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Abstract

On-demand ride-sharing systems with autonomous vehicles have the potential to en-
hance the efficiency and reliability of urban mobility. However, existing ride-sharing
algorithms are unable to accommodate high capacity vehicles and do not incorporate
future predicted demand. This thesis presents a real-time method for high-capacity
ride-sharing that scales to a large number of passengers and trips, dynamically gen-
erates optimal routes with respect to online demand and vehicle locations, and incor-
porates predictions of anticipated requests to improve the performance of a network
of taxis. We experimentally assess the trade off between fleet size, capacity, waiting
time, travel delay, and amount of predictions for low to medium capacity vehicles.
We validated the algorithm with over three million taxi rides from the New York City
taxi dataset and demonstrate that our approach can service nearly 99% of Manhattan
taxi demand using a fleet of only 3000 vehicles (less than 25% of the active taxis in
Manhattan).
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Chapter 1

Introduction

New user-centric services are transforming urban mobility by providing timely and

convenient transportation to anybody, anywhere, anytime. These services have the

potential for a tremendous positive impact on personal mobility, pollution, conges-

tion, energy consumption and thereby quality of life. The cost of congestion in the

United States alone is roughly $121 billion per year or one percent of GDP [38], which

includes 5.5 billion hours of time lost to sitting in traffic and an extra 2.9 billion gal-

lons of fuel burned. These estimates do not even consider the cost of other potential

negative externalities such as the vehicular emissions (greenhouse gas emissions and

particulate matter) [33], travel-time uncertainty [11] and a higher propensity for ac-

cidents [24]. Recently, the large-scale adoption of smart phones and the decrease in

cellular communication costs has led to the emergence of a new mode of urban mo-

bility, namely mobility-on-demand (MoD) systems, led by companies such as Uber,

Lyft and VIA. These systems are able to provide users with a reliable mode of trans-

portation that is catered to the individual and improves access to mobility to those

who are unable to operate a personal vehicle, reducing the waiting times and stress

associated with travel.

One of the major inefficiencies of current MoD systems is their capacity limitation,

typically restricted to two passengers or the ride is not able to be shared to begin

with. Our method applies not only to shared taxis, but also to shared vans and

mini-buses. This is a difficult extension to current work due to the computational
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costs associated with solving such large optimization problems. A recent study in

New York City showed that up to 80 percent of the taxi trips in Manhattan could

be shared by two riders with an increase in the travel time of a few minutes [37].

However, this analysis was i) limited to two riders for an optimal allocation (three

with heuristics), ii) intractable for larger number of passengers, and iii) did not allow

for allocation of additional riders after the start of a trip. There are no studies of this

scale that quantify the benefits of larger-scale ride pooling, mainly due to the lack of

efficient and scalable algorithms for this problem, both of which we address in this

work.

Here we consider the problem of using a fleet of vehicles with varying passenger

capacities, addressing both the problems of assigning vehicles to matched passen-

gers and rebalancing -or repositioning- the fleet to service demand. In contrast, [37]

ignored the vehicle assignment and rebalancing problems and was unable to assign

passengers to ongoing trips. We show how the unified problem of passenger and

vehicle assignment can be solved in a computationally efficient manner at a large-

scale, thereby demonstrating the capability to operate a real-time MoD system with

multiple service tiers (shared-taxi, shared-vans and shared-buses) of varying capacity.

Efficient algorithms capable of assigning travel requests to a fleet of vehicles, and

routing the vehicles efficiently, are required. In this work, we present a constrained

optimization method which accounts for future, predicted, requests to route the ve-

hicles. Based on historical data, we first describe a method to compute a probability

distribution over future demand. Then, we describe an any-time optimal method for

vehicle routing and passenger assignment that takes into account the future demand

to produce routes and assignments that in expectation reduce the travel and waiting

times. Our method can assign thousands of requests to thousands of autonomous

vehicles in real time, where we allow that several passengers with independent trips

share a vehicle and that a vehicle picks additional passengers as it progresses in its

route.

We quantify experimentally the performance trade-offs between fleet size, capacity,

waiting time, travel delay, and operational costs for low and medium capacity vehicles

14



(such as taxis, vans or mini-buses) in a large urban setting. Detailed experimental

results are presented for a subset of approximately 3 million rides extracted from

the New York City taxicab public dataset. We show that 3000 vehicles of capacity

2 and 4 could serve 94% and 98% of the demand with a mean waiting time of 3.2

and 2.7 minutes, and a mean delay of 1.5 min and 2.3 min, respectively. To achieve

98% service rate, with comparable waiting time (2.8 min) and delay (3.5 min) a fleet

of just 2000 vehicles of capacity 10 was required. This is 15% of the active taxis

in NYC. We also show that our approach is robust with respect to the density of

requests and could therefore be applied to other cities. A video is available at https:

//youtu.be/EzWFu7fMDO.

We also illustrate experimentally the benefit of reactive vehicle rebalancing and

predictive positioning. We compare the waiting time, service rate, travel delay, dis-

tance travelled, percentage of shared rides, and computational time when using pre-

dictive positioning based on historical taxi demand. We show that we are able to

enhance the rider experience by reducing the waiting time and travel delay by incor-

porating predicted future requests into our assignment algorithm.

Our system runs in real-time and is particularly suited to autonomous vehicle fleets

that can continuously reroute based on real-time requests. It can also rebalance idle

vehicles to areas with high demand and is general enough to be applied to other multi-

vehicle, multi-task assignment problems. In practice our request-vehicle assignment

algorithm would be able to drastically reduce the number of vehicles needed to service

current taxi demand. In doing so it would reduce taxi related congestion, cut harmful

emissions, and improve the commute time of passengers in busy urban centers. This

work was published in the Proceedings of the National Academy of Sciences [5].

1.1 Contribution

In this thesis, we present an efficient constrained optimization method for vehicle

routing and multi-request multi-vehicle assignment that takes into account antici-

pated future demand. We describe a method to predict future requests based on
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historical taxi trip data. The main contribution is an anytime optimal algorithm

that takes into account the predicted future demand to influence both the vehicle

routing and the assignment of request to vehicles. The method works in the context

of ride sharing, and extends the planning horizon beyond the current requests. We

also provide extensive experimental results using over three million real trip requests

from the New York City taxi dataset [18] to show the effectiveness of the algorithm.

Below is a detailed list of contributions.

" A method for predicting taxi demand using a large data set of historical taxi

trips

* An algorithm to optimally assign taxi requests to vehicles that allows for high

capacity ride-sharing

" A system for using large scale historical data for measuring the effectiveness of

ride-sharing systems

" Experimental analysis showing the trade-offs between fleet size, vehicle capacity,

wait-time, travel delay, and servicing rate

This thesis combines material from two publications, [5] and [6], where [5] in-

troduces the base algorithm for passenger assignment and vehicle routing and [6]

introduces the for predicting future demand from historical taxi trip datasets and

shows how these predictions can be incorporated into the assignment algorithm to

improve its performance.

1.2 Organization

This thesis is organized as follows. Chapter 2 provides an overview of the related work.

Chapter 3 describes how anticipated demand is predicted. Chapter 4 describes our

algorithm for passenger assignment and vehicle routing. Finally, Chapter 5 assesses

the performance of the algorithm with and without predictive positioning.
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Chapter 2

Related Works

In this chapter, we discuss the work related to ride-sharing, mobility on demand, and

taxi demand prediction. Sec. 2.1 gives a background on methods for predicting taxi

demand, Sec. 2.2 describes prior work relating to vehicle routing problems and how

it applies to ride-sharing, and Sec. 2.3 discusses current methods for ride-sharing and

mobility on demand.

2.1 Predicting taxi demand

Informed driving is becoming a key feature to increase the sustainability of taxi com-

panies and with a combination of readily available large datasets and powerful data

mining tools, estimation of future patterns from data is an active field of research.

Castro el al. used large scale GPS traces to construct traffic models used for predic-

tion. Moreira-Matias et al. used a combination of time series forecasting techniques

to predict the spatial distribution of taxi-passengers for a short time horizon using

streaming data [32]. Gonzales et al. used GPS data from taxies to develop a model to

determine the number of pickups and dropoffs for each hour of the day [23]. Chang,

Tai, and Hsu developed a context-awrare demand hotspot prediction system that

used data mining techniques to predict demand distributions with respect to time,

weather, and taxi location [12]. Veloso et at. utilized a naive Bayesian classifier to

determine the predictability of spatiotemporal distribution of taxi trips [43]. Thanks

17



to the large amount of data available on taxi trips in New York (over lOOM a year),

we adopt a frequentist approach to predict future demand and focus on its integration

in the assignment and routing problem.

2.2 Vehicle routing

The transportation community has been studying vehicle routing problems that re-

quire servicing many concurrent demands subject to capacity and other constraints for

many decades. For example, the Dynamic Traffic Assignment (DTA) problem [29, 46],

where the system aims to maximize throughput by dynamically routing time-varying

travel demands across the network. These types of problems can be solved using

techniques such as mathematical programming [45], optimal control [20, 36], and sim-

ulation based methods [28]. The DTA problem assumes that the demand is serviced

by an individual personal vehicle and rides are not shared. The problem of ride-

sharing is more similar to the Vehicle Routing Problem with Pickup and Delivery

(VRPPD) [17, 4, 31, 8, 22] where optimal routes need to be found to move passen-

gers between certain pickup and delivery locations; the Vehicle Routing Problem with

Time Windows (VRPTW) [26, 16, 10] where passengers need to be dropped off within

time window constraints; the Capacitated Vehicle Routing Problem (CVRP) [7, 21]

where vehicles have a limited passenger capacity; and the Dynamic Pickup and De-

livery Problem [30, 9] where the demand is spatio-temporally distributed and must

be serviced within specified time windows. However these problems do not consider

how to optimally distribute the demand across the vehicles or how to pro-actively

position the vehicles to anticipate future demand.

2.3 Ride-sharing and mobility on demand

Much of the fleet management literature for mobility-on-demand systems consid-

ers the case of ride-sharing without pooling requests, focusing on fluid approxima-

tions [34], queuing based formulations [44], case studies in specific regions (e.g., Sin-
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gapore [40]) and operational considerations for fleet managers [39]. With the growing

interest and rapid developments in autonomous vehicles, there is also an increasing

focus on autonomous MoD systems [34, 14, 39]. However, none of these works consid-

ered the ride-pooling problem of servicing multiple rides with a single trip. The ride

pooling problem is more related to the Vehicle Routing Problem and the Dynamic

Pickup and Delivery Problem [42, 35, 9, 22, 41], where spatio-temporally distributed

demand must be picked up and delivered within pre-specified time windows. A major

challenge when addressing this problem is the need to explore a very large decision

space, while computing solutions fast enough to provide users with the experience of

real-time booking and service.

Previous approaches to this problem have focused on heuristic-based solutions [3,

25, 27, 2, 25, 19] to address the computational challenge that lye in assigning the

potentially large fleet of vehicles to indiviual matched trips in an efficient manner. We

present a reactive anytime optimal algorithm. That is, an algorithm that efficiently

returns a valid assignment of travel requests to vehicles and then refines it over time

converging to an optimal solution. If enough computational resources are available,

the optimal assignment for the current requests and time would be found, otherwise,

the best solution found so far is returned.

Traditional approaches that rely on an Integer Linear Program (ILP) formulation,

such as [13], also provide anytime guarantees for the multi-vehicle routing problem.

However, in contrast to our approach, their applicability is limited to small problem

instances, which in [13] was 32 requests and four vehicles with a computation cost

of several minutes. We also rely on an ILP formulation, but because we do not

explicitly model the edges of the road network in the ILP, our approach scales to much

larger problem instances. We observe that instances such as NYC, with thousands of

vehicles, requests and road segments, can be solved in real time.

Our approach decouples the problem by first computing feasible trips from a pair-

wise shareability graph [37] and then assigning trips to vehicles. We show that this

assignment can be posed as an Integer Linear Program (ILP) of reduced dimension-

ality. The framework allows for flexibility in terms of prescribing constraints such as
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(but not limited to) maximum user waiting times and maximum additional delays

due to sharing a ride. We also extend the method to pro-actively rebalance the vehi-

cle fleet by moving idle vehicles to areas of high demand. In summary, we present a

framework for solving the real-time ride pooling problem with (1) arbitrary numbers

of passengers and trips, (2) anytime optimal rider allocation and routing dependent

on the fleet location, and (3) online rerouting and assignment of riders to existing

trips.
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Chapter 3

Prediction of future demand

This chapter outlines our method for estimating anticipated demand. First, we dis-

cretize Manhattan into regions, then using the Manhattan taxi dataset, we employ

a frequentist approach to estimate a probability distribution each region pair. Fu-

ture requests are sampled from this probability distribution and incorporated into

the batch assignment described in Chapter 4.

The chapter is structured as follows. Sec. 3.1 describes how we estimate the

historical demand from the Manhattan taxi dataset. Sec. 3.1.1 outlines the process for

partitioning Manhattan into discrete regions. Sec. 3.1.2 describes how a probability

distribution for the pairwise demand is estimated using a frequentist approach and

Sec. 3.1.3 describes how we sample from this probability distribution.

3.1 Estimation of historical demand

In a preprocessing step, the probability distribution of origin-destination requests is

computed for fixed intervals of the week. We do so by discretizing the area into

regions and cumulating requests from a year of historical taxi data.

Using a list of all intersections, we discretize the area into regions given by a

distance parameter r which relates to the acceptable distance a person would need

to walk. With this discretization, we can then assign the origin and destination of

the requests from the historical data to the closest region centers. Using a frequentist
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Figure 3-1: Region centers determined by the greedy station algorithm that were used
in our experiments

approach, for each 15 minute interval of the week, we count the number of requests

going from every origin region to every destination region. With this frequency table

we are able to determine the probability of a given destination region given the origin

region, time interval, and day of the week.

3.1.1 Discretization into regions

Given a list C of all the intersections in the road network of the city, we compute

the set of regions such that in the resulting list no two centers are within a given

radius, r, of each other, i.e. Vi, j E C, Ii - jI > r. We employ Algorithm 1, where

BALLTREE is a space partitioning data structure that allows for fast radius bounded

nearest neighbor lookup. The data structure has query function, QUERY(c, r), that

lets us find all the points within r of a point c. In Fig. 3-1 we show the centers of the

regions from a discretization of Manhattan, where a radius of 150 meters was used.

Algorithm 1 Pruning candidate region centers
1: T+- BALLTREE(C)
2: for c E C do
3: C<-C\T.QUERY(c,r)

In Algo. 1 we are greedily pruning candidate region centers that are too close to

our currently selected region center. This allows us to simply iterate through the

candidates once.
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3.1.2 Probability distribution

Given the set of region centers, we construct a probability distribution, P(d I p; , w),

which is the probability of destination region d, given the origin region p, time interval

, and day of the week w. We partition each day into 15 minute intervals resulting

in 1 < < 96.

This probability distribution can be generated via a frequentist approach. We

used one year of historical taxi data consisting of 165,114,362 trips [1]. Each trip

contained the origin and destination coordinates along with the time and date of the

pick up. Using this data, we were able to populate a 96 x 7 x ICI x IC table, F,

indexed by the time interval, day of the week, origin region, and destination region

with the number of times a given trip occurred. This allows us to determine the

probability of a destination given the origin and a time period. The time period is

defined as an initial and final time interval and the day of the week, I = ((o, 1, w),

resulting in the probability distribution of origin-destination

P(d, p 1I) = P(pI I) - P(d p, I) (3.1)

where

P(p I , w) = > (3.2)

and

P(dIp, I, w) = = O .FCw (3.3)

In Fig. 3-2 we show an example of the predicted demand for two fixed origins

and two different time periods. Green indicates a lower probability and red indicates

a higher probability. The first two heatmaps show the probability distributions of

destinations given that the pick up location si on the west side of central park depicted

by the blue dot. The left image shows the distribution from 7:30 to 8:30 and the right

image shows the distribution from 21:30 to 22:00. The second two images show the
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Figure 3-2: Heatmaps depicting the destination demand distribution. For this exam-
ple, two locations in Manhattan are used as origins with a 30 minute interval to show
the distribution. For each location, two intervals are used to show different snapshots
of the demand throughout the day.

heatmaps for the same time intervals given that the origin was to east of central park

depicted by the blue dot. From this probability distribution we can sample future

requests to anticipate demand.

3.1.3 Sampling of future demand

Consider a given period of time ( o,( 1) and day of the week, w. We construct a

list S, consisting of the cumulative sum of frequencies from the start time to the

end time and another list L, of the same size, consisting of the corresponding origin-

destination pairs. To sample requests we then generate a random number s, from

0 to max(S) and determine the index i of S such that Sj_1 5 s < Si. We then

return Li which is the corresponding origin-destination pair of the cumulative sum of

frequencies interval. This process, see Algorithm 2, allows us to draw samples from

'D(I). The function RAND(0, N) returns a uniformly distributed random number

from 0 to N. FINDINTERVAL(S, s) returns the index i such that Sj_1 < s < Si if

s > So, otherwise it returns 0. This is done using binary search since S is sorted.
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Algorithm 2 Sampling origin-destination pairs over time

1: S +-- {}, L - {}
2: for E [ o, 1] do
3: for (p, d) E [1, fCj] 2 do
4: S <- S U {max(S) + FT,w,,d,}
5: L- L U {(p, d)}
6: s <- RAND(O, max(S))
7: i +- FINDINTERVAL(S, s)
8: return Li

Lines 2 through 5 in Algo. 2 are iterating through all of the time interval and

origin-destination pairs. For each time interval, origin, and destination for a given

day of the week, we cumulatively sum the probabilities and store the corresponding

origin-destination pair for that step of the sum. In line 6 we select a random number

between 0 and sum of the probabilities and in line 7 we find corresponding index of

the interval in the cumulative sum containing the random number. We then return

the origin-destination pair from our stored list at that index.
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Chapter 4

Passenger Assignment and Vehicle

Routing

In this chapter we describe the algorithm developed for passenger assignment and

vehicle routing. Specifically we develop the method for assigning vehicles to possible

trips by computing which trips can be shared, determining which vehicles can service

these shared trips, and solving an Integer Linear Program to compute an optimal

assignment that takes into account predicted future requests. We also describe our

method for rebalancing the remaining idle vehicles.

The chapter is structured as follows. Sec. 4.1 introduces the vehicle assignment

problem and outlines our method to solve it. Sec. 4.2 describes the proposed approach

in detail with Sec. 4.2.1 describing how we incorporate sampled future demand into

the assignment and Sec. 4.2.2 formulating the program as an Integer Linear Program.

Sec. 4.2.3 and 4.2.4 describe the pairwise graph of vehicle and requests (RV-graph)

and the graph of candidate trips and pick-ups (RTV-graph) respectively which are

two graphical structures used for optimization.

4.1 Preliminaries

In this section we introduce the notation employed throughout this thesis, followed

by the problem formulation and an overview of the method.
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4.1.1 Definitions

We consider a fleet V of m vehicles of capacity v, the maximum number of passengers

each vehicle can have at any given time. Denote the set of vehicles V = {vi, . . , vm}.

The current state of a vehicle v is given by a tuple {qv, tv, Pv}, indicating its current

position qv, the current time tv and its passengers Pv = {pi, . .. , pa5}. A passenger

p is a request that has been picked-up by a vehicle.

We also consider a set of requests R = {rl,... , r}. Where each travel request

consists of the time of request, a pick-up location and a drop-off location. Formally,

a request r is defined by a tuple {or, dr,, t', t, t, t*}, indicating its origin Or, its

destination dr, the time of the request t;, the latest acceptable pick-up time tP' (ini-

tially given by tr' = tr + Q with Q the maximum waiting time), the pick-up time tp,

the expected drop off time td, and the earliest possible time at which the destination

could be reached t* = tr + -r(o, dr).

Given a graph of the streets with estimated travel times, a function 'r(qi, q2 )

computes the travel time from qi to q2 , two positions in space encoded by their latitude

and longitude coordinates. When a network representation of the map is available,

standard techniques for efficiently computing shortest paths can be used [15].

We further define a trip T = {ri, .. ., rfrl} as a set of requests that can be combined

and served by a single vehicle. A trip may have one or more candidate vehicles for

execution and contain more requests than the capacity of the vehicle if they are picked

and dropped of in a way that the capacity limit is satisfied at all times.

4.1.2 Problem formulation

We define the following problem.

Problem 1 (Informed batch assignment). Consider a set of requests R, a set of

vehicles V at their current state including passengers, and a function to compute

travel times on the road network. Compute the optimal assignment E of requests

to vehicles that satisfies a set of constraints Z, including a maximum capacity v of

passengers per vehicle, and that minimizes a cost function C = Cno, + Cf uture, where
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Cnow could be the sum of travel delays for the current passengers and requests and

Cjuture is a term which includes the cost of satisfying future predicted travel requests.

Our formulation is flexible with respect to physical and performance-related con-

straints Z. In our implementation we consider the following ones:

" For each request r, the waiting time Wr, given by the difference between the

pick-up time tP and the request time tr, must be below a maximum waiting

time , for example 5 minutes.

* For each request r (or passenger p) the total travel delay 6r = r-t* (6, = --t)

must be lower than a maximum travel delay A, for example 10 minutes, where

ti is the drop-off time and t* = t' + T(Or, d,) the earliest possible time at which

the destination could be reached if the shortest path between the origin or and

the destination dr was followed without any waiting time. The total travel delay

6r includes both the in-vehicle delay and the waiting time.

" For each vehicle v, a maximum number of passengers, ngas" < v, for example

capacity ten.

Ideally, all the requests shall be assigned to a vehicle, but given the constraints,

this might not always be the case. Denote by Rok the set of requests assigned to a

vehicle and Rko the set of requests that are not served by any vehicle.

Following [5], we define the cost Ca,, of an assignment E as the sum of travel

delay over all passengers P and all assigned requests plus a large enough cost ck0 for

each non-assigned request. Formally,

Cnow (E)= t -- *) P r -r*+ Y, Cko (.1)
PEP' rci?~k rEi~k.

To account for the future performance of the system, we introduce a new term

Cjuture, which is the expected cost of serving future requests. This cost term is based

on the predicted future demand with the objective of achieving a better routing
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and assignment of the fleet towards the future requests. This will be discussed in

Section 4.2.

For real-time fleet management, the method can be applied to continuous discov-

ery and assignment of incoming requests. The proposed approach is to perform batch

assignment of the requests within a short time span, for example every 30 seconds,

to the fleet of vehicles. Problem 1 is invoked with the predicted state of the fleet

at the assignment time and the cumulated requests. Requests that have not been

picked-up by a vehicle within the previous assignment round are kept in the pool for

assignment.

4.1.3 Method overview

The first step of the method consist on estimating, for each time of the day and for day

of the week the amount of requests from each origin in the city to each destination.

This is a probability distribution that is computed from historical data. We describe

this step in Chapter. 3.

The main step of the method consists on solving Problem 1. To do so, at each

assignment round we sample future requests from the estimated probability distribu-

tion and introduce them in the assignment and routing problem, albeit with lower

cost that the real requests. This is described in Sec. 4.2. Fig. 4-1 shows a schema

with the steps of the method, which we describe in the following.

The assignment and routing method is inspired by [5] and consists of the following

four steps.

" Computing a pair-wise request-vehicle shareability graph (RV-graph). In this

graph, requests r, predicted requests rPred and vehicles v are pairwise connected

if r, or rPred, can be satisfied by v within the defined constraints and given the

current state of v.

" Computing a graph (RTV-graph) of feasible trips (formed by one or more re-

quests and/or predicted requests) and the vehicles that can serve them within

the specified constraints.
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* Solving an Integer Linear Program (ILP) to compute the best assignment of

vehicles to trips.

" Rebalancing the remaining idle vehicles towards areas with a deficit of vehicles

and too many requests via a Linear Program (LP).

Given that the problem at hand is NP hard, obtaining an optimal assignment

can be computationally expensive. For practical applications it is required that a

sub-optimal solution is returned within an allocated runtime budget, which might be

improved incrementally up to optimality. The proposed algorithm does present this

anytime-optimal property.

An example of the method is shown in Fig. 4-1. The first image (a) shows an

example of a street network with two requests (orange human = origin, red triangle

= destination), two predicted requests (blue human = origin, red triangle = destina-

tion) and two vehicles (yellow car = origin, red triangle = destination of passenger).

Vehicle 1 has one passenger and vehicle 2 is empty. With the passengers origin and

destinations, a pairwise shareability RV-graph of requests and vehicles is constructed

shown in (b). Cliques of this graph are potential trips. The image in (c) shows

RTV-graph of candidate trips and vehicles which can execute them. A node (yellow

triangle) is added for requests that can not be satisfied. The optimal assignment

given by the solution of the ILP, where vehicle 1 serves requests 2 and 3 and vehicle 2

serves requests 1 and 4 is then computed. This is shown in (d). Using the assignment,

the vehicles executed their planned routes shown in (e). The predicted requests alter

the route of the vehicles, driving them towards areas of likely future requests.

4.2 Method for routing and assignment

The goal is to bias the vehicles towards areas where future requests are more likely to

appear. The method takes into account the current state of the fleet, the current set of

requests, as well as the predicted demand, consisting of both origins and destinations.

The method computes a batch assignment of the current requests in the requests pool
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Figure 4-1: Schematic overview of the proposed method for batch assignment of
multiple requests to multiple vehicles of capacity v. The method consists of several
steps leading to an integer linear optimization which provides an anytime optimal
assignment.

'7 to the vehicles of the fleet V. For real scenarios with incoming requests, this routing

and assignment is performed at a constant frequency, which in our experiments was

once every 30 seconds. Fig. 4-1 shows a schema with the steps of the method, which

we describe in the following.

4.2.1 Sampling of future requests

In each iteration of the batch optimizer, a set of additional requests R7 ftre are

sampled from a historical probability distribution of future demand with the method

described in Sec. 3.1.3. We first define a time interval for the predictions p,,ed =

[tnow, tmred, w], where tno0 is the current time and t,,de a time in the future, which in

our experiments is set to t ,+ 1800s for an interval of 30 minutes in the future, and

w is the day of the week. We also define a maximum number of samples n"'.

At run time, the number of samples is given by

npred = min(n,"ea, E(DV(I,, ))), (4.2)

where E(D(Ipred)) denotes the number of expected requests in interval Ipred, given

the distribution D estimated in Chapter 3.
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~'

Figure 4-2: Left: Snapshot, 2000 vehicles, capacity 4. w 5 min, Wednesday 8pm.
Vehicle fleet represented at their current positions. Colors indicate number of pas-
sengers (0: light blue, 1: light green, 2: yellow, 3: dark orange, 4: dark red). 39
rebalancing vehicles are displayed in dark blue - mostly in the upper Manhattan re-
turning to the middle. Right: Close view of the scheduled path for a vehicle (dark-red
circle) with four passengers, which drops one off, pick-up a new one (blue star) and
drops all four. Drop-off locations are displayed with inverted triangles.

Each future request r ',d E Rfuture is sampled, via Algorithm 2, from D and the

time interval,

riAed ~ (Ied). (4.3)

At each time step, after each batch assignment, the set IRf utue is cleared. New

future requests will be sampled in the following time step, every 30 seconds in our

experiments.
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4.2.2 Optimization

These requests are added to the pool of requests R+ := R + Rfture for the current

iteration (and removed afterwards). Vehicles can then be matched with trips contain-

ing future requests in Rfuture and may make progress towards them (although they

can not be picked since they are virtual).

The additional requests 'future are subject to the same constraints Z as the

real requests R, and enter the assignment problem via the additional term in the

optimization cost Cfuture. Following Eq. (4.1), this term is defined as

Cfuture(E) = (<- t*) + cred (4.4)
r EZpred rEyred

ok rko

where 1Ped is the set of assigned future requests and k"Jd the set of unassigned

future requests, such that 'k U RTZ" = Rfuture. The cost of a future request being

ignored satisfies ckod << Cko, much lower than that of real requests. This process

gives preference to real requests, with a bias in the assignment and routing towards

servicing areas of higher expected future demand.

Following Sec. 4.1.3 the batch assignment algorithm consists of the following steps:

" Sample a set of requests Rfuture D .

" Compute a pair-wise request-vehicle shareability graph (RV-graph) between the

requests R+ and the vehicles V. In this graph, request r and vehicle v are con-

nected if, given the current state of v, request r can be satisfied by v while

respecting the defined constraints Z for maximum waiting time, delay and ve-

hicle capacity.

* Compute a graph (RTV-graph) of feasible trips (formed by one or more requests)

and the vehicles that can serve them within the specified constraints. Each trip

may contain both real and predicted requests. Feasible trips are computed

incrementally for each vehicle. Each trip is linked in the graph to the requests

that form it and the vehicles that can serve it while respecting the constraints
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Z.

" Compute a greedy assignment Egreedy, where trips are assigned to vehicles it-

eratively in decreasing size of the trip and increasing cost. The idea is the

maximize the amount of requests served while minimizing cost.

* Starting from the greedy assignment solve an Integer Linear Program to com-

pute an optimal assignment Eoptim of vehicles to trips, and therefore to requests.

Following [5], a binary variable is added for each link between a feasible trip

and a vehicle that can execute it within the RTV-graph. This assignment also

provides the optimal routes, as computed in the RTV-graph.

" Rebalance the remaining idle vehicles towards areas with a deficit of vehicles

and too many requests via a Linear Program. The idle vehicles are assigned to

the unassigned requests of the previous step.

Following the notation of [5], the new Integer Linear Program (fifth step of the

method, see Algorithm 3) consists of the following binary variables

X = {Eij, Xk; V(Ti, vj) edge in RTV-graph, Vrk E R}.

From Eq. (4.1) and Eq. (4.4) the cost terms cij are given by the sum of delays for

all the passengers and requests associated to a trip T, as served by a vehicle vj

cijy= (td - t*) + 1:(td -- t*), (4.5)
rE LpEIy

3

where L denotes the requests in trip T as served by vehicle vj, and _yp j the

passengers of vehicle v3 .

The optimal assignment is obtained by solving the ILP of Algorithm 3. Recall

that: ETV denotes the edges between a trip T and a vehicle v2 in the RTV-graph (i.e.

there exists a route for which vehicle vi can serve trip T within the given constraints

Z); I denotes the trips that can be served by vehicle vj; tRIk denotes the trips
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Algorithm 3 Optimal assignment
1: Initial guess: Egreedy

2: Eoptim := arg min Z cij,j+
X iJiETV

3: + E Ckok + C Xrek
1<k<n n+lkfn+npred

4: s.t. (ij < 1 VV. E V
iZT.3

5: E z: E j + Xk=l1 Vrk ElR+
ZIRk jE-T~j

(combinations of requests) in which request rk can be served; and IT$_ denotes the

vehicles that can serve trip Ti.

After assignment and routing, the vehicles make progress towards their assigned

requests, picking requests (which become passengers) as they reach them, and the set

Rfuture is cleared. Then, this process is repeated at the desired frequency with the

incoming requests. Fig. 4-2 shows a snapshot of the algorithm being executed with

the vehicle making progress towards its assigned requests.

4.2.3 Pairwise Graph of Vehicles and Requests (RV-graph)

The first step of the method is to compute (a) which requests can be pairwise com-

bined, and (b) which vehicles can serve which requests individually, given their current

passengers. This step builds on the idea of share-ability graphs proposed by [37], but

it is not limited to the requests and includes the vehicles at their current state as

well.

Two requests r1 and r2 are connected in the graph if they can potentially be

combined. This is, if a virtual vehicle starting at the origin of one of them could

pick-up and drop-off both requests while satisfying the constraints Z of maximum

waiting time and delay. A cost I (td - t*) can be associated to each edge e(ri, r2 ).
r={1,2}

Likewise, a request r and a vehicle v are connected if the request can be served by

the vehicle while satisfying the constraints Z. This is, if travel(v, r) returns a valid

trip that drops the current passengers of the vehicle and the picked request r within

the specified maximum waiting and delay times. The edge is denoted by e(r, v).
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Limits on the maximum number of edges per node can be imposed, trading-off

optimality at the later stages. Speed-ups such as the ones proposed in T-share [27]

could be employed in this stage to prune the most likely vehicles to pick up a request.

This graph, denoted RV-graph, gives an overview of which requests and vehicles

might be shared. In Figure 4-3 an example of the RV-graph is shown with 90 requests

and 30 vehicles.

Figure 4-3: Example of a pairwise RV-graph for 90 requests (star) and 30 vehicles
(circle) with edges between two requests in dotted red and between a request and
a vehicle in solid green. The maximum waiting time and delay are three and six
minutes in this example.

4.2.4 Graph of Candidate Trips and Pick-ups (RTV-graph)

The second step of the method is to explore the regions of the RV-graph for which

its induced subgraph is complete, or cliques, to find feasible trips. Recall that a trip

T is defined by a set of requests T = {ri,... , rnT }. A trip is feasible if the requests

can be combined, picked-up and dropped-off by some vehicle, while satisfying the

constraints Z.

A request may form part of several feasible trips of varying size, and a trip might

admit several different vehicles for execution. The request-trip-vehicle RTV-graph

contains edges e(r, T), between a request r and a trip T and feasible edges e(T, v),
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between a trip T and a vehicle v. Namely,

3 e(r, T) # r E T (4.6)

3 e(T, v) <-* travel(v, T) = "valid" (4.7)

The algorithm to compute the feasible trips and edges proceeds incrementally in

trip size for each vehicle, as shown in Algorithm 4, where T is the list of feasible

trips. With each node e(T, v), the cost C of the trip and pick-up is stored. For each

vehicle, a timeout can be set after which no more trips are explored. This leads to

suboptimality of the solution, but faster computation, removing longer trips.

Algorithm 4 Generation of RTV-graph
1: T = 0
2: for each vehicle v C V do
3: Tk= 0 Vk E {1, ... V}
4: [Add trips of size one]
5: for e(r, v) edge of RV-graph do
6: 71 <- T = {r}; Add e(r, T) and e(T, v)

7: [Add trips of size two]
8: for all {r1}, {r2} C 71 and e(ri, r2) E RV-graph do
9: if travel(v, {ri, r2 }) = valid then

10: 7 +- T = {ri, r2}; Add e(ri, T) and e(T, v)

11: [Add trips of size k]
12: for k E {3, ... , v} do
13: for all T1, T2 E 7-1 with IT, U T2 I=k do
14: Denote T1 U T2 = {r, ... , rk}

15: if Vi E {1, ... ,k}, {ri,..., rk}\ ri E Tk then
16: if travel(v, T, U T2) = valid then
17: T +- T = T, U T2

18: Add e(ri, T), Vri E T, and e(T, v)

19: T +-- UjEji,...,.7T

Note that steps 7 and 12 of the Algorithm can be efficiently implemented by

employing ordered lists with respect to the request ids. This step can be parallelized

among the vehicles. Lines 5 and 6 adds trips of size one to the RTV-graph. Lines 8

through 10 add trips of size two and lines 12 through 18 add trips of arbitrary size

up to the capacity of the vehicle.

38



4.2.5 Rebalancing

After the assignment, due to fleet imbalances, the set lZkO of unassigned requests

may not be empty, and some empty vehicles Vidle may still by unassigned to any

request. This may occur when the idle vehicles are in areas far away from the area

of current request, and due to the maximum waiting time and delay constraints and

vehicle capacity. Under the assumptions that, (a) ignored requests may wait longer

and request again, (b) it is likely that more requests occur in the same area where all

requests can not be satisfied and (c) there are not enough requests in the neighborhood

of the idle cars, we propose the following approach to rebalance the fleet by moving

only the idle vehicles.

To rebalance the vehicle fleet, after each batch assignment, the vehicles in Vidld

are assigned to requests in Rk, to minimize the sum of travel times, with the constraint

that either all requests or all the vehicles are assigned. For this, we first compute the

travel time -r, of each individual request r - vehicle v pickup and then obtain the

optimum of the assignment via a fast Linear Program described in Algorithm 5. In

this approach, if all requests can be satisfied some vehicles may remain idle, saving

fuel and distance travelled, which is the case at night time.

Algorithm 5 Rebalancing
1: Given: the idle (empty, stopped and unassigned) vehicles Vidle, and the unassigned

requests lZk,.
2: Given: the shortest travel time Tv, for vehicle v E Visdl to pick request r E Rk,.

3: Variables: Y = UVEVidyrkOYv,r. Where y,, E R indicates individual assign-
ments.

4:
5: Zrebalance := arg mn ZVVdleRk Tv,r Yv,r

6: s.t. yVEVidle . Yv,r = min(IVidle I, lZkoI)
7: 0 < Yv, < 1 Vyv,r Y.
8:

9: Where |.1 denotes the number of elements of a set.
10: The solution of this Linear Program is also a solution of the Integer Linear Pro-

gram with Yv,r E {, 1}.

In Algo. 5, the fast linear program for rebalance is formally described. In line

5, we are describe our objective function which is minimizing the travel time costs

39



for assigning an idle vehicle to an unassigned request. Line 6 shows our equality

constraint for the total number of assignments which needs to be equal to lesser of the

number of idle vehicles or number of unassigned requests. The resulting assignment

will either assign all of the idle vehicles or all the unassigned requests.

4.3 Scope and Limitations

This chapter presented an method to automatically pool requests for mobility on

demand into feasible trips and optimally assign vehicles to these trips. Even though

in this thesis is focused on ride-sharing and mobility on demand systems, this method

has a much larger scope and can be potentially applied to other problems in which

you have a number of agents with capacity constraints servicing pick-up and delivery

requests that could be shared and serviced by the same agent. Logistics and package

delivery is a good example of one of these problems where you have trucks able to

carry multiple packages to different delivery locations. Our methodology can also

be applied to content delivery problems on the internet where you have groups of

nodes serving content to clients. Here the passenger is analogous to the content, the

capacity to the node bandwidth, origin location to the content host, and the delivery

location to the client's computer.

Our approach is limited in the sense that we do not fully utilize the vehicle fleet

even though there are requests that go unserviced. This is due to our maximum

waiting time constraints that reduce the complexity of the problem by letting us

compute which requests can be shared. To overcome this problem, we rebalance the

vehicles in the network and predictively position vehicles to anticipate future demand.

Unfortunately, rebalancing and predictive positioning are not wrapped up as part of

the original optimization problem but come only when we have assigned the vehicles.

40



Chapter 5

Results

In this chapter, we examine the performance of the assignment algorithm with and

without predictive positioning. We show that the algorithm is able to significantly

reduce the amount of vehicles needed to service the demand in Manhattan. We also

show that incorporating future requests into the assignment in order to anticipate

future demand helps reduce the waiting time and delay experienced by passengers.

The chapter is structured as follows. Sec. 5.1 describes the performance of the base

algorithm without using predictive positioning. Sec. 5.1.1 analyzes the robustness

of the algorithm to changes in the interval length for pooling and the density of

demand. Sec. 5.2 examines the benefit of anticipating future demand by incorporating

predictive positioning into the algorithm.

5.1 Experiments without predictive positioning

We assess the performance of a MoD fleet controller using the proposed algorithm,

against real data from an arbitrarily chosen representative week, from 00:00 Sunday

5th May 2013 to 23:59 Saturday 11th May 2013, from the publicly available dataset

of taxi trips in Manhattan, New York, USA [18]. This dataset contains for each

day the time and location of all the pick-ups and drop-offs executed by each of the

13,586 active taxis. From this data we extract all the requests (origin and destination

within Manhattan) and consider the time of request equal to the time of pick-up. We
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consider the complete road network of Manhattan (4092 nodes and 9453 edges), with

the travel time on each edge (road segment) of the network give by the daily mean

travel time estimate, computed using the method in [37]. Shortest paths and travel

times between all nodes are then precomputed and stored in a look-up table.

We perform a simulation of the evolution of the taxi fleet, where vehicles are

initialized at midnight at sampled positions from a historical demand distribution

and continuously travel to pick up and drop off passengers to satisfy the real requests

extracted from the dataset. Requests are collected during a time window, 30 seconds

in our experiments, after which they are assigned in batch to the different vehicles.

Past requests are kept in the requests pool until picked-up and can be reassigned if a

better match is found before pick-up. Each day contains between 382,779 (Sunday)

and 460,700 (Friday) requests, and the running pool of requests contains up to 2,000

requests at any given time. The method is robust both with respect to the chosen

time window and the density of demands, as shown in Sec. 5.1.1 in results with a time

window between 10 and 50 seconds, and with half/double the amount of requests

(~220,000/~880,000 per day) in NYC.

We analyze several metrics, with different vehicle fleet sizes (m E {1000, 2000, 3000}

vehicles), vehicle capacities (X E {1, 2, 4, 10} passengers) and maximum waiting times

(9 E{120, 300, 420} seconds). The maximum trip delay A is double the maximum

waiting time and includes both the waiting time w and the inside-the-vehicle travel

delay. Our analysis shows that, thanks to high capacity ride sharing, a reduced fleet

of vehicles (below 25% of the active taxis in NYC) is able to satisfy 99% of the re-

quests with mean waiting time and delay of about 2.5 minutes. All results in this

section include rebalancing of idle vehicles to unassigned requests; experimentally we

observed that the rebalancing step contributed an increase in the service rate of about

20%, see Table 1 in the appendix.

A high resolution version of the accompanying video, which shows the evolution

of the taxi fleet in NYC for a subset of experiments, is available at https: //youtu.

be/EzWFu7fMDO.

High vehicle occupancy is achieved in times of high demand, with a large number
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of the trips being shared. In Fig. 4-2 we observe that many vehicles are located in

mid-Manhattan and contain three/four passengers. Fig. 5-1 shows that the occupancy

depends on the fleet size, capacity and the maximum waiting/delay time. Lower fleet

size, larger capacity and longer waiting/delay times increase the possibilities for ride

sharing and lead to higher mean vehicle occupancy. In Fig. 5-2 we observe that

during peak hours a small fleet of high capacity vehicles does indeed operate at high

occupancy. For 1000 vehicles of capacity ten this is about 10% of the fleet with 8

or more passengers, 40% with 6 or more, 80% with 3 or more and 98% with 1 or

more. For 2000 vehicles of capacity four, more than 70% of them have at least three

passengers at 8pm.

We observe that the value of fleets with larger passenger capacities increases with

larger Q and A values, as expected, since passengers are willing to incur a larger

personal time penalty. High capacity vehicles are also more important when the fleet
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Time series over a week for fleet sizes of
1000 and 3000 vehicles of varying capacity and maximum waiting time. At night most
vehicles wait and during rush hour the mean occupancy decreases as the fleet gets
larger. Larger maximum waiting time enables more opportunities for ride sharing.
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size is smaller, as seating capacity might be a bottleneck with smaller fleets. For

instance, see Fig. 5-5(a), a fleet of 1000 vehicles with capacity 10 can satisfy almost

80% of the requests with Q = 420s, compared to below 30% for a single rider taxi, for

a net gain of over 50%. However. with a larger fleet of 3000 vehicles and Q = 120s,

the benefit is only about 15%. Interestingly, if longer waiting times and delays are

allowed, Q = 420s, a fleet of 3000 vehicles of capacity 2, 4 and 10 could serve 94%,

98% and 99% of the demand. To achieve 98% service rate, a fleet of just 2000 vehicles

of capacity 10 was required. This represents a reduction of the fleet size to 15% of

the active taxi fleet in NYC.

As expected, the in-car travel delay does increase with the increase in vehicle
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(a) Fleet of 1000 vehicles of capacity ten; Q = 7 min; Friday
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50%'' N. Pass: 1
25% AV 0Picking Up

0% 010Rebalancing
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Hour 0 Waiting
(b Fleet of 2000 vehicles of capacity four; Q = 5 min; Friday

Figure 5-2: Percentage of vehicles in each state (waiting, rebalancing and number of
passengers) for a representative day (Friday 00h to 24h). (a) A fleet of 1000 vehicles
of capacity ten with many opportunities for ride sharing in high capacity vehicles.
(b) A fleet of 2000 vehicles of capacity four, showing the utility of full vehicle sharing.
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Figure 5-3: Comparison of several performance metrics for varying vehicle capacity
(1, 2, 4 and 10 passenger, shown with lines). Each subplot is for a fleet size of 1000,
2000 and 3000 vehicles and the coordinate axis show increasing maximum waiting
time Q of 2, 5 and 7 minutes.

capacity, see Fig. 5-5(b). Nonetheless, that increase seems practically negligible -

well below 100 s - once ride-sharing is allowed. Furthermore, the mean waiting time

does in fact decrease as vehicle capacity is increased, see Fig. 5-5(c). For a fleet size

of 1000 vehicles and A = 420s, high capacity vehicles not only improved the service

rate but also achieved a reduction in mean waiting time of over 100 s, which partially

offsets the increased in-car delay. In particular, we observe that 3000 vehicles of

capacity 2 and 4 could serve 94% and 98% of the demand with a mean waiting time

of 3.2 and 2.7 minutes, and a mean delay of 1.5 min and 2.3 min, respectively. To

achieve 98% service rate, with comparable waiting time (2.8 min) and delay (3.5 min)
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a fleet of just 2000 vehicles of capacity 10 was required.

We also observed that increasing the vehicle capacity not only increases the service

rate, but it also reduces the mean distance traveled by the vehicles in the fleet, see

Fig. 5-5(d), potentially leading to a reduction in costs, congestion and pollution. Our

online method results on about 90% shared rides, which slightly increases with A and

decreases with the fleet size, see Fig. 5-5(e). Finally, we note that our approach is

real-time capable, see Fig. 5-5(f). In our setup, for Q < 300s, the method is executed

in less that 30s, which is the period for which requests are collected.

5.1.1 Robustness analysis

In this section we present results to confirm the robustness of the proposed method

with respect to the length of the time window and the number - or density - of

requests.

In each figure we analyze (a) service rate (percentage of requests serviced), (b)

average in car delay 6 -w, (c) average waiting time w, (d) average distance traveled by

each vehicle during a single day, (e) percentage of shared rides (number of passengers

who shared a ride, divided by the total number of picked-up passengers) and (f)

average computational time for a 30 seconds iteration of the method, in a 24 core

2.5GHz machine, including computation of the RV-graph, computation of the RTV-

graph, ILP assignment, rebalancing and data writing (higher levels of parallelization

would drastically reduce this computational time).

Interval length

In Fig. 5-4 we show robustness results with respect to the interval length, this is, the

period of time for which requests are aggregated before a new assignment to the fleet

of vehicles. We compare different interval sizes of 10 s, 20 s, 30 s, 40 s and 50 seconds.

Results are shown for a nominal case where we employ a fleet of 2000 vehicles of

capacity 4 and a maximum waiting time A of 5 minutes. The points shown represent

the average over a week of data in Manhattan with about 3 million requests.
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In the experimental analysis of the effects of ride sharing shown in the previous

section, we employed a time window of 30 seconds, which we considered reasonable

when taking into account the computation cost of the approach and the time a person

would be willing to wait for receiving an assignment.

In Fig. 5-4 we observe that the method is robust with respect to the time interval:

the service rate and percentage of shared rides is mostly unchanged, the mean in-

car travel delay slightly decreases with larger time intervals (better assignments are

achieved), while both the mean waiting time and mean travelled distance by each

vehicle do increase slightly with larger time intervals (the user have to wait longer to

receive an assignment). The computational time of the method does increase with

the size of the interval, since more requests are jointly assigned.
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Figure 5-4: Comparison of several performance metrics for varying interval size for

the method, 10, 20, 30, 40 and 50 seconds. Results are shown for a nominal case where

we employ a fleet of 2000 vehicles of capacity 4 and a maximum waiting time A of 5

minutes. The points shown represent the average over a week of data in Manhattan

with about 3 million requests.
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Density of demand

In Fig. 5-5 we show robustness results with respect to the density of demand, this

is, the number of travel requests. We compare three different densities, the nominal

one of Manhattan with about 3 million requests per week, half of the demand (xO.5)

and double the demand (x2). To obtain half of the requests (xO.5) we sorted all the

requests of each day by time and removed every odd line, this leads to about 1.5

million requests per week, or 200,000 per day. To obtain double the requests (x2),

we cumulated the requests of the same day (e.g. Monday) for two consecutive weeks,

this leads to about 6 million requests per week, or 850,000 per day. Results are shown

for two nominal cases where we employ (i) a fleet of 2000 vehicles of capacity 4 and

a maximum waiting time A of 5 minutes, and (ii) the same fleet but of capacity 1

(standard taxis). The points shown represent the average over a week of data in

Manhattan.

We observe that the approach is robust with the decrease and increase in the

number of requests, and that, as expected that performance metrics improve with a

decrease in the number of requests.
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Figure 5-5: Comparison of several performance metrics for varying density of requests.
The nominal case [x1] is for a simulation with the real requests in Manhattan, of about
3 million per week. The case [x0.5] contains only half of the requests, about 1.5 million
per week. And the case [x2] contains double the number of requests, about 6 million
per week, or about 800,000 per day. Results are shown for two nominal cases where
we employ (i) a fleet of 2000 vehicles of capacity 4 and a maximum waiting time A
of 5 minutes, and (ii) the same fleet but of capacity 1 (standard taxis). The points
shown represent the average over a week of data in Manhattan.
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5.2 Experiments with predictive positioning

We assess the performance of the system with a fleet of 1000, 2000, and 3000 vehicles

of capacity two and four passengers. We used a fixed maximum waiting time of

Q = 5 minutes and a maximum delay of A = 10 minutes. The minimum inter-station

distance used for the region discretization was 150 meters. For the experiments, we

use one week of historical taxi trip data from 00:00 on Sunday May 5th, 2013 to

23:59 on Saturday May 11th, 2013 to assess the performance of our algorithm. This

data comes from a publicly available source of all taxi trips in Manhattan, New York,

USA [18]. This dataset contains the geographical coordinates for the origins and

destinations along with the associated pick up and drop off dates and times for all

trips in executed by the 13,586 active taxis in New York City. From this data we

consider the request and pick up time to be equal since the time for the request is

not publicly available.

In order to find routes for the taxis to execute, we consider the entire road network

of Manhattan. We estimate the travel time for each road segment using the daily

mean travel time computed by the method in [37]. Different travel times were used

for weekdays, Saturday, and Sunday. The shortest paths using these travel times were

precomputed between every two intersections in the road network and were stored in

a look-up table.

We initialize the vehicles each day at midnight at sampled positions from the

demand distribution. We then simulate the execution of the fleet by issuing the

requests obtained from the historical taxi dataset for the given day. The requests are

collected within a 30 second time window after which they are assigned in batch to

different vehicles using our algorithm of Sec. 4.2. In each time interval, or assignment

step, we sample future requests up to 30 minutes in the future. We vary the number of

predictions by using 0, 200, and 400 sampled predicted requests (per interval). These

predicted requests enter the assignment problem of Algorithm 3, but are removed

immediately afterwards, with new future requests being sampled in the following

step. They do affect the assignment and routing at that time.
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A pool of requests are kept until they have been picked up in case they can be

reassigned to a better match. The number of requests in a single day varies from

382,779 on Sunday to 460,700 on Friday.

5.2.1 Results

We collect several metrics that characterize the system, including the service rate, in-

car travel delay, waiting time, average distance traveled by the vehicles, percentage

of shared rides, and the computational time. We use the same parameters as in [5],

but with the additional sampled requests and cost term. These metrics are plotted

for vehicle capacities two and four side by side in Fig. 5-6.

We observe that the service rate (number of requests serviced) remains approxi-

mately constant independently of the number of sampled requests, and it is close to

100% for 3,000 vehicles of capacity 4 (there are 13,000 active taxis per day in Man-

hattan). By sampling predicted requests we are able to reduce the mean in-car travel

delay by 1.5 minutes and the mean waiting time by around 1 minute, with respect to

the reactive approach.

Particularly, for the in-car travel delay and the waiting time, we see that there is

a large benefit in using rebalancing and then a similar benefit by sampling predicted

requests, see Fig.5-6-b) and -c). However, increasing the number of samples from

200 to 400 only marginally decreased the in-car travel delay by 3.4 seconds, when

using a four passenger vehicle capacity and 3000 vehicles. It is likely that this small

improvement is due to the time-outs introduced for real-time performance, which

limit the benefit of additional samples. We believe that the increase would be larger

if the algorithm was run to optimality.

We observe a trade-off between operational cost and performance, since the travel

distance by the vehicles and the computational time of the approach do increase

with the number of samples. The increase in travel distance arises from the fact that

vehicles are routed towards predicted requests which may or may not appear in reality.

This reduces mean waiting time and mean delay but does increase the miles traveled

by each vehicle. The increase in computational time is due to the larger number of
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requests that enter the routing and assignment problem. Furthermore, since they

are in the future, they can be combined with many different trips, which leads to
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a potentially large number of feasible trips to be accounted for in the assignment.

Nonetheless, the approach can be parallelized and would benefit from the large parallel

servers available for fleet management companies.

To sum up, our experimental study confirms that the performance of a mobility-

on-demand system with ride-sharing via our algorithm improves with knowledge of

future demand. Yet, at a higher operational cost. For theoretical analysis of the

approach, please refer to [5]
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Chapter 6

Conclusion

This thesis showcases a reactive anytime optimal method with scalable real-time

performance for assigning passenger requests to a fleet of vehicles of varying capacity.

We quantify experimentally the trade-off between fleet size, capacity, waiting time,

travel delay, and. operational costs for low and medium capacity vehicles, such as

taxis or vans in a large scale city dataset. Under the assumption of one person per

ride, we show that 98% of the taxi rides currently served by over 13000 taxis could

be served with just 3000 taxis of capacity four. We observe that vehicle capacity of

two is sufficient for ride sharing when a small trip delay of two minutes is imposed.

If a maximum delay of five minutes or more (comparable to the time spent retrieving

a car from parking) is allowed, higher capacity vehicles 1) increase the service rate

significantly, 2) reduce the waiting time, and 3) reduce the distance travelled by

each vehicle. Our analysis shows that a ride-pooling service can provide a substantial

improvement in urban transportation systems and that the system parameters such as

vehicle capacity and fleet size depend on quality of service requirements and demand.

We also show that we can utilize historical taxi trip data to anticipate future demand

and pro-actively position vehicles to achieve a lower waiting time and travel delay.

Our algorithm is slightly limited because it does not fully utilize the vehicle fleet

even when there are unassigned requests. This is due to our waiting time constraints

which are needed to compute the which pairwise shareability graph. Despite this

limitation, we are still able to achieve the high service rate discussed before. We
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also show that we are able to rebalance the idle vehicles to reduce the effect of this

limitation and improve the performance of the algorithm.

This work has far reaching implications for practical applications. Since less ve-

hicles are needed to service most of the taxi demand due to optimal assignment and

ride-sharing, taxi and mobility on demand companies can reduce their active vehicle

fleet. This could reduce congestion and limit traffic on the road. Similarly, if there

are less cars on the road, and these cars have a higher utilization, the amount of emis-

sions per capita could also decrease. Reducing the size of a vehicle fleet for a MoD

company can also cut their costs which may reduce the price of using a ride-sharing

vehicle. This could drastically reshape the landscape of urban transit as ride-sharing

and mobility on demand could become another modality of public transport. This

would increase the connectivity of city and make regions where there may not be

great public transit accessible due to the flexibility of automotive transport. Also,

since the system we have developed is portable to cities other than New York, ur-

ban planners could use it to simulate how ride-sharing can affect the mobility of a

neighbourhood. This can effect the urban landscape and give planners a better under-

standing how their city would get around. Likewise, if there was large scale adoption

of ride-sharing enabled mobility on demand systems, limited congestion would cause

urban planners to rethink how we utilize the space in our cities. We could less space

dedicated to cars, and more space dedicated to people, to cafes, to restaurants. We

could have dense urban centers with more plazas, more room to move, and more room

to breath. We could have more room for businesses and parks. Enabling intelligent

on-demand high-capacity ride-sharing can unlock a world of possibilities that would

have an immediate impact on the way we commute, where we live, and the areas we

visit.

6.1 Lessons Learned

From working on this project, I have learned a great deal about constrained opti-

mization and techniques to transform a very large, seemingly irreducible problem
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into something that can be more simply formulated and solved using well known,

mathematically rigorous methods. On a more practical side, I learned a lot about

dealing with a vast amount of data. Specifically, each year of historical taxi data

included over 100 million trips (165 million in 2013, the year we used). I had to learn

quickly that my normal pipeline for data processing would not be effective for such a

large amount of data. A great deal of effort was spent figuring out how to process this

data in a timely manner. Similarly on a practical side, I learned a lot about creating

plots to convey information effectively. I am particularly fond of Fig. 5-2 since it was

an interesting way to visualize the vehicular capacity all at once as a function of time.

I am delighted to be a part of this project and hope to apply our ride-sharing method

to multiple different problem domains.

6.2 Future work

In the future we would like to investigate a more sophisticated method for rebal-

ancing idle vehicles that is able to react more quickly to anticipated changes in taxi

demand. Currently our rebalancing method sends vehicles to areas where passengers

went unserviced in the hope that demand in that area would increase again. Though

we see great improvement in the all our metrics including, travel delay, waiting time,

and serviced rate, we are interested in developing a more mathematically grounded

approach with guarantees. We also would like to develop a new path finding algo-

rithm that is able to optimally route vehicles through high demand regions whilst

balancing congestion in crucial areas in the city. Our current method is stochastic

and includes sampled future requests from our demand probability distribution to

bias the path towards area of high demand, however we are interested in developing

a less stochastic approach to that is able to utilize more knowledge about patterns

in demand fluctuation to route the vehicles. Improving our prediction capabilities

by utilizing novel machine learning techniques to enhance the responsiveness and ro-

bustness of our predictions is also being investigated as well as its implications in

enhancing system efficiency.
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We believe our approach is not only suited for assigning passengers to ride-sharing

vehicles but also cargo to trucks. We are interested in investigating how our approach

can be applied to logistics and package delivery. Package carriers usually carry mul-

tiple items with different pick up and drop off locations along with various time

constraints. We believe that our algorithm could potentially improve the efficiency

of package delivery in the future.
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Appendix A: Tabulated Results

Vehicles Capacity Q [s] A [s] Service Rate Mean Waiting [s] Mean In-Car Delay [s] Mean Passengers Shared Rate Mean Travel [km]
1000 1 120 240 0.262978 81.5581 0 0.768697 0 182.027
1000 1 300 600 0.283784 234.689 0 0.835099 0 203.598
1000 1 420 840 0.287732 320.615 0 0.847364 0 207.773
1000 2 120 240 0.36998 76.3792 44.7869 1.16233 0.907206 185.032
1000 2 300 600 0.413232 219.236 134.524 1.50662 0.957515 196.476
1000 2 420 840 0.412036 325.386 171.178 1.5667 0.962714 196.663
1000 4 120 240 0.433255 73.5066 52.5421 1.37394 0.905983 185.513
1000 4 n.R. 300 600 0.373123 183.438 195.725 1.48346 0.942783 117.326
1000 4 300 600 0.580854 176.804 188.716 2.30771 0.943285 193.919
1000 4 420 840 0.603213 258.585 258.446 2.60321 0.950714 190.877
1000 10 120 240 0.440009 73.2917 52.804 1.39497 0.902917 185.683
1000 10 300 600 0.669158 157.273 197.282 2.68934 0.905023 194.029
1000 10 420 840 0.75182 203.156 287.461 3.37339 0.899895 189.824
2000 1 120 240 0.481458 77.7428 0 0.700887 0 154.727
2000 1 300 600 0.524316 220.625 0 0.769403 0 175.176
2000 1 420 840 0.532492 289.226 0 0.782802 0 179.546
2000 2 120 240 0.645492 73.3992 37.0945 1.00548 0.87967 155.225
2000 2 300 600 0.745878 201.348 121.656 1.33669 0.955198 164.91
2000 2 420 840 0.753914 288.845 153.138 1.40076 0.96388 165.58
2000 4 120 240 0.709123 71.3443 42.9121 1.11723 0.877091 154.697
2000 4 n.R. 300 600 0.625829 173.514 191.711 1.23814 0.940455 101.356
2000 4 300 600 0.911007 153.465 151.686 1.70709 0.925342 157.391
2000 4 420 840 0.937389 197.158 197.389 1.86932 0.931588 155.629
2000 10 120 240 0.713112 71.2705 43.1219 1.12366 0.875883 154.666
2000 10 300 600 0.944974 143.459 156.101 1.78505 0.899875 153.817
2000 10 420 840 0.977252 171.2 210.808 1.98942 0.895912 148.717
3000 1 120 240 0.652067 72.4532 0 0.63218 0 133.714
3000 1 300 600 0.734434 195.736 0 0.71695 0 156.49
3000 1 420 840 0.744333 251.324 0 0.727727 0 160.412
3000 2 120 240 0.794154 69.3053 28.0659 0.812734 0.798371 127.736
3000 2 300 600 0.929443 158.198 76.3427 1.02932 0.903125 139.298
3000 2 420 840 0.942151 191.746 87.6798 1.06026 0.913134 140.334
3000 4 120 240 0.829284 68.0709 33.162 0.857788 0.806376 124.355
3000 4 n.R. 300 600 0.797301 157.168 161.856 1.00192 0.92347 93.0818
3000 4 300 600 0.969812 136.944 112.643 1.14426 0.895421 119.019
3000 4 420 840 0.979149 162.45 137.158 1.20086 0.902623 117.996
3000 10 120 240 0.830674 68.0008 33.3181 0.859327 0.806087 124.147
3000 10 300 600 0.973502 133.96 127.549 1.17848 0.885291 112.411
3000 10 420 840 0.985835 154.013 164.524 1.26653 0.887157 110.053

Table 1: Average values of several performance metrics for ride sharing over a whole
week with over 3 million requests. All experiments include rebalancing except for
those indicated with (n.R.) next to the vehicle capacity. 92 is the maximum waiting
time and A the maxim delay, including both in-car delay and waiting time. Service
and shared rates are in per one.
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