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Intensive Working Memory Training Produces Functional
Changes in Large-scale Frontoparietal Networks

Todd W. Thompson1,2*, Michael L. Waskom1,3*, and John D. E. Gabrieli1

Abstract

■ Working memory is central to human cognition, and inten-
sive cognitive training has been shown to expand working
memory capacity in a given domain. It remains unknown, how-
ever, how the neural systems that support working memory are
altered through intensive training to enable the expansion of
working memory capacity. We used fMRI to measure plasticity
in activations associated with complex working memory before
and after 20 days of training. Healthy young adults were ran-
domly assigned to train on either a dual n-back working mem-
ory task or a demanding visuospatial attention task. Training
resulted in substantial and task-specific expansion of dual
n-back abilities accompanied by changes in the relationship be-
tween working memory load and activation. Training differ-

entially affected activations in two large-scale frontoparietal
networks thought to underlie working memory: the executive
control network and the dorsal attention network. Activations
in both networks linearly scaled with working memory load
before training, but training dissociated the role of the two
networks and eliminated this relationship in the executive con-
trol network. Load-dependent functional connectivity both
within and between these two networks increased following
training, and the magnitudes of increased connectivity were
positively correlated with improvements in task performance.
These results provide insight into the adaptive neural systems
that underlie large gains in working memory capacity through
training. ■

INTRODUCTION

Effectively using working memory (WM) allows humans
to maintain and manipulate goal-relevant information in
the face of interference (Baddeley, 1992). WM capacity
(WMC), the amount of information that an individual
can hold in WM, is associated with performance on a
wide range of cognitive tasks, including reasoning, prob-
lem solving, and reading comprehension (Engle, Tuholski,
Laughlin, & Conway, 1999; Daneman & Carpenter, 1980),
as well as academic performance (e.g., Finn et al., 2014;
Gathercole, Pickering, Knight, & Stegmann, 2004). Although
WMC has traditionally been conceptualized as a trait fixed
before young adulthood, there is evidence that WMC can
be increased in young adults who undergo adaptive WM
training (reviewed in Klingberg, 2010). Furthermore, it
has been suggested that gains inWM trainingmight transfer
to gains in broader reasoning abilities (Schweizer, Grahn,
Hampshire, Mobbs, & Dalgleish, 2013; Jaeggi, Buschkuehl,
Jonides, & Perrig, 2008). Although evidence for such “far
transfer” after WM training is mixed (Redick et al., 2013;
Thompson et al., 2013), participants consistently display
impressive gains on the training task itself, typically dou-
bling or tripling pretraining levels of performance (Kundu,
Sutterer, Emrich, & Postle, 2013; Redick et al., 2013;

Thompson et al., 2013; Jaeggi et al., 2008). Furthermore,
these gains are largely sustained over 6 months without
further training (Thompson et al., 2013). Despite these
observations, the functional brain plasticity that supports
such large and enduring task-specific improvements follow-
ing intensive long-term training remains poorly understood.

Although cognitive training has provoked substantial
interest, previous fMRI studies of brain plasticity asso-
ciated with WM training have been limited in two impor-
tant ways: absence of an active control condition and a
precise definition of which neural systems exhibit func-
tional plasticity associated with expanded WM. Some
studies have shown that short-term practice (Landau,
Garavan, Schumacher, &D’Esposito, 2007; Kelly &Garavan,
2005; Landau, Schumacher,Garavan,Druzgal, &D’Esposito,
2004) or longer-term practice with a nonadaptive task
(Hempel et al., 2004) can modify the relationship between
WM demands and frontoparietal activation. Short-term
nonadaptive training, however, does not produce large
or enduring growth in WMC (Klingberg, 2010). Longer-
term and adaptive WM training studies have reported dis-
parate results after training. An early finding reported that
increased WMC was associated with increased fronto-
parietal activation (Olesen, Westerberg, & Klingberg,
2004), whereas most subsequent training studies have
observed decreased frontoparietal activation (Schweizer
et al., 2013; Schneiders et al., 2012; Schneiders, Opitz,
Krick, & Mecklinger, 2011).
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Critically, none of these fMRI studies included an active
control condition in which a control group performed an
alternative adaptive cognitive training, so it is unknown
whether previously reported training effects were specific
to WM training or if the neural changes would have been
seen with any intensive training task, regardless of cogni-
tive domain. EEG studies with active control conditions
have found electrophysiological changes in electrodes
over frontoparietal regions after WM training, including
increased network connectivity and increased power in
theta bands during encoding (Kundu et al., 2013; Langer,
von Bastian, Wirz, Oberauer, & Jäncke, 2013), but relative
to fMRI, these EEG measures offer limited neuroanatom-
ical specificity regarding the location of those changes.

Indeed, little is known about the mapping between the
activation changes that accompany WMC expansion and
the specific neural systems that support WM. Substantial
neuroimaging evidence indicates that both dorsolateral
pFC and posterior parietal cortex support WM through
mechanisms of persistent activation (Curtis & D’Esposito,
2003; Cohen et al., 1997; Smith & Jonides, 1997). Activa-
tion in these regions parametrically scales with WM load
or the amount of information that must be maintained
(Braver et al., 1997; reviewed in Owen, McMillan, Laird, &
Bullmore, 2005; Wager & Smith, 2003). Load-dependent
activation further correlates with individual differences
in WMC (McNab & Klingberg, 2008).

WM load-dependent effects on the brain are, however,
spatially expansive and likely engage multiple component
subsystems (Schweizer et al., 2013; Owen et al., 2005).
In particular, frontoparietal association cortex contains
two distinct large-scale networks associated with WM:
the “executive control network” (ECN; identified as the
“frontoparietal network” in Yeo et al., 2011, but renamed
here for clarity), comprising dorsolateral and dorsomedial
frontal nodes and a parietal node centered around the
intraparietal sulcus, and the “dorsal attention network”
(DAN), comprising the human FEFs and topographically
mapped areas in the superior parietal lobe (Power et al.,
2011; Yeo et al., 2011; Vincent, Kahn, Snyder, Raichle, &
Buckner, 2008; Corbetta & Shulman, 2002). It is unknown
as to whether training-related plasticity specifically occurs
in one or both of these frontoparietal systems.

Here, we examined changes in neural function associ-
ated with large, enduring, and specific expansions of
WMC in a randomized controlled trial. Two groups of
young adults, matched for age, IQ, and gender, were ran-
domly assigned to one of two adaptive training programs
for 4 weeks (20 sessions). One group performed WM
training on a dual n-back task (Jaeggi et al., 2008) and
the other group (serving as an active control) performed
a similarly intensive visuospatial training task involving
multiple object tracking (MOT; Pylyshyn & Storm, 1988).
A third group (serving as a passive control) performed
the n-back task with the same pre–post interval, but
without any training. Both training groups exhibited large
and enduring task-specific gains that did not transfer be-

tween the two training tasks, whereas the passive group
showed no improvement on either task (Thompson
et al., 2013).
We examined the functional changes that were asso-

ciated with the improvement in WM performance, mea-
sured both across the whole brain and specifically
within the two major frontoparietal networks. Our an-
alyses considered changes in both the magnitude of
activation associated with WM as well as changes in func-
tional connectivity within and between the two large-
scale cortical networks. Finally, we assessed how the
observed neural changes correlated with changes in task
performance.

METHODS

Participants, Recruitment, and Group Assignment

Participants were recruited through web advertisements,
physical flyers, and e-mail to the Northeastern University
and Tufts University mailing lists. They were required to
be adults between the ages of 18 and 45 years, right-
handed, in good health, and not taking psychoactive
medication. All participants provided informed written
consent before participation. This study was approved
by the Massachusetts Institute of Technology institutional
review board (PI: Leigh Firn).
After recruitment, participants underwent pretrain-

ing behavioral testing to determine group assignment.
Participants were initially sorted into one of two active
training groups. Each participant was paired with another
participant based on age, sex, and score on a preselected
set of 18 of the 36 problems in the Raven’s Advanced Pro-
gressive Matrices (RAPM; Raven, Court, & Raven, 1998), as
described in Thompson et al. (2013). Each member of that
pair was then randomly assigned to either the n-back or
the MOT training group. MOT training was selected be-
cause the intensity and magnitude of task-specific learning
were comparable to n-back training in a pilot study
(Thompson, Gabrieli, & Alvarez, 2010), but gains in MOT
performance did not transfer to other WM or executive
function measures.
To control for performance improvements because of

simple test–retest practice, we recruited a third matched
passive control group that was examined twice with
the same behavioral and neuroimaging measures and
with the same interval between sessions as the train-
ing groups, but without any training. This group was
recruited separately, but in the same fashion, and
matched to a training pair by sex and initial RAPM score.
Here, we use this passive control group to define inde-
pendent ROIs for functional connectivity analyses, de-
scribed below. The three groups did not differ significantly
by gender [χ2 (1,n=37)= .21, p> .65], RAPM scores [t(1,
37) < 1, p> .48], or on the full IQ score from theWechsler
Abbreviated Scale of Intelligence (Wechsler, 1999), ad-
ministered as part of the pretraining battery [t(1, 37) < 1,
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p > .97]. The passive control group averaged 1.8 years
older than the two active training groups [F(2, 55) =
3.37, p < .05] (Table 1).
The training-based analyses reported here come from

the 39 active training participants. Of those additionally
recruited, 19 participants were assigned to the passive
control group, and 14 potential participants either
dropped out of the study or were excluded after initial
scanning was completed. Two participants assigned to
the dual n-back condition voluntarily withdrew (one after
5 days of training, the other after 9 days); no other par-
ticipant had begun training when they were excluded or
withdrew. The remaining potential participants were
excluded for various logistical reasons, including difficul-
ties aligning schedules with the experimenters, claustro-
phobia or excessive movement in fMRI scanning sessions,
or repeatedly skipping pretraining appointments.
Participants were paid $20 per training session, with an

additional weekly $20 bonus for completing all five train-
ing sessions in that week. Participants were paid $20 per
hour for the initial and final behavioral testing sessions
(approximately 3 hr each) and $30 per hour for neuro-
imaging sessions (2 hr pre- and posttraining of fMRI,
1 hr of electroencephalography). Total compensation for
each participant completing the experiment was approxi-
mately $900.

Overall Experiment Design

After recruitment, participants completed baseline behav-
ioral testing (described in Thompson et al., 2013) and a
pretraining imaging session that included structural
scans for anatomical registration and four runs of the
dual n-back task described below. They then completed
20 sessions of adaptive training on either the n-back or
MOT task while at the Massachusetts Institute of Tech-
nology campus. In the dual n-back task, successful perfor-
mance increased the “n” in the n-back, whereas successful
performance in the MOT training task increased the
speed of the tracked objects but did not affect the number
of objects to be tracked. After training was completed,
behavioral testing and posttraining imaging were adminis-
tered as quickly as possible. The average number of days
between the last training session and posttraining testing
was 4.3 days, with a minimum of 0 days and maximum of

14 days. This time was not significantly different between
the two training groups [t(37) = 0.2, p > .8]).

Dual n-back Functional Imaging Task Description

Implementation of the adaptive dual n-back training task
followed Jaeggi et al. (2008). An auditory letter and a
visual square were simultaneously presented for 500 msec,
followed by a 2500-msec response period. Letters were
chosen from the consonants B, F, H, J, M, Q, R, and W
to maximize auditory discriminability between letters.
Squares were presented at one of eight positions evenly
spaced around the periphery of the screen. Participants
responded when one or both of the current stimuli matched
a stimulus presented n trials ago. In the “0-back” condition,
participants were instructed to respond to a spatial target
in the top right corner as a visual match or to the letter
“Q” as an auditory match. To ensure that each participant
fully understood the task, at least one block of each diffi-
culty level was practiced outside the scanner, and partici-
pants were allowed to repeat this practice task as
necessary until they reported full understanding of the
instructions. In addition to the task practice before both
of the pre- and postscanning sessions, participants had
completed a behavioral dual n-back testing session in
the days prior to each scan, which lasted approximately
an hour, and measured baseline performance on dual
n-back loads of 1–6. This process familiarized participants
with the task before scanning and ensured that the MOT
group remained familiar with the task after the training
period.

Each block in the imaging version of the task pre-
sented 10 trials, containing two auditory targets and two
visual targets, with no trials where both auditory and
visual stimuli matched. To ensure a consistent level of
difficulty between blocks of a given load, trials that would
have matched either the n + 1 or n − 1 stimulus (“lure
trials”) were not included. During each block, the current
load was indicated at a central fixation point along with
additional text labels showing the mapping between the
two response buttons and “Audio” or “Video” match
types.

Responses were made using a scanner-compatible
button box that the participant held in the right hand.
A press of the first button, under the participant’s index

Table 1. Participant Demographics

Group Total n (No. of Women) Age,a yr IQa RAPMa

MOT 19 (11) 21.3 (2.3) 120.7 (7.0) 13.8 (2.3)

n-back 20 (13) 21.2 (2.0) 120.9 (10.8) 13.4 (2.1)

Passive control 19 (12) 23.1 (3.3) 117.6 (7.4) 13.3 (2.2)

IQ measure is the Full 4 IQ measure from the Wechsler Abbreviated Scale of Intelligence. RAPM measure reflects the number of problems solved on
half of the RAPM (see Thompson et al., 2013, for RAPM details).

aStandard deviation in brackets.
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finger, indicated auditory matches, and a press of the
second button, under the middle finger, indicated spatial
matches. No response was required on trials that did
not match the target. Participants were allowed the entire
3 sec following the onset of stimulus presentation to
make a response.

Each dual n-back run consisted of eight 30-sec blocks
of the dual n-back task, with two blocks of each load from
0-back to 3-back. The order of the blocks was counter-
balanced across the four total runs. Each block was pre-
ceded by a 3-sec instruction screen indicating the n-back
load for the upcoming block and was followed by 16 sec
of rest to let the hemodynamic response return to base-
line. The total acquisition time for each run was 6 min
and 36 sec. Each participant completed four runs of the
dual n-back task before and after training. In summary,
there were 10 trials per block and eight blocks for each
load, equating to 80 total stimulus presentations at each
load. In four cases, scanning delays prevented acquisition
of the last run. This occurred once in a pretraining n-back
participant, twice in pretraining MOT participants, and
once in a posttraining MOT participant.

MRI Data Acquisition

Whole-brain imaging was performed on a 3T Siemens
Tim Trio MRI system using a 32-channel head coil. Func-
tional images were obtained using a standard T2*-weighted
echo-planar pulse sequence (repetition time = 2 sec,
echo time = 30 msec, flip angle = 90°, 32 slices, 3.0 ×
3.0 × 3.1 mm voxels, 20% slice gap, axial interleaved ac-
quisition). Prospective adaptive motion correction was
employed to minimize the effects of participant motion.
For steady state magnetization, 8 sec of dummy scans were
collected at the beginning of each run, before the experi-
mental paradigm began. Additionally, a whole-brain high-
resolution T1-weighted multiecho MP-RAGE anatomical
volume was acquired for purposes of cortical surface
modeling, registration to common anatomical space, and
across-run alignment (repetition time = 2.5 sec, echo
time=1.64, 3.5, 5.36, and 7.22msec, 176 slices, 2×GRAPPA
acceleration, field of view = 256 mm). Visual stimuli were
projected onto a screen at the back of the scanner and
viewed through a mirror attached to the head coil.

Data Analysis

In-scanner dual n-back performance. To control for
response biases between participants, performance was
characterized as hit rate − false alarm rate within each
level from 0-back to 3-back. Repeated-measures ANOVAs
were evaluated on this dependent variable with Training
group as a between-subject factor and Task load and Ses-
sion (pre- or posttraining) as within-subject factors.

Functional imaging analysis procedure. Functional
imaging data were processed with a workflow of FSL

(Smith et al., 2004) and Freesurfer tools (Dale, Fischl,
& Sereno, 1999) implemented in Nipype (Gorgolewski
et al., 2011). Each time series was first realigned to its
middle volume using normalized correlation optimization
and cubic spline interpolation. Next, a mask of brain voxels
was estimated to constrain later procedures. Images with
artifacts were automatically identified as those frames on
which total displacement relative to the previous frame
exceeded 1 mm or where the average intensity within
the brain mask deviated from the runmean by greater than
three standard deviations. The functional data were spa-
tially smoothed with a 6-mm FWHM kernel using the
SUSAN algorithm from FSL, which restricts smoothing to
voxels of similar intensity (Smith & Brady, 1997). Finally,
the time series data were high-pass filtered by fitting and
removing Gaussian-weighted running lines with an effec-
tive cycle cutoff of 160 sec.
Separately, the T1-weighted anatomical volume was

processed using Freesurfer to segment the gray–white
matter boundary and construct tessellated meshes repre-
senting the cortical surface (Dale et al., 1999). Functional
data from each run were then registered to the anatom-
ical volume with a six-degree-of-freedom rigid alignment
optimizing a boundary-based cost function (Greve &
Fischl, 2009). The anatomical image was separately nor-
malized to MNI152 space using FSL’s nonlinear registration
algorithm (Jenkinson, Beckmann, Behrens, Woolrich, &
Smith, 2012). Following these steps, the linear functional-
to-anatomical transformation matrix was combined with
the nonlinear anatomical normalization parameters to
derive a single transformation from native run space to
MNI152 space.

Parametric load analysis. A linear model was fit sepa-
rately to each functional time series using Gaussian
least squares with local correction for temporal auto-
correlation (Woolrich, Ripley, Brady, & Smith, 2001). A
single task regressor with boxcar functions indicated
the task load, with 0-back, 1-back, 2-back, and 3-back
blocks modeled with a −3, −1, 1, and 3 weights, respec-
tively. A separate column of 1 sec modeled the main
effect of Task. Additionally, the instruction period before
each block was modeled with a separate regressor.
These regressors were then convolved with the canonical
difference-of-gammas hemodynamic response function
from the FSL software package (Jenkinson et al., 2012).
In addition to the artifact indicator vectors described
above, we included regressors for the six realignment
parameters used during motion correction (i.e., trans-
lations along and rotations around the three main axes
in native participant space) to account for residual noise
variance introduced by participant motion. Following
model fitting, the contrast effect size and standard error
images were normalized to group space using the trans-
formation described above and resampled with trilinear
interpolation. Contrast effects were then combined
across runs using a subject-level fixed effects model.
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Mixed-effects higher-level analyses were used to model
the parametric effect of load within the MOT and dual
n-back groups independently for the pre- and posttraining
scans. The resulting contrast estimates were then entered
into a higher-level random effects model to determine
both the longitudinal effect of training within each group
and the Group by Time interaction. Correction for multi-
ple comparisons was accomplished by first thresholding
resulting whole-brain maps at a z-score of 2.3 and then
cluster-correcting to control the family-wise error rate at
p < .05.

Analysis of independent load contrasts. This model
was identical to the parametric model described above
but replaced the single parametric task regressor with
four independent regressors, one for each of the n-back
difficulty levels, with boxcar functions indicating the task
blocks.

Regions/networks of interest analysis. In addition to
the whole-brain univariate approach, we also performed
focused analyses within the ECN and DAN ROIs derived
from a population atlas of task-independent cortical
networks (Yeo et al., 2011). As this atlas is defined in
Freesurfer’s common surface space, region labels were
first warped back to the individual participant surfaces
by inverting the spherical normalization parameters ob-
tained during cortical reconstruction. Vertex coordinates
within each of these labels were then transformed into the
native functional space by inverting the linear functional-to-
anatomical transformation for the first run. Finally, voxels
were identified for inclusion within each region’s ROI
mask by projecting half the distance of the cortical thick-
ness at each vertex and labeling the intersected voxels. This
method produced ROIs that reflected the underlying two-
dimensional topology of the cortex and minimized the
inclusion of voxels lying outside gray matter.

Performance-weighted load analysis. We further ex-
plored how BOLD activation within the ECN and DAN
related to WM load using a performance-weighted analy-
sis. In this analysis, we regressed mean BOLD activation
at each n-back level against a weighted n-back variable
formed by multiplying the “n” of the current level by
each participant’s behavioral performance (hit rate −
false alarm rate) at that level, thus scaling “n” to an esti-
mate of the actual WM load. As in the parametric analysis
described above, the resulting regression coefficient
describes the relationship between WM load and BOLD
activation. To test whether training influenced this rela-
tionship and whether that influence differed in the two
large-scale networks, we applied linear mixed effects
models using the R package nlme (Pinheiro, Bates,
DebRoy, Sarkar, & R Core Team, 2015).

Functional connectivity analysis. Functional connec-
tivity within task-activated (task-positive) regions was

assessed using seed-based time series correlations.
Connectivity analyses can be particularly sensitive to mis-
specification of nodes (Smith et al., 2011) so we con-
strained analyses to regions that were reliably active
before training. We used data from the passive control
group’s first scanning session, which allowed us to define
regions that were statistically independent from the main
analysis and to avoid the concern that the selected ROIs
might be biased toward one training group’s pretraining
activations. Because the greatest training-related activa-
tion changes occurred in the 2-back condition (reported
below), the passive control group’s 2-back versus base-
line contrast was used to obtain functional connectivity
seeds. The positive activations from this contrast were
thresholded at p < .001, then cluster-corrected at p <
.05. The resulting clusters were then intersected with
an anatomical mask from the Harvard–Oxford atlas that
included lateral prefrontal and parietal cortex. This
approach yielded four ROIs: one prefrontal ROI and
one parietal ROI in both the right and the left hemisphere.
Each ROI was then reverse-normalized into native space
using the surface-based approach described above and
intersected with the subject-specific DAN and ECN
masks, thus yielding 12 ROIs in total per participant (four
whole cluster ROIs, four DAN ROIs, and four ECN ROIs).

For each prefrontal ROI in each participant, the exper-
imental time course was extracted using the mean activity
of all voxels within the ROI at each time point. For a given
n-back level, the portions of the time course correspond-
ing to seconds 8–30 of each n-back block were preserved
(the first 3 volumes were omitted to avoid artifactual
correlations emerging from the rising hemodynamic re-
sponse), whereas the remainder of the time course was
set to 0.

A general linear model was then created for each ROI
using its specific n-back time course as the regressor of
interest and including traditional block regressors for the
other three conditions, along with the artifact indicator
vectors and motion parameter nuisance regressors de-
scribed above. Finally, six additional nuisance regressors
were included representing the first six principal compo-
nents of the white matter and CSF time course, which
were extracted using the subject-specific Freesurfer mask
of white matter and CSF. Before extraction, this mask was
eroded by two voxels to avoid contamination from partial
voluming with gray matter voxels.

These models were then processed as described above
through the fixed effects analysis for each subject, using
FSL. Finally, for each of the prefrontal ROI models, the
mean parameter estimate was extracted to measure func-
tional connectivity between that prefrontal ROI and each
of the parietal ROIs. Higher-level analyses were per-
formed on these parameter estimates using a Group ×
Session mixed-effects ANOVA separately for the 1-back,
2-back, and 3-back levels. We specifically examined con-
nectivity between the whole-cluster ROIs and, separately,
connectivity both within and between the DAN and ECN
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ROIs. Analyses were corrected for multiple comparisons
using Bonferroni adjustments across pairs of ROIs and,
where applicable, n-back levels.

Connectivity/behavioral correlations. After observing
training-related changes in network connectivity, we
assessed the relationship between those changes and
training-related changes in performance on the in-scanner
dual n-back task by calculating the Pearson correlation
between the change in functional connectivity and the
change in behavioral performance across participants.

RESULTS

Behavioral Results

Baseline Performance

Before training, increasing dual n-back loads resulted in
significantly decreasing accuracy (measured as hit rate −
false alarm rate) [one-way ANOVA F(3, 114) = 108.3, p <
.001] and increasing RT [F(3, 114) = 125.1, p < .001]
(Figure 1). There were no significant baseline differences
between the two training groups on either accuracy ( ps >
.11) or RT ( ps > .14).

Changes in Performance after Training

Four weeks of adaptive dual n-back training selectively
improved performance on the dual n-back task in the

scanner (Figure 1A). A mixed-design ANOVA examining
Session × n-back load × Group for accuracy revealed
that there were significant main effects of Load [F(3,
137) = 85.9, p < .001], Session [F(1, 37) = 30.9, p <
.001], and Group [F(1, 37) = 5.84, p = .021], and signif-
icant interactions of Group × Load [F(3, 111) = 6.22, p<
.001], Group × Session [F(1, 37) = 11.8, p = .002], Load
× Session [F(3, 111) = 24.4, p < .001], and Group ×
Load × Session [F(3, 111) = 21.3, p < .0001]. Thus, per-
formance decreased as load increased, improved after
training, and was better in the n-back group than in the
MOT group. Critically, the improvements across sessions
were specific to n-back training. In mixed Session × Load
analyses within each training group, the n-back group
performed significantly better after training [main effect
of session F(1, 19) = 32.8, p < .001], whereas the MOT
group did not improve significantly after training [main
effect of Session F(1, 18) = 2.7, p > .11].
To better understand the results from the omnibus

ANOVA, Session × Group ANOVAs were performed
separately for each load. Mixed-design ANOVAs showed
that the omnibus interaction was driven by significant
Group × Session interactions only at the dual 2- and
3-back loads in which the n-back group became more
accurate after training than did the MOT training group
[0-back F(1, 37) = 2.2, p = .14; 1-back F(1, 37) = 1.6,
p = .21; 2-back F(1, 37) = 5.8, p = .02; 3-back F(1, 37) =
28.7, p < .001].
Analyses of RTs revealed a similar pattern to that seen

with accuracies. After training, the n-back group re-
sponded significantly faster than they had before training
(Figure 1B) and improved their response times more
than did the MOT group. A mixed-design ANOVA exam-
ining Session × Load × Group showed significant main
effects of Load [F(3, 137) = 101.8, p < .001] and Session
[F(1, 37)=44.3,p<.001] but nomain effect ofGroup [F(1,
37) = 0.02, p = .88]. However, there were significant in-
teractions of Group × Load [F(3, 111) = 5.33, p= .002],
Group × Session [F(1, 37) = 21.3, p < .001], Load ×
Session [F(3, 111) = 30.7, p < .001], and Group × Load ×
Session [F(3, 111)=20.4,p<.0001]. InmixedSession×Load
analyses within each training group, both the n-back
group [main effect of Session F(1, 19) = 39.0, p < .001]
and the MOT group [main effect of Session F(1, 18) =
5.5, p = .03] responded significantly faster after training,
although the gain in speed was significantly greater in the
n-back group than the MOT group as reflected in the
Group × Session interaction.
The omnibus interaction was most influenced by faster

RTs in the n-back group after training at the more diffi-
cult loads. Specifically, mixed-effects Group × Session
ANOVAs run at each n-back load independently showed
that the Group × Session × Load interaction was driven
by changes in RT at the dual 2-back and 3-back loads
[0-back F(1, 37) = 1.1, p = .30; 1-back F(1, 37) = 1.15,
p= .29; 2-back F(1, 37) = 16.7, p< .001; 3-back F(1, 37) =
48.8, p < .001].

Figure 1. Adaptive dual n-back training selectively facilitates
performance on the n-back task. (A) Corrected hit rates for in-scanner
n-back performance for each training group. (B) In-scanner reaction
times for each training group. Error bars represent SEM.
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Load-dependent Activations before Training

Across both training groups, activations increased as a
function of WM load in many regions, including lateral
and medial prefrontal regions, parietal regions, anterior
insula, and subcortical regions in the BG and thalamus
(Figure 2 and Table 2). These load-dependent activations

occurred bilaterally in both the ECN and DAN (Figure 3)
as characterized by a group atlas of resting-state networks
(Yeo et al., 2011).

Univariate Imaging Results

Training-related Changes in Load-dependent Activation

Regions exhibiting training-dependent changes in activa-
tion were identified in a repeated-measures model using
the Session × Group interaction. The n-back group

Figure 2. Brain regions exhibiting significant increases in activation
as a function of WM load in all participants (n= 39). Statistical inferences
derived from volume-based analysis but projected onto Freesurfer
average cortical surface mesh for visualization.

Table 2. Regions Parametrically Activated by Dual n-back Load

Cluster Peak Z-value X Y Z Region

Anterior 9.76 32 22 2 Insular cortex

9.59 −32 24 2 Insular cortex

8.81 30 10 60 Middle frontal gyrus

8.78 0 14 54 Superior frontal gyrus

8.69 −46 24 30 Middle frontal gyrus

8.61 44 34 28 Middle frontal gyrus

Posterior 10.00 44 −42 48 Posterior supramarginal gyrus

9.76 −38 −48 42 Posterior supramarginal gyrus

8.53 −10 −68 60 Superior lateral occipital cortex

8.16 32 −70 52 Superior lateral occipital cortex

3.28 20 −56 24 Precuneus cortex

2.42 −30 −84 6 Inferior lateral occipital cortex

Local maxima for the linear effect of WM load, collapsing across training groups at the pretraining scan (n = 39). Statistical thresholding identified
two major clusters of activation; local maxima are reported for peaks within these clusters separated by a minimum distance of 30 mm. Coordinates
are reported in the FSL MNI152 space.

Figure 3. Baseline load-dependent WM activation occurs in ECN
and DAN. ECN (orange) and DAN (green) defined anatomically and
independently from resting-state networks (Yeo et al., 2011). Regions
of load-dependent activation are outlined in black and substantially
overlap ECN and DAN networks bilaterally.
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exhibited significantly reduced load-dependent re-
sponses after training in prefrontal, parietal, and insular
cortical regions (Figure 4). Training-induced changes in
BOLD activation were primarily observed at 2-back and

3-back loads and were most pronounced for the 2-back
load (Figure 5).

Relation of Training-related Reductions of
Activation to ECN and DAN

ROI analyses confirmed that the n-back group exhibited a
greater reduction of the relationship between WM load
and activation in the ECN than in the DAN (Figure 6).
We extracted activation coefficients for each n-back load
from the independently defined ECN and DAN (Yeo
et al., 2011). A mixed-effect ANOVA on these values re-
vealed a significant four-way Load × Network × Session ×
Group interaction [F(3, 111) = 9.14, p = .003]. Before
training, activation in both networks increased as a func-
tion of WM load. Dual n-back training-induced activation
changes in the ECN were significantly greater than those
in the DAN as measured by a Load × Network × Session
interaction [F(3, 57) = 25.9, p < .001], with the ECN dis-
playing substantially reduced activations at the 2-back and
3-back loads. Consistent with the prior analyses, there was
no significant change in activation in either network for
the MOT training group.

Performance-weighted Analyses of the
Relationship with WM Load

An alternate approach to identifying regions responsible
for task performance directly includes participant perfor-
mance in the model. These results are largely consistent

Figure 4. Dual n-back training reduces load-dependent activation.
Results are shown for a Group × Time interaction analysis on the
parametric effect of WM load. Black outlines indicate the extent of
load-modulated regions in the pretraining analysis (Figure 2). Image
presentation is otherwise identical to Figure 2.

Figure 5. Only the n-back
group exhibited reductions of
activation after training in the
2-back and 3-back conditions.
(A) Mean BOLD signal, relative
to baseline. (B) The mean
difference between pre- and
posttraining BOLD signal
(changes from implicit baseline)
is shown for each n-back level
for n-back group (top row)
and MOT group (bottom row).
In both panels, the outlines
correspond to the extent of
activations identified using a
parametric analysis as shown
in Figure 3.
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with the previous load-dependent analysis but reveal
additional nuances of the training-related changes
(Figure 7). BOLD responses in both the ECN [F(1, 59) =
101.5, p< .001] and DAN [F(1, 59) = 70.7, p< .001] were

significantly and positively related to participant perfor-
mance at a given load before training. In both the ECN
and DAN, training reduced the relationship between activa-
tion and load [ECN Load × Session interaction F(1, 137) =
41.8, p< .001; DAN Load× Session interaction F(1, 137) =
13.3, p < .001], but the reduction of that relationship was
significantly greater in the ECN [Load× Session×Network
interaction F(1, 239) = 9.7, p = .002]. DAN activation,
unlike ECN activation, remained significantly related to
WM load in the posttraining session [main effect of Load
in DAN F(1, 59) = 24.2, p < .001; main effect of Load for
ECN F(1, 59) = .16, p > .68].

Frontoparietal Functional Connectivity

Changes with Training

We examined training-related changes in functional con-
nectivity (BOLD time series correlations) during task per-
formance between left and right prefrontal and parietal
ROIs defined using pretraining activations in the passive
control group. For each pair of ROIs in the dual 1-, 2-,
and 3-back conditions, a Session × Group interaction
measure was calculated from a mixed-effects ANOVA.
Significant n-back training-induced increases in func-
tional connectivity were observed for all four pairings of
prefrontal and parietal ROIs in the 2-back condition ( p <
.05, Bonferroni-corrected across load and connection),
but no changes were observed in the 1- or 3-back condi-
tions (Figure 8A). We then divided each ROI into ECN
and DAN components using the Yeo network ROIs. In
contrast to the asymmetric findings of the univariate
analysis, in which the ECN exhibited substantively larger
changes than did the DAN, this analysis revealed signifi-
cantly increased connectivity between nodes of the ECN,
between nodes of the DAN, and also for between-network

Figure 6. n-back training
dissociates the contribution
of ECN and DAN to WM.
Mean activation coefficients
for each n-back load relative
to rest blocks were extracted
from the ECN and DAN and
plotted separately for each
session and training group.
Error bars represent SEM.

Figure 7. Performance-weighted analysis of relationship between
WM load and BOLD activation. Black circles show mean BOLD signal,
along with standard errors, as in Figure 6. Gray squares show the
predictions of a performance-weighted model fit to the BOLD data
from before training. Gray Xs show the predictions of a performance-
weighted model fit to the BOLD data after training. Results are shown
only for the n-back training group.
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connections ( p < .05, Bonferroni-corrected across con-
nection; Figure 8B, C).

Correlations between Connectivity Changes and
In-scanner Performance

Pre–post training accuracy improvements among par-
ticipants in the n-back group in the dual 2-back scanner
task were positively correlated with their increases in
functional connectivity within the four frontoparietal pair-
ings displayed in Figure 8A (r = .50, p = .03; Figure 8D).
These correlations were not driven by any specific node
to node (Figure 8E). Connectivity increases were not sig-
nificantly correlated with changes in RTs (r = .20, p >

.39). There were no significant correlations between accu-
racy improvements and univariate activation changes.

DISCUSSION

Functional brain plasticity associated with a large increase
in dual n-back performance was characterized as highly
specific in multiple ways. First, learning occurred selec-
tively in the n-back training group, who displayed
marked gains on the trained task (Thompson et al.,
2013), and not in the MOT training group, who showed
neither behavioral improvements nor brain plasticity as-
sociated with the dual n-back task. This is the first fMRI
evidence that such plasticity is specific to WM training

Figure 8. Training increased
frontoparietal functional
connectivity in n-back group.
(A) Group by session
interaction measures, showing
group differences in the change
of functional connectivity
strength. Positive values
indicate greater connectivity
after training for the n-back
group relative to the MOT
group. Each bar shows the
change in connectivity for a
pair of frontal and parietal
ROIs (collapsed across ECN and
DAN networks). (B) Group by
session interaction measures
during 2-back blocks for
ROIs defined using functional
activations within and between
resting-state networks. Error
bars in (A) and (B) represent
SEM. (C) Change in functional
connectivity strength for
each pair of ROIs, as shown
in (B). The weight of
the edge indicates the
Bonferroni-corrected p value
for the group by session
interaction. (D) Scatterplot
showing the relationship
between the change in
behavioral performance and
the change in functional
connectivity in 2-back blocks.
The functional connectivity
measure is averaged across
the four edges shown in
(A). (E) Scatterplot showing
the correlation of each
node-to-node connectivity
change with the change in
behavioral performance.
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and not a consequence of any intensive and adaptive
training program. Second, the n-back training group
showed both behavioral gains and reduced activation
selectively for the WM-demanding 2-back and 3-back con-
ditions. Third, although both the ECN and DAN fronto-
parietal networks demonstrated load-dependent activation
before training, training produced a dissociation between
these networks and eliminated the relationship with
WM load selectively within the ECN. Fourth, the ECN and
DAN both exhibited training-selective increases in func-
tional connectivity, which were correlated with cor-
responding improvements in behavioral performance.
This finding indicates that brain plasticity resulting from
intensive WM training occurs not only in terms of activa-
tion magnitudes, but also in relation to altered network
functional connectivity.

Pretraining Activation in Dual n-back Task

The pattern of load-dependent activation at pretraining
was generally consistent with prior neuroimaging studies,
which have typically reported activations in dorsolateral
and ventrolateral pFC, frontal poles, lateral and medial
premotor cortex, dorsal cingulate, and medial and lateral
posterior parietal cortex (Owen et al., 2005). Specific pat-
terns of activation have varied in relation to stimulus and
task dimensions, and only three fMRI studies have exam-
ined the functional activations associated with a simul-
taneous visual–spatial and auditory–verbal dual-back
task (Buschkuehl, Hernandez-Garcia, Jaeggi, Bernard, &
Jonides, 2014; Jaeggi et al., 2007; Yoo, Paralkar, & Panych,
2004). The pattern of load-dependent activation ob-
served here, including frontal, parietal, temporal, and
subcortical activations, resembles those reported in the
prior dual n-back studies.

Training-related Activations in Dual n-back Task

Functional brain changes mirrored behavioral changes
in performance after training. The MOT group exhibited
no improvement in dual n-back capacity despite great
improvement on the MOT task (Thompson et al., 2013)
and also exhibited no difference across sessions in func-
tional activation. The n-back group showed no gain in
performance for the 0-back and 1-back conditions, pre-
sumably performing at ceiling from the outset, and exhib-
ited no difference across sessions in functional activation
at those loads. The training did, however, substantially
improve performance in the more demanding 2-back
and 3-back conditions, which the n-back group per-
formed with the same ease (measured by accuracy and
RT) as the 0-back and 1-back conditions after training.
Correspondingly, there were significant and widespread
reductions in activation, most notably in bilateral inferior
and middle frontal gyri, insular cortex, and intraparietal
sulci.

Frontal and parietal regions were divided into two inde-
pendent systems, the ECN and the DAN, based on a group
atlas of resting-state networks (Yeo et al., 2011). Activation
in both networks exhibited a strong relationship with WM
load in the initial session, but training produced a dis-
sociation between the two networks. After training, acti-
vation in the DAN remained significantly related to WM
load but was no longer related to WM load in the ECN. This
dissociation provides a novel perspective on the distinct
roles of those frontoparietal systems. Although both net-
works are thought to play a role in exerting top–down
control on cognitive processing, they have been associated
with different functional roles. Regions within the ECN are
characterized by the flexibility of their representational
content (Duncan, 2010) and ability to sustain distractor–
resistant representations of information relevant for goal-
directed processing (Waskom, Kumaran,Gordon, Rissman,
& Wagner, 2014; Miller, Erickson, & Desimone, 1996).
Dorsal attention regions, in contrast, appear to contain
prioritized topographical maps of visual space (Silver &
Kastner, 2009) that are used for internally directed visual
attention (Corbetta & Shulman, 2002), a possible mecha-
nism of visual WM maintenance (Sreenivasan, Curtis, &
D’Esposito, 2014). Our results thus suggest that training
reduces the demand on higher levels of a hierarchical
system that supports the maintenance and updating of
active WM traces.

WM training studies have reported multiple patterns of
functional plasticity associated with gains in WM perfor-
mance, including increased activations or decreased acti-
vations. The variety of changes in activation may reflect
not only the variety of tasks but also the duration of train-
ing (ranging from a single session of training to our study
of a month of intensive training) and the initial and final
levels of performance. In our study, participants were
considerably above chance in all conditions at the outset,
improved their performance substantially in the more dif-
ficult conditions (which were far below their dual n-back
capacity from the month of intensive training), and ex-
hibited large reductions of activation in the more de-
manding conditions.

Training-related Changes in
Functional Connectivity

WM training also increased frontoparietal functional con-
nectivity during task performance, although these changes
were observed only in the dual 2-back condition. In con-
trast to the changes in univariate activation, changes in
within-network functional connectivity did not significantly
differ between the ECN and DAN and between-network
connectivity also increased. Furthermore, connectivity in-
creases correlated with improvements in behavioral perfor-
mance. It is unclear why connectivity (and activation)
changes were modest in the 3-back condition given the
robust behavioral improvements in that condition for the
n-back group, though prior work suggests that encoding
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strategies for difficult WM tasks can vary across participant’s
ability levels (Cusack, Lehmann, Veldsman, & Mitchell,
2009). This could have especially affected connectivity
measurements at the pretraining dual 3-back level, when
the task was quite challenging for many participants. The
training-induced relations between brain plasticity as
measured by connectivity and gains in WM performance
are consistent with EEG studies examining the WM bene-
fits of visual–perceptual (Mishra, Rolle, & Gazzaley, 2015;
Berry et al., 2010) and distractor training (Mishra, de Villers-
Sidani, Merzenich, & Gazzaley, 2014).

Conclusions

Interest in the dual n-back task arises from at least two
sources. First, scientifically, the task is a complex WM task
that exercises each of the putative constructs in the suite of
“executive functions” (Miyake et al., 2000)—monitoring
and maintenance in the encoding of incoming stimuli,
inhibition in the avoidance of lure trials, and switching in
the requirement of encoding stimuli from two domains
simultaneously. Second, perhaps owing to the many WM
processes engaged by this task, there has been some
evidence that training on the dual n-back task transfers
to other cognitive domains (Au et al., 2015; Kundu et al.,
2013; Jaeggi et al., 2008). This transfer could have been
the result of training-induced plasticity in a common neural
substrate relevant to multiple cognitive domains (Dahlin,
Neely, Larsson, Bäckman, & Nyberg, 2008; Jonides,
2004). Indeed, in this study there were large and specific
functional changes in both activation and connectivity of
the dorsolateral pFC and parietal brain regions known to
be associated with human intelligence ( Jung & Haier,
2007). Nevertheless, the robust training-induced plasticity
did not support transfer to any other domain of cognition
(Thompson et al., 2013).

Dual n-back training did, however, enable remarkable
learning on the trained task itself, with some participants
becoming able to perform a dual 9-back after 20 sessions
of training. By the end of training, participants could per-
form the originally highly demanding 2-back and 3-back
conditions with same ease (measured by speed and accu-
racy) as the minimally demanding 0-back and 1-back con-
ditions. This was accompanied by large reductions of
activation, specifically in the frontoparietal ECN, that
were, by the end of training, no greater for the originally
highly demanding 2-back and 3-back conditions than
the minimally demanding 0-back and 1-back conditions.
Furthermore, the task-specific growth of dual n-back
WMC was associated with increased functional connec-
tivity within and between the ECN and DAN. These
findings, in the context of an active control training con-
dition, reveal the anatomically specific nature of func-
tional brain plasticity associated with the expansion of
task-specific WMC. Although these particular gains did
not enable far transfer to untrained measures, they do
serve as a valuable exemplar of the plastic capacity of

the human brain as it develops a remarkable mastery of
a quite complicated and challenging task.
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