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Abstract

Intensity Modulated Radiation Therapy (IMRT) is a type of external beam radiation
therapy that has proven effective at treating many cancers. A related therapy type,
Volumetric Modulated Arc Therapy (VMAT), has the potential to provide compara-
ble dose coverage to tumor sites while better sparing nearby organs at risk (OARs).
Multi-criteria Optimization (MCO) is an algorithm that is used to optimize a patient’s
personalized IMRT treatment plan. VMAT treatment plans cannot be optimized us-
ing early versions of the MCO algorithm. The purpose of this study was to construct
a model for the automated generation of VMAT treatment plans for prostate can-
cers using a knowledge base of previously implemented IMRT-MCO treatment plans.
An initial model configuration was iteratively refined to produce VMAT plans that
represent a quality “first pass” that can be further optimized by trained treatment
planners. The clinical implementation of a model like this one could significantly
improve the timeliness of standard non-MCO VMAT optimization methods.
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Chapter 1

Introduction

One of the most obstinate challenges in the effort to develop effective cancer treat-

ments is the selective targeting of cancer cells and sparing of normal ones. Ionizing

radiation is a particularly effective agent of cell death relative to other physical, chem-

ical and biological agents because of its ability to inflict irreparable damage to a cell’s

DNA [6]. Ionizing radiation is used to treat cancer by repeatedly targeting tumor

sites with radiation while sparing nearby tissues as much as possible. Over the last

fifty years, radiation therapies have improved drastically in their precision targeting

of tumor sites. Radiation therapy is now a common and effective treatment for many

forms of cancer. However, modern radiation therapy modalities are still being im-

proved through the development of better optimization algorithms, real-time target

tracking and patient immobilization techniques.

The name “external beam radiation therapy” encompasses many therapy modal-

ities, but they all involve the exposure of a target volume to one or more beams

of radiation, usually produced using some form of accelerator. Intensity-modulated

radiation therapy (IMRT) is one of the most common modalities. The primary advan-

tage of IMRT over more primitive photon therapies is its manipulation intersecting

high-energy photon beams to deliver a dose distribution that closely conforms to the

shape of a tumor [2]. During IMRT, the target volume (comprised of the tumor and
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peripheral tissue) is subjected to multiple intersecting, high-energy photon beams of

variable intensity. For any given case of IMRT, the number of beams, their angles of

incidence on the target, their two-dimensional shape and intensity profile can be col-

lectively optimized to deliver maximal conformity of dose to the target and minimal

dose to surrounding organs at risk (OARs) [7].

When creating a treatment plan, physicians face difficult trade-offs between the

homogeneity of dose to the target volume and the sparing of OARs. In order to allow

physicians to navigate this tradeoff, many clinics create IMRT treatment plans using

multi-criteria optimization (MCO). MCO is an algorithm that selects parameters like

beam angles, beam intensities and two-dimensional beam shapes in order to optimize

a treatment plan according to a set of objectives. Physicians can “toggle” through

the relative weightings of these objectives and choose the plan that best fits the needs

of a given patient [8]. For example, a particularly young breast cancer patient may

be given a relatively conservative treatment plan in the hope of minimizing the risks

associated with damage to cardiac tissues.

Volumetric-modulated arc therapy (VMAT) is another modality of external beam

radiation therapy, and is the logical progression of IMRT. Instead of using a finite

number of beams that intersect in a target volume, VMAT uses beams that rotate

about the patient in a continuous arc with the tumor located at its isocenter. The

speed of gantry rotation, two-dimensional beam shape and dose rate are all modu-

lated in time as the gantry rotates about the target. With far more degrees of freedom

than IMRT, VMAT has the potential to deliver treatments that provide comparable

coverage of target volumes and better sparing to OARs [9]. However, the development

of MCO-like methods for VMAT has historically proven challenging. For years, many

clinics had the capability of delivering VMAT but there existed no robust method

of optimizing VMAT treatment plans [10]. MCO-informed VMAT planning was pro-

posed by Chen et al. (2014) as a potential “simpler solution” [10]. MCO-informed

VMAT planning relies on first generating an MCO-optimized IMRT plan and then
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using dose-volume data from this plan to inform the optimization of the VMAT plan

[10]. This study develops a similar technique for MCO-informed VMAT treatment

planning for prostate cancers.

The purpose of this study was to construct a model for the automated generation of

initial VMAT treatment plans for prostate cancer using a knowledge base of previously

implemented MCO-IMRT plans. New cases recommended for VMAT are matched

with the most similar historical case treated with MCO-IMRT in the knowledge base.

A selection of treatment planning data from that historical case is used to inform the

initial optimization of the VMAT treatment plan for the new case. This automated,

knowledge-based optimization is intended to serve as a “first pass” that would then

be further tuned to the individual patient by a trained treatment planner. This kind

of partially automated treatment planning workflow could significantly improve the

timeliness of non-MCO VMAT planning.

The final product of this study consists of a completed knowledge base of ninety-

six MCO-IMRT plans and the selection of treatment planning data used to inform

the automated generation of VMAT treatment plans.
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Chapter 2

Background

2.1 History of Modern Radiation Therapy

Pierre and Marie Curie first isolated the element radium in the year 1898. Within a

few years, it was already being used in cancer treatments [11]. Since the discovery of

ionizing radiation’s ability to damage human tissues, physicists and physicians have

developed numerous techniques for selectively targeting cancer cells. Therapies have

been delivered using external beams, radioactive “seeds” implanted in the body, and

curved plates designed to treat tumors surrounding the delicate tissues of the spinal

cord [12].

External beam radiation therapies are one of the most frequently prescribed types

of radiation therapy. Since the development of the first medical linear accelerator at

Stanford in 1957, external beam radiation therapies have progressed from primitive

modalities that relied on stationary beams collimated by simple lead blocks to highly

advanced modalities with intricately shaped beams that can rotate 360◦ about a

patient on a wall-mounted gantry [2].

17



Figure 2-1: The first patient treated with a medical linear accelerator was a two-year-
old boy with an ocular tumor [1].

2.2 IMRT and VMAT

This study is primarily concerned with two common modalities of external beam

radiation therapy: Intensity-Modulated Radiation Therapy (IMRT) and Volumetric-

Modulated Arc Therapy (VMAT). During IMRT, the target volume is subject to

multiple stationary intersecting beams of high-energy photons. These beams are

collimated to conform to the shape of the target volume using a device called a

multi-leaf collimator (MLC), shown in Fig. 2-2. Its sliding tungsten leaves can be

used both to form the two-dimensional shape of a beam and to shape the beam’s

two-dimensional intensity profile.

During VMAT, the target volume is also subject to irradiation from many angles.

However, the beam does not “turn off” while the gantry rotates as it does in IMRT.

Instead, the beam is “on” as the gantry rotates continuously about the patient and

the MLC leaves move continuously to shape the beam in both space and intensity.
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Figure 2-2: A typical MLC consists of 40 pairs of tungsten “leaves” that are indepen-
dently driven. MLCs are ideal for treatment modalities like IMRT and VMAT that
utilize many beam shapes and modulated beam intensity [2].

Figure 2-3: Archetypal case of a target volume (red) wrapped around an OAR (green).
Simply “blocking” dose from reaching the OAR does not achieve a uniform dose to
the target volume. A one-dimensional intensity profile from a gantry angle of φ = 20◦

is shown [3].
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VMAT offers the advantage of faster treatment delivery, as well as the potential for

the delivery of doses that more closely conform to target volumes and provide better

sparing to organs at risk [4].

A comparison of IMRT and VMAT dose distributions for a typical prostate case

is shown in Fig. 4-2. The increased conformality of dose to the target and improved

dose sparing to surrounding organs at risk are typical results of VMAT planning

studies [4].

Figure 2-4: Example of dose distributions in IMRT (a,b) and VMAT (c,d) plans for
radiotherapy to the prostate and pelvic lymph nodes. The target volume is shown in
red. Increased sparing of the rectum and bladder is achieved in the VMAT plan [4].
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2.3 The Dose-Volume Histogram

While fluence maps like these are useful as they show areas of high and low dose

relative to anatomical structures, they are not ideal for quantitatively comparing two

treatment plans. This is typically done using dose-volume histograms (DVHs). DVHs

can be drawn for any volume that is contoured (outlined in 3-D space) in a CT scan,

like the target volume (referred to as the planning treatment volume, or PTV) or any

of the OARs. DVHs plot the fraction y of a given volume that receives a certain dose

x or higher, as a function of dose [2]. DVHs are technically cumulative histograms.

Differential dose-volume histograms can also be defined for any volume, but they are

rarely used.

Figure 2-5: Example set of DVHs from a sarcoma treatment plan. Figure modified
from [5].

Fig. 2-5 shows an example of a typical set of DVHs for a sarcoma treatment plan.

The DVH for the PTV is shown in black. Ideally this curve would form a perfect right

angle at x = DRx, indicating that 100% of the PTV receives exactly the prescribed

dose. This is not physically possible in reality, but most plans do come close. The

DVHs for various OARs are shown in color. It can be seen that the OAR shown in

purple is better spared than the OAR in green. Ideally, these curves would all be
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vertical lines at 0 cGy, indicating that the organ was completely spared. Again, this

is not actually possible. However, when a patient’s treatment plan is created it is

optimized based on these objectives.

One important quantitative metric used to evaluate treatment plans is the homo-

geneity index (HI) of the dose to the PTV.

HI = (D2 −D98)/DRx (2.1)

where Dx represents the dose such that x% of the PTV volume receives that dose or

higher and DRx represents the prescription dose [13]. In an ideal treatment plan where

the DVH for the PTV is a perfect right angle at DRx, HI would be zero. Increasing

HI represents increasing heterogeneity of dose to the PTV.

2.4 Multi-Criteria Optimization

All of the inputs necessary to deliver a certain fluence map to a three-dimensional

volume are referred to as a “treatment plan.” In the case of IMRT, this consists of the

number of beams, beam angles, two-dimensional beam shapes, and beam intensity

profiles. In the case of VMAT, a treatment plan consists of MLC leaf starting position,

as well as gantry angular velocity, MLC leaf velocity and direction, and beam dose

rate for all angles. When a treatment plan is created, all of these parameters must

be chosen. A handful of physical limits of medical linear accelerators constrain the

plans they can deliver. For example, each model of medical linear accelerator has

some maximum gantry velocity and maximum MLC leaf velocity. These constraints

are taken into account whenever a treatment plan is made.

It is often the case that many slightly different treatment plans would be effective

for a given patient and there is no immediately obvious best one. For example,

often the DVH for the PTV cannot be improved without degrading the DVHs for

several OARs. IMRT treatment plans are created in many clinics using multi-criteria

22



optimization (MCO), an optimization process that allows physicians to navigate these

clinical trade-offs.

A treatment plan is considered Pareto-optimal for a given set of objectives and

constraints if there is no other feasible treatment plan that is better in one objective

and at least as good in all others. The set of all Pareto-optimal plans for a treatment

is called the Pareto surface [8]. In practice, a Pareto surface takes the form of a

database of possible treatment plans. A physician can navigate this database to

explore planning trade-offs and choose the plan that is most appropriate for their

patient [8]. For example, while radiation therapy has been shown to be an effective

treatment for early stage breast cancer, it has also been shown to increase risk of

ischemic heart disease [14]. If a patient is very young or is known to already be at

risk of heart disease, her physician may choose a more conservative treatment plan

that sacrifices some homogeneity of tumor coverage in order to minimize dose to the

heart. For an older patient, or one who is at less risk of developing heart disease, it

might be appropriate to choose a more aggressive treatment plan.

2.5 MCO-Informed VMAT

The model implemented in this study uses a knowledge base of treatment planning

data from prostate cancer cases historically treated in the MGH clinic. For every

case in this knowledge base, CT scans have been used to generate overlapping volume

histograms (OVHs). OVHs are a useful tool for quantifying the relative volume and

spatial positioning of anatomical structures. In this study, an anatomical similarity

metric based on OVHs was used to match new test cases to the most similar historical

cases in the knowledge base.

The greater number of degrees of freedom provided by VMAT theoretically allow

for plans that are of equal or better quality than IMRT plans for the same case. Thus,

treatment planning data drawn from anatomically similar patients treated with IMRT

23



can be used to provide the a non-MCO optimization algorithm with a viable staring

point from which to further optimize. In this study, selection of treatment planning

data from historical cases was used to inform the initial optimization of VMAT treat-

ment plans for their respective matched test cases. The specific purpose of this study

was to construct the knowledge base of MCO-IMRT plans and to refine the selection

of treatment planning data to be used in MCO-informed VMAT optimization.
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Figure 2-6: This chart shows the partially automated workflow of MCO-informed
VMAT planning imagined in this study. The elements that are developed in this study
are highlighted in green. This workflow benefits from the efficiency of automation
without compromising the personalization of typical treatment planning.
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Chapter 3

Methods

3.1 Patient Cohort

The cohort used in the MCO-IMRT knowledge base consists of 96 patients previously

treated for prostate cancer in the MGH clinic. The cohort is made up of three

treatment categories: 33 who were treated with IMRT to a PTV in the prostate and

seminal vesicles (Type A), 25 who were treated with prostate resection and IMRT

with prostate bed PTVs (Type B), and 38 who were treated with prostate resection

and IMRT with prostate bed and lymph node PTVs (Type C). The patient data

used in this study consisted of contoured CT scans, prescription doses, fractionation

schemes and DVHs from each treatment plan. All protected health information was

de-identified in accordance with HIPAA “safe harbor” standards [15].

3.2 Knowledge Base Construction

The first step in constructing the knowledge base was to identify and discard un-

necessary data. Raw patient treatment plan data was exported from the clinic’s

treatment planning software (TPS) in the form of detailed DVHs for every structure

contoured during treatment planning. Much of this raw data would not be relevant

27



to informing the treatment planning for a similar future case. While raw TPS DVHs

are extremely granular, this knowledge base only calls for 101 points from each DVH–

the dose value x and corresponding 1% volume increment y from y = 0% to 100%.

Raw treatment planning data also contains DVHs for far more contoured volumes,

or regions of interest (ROIs), than are relevant for this model. During treatment

planning, it is common to contour many subsidiary ROIs within larger ones for the

purpose of identifying “hot spots” (small volumes subject to exceptionally high doses).

These subsidiary ROIs are not of interest in this study. Only the structures listed in

Appendix A were included in the knowledge base.

Using raw treatment planning data also presents the complication of inconsistent

terminology. While one treatment planner might label an ROI “LLN” for “left lymph

node,” another planner might use the label “Left LN” for the same structure. Data

cleaning scripts must search DVH labels for all feasible case-sensitive words, phrases

or acronyms for each ROI.

In this study, a python script was used to identify all relevant ROIs by key letter

groups within their DVH titles and to abbreviate their DVHs to only the 101 points

necessary. These refined DVHs were then normalized by prescription dose and or-

ganized into banks by treatment type. In this setup, any treatment planning model

configured to use DVH data from these treatment plans can draw automatically from

this knowledge base.

3.3 Model Construction

The model created in this study was designed for and developed using the RaySta-

tion (version 2.5, RaySearch Laboratories, Stockholm, Sweden) treatment planning

software.

Fig. 3-1 illustrates how a new VMAT plan is actually generated using the model.

First, the corresponding IMRT plan is selected from the knowledge base. The model
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uses DVH data from this old plan to define the objectives that will be used in the

optimization of the VMAT plan for the new patient. RayStation then runs the iter-

ative non-MCO optimization. When the it is finished, the new plan can be viewed.

DVHs for all contoured regions in the new patient’s CT scan can be seen, as well as

a 3-D dose fluence map of the treatment plan.

Figure 3-1: This flowchart illustrates each step in the process of generating a VMAT
plan with the treatement planning model. The white boxes show each kind of data
used in this process, and the blue boxes show operations performed on that data.

The initial selection of DVH data used to create the baseline goals and constraints

for optimization was based on tissue dose tolerances, as well as volume intervals se-

lected to give sufficient information to the algorithm to perform a complete optimiza-

tion. Dose tolerances have been determined empirically by radiation biologists for

29



most tissues and organs in the human body and can serve as a useful benchmark in

treatment planning [11]. DVH points beyond those related to dose tolerances were

first included for each ROI at approximately regular intervals from 0% to 100%. This

initial selection of DVH points is included in Table 3.1.

Each value y listed in Table 3.1 represents a %-volume value where a dose-related

goal is to be set for a test case in RayStation. For example, The right femur has a

maximum dose objective at 8% volume. This means that the dose value corresponding

to 8% volume in the DVH for the right femur in the historical case is to be set as the

goal for the maximum dose at 8% volume in the plan for the test case.

Table 3.1: DVH Points Set as Objectives for Minimum and Maximum Dose at Corre-
sponding Percent Volume and Constraints for Global Minimum and Maximum Dose

After the initial selection of goals and constraints was made, five test cases of

treatment type A were matched to cases within the knowledge base. These test cases

were planned using the initial model in RayStation 2.5. Of the three treatment types,

Type A was chosen for the initial refinement of the automated planning model as these

cases are geometrically simple (they have a single target volume) and prototypical of

VMAT treatments for many disease sites.

The model was then iteratively refined based on improvements to the HI of the
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PTV and dose sparing to the OARs in these test plans. Each optimization ran for 20

iterations. OAR sparing was primarily improved through the inclusion of more goals

closer to 100% volume. It was initially thought that inclusion of this information

would not improve the quality of plan results, as these volumes correspond to the

lowest doses at the “high end” of OAR DVHs. However, OAR sparing improved

across all test cases when more OAR goals were included in this volume range. PTV

dose homogeneity was better than expected using the earliest configuration of the

model and its improvement was slow. PTV HI was ultimately improved through

the matching of maximum and minimum dose objectives near 100% volume. Over

the course of iterative model improvement, PTV and OAR improvements began to

plateau. The final iteration of the model configuration is included in Table 4.1.

The method of improving the VMAT optimization model described in this section

does not constitute a robust optimization. Indeed, the selection of treatment planning

data that would make the best basis for optimizing a patient’s non-MCO VMAT

treatment would be different for every patient. The model developed in this study

produces a workable “first pass” VMAT plan for a new patient based on the MCO-

IMRT plan of a similar historical patient. If this model were implemented clinically, a

treatment planner would start with this first pass and refine the goals and objectives to

shape each new treatment plan to the individual patient. This model is not intended

to fully automate treatment planning, but rather to inform its results and improve

its timeliness.
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Chapter 4

Results and Discussion

The purpose of this study was to construct a knowledge base of MCO-IMRT plans

and to build a model for the automated planning of MCO-informed VMAT using this

knowledge base. The model consists of the selection of DVH data to be used as goals

and constraints in non-MCO VMAT optimization.

4.1 Knowledge Base

The knowledge base constructed in this study consists of the complete set of uni-

form dose volume histograms corresponding to all of the regions of interest listed in

Appendix A, as well as prescription dose values, fractionation schemes, and profes-

sionally contoured clinical CT scans, for ninety-six cases of prostate cancer treated

in the MGH clinic. This knowledge base was built from raw treatment planning data

exported from the RayStation 2.5 treatment planning system used in the MGH clinic.

The kind of knowledge base created in this study has the potential to serve as a useful

tool for future studies aimed at comparing the quality of new treatment modalities

or optimization methods with the “gold standard” of MCO-IMRT. Growing interest

in using deep learning in clinical research will lead to increasing demand for resources

like this knowledge base.
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4.2 Automated Treatment Planning Model

The model constructed in this study allows for automated planning of MCO-informed

VMAT based on a knowledge base of previously-implemented MCO-IMRT plans.

Rather than using all available DVH data, as has been done in previous studies [10],

this simplified model uses only a selection of points that was empirically refined to

produce a more streamlined model. The purpose of this model is not to completely

automate the work of treatment planners, but rather to provide them with a better

“first pass” from which to further optimize when performing the notoriously labor-

intensive process of non-MCO VMAT planning. This type of partially automated

workflow allows for more time-efficient treatment planning without sacrificing the

benefits of treatment personalization.

Table 4.1: Final DVH Points Set as Objectives for Minimum and Maximum Dose at
Corresponding Percent Volume and Constraints for Global Minimum and Maximum
Dose

The final set of volumes used to define the goals and constraints included in the

model are listed in Table 4.1. The global maximum dose objectives for several OARs

are set to 1%. This means that the dose received by only the highest-dosed 1% of the
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voxels in that volume in the historical case is set as the absolute dose ceiling for that

volume in the test case.

The test cases planned using this model demonstrated an average HI of 0.245

± 0.080. For comparison, the average HI of MCO-IMRT plans of Type A in the

knowledge base is 0.093 ± 0.073. Thus, the VMAT plans show a 163% increase in

HI on average, compared to the MCO-IMRT plans. This indicates that the plans

produced using the automated treatment planning model are worse on average than

the MCO-IMRT plans in the knowledge base on the metric of PTV dose homogeneity.

However, Fig. 4-1 shows that the absolute range of HI of the model-generated

plans is within the range of HI of plans of Type A in the knowledge base. This

means that while the model produces VMAT plans with worse average PTV dose

homogeneity than the original IMRT plans, they are all within a clinically acceptable

range.

Figure 4-1: This box and whisker plot compares the distribution of HI for the test
cases planned using the automated planning model and the MCO-IMRT cases of Type
A from the knowledge base. The average HI for each set is represented with the ×
symbol, and the first and third quartiles and medians are demarcated with horizontal
lines. It can be seen that the MCO-IMRT plans have a significantly lower average
HI, but that the HI of each test case is within the range of HI for the MCO-IMRT
plans.
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These auto-generated plans are clearly not adequate for implementation without

further improvement. However, the model is intended to automate the generation of

“first pass” treatment plans with no personalization. As a result, the HI range of

these test cases is promising. Treatment planners can use these “first pass” plans to

much more quickly shape a patient’s final, high-quality personalized treatment plan

than if they were starting from scratch.

Fig. 4-2 is included as an example of DVH data from a VMAT plan generated

by the model overlaid with the DVH data from its matched IMRT plan from the

knowledge base. The figure shows the DVHs from the MCO-IMRT plan for case

A-19 in the knowledge base as solid lines. It shows the DVHs from the VMAT plan

generated by the model for test case 1 as dotted lines. This figure can be used to

compare the relative dose sparing to OARs and the relative homogeneity of target

coverage. The VMAT plan provides better sparing to the rectum and to the left and

right femur. The IMRT plan provides slightly better sparing to the bladder. The

decreased homogeneity of dose to the target in the VMAT plan can be seen in the

relative slopes of the solid and dotted PTV and prostate curves. However, in general

these DVH sets are visibly similar. While it stands to be significantly improved from

this initial, auto-generated version, the VMAT plan for test case 1 is a very good

place for a treatment planner to start an optimization.
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4.3 Limitations of this Study

The results of the automated planning model produced in this study can always be

improved by increasing the number and diversity of cases in the knowledge base.

The model produces its best results when new cases are matched with very similar

historical ones. When a new case is matched with a truly identical historical case,

the MCO-IMRT plan represents the truly ideal starting point for the new patient’s

VMAT optimization [10]. If a model like the one produced in this study were to be

implemented clinically, its knowledge base would need to be vast.

The model produced by this study would also have to be improved significantly

before clinical implementation. Far more test cases of treatment Type A would need

to be run to refine the model for that treatment type. Completing a project of this

computational scale would require the use of many machines running optimizations

in parallel. Consideration might be given to the potential weighting of the results of

different test cases based on how typical they are of their treatment type. Variations

of the model would also have to be produced for treatment Types B and C.
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Chapter 5

Conclusion

Radiation therapies have advanced drastically over the last fifty years. However, they

are still being improved through the development of more advanced optimization

algorithms, real-time target tracking and patient immobilization techniques. The

development of multi-criteria optimization represents an important recent advance

of the art and science of radiation therapy planning. MCO-IMRT is now the “gold

standard” of radiation therapy against which new modalities are measured.

VMAT, the logical progression of IMRT, has the possibility to deliver comparable

dose coverage to target volumes with improved OAR sparing. However, early ver-

sions of MCO were not compatible with VMAT. While many clinics were equipped

to deliver VMAT, robust methods for its optimization had not yet been developed.

Although robust MCO methods for VMAT have been developed since the commence-

ment of this study, it is likely that there will someday be another case where our

ability to deliver advanced therapies outstrips our ability to optimize them. In those

future cases, knowledge-based treatment planning can serve to bridge that gap while

optimization methods are developed.

The purpose of this study was to construct a model for the automated genera-

tion of MCO-informed VMAT treatment plans using a knowledge base of previously

implemented MCO-IMRT plans. The cohort used in the knowledge base consists of
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ninety-six patients previously treated for prostate cancer in the MGH clinic. Cases in

the cohort each received one of three common types of treatment for prostate cancer.

The patient data used in this study consisted of contoured CT scans, prescription

doses, fractionation schemes and reformatted DVHs from each treatment plan.

Five test cases were matched to historical cases within this knowledge base using

a metric for anatomical similarity that was developed in previous work at MGH. An

initial model was constructed for the automated generation of new MCO-informed

VMAT plans based on the treatment planning data from their matched MCO-IMRT

plans. This model consists of the selection of treatment planning data used as ob-

jectives for maximum and minimum dose to certain fractional volumes, and global

maximum and minimum doses to certain volumes. The model was iteratively refined

based on PTV homogeneity and OAR sparing. The final model produced MCO-

informed VMAT plans with an average HI of 0.245 ± 0.080. Compared to the average

HI of the MCO-IMRT plans of 0.093 ± 0.073, these auto-generated plans represent a

reasonable starting place for refinement by a trained treatment planner.

Future work on the automated planning model should include the refinement of

the model based on more test cases of treatment type A, as well as the development

of similar models for treatment types B and C. Before these knowledge-based models

can be integrated into clinical workflow, it is necessary to evaluate the limits of the

anatomical similarity metric used to match new cases to historical ones. Given a large

enough knowledge base, most new cases will have a sufficiently similar historical case

in the knowledge base to usefully inform their treatment plan. However, for new cases

that are extreme outliers and are not well-represented by any case in the knowledge

base, this kind of model may be of limited practical utility.

Finally, in addition to prostate cancers there are other disease sites that could

be candidates for automated planning models like this one. Given the success of

VMAT for prostate cancers, there has been some interest in implementing it for

other pelvic malignancies such as lower gastrointestinal and gynecological cancers.

40



Planning studies have shown promising results for cervical cancers in particular [4].

Cervical cancers, like prostate cancers, would provide a promising site for automated

knowledge-based planning due to their relative distance from critical OARs.

Automated treatment planning models like this one have the potential to improve

the timeliness of laborious treatment planning processes. Developing the science

of knowledge-based treatment planning can prepare the field of medical physics to

handle future cases where complex radiation therapies can be delivered physically,

but cannot yet be optimized computationally. Leaning on the resource of historical

clinical data can help us to deliver the best possible therapies in these cases.

41



42



Appendix A

Regions of Interest

Type A: PTV, CTV, prostate, bladder, penile bulb, seminal vesicles, r. femur, l.

femur, rectum, ant. rectal half, post. rectal half, ant. rectal wall, post. rectal wall

Type B: PTV, CTV, prostate bed, bladder, penile bulb, seminal vesicles, r. femur,

l. femur, small bowel, large bowel, rectum, ant. rectal half, post. rectal half, ant.

rectal wall, post. rectal wall

Type C: PTV, PTV total, r. lymph node PTV, l. lymph node PTV, prostate bed,

bladder, penile bulb, seminal vesicles, r. femur, l. femur, r. lymph node, l. lymph

node, small bowel, large bowel, rectum, ant. rectal half, post. rectal half, ant. rectal

wall, post. rectal wall
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Appendix B

DVH Data Cleaning Script

import os

filenames=[]

for item in os.listdir(’DVH text files/’):

filename=item

if ’.dvh’ in filename:

if ’-1’ not in filename:

filenames.append(filename)

for filename in filenames:

file=open(’DVH text files/’ + filename, ’r’)

lines = file.readlines()

#remove .dvh from end of filename

filename=filename[:-4]

#list of key terms in ROI names of interest

ROI_terms=[’PTV’, ’ptv’, ’CTV’, ’ctv’, ’Pros’, ’pros’, ’Blad’,

’blad’, ’Fem’, ’fem’, ’sem’, ’Sem’, ’ves’, ’Ves’,

’Rect’, ’rect’, ’Penile’, ’penile’, ’Bulb’, ’bulb’,

’RLN’, ’rln’, ’LLN’, ’lln’, ’Bowel’, ’bowel’,’Node’,

’node’,’Pelvic’,’pelvic’]
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#recurring structures we’re not interested in

bad_terms=[’PTV 5040 Wall’, ’PTV 7920 Wall’, ’R+L Femur’]

ROIs = []

#start of DVH data following ROI name

starters = []

Allregions=[]

Rejected_regions=[]

#iterate through lines, get patient number and ROIs

i=0

for line in lines:

if ’PatientNumber’ in line:

#pulls just patient’s number

patient_number=line[13:-1]

if ’RoiName’ in line:

r=line[9:-1]

Allregions.append(r)

if r not in bad_terms:

for term in ROI_terms:

if term in line:

ROIs.append(line[9:-1])

starters.append(i+3)

break

i+=1

#Make sure you’re not throwing away anything of interest

for thing in Allregions:

if thing not in ROIs:

Rejected_regions.append(thing)
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#print(’DISCARDING ’ + thing)

## print(patient_number)

## print(lines[2])

## print(Rejected_regions)

## print(’’)

## print(ROIs)

## print(’’)

## print(’’)

patient_values=[]

patient_DVHs=[]

#go through stuff following ROI names, cut out DVH values

for i in range(len(ROIs)):

firstline = starters[i]

values= []

for j in range(1000):

line = lines[firstline+j]

if line == ’\n’:

break

else:

#values gives data assoc’d with ROI

values.append(line[0:-1].split(’\t’))

#compiles all uncleaned data for structures of interest for

#patient

patient_values.append(values)

#go through values, keep only stuff we want, stick it in

#DVH

DVH=[[’0.000’, ’100.000’]]

hundreds=[]
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for j in range(len(values)):

if values[j][1]==’100.000’:

hundreds.append(values[j])

if values[j][1]==’0.000’:

DVH.append(values[j])

break

elif ’.000’ in values[j][1]:

DVH.append(values[j])

#DVH will contain only whole percent values from last

#100 to first 0

for k in range(len(hundreds)-1):

DVH.remove(hundreds[k])

#compile all cleaned DVHs for structures of interest

#for patient

#remove smaller of any duplicate dose values

for j in range(len(DVH)-3):

if DVH[j][1]==DVH[j-1][1] and DVH[j][1]!=’100.000’:

DVH.remove(DVH[j])

for j in range(len(DVH)):

DVH[j]=float(DVH[j][0])

#convert DVH from list to array

patient_DVHs.append(DVH)

x=len(ROIs)

for i in range(x):

ROIs.insert(2*i+1, ’’)

empty=[]

for i in range(102):

empty.append(’’)
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x=len(patient_DVHs)

for i in range(x):

patient_DVHs.insert(2*i+1,empty)

#put patient’s DVHs and ROIs into .csv

import csv

with open(’csv files/’ + filename + ’.csv’, ’w’, newline=’’) as f:

writer = csv.writer(f, dialect=’excel’)

writer.writerows([ROIs])

#zip writes DVHs as columns under corresponding ROI names

writer.writerows(zip(*patient_DVHs))
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