terms that were cubic, quadratic, or exponential in the covariates, the CA-RO method

had power that exceeded other methods as measured using the

ˆ�unadj estimator; how-

ever, the observed power was relatively similar across all methods when including

quadratic terms in the modified regression-adjusted

ˆ�adj estimator. It seems that con-

trolling for both linear and quadratic terms via regression can produce some of the

benefits of a priori covariate balance, but at the cost of using a less transparent effect

estimator.

We also ran simulations in which the p-values were estimated using a one-sided

test rather than a two-sided test. As one might expect, for fixed �
0

and distribution

of noise ✏, power was higher for all methods under the one-sided test. However, in

all tested scenarios, the CA-RO algorithm maintained a similar advantage relative to

other methods.

In Table 2.2, we show the results for the NL setting under the CA-RO(r) as-

signment mechanism for N = 40 with aggregation levels r 2 {1, 3, 5} along with

OPT, which is equivalent to CA-RO(N). As we expect, the power increases with the

aggregation level r.

Table 2.2: Statistical power under CA-RO(r) for NL scenario with N = 40.

Aggregation level, r 1 3 5 N

Power, � 29.1% 29.8% 31.9% 36.4%

In Figure 2-1, we show that, under some covariate-response models, CA-RO yields

higher power at fixed sample sizes than other methods. This motivates a complemen-

tary question: What is the sample size required to achieve a desired level of statistical

power? We considered the NL scenario and tested values of �
0

from 0.75 to 1.75 to

estimate N⇤
A(�0), the minimum number of subjects per group needed to achieve power

of at least 80% when assignment mechanism A is employed (Figure 2-2a). With a
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large effect size of �
0

= 1.75, statistical power of 80% was achieved with a sample

size of 22 using the CA-RO(1) algorithm compared with a sample size of 30 using

the best CA-RAND method (in this case, PS). With a small effect size of �
0

= 0.75,

the advantage of optimization was even bigger; a sample size of 58 was sufficient to

achieve 80% power, compared with a sample size of 122 using the best CA-RAND

method (again, PS). For a given treatment effect �
0

, the threshold sample size needed

to achieve 80% power under the CA-RO algorithm was reduced by at least 25% rela-

tive to the best CA-RAND method (Figure 2-2b). If we consider the NL setting with

�
0

= 0.75 as an example, the CA-RO method may enable the execution and analysis

of some clinical trials that would otherwise be infeasible given the prohibitively large

sample size required to achieve a sufficient level of statistical power when CA-RAND

methods are employed.

Table 2.3 demonstrates that the minimum sample size N⇤
A(�0) decreases further

as the aggregation level r of CA-RO(r) algorithm grows. Relative to state-of-the-art

CA-RAND methods, the CA-RO approach can dramatically reduce the number of

subjects enrolled in a trial without sacrificing statistical power.

Table 2.3: Minimum number of subjects per group N⇤
A(�0) needed for power over 80%.

Treatment effect, �
0

Algorithm, A 0.75 1 1.25 1.5 1.75

RAND 268 142 88 62 48

PS 122 80 54 38 30

DA 268 148 94 60 42

AZ 158 104 68 50 36

KK 228 128 82 58 38

CA-RO(1) 58 42 32 26 22

CA-RO(3) 52 36 28 22 18

CA-RO(5) 48 32 26 22 18

OPT 26 22 18 16 14

We also evaluate the rate of type I errors for CA-RO(1) with �
0

= 0 with Q = 800

and B = 500 for N 2 {40, 80, 120} and for each of the three covariate-response

scenarios described above, using the regression-adjusted treatment effect estimator

(Table 2.4). We observe that, for each setting, the type I error is a decreasing function
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Figure 2-2: Sample size needed under CA-RO(1) vs. CA-RAND methods.
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of N . Type I error rates for all algorithms tested are shown in Figure 2-3. PS, the

CA-RAND method with the best statistical power in this experiment, had a mean

type I error rate that was uniformly higher than that produced by CA-RO(1).

Table 2.4: Type I error under CA-RO(1).

Sample size, N
Scenario 40 80 120

Nonlinear (NL) 7.1% 4.6% 4.5%

Linear (LIN) 7.0% 6.0% 4.5%

No relationship (NR) 6.5% 5.3% 5.6%

2.5 Unbiasedness of CA-RO Approach

In this section, we provide empirical and theoretical evidence that the CA-RO algo-

rithm introduced in Section 2.3 exhibits the same statistical advantages ascribed to

complete randomization by Efron [1971]: freedom from selection bias, freedom from

accidental bias with respect to observed and hidden covariates, and a reasoned basis

for inference.

2.5.1 Freedom from selection bias

The CA-RO algorithm protects against selection bias, the possibility that an investiga-

tor could consciously or unconsciously influence the order of subject enrollment based

on deterministic knowledge of the next treatment assignment. Through computer sim-

ulation, we demonstrate that, by selecting the robustness parameter � independently

and uniformly at random with support [0.5, 4] at each time-step, the CA-RO method

yields sufficiently random treatment assignments as to protect against this type of

selection bias. For N from 30 to 100, we randomly generated 30 unique sequences

of covariates w 2 RN
drawn independently from N (0, 1). We used the CA-RO(1)

algorithm to generate 3,000 random assignments of the N subjects to two groups.

We observe that one cannot determine the sequence of future assignments based on

knowledge of the algorithm because, on average, the total number of possible alloca-
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Figure 2-3: Type I error (with 95% confidence intervals) with CA-RO(1) vs. CA-

RAND methods.

Results are shown for N 2 {40, 80, 120} under various response models (NL, LIN, NR),
using the adjusted treatment effect estimator. Dashed line indicates 0.05 significance level.
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tions is large (Figure 2-4a) and no individual assignment sequence has a likelihood

higher than 6% (Figure 2-4b).
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Figure 2-4: Analysis of distribution of unique allocations under CA-RO(1).

A concern that directly competes with selection bias is certifiability. When used

with a fixed and predefined sequence of robustness parameters �t, t = 1, . . . , N , the

CA-RO algorithm is a sequence of deterministic optimization problems, each of which

can be reproduced. This reproducibility provides a natural method for certifying a

posteriori that the algorithm’s recommendation was followed, given knowledge of the

subjects’ covariates and arrival order. If certifiability is deemed to be of greater con-

cern than selection bias in the context of a particular experimental setting, one can

apply the CA-RO algorithm with fixed robustness parameters in order to achieve full

certifiability of assignments. Conversely, certifiability is not achievable using random-

ized methods unless the random seed used to initialize the algorithm is provided.

2.5.2 Freedom from accidental covariate imbalance

We have shown in the empirical results from Section 2.3.5 that the CA-RO method

produces consistently better balance in the first two moments across groups com-

pared with simple randomization and other existing CA-RAND approaches. In this

subsection, we show that, despite only considering the observed covariates w 2 RN

when making assignment decisions, the CA-RO algorithm provides the same level of
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protection as CA-RAND methods against irregular allocation with respect to other,

potentially unseen factors.

We consider two natural cases for the dependence of hidden factors on the observed

covariates w: no correlation and continuous dependence.

1. If there is a hidden factor that is uncorrelated with observed covariates w, the

CA-RO algorithm generates an allocation which is as random with respect to

the hidden covariates as that produced by randomized methods.

2. The second case, when the unseen covariate is a continuous function of the

observed covariate, warrants further discussion. We see empirically that, when

unseen factor f has a polynomial or logarithmic conditional expectation in scalar

random variable w, the discrepancy in higher moments and generalized moments

f = log(|w|) and f = 1/w for CA-RO methods is always comparable with (and

often lower than) the mismatch produced by CA-RAND algorithms (Table 2.1).

In the remainder of this subsection, we present formal theoretical evidence that

this empirical relationship extends to the general case of continuous dependence.

To examine this general case, we assume that there are two different assignment

algorithms A and B (e.g. CA-RO(1) and PS), and an unseen factor f that can be

modeled in the form

f = g(w) + ✏,

where g(·) is a Lipschitz function with constant L and ✏ is some noise function. When

generating groups of size k by algorithm A, let us denote the maximum discrepancy

in means with respect to unseen covariate f by:

zfA := max

p<q

1

k

�

�

�

X

i2Ip(A)

g(wi)�
X

i2Iq(A)

g(wi)

�

�

�

,

where Ip(A), Iq(A) ⇢ {1, . . . , N} are disjoint index sets respectively describing groups

p and q produced by algorithm A. The maximum discrepancy zfB between groups

generated by algorithm B is defined analogously.
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In Proposition 1, we derive theoretical upper bounds on the the values of zfA and

|zfA � zfB|, where A is the CA-RO(1) approach and B is any CA-RAND method. The

first upper bound on zfA, given by (2.12a), demonstrates that the maximum discrep-

ancy in means with respect to unseen covariate f is controlled by the corresponding

discrepancy with respect to the observed covariate w. The second upper bound on

|zfA � zfB|, given by (2.12b), indicates that the maximum discrepancy in means with

respect to unseen covariate f is as well-controlled under CA-RO(1) as under any other

CA-RAND algorithm.

Proposition 1. Let us consider the simplest case where subjects with scalar co-

variates wi, i = 1, . . . , 2k are assigned to m = 2 groups. For any assignment algo-

rithms A and B that produce groups of equal size k, and for any Lipschitz function

g(·) 2 Lip(L), the following inequalities hold:

zfA  L · ✓⇤(A), (2.12a)

|zfA � zfB|  2L · ⇠⇤(A,B). (2.12b)

In (2.12a), ✓⇤(A) is the optimal objective value of the auxiliary pairwise matching

problem:

✓⇤(A) := min

y

1

k

P

i2I1(A)

P

j2I2(A)
|wi � wj| yij

s.t.

P

i2I1(A)
yij = 1, 8j 2 I

2

(A)
P

j2I2(A)
yij = 1, 8i 2 I

1

(A)

yij 2 {0, 1}.

(2.13)

In (2.12b), we define the value ⇠⇤(A,B) := min

c=1,2
⇠c(A,B), where ⇠c(A,B) is the optimal
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value of the problem

⇠c(A,B) := min

y

P

i2Sc
1

P

j2Sc
2

|wi � wj| yij

s.t.

P

i2Sc
1

yij = 1, 8j 2 Sc
2

P

j2Sc
2

yij = 1, 8i 2 Sc
1

yij 2 {0, 1},

(2.14)

and auxiliary sets of indices S�
↵, for ↵, � = 1, 2 have the form

S1

1

= I

1

(A) \ I

2

(B) and S1

2

= I

2

(A) \ I

1

(B);

S2

1

= I

1

(A) \ I

1

(B) and S2

2

= I

2

(A) \ I

2

(B).

(These sets describe the differences between the groups produced by algorithms A

and B.)

Proof. In order to verify inequality (2.12a) for m = 2, we note that optimization

problem (2.13) uniquely determines a pairwise matching of sets I

1

(A) and I

2

(A) with

minimum average distance between pairs. We denote the resulting pairs as {(il, jl) :
l = 1, . . . , k}, where k is the number of indices in each set. By the definition of zfA,

we derive

zfA =

1

k

�

�

�

X

i2I1(A)

g(wi)�
X

i2I2(A)

g(wi)

�

�

�

 1

k

k
X

l=1

|g(wil)�g(wjl)| 
L

k

k
X

l=1

|wil�wjl | = L·✓⇤(A).

(2.15)

Similar reasoning is applicable for the second inequality (2.12b). First, it is easy to

see that the cardinality of both sets S1

1

and S1

2

is the same:

� := |S1

1

| = |S1

2

|.

By symmetry, the cardinalities of the complementary sets are also identical:

|S2

1

| = |S2

2

| = k � �.
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The next step is to express the between-group discrepancies in the means generated

by algorithms A and B as follows:

zfA =

1

k

�

�

�

X

i2S2
1

g(wi) +

X

i2S1
1

g(wi)�
X

i2S1
2

g(wi)�
X

i2S2
2

g(wi)

�

�

�

= |a+ b|.

zfB =

1

k

�

�

�

X

i2S2
1

g(wi)�
X

i2S1
1

g(wi) +

X

i2S1
2

g(wi)�
X

i2S2
2

g(wi)

�

�

�

= |a� b|,

where

a :=

1

k

⇣

X

i2S2
1

g(wi)�
X

i2S2
2

g(wi)

⌘

and b :=
1

k

⇣

X

i2S1
1

g(wi)�
X

i2S1
2

g(wi)

⌘

.

Hence, analogously to argument (2.15), one may obtain upper bounds:

|a|  L · ⇠
2

(A,B) and |b|  L · ⇠
1

(A,B). (2.16)

A simple corollary from the triangle inequality is that, for any a and b,

�

�|a+ b|� |a� b|��  2min

�|a|, |b|�.

This corollary, taken together with (2.16), implies that

|zfA � zfB|  2L ·min

�

⇠
1

(A,B), ⇠
2

(A,B)
  2L · ⇠⇤(A,B).

This proposition has a straighforward extension to the cases of m > 2 groups and mul-

tidimensional covariates. The proofs have a similar structure to the case considered

here, and thus are omitted. ⇤

Having obtained theoretical upper bounds (2.12), we conducted numerical exper-

iments to measure the values of the average pairwise distances ✓⇤(A) and ⇠⇤(A,B)

defined in (2.13) and (2.14), respectively. We fixed A = CA-RO(1) and chose B from

among RAND, PS, DA, AZ and KK, where the randomization methods were modi-
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fied to ensure they would produce equal-sized groups at the end of the horizon. We

randomly generated populations of size N between 60 and 100, where each subject

had a scalar standard normal covariate wi. After executing both chosen algorithms

A and B, we identified the index sets S�
↵, for ↵, � = 1, 2 and solved the auxiliary op-

timization problems (2.13) and (2.14). After 3,000 simulations, we observed that, in

more than 99% of instances, the average discrepancy ✓⇤
�

CA-RO(1)

�  0.35; the cor-

responding upper bounds for ⇠⇤
�

CA-RO(1),B
�

for various choices of B are reported

in Table 2.5. Given that, by definition, the distances ✓⇤ and ⇠⇤ scale linearly with

respect to the covariates wi, i = 1, . . . , N , one may derive the empirical counterparts

of upper bounds (2.12), which hold with high probability:

zfCA-RO(1)

 0.35L · �
max

B2{RAND, PS, DA, AZ, KK}
|zfCA-RO(1)

� zfB|  0.51L · �

where � is the standard deviation of attributes w. The constant 0.51 in the right-hand

side of the second bound is derived from the maximum discrepancy among CA-RAND

methods in Table 2.5.

Table 2.5: Empirical upper bound on ⇠⇤
�

CA-RO(1),B
�

.

Algorithm B RAND PS DA AZ KK

⇠⇤
�

CA-RO(1),B
�

0.255 0.187 0.200 0.185 0.215

The result of Proposition 1 can be extended to the case of general continuous

functions g(·) under the assumption that the support K ⇢ RS
of covariates w is

a compact set. Indeed, any continuously differentiable function g(·) defined on a

compact set K (including any polynomial function) is in a Lipschitz class with L =

max

x2K
|g0(x)|. Since any continuous function on K can be approximated with arbitrary

precision by some polynomial according to the Weierstrass theorem, the upper bounds

(2.12) hold for any continuous function g(·) on the set K.
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2.5.3 Reasoned basis for inference

The results from Figures 2-4a and 2-4b, which demonstrate the variety of unique

allocations that can result under the CA-RO approach, indicate that CA-RO provides

a sufficient degree of randomization to be used as a reasoned basis for inference.

While the probability distribution of these allocations does not appear to be uniform

(see Figure 2-4b), the fact that diverse allocations arise motivates us to conduct

randomization-inspired tests for statistical significance such that the power of the

CA-RO method can be estimated under various scenarios in Section 2.4.

2.6 Conclusions

In this paper, we introduced a covariate-adaptive optimization algorithm for the prob-

lem of online allocation of subjects in randomized controlled trials. Our method

leverages robust mixed-integer quadratic optimization to improve upon state-of-the-

art covariate-adaptive randomization methods. We demonstrated many desirable

properties of the new CA-RO approach, including computational tractability, smaller

between-group covariate imbalance as compared with randomization-based methods,

and a low potential for common experimental biases. In all tested scenarios, the CA-

RO method performed competitively with CA-RAND approaches, and sometimes

significantly outperformed these methods, as measured by statistical power. We pre-

sented a setting with a nonlinear covariate-response model for which the CA-RO

method achieved a desired level of statistical power at a sample size 25-50% smaller

than the best CA-RAND method. Thus, the proposed CA-RO algorithm has signif-

icant potential to reduce both the cost and duration of clinical trials. The CA-RO

algorithm can be used to make assignments to any arbitrary number of treatment

groups and for any number of observed covariates. Finally, we constructed an exten-

sion of the CA-RO method for the setting in which it is possible to aggregate decision-

making. We believe that the proposed CA-RO algorithm is an efficient alternative

to covariate-adaptive randomization that can significantly strengthen experimental

power in clinical trials and many other disciplines exploiting controlled experiments.
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Chapter 3

Identifying Exceptional Responders

in Randomized Trials via

Mixed-Integer Optimization

This work was completed in collaboration with my co-authors Dimitris Bertsimas and

Nikita Korolko.

In randomized clinical trials, there may be a benefit to identifying subgroups of the

study population for which a treatment was exceptionally effective or ineffective. In

this chapter, we present an efficient mixed-integer optimization formulation that can

directly find an interpretable subset with maximum (or minimum) average treatment

effect. Using both simulated and real data from randomized trials, we demonstrate

the effectiveness and stability of the optimization approach in identifying subsets with

exceptional response and verifying their statistical significance.

3.1 Introduction

Researchers in the medical and social sciences invest substantial resources to imple-

ment randomized controlled trials, the gold standard in statistical analysis of response

to a treatment. Whether the response measured is biological, economic, social, or
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otherwise, the hope of randomized trials is to confirm the effectiveness (or harm)

of an experimental intervention. When a trial fails to yield a significant result, the

investigator may abandon the study of the intervention entirely despite the initial in-

vestment made. In this paper, we present a method that uses optimization to identify

subgroups for which an exceptionally large positive or negative response was found.

Such a method could provide great value in the pharmaceutical industry. For

instance, in 2010, the expenditure of global pharmaceutical companies on clinical

trials for investigational drugs was $32.5 billion, due to multiple phases of clinical trials

necessary for a drug approval process that typically take years to complete [Berndt

and Cockburn, 2013, U.S. Food and Drug Administration, 2015]. It is estimated that,

from 2003 to 2011, 60% of Phase III clinical trials for investigational drug indications

led to submission of a New Drug Application or Biologic License Application to

the U.S. Food and Drug Administration, of which 83% proceeded to approval [Hay

et al., 2014]. Our proposed method could suggest promising subpopulations in which

to conduct (or avoid) further testing of the treatment. In this way, there is the

potential to increase the value of research and development dollars and realize large-

scale economic benefits throughout the healthcare industry. Investigators could also

use our method to revisit long-terminated clinical trials and search for opportunities

to revive the testing of failed drugs in promising subgroups.

This potential to enhance the value of clinical trials through subgroup identifica-

tion may exist even for trials that were initially successful. Subgroup identification

could point investigators to the prevalence of adverse events arising from the use of

new or existing drugs in subpopulations. For approved drugs whose patents are expir-

ing, our method may increase the financial benefit of the company’s initial research

and development investment by suggesting opportunities for re-marketing the drug

to different segments of the population or for different medicinal purposes.

The classical statistical approach to identifying subgroups with distinct treatment

effects involves using a Cox proportional hazards model with treament-covariate in-

teraction terms [Schemper, 1988]. Citing the disadvantage of needing to specify rel-

evant interactions, Kehl and Ulm [2006] improve upon this model by incorporating
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a bump-hunting procedure based on Friedman and Fisher [1999], which they also

contrast with the greedier approach of regression trees [Breiman et al., 1984]. Fos-

ter et al. [2011] introduce several variations of a “virtual twins" method, based on

counterfactual modeling and the application of machine learning approaches, includ-

ing logistic regression, random forest, and classification and regression trees (CART)

[Breiman, 2001, Breiman et al., 1984]. This virtual twins method is shown to be

effective in simulation studies, with positive predictive value ranging from 45-60%.

Others [Su et al., 2009, Hardin et al., 2013] have presented CART-inspired recursive

partitioning approaches to solve the subgroup identification or partioining problem.

Su et al. [2009] show their method is effective in identifying subgroups with signifi-

cant positive or negative treatment effect from observational data. The Hardin et al.

[2013] approach has been used in practice to identify subgroups of patients with type

2 diabetes mellitus for which short-acting insulin may provide a benefit. These bump-

hunting and tree-based approaches can identify satisfyingly interpretable subgroups,

but they entail greedily solving a sequence of optimization problems.

We present a mixed-integer optimization (MIO) approach to identify a subgroup

for which the average treatment effect was exceptionally strong or exceptionally weak

and which can be defined by a small pre-specified number of covariates. When a ran-

domized clinical trial is unable to reject the null hypothesis of no effect, our method

may identify a subset for which the treatment was effective, or provide evidence that

there is no such subgroup. Even when the randomized clinical trial is conclusive in

confirming the effectiveness or harm of a treatment, our method can identify sub-

groups for which the treatment was particularly effective or particularly ineffective.

With the power of MIO, we can find optimal interpretable solutions directly by solving

a single global formulation without the need for recursion or iteration.

In Section 3.2, we formally describe the problem of finding an interpretable subset

with optimal treatment response, and introduce an explicit optimization formulation

with a fractional objective function. We show that the fractional problem can be

transformed into a tractable and efficient MIO formulation with O(n2

) continuous

variables and O(n) binary variables, where n is the number of trial subjects. We
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describe an algorithm that modifies the MIO formulation for the setting when one

wants to find multiple subsets with exceptional treatment response sequentially, such

that there is limited intersection between the subsets. We also introduce a simple tree-

based heuristic that finds near-optimal solutions instantaneously and can be used in

practice to provide feasible warm-start solutions for the MIO.

In Section 3.3, we present simulation experiments in which the MIO approach is

used to identify optimal interpretable subgroups. We evaluate the effectiveness of the

algorithm in terms of the rates of identifying true positive and false positive subsets.

In Section 3.4, we apply the MIO approach to datasets from two real randomized

controlled trials. In one example, the method identifies a subset with a statistically

significant exceptional response. In the other example, the method finds no subset

that has a statistically significant response. Finally, in Section 3.5, we share some

concluding remarks.

3.2 Identifying Interpretable Optimal Subgroups

Let us consider a randomized controlled trial in which subjects, indexed by i =

1, . . . , n, have received treatment assignments Ti to one of two treatment conditions:

treatment (Ti = 1) or control (Ti = 0). We define the sets Tt := {i |Ti = t}, t = 0, 1.

For each subject, we observe a covariate vector xi 2 RS
, where S is the number of

observed covariates. We also observe treatment responses vi, i = 1, . . . , n.

Our objective is to find the subset I⇤ ✓ {1, . . . , n} with maximum (or minimum)

average treatment value (ATE), where

ATE(I⇤
) :=

1

|T
1

\ I⇤|
X

i2T1\I⇤

vi � 1

|T
0

\ I⇤|
X

i2T0\I⇤

vi.

For the remainder of the paper, we focus on the maximization problem and we assume

that larger values of the response vi are preferable.

To make the definition of subset I⇤
interpretable, for each covariate s = 1, . . . , S,

we define Ks hyperplanes parallel to the coordinate axes that could be chosen as
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boundaries for the box containing the subset. Each hyperplane is defined by a value

�sk, s = 1, . . . , S, k = 1, . . . , Ks, such that

min

i
xis � ✏ = �s1 < �s2 < · · · < �sKs = max

i
xis + ✏,

where ✏ > 0 is a small perturbation term. We limit the number of covariate dimensions

along which we can restrict the subset to some number S0  S. We also define the

quantities N and N , which constrain the cardinality of I⇤
, such that N  |Tt \I⇤| 

N, t = 0, 1.

3.2.1 Mixed-integer optimization approach

In modeling the problem as an optimization problem, the key decisions are to define

the boundaries of the subset. Let L := {Lsk | s = 1, . . . , S, k = 1, . . . , Ks} be a set

of binary decision variables that take value 1, if �sk is chosen as the lower bound for

dimension s, and 0, otherwise. Similarly, let U := {Usk | s = 1, . . . , S, k = 1, . . . , Ks}
be a set of binary decision variables that take value 1, if �sk is chosen as the upper

bound for dimension s, and 0, otherwise. Taken together, these binary decision

variables uniquely define a box in the space RS
, which will provide an interpretable

subset.

We define auxiliary binary decision variables zi := I{i 2 I⇤}, i = 1, . . . , n. To

enforce the limit on splitting dimensions, we define auxiliary binary indicator variables

qs, which indicate whether or not covariate dimension s is used to restrict the subset

I⇤
. Both vectors z and q are fully determined by the primary decision vectors L and

U, according to constraints eqs. (3.1b) to (3.1d) and eqs. (3.1g) to (3.1i), respectively.

We next describe the following fractional mixed-integer optimization (MIO) to

identify the subset with highest ATE:

max

z,q,L,U

P

i2T1 vizi
P

i2T1 zi
�
P

i2T0 vizi
P

i2T0 zi
(3.1a)
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s.t. zi +
S
X

s=1



X

k : �sk>xis

Lsk +

X

k : �sk<xis

Usk

�

� 1, 8i = 1, . . . , n, (3.1b)

zi + Lsk  1, 8s = 1, . . . , S, k = 1, . . . , Ks, i : xis < �sk, (3.1c)

zi + Usk  1, 8s = 1, . . . , S, k = 1, . . . , Ks, i : xis > �sk, (3.1d)

Ks
X

k=1

Lsk = 1, 8s = 1, . . . , S, (3.1e)

Ks
X

k=1

Usk = 1, 8s = 1, . . . , S, (3.1f)

qs + Ls1 � 1, 8s = 1, . . . , S, (3.1g)

qs + UsKs � 1, 8s = 1, . . . , S, (3.1h)

qs + Ls1 + UsKs  2, 8s = 1, . . . , S, (3.1i)

S
X

s=1

qs  S
0

, (3.1j)

N 
X

i2Tt

zi  N, 8t = 0, 1, (3.1k)

z,q,L,U 2 {0, 1}.

The constraints in formulation (3.1) deserve further discussion. First, for any

given subject i, if the following condition is met,

S
X

s=1



X

k : �sk>xis

Lsk +

X

k : �sk<xis

Usk

�

= 0, (3.2)

then zi must be equal to 1, by constraints (3.1b). We observe that condition (3.2) is

met if and only if, for all covariates s = 1, . . . , S, both of the following statements

are true:

1. By our choice of L, we do not select any lower bound �sk for which �sk > xis;

and,

2. By our choice of U, we do not select any upper bound �sk for which �sk < xis,
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where xis is the value of covariate s for subject i. Taken together, these statements

imply that subject i must be in the box defined by the choices of L and U. Therefore,

by construction, the auxiliary variable zi should be equal to 1 in this case.

Conversely, constraints (3.1c) and (3.1d) ensure that zi must be equal to 0 when-

ever the choices of L and U imply that subject i is outside the box. Specifically, if

we select �sk as a lower bound on dimension s by taking Lsk = 1, then by constraints

(3.1c) we have zi = 0 for all subjects i for which xis < �sk. If we select �sk as an

upper bound by taking Usk = 1, then by constraints (3.1d) we have zi = 0 for all

subjects i for which xis > �sk.

Constraints (3.1e) and (3.1f) indicate that only one lower and upper bound, re-

spectively, can be chosen for each covariate dimension. Constraints (3.1g), (3.1h), and

(3.1i) encode the desired relationships qs = 1�I{Ls1 = 1 and UsKs = 1}, s = 1, . . . , S,

so that qs indicates whether or not dimension s is used to restrict the space of I⇤
.

This relationship allows us to require that at most S
0

covariate dimensions are used

to restrict the subset by adding constraint (3.1j). Finally, constraints (3.1k) ensure

that the cardinality of I⇤
conforms to the specified limits; note that these constraints

also ensure that there will be no dimension for which the lower bound chosen exceeds

the upper bound.

3.2.2 Tractable transformation of fractional objective

Because formulation (3.1) has a fractional objective function (3.1a), the problem can-

not be solved using off-the-shelf commercial solvers. We can transform the objective

from fractional to non-fractional by considering the expressions:

⇥t :=
1

P

i2Tt zi
, t = 0, 1. (3.3)

By construction, ⇥t, t = 0, 1, are discrete variables that take values in the set

⇢

1

N
,

1

N + 1

, . . . ,
1

N

�

. Therefore, we can represent each discrete variable by the bi-
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nary expansion

⇥t =

N
X

j=N

1

j
✓
(t)
j , t = 0, 1

where ✓
(t)
j , j = N, . . . , N, t = 0, 1 are binary variables with

PN
j=N ✓

(t)
j = 1, t =

0, 1. We can now rewrite the fractional objective function (3.1a) as a non-fractional,

nonlinear expression:

⇥

1

X

i2T1

vizi �⇥

0

X

i2T0

vizi =

X

i2T1

N
X

j=N

1

j
vizi✓

(1)

j �
X

i2T0

N
X

j=N

1

j
vizi✓

(0)

j .

To make the objective linear, we introduce additional binary variables ⇣ij, i =

1, . . . , n, j = N, . . . , N . To model the desired relationship ⇣ij = zi✓
(Ti)

j , which is the

product of two binary variables, we add three sets of constraints eqs. (3.4b) to (3.4d):

We now have the linear objective:

X

i2T1

N
X

j=N

1

j
vi⇣ij �

X

i2T0

N
X

j=N

1

j
vi⇣ij.

Finally, to enforce the stated relationship (3.3), we add the constraints:

⇥t

X

i2Tt

zi =
X

i2Tt

N
X

j=N

1

j
⇣ij = 1, 8t = 0, 1.

Taking together all of these substitutions and constraints, we obtain the following

mixed-binary linear optimization formulation, which is equivalent to formulation (3.1)

and can be solved using commercial optimization solvers:

max

z,q,L,U,⇣,✓

X

i2T1

N
X

j=N

1

j
vi⇣ij �

X

i2T0

N
X

j=N

1

j
vi⇣ij (3.4a)

s.t. zi +

S
X

s=1



X

k : �sk>xis

Lsk +

X

k : �sk<xis

Usk

�

� 1, 8i = 1, . . . , n,

zi + Lsk  1, 8s = 1, . . . , S, k = 1, . . . , Ks, i : xis < �sk,
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zi + Usk  1, 8s = 1, . . . , S, k = 1, . . . , Ks, i : xis > �sk,

Ks
X

k=1

Lsk = 1, 8s = 1, . . . , S,

Ks
X

k=1

Usk = 1, 8s = 1, . . . , S,

qs + Ls1 � 1, 8s = 1, . . . , S,

qs + UsKs � 1, 8s = 1, . . . , S,

qs + Ls1 + UsKs  2, 8s = 1, . . . , S,

S
X

s=1

qs  S
0

,

N 
X

i2Tt

zi  N, 8t = 0, 1,

⇣ij  ✓
(Ti)

j , 8i = 1, . . . , n, j = N, . . . , N, (3.4b)

⇣ij  zi, 8i = 1, . . . , n, j = N, . . . , N, (3.4c)

⇣ij � ✓
(Ti)

j + zi � 1, 8i = 1, . . . , n, j = N, . . . , N, (3.4d)

X

i2Tt

N
X

j=N

1

j
⇣ij = 1, 8t = 0, 1,

N
X

j=N

✓
(t)
j = 1, 8t = 0, 1,

0  ⇣ij  1, 8i = 1, . . . , n, j = N, . . . , N,

z,q,L,U,✓ 2 {0, 1}.

Note that ⇣ can be included as continuous variables on [0,1], which improves the

computational performance as the number of binary variables is linear in n. Thus,

the formulation includes O(n2

) continuous variables, with O(n) binary variables,

assuming

PS
s=1

Ks is small relative to n.
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3.2.3 Statistical significance of optimal subset

Assuming � is defined in a sensible manner, solving formulation (3.4) using an off-

the-shelf commercial optimization solver, such as Gurobi [Gurobi Optimization, Inc.,

2016], will yield an optimal or near-optimal feasible subset in all practical instances.

Yet, it is unreasonable to expect that every randomized trial has a latent subset in

which a significant positive or negative effect is observed.

We propose the use of statistical hypothesis testing to determine whether the av-

erage treatment effect within the optimal subgroup is statistically significant. We

adopt Fisher’s sharp null hypothesis that there is no difference in treatment response

between the treatment groups [Fisher, 1935].

1
We introduce some robustness to out-

liers by considering the trimmed mean, i.e., the average treatment effect in which the

largest 10% and the smallest 10% of response values are discarded from the trial sam-

ple. In testing, we found that this trimmed ATE yielded more stable and trustworthy

determinations of positive effect size than the standard ATE. If the optimal subgroup

has a statistically significant trimmed ATE, we consider the subset to be viable and

we recommend additional testing of the treatment in subjects who match the sub-

group’s covariate profile. Otherwise, we discard the optimal solution and determine

that there is no need for further study of the treatment in this population. For the

computational experiments in Section 3.3, we use a non-parametric hypothesis test-

ing approach based on the bootstrap [Efron and Tibshirani, 1994], with a significance

level of ↵ = 0.01, chosen to yield a desired balance between true and false positive

rates.

If the sample size n is sufficiently large, one can introduce an additional level

of verification by reserving a subset of the data as a test set not to be used when

finding the optimal subset. The majority of the data can be used as a training set

on which to apply the optimization approach and find an optimal subset. Then, one

can identify which subjects from the reserved test set are in the box defined by the

1In settings where the overall study sample had a statistically significant non-zero treatment
response, one may want to adopt a different null hypothesis that the treatment effect in the subgroup
does not differ from the overall treatment effect in the study population.
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optimal solution, and evaluate the out-of-sample ATE and its significance within the

test subset.

3.2.4 Finding multiple subsets

Up until now, we solve the problem of finding a single interpretable subset of the data

with maximum ATE. Let us assume one wants to find M subsets with the highest

ATEs, such that there is limited overlap between the subsets. A greedy approach to

this problem is to iteratively solve the MIO formulation from the previous section,

while adding a constraint on the overlap with previous optimal subsets. For instance,

let Z
1

:= {i | z⇤i = 1} be the set of data points in the optimal subset found in the first

iteration of the optimization. One can then seek a second subset Z
2

with maximal

ATE but small impurity between Z
1

and Z
2

, such that:

|Z
1

\ Z
2

|
|Z

1

[ Z
2

|  ⇢,

for some pre-defined impurity parameter ⇢.

In order to find Z
2

that satisfies this impurity constraint, one can add the following

constraint to formulation (3.4):

X

i2Z1

zi  ⇢ ·
✓

�

�Z
1

�

�

+

X

i/2Z1

zi

◆

, (3.5)

since |Z
1

[ Z
2

| = |Z
1

|+ |Z
2

\Z
1

|. Then re-solving the MIO with the added constraint

(3.5) yields the optimal Z
2

. More generally, for any m = 2, . . . ,M , one can add

pairwise impurity constraints:

X

i2Z`

zi  ⇢ ·
✓

�

�Z`

�

�

+

X

i/2Z`

zi

◆

, 8` = 1, . . . ,m� 1.

When testing for significance with multiple subsets (M > 1), one should be careful

to account for multiple comparisons using the Holm-Bonferroni procedure or a similar

approach [Holm, 1979].
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3.2.5 Recursive partitioning heuristic

We present a heuristic inspired by the greedy, recursive partitioning scheme of classi-

fication trees [Breiman et al., 1984]. The creation of this heuristic is motivated by the

desire to quickly obtain near-optimal solutions, either for direct use or as warm-start

feasible solutions for formulation (3.4).

Like CART, at each branch, the heuristic searches for a one-dimensional covariate

split that will greedily maximize an objective function, in this case the ATE for

subjects in the subset. In our heuristic, the split is determined by choosing both

a lower and upper bound describing the subset along a single covariate dimension.

There are several parameters that govern the choice of split at each branch in order

to ensure heuristic solutions are feasible for formulation (3.4). First, the number of

covariates used to make splits in a given tree must not exceed S
0

. Second, for any given

tree, we specify a depth parameter d, which serves as an upper bound on the number

of branches that can be made in a given tree. Third, at each step of the recursion

c = 1, . . . , d, where d is the chosen depth parameter, we gradually decrease lower

and upper bounds on the cardinality of the leaf indicating the solution subset. The

lower and upper bounds are specified as N c
=

n
2

· �2N
n

�

1
d�c+1

and N
c
=

n
2

· �2N
n

�

1
d�c+1

,

respectively, where n is the full sample size and N and N are the subset cardinality

bounds; on the last step of the recursion, when c = d, we have N c
= N and N

c
= N ,

so that the heuristic solution is feasible for formulation (3.4). We define �H(d) to be

the ATE in the best subset found after applying the heuristic with depth parameter

d.

Rather than generate a single tree yielding a single heuristic solution, we can

specify a set of integer depth parameters D and use the heuristic to find the solution

�⇤H := max

d2D
�H(d). For the computational experiments in Section 3.3, we use D =

{1, . . . , 8}. To consider an even larger range of solutions, we can specify S2

different

starting pairs (s
1

, s
2

), s
1

= 1, . . . , S, s
2

= 1, . . . , S, such that the first branch of the

tree must split on dimension s
1

and the second branch must split on dimension s
2

. If

�H(d, s1, s2) is the objective value of the best tree found with these starting points,
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then we have �H(d) := max

(s1,s2)2{1,...,S}2
�H(d, s1, s2).

At the end, we take �⇤H and the corresponding subset lower and upper bounds as

our best heuristic solution. In all tested instances, the heuristic found a near-optimal

or optimal solution within seconds.

3.3 Computational Experiments

We conducted simulation experiments with data generated according to several differ-

ent models relating the response vector v to treatment vector y and covariate matrix

X. In the base experiment, we had n = 100 subjects with four measured covariates

x
(1)

i , . . . , x
(4)

i , i = 1, . . . , n drawn i.i.d. from a continuous uniform distribution over

[0,1]. Subjects were randomly assigned to one of two treatment conditions, yi = 1,

indicating assignment to the treatment group, or yi = 0, indicating assignment to the

control group, with an equal number assigned to each group. For each experiment,

we assume a linear data model

vi = 2 + �
0

· yi · I{x(1)

i  0.5} · I{x(2)

i  0.5}+ "i, (3.6)

where �
0

is the ground truth treatment effect and "i is a noise term. In the base case,

we assume �
0

= 2 and "i drawn i.i.d standard normal. To evaluate the false positive

rate of our method, we also considered a modification in which �
0

= 0 .

For 250 unique, random samples, we solved formulation (3.4) with S
0

= 2,

N = b0.1 · nc, N = d0.3 · ne, and � specified from 0 to 1 by increments of 0.1 for

all dimensions. The computations were implemented using Julia programming lan-

guage [Bezanson et al., 2012, Lubin and Dunning, 2015] and the integer optimization

solver Gurobi 6.5 [Gurobi Optimization, Inc., 2016]. For each sample, we applied a

bootstrapped hypothesis test used by Bertsimas et al. [2015] with significance level

↵ = 0.01 to determine whether the subgroup had a statistically significant treatment

response.

In the modified case with �
0

= 0, the algorithm erroneously identified a statistically
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significant subset 12.4% of the time, which we consider to be the false positive rate.

In the base case with �
0

= 2, the method identified a statistically significant subset

in 76.8% of simulations. However, due to noise in the response model (3.6), the

subset identified did not always precisely match the known underlying best subset

I⇤
0

:= {i | x(1)

i  0.5, x
(2)

i  0.5} (Figure 3-1). In order to evaluate the true positive

rate of our method in the base case, we compared all significant found subsets to

the known best subset. The confusion matrix showing the number of subjects within

each subset averaged across all simulations is shown in Table 3.1, for subsets that were

found to be statistically significant. According to Table 3.1, the average accuracy, or

percent of subjects for which the classification of the found subset matched the best

known classification, was 88.5%; the accuracy should be compared with the baseline

prevalence of 74.9% of subjects not in I⇤
0

.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

x(1)

x(2
)

Treatment 0 1

Figure 3-1: An example of a data sample projected onto the (x(1), x(2)

) space.

Shape indicates treatment group. Black solid line delineates boundary of known best subset
I⇤
0

. Blue dashed line delineates boundary of found optimal subset.

One way to evaluate the effectiveness of our method is to examine subsets for which

the ATE was found to be statistically significant and at least 50% of subjects in the
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Table 3.1: Average percent of subjects in found subset versus best known subset I⇤
0

over 250 simulations in base case, when found subset was significant.

i 2 I⇤
0

i /2 I⇤
0

In found subset (zi = 1) 18.5% 4.9%

Not in found subset (zi = 0) 6.6% 70.0%

found subset (zi = 1) were also in the known best subset (i 2 I⇤
0

), i.e., the positive

predictive value (PPV) was greater than 50%. We use the term threshold-based true

positive rate (TPR) to refer to the percent of found subsets with a significant positive

ATE and a PPV greater than 50%. The threshold-based TPR in the base case was

68.0%. Alternatively, if we simply average the PPV among subsets determined to

have statistically significant positive ATE, we derive the PPV-weighted TPR, which

was 60.7% in the base case. When using the heuristic alone, without mixed-integer

optimization, the threshold-based TPR was 66.4% and the PPV-weighted TPR was

59.0%.

We conducted sensitivity analyses with respect to sample size n, covariate dimen-

sion S, depth restriction S
0

, effect size �
0

, and the distribution of the noise term "i

(Table 3.2). As expected, the TPR (both threshold-based and PPV-weighted) in-

creased with n and �
0

, and decreased with the variance of "i. The TPR was relatively

unchanged with respect to S and was very low for S
0

= 1, but grew slowly for S
0

� 2.

The false positive rate (FPR) was stable and low in all tested instances, although it

grew with respect to S likely due to the increase in the combinatorial space of possible

subsets.

We also conducted computational timing experiments to test how tractable the

optimization is as n grows. In all tested instances, the heuristic found an optimal or

near-optimal warm-start solution within seconds. The time to provable optimality is

shown in Table 3.3 for experiments with S = 10 and

PS
s=1

Ks = 110.
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Table 3.2: Sensitivity analyses of true positive rate (TPR) and false positive rate

(FPR) of found subsets with varying sample size n, effect size �
0

, and distributions

of noise "i.

Percent TPR TPR
subsets based on weighted

Parameter Value significant threshold by PPV FPR

n 100* 76.8% 68.0% 60.7% 12.4%

150 96.8% 90.8% 84.9% 16.0%

200 98.8% 97.2% 91.7% 14.4%

S 2 72.4% 70.0% 62.4% 5.2%

3 79.2% 74.8% 65.2% 11.2%

4* 76.8% 68.0% 60.7% 12.4%

5 81.2% 71.6% 63.6% 16.0%

10 86.8% 66.0% 60.2% 25.2%

S
0

1 40.0% 23.2% 20.8% 3.6%

2* 76.8% 68.0% 60.7% 12.4%

3 84.0% 73.2% 63.3% 17.6%

4 88.0% 76.8% 65.6% 19.2%

�
0

0 � � � 12.4%

1 28.8% 17.2% 15.9% �
2* 76.8% 68.0% 60.7% �
4 98.8% 96.0% 87.9% �

"i N(0, 1)* 76.8% 68.0% 60.7% 12.4%

distribution U [�p
3,
p
3] 68.0% 58.8% 52.1% 12.8%

* Base case parameters used: n = 100, S = 4, S
0

= 2, �
0

= 2, "i ⇠ N(0, 1) i.i.d.

Table 3.3: Average computational time to achieve provable optimality by sample size

n.

n Time (seconds)

100 33

250 1,070

500 7,280

1,000 14,535
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3.3.1 Multiple subsets

We conducted an additional experiment in which we generated data according to the

response model:

vi = 2 + 6 · yi · I{x(1)

i  0.5} · I{x(2)

i  0.5}+ 3 · yi · I{x(1)

i > 0.5} · I{x(2)

i > 0.5}+ "i,

with "i distributed standard normal. We allowed the algorithm to find two subsets

(M = 2) and measured the significance of each found subset using the Holm procedure

with significance level ↵ = 0.01. The results of this experiment are shown in Table

3.4. The method virtually always found the exact subset with �
0

= 6. With respect

to the second subset with �
0

= 3, the method reliably detected the subset in more

than 50% of instances.

Table 3.4: True positive rate (TPR) with respect to finding each of two known un-

derlying subsets.

Percent TPR TPR
subsets based on weighted

Subset �
0

significant threshold by PPV

I⇤
1

:= {i | x(1)

i  0.5, x
(2)

i  0.5} 6 100.0% 97.2% 89.1%

I⇤
2

:= {i | x(1)

i > 0.5, x
(2)

i > 0.5} 3 57.2% 54.0% 50.7%

3.4 Real Case Studies

In this section, we present two examples in which we apply the optimization approach

to real datasets. In Example 1, the method identifies a subset with statistically

significant positive average treatment effect despite an overall non-significant negative

treatment effect in the study sample. In Example 2, the method does not identify a

subgroup with a statistically significant positive average treatment effect. We include

both examples to demonstrate our method’s ability to discover new insights in clinical

trial data, while maintaining appropriate discriminatory power when there is no signal

to be found.
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3.4.1 Example 1: Randomized placebo-controlled trial of di-

ethylstilbestrol for late-stage prostate cancer

Diethylstilbestrol is a form of synthetic estrogen that has been used to treat late-stage

prostate cancer. Byar and Green [1979] discuss data from a randomized trial testing

the effect on survival of diethylstilbestrol at three dosage levels (0.2 mg, 1.0 mg, or

5.0 mg) versus placebo, in 502 patients with stage 3 or 4 prostate cancer.

2
For each

patient, the researchers recorded the months of follow-up and the patient’s mortality

status, along with covariates, including age, weight, medical history, cancer status,

and common laboratory measurements.

Taking the group which received 5.0 mg of estrogen and the placebo group, we

analyzed 252 subjects using our optimal subset approach with 12 covariates, S
0

=

3, N = 25, and N = 76. In the study, the 125 subjects who received the 5.0 mg dose

of estrogen had an average survival time of 35.0 months from the time of enrollment

until death or end of study follow-up, while the 127 subjects in the placebo group had

average survival of 35.3 months. The average survival in the treatment group was 0.3

months shorter in the treatment group than in the placebo group, but the effect was

non-significant using the bootstrap hypothesis testing approach discussed in Section

3.3 with significance level ↵ = 0.01; this hypothesis testing approach and significance

level are used to test for effect significance throughout the current section. Applying

our approach, we found an optimal box containing 59 subjects (30 in the estrogen

group, 29 in the placebo group). Within this subset, average survival was 42.5 months

in the treatment group versus 24.3 months in the placebo group, an average treatment

effect of 18.2 additional months of survival. The effect was statistically significant with

p = 0.001. The subset was defined by patients who have stage 4 cancer, no history of

cardiovascular disease, and diastolic blood pressure of 70 mmHg or above at time of

measurement. The results suggest that further testing of the 5.0 mg diethylstilbestrol

treatment is warranted in subjects meeting these specific criteria.

2The Byar and Green [1979] data are available at http://biostat.mc.vanderbilt.edu/wiki/Main/DataSets.
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3.4.2 Example 2: Randomized placebo-controlled trial of D-

penicillamine for primary biliary cirrhosis of the liver

Primary biliary cirrhosis (PBC) of the liver is a rare chronic disease that leads to

death. Between 1974 and 1984, the Mayo Clinic conducted a placebo controlled trial of

the drug D-penicillamine of 312 PBC patients, as described in Fleming and Harrington

[1991].

3
For each patient, the researchers recorded the number of days between study

registration and the earlier of death, liver transplantation, or the end of the study in

July 1986. There were 16 covariates measured at the time of registration, including

age, sex, disease stage, presence of associated conditions, and various hematological

laboratory measurements, such as serum bilirubin, serum cholesterol, albumin, and

platelet counts. Analysis of the study found that there was no significant difference

in survival time between the treatment and placebo groups. Among 154 subjects in

the placebo group, the average survival time from study enrollment was 1996.9 days.

Among 158 subjects in the treatment group, the average survival was 18.7 days longer,

at 2,015.6 days. This result was not significant under the sharp null hypothesis using

the bootstrap hypothesis test with significance level ↵ = 0.01 .

We applied our optimal subset approach to determine if there was an interpretable

subset of the population for which the drug may have had a significant effect on

survival. Because of some missing data, we used 14 of the 16 covariates. We sought

an interpretable subset with S
0

= 3, N = 20, and N = 60. The optimal interpretable

subset included 65 subjects who met all three of the following conditions: had not

exhibited spider angiomas, had serum bilirubin between 0.75 and 1.5 mg/dL, and had

a prothrombin time of no more than 11.1 seconds. In the optimal box, the average

survival time among 33 subjects in the treatment group was 2,910.6 days, which was

854.7 days longer than the average survival of 2,055.9 days among 32 subjects in the

placebo group. We considered the null hypothesis that the treatment effect in the

subset did not differ from that in the overall sample, which we observed to be 18.8

days of added survival. The p-value was 0.03, which was not significant at ↵ = 0.01.

3The Fleming and Harrington [1991] data are available online at
https://www.umass.edu/statdata/statdata/data/.

81



Therefore, we determined that the subset may have been a false positive and did not

warrant further investigation as a possible group of exceptional responders.

We conducted additional testing to examine whether we should expect to find a

significant subset in other samples from the same population. For 20 different random

seeds, we randomly split the 312 subjects into a training set of 200 subjects and a

testing set of 112. For each random splitting, we applied our method to find the best

subset on the training set, and then evaluated the ATE for that same subset within

the testing set. There was only 1 of 20 random splittings for which the out-of-sample

ATE in the testing set was positive and statistically significant. Because there was no

stable positive result across random splittings, we determined that there is no subset

of the study population for which D-penicillamine was effective in improving survival

time.

3.5 Discussion

In this paper, we show that the problem of identifying one or more interpretable

subsets of a trial population with best (or worst) average treatment response can be

modeled and efficiently solved using mixed-integer linear optimization. We use vari-

able substitution and binary expansion to transform the fractional objective function

into a linear function that is tractable in practical instances. We present an approach

for determining whether the found subset is statistically significant. We also introduce

a tree-based heuristic that finds near-optimal solutions quickly. In simulated and real-

world scenarios we demonstrate that the method finds subgroups worthy of further

investigation, while minimizing the rate of false positive subsets. Further research is

warranted to explore the use of the optimization approach on non-randomized data

from observational studies, or in trials where more than two treatment conditions are

administered.
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Chapter 4

Personalized Diabetes Management

Using Electronic Medical Records

This work appeared in Diabetes Care, with co-authors Dimitris Bertsimas, Nathan

Kallus, and Ying Daisy Zhuo [Bertsimas et al., 2017].

Current clinical guidelines for managing type 2 diabetes do not differentiate based

on patient-specific factors. In this chapter, we present a data-driven algorithm for

personalized diabetes management that improves health outcomes relative to the

standard of care.

We modeled outcomes under 13 pharmacological therapies based on electronic

medical records from 1999 to 2014 for 10,806 patients with type 2 diabetes from

Boston Medical Center. For each patient visit, we analyzed the range of outcomes

under alternative care using a k-nearest neighbor approach. The neighbors were cho-

sen to maximize similarity on individual patient characteristics and medical history

that were most predictive of health outcomes. The recommendation algorithm pre-

scribes the regimen with best predicted outcome if the expected improvement from

switching regimens exceeds a threshold. We evaluated the effect of recommendations

on matched patient outcomes from unseen data.

Among the 48,140 patient visits in the test set, the algorithm’s recommendation

mirrored the observed standard of care in 68.2% of visits. For patient visits in which
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the algorithmic recommendation differed from the standard of care, the mean post-

treatment glycated hemoglobin A1c (HbA1c) under the algorithm was lower than

standard of care by 0.44± 0.03% (p ⌧ 0.001), from 8.37% under the standard of care

to 7.93% under our algorithm.

A personalized approach to diabetes management yielded substantial improve-

ments in HbA1c outcomes relative to the standard of care. Our prototyped dash-

board visualizing the recommendation algorithm can be used by providers to inform

diabetes care and improve outcomes.

4.1 Introduction

Diabetes is a chronic condition affecting almost 10% of the US population [National

Center for Chronic Disease Prevention and Health Promotion, 2014]. Individuals with

diabetes experience abnormally high blood glucose levels, which can lead to severe

complications such as heart disease, stroke, and kidney failure. The most common

form of diabetes is type 2 diabetes, which constitutes 90-95% of all diabetes cases in

the US [Centers for Disease Control and Prevention, 2015]. The disease is typically

managed through healthy eating, physical activity, oral medication, and/or insulin

injections. While there are evidence-based clinical guidelines for glycemic control

[Rodbard et al., 2009], how to choose among pharmacological therapies to maximize

effectiveness for a given patient is not well understood. There has been growing inter-

est in using clinical evidence to understand the effects of treatments in different type

2 diabetes populations. In a joint statement from 2012, the American Diabetes Asso-

ciation and the European Association for the Study of Diabetes highlighted the need

for a patient-centered approach to diabetes management [Inzucchi et al., 2012]. The

need for an individualized approach is especially pressing given the variety of disease

symptoms, comorbid conditions, pharmacological treatments, individual treatment

histories, and other individual characteristics that may inform treatment [Subrama-

nian and Hirsch, 2014].

Evidence suggests that the response to blood glucose regulation agents can differ
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among population subgroups. A post-hoc secondary analysis found that African-

American pre-diabetic adults responded better to metformin than Caucasian pre-

diabetic adults [Zhang and Zhang, 2015]. Another study recommended less aggres-

sive treatments for older patients, as they were more likely to experience severe con-

sequences from hypoglycemia [Ismail-Beigi et al., 2011]. These studies each provide

valuable insights with respect to a single subgroup or treatment, but do not offer a

decision rule for the general population that providers can easily apply in practice.

Tailoring glycemic management for specific subpopulations can be critical. Among

patients with chronic kidney disease, contraindication to metformin needs to be taken

into consideration when prescribing medication [Lipska et al., 2011]. Separate gly-

cated hemoglobin (HbA1c) goals may be needed for subgroups or individuals differ-

entiated by age, comorbidities, and other clinical characteristics [Subramanian and

Hirsch, 2014]. A personalized treatment recommendation using a quantitative ap-

proach could readily incorporate different glycemic targets and contraindications,

and thus allow for more systematic management of subgroups.

We provide an algorithm that generates a personalized type 2 diabetes treatment

recommendation for any given patient based on evidence from historical outcomes of

similar patients drawn from an electronic medical records (EMR) database. EMR

analysis allows for pinpoint comparisons of effectiveness because of the abundance of

clinical evidence from multiple treatment options administered to a diverse population

over long-term patient clinical histories. EMR data combines the large sample sizes

found in some insurance claims databases with the depth of longitudinal clinical

evidence typically found in clinical trials. One caveat is that EMR data are not

controlled via randomization.

Our methodological approach applies machine learning techniques and causal in-

ference to make personalized recommendations based on comparative effectiveness

among subpopulations in the EMR database. Machine learning techniques have been

increasingly adopted in health care, along with many other fields [Jordan and Mitchell,

2015, Bertsimas and Kallus, 2014, Bertsimas et al., 2016]. Our novel approach lever-

ages the power of analytics and abundant data in the EMR system to improve quality
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of care.

The recommendations are personalized by patient characteristics, including age,

sex, race, BMI, treatment history, and diabetes progression. We evaluate the effec-

tiveness of the personalized treatment recommendations against the current standard

of care by estimating patients’ counterfactual outcomes from historical outcomes of

similar patients in the EMR database. We develop a prototype clinical support dash-

board that provides evidence for the algorithm’s recommendations and could guide

providers in caring for type 2 diabetes patients in a personalized manner.

4.2 Research Design and Methods

4.2.1 Analytic overview

We modeled outcomes for patients with type 2 diabetes based on EMR data. We

divided each patient’s medical history into distinct lines of therapy, each character-

ized by a particular drug monotherapy or combination therapy. Within each line of

therapy, we considered patient visits occurring every 100 days. At each visit, the

provider decides whether to proceed with the patient’s current line of therapy or

to recommend an alternative regimen. We developed a non-parametric prescriptive

algorithm that provides personalized treatment recommendations. For each patient

visit, we used k-nearest neighbor (kNN) regression [Cover and Hart, 1967] to predict

the potential HbA1c outcome under each treatment alternative. The nearest neigh-

bors were chosen to control for confounding that may be present in non-randomized

data [Rosenbaum and Rubin, 1983] and to maximize similarity on the patient char-

acteristics that were most predictive of outcomes. The algorithm then prescribed the

regimen with best predicted outcome, provided the predicted improvement relative to

the patient’s current regimen exceeded a confidence threshold. The outcome metric

was the average HbA1c measurement 75 to 200 days after the visit date. The effect of

the prescriptive algorithm was evaluated by comparing the expected HbA1c outcome

under our recommended therapy to the observed outcome under the standard of care
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(ground-truth) therapy, according to a commonly used matching approach [Imbens

and Rubin, 2015]. We conducted additional simulations to ensure that the results

were robust to training models on different datasets and using alternative predictive

modeling techniques.

4.2.2 Data

Through a partnership with Boston Medical Center (BMC), an academic medical

center in Boston, Massachusetts, we obtained EMR for over 1.1 million patients from

1999 to 2014. In this dataset, 10,806 patients met all of the following inclusion criteria:

• Were present in the system for an observation period of at least 1 year;

• Received a prescription for at least one blood glucose regulation agent, including

insulin, metformin, sulfonylureas, or one of the other blood glucose regulation

agents listed below, and had at least one medical record 100 days prior to the

date of this prescription;

• Had at least three recorded laboratory measurements of HbA1c; and,

• Did not have a recorded diagnosis of type 1 diabetes, as defined by the pres-

ence of International Classification of Diseases (ICD-9) diagnosis code 250.x1 or

250.x3 combined with the absence of any subsequent prescriptions for oral blood

glucose regulation agents. (If the patient received oral blood glucose regulation

agents subsequent to one of these diagnosis codes, we assumed the diagnosis

record was an error.)

For each patient, we had access to demographic data, including date of birth, sex,

and race/ethnicity, and to all BMC EMR data, including a history of drug prescrip-

tions and measurements of height, weight, BMI, and HbA1c, as well as creatinine

levels (Table 4.1). Neither the size of the population nor the proportion with good

glycemic control changed substantially over the course of the study.

87



Table 4.1: Demographics, medical history, and treatment history of patients (N =

10, 806).

Feature Mean (SD)

Age (years) * 59.7 (13.6)

% Male 42.4%

% Black 58.5%

% Hispanic 15.1%

% White 16.6%

BMI (kg/m2) * 33.1 (8.1)

HbA1c (%) * 7.9 (1.8)

% with good glycemic control, i.e. HbA1c  7.0%* 37.7%

Years since first treatment in EMR 3.52 (3.66)

Current prescription for metformin† 45.6%

Current prescription for insulin† 30.2%

Contraindicated to metformin‡ 17.4%

Number of patients with first visit prior to 2007 (%) 6,175 (57.1%)

* Sample statistics are calculated across all patient visits. Individual patients with longer
medical histories may be over-represented in the sample.
† Individuals may have a current prescription for both metformin and insulin.
‡ A patient was considered to be contraindicated to metformin when current serum level
of creatinine was greater than 1.5 mg/dL.
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4.2.3 Interpreting individual medical histories

We divided each patient’s medical history into distinct lines of therapy, each charac-

terized by a particular drug regimen (Figure 4-1). Within each line of therapy, we

considered patient visits occurring every 100 days, corresponding to the life cycle of a

red blood cell [Franco, 2012]. These patient visits provided the basis for our definition

of patient outcomes.

Figure 4-1: Treatment history for a sample patient.

The black points connected by black lines in the lower portion of the figure depict the HbA1c
measurements over time for an example patient. The dotted horizontal black line shows a
desired HbA1c threshold of 7%. The history of prescriptions this patient has received for
each of three drugs, insulin, metformin, and sulfonylureas, is shown in red, green, and blue,
respectively. The start and end of each line of treatment is indicated by a vertical tick mark.
Finally, above the phase descriptions are small black dots indicating the date of each patient
visit.

Lines of Therapy. We developed an algorithm to define precisely when each line

of therapy ends and the next line begins according to when the combination of drugs

prescribed to the patient changes in the EMR data. Each line of therapy was char-

acterized by a unique drug regimen, defined to include all blood glucose regulation

agents prescribed to the patient within the first 6 months after starting that line of

therapy.
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Regimens were defined as combinations of drugs from one or more drug classes.

The drug classes we considered were metformin, insulin, and other blood glucose

regulation agents; the other agents included sulfonylureas, thiazolidinediones, DPP-

4 inhibitors, meglitinides, alpha-glucosidase inhibitors, GLP-1 agonists, and other

antihyperglycemic agents. If a sufficient number of HbA1c observations existed during

a period in which no drugs were prescribed, we defined the patient’s line of therapy as

“NoRx.” We considered thirteen possible regimen types (Table 4.2). A combination

of drug classes was included as a regimen type if it was observed in a sufficient number

of patient visits.

Table 4.2: Pharmacological regimens.

Observed standard of care regimen
(Abbreviation)

Number of
patient visits

No regimen prescribed, new patient (NEWPT) 5,449

No regimen prescribed, existing patient (NORX) 2,137

Metformin monotherapy (MET0) 9,649

Insulin monotherapy (INS0) 7,539

Other blood glucose regulation agent monotherapy (OTHER0) 4,671

Metformin combined with one other non-insulin agent (MET1) 6,959

Metformin combined with insulin (METINS0) 3,977

Insulin combined with one non-metformin oral agent (INS1) 2,139

Combination of two non-metformin, non-insulin agents (OTHER1) 1,047

Metformin combined with two other oral agents (MET2) 1,749

Metformin combined with insulin and one other agent (METINS1) 2,005

Insulin combined with two non-metformin agents (INS2) 249

All other multi-drug (3+) combinations (MULTI) 570

Total 48,140

Patient Visits. Within each line of therapy, we considered patient visits occurring

every 100 days, beginning with the visit at which that regimen was initiated and

continuing until no later than 80 days prior to the start of the subsequent regimen.

There were 48,140 unique patient visits in our dataset (Table 4.2). At each visit,

we defined a set of visit-specific patient characteristics, including the current line of

therapy (i.e. therapy given during the 100 days immediately preceding the current
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visit) and recent HbA1c and BMI history. The outcome was measured as average

HbA1c 75 to 200 days after the visit. This effect period was chosen to allow for

a complete red blood cell life cycle to elapse before measuring the effect of a drug

therapy.

We defined the standard of care for each visit as the drug regimen which was

administered. For 16.3% of visits, the provider prescribed an adjustment to the

current line of therapy; in the other 83.7%, the provider’s prescription was to continue

the current regimen.

4.2.4 Prescriptive algorithm

Our novel prescriptive algorithm considers a menu of available treatment options,

including the patient’s current treatment; uses k-nearest neighbor regression models

to predict potential outcomes under each option; rejects any non-current treatment

option with predicted outcome above a pre-specified HbA1c threshold; and chooses

the remaining option with best predicted outcome. The menu of options for a given

patient could be determined by the provider, accounting for contraindications and

other preferences, such as not using intensive control for elderly patients or patients

with a history of severe hypoglycemia.

For the purposes of this analysis, the menu of options for each patient was chosen

relative to the intensity and composition of the patient’s current treatment regimen.

Specifically, the algorithm considered only regimens that represented an incremental

addition or subtraction of a drug, or substitution of a drug of comparable inten-

sity; metformin and insulin were considered to be of the lowest and highest intensity,

respectively. Patients with serum creatinine levels, greater than 1.5 mg/dL [Lipska

et al., 2011], a sign of kidney disease, were not offered metformin-based regimens. The

menu options used in our analysis, differentiated by current treatment, are depicted

in Figure 4-2; by definition, the algorithm never recommended metformin-based ther-

apies for patients with the contraindication described above.

For each patient visit, the outcomes predicted by kNN under each treatment were

compared. Our algorithm selected the treatment with the best predicted HbA1c
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Figure 4-2: HbA1c benefit of prescriptive algorithm for patients switching regimens.

Each cell in the figure represents patients for whom the prescriptive algorithm recommended
switching from the regimen on the vertical axis to the regimen on the horizontal axis.
The color in each cell indicates the mean HbA1c benefit (%) of the prescriptive algorithm
for patients in that cell, with red indicating benefits of the algorithm and blue indicating
worsening relative to standard of care. Each cell is labeled with the number of patients who
made that switch; cells labeled with a dash were not on the menu of options provided to
patients currently on a given regimen. Patients with serum creatinine levels greater than 1.5
mg/dL were not considered for metformin-based regimens, and therefore are never assigned
by the algorithm to columns with metformin-based regimens.
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outcome subject to the condition that this best predicted outcome improve upon the

predicted outcome under the patient’s current treatment by at least some threshold �.

We chose the optimal threshold value of 0.8% by testing the algorithm on a single test

set, using values of � ranging from 0% to 1.5%. Increasing the threshold � causes the

algorithm to recommend switching for fewer patients, but the mean benefit among

those who switch increases. Above a certain threshold, the recommendation fits to

noise in the training data and does not provide better mean benefits in the testing

set. The optimal threshold balances these concerns.

kNN regression is a non-parametric, instance-based algorithm that makes predic-

tions by averaging the outcomes for the subset of observations most similar to the

target as defined by some distance metric [Cover and Hart, 1967]. To predict potential

outcomes under each regimen, we used a kNN regression based on a treatment-specific

weighted Euclidean distance across normalized patient and visit-specific factors. The

weights were derived by training a separate ordinary least squares linear regression

model for each treatment regimen and using the magnitudes of the regression coeffi-

cients (Figure 4-3). This weighted distance improves upon classical kNN by selecting

neighbors based on the factors most predictive of HbA1c outcome, rather than weight-

ing all factors equally.

We considered factors from the following categories: demographic information,

medical history, and treatment history. Specifically, the demographic factors used

in the model were age, sex, and race. The medical history factors were days since

first diabetes diagnosis; the patient’s average serum creatinine level in the previous

year; the patient’s past two HbA1c and most recent BMI observations up to and

including the current visit; the patient’s average, median, 25th percentile, and 75th

percentile HbA1c and BMI in the 1000-day period up to and including the current

visit; and the patient’s frequency of HbA1c measurements. The treatment history

factors were the number of regimens the patient had tried; the number of visits

since starting the current regimen; whether or not the patient had been previously

prescribed metformin; and the patient’s current regimen.

The prediction step of our algorithm is best illustrated through an example.
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Figure 4-3: Feature weights used to calculate similarity between patient visits.

Darker shading indicates larger values.
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Suppose we would like to estimate a patient’s potential outcome under metformin

monotherapy. To identify the importance of each factor in predicting outcomes, we

used patient visits in which metformin monotherapy was prescribed to train an ordi-

nary least squares regression on normalized values of each patient factor listed above.

The most predictive factors were: the patient’s most recent HbA1c measurement

(regression coefficient magnitude 0.22), whether the patient was currently prescribed

insulin (0.11), the patient’s mean BMI over the past 1000 days (0.11), and several

other HbA1c and BMI measurements (coefficient magnitudes ranging from 0.03 to

0.10); see Figure 4-3 for full details. To estimate the patient’s potential outcome, we

used the coefficient magnitudes to weight the Euclidean distance between this patient

visit and each patient visit in which metformin monotherapy was prescribed. Thus,

for any choice of k, we could rank the k closest neighbors from this treatment group.

This procedure was repeated for each therapy in the patient’s menu of treatment

options.

Intuitively, the number of neighbors k used to estimate post-treatment HbA1c

levels should increase with the size of the dataset. For each treatment t, we found

the value k⇤
t that minimized the root-mean-square error of the kNN predictions on a

subset of the data not used to evaluate the algorithm. We regressed k⇤
t on

p
nt, and

thus derived the dependence function k⇤
t = 0.34 ·pnt, which was used to select k in

the prescriptive algorithm.

To verify the accuracy of the kNN HbA1c predictions, we evaluated the R2

metric.

Positive values of R2

suggest patient characteristics are predictive of future HbA1c.

For comparison, we evaluated the predictive accuracy of LASSO regression [Tibshi-

rani, 1996] and random forest [Breiman, 2001], two state-of-the-art machine-learning

methods used widely due to their high prediction accuracy. We used the predictions

from these models in two alternative prescriptive algorithms.

4.2.5 Model evaluation

To evaluate the performance of the kNN-based prescriptive model, we tested the

algorithm’s recommendations on a set of patient data that had not been used when
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training the models.

Because counterfactual treatment effects are not observable, we used the weighted

matching approach embedded in the kNN regression to impute potential outcomes,

an approach commonly used for causal inference in observational studies when ran-

domization is unavailable [Imbens and Rubin, 2015]. For each visit, we applied our

prescriptive algorithm to recommend a therapy. If that recommendation matched

the prescribed standard of care therapy, we observed the true effect from the therapy.

Otherwise, the outcome was imputed by averaging the outcomes of the most similar

patient visits at which the recommended therapy was administered; these similar vis-

its were chosen from a test set not used for training, and the number of neighbors k⇤
t

was selected to fit the size of the test set. This estimated outcome was compared to

the true outcome under standard of care at the given patient visit.

Our hypothesis was that the average predicted HbA1c outcome after applying our

prescriptive algorithm would be less than that observed from administering standard

of care, resulting in a net average improvement in outcomes.

4.2.6 Sensitivity analysis

To ensure the evaluation of our algorithm was not sensitive to the particular random

split of the database into training and test data, we evaluated the effectiveness of our

algorithm (with fixed threshold � = 0.8) under additional random splittings of the

data.

4.2.7 Software

All analyses were performed in R 3.3.0 [R Core Team, 2016].

4.3 Results

The R2

of the kNN predictions on unseen data ranged from 0.20 to 0.54 depending

on the regimen (Table 4.3). The strongest models were for insulin monotherapy,
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metformin monotherapy, metformin plus insulin, and multi-drug (3+) therapies. The

R2

values from the LASSO and random forest models ranged from 0.24 to 0.53. The

predictive power was similar across the three methods.

Table 4.3: Out-of-sample R2

under various predictive methods.

Regimen kNN LASSO Random Forest

NEWPT 0.38 0.33 0.41

MET0 0.46 0.42 0.48

INS0 0.54 0.53 0.53

OTHER0 0.40 0.39 0.40

MET1 0.42 0.39 0.42

METINS0 0.46 0.46 0.47

INS1 0.44 0.43 0.43

OTHER1 0.34 0.35 0.35

MET2 0.32 0.32 0.33

METINS1 0.41 0.42 0.45

INS2 0.20 0.31 0.24

MULTI 0.46 0.36 0.46

The performance of the prescriptive algorithm is summarized in Table 4.4. The

mean HbA1c outcome after treatment was 0.14% lower under the prescriptive algo-

rithm than under the standard of care treatment, with standard error (SE) 0.01% and

significance level p ⌧ 0.001. Of the 48,140 patient visits in our dataset, the algorithm

differed from the standard of care for 15,323 visits, 31.8% of all visits. For this subset

of visits, the mean HbA1c outcome under the algorithm was lower by 0.44 ± 0.03%

compared with standard of care, with p ⌧ 0.001, a reduction from 8.37% under

the standard of care to 7.93% under our algorithm. The median outcome for these

visits was 0.21% lower under the prescriptive algorithm compared with standard of

care. For comparison, the median difference for all visits was zero because, for 68.2%

of visits, there was no difference between the algorithm’s recommendation and the

standard of care.

In our analysis, the mean difference in HbA1c was more negative than the median

due to a left-skewed distribution. Some patients received particularly large benefits

from using the prescriptive algorithm, which had an outsize effect on the mean but
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Table 4.4: Performance of prescriptive algorithms.

All patient visits (N = 48, 140)

kNN LASSO Random Forest

Mean HbA1c benefit relative to
standard of care, % (SE) -0.14 (0.01)* -0.13 (0.01)* -0.07 (0.01)*

Visits for which algorithm’s recommendation differed from observed
standard of care

kNN LASSO Random Forest

Number of visits (%) 15,323 (31.8%) 12,684 (26.3%) 14,302 (29.7%)

Mean HbA1c benefit relative to
standard of care, % (SE) -0.44 (0.03)* -0.45 (0.03)* -0.26 (0.03)*

* p ⌧ 0.001.

did not affect the median.

Figure 4-2 depicts the number of patients for whom the prescriptive algorithm

recommended switching from a given current line of therapy to a given new line of

therapy, along with the mean reduction in HbA1c for patient visits in each category.

Among trajectories with at least 300 patients, the largest benefit of the algorithm

was achieved through personalized recommendations for 7,564 patients currently on

insulin monotherapy to switch to monotherapy with metformin or another blood

glucose regulation agent. However, for the vast majority of patients currently on

insulin-based regimens, the algorithm recommends that those patients continue with

that therapy. Among the 7,564 patient visits, those who were recommended to switch

from insulin were on average younger (mean age 52.9 years versus 61.4 years) and

had substantially higher average HbA1c (11.0% versus 8.0%).

The performance of the prescriptive algorithm in specific patient subgroups is

summarized in Tables 4.5 and 4.6. The overall mean HbA1c outcome using the

prescriptive algorithm was 0.14% lower than standard of care for both male and
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female patients. The benefit of using the algorithm was 0.14% for black patients

(29,120 visits), 0.09% for white patients (7,444 visits), 0.22% for Hispanic patients

(6,732 visits), and 0.11% for all other patients (4,844 visits). The benefit of the

algorithm was 0.20% for patients under the age of 60 and 0.08% for patients aged 60

or older. The benefit was 0.20% for patients with poor glycemic control, i.e. current

HbA1c greater than 7.0% as compared with 0.05% for those with good glycemic

control.

Table 4.5: Performance of algorithm in study subgroups; all patient visits.

Subgroup Number of visits* Mean HbA1c benefit relative
to standard of care, % (SE)†

Male 20,231 -0.14 (0.01)

Female 27,909 -0.14 (0.01)

Black 29,120 -0.14 (0.01)

White 7,444 -0.09 (0.01)

Hispanic 6,732 -0.22 (0.01)

Other 4,844 -0.11 (0.01)

Age <60 23,705 -0.20 (0.01)

Age 60+ 24,435 -0.08 (0.00)

Good glycemic control

(HbA1c  7) 18,156 -0.05 (0.01)

Poor glycemic control

(HbA1c > 7) 29,984 -0.20 (0.01)

* N = 48, 140
† p ⌧ 0.001 for all instances.

Our methodology motivates a provider dashboard that would report information

on the demographics, medical history, and response to treatment for patients similar

to an index patient. A prototype dashboard visualization for one sample patient visit

is shown in Figure 4-4. The dashboard would include the patient’s demographic and

health information along with visualizations of the patient’s treatment history and
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Table 4.6: Performance of algorithm in study subgroups; visits for which algorithm’s

recommendation differed from standard of care.

Subgroup Number
of visits

Percent of
all visits
in subgroup

Mean HbA1c benefit
relative to standard
of care, % (SE)*

Male 6,363 31.5% -0.44 (0.02)

Female 8,960 32.1% -0.44 (0.02)

Black 9,103 31.3% -0.45 (0.02)

White 2,309 31.0% -0.29 (0.03)

Hispanic 2,400 35.7% -0.61 (0.03)

Other 4,844 31.2% -0.34 (0.04)

Age <60 8,783 37.1% -0.55 (0.02)

Age 60+ 6,540 26.8% -0.30 (0.02)

Good glycemic control

(HbA1c  7) 4,438 24.4% -0.20 (0.02)

Poor glycemic control

(HbA1c > 7) 10,885 36.3% -0.54 (0.02)

* p ⌧ 0.001 for all instances.
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Figure 4-4: Visualization of prescriptive algorithm: Provider dashboard prototype.

This figure visualizes how the prescriptive algorithm can be used by providers for a single
patient.

• Panel (a) displays the algorithm’s treatment recommendation along with the predicted
post-treatment HbA1c under that treatment.

• Panel (b) depicts the mean, standard deviation, and full distribution of post-treatment
HbA1c outcomes for the k⇤t most similar patient visits in the data set, for each of the
six regimens on this patient’s menu of options. In each sub-panel, the post-treatment
HbA1c level is on the horizontal axis and the number of visits is on the vertical axis.

• The table in panel (c) presents basic information about the patient’s demographic and
medical history.

• Panel (d) depicts the history of diabetes progression and treatment for the patient,
with date along the horizontal axis. The vertical axis of the upper sub-panel indicates
various drug classes; the vertical axis of the lower sub-panel depicts HbA1c %.
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HbA1c progression. In addition, the dashboard would display the mean, standard

deviation, and full distribution of HbA1c outcomes among the k⇤
t nearest neighbors

who received each treatment in the menu of options. Based on this evidence, the

dashboard would display a treatment recommendation. The provider would have the

ability to override this recommendation given any special management needs of the

patient. For instance, if the patient is elderly and the distribution of HbA1c outcomes

indicates that the recommended therapy has an elevated risk of hypoglycemia, the

provider may opt for an alternative treatment.

The overall mean HbA1c outcome using the LASSO-based prescriptive algorithm

was lower by 0.13 ± 0.01% (p ⌧ 0.001) compared with the mean standard of care

outcome. The benefit from using the random-forest-based prescriptive algorithm

relative to standard of care was 0.07± 0.01% (p ⌧ 0.001).

In the sensitivity analyses, under three alternate random splittings of the dataset,

the overall mean benefit of using the prescriptive algorithm compared with standard

of care ranged from 0.11% to 0.15% (p ⌧ 0.001 in all instances).

4.4 Discussion

To our knowledge, we present the first prescriptive method for personalized type 2

diabetes care. Using historical data from a large EMR database, this novel prescrip-

tive method resulted in an average HbA1c benefit of 0.44% at each doctor’s visit for

which the algorithm’s recommendation differed from standard of care.

Our method incorporates patient-specific demographic and medical history data

to determine the best course of treatment. Compared to other machine learning meth-

ods considered, the kNN prescriptive approach is highly interpretable and flexible in

clinical applications. The novelty of our approach is in personalizing the decision-

making process by incorporating patient-specific factors. This method can easily

accommodate alternative disease management approaches within specific subpopula-

tions, such as patients with chronic kidney disease and elderly patients. We believe

this personalization is the primary driver of benefit relative to standard of care.
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In practice, the algorithm can be integrated into existing EMR systems to dynami-

cally suggest personalized treatment paths for each patient based on historical records.

The algorithm ingests and analyzes EMR data and generates recommendations. An

intuitive, interactive dashboard summarizes the evidence for the recommendation,

including the expected distribution of outcomes under alternative treatments (Figure

4-4).

Due to the nature of retrospective data from existing EMR, this study has several

limitations. Patients were not randomized into treatment groups. While our matching

methodology controls for several confounding factors that could explain differences in

treatment effects, we can only estimate counterfactual outcomes. EMR data do not

include socio-economic factors or patient preferences that may be important in treat-

ment decisions. Due to lack of sufficient data, GLP-1 agonists were not considered

as a separate drug class. If more data were available, we could further differentiate

regimen types beyond the thirteen we include in this analysis. In addition, the study

population from BMC may not be representative of the US population as a whole.

With EMR medication order data alone, we cannot be certain whether a pre-

scribed medication was filled or taken, and cannot know precisely when the medica-

tion was stopped. Although this data quality issue could hamper attempts to make

drug efficacy comparisons, our analysis aims to address the question of which drugs

to prescribe under real-worlds scenarios. We optimize for an outcome that takes into

account unobserved factors such as non-adherence. For instance, if non-adherence is

more prevalent among patients prescribed insulin than other regimens, this perspec-

tive may explain why, in our study population, the algorithm recommends insulin less

often than it is prescribed in clinical practice.

Our method can be extended to be more flexible and comprehensive. Currently the

prescriptive algorithm does not support individualized glycemic targets; we assume

that a lower glycemic level is always preferred. The study currently optimizes only

for a single health outcome; a more comprehensive algorithm would consider adverse

event outcomes as well.

Despite these limitations, the study establishes strong evidence of the benefit of
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individualizing diabetes care. The success of this data-driven approach invites further

testing using datasets from other hospital and care settings. Testing the prescriptive

algorithm in a clinical trial setting would provide even stronger evidence of clinical

effectiveness. As large-scale genomic data becomes more widely available, the algo-

rithm could readily incorporate such data to reach the full potential of personalized

medicine in type 2 diabetes.

In this study, we developed a novel data-driven prescriptive algorithm for type 2

diabetes that improves significantly on the standard of care when tested on patient-

level EMR data from a large medical center. Our work is a key step toward a fully

patient-centered approach to diabetes management.
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Chapter 5

Conclusion

Decision-making in healthcare presents a striking challenge and opportunity for the

field of analytics and operations research. By applying and combining advances in

the areas of optimization, statistics, and machine learning, with new and interesting

sources of data, we have the potential to make substantive improvements in the

approval of novel and effective treatments and the outcomes of the patients receiving

them.

In this thesis, we have demonstrated some of the ways this impact can be realized.

In Chapters 2 and 3, we showed how mixed-integer optimization can be used to trans-

form the design and analysis of clinical trials, yielding the potential for new insights

and added value. Our covariate-adaptive optimization algorithm for sequential clini-

cal trials (Chapter 2) achieves a desired level of statistical power at equal or smaller

sample sizes compared to state-of-the-art methods, without sacrificing computational

tractability or protection from experimental bias. These practical gains were made

possible by a choice of uncertainty set that allows us to find a closed-form solution

to the inner robust formulation. Our optimization approach to identifying excep-

tional responders from randomized trials (Chapter 3) has the potential to add value

in a number of practical applications - from pinpointing promising subpopulations

in failed clinical trials, to detecting adverse events experienced by certain subgroups.

We used simple transformations to model the problem as a tractable MIO formula-

tion. In Chapter 4, we considered the problem of personalized medicine in the setting
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of type 2 diabetes management. Our study was the first to use machine learning

to make personalized treatment recommendations using electronic medical records.

We showed the algorithm could improve outcomes for diabetes patients, while giving

providers evidence for these recommendations via an intuitive visual dashboard.

Through this work, we have made valuable contributions in the area of data-driven

decision-making in healthcare. Perhaps more importantly, we have demonstrated

the potential for impact when analytics and operations research are applied to this

important and challenging domain, where there is much more work to be done.
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