
Simulation methods for plasmonic structures

by

Ferran Vidal-Codina

Llicenciatura de Matemàtiques, UPC BarcelonaTech (2010)
Enginyeria de Camins Canals i Ports, UPC BarcelonaTech (2011)
S.M., Computation for Design and Optimization, MIT (2013)

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computational Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2017

c○ Massachusetts Institute of Technology 2017. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Aeronautics and Astronautics

May 25, 2017

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Thesis Supervisor: Jaume Peraire

H. N. Slater Professor of Aeronautics and Astronautics

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Thesis Supervisor: Ngoc-Cuong Nguyen

Principal Research Scientist

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Thesis Committee Member: Youssef M. Marzouk

Associate Professor of Aeronautics and Astronautics

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Thesis Committee Member: Anthony T. Patera

Ford Professor of Mechanical Engineering

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Nicolas G. Hadjiconstantinou

Professor of Mechanical Engineering
Co-Director, Computational Science and Engineering

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Youssef M. Marzouk

Associate Professor of Aeronautics and Astronautics
Chair, Graduate Program Committee



ii



Simulation methods for plasmonic structures

by

Ferran Vidal-Codina

Submitted to the Department of Aeronautics and Astronautics
on May 25, 2017, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computational Science and Engineering

Abstract

In the recent years there has been a growing interest in studying electromagnetic wave
propagation at the nanoscale. The interaction of light with metallic nanostructures produces
a collective excitation of conduction electrons at the metal surface, also known as surface
plasmons. These plasmonic resonances enable an unprecedented control of light by confining
the electromagnetic field to regions well beyond the diffraction limit, thereby leading to near-
field enhancements of the incident wave of several orders of magnitude. These remarkable
properties have motivated the application of plasmonic devices in sensing, nano-resolution
imaging, energy harvesting, nanoscale electronics and cancer treatment.

Despite state-of-the-art nanofabrication techniques are used to realize plasmonic devices,
their performance is severely impacted by fabrication uncertainties arising from extreme
manufacturing constraints. Mathematical modeling and numerical simulation are therefore
essential to accurately predict the response of the physical system, and must be incorporated
in the design process. Nonetheless, plasmonic simulations present notable challenges. From
the physical perspective, the realistic behavior of conduction electrons in metallic nanostruc-
tures is not captured by Maxwell’s equations, thus requiring additional modeling. From the
simulation perspective, the disparity in length scales stemming from the extreme field local-
ization exceeds the capabilities of most numerical simulation schemes. In addition, relevant
data such as optical constants or geometry specifications are typically subject to measure-
ment and manufacturing errors, hence simulations need to accommodate uncertainty in the
data.

In this thesis we present a collection of numerical methods to efficiently simulate electromag-
netic wave propagation through metallic nanostructures. Firstly, we develop the hybridizable
discontinuous Galerkin (HDG) method for Maxwell’s equations augmented with the hydro-
dynamic model for metals, which accounts for the nonlocal interactions between electrons
that become predominant at nanometric regimes. Secondly, we develop a reduced order
modeling (ROM) framework for Maxwell’s equations with the HDG method, enabling the
incorporation of material and geometric uncertainties in the simulations. The result is a
family of surrogate models that produces accurate yet inexpensive simulations of plasmonic
devices. Finally, we apply these approaches to the study of periodic annular nanogaps,
and present parametric analyses, verification with experimental data and design of novel
structures.
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Chapter 1
Introduction

The field of plasmonics [153, 155, 196, 234] studies the collective excitation of conduction-

band electrons that occurs due to the interaction of light with metallic nanostructures.

These resonances can be classified as localized surface plasmons or surface plasmon polari-

tons. Localized surface plasmons are non-propagating excitations that appear naturally in

the surface of nanoparticles when illuminated by an electromagnetic (EM) wave. Conversely,

surface plasmon polaritons are dispersive electromagnetic waves that propagate at the in-

terface between a metal and a dielectric, excited by the coupling of the incident EM wave

with the metal’s electron plasma. Plasmon resonances are able to squeeze light in volumes

several orders of magnitude smaller than the wavelength of light, leading to large near-field

enhancements of the incident EM wave. The excitation of surface plasmons is magnified

near the corners or singularities of metallic nanoparticles, or within gaps formed by metallic

structures at the nanoscale. Moreover, the extreme confinement and enhancement proper-

ties provide unparalleled means for manipulation of light and its interaction with metals,

well beyond the diffraction limit. As a result, plasmonics has motivated applications in

sensing [7, 27, 33, 106, 124, 133, 141, 142, 243], energy harvesting [12, 28, 34, 76, 77], near-field

scanning microscopy [80,99,107,125,126,186,267,274], plasmonic waveguiding, amplification

and lasing [18,26,154,195,196,202,238,272] , optical data storage [35,156,187,245,280] and

cancer theranostics [58,62,66,104–106].

In order to illustrate the trapping of light in deep-subwavelength apertures, we consider the

interaction of an electromagnetic wave with two infinitely long gold nanowires of radius 25
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Figure 1-1: Schematic diagram of nanowire dimer illuminated with electromagnetic wave.

nm in free space, separated by a small gap, see Fig. 1-1. This plasmonic device is commonly

known as plasmonic dimer, and it has been shown to support strong field enhancements in

the gap region [96,185] for nanometric and subnanometric separation distances. The dimer

is illuminated with an 𝑥-polarized plane wave that propagates in the 𝑦 direction, exciting

a localized surface plasmon as the gap decreases. The photon energy of the incoming wave

is fixed at 3 eV, which corresponds to a wavelength of 413 nm, that is 16 times greater

than the radius of the wires. To demonstrate the confinement properties of the dimer, the

absolute value of the electric field’s 𝑥-component is shown in Fig. 1-2 for several values of

the gap-radius ratio. Initially, for a separation comparable to the radius, the enhancement

is minimal and not even concentrated in the gap region, since the interaction between the

nanowires is poor. Nonetheless, as the gap shrinks the growing collective oscillation of

electrons at the metal surface is able to squeeze the incident light in the volume between the

wires. The enhancement caused by the plasmon resonance is greater for smaller separations,

reaching almost three orders of magnitude for a 5 Å gap – almost 1000 times smaller than

the wavelength.

The plasmonic devices of interest in this dissertation are periodic annular gap structures,

which have been shown to produce extraordinary optical transmission and enormous field

enhancements [14, 63, 71, 114, 205, 218]. These structures consist of periodic arrays of sub-

wavelength annular apertures of a dielectric material patterned in a metallic film, and unlike

arrays of circular and rectangular apertures they sustain plasmon resonances for a broad

range of frequency regimes. That is, for a fixed aperture size one can adjust the ring di-
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Figure 1-2: 𝑥-component of absolute value of electric field for 25 nm radius gold dimer (highlighted with
white dots) at several gap separations, for constant incident photon energy of 3 eV.

ameter and the array periodicity to generate resonances for the visible, the mid infrared

(MIR) and the far infrared (FIR) regime. Due to this extended frequency range of op-

erations, annular gap structures have numerous applications such as sensing in low THz

frequencies [188,189,198], optical trapping [12,226,252] or nonlinear optics [9].

Plasmonic phenomena are governed by the propagation of electromagnetic waves, described

by Maxwell’s equations. These waves propagate through dielectric as well as metallic media,

hence several models have been proposed to characterize the behavior of metallic nanostruc-
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tures. The research presented in this thesis is devoted to high-fidelity simulation techniques

for 2d and 3d plasmonic structures, with a special focus on annular gap structures.

1.1 Challenges and scope

The ability to accurately model and simulate electromagnetic wave propagation problems

for plasmonic applications requires capabilities that challenge traditional modeling and sim-

ulation techniques. Firstly, the interaction of long-wavelength light (µm and mm) with

nanometric cavities involves an enormous mismatch in relevant length scales, see for instance

Figs. 1-2e and 1-2f. This circumstance can quickly overcome the capabilities of conventional

finite difference and finite volumes schemes, thus it is crucial to develop advanced simulation

methods that are capable of resolving multiple length scales.

Plasmonic devices often present curved geometries. To compute high-fidelity results an

accurate representation of the geometry is paramount. Additionally, plasmonic phenomena

are characterized by the extreme confinement and tight localization of fields in nanometer-

wide apertures. Consequently, the discretizations required to attain faithful simulations need

to be adaptive (to focalize the degrees of freedom in the regions of interest) and anisotropic

(to properly capture boundary-layer type structures that appear at the interface of metallic

nanostructures.)

Maxwell’s equations are non-coercive, hence leading to indefinite linear systems of equations

after an appropriate discretization of the computational domain and the equations. This

circumstance precludes the use of iterative methods to compute the high-fidelity solutions,

and the development of preconditioners for Maxwell’s equations is still an active area of

research [6, 85, 121, 253]. Also, the use of iterative methods for metal-dielectric systems

at the nanoscale is an unexplored problem. Direct solutions to the linear problem are

computationally demanding, specially for 3d structures. Moreover, plasmonic devices exhibit

an enormous contrast of optical constants between metals and dielectrics. Hence, to tackle

3d plasmonic simulations we not only need significant computational power and storage, but

also numerical schemes that can address the aforementioned issues.

From a manufacturing perspective the fabrication of nanometer-wide gap structures is diffi-

cult, and small geometric deviations from the nominal design may produce entirely different
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responses of the plasmonic device. Furthermore, the material constants that characterize

the optical response of metals and dielectrics are determined experimentally, thus subject

to measurement errors. If the ultimate goal is to endow the numerical simulation methods

with a predictive power, it is of foremost importance to incorporate fabrication tolerances

as well as measurement uncertainties in the simulation and design process.

In terms of modeling, the most common technique to simulate plasmonic devices is to solve

Maxwell’s equations in both the metal and the dielectric, and use a permittivity in the metal

given by Drude’s model. This approach is known as local response approximation (LRA).

This model, albeit simple and directly applicable to most numerical schemes, is limited,

due to simplifications in the description of the electron motion. The limitations of LRA to

properly model plasmonic resonances appear at the nanometer scale, where effects such as

nonlocal interactions between electrons or quantum phenomena become non-negligible. To

account for these effects, the mathematical model must be augmented with additional equa-

tions that capture the physics. In this thesis, we consider the hydrodynamic model (HM)

for noble metals, which models the inter-electron coupling by including a hydrodynamic

pressure term that is simultaenously solved with Maxwell’s equations. The HM has been

demonstrated to produce more physically meaningful results for plasmonic structures with

noble metals below tenths of nanometers, compared to the LRA, even though it neglects

quantum effects. In terms of numerical computation, the new field variables introduced by

the additional equations increase the computational complexity of the simulations. Further-

more, the hydrodynamic model excites subnanometric phenomena omitted by LRA, thus

we often require greater spatial resolution to attain accurate solutions.

1.2 Proposed methodology

The main contribution of this dissertation is a high-order numerical scheme, the hybridizable

discontinuous Galerkin (HDG) method, to simulate the interaction of light with metallic

nanostructures. The unique features of the HDG method make it particularly attractive

for electromagnetic wave propagation problems: (1) it can be used on general unstructured

meshes, thus allowing complex geometries and facilitating the use of adaptive discretizations;

(2) it is high-order accurate, low dissipative and dispersive, thus particularly suited for
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wave propagation problems; (3) the linear system that needs to be solved comprises only a

reduced number of degrees of freedom, defined on the faces of the discretization cells; (4)

the treatment of boundary conditions is naturally incorporated in the weak formulation by

approximating the trace of the solution on the boundaries; (5) we need not consider special

approximation spaces, since the discontinous Galerkin spaces include the commonly used

curl-conforming subspaces that contain the exact solution; and (6) the discontinuous nature

and stabilization techniques can easily accommodate material contrasts at the interfaces of

several orders of magnitude.

The HDG method is developed for the LRA and for the HM for metals to account for

nonlocal interactions between electrons. Moreover, since we solve Maxwell’s equations in

the dielectric and the Maxwell’s equations augmented with hydrodynamic model in the

metal, appropriate coupling conditions need to be devised.

In addition, we develop a reduced order model (ROM) framework to account for fabrication

tolerances and uncertainty in the material properties within the LRA model. To that end,

we develop a reference domain formulation for the time-harmonic Maxwell’s equations that,

along with empirical interpolation techniques, allows us to describe geometry deformations

in terms of affine parametric expressions. Furthermore, an efficient implementation of ROM

based on an offline-online computational strategy enables the computation of approximate

solutions of large 3d problems in real-time. Hence, we believe the ROM techniques proposed

in this thesis can be of tremendous interest for the design of novel plasmonic devices, due

to the possibility of exploring multiple geometry configurations at a fraction of the cost of

the full HDG simulation.

1.3 Literature review

In this section, we provide a literature review of the relevant approaches to simulate wave

propagation phenomena, as well as the construction of reduced order models. The review

of physical models, their limitations and applicability is deferred to Chapter 2.
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1.3.1 Wave simulation techniques

The simulation of electromagnetic wave propagation phenomena has been a very active field

of research in recent years, and multiple simulation approaches may be found in literature,

both for the time and frequency domain formulation of Maxwell’s equations. The two main

families of methods for computational electromagnetics are integral equation models and

differential equation models, which constitute two very distinct approaches to simulate wave

propagation. For detailed reviews of the distinct methods for computational electromagnet-

ics we refer the reader to [159,223] and the references therein.

Integral equation models

The basic idea of integral equation models is the use of Green’s functions, whereby we can

solve for the volume integrals of the induced sources located on the boundary of the volume

of interest, rather than solving for the entire unknown field in the volume. Hence, integral

equation models enable the reduction of a 3d problem to a 2d problem over the boundary.

In addition, Green’s functions naturally account for unbounded domains, thus no artificial

boundaries must be devised.

Unfortunately, integral equation models give rise to dense systems of equations, which albeit

smaller –since they represent a 2d discretization– are computationally demanding to solve.

Moreover, these methods are restricted for cases where Green’s functions are available, thus

limiting the applicability of integral equation models for heterogeneous materials or materials

with space-varying properties. Finally, the treatment of inhomogeneities, anisotropy or

nonlinearities is not straightforward. Therefore other approaches are preferred for complex

systems and devices.

Among integral equation models the family of boundary element methods, also known as

the method of moments in electromagnetics [82, 98,209,236], is the most extensively used.

Differential equation models

The family of differential equation models differs from integral equation models in that it

pursues a discretization of Maxwell’s equations, and the objective is to compute the value
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of the unknown fields in the degrees of freedom on the discretized volume of interest.

The first and most widely used method for computational electromagnetics is the finite-

difference time domain (FDTD) algorithm [132, 246, 247], which discretizes both space and

time using Yee’s scheme [276]. The main advantage of Yee’s scheme is its simplicity and

efficiency, due to the use of staggered Cartesian grids and second-order schemes for both

space and time to simulate the evolution of Maxwell’s equations in a fully explicit manner.

The main limitation of FDTD is their extension to complex geometries with sharp or curved

features, since Cartesian grids can only approximate these irregular boundaries in a stair-

cased manner. If accurate simulations are sought, in order to avoid numerical diffraction a

very high discretization resolution is needed, thus increasing the computational requirement.

This is even more dramatic for plasmonic applications due to the extreme mismatch in

length scales, limiting the applicability of FDTD. For photonic crystal simulations we should

highlight MEEP [194], an open-source implementation of FDTD, which provides a robust,

scalable and parallel framework to simulate the interaction of electromagnetic waves with

photonic crystals, whereas Lumerical [2] is a software designed for the 2d and 3d FDTD

simulation of surface plasmons.

Finite element (FE) methods [118, 160, 275] are amongst the most popular techniques for

wave propagation problems, thanks to their ability to handle heterogeneous media and

complex geometries with the use of unstructured grids. The class of face/edge elements

introduced by Raviart-Thomas and Nédélec [23,167,168,210] have been extensively used to

simulate electromagnetic wave propagation, and have been shown to avoid the problem of

spurious modes [24] by explicitly enforcing the divergence condition. Edge elements can be

further subdivided in low order elements, also known as Whitney elements [269], and high

order and ℎ/𝑝 elements [3,4,56,57,232,268]. High order edge elements are often desirable due

to the reduced number of elements needed to capture the solutions compared to Whitney

elements, specially for high frequencies, although the linear systems that stem from the

discretization become denser with the approximation order of the elements. A commonly

used implementation of edge elements for Maxwell’s equations is the one provided by the RF

Module of Comsol Multiphysics [1], which has been extended to include the hydrodynamic

model [250]. Additionally, a frequency-domain implementation of the hydrodynamic model

based on edge elements has been applied to the numerical simulation of 2d grooves and
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nanowires [102].

An attractive alternative to edge elements is the class of discontinous Galerkin (DG) meth-

ods [13, 16, 53], since it leads to methods that are unstructured, locally conservative, high-

order accurate, low dissipative and dispersive, optimally convergent, allow for a simple and

unambiguous imposition of boundary conditions, and are very flexible to parallelization and

adaptivity. These methods rely on imposing weak continuity of a numerical flux across the

boundaries of the discretization elements, while solving the governing equations at the ele-

ment level. The DG method was first applied to solve the time-domain Maxwell’s equations

by Hestaven and Warburton [101], and has been further developed to simulate wave prop-

agation phenomena through metamaterials at the nanoscale [30], as well as for dispersive

media [117,134,145] and more recently the hydrodynamic model [231] for 2d dimers.

Despite all these advantages, DG methods face limitations when used for practical 3d appli-

cations due to the computational burden that arises from nodal duplication. This shortcom-

ing motivated the development of the hybridizable discontinuous Galerkin (HDG) method,

first introduced in [48] for elliptic problems, subsequently analyzed in [47,50,52], and later ex-

tended to a wide variety of partial differential equations (PDEs) [49,169,173–177,255]. More

specifically, the HDG has proven very effective for acoustics and elastodynamics [178, 225]

and electromagnetics [179]. The HDG method is fully implicit, unstructured, and high-

order accurate in both space and time, and is particularly effective for solving elliptic PDEs

because it possesses several unique features that distinguish it from other DG methods.

First, it reduces the number of globally coupled unknowns to those required to represent the

trace of the approximate solution on the element boundaries, thereby resulting in a smaller

global system than that of other DG methods [108]. Second, the method provides optimal

convergence rates for both the solution and the flux. And third, its flux superconvergence

properties can be exploited to devise a local postprocess that increases the convergence rate

of the approximate solution by one order.

Traditionally, the main criticism shared by all approaches reviewed above is the treatment of

unbounded problems. Modeling unbounded domains requires an artificial truncation of the

computational domain in such a way that the waves propagating outwards do not reflect back

and contaminate the solution. Common approaches are Sommerfeld radiation conditions,

also known as absorbing boundary conditions (ABC) [67, 165, 242], applied at the mesh

9



boundaries where radiation is enforced, or perfectly matched layers (PMLs) [17, 95, 254].

PMLs are layers of absorbing material placed in the edges of the computational domain

that exponentially attenuate outgoing waves, and are typically much more effective than

ABCs.

1.3.2 Reduced order modeling

Proper orthogonal decomposition

The proper orthogonal decomposition (POD) has been extensively used due to its capacity to

capture the essential information of an infinite-dimensional process with only a reduced num-

ber of basis functions. The POD consists of three equivalent methods, the Karhunen-Loève

decomposition, the principal component analysis [122] and the singular value decomposition

(SVD). We refer the reader to [72, 138, 146] and the references therein for a comprehensive

discussion on the equivalence of these methods.

The most widely used approach to generate a low-dimensional representation of dynamical

systems is the method of snapshots, originally introduced by Sirovich in [237]. POD requires

a set of state solutions, usually called snapshots, obtained by numerically solving the full

forward model for arbitrary values of the input parameters. The POD basis is then obtained

by compressing the ensemble of snapshots using SVD techniques, such that with a reduced

number of basis functions the dominant information of the system is retained. Furthermore,

the elements of the POD basis are uncorrelated, and they constitute a low-rank representa-

tion of the state solutions, which is optimal among all low-rank approximations. The model

is then obtained using a Galerkin projection onto the subspace spanned by this POD basis.

The POD method has been used for several large-scale dynamical systems, e.g. in CFD and

aerodynamic applications [19,97,103,270], optimal control of fluids [147,211], turbomachin-

ery flows [68, 271], microelectromechanical systems [109, 139] and electromagnetics [5, 230].

Furthemore, research has been devoted into extending POD for nonlinear systems and non-

linear structural dynamics [131, 158]. A thorough review of POD and its application to

mechanical systems may be found in [127].

Other classes of relevant projection-based model order reduction techniques include Krylov
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subspace methods [73,90] and balanced truncation [93,161].

Reduced Basis Method

The reduced basis (RB) method is a technique to obtain rapid yet accurate approximations

of functional outputs of parametrized PDEs. It was first introduced in the early 1980s by

Noor [183,184] for single and multiple parameter problems in nonlinear analysis of structures.

Further work was developed to include a priori error analysis [78,204]. Recently, much work

has been devoted to RB methods by Patera et al. [86–88, 148, 150, 151, 170, 220, 221, 257–

260], introducing several new concepts that have greatly developed these techniques, such

as: (1) the use of global approximation spaces based on snapshots of the solution for the

full governing equations; (2) rigourous a posteriori error estimators to certify the quality

of the approximation; and (3) the exploitation of an offline/online strategy to improve

computational efficiency.

The first theoretical a priori convergence results by Maday et al. [151] demonstrated ex-

ponential convergence of the reduced-basis. The method was developed for linear elliptic

problems with affine parametrization [149] and for eigenvalue problems [148]. Extensions to

include nonlinear and noncoercive elliptic and parabolic problems were developed by Rovas,

Veroy et al. [220,256–260], together with developing rigorous and sharp error estimators.

However, sampling the parameter space is challenging, especially if high-dimensional inputs

are considered. Recently, the greedy sampling method introduced by Patera et al. [86, 88,

257, 259] has proved to be an efficient strategy to adaptively select the snapshots based on

estimates of the error. Alternatively, the greedy approach has also been reformulated as

a sequence of adaptive model-constrained optimization problems [29], being advantageous

from the point of view that the sample space is treated continuously.

In the context of multiscale and structured problems, a recent effort is the static condensation

RB method [64, 111, 112], which exploits the structure by developing and reusing a RB for

each different component, and then uses static condensation to recover a system on the

interfaces that separate the components of the domain. Alternatively, the RB method has

also been applied to the multiscale FE method [171], enabling an efficient approximation of

the FE functions.
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Recently, the RB method has been extended to the time-harmonic Maxwell’s equations

[42, 43, 55, 100] to successfully generate fast responses for complex electromagnetic devices,

where both material properties and geometry are treated as parameters. Furthermore, the

successive constraint method [110, 113] enables the computation of sharp and rigorous a

posteriori error bounds.

The RB method has also been applied to standard continuous Galerkin finite element so-

lutions of stochastic elliptic PDEs [25, 38, 94]. In this approach, the stochastic PDE is first

reformulated as a parametrized PDE over the coefficients of the Karhunen-Loève expan-

sion of the random fields. The reduced basis approximation and associated a posteriori

error estimation are then developed for the resulting parametrized PDE. Finally, the output

statistics and their error estimates are computed with a Monte Carlo simulation [25,94] or a

stochastic collocation approach [38]. These approaches, which involve the RB method and

its a posteriori error bounds to evaluate the output instead of the original finite element

discretization, have been shown to outperform standard stochastic simulation techniques.

An alternative approach for stochastic simulation are the recently introduced model and

variance reduction (MVR) methods [261, 262], where the RB is combined with multilevel

Monte Carlo sampling techniques [83]. This method enables the computation of statistical

outputs and its a posteriori error estimates without involving a posteriori error bounds for

the RB approximation, at a fraction of the cost of traditional MC methods. This feature

broadens the applicability of RB methods to a wide variety of stochastic PDEs for which a

posteriori error bounds for the RB approximation are either not available or too expensive

to compute.

Empirical interpolation

The application of POD or RB techniques to linear PDEs or equations with an affine depen-

dence on the relevant parameters constitutes a highly efficient approach for model reduction.

However, the existence of nonlinearities in the problem poses a severe challenge for POD/RB,

since the cost of evaluating the Galerkin projection scales as the dimension of the original

system, hence barely improving the performance. For instance, we lose the attractive feature

of precomputing the inner products needed to evaluate finite element formulations.
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In order to overcome this limitation several alternatives have been proposed. The trajectory

piecewise-linear method [216] proposes to generate a reduced model by combining linear

models obtained linearizing along specific points on a state-space trajectory. The empirical

interpolation method (EIM) [15] and its discrete counterpart DEIM [37] employ a greedy

sampling strategy to generate an independent approximation to the nonlinear term, consist-

ing of a weighted combination of interpolation functions. Thus, replacing the nonlinear term

with this interpolation approximation recovers an efficient computational strategy when pro-

jecting onto the low-dimensional space. A similar methodology was developed in [172], where

the greedy approach is replaced by an optimal selection of points based on a least-squares

minimization, leading to the best points interpolation method. More recently, the localized

DEIM [199] suggests the construction of multiple discrete interpolants for the nonlinear

terms that correspond to different behaviors of the system.

1.4 Thesis objectives and overview

The main objective of this thesis is to propose, develop and validate a methodology for the

efficient simulation of plasmonic devices. In particular, we aim to provide the community

with a high fidelity numerical method and a reduced order modeling framework that enables

the efficient simulation and design of metallic nanostructures. The accomplishments are

summarized as follows:

∙ Implement an HDG method for the simulation of time-harmonic Maxwell’s equations

in 2d and 3d where the behavior of metals is characterized by the Drude model.

∙ Formulate, study and implement the HDG method for the hydrodynamic model for

metals in 2d and 3d, thereby achieving a more realistic description of plasmonic reso-

nances at the nanoscale.

∙ Formulate and implement a ROM for time-harmonic Maxwell’s equations to account

for parametric variability on the optical constants of metals and dielectrics, using

proper orthogonal decomposition.

∙ Formulate and implement a ROM for time-harmonic Maxwell’s equations for geome-

try modifications using a reference domain formulation, combining proper orthogonal
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decomposition and empirical interpolation techniques.

∙ Validate the numerical simulations with experimental results reported in literature,

and perform analyses to identify the sources of mismatch.

∙ Perform studies for the annular nanogap structure using the proposed methodology,

in order to understand the effects of nonlocality and geometry on the transmission

properties.

∙ Demonstrate the application of ROM to design a concentric annular nanogap structure

with enhanced transmission capabilities.

In summary, we develop the HDG method for two hierarchical models to describe the elec-

tron motion in metals. The hydrodynamic model gives rise to a more physically accurate

representation of the interaction of light with noble metals. This advanced model cap-

tures the nonlocal behavior of electrons that occurs at the nanometric scale by augmenting

Maxwell’s equations. In Chapter 2, we review the governing equations, physical models, and

assumptions employed throughout the thesis. In Chapter 3, we formulate and implement the

HDG method for the time-harmonic Maxwell’s equations for both the LRA and the HM,

and provide examples of realistic 3d devices that motivate the importance of considering

the hydrodynamic model. In Chapter 4, we propose a ROM framework, based on proper

orthogonal decomposition and empirical interpolation, to construct a surrogate model that

can be evaluated in real-time, and yet provides accurate approximations to the high-fidelity

model. In addition, the proposed method is capable of encoding parametric variation, for

instance of optical constants or geometry parameters, which greatly facilitates simulation

and design. In Chapter 5, we bring the above methodologies together and present several

relevant applications in plasmonics, namely a saturation study for a 2d slit, a comprehensive

parametric analysis of annular nanogaps, including detailed comparisons and validation with

experimental data, and the design of a concentric annular structure. Finally, we conclude

in Chapter 6 with some directions for future research.
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Chapter 2
Governing equations and physical models

In this chapter, we review the basics of electromagnetic optics and introduce the governing

equations that will be used throughout this thesis. The term electromagnetic optics stems

from the treatment of light as an electromagnetic vector field, as opposed to wave optics,

where light is modeled as a scalar wavefunction. The electromagnetic radiation is expressed

as mutually coupled electric and magnetic field waves that propagate through the medium,

and enables a more realistic treatment of the propagation and control of light. Indeed,

describing electromagnetic radiation using vector fields allows us to account for light po-

larization, or a more comprehensive description of reflection and refraction at the interface

between dielectric media. For the applications in this thesis, we shall focus on phenomena

that occur at optical frequencies, which range from the far infrared to the ultraviolet (UV),

that is from 300 GHz (𝜆 = 1 mm) to 3 PHz (𝜆 = 100 nm), as illustrated in Fig. 2-1.

The fundamental PDEs that describe electromagnetic wave propagation are the celebrated

Maxwell’s equations, which we review first, along with its constitutive relations. We devote

special attention to the case of monochromatic waves, thus allowing to formulate the problem

in frequency domain, along with suitable boundary conditions and relevant quantities of

interest that will be used in the thesis. We then review the optical properties for both

dielectrics and metals, and conclude by examining different physical models that have been

proposed in literature to describe the conductivity of metals. These models are important

to accurately describe the behavior of light at the interface between metals and dielectrics.
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Figure 2-1: Optical frequencies and wavelengths. The infrared region (1 mm - 750 nm) of the spectrum
is divided into far infrared (FIR), mid infrared (MIR) and near infrared (NIR). The visible
comprises wavelengths from 750 nm to 380 nm, and the ultraviolet ranges from 380 nm to 10
nm.

.

2.1 Maxwell’s Equations

The electric ℰ(x, 𝑡) and magnetic ℋ(x, 𝑡) fields are described by six scalar functions of space

and time that completely characterize the propagation of light. These fields satisfy the

following set of partial differential equations

∇× ℰ = −𝜕𝑡ℬ (Ampère’s law),

∇×ℋ = 𝒥 + 𝜕𝑡𝒟 (Faraday’s law),

∇ · 𝒟 = 𝜌, (Gauss’s law),

∇ · ℬ = 0, (magnetic Gauss’s law),

(2.1)

known as Maxwell’s equations. The quantities 𝒟, ℬ correspond to the electric displacement

and magnetic flux density, respectively. In addition, we define the electric current and the

charge density respectively as 𝒥 and 𝜌. In addition to Maxwell’s equations, we shall define
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the following constitutive relations

ℬ = 𝜇ℋ ,

𝒟 = 𝜀ℰ = 𝜀0(1 + 𝜒)ℰ = 𝜀0ℰ + 𝒫 ,

𝒥 = 𝜎ℰ + 𝒥 𝑖𝑚 (Ohm’s law),

𝜀 = 𝜀0𝜀, 𝜇 = 𝜇0𝜇.

(2.2)

The electric permittivity 𝜀 and the magentic permeability 𝜇 are usually defined as a fraction

of the free-space permittivity 𝜀0 and permeability 𝜇0, using the nondimensional relative

permittivity 𝜀 and permeability 𝜇, that is 𝜀 = 𝜀0𝜀 and 𝜇 = 𝜇0𝜇. The free-space permittivity

and permeability are related to the speed of light in vacuum as 𝑐0 = (𝜀0𝜇0)
−1/2. For an

arbitrary medium, the permittivity and permeability are commonly represented as three

dimensional positive definite tensors, but for isotropic media they reduce to scalars. The

constant 𝜒 is the electric susceptibility, and 𝒫 represents the density of permanent or induced

electric dipole moments in a dielectric material, usually referred to as polarization density,

which vanishes in free space. For this work, we will assume linear (𝜒 independent of ℰ), non-
magnetic (𝜇 = 1) and charge-free (𝜌 = 0) media. Finally, the quantity 𝜎 is the conductivity

of the medium, which is zero for dielectric materials, and 𝒥 𝑖𝑚 represents the impressed (or

external) electric current.

For numerical stability, it is common to use a nondimensional version of Maxwell’s equations.

For a reference length scale 𝐿𝑐, we use the following scalings for the above fields

x = x/𝐿𝑐, 𝑡 = 𝑡𝑐0/𝐿𝑐, ℰ = 𝛼𝑍0ℰ , ℋ = 𝛼ℋ,

𝒟 =𝜀0𝛼𝑍0𝒟, ℬ = 𝜇0𝛼𝑍0ℬ, 𝒥 = 𝛼𝒥 /𝐿𝑐,
(2.3)

where 𝛼 is a reference magnetic field and 𝑍0 =
√︀
𝜇0/𝜀0 is the free-space impedance.

Applying this transformation to (2.1)-(2.2), we obtain

∇× ℰ = −𝜕𝑡ℬ,

∇×ℋ = 𝒥 + 𝜕𝑡𝒟,

∇ · 𝒟 = 0,

∇ · ℬ = 0,
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and

𝒟 = 𝜀ℰ = (1 + 𝜒)ℰ = ℰ + 𝒫 , ℬ = ℋ , 𝒥 = 𝜎ℰ + 𝒥 𝑖𝑚,

where 𝜎 is the nondimensional conductivity. Moreover, if we assume the electromagnetic

waves are monochromatic, that is they propagate with a single frequency, further simplifica-

tions of the governing equations can be devised. For a certain (nondimensional) propagation

frequency 𝜈 and angular frequency 𝜔 = 2𝜋𝜈, we can write the components of, for instance,

the electric field as ℰ(x, 𝑡) = ℜ{E(x) exp(−𝑖𝜔𝑡)}, and analogously for the remaining fields.

Consequently, time-dependence can be dropped, and Maxwell’s equations are recast involv-

ing only the complex amplitudes. The resulting system is known as time-harmonic Maxwell’s

equations, or frequency domain formulation, and reads

∇×E− 𝑖𝜔H = 0,

∇×H + 𝑖𝜔𝜀E = J,

∇ · 𝜀E = 0,

∇ ·H = 0.

(2.4)

In order to complete the definition of the Maxwell’s equations, we need to incorporate

appropriate boundary conditions.

2.2 Boundary conditions

At the interface of two dielectric media the electromagnetic fields satisfy the following con-

ditions

n1 ×E1 + n2 ×E2 = 0

n1 ×H1 + n2 ×H2 = 0

n1 ·B1 + n2 ·B2 = 0

n1 ·D1 + n2 ·D2 = 0

(2.5a)

(2.5b)

where n1, n2 are the unit outward normals of media 1 and 2 respectively, with n1 = −n2.

We therefore have continuity of the tangential component of the electric and magnetic fields,

continuity of the normal component of the magnetic flux density and a jump in the normal

component of the electric flux density equal to the surface charge, here assumed zero. Con-
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versely, at the interface between a dielectric and a perfect conductor (𝜎 = ∞) the tangential

component of the electric field vanishes, since inside a perfect conductor there is no electric

field. Thus, the electric field has only normal component, that is the incident wave gets

perfectly reflected (the conductor acts as a mirror). This boundary condition, known as

perfect electric conductor (PEC), is expressed as n × E = 0. Analogously, the condition

n×H = 0 is referred to as perfect magnetic conductor (PMC) boundary condition.

In addition, we should also consider the boundary conditions needed to enforce symmetry.

This enables us to perform efficient numerical simulations by only accounting for the irre-

ducible geometric structure, rather than the entire domain. We describe a monochromatic

plane wave by its amplitude 𝐴0, its propagation direction d and its polarization p, such that

A = 𝐴0p exp(𝑖𝜔
√
𝜀𝜇d · x). For a 3d simulation with a plane wave propagating in the 𝑧-

direction conditions must be prescribed in the edges of the transverse plane. For 𝑥-polarized

waves, we have PEC for constant 𝑥 and PMC for constant 𝑦. Conversely, if the incoming

wave is 𝑦-polarized, we set PEC for constant 𝑦 and PMC for constant 𝑥. This ensures the

components of the electromagnetic field preserve symmetry specifications.

We finally discuss the numerical representation of unbounded domains. In order to simulate

scattering from a volume, one must also take into account the medium surrounding the

scatterer, which gives rise to a problem formulated in infinite domain. In finite element

methods, the common strategy is to truncate the surrounding medium with an artificial

surface Γ far from the scatterer enclosing the computational domain, and impose radiation

conditions on Γ to recover a well-posed problem. The Silver-Müller radiation condition

is a special case of ABCs [165, 242] for Maxwell’s equations. It models the absorption of

outgoing waves that propagate normally to the boundary Γ, preventing their reflection into

the computational domain. This condition is first-order, since it approximates Γ with its

tangent plane and involves only first derivatives of the fields, but satisfactory results are

achieved if the scatterer is located far enough from Γ. If we decompose the electromagnetic

fields into its incident and scattered parts, E = E0+E𝑠 and H = H0+H𝑠, the Silver-Müller

condition is obtained by imposing

H𝑠 × n− 𝑍−1n×E𝑠 × n = 0,

where n×E𝑠 × n is the tangent scattered electric field and 𝑍 =
√︀
𝜇/𝜀 is the impedance at
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the radiating boundary.

Another approach to simulate outgoing waves are perfectly matched layers (PMLs) [17], a

numerical artifact that damps outgoing waves before they arrive to the boundary of the

computational domain by appending additional layers that attenuate the physical solution.

In order to use PMLs in numerical simulations, we transform the differential operators to

include imaginary values through

𝜕

𝜕𝑥
↦→ 1

1 − 𝑖𝜐(𝑥)
𝜔

𝜕

𝜕𝑥
,

where 𝜐 > 0 turns the oscillating solution into an exponentially decaying one in the 𝑥-

direction, whereas 𝜐 = 0 leaves the equation unchanged. We refer to [120] for a detailed

discussion of the PMLs and their implementation.

For the structures studied in thesis we have found the Silver-Müller conditions produce

satisfying results, due to the extreme localization of the phenomena compared to the distance

where radiation is imposed. Hence, the simulation examples presented are carried out with

first order ABCs, less computationally demanding than PMLs.

2.3 Intensity and power

The flow of electromagnetic power is given by the Poynting vector, defined as 𝒮 = ℰ ×ℋ. In

frequency domain, the Poynting vector is computed by time-averaging 𝒮 over times that are

longer than an optical cycle, thus invoking the time-harmonic nature of the electromagnetic

fields we arrive at the following expression for the electromagnetic power S

S =
1

2
ℜ [E×H*] , (2.6)

where * refers to the complex conjugate.

For the case of plane wave scattering, it is important to describe the various versions of

electromagnetic power that we encounter [21]. Consider a scatterer embedded in air and

illuminated by a plane wave. The power generated by the scatterer is computed by inte-

grating (2.6) on an arbitrary surface 𝐴 surrounding the scatterer, hence the power absorbed
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is defined as the negative of the generated power, 𝑃𝑎𝑏𝑠 = −
∫︀
𝐴 S · 𝑑A. Since we assume the

surrounding medium is lossless, all the absorption is undertaken by the scatterer, and the

integral can be performed on any enclosing surface. Rewriting the electromagnetic fields

into the incident and scattered parts, the latter integral can be decomposed as

−𝑃𝑎𝑏𝑠 =
1

2

∫︁

𝐴
ℜ [E0 ×H*

0] · 𝑑A +
1

2

∫︁

𝐴
ℜ [E𝑠 ×H*

𝑠] · 𝑑A +
1

2

∫︁

𝐴
ℜ [E0 ×H*

𝑠 + E𝑠 ×H*
0] · 𝑑A.

The first integral corresponds to the incident power, which vanishes as there are no losses

in the medium. The second integral is power scattered by the object 𝑃𝑠𝑐𝑎, whereas the last

term is commonly known as the negative of the extincted power −𝑃𝑒𝑥𝑡. Rearranging the

terms we arrive to 𝑃𝑒𝑥𝑡 = 𝑃𝑠𝑐𝑎+𝑃𝑎𝑏𝑠, that is the extincted power represents the total radiant

power scattered and absorbed by the object.

2.3.1 Quantities of interest

When numerically simulating the interaction of an electromagnetic field with heterogeneous

materials, it is common to study its response by computing one or several figures of merit

or quantities of interest (QoI). These QoI are typically obtained by evaluating a numerical

expression that involves the solution of the full electromagnetic simulation. The QoI that

will be used throughout this dissertation are the optical intensity, the field enhancement and

the extinction cross section.

The optical intensity reflects the amount of electromagnetic power that flows through a

surface 𝐴 with normal vector n, and is defined as

⟨S⟩ =
1

2

∫︁

𝐴
|ℜ [E×H*] · n| 𝑑𝐴 .

Alternatively, performance of electromagnetic devices is usually analyzed by measuring the

transmitted power, or transmitted optical intensity. The transmitted power 𝜍 can be evalu-

ated as

𝜍 =
⟨S⟩
⟨S0⟩

where ⟨S0⟩ refers to the optical intensity of the incident electromagnetic field.

The field enhancement measures the local amplification factor of the incoming electromag-
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netic field that occurs in a tightly confined region 𝑉 of the domain. The field enhancement

will be measured as the spatial average of the ratio of electric amplitudes, that is

𝜋 =
1

|𝑉 |

∫︁

𝑉

⃒⃒
⃒⃒ E · p
E0 · p

⃒⃒
⃒⃒ 𝑑𝑉 ,

where p refers to the direction of polarization of the incident field.

Finally, we define the extinction cross section 𝜎𝑒𝑥𝑡, that is computed by scaling the extincted

power by the cross section σ of the scatterer and the incident intensity, which for plane wave

illumation reads |E0|2 /2, namely

𝜎𝑒𝑥𝑡 = 2
𝑃𝑒𝑥𝑡

σ |E0|2
.

The extinction cross section is also a dimensionless quantity, and represents the absorption

and scattering strength of an object at a given wavelength.

2.4 Optical properties of materials

In order to control and manipulate light we employ metamaterials, which consist of a com-

bination of homogeneous materials usually arranged in lattice structures at the microscopic

level. The remarkable property of metamaterials is achieved by leveraging the optical in-

teraction of its constituent materials and the periodic arrangement to attain phenomena

that cannot be observed for homogeneous materials. In this section, we review the main

features of dielectrics and metals, which are commonly used as elemental components for

metamaterials.

The main physical difference between metals and dielectrics are the energy bands, that is

regions of energy where electrons are allowed. In a simplified version, we have the valence

band, which is fully occupied by electrons in the outermost orbit that are bound to the ion

cores, and the conduction band, which represents higher energy levels that are mostly empty.

The electrons in the conduction band are the ones involved in the conduction process, since

they are not attached to any atom. These two bands are separated by an energy band where

electrons are disallowed, usually known as band gap. Hence, for an electron in the valence

band to reach the conduction band it must overcome the energy barrier posed by the band
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gap.

Dielectric materials do not exhibit flow of electric charges under an electric field. The main

cause of their negligible conductivity is the fact that they possess large band gaps, thus an

enormous amount of energy needs to be supplied to the electrons in the valence band to

reach the conduction band. Consequently, dielectrics act as insulators in the presence of an

electric field. The permittivity 𝜀 of the dielectric is closely related to the susceptibility 𝜒,

such that low susceptibility values imply higher resistance to be polarized in the presence

of an electric field. For the majority of applications in this thesis we will consider that both

𝜀 and the refractive index 𝑛 =
√
𝜀 are real quantities, that is dielectrics behave as lossless

materials.

Conversely, the band gap in metals is nonexistent, hence a minimum supply of energy drives

the electrons in the valence band to the conduction band to participate in the conduction

process. Metals therefore behave as conductors when an electric field is applied, since there

are always electrons available in the conduction band. Even though ideal conductors have

an infinite conductivity, for realistic applications the characterization of their frequency-

dependent permittivity and conductivity is still an active field of research. Below we review

the main efforts to model the optical properties of metals.

2.5 Modeling light-metal interaction

In this section, we summarize and review the most relevant approaches used to model the

interaction of metals with light, devoting special attention to the nanometer and subnanome-

ter regimes. We first present the two main classical models that will be implemented in this

dissertation, and analyze their differences for nanoparticle systems. Finally, we survey al-

ternative and complementary models that have been proposed in literature to represent

quantum effects. Even though these more complicated avenues will not be further investi-

gated in this thesis, they are introduced with the intention to provide a complete view of

the state-of-the-art approaches, and left as future lines of research.
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2.5.1 Local response approximation

In order to effectively simulate electromagnetic wave propagation through metals we have

to take into account their dispersive nature. A classical and widely-used model for the

permittivity of a metal is the Drude model [61], which assumes the electrons in the valence

band are fully detached from the ions, and thus behave as particles of an ideal gas. This

model is commonly known in literature as local model or local response approximation

(LRA) for metals, since the motion of an electron is not coupled to the rest. In order

to derive the Drude model we use the time-dependent Maxwell’s equations in (2.1), and

write the equation of motion for a single electron in the absence of impressed currents. The

equation is given by a mass oscillator under an electric field with damping, that is

−𝑒ℰ = 𝑚𝑒𝜕𝑡𝑡x +𝑚𝑒𝛾𝜕𝑡x

where 𝑚𝑒 is the effective electron mass, 𝑒 is the charge of the electron and 𝛾 is a damping

constant related to the collision rate of the electrons. The polarization 𝒫 can be split into a

frequency-independent contribution 𝒫∞ that depends on the bound electrons in the valence

band and a polarization arising from the freely moving electrons in the conduction band 𝒫𝑓 .

This latter polarization is related to the displacement of an electron x(𝑡) as 𝒫𝑓 = −𝑛𝑒x(𝑡)

for a given electron density 𝑛(x, 𝑡), and to the current density 𝒥 as 𝒥 = 𝜕𝑡𝒫𝑓 . Substituting

this relationship into the equation for the motion of an electron we arrive to

𝑒2𝑛

𝑚𝑒𝜀0
𝜀0ℰ = 𝜕𝑡𝑡𝒫𝑓 + 𝛾𝜕𝑡𝒫𝑓 .

The parameter involved in the first term is the square of the metal’s plasma frequency

𝜔𝑝, defined as 𝜔2
𝑝 =

𝑒2𝑛

𝑚𝑒𝜀0
. The plasma frequency represents the frequency above which

the conduction electrons are not able to oscillate in phase with the incident light, thus

effectively impeding the cancellation the incoming wave. That is, for 𝜔 > 𝜔𝑝 metal behaves

as a dielectric, and the incident wave is allowed to propagate through the metal (with losses).

However, for all the applications in this thesis we consider the regime 𝜔 < 𝜔𝑝.

We now invoke the scalings in (2.3), rendering the nondimensional plasma frequency 𝜔𝑝 =

𝜔𝑝𝐿𝑐/𝑐0 and collision rate 𝛾 = 𝛾𝐿𝑐/𝑐0, and apply the frequency domain transformation

𝜕𝑡 ↦→ −𝑖𝜔 to compute the dispersive free-electron polarization as P𝑓 = 𝑖
𝜔J = − 𝜔2

𝑝

𝜔(𝜔+𝑖𝛾)E.
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Thus, by Ohm’s law the conductivity may be expressed as 𝜎 = 𝑖𝜔2
𝑝/(𝜔 + 𝑖𝛾), and if we

combine it with Faraday’s law, we arrive at a complex dispersive permittivity for metals,

also known as Drude model, namely

𝜀𝐷(𝜔) = 𝜀∞ −
𝜔2
𝑝

𝜔(𝜔 + 𝑖𝛾)
, (2.7)

where 𝜀∞ is the frequency-independent core electron permittivity that arises from the polar-

ization P∞, that is E + P∞ = (1 + 𝜒∞)E = 𝜀∞E. The imaginary part of (2.7) is typically

very large, incurring a considerable loss or dissipation that minimizes the propagation of

electromagnetic waves in the metal. In addition, the real part of (2.7) exhibits negative

values, hence the free electrons in the metal are out of phase with respect to the incident

electric field. Consequently, metals act as a mirror, that is the majority of incident light is

reflected.

The optical constants have been extensively studied in order to determine their values for

different frequency regimes. Although we shall specify the values used for all the examples

provided in this dissertation, we refer the reader to the classical references [119,192,193,208]

for the experimental determination of the optical constants for metals.

The Drude model for metals is attractive for its simplicity, and produces satisfying results

for many electromagnetic applications. Nonetheless, the assumption that all electrons are

free electrons and have a local behavior is rather simplistic, and may be inaccurate for

frequencies close to the plasma frequency. An extension to the Drude model is the Drude-

Lorentz model, which accounts for interband transitions –electrons breaking its covalent

bond with the ion and transitioning from the valence band to the conduction band– that

are relevant at high frequencies. The idea behind this approach is to model the interaction

between the free electrons and the ion cores as an oscillator, which results in augmenting

(2.7) with Lorentzian peaks. This extension is beyond the scope of this thesis, since for

the applications of interest the interband transitions can be neglected. We refer the reader

to [32] for further details.

Furthermore, the Drude model has been shown to produce unphysical solutions when pre-

dicting light-metal interaction at geometries below tenths of nanometers [219]. A more

realistic model for noble metals may be obtained by assuming the free electrons do not be-

25



have independently, rather their motion is nonlocally coupled. This effect can be accounted

for with the hydrodynamic model, which is described next.

2.5.2 Hydrodynamic model

A hydrodynamic model for the free electron gas was introduced in the 1970s [65]. This model,

despite neglecting quantum phenomena such as quantum tunnelling and quantum oscilla-

tions, introduces a hydrodynamic pressure term that accounts for the inter-electron coupling,

or nonlocal interaction, that becomes relevant for geometries below tenths of nanometers.

Hence, it is referred to as nonlocal model or hydrodynamic model (HM) for noble metals. The

HM, which has recently been studied from the finite element perspective [102,231], has been

shown to produce better experimental agreement for nanoparticles and dimers [157,212,250]

than the LRA.

A thorough derivation of the HM can be found in the literature [20, 65, 203]. In this thesis

we merely review the most important aspects of the derivation to gain physical insight. We

introduce the electron density 𝑛(x, 𝑡), the electron pressure 𝑝(x, 𝑡) and the hydrodynamic

velocity v(x, 𝑡), which are related by the continuity equation as 𝜕𝑡𝑛 = −∇· (𝑛v). The equa-

tion of motion for the electron fluid under a macroscopic electromagnetic field is described

as

𝑚𝑒(𝜕𝑡 + v · ∇ + 𝛾)v = 𝑒(ℰ + v ×ℋ) − ∇𝑝
𝑛
. (2.8)

In order to reduce the above equation, some simplifications need to be made. We linearize

the electron density field around the constant equilibrium density of the electron gas 𝑛0

such that 𝑛(x, 𝑡) ≈ 𝑛0 + 𝑛1(x, 𝑡), neglect the high order term for the derivative of the

hydrodynamic velocity v · ∇v and also neglect the effect of the magnetic field, since the

electron fluid is driven mainly by the electric field. In addition, we simplify the pressure

term in (2.8) assuming a Thomas-Fermi model where only the kinetic energy is relevant,

that is
∇𝑝
𝑛

≈ 𝑚𝑒𝛽
2∇𝑛1
𝑛0

.

The quantum parameter 𝛽, which represents the nonlocality, is usually expressed [20] in

terms of the Fermi velocity 𝑣𝐹 of the metal as 𝛽 =
√︀

3/5𝑣𝐹 . Using the assumptions above,
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the equation of motion for the electron fluid can be further simplified as

𝑚𝑒(𝜕𝑡 + 𝛾)v = −𝑒ℰ −𝑚𝑒𝛽
2∇𝑛1
𝑛0

,

and if we differentiate with respect to time, we arrive at

𝑚𝑒(𝜕𝑡𝑡 + 𝛾𝜕𝑡)v = −𝑒𝜕𝑡ℰ +𝑚𝑒𝛽
2∇(∇ · v), (2.9)

where the last term is obtained by linearizing the continuity equation 𝜕𝑡𝑛1 = −∇ · (𝑛0v)

and neglecting the high-order term ∇·(𝑛1v). Using the relation between the electric current

and the electron gas density 𝒥 = −𝑒𝑛v, and multipliying (2.9) by −𝑒𝑛/𝑚𝑒, we obtain

𝜕𝑡𝑡𝒥 + 𝛾𝜕𝑡𝒥 =
𝑒2𝑛

𝑚𝑒
𝜕𝑡ℰ + 𝛽2∇(∇ · 𝒥 ).

If we invoke again the scalings in (2.3) and express the equation in frequency domain, we

arrive at

𝛽2∇(∇ · J) + 𝜔(𝜔 + 𝑖𝛾)J = 𝑖𝜔𝜔2
𝑝E, (2.10)

for 𝛽 = 𝛽/𝑐0. The result in (2.10) imposes a nonlocal relation between the electric current

and the electric field, thus if we pursue numerical simulations in a metal we have to augment

Maxwell’s equations (2.4) with (2.10) and solve the coupled system of equations, namely

∇×E− 𝑖𝜔H = 0,

∇×H + 𝑖𝜔𝜀∞E = J,

𝛽2∇(∇ · J) + 𝜔(𝜔 + 𝑖𝛾)J = 𝑖𝜔𝜔2
𝑝E,

∇ · 𝜀∞E = 0,

∇ ·H = 0.

(2.11)

The hydrodynamic model above will be used for the examples throughout the thesis.

A more general model for the study of plasmon excitation has recently been introduced [164],

and accounts not only for the electron pressure, but also for the diffusion kinetics produced

by the induced charges. To that effect, the proposed generalized nonlocal optical response

(GNOR) model is effectively a convection-diffusion equation for the hydrodynamic current.
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The effect of the GNOR model combines the usual blueshifts due to the electron pressure

with a degradation on the plasmonic resonant peak caused by the diffusion.

Mathematically, the diffusion can simply be encoded in the quantum parameter 𝛽 through

the modification 𝛽2 ↦→ 𝛽2+𝐷(𝛾−𝑖𝜔), where𝐷 is a (nondimensional) diffusion constant. The

main difference with respect to the pure convection case is that the quantum parameter has

now an imaginary contribution, proportional to the frequency, which produces a damping

effect. The value of the diffusion parameter depends on the probability of electrons scattering

off the surface of the particle. Its experimental determination, as well as further discussions

on the implications of GNOR, may be found in [164,214].

Despite the enhanced predictive power of HM compared to LRA, there are situations in

which it still fails to capture the behavior observed experimentally. For instance, the HM

is unable to correctly describe the resonant frequency red-shifts for alkali metals that have

been reported both experimentally [215] and numerically [136], instead of the blue-shifts

observed for noble metals, that are correctly predicted by the HM. In addition, it neglects

quantum phenomena such as electron tunnelling, that become relevant for subnanometric

geometries. Hence, the HM is appropriate for plasmonic structures with noble metals in the

nanometer and supernanometer scales [79,279].

2.5.3 Comparison between local response approximation and hydrody-

namic model

In this section, we compare the HM to the LRA in order to better understand the distinctions

between both approaches from the physics and computational perspective.

Single cylindrical nanowire

In order to demonstrate the HM, we consider a golden nanowire of diameter 𝐷 in free space.

We assume the nanowire is infinite in the 𝑧 direction, and is excited by a 𝑥-polarized electric

field propagating the 𝑦-direction, that is E0 = 𝐸0(exp(𝑖𝜔𝑦), 0, 0), see Fig. 2-2. For this

simple geometry the analytical solution is available for both the LRA and the HM model

using Bessel and Hankel functions [222], and is useful to illustrate the physics captured by

both models. In Fig. 2-3, we depict the extinction cross section 𝜎𝑒𝑥𝑡, for both the local
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(𝛽 = 0) and the nonlocal model (𝛽 > 0), for diameters 4 nm and 40 nm. The values for the

gold constants are 𝜀∞ = 1, }𝜔𝑝 = 9.02 eV and }𝛾 = 0.071 eV, taken from [119].

x

yz

Figure 2-2: Schematic diagram of single nanowire illuminated with electromagnetic wave.

As anticipated, for small metallic nanoparticles the effects of the hydrodynamic current

are significant, causing not only a blueshift of around 3% in the main resonance, but also

a sequence of resonances for frequencies above the plasma frequency that are not excited

with the local model. Conversely, the effects of the HM are virtually nonexistent for the

40 nm wire, and the curves for 𝜎𝑒𝑥𝑡 are almost overlapping. Therefore, the HM is able to

capture excitation of plasmons that are omitted by the LRA, such as the longitudinal modes

explained in the next section.
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Figure 2-3: Extinction cross section of gold nanowire in air for LRA and HM.
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Excitation of longitudinal modes

For a plane wave polarized in a direction p transverse to the propagation direction d, its

dispersion relation is given by 𝑘2 = 𝜀𝐷(𝜔)𝜔2, for the dispersive Drude permittivity (2.7). In

order to excite longitudinal modes (k ‖ E) we need 𝜀𝐷(𝜔) = 0, which for the extreme case

𝛾 → 0 only happens at the plasma frequency. However, with the inclusion of the electron

pressure term a continuum of longitudinal modes are supported, since the permittivity now

depends on the propagation vector. A simple manipulation of (2.10), assuming E and P𝑓

are parallel to k, casts the longitudinal dielectric function of the metal

𝜀𝐿(𝜔) = 𝜀∞ −
𝜔2
𝑝

𝜔(𝜔 + 𝑖𝛾) − 𝛽2𝑘2
.

The modes that propagate in the longitudinal direction satisfy 𝜀𝐿 = 0, and correspond to

oscillations of the free electron gas due to the hydrodynamic current, also known as bulk

plasmons.

The quantum parameter 𝛽 controls the level of nonlocality, since as 𝛽 → 0 we recover

the local Drude model. Conversely, for nonzero 𝛽 the excited longitudinal modes exhibit

a dispersive behavior. It can be shown [46, 163] that below the plasma frequency both

the transverse and the longitudinal modes decay exponentially, whereas above the plasma

frequency both modes propagate. As a matter of fact, it is the propagation of the longitudinal

modes that causes the resonances shown in Fig. 2-3a for 𝜔 > 𝜔𝑝. Since LRA only allows a

longitudinal mode at the plasma frequency, these additional resonances are not excited in

the local model.

Electron density

A compelling difference between LRA and HM is the distribution of the induced free charge

density 𝜌𝑓 , which is defined as 𝜌𝑓 = ∇ · P𝑓 = −𝑖𝜔∇ · J. The solutions provided by

the local model infinitely squash 𝜌𝑓 at the metal surface, which results in a Dirac delta

at the metal-dielectric interface. That is, the metal acts as a hard wall for the incoming

EM wave, and impedes propagation through it. Conversely, the electron pressure term in

the hydrodynamic model regularizes the induced charge density by smoothing its profile,
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thus allowing the penetration of the incident field. The spreading distance experienced by

the charge density is controlled by the δ parameter introduced by Ciracì et al. [46], that

essentially measures the amount of nonlocality as δ = 𝛽/𝜔𝑝.

The impact of the hydrodynamic current in the charge density is significant, since the

resonance shifts predicted by the HM below tenths of nanometers are explained by the

effective diffusion of the metal-dielectric boundaries.

2.5.4 Simulation of hydrodynamic model

The inclusion of the hydrodynamic current poses notable challenges from the numerical

simulation standpoint. Firstly, we incorporate an additional second-order equation, thus

the degrees of freedom for the electric current need to be simultaneously solved. This

circumstance impacts both the computational power and storage requirements. The bound-

ary conditions introduced before do not suffice to uniquely determine the response, thus

additional boundary conditions are needed at the metal interface. As suggested in litera-

ture [163], the appropriate boundary condition is n · J = 0 at the interface of the metal.

This condition precludes the electrons from leaving the metal (no electron spill-out), hence

the normal electric current must vanish at the interface.

Secondly, the inclusion of the electron pressure term excites features that occur at the sub-

Fermi-wavelength scale. This wavelength is associated to the Fermi energy –the maximum

energy of the electrons in the metal– and is typically much smaller than the length scale of the

problem. It is therefore necessary to perform the simulations on finer spatial discretizations,

thus making its application to realistic 3d problems more difficult. In order to illustrate this

phenomenon, we revisit the 4 nm wire in Fig. 2-2, and show |E𝑦| for both the local and

the nonlocal model in Fig. 2-4. Results are computed with the HDG method introduced

in Chapter 3 for the resonant frequency 𝜔/𝜔𝑝 = 1.157 indicated with an arrow in Fig. 2-3.

Even though the solution outside the metal is similar, the hydrodynamic current excites

resonances in the interior of the conductor at frequencies higher than the plasma frequency,

resulting in ripples inside the nanowire of wavelength 100 times smaller than the wavelength

of the incident field, see Figs. 2-4b and 2-4c. Consequently, to properly capture the nonlocal

effects we require significantly finer discretizations within the metal. Finally, the incidence of
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Figure 2-4: Solution fields for 4 nm gold wire at 𝜔/𝜔𝑝 = 1.157, with boundary highlighted.

the electron pressure is noticed by inspecting the small, albeit nonzero, induced free charge

density in the metal, shown in Fig. 2-4d, as predicted by the hydrodynamic model.

In light of these circumstances, it is of the utmost importance to devise high-fidelity simula-

tion methods that enable an efficient treatment of multiple scales, along with non-uniform

curved meshing tools to accurately model the intricate geometries. In addition, we require

a framework that is amenable to multiphysics simulations, since metals and dielectrics now

have different governing equations, and thus require suitable compatibility conditions at the

interface. This compatibility conditions between a dielectric medium 1 and a metal 2 are

continuity of the tangential component of the electromagnetic fields (2.5a)-(2.5b) and zero

jump in the normal component of the current n1 · J1 + n2 · J2 = 0, which reduces to the

above condition since J1 = 0 in the dielectric by definition.

32



2.5.5 Application to periodic annular nanogap

We now consider a 3d structure, the annular gap, consisting of a periodic array of ring-

shaped apertures patterned in a metal film. In order to focus only on the impact of the

metal, we shall assume the film is suspended in free space (no substrate), and that there is no

material filling the nanometer-wide gap. Although this structure cannot be manufactured,

it will be of great interest to achieve a deeper understanding of the ring structure from a

theoretical perspective.

The periodic structure is sketched in Fig. 2-5a, along with the illumination and dimensions

used. The results presented in this section are obtained using the high-fidelity simulation

techniques introduced in Chapters 3 and 4, thus we defer the technical details of the nu-

merical simulations, and focus only on the physical implications of the results. In order to

exhaustively study the structure among different regimes, we consider aperture widths 𝑤

ranging from 5 Å to 100 nm, for frequencies between 0.2 and 5.5 THz, and investigate the

response using the distinct models for light-metal interaction introduced above.

The simplest model is assuming the gold film behaves as a perfect conductor with infinite

conductivity. Prescribing PEC conditions at the metal interface ensures the electric field

is reflected at the metal boundary and no penetration is allowed. The field enhancement

profile is shown in Fig. 2-5b with solid lines, exhibiting sharp peaks and enormous enhance-

ments across gapsizes, showing that smaller gaps lead to larger resonances. This response

corresponds to that of an undamped oscillator, which differs significantly to what has been

observed experimentally for arrays of annular nanogaps [14]. Quite interestingly, this unre-

alistic behavior may also be observed with the undamped Drude model (𝛾 = 0). The field

enhancement curves for this case, using }𝜔𝑝 = 9.02 eV and 𝜀∞ = 1 adopted from Ordal et

al. [192, 193], are also depicted in Fig. 2-5b with dashed lines. We note that the maximum

enhancement attained with undamped Drude and with PEC models is identical for a given

gap size. Hence, the collision rate plays a pivotal role in the accurate characterization of

the electromagnetic response through Drude’s permittivity, since it is responsible for the

imaginary component that models losses in the metals.

Secondly, we introduce damping in the Drude model, with }𝛾 = 0.02678 eV given by

[192, 193], otherwise known as LRA. In Fig. 2-5c, we collect the field enhancement profile
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Figure 2-5: (a) Schematic of periodic array of annular gaps with relevant dimensions. (b) Field enhancement
for PEC (solid) and undamped Drude (dashed). (c) Field enhancement for damped Drude. (d)
Area normalized transmission for damped Drude. (e) Relative blueshift introduced by nonlocal-
ity. (f) Impact of nonlocality in field enhancement and transmission.

for various nanogaps. The difference between damped Drude and both PEC and undamped

Drude are mainly lower enhancements and broader resonances, as a consequence of the losses

introduced by a nonzero damping. Among distinct gap widths, these profiles are qualita-
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tively similar, although smaller apertures lead to stronger field localizations and narrower

resonance peaks. In addition, we present the transmission power of these structures in Fig.

2-5d, normalized by the open area fraction, that is 𝐴𝑤/(𝐴𝑤 + 𝐴Au). The metal is a lossy

medium, thus the immense majority of light transmitted by the gold film is through the

gap. Normalization ensures smaller widths are balanced by the superior excitation caused

by plasmonic resonances. Indeed, the normalized transmission for nanometric and subnano-

metric gaps is superior to that of nanogaps 100 times wider, as a consequence of the extreme

amplification of the incident EM field that occurs for deep-subwavelength apertures.

Finally, we extend the study above with the hydrodynamic model. The nonlocal model

for electron interaction leads to spectral changes that heavily depend on the gap width.

The field enhancement and transmitted power profiles are qualitatively identical to those

computed with the LRA, whereas quantitative discrepancies arise as we explore gaps below

tenths of nanometers. For these scales, we observe shifts towards the blue end of the spec-

trum, that is an increase in the resonant frequency 𝜈*, along with a decay in the maximum

field enhancement 𝜋* and increment in maximum transmission 𝜍*. The spreading of the

electron density at the metal interface explained before is responsible for these effects, since

it effectively enlarges the aperture seen by the incident EM wave. Larger effective gaps lead

to an increase in transmission, as incident light now propagates through a broader aperture,

and a decrease in enhancement, since there is less light confinement. In order to illustrate

this behavior, the relative blueshift 𝛿𝜈* = (𝜈*𝐻𝑀 − 𝜈*𝐿𝑅𝐴)/𝜈*𝐿𝑅𝐴 and the ratios of maximum

field enhancement Π* = 𝜋*𝐻𝑀/𝜋
*
𝐿𝑅𝐴 and maximum transmission Σ* = 𝜍*𝐻𝑀/𝜍

*
𝐿𝑅𝐴, are pre-

sented in Figs. 2-5e and 2-5f, where the impact of gap width on nonlocality may be readily

identified. Certainly, smaller gaps exhibit large shifts, even beyond 10% for subnanometric

widths, whereas the spectral response for gaps above 10 nm remains unchanged.

These effects have been observed for nanoparticles and plasmonic dimers [75, 212, 213, 279],

but have never been reported for neither annular structures nor at low THz frequencies.

These results motivate the need to account for the hydrodynamic pressure in the simulation

of realistic 3d plasmonic structures, since the nonlocal effects do have a substantial impact

on the performance of the device for shrinking nanogaps.

35



2.5.6 Quantum models

Despite providing a more accurate characterization of light-metal interaction than LRA,

neither the HM nor the GNOR account for quantum effects, such as quantum tunnelling.

This quantum phenomena have been experimentally observed at the subnanometer scale,

and have a severe impact in the properties of the plasmonic structures [45, 229, 233]. A

review of the state-of-the-art quantum models for plasmonics may be found in [79,279].

In order to replicate all the non-classical effects that can be observed experimentally, one

needs to resort to ab initio techniques, that is modeling all the electrons in the system.

Time-dependent density-functional theory (TDDFT) has been used to compute the fully

quantum response of nanoparticle systems [191, 281], showing an excellent agreement with

experimental observations. However, performing simulations for all the electrons in the

system is computationally demanding, and can quickly become infeasible if we are interested

in modeling structures above tenths of nanometers.

Recently, semi-classical approaches have been proposed to account for quantum effects

within the classical electromagnetic wave equations. The class of quantum-corrected models

(QCM) [69] aims to incorporate electron spill-out that has been experimentally observed

for subnanometer apertures. The phenomenon of electrons escaping the metal, which is

neglected by the HM, generates a current density between two closely separated metallic

nanoparticles. This flow is known as electron tunnelling, and is responsible for the sup-

pression of the field enhancement that occurs within gaps below 5 Å. Electron tunnelling

is modeled by prescribing a special permittivity for the gap region, defined using quantum

calculations. The QCM has been combined with the HM to encompass both quantum and

nonlocal effects [70].

Another family of approaches that seek to incorporate electron spill-out to the HM is the

quantum hydrodynamic theory (QHT) [44, 251]. The underlying idea is twofold: firstly we

drop the assumption that only the Thomas-Fermi kinetic energy is relevant, and account

for the summation of all the interacting energies in the last term of (2.8); and secondly

we augment the hydrodynamic equations to simultaneously solve for the electron density

profile 𝑛1(𝑥, 𝑡). QHT has been shown to reproduce the experimental and TDDFT results

for plasmonic dimers, and is a promising method to be considered as future developments.
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Chapter 3
Hybridizable discontinuous Galerkin

method for plasmonics

The ability to accurately simulate surface plasmon resonances presents unique challenges.

Surface plasmons involve complex geometries and a mismatch in critical length scales, which

can be of several orders of magnitude. It is often necessary to use anisotropic, unstructured

and curved meshes to represent the geometries, ensuring the small scales are resolved. More-

over, to minimize dispersion errors, we must seek for high order methods. As a result, the

simulation of 3d EM wave propagation can be computationally demanding. To address the

above issues, we use a high order unstructured finite element method known as hybridizable

discontinuous Galerkin (HDG) method [47,48,50,52].

We first review the HDG method for the time-harmonic Maxwell’s equations proposed

in [179], focusing on light-metal interaction for the local response approximation. We then

formulate the HDG method for the hydrodynamic model introduced in Section 2.5.2, en-

abling more physically accurate simulations of plasmon resonances at the nanoscale. We

provide numerical results to illustrate the features of both the local response approximation

and the hydrodynamic model, as well as their performance for realistic 2d and 3d applica-

tions.
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3.1 Notation

We first introduce the basic notation, operators and approximation spaces needed for the

HDG method for Maxwell’s equations in 3d, following [179]. We denote by 𝒯ℎ a triangulation
of disjoint regular elements 𝑇 that partition an open domain 𝒟 ∈ R3. The set of element

boundaries is then defined as 𝜕𝒯ℎ := {𝜕𝑇 : 𝑇 ∈ 𝒯ℎ}. For an arbitrary element 𝑇 ∈ 𝒯ℎ,
𝐹 = 𝜕𝑇 ∩ 𝜕𝒟 is a boundary face if it has a nonzero 2d Lebesgue measure. Any pair of

elements 𝑇+ and 𝑇− share an interior face 𝐹 = 𝜕𝑇+ ∩ 𝑇− if its 2d Lebesgue measure is

nonzero. We finally denote by ℰ𝑜
ℎ and ℰ𝜕

ℎ the set of interior and boundary faces respectively,

and the total set of faces ℰℎ = ℰ𝑜
ℎ ∪ ℰ𝜕

ℎ .

Let n+ and n− be the outward-pointing unit normal vectors on the neighboring elements

𝑇+, 𝑇−, respectively. We further use u± to denote the trace of u on 𝐹 from the interior of

𝑇±, where u resides in 𝐿2(𝒟) ≡ [𝐿2(𝒟)]3, with 𝐿2(𝒟) being the space of square integrable

functions on 𝒟. The jump J·K for an interior face 𝐹 ∈ ℰ𝑜
ℎ is defined as

Ju⊙ nK = u+ ⊙ n+ + u− ⊙ n−,

and is single valued for a boundary face 𝐹 ∈ ℰ𝜕
ℎ with outward normal n, that is

Ju⊙ nK = u⊙ n,

where the binary operation ⊙ refers to either · or ×. The tangential u𝑡 and normal u𝑛

components of u, for which u = u𝑡 + u𝑛, are then represented as

u𝑡 := n× (u× n), u𝑛 := n(u · n).

Let 𝐻1(𝒟) denote the Hilbert space with 𝐻1(𝒟) = {𝑣 ∈ 𝐿2(𝒟) :
∫︀
𝒟 |∇𝑣|2 < ∞}. We now

introduce the curl-conforming space

𝐻curl(𝒟) = {u ∈ 𝐿2(𝒟) : ∇× u ∈ 𝐿2(𝒟)}
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with associated norm ‖u‖2
𝐻curl(𝒟)

=
∫︀
𝒟 |u|2 + |∇ × u|2, as well as the div-conforming space

𝐻div(𝒟) = {u ∈ 𝐿2(𝒟) : ∇ · u ∈ 𝐿2(𝒟)}

with associated norm ‖u‖2
𝐻div(𝒟)

=
∫︀
𝒟 |u|2 + |∇ · u|2.

Let 𝒫𝑝(𝒟) denote the space of complex-valued polynomials of degree at most 𝑝 on 𝒟. We

now introduce the following approximation spaces

𝑊ℎ = {𝑤 ∈ 𝐿2(𝒟) : 𝑤|𝑇 ∈ 𝒫𝑝(𝑇 ), ∀𝑇 ∈ 𝒯ℎ},

𝑊ℎ = {𝜉 ∈ 𝐿2(𝒟) : 𝜉|𝑇 ∈ [𝒫𝑝(𝑇 )]3 , ∀𝑇 ∈ 𝒯ℎ},

𝑀ℎ = {𝜇 ∈ 𝐿2(ℰℎ) : 𝜇|𝐹 ∈ 𝒫𝑝(𝐹 ), ∀𝐹 ∈ ℰℎ},

𝑀ℎ = {𝜇 ∈ 𝐿2(ℰℎ) : 𝜇|𝐹 ∈ 𝒫𝑝(𝐹 )t1 ⊕ 𝒫𝑝(𝐹 )t2, ∀𝐹 ∈ ℰℎ},

where t1, t2 are vectors tangent to the face, thus naturally including the 𝐻curl nature of

the solutions, since by construction 𝜇 ∈ 𝑀ℎ satisfies 𝜇 = n × 𝜇 × n = 𝜇1t1 + 𝜇2t2. The

tangent vectors are defined in terms of n = (𝑛1, 𝑛2, 𝑛3), where t1 = (−𝑛2/𝑛1, 1, 0) and

t2 = (−𝑛3/𝑛1, 0, 1) if 𝑛1 is the largest component, and analogously for the remaining cases.

Boundary conditions are included by setting 𝑀ℎ(u𝑏) = {𝜇 ∈ 𝑀ℎ : n × 𝜇 = Πu𝑏 on 𝜕𝒟}
and 𝑀ℎ(𝑢𝑏) = {𝜇 ∈𝑀ℎ : 𝜇 = Π𝑢𝑏 on 𝜕𝒟}, where Πu𝑏 (respectively, Π𝑢𝑏) is the projection

of u𝑏 onto 𝑀ℎ (respectively, 𝑢𝑏 onto 𝑀ℎ).

Finally, we define the various Hermitian products for the above finite element spaces. For

two arbitrary scalar functions 𝜂, 𝜁, its scalar product (𝜂, 𝜁)𝒟 is given by the integral of 𝜂𝜁*

on 𝒟. Thus, the volume inner products are defined as

(𝜂, 𝜁)𝒯ℎ :=
∑︁

𝑇∈𝒯ℎ

(𝜂, 𝜁)𝑇 , (𝜂, 𝜁)𝒯ℎ :=

3∑︁

𝑖=1

(𝜂𝑖, 𝜁𝑖)𝒯ℎ .

Similarly, the surface inner products are given by

⟨𝜂, 𝜁⟩𝜕𝒯ℎ :=
∑︁

𝑇∈𝒯ℎ

⟨𝜂, 𝜁⟩𝜕𝑇 , ⟨𝜂, 𝜁⟩𝜕𝒯ℎ :=

3∑︁

𝑖=1

⟨𝜂𝑖, 𝜁𝑖⟩𝜕𝒯ℎ .
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3.2 HDG method for Maxwell’s equations

We now briefly review the HDG method for time-harmonic Maxwell’s equations introduced

in [179], for a computational domain Ω that can be either a dielectric, a metal modeled with

Drude’s permittivity or a combination of both. The material variability can be encoded

using a spatial dependent permittivity 𝜀(x).

Introducing the additional variable V = 𝑖𝜔H, the original equations (2.4) are recast as: find

(E,V) ∈ 𝐻curl(Ω) ×𝐻curl(Ω) such that

ℒ
{︃ ∇×E−V = 0,

∇×V − 𝜔2𝜀E = 0, (3.1)

along with boundary conditions

ℬ

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

n×E× n = E𝐷, on 𝜕Ω𝐷,

n×V = n×V𝑁 , on 𝜕Ω𝑁 ,

n×V + 𝑖𝜔
√
𝜀n×E× n = f 𝑖𝑛𝑐, on 𝜕Ω𝑆𝑀 ,

(3.2)

where f 𝑖𝑛𝑐 = n × (∇ × E𝑖𝑛𝑐) + 𝑖𝜔
√
𝜀n × E𝑖𝑛𝑐 × n. The last equation is the Silver-Müller

condition, prescribed on the boundary computational domain.

We seek an approximation (Eℎ,Vℎ, ̂︀Eℎ) ∈ 𝑊ℎ ×𝑊ℎ ×𝑀ℎ(E𝐷) such that

(Vℎ,𝜅)𝒯ℎ − (Eℎ,∇× 𝜅)𝒯ℎ − ⟨̂︀Eℎ,𝜅× n⟩𝜕𝒯ℎ = 0,

(Vℎ,∇× 𝜉)𝒯ℎ + ⟨̂︀Vℎ, 𝜉 × n⟩𝜕𝒯ℎ − 𝜔2(𝜀Eℎ, 𝜉)𝒯ℎ = 0,

−⟨n× ̂︀Vℎ,𝜇⟩𝜕𝒯ℎ∖𝜕Ω𝐷
+ ⟨̂︀Eℎ,𝜇⟩𝜕Ω𝐷

− 𝑖𝜔⟨√𝜀̂︀Eℎ,𝜇⟩𝜕Ω𝑆𝑀
= ⟨F,𝜇⟩𝜕Ω,

(3.3)

holds for all (𝜅, 𝜉,𝜇) ∈ 𝑊ℎ ×𝑊ℎ ×𝑀ℎ(0), where ̂︀Eℎ approximates the tangential electric

field. The boundary flux is given by

F = −n×V𝑁�𝜕Ω𝑁
− f 𝑖𝑛𝑐�𝜕Ω𝑆𝑀

. (3.4)

40



We then introduce the flux of the magnetic field as

̂︀Vℎ = Vℎ + 𝜏𝑡(Eℎ − ̂︀Eℎ) × n, (3.5)

where the parameter 𝜏𝑡 is the tangential stabilization parameter, defined globally to ensure

the accuracy and stability of the HDG discretization. Based on a dimensional analysis it

can be chosen as 𝜏𝑡 =
√
𝜀𝜔. Introducing (3.5) in (3.3) and integrating by parts, we arrive

to the final HDG discretization for Maxwell’s equations, namely

(Vℎ,𝜅)𝒯ℎ − (Eℎ,∇× 𝜅)𝒯ℎ − ⟨̂︀Eℎ,𝜅× n⟩𝜕𝒯ℎ = 0,

(∇×Vℎ, 𝜉)𝒯ℎ + ⟨𝜏𝑡(Eℎ − ̂︀Eℎ),n× 𝜉 × n⟩𝜕𝒯ℎ − 𝜔2(𝜀Eℎ, 𝜉)𝒯ℎ = 0,

−⟨n×Vℎ + 𝜏𝑡Eℎ,𝜇⟩𝜕𝒯ℎ∖𝜕Ω𝐷
+ ⟨̃︀𝜏𝑡̂︀Eℎ,𝜇⟩𝜕𝒯ℎ = ⟨F,𝜇⟩𝜕Ω.

(3.6a)

(3.6b)

(3.6c)

where

̃︀𝜏𝑡 =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

𝜏𝑡, on 𝜕𝒯ℎ∖𝜕Ω𝐷 ∪ 𝜕Ω𝑆𝑀

𝜏𝑡 − 𝑖𝜔
√
𝜀, on 𝜕Ω𝑆𝑀

1, on 𝜕Ω𝐷

(3.7)

General implementation details may be found in [179,224]. However, in Section 4.2.2 we re-

view the implementation and solution guidelines for a more generic formulation of Maxwell’s

equations.

3.2.1 Numerical results

In this section, we present two plasmonic applications to demonstrate the performance and

effectiveness of the HDG method.

Nanoslit

The problem under consideration is an infinitely long 2d aperture in a thin gold film that,

when illuminated from below with a plane wave polarized along the perpendicular direction

of the slit, is able to transfer light from the lower part of the film to the upper part of the film.

This extraordinary optical transmission is produced by the combination of surface plasmons
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on both surfaces of the slit and cavity resonances. This structure has been extensively studied

both theoretically and experimentally, and we refer the reader to the review paper [81] and

the references therein for a detailed discussion.

A sketch of the nanoslit that will be simulated is shown in Fig. 3-1a, and the gapsizes

considered are 𝑤 = 2, 5, 10 and 20 nm. The thickness of the gold film is taken equal to

150 nm. Furthermore, we focus on the FIR regime, for which field enhancements of several

orders of magnitude have been reported in literature [39,235].

The substrate for the gold film is silica SiO2, which is transparent at FIR, with a constant

refractive index of 𝑛SiO2 = 1.96 given by Naftaly et al. [166]. For this low frequencies,

the optical constants of gold are adopted from Ordal et al. [192, 193], and we consider the

nominal values }𝜔𝑝 = 9.02 eV, }𝛾 = 0.02678 eV and 𝜀∞ = 1. The dielectric material used

for the gap is alumina Al2O3, and we use the thickness-dependent values for low frequencies

experimentally observed in [92] by Groner et al., and reproduced in Fig. 3-1b (left). For

the gaps under study, these values correspond to 𝜀Al2O3 = {3, 4.4, 5.5, 6.4}. This model for
the permittivity of Al2O3 has been used for FIR simulations [40,198] and shown to produce

good qualitative agreeement with experimental results.
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Figure 3-1: (a) Schematic of gold nanoslit (b) Left: thickness-dependent permittivity for Al2O3 adapted
from [92]. Right: Real and imaginary part of Drude permittivity for gold.

The numerical simulation of the nanoslit in the FIR, despite being in 2d, can be quite

challenging due to the tremendous disparity in length scales present in the problem: the

thickness of the film is in the order of tenths of nanometers, the gap widths are in the

nanometer scale and the relevant wavelengths span from hundreds of microns to millimeters.

Moreover, the simulation technique needs to accommodate discontinuities in the material

properties of the different components, which can again differ by several orders of magnitude.
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For instance, the Drude model for gold at low THz frequencies is given by the permittivity

coefficient shown in Fig. 3-1b (right), hence almost behaving as a perfect electric conductor.

The Drude permittivity is several orders of magnitude larger than the constants for silica

and alumina, thus posing additional simulation challenges.

Figure 3-2: Nanoslit discretization with two different zooms, with gold film highlighted. Discretization used
in calculations has 4 times more elements.

For this simulation, we set the computational domain to be a square of 2.5 mm× 0.5 mm,

and prescribe Silver-Müller conditions on the top/bottom boundaries and periodicity on the

lateral boundaries. The size of the computational domain is chosen such that the location

of the radiating boundaries is far enough so that it has no significant effect on the solution.

The domain is discretized with an anisotropic mesh of 20K cubic quadrangular elements,

ensuring that greater resolution is achieved near the aperture, see Fig. 3-2, with element

sizes ranging from 10 mm to 0.1 nm. The numerical accuracy is verified by carrying out

grid convergence studies on consecutively refined meshes until the relative error for the field

enhancement of the 2 nm gap is below 0.05%.

In Fig. 3-3a, we show |E𝑥| at the upper surface of the slit to better appreciate the extraor-
dinary field enhancement that occurs within the aperture, for an incident frequency of 0.3

THz and gap width of 2 nm. This excitation is constant along the slit, and it decays ex-

ponentially fast just nanometers away from the gold film. Moreover, the metal acts almost

as a perfect mirror, since only allows minimal penetration of the impinging EM wave. For

the remaining gaps the solution field exhibits the same pattern but downscaled, since in all

cases the field enhancement is constant along the aperture.

Finally, in Fig. 3-3b we perform a frequency sweep study for the various gaps and report the

field enhancement attained, which varies inversely with the frequency. The field enhance-
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Figure 3-3: (a) Field enhancement for 2 nm wide slit illuminated at 0.3 THz. (b) Normalized field enhance-
ment for different gaps and fitted 1/frequency curves. Experimental data is shown with square
dots.

ment is normalized by the electric field amplitude for a silica-air interface, without the metal

or gap. This normalization ensures the value of the field enhancement does not depend on

the propagation direction, i.e. air to silica or silica to air. Results from HDG simulations

are compared to the experimental data in [39], reproduced in Fig. 3-3b with square dots.

There is a good qualitative agreement between data and simulations, specially for 5 and 10

nm slits, although the field enhancement is often overestimated with respect to the mea-

sured values. This mismatch could be caused by a poor characterization of the permittivity

constant for Al2O3, since the alumina film on the fabricated slit may be subject to thermal

annealing or exhibit voids, which is reported to impact its effective refractive index [266].

Alternatively, numerical simulation introduces artifacts such as sharp corners that lead to

larger enhancements, whereas in fabrication corners are rounded, thus increasing the gap

size seen by the incident wave.

Periodic annular structure

This next example consists of a 3d periodic annular structure shown in Fig. 3-4. We are

interested in the low THz regime (0.2 to 2 THz), which requires diameters on the order of

microns to excite resonances. The thickness of the gold film is taken equal to 150 nm over

a SiO2 substrate, and the annular gaps are filled with Al2O3. The optical constants of the

materials are the same as in the nanoslit example above. For this problem, we choose the
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Figure 3-4: Schematic diagram of thin gold film on silica substrate patterned with periodic square array of
alumina gaps under plane wave THz illumination.

diameter of the rings to be 32 microns with square periodicity of 50 µm, and a gap width

of 10 nm. Note the problem may be further reduced by capitalizing the symmetries of the

lattice, hence we only need to solve for one quadrant of the ring structure as indicated in

Fig. 3-5a.

From the computational perspective, simulating this structure is quite challenging. Firstly,

the required meshes need not only be curved to represent the annular geometry, but also

must exhibit high anisotropy to properly capture the tight field confinement that occurs in

the vicinity of the gap. In addition, we must accommodate the different length scales of

the problem, since for the lowest frequencies the wavelength-gap ratio can be of 5 orders of

magnitude. The HDG method has already been proved to successfully tackle this particular

problem [198]. Nonetheless, we review it here as a building block for more complicated

examples that will be analyzed in this dissertation.

The high order discretization consists of 1.6K hexahedral quartic elements, and is devised

as a 2.5d mesh by extruding in the 𝑧-direction the 2d curved mesh shown in Fig. 3-5b.

Similarly as in the nanoslit case, the hexagonal elements in the vertical direction are smaller

close to the upper and lower surfaces of the gold film, and gradually increase as we separate

from the metal. The radiation conditions are prescribed at 30 microns for the glass substrate

and 30 microns for air, ensuring there is no numerical interaction between the boundary and
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Figure 3-5: (a) Schematic of unit computational cell for periodic annular array. (b) 2d curved mesh. (c)
Field enhancement curve for LRA compared with experimental data. (d) Slices in the angular
direction of solution field |E𝑥| at the aperture for 0.6 THz, shown in logarithmic scale.

the extraordinary optical transmission that occurs in the ring. Under these conditions, the

reduced problem for the traces of the tangential component of the electric field consists of

270K unknowns, and we useMatlab’s built-in sparse direct solver to compute the solution.

The magnitude of the 𝑥-component of the electric field for an 𝑥-polarized incident electro-

magnetic wave is shown in Fig. 3-5d, for the planes 𝑦/𝑥 = tan𝛼 specified in Fig. 3-5a. The

pattern of extreme confinement is similar to that of the nanoslit, that is, the enhancement

is constant throughout the annular aperture for all angles, reaching a maximum at 𝛼 = 0∘
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and decreasing as the angle approaches 90∘. Again, the penetration in the metal is min-

imal, although it is interesting to observe that the further we shift from the resonance in

the angular direction, the more the electric field propagates inside the metal. Lastly, we

perform a frequency sweep to detect the peak resonance and frequency, which occurs at 0.6

THz. These results can be compared with experimental data [198], whereby we find that the

simulations qualitatively agree with the experiments, but there is a significant blueshift in

the resonant frequency. In the remainder of the dissertation we will attempt to explain some

possible factors for this mismatch, beginning by introducing nonlocality in our simulation

models.

3.3 HDG method for the hydrodynamic model

We now develop an HDG method to numerically solve the Maxwell equations with the

hydrodynamic model (2.11) for a metallic computational domain Ω, which will serve as

a building block towards more complicated scenarios. We introduce additional variables

V = 𝑖𝜔H, 𝑈 = ∇ · J and rewrite system (2.11) as a first order system of equations in Ω:

ℒ

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∇×E−V = 0,

𝛽2∇𝑈 + 𝜔(𝜔 + 𝑖𝛾)J− 𝑖𝜔𝜔2
𝑝E = 0,

∇×V − 𝜔2𝜀∞E− 𝑖𝜔J = 0,

𝑈 −∇ · J = 0.

(3.8)

The additional variable 𝑈 is related to the induced free charge density in the metal as

𝜌𝑓 = −𝑖𝜔𝑈 . The system above is completed with boundary conditions

n×E× n = E𝐷, on 𝜕Ω𝐷,

n×V = n×V𝑁 , on 𝜕Ω𝑁 ,

n · J = 0, on 𝜕Ω.

The system of equations in (3.8) has a solution (E,V,J, 𝑈) ∈ Hcurl(Ω)×Hcurl(Ω)×Hdiv(Ω)×
𝐻1(Ω), and we seek an approximation
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(Vℎ,Eℎ,Jℎ, 𝑈ℎ, ̂︀Eℎ, ̂︀𝑈ℎ) ∈ 𝑊ℎ ×𝑊ℎ ×𝑊ℎ ×𝑊ℎ ×𝑀ℎ(E𝐷) ×𝑀ℎ such that

(Vℎ,𝜅)𝒯ℎ − (Eℎ,∇× 𝜅)𝒯ℎ − ⟨̂︀Eℎ,𝜅× n⟩𝜕𝒯ℎ = 0,

−𝛽2(𝑈ℎ,∇ · 𝜂)𝒯ℎ + 𝛽2⟨̂︀𝑈ℎ,𝜂 · n⟩𝜕𝒯ℎ + 𝜔(𝜔 + 𝑖𝛾)(Jℎ,𝜂)𝒯ℎ − 𝑖𝜔𝜔2
𝑝(Eℎ,𝜂)𝒯ℎ = 0,

(Vℎ,∇× 𝜉)𝒯ℎ + ⟨̂︀Vℎ, 𝜉 × n⟩𝜕𝒯ℎ − 𝜔2(𝜀∞Eℎ, 𝜉)𝒯ℎ − 𝑖𝜔(Jℎ, 𝜉)𝒯ℎ = 0,

(𝑈ℎ, 𝜁)𝒯ℎ − ⟨̂︀Jℎ · n, 𝜁⟩𝜕𝒯ℎ + (Jℎ,∇𝜁)𝒯ℎ = 0,

−⟨n× ̂︀Vℎ,𝜇⟩𝜕𝒯ℎ∖𝜕Ω𝐷
+ ⟨̂︀Eℎ,𝜇⟩𝜕Ω𝐷

− ⟨F,𝜇⟩𝜕Ω = 0,

⟨̂︀Jℎ · n, 𝜃⟩𝜕𝒯ℎ = 0,

(3.9)

holds for all (𝜅,𝜂, 𝜉, 𝜁,𝜇, 𝜃) ∈ 𝑊ℎ×𝑊ℎ×𝑊ℎ×𝑊ℎ×𝑀ℎ(0)×𝑀ℎ, where ̂︀Eℎ approximates

the tangential field of Eℎ, and ̂︀𝑈ℎ approximates the trace of 𝑈ℎ. We then introduce the

trace of the magnetic field as (3.5) and the trace of the electric current field as

̂︀Jℎ = Jℎ − 𝜏𝑛(𝑈ℎ − ̂︀𝑈ℎ)n. (3.10)

The parameters 𝜏𝑡, 𝜏𝑛 are the stabilization parameters, defined globally to ensure the ac-

curacy and stability of the HDG discretization. We propose to select 𝜏𝑛 as the inverse of

δ, that is 𝜏𝑛 = 𝜔𝑝/𝛽. Intuitively, we enforce a stabilization inversely proportional to the

penetration distance of the EM wave into the metal. This choice leads to numerically stable

solutions even in the presence of tightly localized fields in the metal-dielectric interface.

For compactness, we borrow the definitions of boundary flux F and the generic stabilization

constant ̃︀𝜏𝑡 given in (3.4) and (3.7), respectively. Introducing (3.5) and (3.10) in (3.9) and

integrating by parts, we write the final HDG discretization of the hydrodynamic model for

metals as

48



(Vℎ,𝜅)𝒯ℎ − (Eℎ,∇× 𝜅)𝒯ℎ − ⟨̂︀Eℎ,𝜅× n⟩𝜕𝒯ℎ = 0,

−𝛽2(𝑈ℎ,∇ · 𝜂)𝒯ℎ + 𝛽2⟨̂︀𝑈ℎ,𝜂 · n⟩𝜕𝒯ℎ + 𝜔(𝜔 + 𝑖𝛾)(Jℎ,𝜂)𝒯ℎ − 𝑖𝜔𝜔2
𝑝(Eℎ,𝜂)𝒯ℎ = 0,

(∇×Vℎ, 𝜉)𝒯ℎ + ⟨𝜏𝑡[Eℎ − ̂︀Eℎ],n× 𝜉 × n⟩𝜕𝒯ℎ − 𝜔2(𝜀∞Eℎ, 𝜉)𝒯ℎ − 𝑖𝜔(Jℎ, 𝜉)𝒯ℎ = 0,

−(∇ · Jℎ, 𝜁)𝒯ℎ + (𝑈ℎ, 𝜁)𝒯ℎ + ⟨𝜏𝑛𝑈ℎ, 𝜁⟩𝜕𝒯ℎ − ⟨𝜏𝑛 ̂︀𝑈ℎ, 𝜁⟩𝜕𝒯ℎ = 0,

−⟨n×Vℎ + 𝜏𝑡Eℎ,𝜇⟩𝜕𝒯ℎ∖𝜕Ω𝐷
+ ⟨̃︀𝜏𝑡̂︀Eℎ,𝜇⟩𝜕𝒯ℎ − ⟨F,𝜇⟩𝜕Ω = 0,

⟨Jℎ · n, 𝜃⟩𝜕𝒯ℎ − ⟨𝜏𝑛𝑈ℎ, 𝜃⟩𝜕𝒯ℎ + ⟨𝜏𝑛 ̂︀𝑈ℎ, 𝜃⟩𝜕𝒯ℎ = 0.

(3.11)

The first four equations represent the weak formulation of equations (3.8), whereas the last

two equations enforce zero jump in the tangential component of Vℎ and in the normal

component of Jℎ respectively, along with the appropriate boundary conditions. Proofs

regarding conservation, consistency and well-posedness are given in Appendix A.

3.3.1 Implementation

We now describe the relevant implementation steps of the HDG method for the hydro-

dynamic model. The system of equations in (3.11) is rewritten for convenience in terms

of several bilinear forms. The weak formulation reads: find (Eℎ,Vℎ,Jℎ, 𝑈ℎ, ̂︀Eℎ, ̂︀𝑈ℎ) ∈
𝑊ℎ ×𝑊ℎ ×𝑊ℎ ×𝑊ℎ ×𝑀ℎ(E𝐷) ×𝑀ℎ such that

A(Vℎ,𝜅) −B(Eℎ,𝜅) − C(̂︀Eℎ,𝜅) = 0,

𝜔(𝜔 + 𝑖𝛾)A(Jℎ,𝜂) − 𝑖𝜔𝜔2
𝑝A(Eℎ,𝜂) − 𝛽2P(𝑈ℎ,𝜂) + 𝛽2O(̂︀𝑈ℎ,𝜂) = 0,

B(𝜉,Vℎ) − 𝑖𝜔A(Jℎ, 𝜉) + D(Eℎ, 𝜉) − 𝜔2A𝜀(Eℎ, 𝜉) − E(̂︀Eℎ, 𝜉) = 0,

−P(𝜁,Jℎ) + H(𝑈ℎ, 𝜁) −N(̂︀𝑈ℎ, 𝜁) = 0,

−R(Vℎ,𝜇) − L(Eℎ,𝜇) + M(̂︀Eℎ,𝜇) = F(𝜇),

O(𝜃,Jℎ) −N(𝜃, 𝑈ℎ) + T(̂︀𝑈ℎ, 𝜃) = 0,

(3.12)

49



holds for all (𝜅,𝜂, 𝜉, 𝜁,𝜇, 𝜃) ∈ 𝑊ℎ × 𝑊ℎ × 𝑊ℎ ×𝑊ℎ × 𝑀ℎ(0) ×𝑀ℎ. The bilinear forms

are given by

A(V,𝜅) = (V,𝜅)𝒯ℎ , A𝜀(E, 𝜉) = (𝜀∞E, 𝜉)𝒯ℎ ,

B(E,𝜅) = (E,∇× 𝜅)𝒯ℎ , C(̂︀E,𝜅) = ⟨̂︀E,𝜅× n⟩𝜕𝒯ℎ ,
P(𝑈,𝜂) = (𝑈,∇ · 𝜂)𝒯ℎ , O(̂︀𝑈,𝜂) = ⟨𝑈,𝜂 · n⟩𝒯ℎ ,
D(E, 𝜉) = ⟨𝜏𝑡E,n× 𝜉 × n⟩𝜕𝒯ℎ , E(̂︀E, 𝜉) = ⟨𝜏𝑡̂︀E, 𝜉⟩𝜕𝒯ℎ ,
H(𝑈, 𝜁) = (𝑈, 𝜁)𝒯ℎ + ⟨𝜏𝑛𝑈, 𝜁⟩𝜕𝒯ℎ , N(̂︀𝑈, 𝜁) = ⟨𝜏𝑛 ̂︀𝑈, 𝜁⟩𝜕𝒯ℎ ,
R(V,𝜇) = ⟨n×V,𝜇⟩𝜕𝒯ℎ∖𝜕Ω𝐷

, L(E,𝜇) = ⟨𝜏𝑡E,𝜇⟩𝜕𝒯ℎ∖𝜕Ω𝐷
,

M(̂︀E,𝜇) = ⟨̃︀𝜏𝑡̂︀E,𝜇⟩𝜕𝒯ℎ , T(̂︀𝑈, 𝜃) = ⟨𝜏𝑛 ̂︀𝑈, 𝜃⟩𝜕𝒯ℎ ,
F(𝜇) = ⟨F,𝜇⟩𝜕Ω.

The discretization of the system of equations in (3.12) gives rise to the following matrix

equation

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A 0 −B 0 −C 0

0 𝜔(𝜔 + 𝑖𝛾)A −𝑖𝜔𝜔2
𝑝A −𝛽2P 0 𝛽2O

B𝑇 −𝑖𝜔A D− 𝜔2A𝜀 0 −E 0

0 −P𝑇 0 H 0 −N

−R 0 −L 0 −M 0

0 −O𝑇 0 −N𝑇 0 T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V

J

E

𝑈

̂︀E
̂︀𝑈

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

F

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where E, V, J, 𝑈, ̂︀E, ̂︀𝑈 are vectors containing the values of the corresponding fields at the

degrees of freedom defined by the discretization 𝒯ℎ. The system above, however, is never

formed in implementation. Instead, we invoke discontinuity of the approximation spaces

to hybridize the linear system. That is, we locally eliminate the degrees of freedom of

ϒ = (V, J, E, 𝑈), or local unknowns, and express them as a function of only the degrees of

freedom of the approximate traces ̂︀ϒ = [̂︀E, ̂︀𝑈 ], or global unknowns. The relation between
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global and local uknowns ϒ = Z ̂︀ϒ, defined at the element level, takes the form

⎡
⎢⎢⎢⎢⎢⎢⎣

V

J

E

𝑈

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

A 0 −B 0

0 𝜔(𝜔 + 𝑖𝛾)A −𝑖𝜔𝜔2
𝑝A −𝛽2P

B𝑇 −𝑖𝜔A D− 𝜔2A𝜀 0

0 −P𝑇 0 H

⎤
⎥⎥⎥⎥⎥⎥⎦

−1 ⎡
⎢⎢⎢⎢⎢⎢⎣

C 0

0 −𝛽2O
E 0

0 N

⎤
⎥⎥⎥⎥⎥⎥⎦
̂︀ϒ. (3.13)

In addition, the inverse can be computed efficiently since it is block diagonal, due to the

choice of approximation spaces. This elimination of degrees of freedom renders a linear

system that involves only the global degrees of freedom, defined at the discretization faces.

Indeed, we eliminate the local unknowns – 10 components defined in the high-order volume

nodes– and solve only for the global unknowns – 3 components defined in the high-order face

nodes– hence drastically reducing the size of the linear system that must be solved. This is

one of the most attractive features of the HDG method. Finally, the system involving only

the global unknowns is given by

⎛
⎝
⎡
⎣ −M 0

0 T

⎤
⎦+

⎡
⎣ −R 0 −L 0

0 −O𝑇 0 −N𝑇

⎤
⎦Z

⎞
⎠ ̂︀ϒ =

⎡
⎣ F

0

⎤
⎦ .

This procedure characterizes the solution to (3.11) in terms of ̂︀Eℎ and ̂︀𝑈ℎ. If Z is stored

element-wise the local volume variables can be recovered in parallel through (3.13) incurring

a small cost.

3.3.2 Metal-dielectric coupling

In this section, we discuss the coupling of the HDG formulations in (3.6) and (3.11) for

cases where we consider a metal Ω described by the hydrodynamic model embedded in a

dielectric medium Ω, as shown in Fig. 3-6 (left). This is a common situation where, for

instance, the metallic nanostructure scatters an incident plane wave. The boundaries of the

computational domain Ω represent the truncation of the infinite space, where radiation is

imposed either with Silver-Müller conditions or PMLs, and must be placed far away from

the scatterer.

We now have two subdomains where different governing equations. The solution within the
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Figure 3-6: Left: Metallic structure Ω embedded in dielectric Ω illuminated by plane wave. Right: Detail of
metal-dielectric interface with global degrees of freedom.

metallic structure is governed by

ℒ = 0, in Ω,

J · n = 0, on 𝜕Ω,

whose HDG discretization is (3.11). Note that the no electron spill-out condition enforces

that the electric current at the metallic interface is tangential Jℎ = J𝑡
ℎ. Conversely, the

response in the dielectric is given by

ℒ = 0, in Ω,

ℬ = 0, on 𝜕Ω,

with weak HDG formulation given by (3.6).

In addition, we need to impose a compatibility condition to stitch the subdomains together.

For any two elements 𝑇+, 𝑇− that satisfy 𝑇+ ∩ 𝑇− ∈ 𝜕Ω, see Fig. 3-6 (right), we enforce

continuity of the tangential component of the trace of the magnetic field Jn× ̂︀VℎK = 0 at the

interface. Furthermore, since the traces are single-valued across inter-element boundaries,

the global degrees of freedom on the faces 𝐹 ∈ 𝜕𝑇− have two {̂︀Eℎ} and three {̂︀Eℎ, ̂︀𝑈ℎ}
components for 𝐹 /∈ 𝜕Ω and 𝐹 ∈ 𝜕Ω, respectively. Thus, the assembly of the global matrix

needs to account for the global compatibility condition and the different number of global

components.

3.3.3 Convergence test

In this section, we perform numerical tests to examine the convergence and accuracy of the

HDG method for the HM introduced above. To that end, we solve (3.8) in a square domain
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Ω = (0, 𝜋)2 with 𝜀∞ = 2. In addition, we set 𝜔 = 𝜔𝑝 = 1, 𝛾 = 0 and 𝛽2 = 0.5 and select

boundary data E𝐷 such that the problem has the following exact solution

E = (cos𝑥− 𝑖 sin 𝑦, cos 𝑦 − 𝑖 sin𝑥), J = (sin 𝑦 + 2𝑖 cos𝑥, sin𝑥+ 2𝑖 cos 𝑦).

We define the error in the 𝐿2, Hdiv(𝒯ℎ) and Hcurl(𝒯ℎ) norms as

Degree Mesh ‖E−Eℎ‖𝒯ℎ ‖E−Eℎ‖H𝑐 ‖J− Jℎ‖𝒯ℎ ‖J− Jℎ‖H𝑑

𝑝 𝑛 Error Order Error Order Error Order Error Order

1 8 3.09e-2 – 4.21e-1 – 5.02e-2 – 8.67e-1 –
16 7.21e-3 2.10 2.06e-1 1.02 1.15e-2 2.13 4.22e-1 1.04
32 1.77e-3 2.03 1.03e-1 1.00 2.79e-3 2.04 2.09e-1 1.02
64 4.38e-4 2.01 5.11e-2 1.00 6.89e-4 2.02 1.04e-1 1.01
128 1.09e-4 2.00 2.55e-2 1.00 1.72e-4 2.00 5.18e-2 1.00

2 8 1.22e-3 – 2.27e-2 – 1.80e-3 – 4.49e-2 –
16 1.47e-4 3.05 5.55e-3 2.03 2.17e-4 3.05 1.11e-2 2.02
32 1.81e-5 3.02 1.37e-3 2.01 2.68e-5 3.02 2.75e-3 2.01
64 2.25e-6 3.01 3.42e-4 2.01 3.33e-6 3.01 6.86e-4 2.00
128 2.81e-7 3.00 8.53e-5 2.00 4.15e-7 3.00 1.71e-4 2.00

3 8 2.91e-5 – 7.93e-4 – 4.46e-5 – 1.64e-3 –
16 1.79e-6 4.02 9.80e-5 3.02 2.73e-6 4.03 2.02e-4 3.02
32 1.11e-7 4.01 1.22e-5 3.01 1.69e-7 4.01 2.51e-5 3.01
64 6.94e-9 4.00 1.52e-6 3.00 1.05e-8 4.01 3.13e-6 3.00
128 4.33e-10 4.00 1.90e-7 3.00 6.58e-10 4.00 3.90e-7 3.00

Table 3.1: History of convergence of the HDG method for the hydrodynamic model.

‖E−Eℎ‖2𝒯ℎ =
∑︁

𝑇∈𝒯ℎ

∫︁

𝑇
‖E−Eℎ‖2,

‖J− Jℎ‖2𝒯ℎ =
∑︁

𝑇∈𝒯ℎ

∫︁

𝑇
‖J− Jℎ‖2,

‖E−Eℎ‖2H𝑐 =
∑︁

𝑇∈𝒯ℎ

∫︁

𝑇

(︀
‖E−Eℎ‖2 + ‖∇ ×E−∇×Eℎ‖2

)︀
,

‖J− Jℎ‖2H𝑑 =
∑︁

𝑇∈𝒯ℎ

∫︁

𝑇

(︀
‖J− Jℎ‖2 + ‖∇ · J−∇ · Jℎ‖2

)︀
,

and set both stabilization parameters according to the values proposed above, that is 𝜏𝑡 =

𝜏𝑛 =
√

2. We analyze the convergence of the errors on a sequence of structured triangular

meshes with 𝑛2/2 elements. We consider polynomials of degree 𝑝 = 1, 2 and 3 to represent

the approximate solution, and present the results in Table 3.1. We observe that the HDG
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method for the hydrodynamic model converges at the optimal rate of 𝒪(ℎ𝑝+1) in the 𝐿2

norm and at the rate of 𝒪(ℎ𝑝) in the Hdiv(𝒯ℎ) and Hcurl(𝒯ℎ) norms.

3.3.4 Numerical results

In this section, we present three numerical experiments to assess the performance of the

HDG method for the hydrodynamic model.

Nanoslit

For the first example, we revisit the plasmonic nanoslit introduced in Section 3.2.1, and

investigate the effect of solving the HM in the computational region comprised by the gold.

Including the hydrodynamic currents entails a significant computational burden, since it

requires having sufficient spatial resolution to capture the sub-wavelength features that

occur in the metal. We focus on very low THz frequencies, for which the longitudinal modes

decay exponentially, therefore the main challenge is to capture the profile of induced free

charge density at the surface of the metal. The geometric and material parameters are

identical to those in Section 3.2.1, and the Fermi velocity for gold is given by 𝑣𝐹 = 1.39 ·106

m/s [11].

We employ the same computational domain as for the LRA case, but refining the metallic

volume at both sides of the slit, totalling 24K quadrangular cubic elements to accurately

capture the complicated features that develop in the HM. In addition to the increased number

of discretization elements, accounting for the hydrodynamic equations requires solving for

the auxiliary hybrid variable ̂︀𝑈ℎ. In 2d, this results in doubling the degrees of freedom in

the metal, which for the present nanoslit example increases the size of the linear system by

more than 20% with respect to the same mesh for the LRA.

The induced free charge density |𝜌𝑓 | is shown in Fig. 3-7a for the 2 nm gap at 0.3 THz. To

better appreciate the extreme field localization that occurs at the surface of the metal, we

focus on the upper tips of the slit and examine the decay away from the tip in logarithmic

scale. The charge density experiences an extreme gradient of more than four orders of mag-

nitude within a distance of approximately 1 nm, forming a boundary layer-type structure.

Furthermore, we show the enhancement magnitude |E𝑥| for the same region in Fig. 3-7b,
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(a) Induced free charge density (b) HM field enhancement, dashed
metal boundaries

(c) LRA field enhancement

Figure 3-7: Upper surface of 2 nm slit illuminated at 0.3 THz.

where we observe that the incident electric field does propagate through gold. Conversely,

the enhancement field for the LRA is confined to the aperture, see Fig. 3-7c, since it is not

able to displace the electrons in the metal due to the infinite charge density localized at the

gold surface. These two solution patterns illustrate the interaction of the electromagnetic

incident field with the metallic boundaries, a key difference between LRA and HM.

Plasmonic nanowire dimer

The second example is the plasmonic nanowire dimer, a structure that consists of two

infinitely long metallic cylinders in free space that are separated by a small distance, see

Fig. 3-8a. When the nanowires are illuminated with a plane wave polarized along the axis of

inter-cylinder separation, they are able to support localized plasmon resonances within the

gap region, leading to strong field enhancements [185]. The plasmonic dimer has been studied

extensively from both the theoretical and the experimental perspective [96], and numerical

calculations have been performed for both the LRA [116,130] and the HM [75,250].

The plasmonic dimer is interesting because, for gold and silver structures the LRA predicts

exponentially increasing field enhancements as the gap vanishes [75,219], up until the wires

touch. This unphysical behavior is corrected by the HM, which incorporates nonlocal inter-

actions between electrons. Moreover, both models predict a different amount of frequency

redshift and field enhancement as the gap shrinks.

For this example, we study the differences between both models for dimers consisting of gold

supercircles of radius 𝑅 = 25, as the gap varies between 5-25 Å. The supercircle is a closed
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Figure 3-8: (a) Schematic of incident plane wave, polarization and dimensions of gold dimer. (b) Detail of
nanowire mesh for 𝑛 = 3. (c) Supercircles for several 𝑛. (d) Detail of |E𝑥| field for 𝑤 = 5 Åand
𝑛 = 3 for energy }𝜔 = 2.63 eV at gap region for LRA (left) and HM (right), which captures
metal penetration.

curve with equation

|𝑥|𝑛 + |𝑦|𝑛 = 𝑅𝑛, 𝑛 > 0

and we will focus on the case 2 < 𝑛 ≤ 4, which produces curves between the circle and

the square with rounded edges known as squircle, since the circular case has already been

extensively characterized [212,250]. This will allow us to investigate the effect of proximity

on the plasmonic response, since increasing 𝑛 leads to dimers with greater spatial interaction,

see Fig. 3-8c. The values for the optical constants read }𝜔𝑝 = 9.02 eV, }𝛾 = 0.071 and

𝜀∞ = 1 are taken from [119], whereas the Fermi velocity for gold is given by 𝑣𝐹 = 1.39 · 106

m/s [11].

For the numerical computations, we use a curved anisotropic mesh of cubic quadrangular

elements that is fine in the surface of the dimers and the gap region and coarsens away from
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the dimer. In Fig. 3-8b, we show a detail of a single nanowire discretized for a separation of

𝑤 = 25 Å, consisting of 3K elements. Since we want to explore a broad range of frequencies,

the discretization away from the gold nanowires is extended and adapated to ensure sufficient

spatial resolution is available to accurately simulate the EM propagation. The quantities

of interest are the field enhancement 𝜋 measured in the gap region and the extinction cross

section 𝜎𝑒𝑥𝑡 measured on an arbitrary surface surrounding the dimer.

Figure 3-9: Extinction cross section and field enhancement diagram as a function of gap size and energy for
supercircle dimers with 𝑛 = 2.5 , 3 and 4.

Firstly, to gain insight on the physics we compare the response of the dimer for both models

at the resonant photon energy }𝜔 = 2.63 eV for 𝑛 = 3 in Fig. 3-8d. The main difference

between the LRA and the HM arises at the surface of the nanowire. The Drude model

characterizes the metal as hard wall, thus no penetration of the electromagnetic field is
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allowed in the metal. Conversely, modeling the nonlocal behavior of the electrons with the

hydrodynamic current captures the interaction of the incident field with the electrons. More

specifically, the plasmon resonance spreads the electron density distribution at the metal

interface, thus the gap is effectively enlarged. As a consequence, the HM predicts lower field

enhancements than the LRA.

Figure 3-10: Resonance blueshift as a function of dimer separation 𝑤 in nm for supercircles with 𝑛 = 2.5, 3
and 4.

We now analyze the effect of nonlocality as a function of the gap size, computing the spectra

of field enhancement and extinction cross section for different gap sizes and for different

geometries of the nanowires. In Fig. 3-9 we collect the results for 𝑛 = 2.5 , 3 and 4 for both

models. Firstly, we find that increasing the geometry parameter 𝑛 leads to a higher density of

resonances within the same energy interval, since the nanowires interact much more closely

for the same gap width. In addition, the resonances are narrower and exhibit progressively

less overlap. As far as nonlocality is concerned, the main feature that can be observed is

that all the plasmon resonances are blueshifted due to the nonlocal pressure term, together

with a reduction in the maximum 𝜋 achieved in the gap, which is more severly affected than

𝜎𝑒𝑥𝑡. The nonlocal effects are more predominant as the distance between the wires enters

the subnanometer regime, thus stressing the importance of accounting for the hydrodynamic

current if accurate calculations are sought. Finally, note that the effect of nonlocality is even

more drastic at a fixed frequency, since it can happen that the field enhancement peaks for

the LRA while the HM predicts a valley, see for instance the response at 3 eV for 𝑛 = 4.

To better quantify the spectral shift caused by nonlocality, we show in Fig. 3-10 the blueshift
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∆𝜆* = 𝜆*𝐿𝑅𝐴 − 𝜆*𝐻𝑀 in nm, that is the deviation between wavelengths for both models at

the first resonance, as a function of the separation between nanowires for the geometries

𝑛 = 2.5 , 3 and 4. As anticipated by the results in Fig. 3-9, the blueshift introduced

by the nonlocal model is larger for supercircles with greater 𝑛, as the nanowires interact

along a more extended area. In all cases, the effects of nonlocality diminish as the gap size

increases, and eventually become negligible for distances greater than 10 nm, as predicted

by the hydrodynamic theory.

Periodic annular array

Lastly, we analyze the impact of nonlocality in the 3d annular structure introduced in Fig.

3-5a. Similarly as in the case for the nanoslit, we refine the discretization for the metal

to ensure we capture the tight localization of the charge density at the metal-dielectric

interface. This refinement results in 200 extra elements in the metal, which translates into

an increase of 26% in global degrees of freedom. The reduced number of globally coupled

degrees of freedom of the HDG method is crucial, since instead of solving for ten (resp. six)

volume unknowns in the metal (resp. dielectric), we are left with a linear system involving

only three (resp. two) face unknowns in the metal (resp. dielectric). The linear system is of

dimension 345K, and Matlab’s sparse direct solver is again utilized to obtain the solution.

Nonetheless, the computational cost and memory usage when considering the HM increases

significantly, since we not only have more degrees of freedom, but also the extremely localized

features of the solution field in the metal need to be resolved.

In Fig. 3-11a, we inspect the induced free charge density |𝜌𝑓 | for several angular slices as
before, where we observe for 𝛼 = 0∘ the same boundary-layer pattern as in the nanoslit,

with a maximum value at the interface and a decay of five orders of magnitude just a few

nanometers away from the aperture. These two features gradually decrease as we move from

the 𝑦-constant symmetry plane to the 𝑥-constant symmetry plane. Indeed, for 𝛼 = 75∘ the

charge density profile is almost constant in the interior of the metal.

Finally, we study the effect of nonlocality on the resonance that occurs at 0.6 THz. The

inclusion of the hydrodynamic current results in a relative blueshift of around 2%, along with

a 1.7% decrease in the field enhancement, shown in Fig. 3-11b. This behavior occurs as a
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Figure 3-11: (a) Slices in the angular direction of solution field |𝜌𝑓 | at the aperture for 0.6 THz, shown in
logarithmic scale. (b) Field enhancement curve for LRA and HM compared with experimental
data. (c) Transmission power curve for LRA and HM.

consequence of the penetration of the EM field into the metal, thus relaxing the infinitely

concentrated charge density modeled by the LRA. The smoothed charge density profile

effectively implies a widening of the aperture, which results in a: (1) resonance blueshift,

that is, a shorter wavelength is required to excite the plasmon resonance; (2) a decrease

in field enhancement, since there is less confinement; and (3) a 6% increase in transmitted

power as the EM wave can propagate through a greater aperture space, see Fig. 3-11c.
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Nonetheless, incorporating nonlocality does not bridge the gap between simulations and

experimental data. Moreover, it is unlikely that considering quantum effects would produce

further blueshifts, since for 10 nm separation between gold surfaces electron tunnelling is

negligible. In Chapter 5, we extend the study of discrepancies between experiments and

simulations to include material properties and geometric features.

3.4 Concluding remarks

In this chapter, we have presented a set of hybridizable discontinuous Galerkin methods

to simulate the propagation of electromagnetic waves for metal-dielectric media at the

nanoscale. Simulation of plasmonic phenomena is inherently complex due to the enormous

disparity in length scales and the extreme localization of electromagnetic fields that can be

observed as a consequence of the collective excitation of electrons. The HDG method for

Maxwell’s equations, and the extension to account for the hydrodynamic model for metals

are powerful methods to tackle the numerical simulation of plasmonic structures, due to its

ability to handle complex geometries through anisotropic unstructured meshes, the efficient

treatment of material interfaces and the possibility of solving reduced linear systems that

only involve the degrees of freedom at the faces of the discretization. This aspect can be

of significant advantage since iterative and preconditioning techniques for electromagnetic

wave propagation problems is still an active area of research.

These numerical techniques have been applied to the forward simulation of a 2d nanoslit, a

2d nanowire dimer and a 3d periodic annular structure, for which high-fidelity solvers are

required to properly capture the full electromagnetic field.
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Chapter 4
Reduced order modeling for plasmonics

Reduced order models (ROM) can be used for simulating large-scale systems when multiple

evaluations of the forward problem for different values of the input parameters are required.

The objective is to develop a surrogate model that produces accurate solutions and can

be evaluated in real-time, thus alleviating the computational cost of multiple full model

solutions. The basic idea behind these methods relies on projecting the high-dimensional

state space onto a much lower dimension state space, thus creating a reduced model with a

reduced state space.

In this chapter, we describe the implementation of ROM for the time-harmonic Maxwell’s

equations in (3.1) and (3.2) using HDG and proper orthogonal decomposition techniques.

The reduction of material parameters is pursued with a new weak formulation for the HDG

method that is optimal in terms of degrees of freedom. In addition, the reduction of geo-

metric parameters is achieved by transforming the governing equations using a deformation

mapping and a fixed reference domain.

4.1 HDG-POD method for Maxwell’s equations

In this section, we develop a reduced order model for the HDG discretization of time-

harmonic Maxwell’s equations introduced in (3.6) based on the POD. For the construction

of the ROM, we first need to identify the relevant parameters of interest. For the regular

Maxwell’s equations we are interested in the frequency 𝜔 and the material properties encap-
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sulated in 𝜀. Note that, for the case of metals, the dispersive permittivity is given by the

Drude expression (2.7), thus the plasma frequency 𝜔𝑝 and the collision rate 𝛾 are treated

as parameters. All in all, and since multiple materials may be present in the simulation, 𝑄

shall denote the total number of parameters.

A feature of the HDG discretization is that the affine parametric dependence present in

(3.6) is lost in the solution process. Indeed, in order to eliminate the local degrees of

freedom Vℎ, Eℎ and arrive to a system involving only the global degrees of freedom ̂︀Eℎ, we

need to substitute the first two equations (3.6a) and (3.6b) into (3.6c), rendering a matrix

system that is nonaffine in 𝜔, 𝜀. To avoid this inconvenient situation, we propose a new

HDG formulation for Maxwell’s equations that naturally enables the application of POD

techniques.

4.1.1 A new weak formulation for the HDG method

We begin by deriving a new weak formulation for Maxwell’s equations, inspired in the weak

formulation introduced in [261] for the Helmholtz equation. We first introduce two lifting

operators b : 𝑊ℎ → 𝑊ℎ and c : 𝑀ℎ → 𝑊ℎ defined as:

(b(𝜉),𝜅)𝒯ℎ = (𝜉,∇× 𝜅)𝒯ℎ , ∀𝜅 ∈ 𝑊ℎ

(c(𝜇),𝜅)𝒯ℎ = ⟨𝜉,𝜅× n⟩𝒯ℎ , ∀𝜅 ∈ 𝑊ℎ

(4.1)

It thus follows from (3.6a) and (4.1) that we can express Vℎ as a function of Eℎ, ̂︀Eℎ as

Vℎ = b(Eℎ) + c(̂︀Eℎ) . (4.2)

If we substitute (4.2) into (3.6b) and (3.6c) we obtain the following weak formulation: find

(Eℎ, ̂︀Eℎ) ∈ 𝑊ℎ ×𝑀ℎ(E𝐷) such that

(︀
∇× (b(Eℎ) + c(̂︀Eℎ)), 𝜉

)︀
𝒯ℎ

+ ⟨𝜏𝑡[Eℎ − ̂︀Eℎ],n× 𝜉 × n⟩𝜕𝒯ℎ − 𝜔2(𝜀Eℎ, 𝜉)𝒯ℎ = 0,

−⟨n× (b(Eℎ) + c(̂︀Eℎ)) + 𝜏𝑡Eℎ,𝜇⟩𝜕𝒯ℎ∖𝜕Ω𝐷
+ ⟨̃︀𝜏𝑡̂︀Eℎ,𝜇⟩𝜕𝒯ℎ = ⟨F(𝜔, 𝜀),𝜇⟩𝜕Ω.

for all (𝜉,𝜇) ∈ 𝑊ℎ × 𝑀ℎ(0), where the boundary flux F is given by (3.4). Then, we set

the 𝒩g-dimensional approximation space to be 𝑊g
ℎ := 𝑊ℎ × 𝑀ℎ(E𝐷), Egℎ := (Eℎ, ̂︀Eℎ)
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and 𝜉g := (𝜉,𝜇) such that the weak formulation for Maxwell’s equation can be compactly

written, for Egℎ ∈ 𝑊g
ℎ , as

Ag(Egℎ , 𝜉
g ; (𝜔, 𝜀)) = Fg(𝜉g ; (𝜔, 𝜀)), ∀𝜉g ∈ 𝑊ℎ ×𝑀ℎ(0) (4.3)

where the bilinear form A and the linear functional Fg are given by

Ag(ug, 𝜉g; (𝜔, 𝜀)) =
(︀
∇× (b(u) + c(𝜈)), 𝜉

)︀
𝒯ℎ

+ ⟨𝜏𝑡[u− 𝜈],n× 𝜉 × n⟩𝜕𝒯ℎ − 𝜔2(𝜀u, 𝜉)𝒯ℎ

− ⟨n× (b(u) + c(𝜈)) + 𝜏𝑡u,𝜇⟩𝜕𝒯ℎ∖𝜕Ω𝐷
+ ⟨̃︀𝜏𝑡𝜈,𝜇⟩𝜕𝒯ℎ ,

Fg(𝜉g; (𝜔, 𝜀)) =⟨F(𝜔, 𝜀),𝜇⟩𝜕Ω,

for all ug = (u,𝜈) ∈ 𝑊g
ℎ . The key aspect of this weak formulation is that the new bilinear

and linear forms are affine in (𝜔, 𝜀). Furthermore, this new formulation is optimal in terms

of degrees of freedom, since we no longer account for Vℎ.

In addition, we shall define an inner product for the high-dimensional approximation space

𝑊g
ℎ as

(ug, 𝜉g)𝑊g = (u, 𝜉)𝒯ℎ + ⟨𝜈,𝜇⟩𝜕𝒯ℎ . (4.4)

The inner product (· , ·)𝑊g defines an induced norm ‖𝜉g‖𝑊g =
√︀

(𝜉g, 𝜉g)𝑊g , and allows

us to consistently define the inner products between elements of 𝑊g
ℎ .

We note that, even though the formulation in (4.3) involves Eℎ, these degrees of freedom

are never computed when solving the full system (4.3). Instead, we invoke once more

discontinuity of the approximation spaces and express Eℎ in terms of ̂︀Eℎ, hence solving

linear systems involving only the global degrees of freedom ̂︀Eℎ.

4.1.2 POD formulation

We assume that we are given a collection of solutions, or snapshots, Egℎ ∈ 𝑊g
ℎ , computed

at 𝐽 selected parameter values, stored by columns in a matrix [Egℎ (𝜔1, 𝜀1), . . . ,E
g
ℎ (𝜔𝐽 , 𝜀𝐽)],

along with the matrix arising from the inner product defined in (4.4). We then apply

the POD algorithm [265] and obtain a set of 𝑁max orthonormalized basis functions 𝜁g𝑛 ∈
𝑊g

ℎ , 1 ≤ 𝑛 ≤ 𝑁max such that (𝜁g𝑛 , 𝜁
g
𝑛′)𝑊g = 𝛿𝑛𝑛′ for 1 ≤ 𝑛, 𝑛′ ≤ 𝑁max. The choice 𝑁max
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is made by monitoring the ratio between the energy in the model to the total energy of the

snapshot matrix above using singular value information, see [265] for more details.

The orthonormalized basis functions allow us to define an associated hierarchical POD space

𝑊g
𝑁 as

𝑊g
𝑁 = span{𝜁g𝑛 , 1 ≤ 𝑛 ≤ 𝑁}, 𝑁 = 1, . . . , 𝑁max.

The HDG-POD method results from applying a Galerkin projection (4.3) using the POD

space, that is: for a given pair (𝜔, 𝜀), find an approximation Eg𝑁 (𝜔, 𝜀) ∈ 𝑊g
𝑁 satisfying

Ag(Eg𝑁 , 𝜉
g ; (𝜔, 𝜀)) = Fg(𝜉g ; (𝜔, 𝜀)), ∀𝜉g ∈ 𝑊g

𝑁 , (4.5)

where we solve for the trial coefficients {λg𝑛}𝑁𝑛=1 and Eg𝑁 =
∑︀𝑁

𝑛=1 λ
g
𝑛𝜁
g
𝑛 . Additionally, we

can recover the approximate field V𝑁 using expression (4.2) with E𝑁 and ̂︀E𝑁 . In principle,

we expect the cost of (4.5) to be much smaller than that of (4.3), since 𝑁 ≪ 𝒩g.

4.1.3 Computational strategy

The linearity and affine parametric dependence of the problem allow for an efficient offline-

online decomposition strategy. The offline stage – parameter independent, computationally

intensive but performed only once – comprises the computation of 𝐽 snapshots, the POD

compression that produces the orthonormalized snapshots 𝜁g𝑛 , 1 ≤ 𝑛 ≤ 𝑁 associated with the

HDG approximation space at the selected parameter values and the formation and storage

of several parameter-independent small matrices and vectors. The online stage – parameter

dependent, performed multiple times – evaluates the trial coefficients {λg𝑛 (𝜔, 𝜀)}𝑁𝑛=1 for any

new (𝜔, 𝜀) with complexity 𝒪
(︀
𝑁3 +𝑄𝑁2

)︀
, independent of the dimension 𝒩g of the HDG

approximation space.

After the trial coefficients have been computed, recovering the approximate field variables

V𝑁 , E𝑁 still requires querying the POD basis with complexity 𝒪 (4𝑁𝒩g). In the RB com-

munity this obstacle is avoided by never evaluating the field variables; if the QoI is linear

in the field variables, the offline-online strategy enables dropping the 𝒩g dependence in the

online stage, see [181, 206]. Unfortunately, the quantities of interest in plasmonics simula-

tions, such as the field enhancement or the optical intensity introduced in Section 2.3.1, will
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in general be nonlinear in the field variables, thus the complexity for the online stage will be

𝒩g-dependent. Despite this shortcoming, if the QoI involve localized integrals –e.g. optical

intensity through a surface surrounding the scatterer, or the field enhancement within sub-

wavelength volumes– we can compute V𝑁 , E𝑁 only for the required discretization elements,

thus greatly reducing the online cost.

In summary, the implications of the above strategy are twofold: first, if 𝑁 and 𝑄 are small

and the QoI is localized, we shall achieve very fast output evaluation, usually several orders

of magnitude faster than the HDG output; second, we may choose the HDG approximation

very conservatively – to effectively eliminate the error between the exact output and HDG

output – by only slightly affecting the online (marginal) cost.

4.1.4 Numerical results

One of the difficulties of simulating plasmonic devices is the determination of the permittiv-

ities for metals and dielectrics, since data that comes from measurements is often noisy and

may exhibit significant variability. To that end, we employ the HDG-POD technique on a

realistic 3d example and treat the material properties as exploration parameters. The main

objective is to show that, with few full model evaluations, we can construct a reduced order

model that is capable of predicting, in real-time, the response from the plasmonic device for

a range of material properties and frequencies.

Firstly, we shall define the parameters and their corresponding intervals of variability. We

are interested in studying the field enhancement 𝜋 on the aperture volume of the annular

structure introduced in Fig. 3-5a, with frequencies ranging from 0.5 to 0.9 THz. The only

difference here is that we consider a sapphire substrate, which is also transparent at low

THz frequencies [91]. In Table 4.1, we summarize the values used for the parameters, along

with the references wherefrom data was extracted. For the optical constants of gold, we

have considered the range of variation given by [197, 208], even though it corresponds to a

different frequency regime.

Secondly, the matrix of snapshots is obtained by sampling the 5-dimensional parameter

space (𝜔 + 4 material parameters) and computing the solution Egℎ at 350 selected parameter

values. We use quasi random sequences [31, 182], in particular the Sobol sequence [240], to
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Parameter Values Frequency range (µm) References

}𝜔𝑝 [eV] 9.02± 0.18 < 12 [193,197,208]
} 𝛾 [eV] 0.02678± 0.007 < 12 [193,197,208]
𝜀Al2O3 5 - 6 thickness-dependent [92]
𝑛sapphire 3.07± 0.006 < 2 [91]

Table 4.1: Variability ranges for parameters, interval of validity and references for 10 nm alumina gap in low
THz frequencies.

achieve a more uniform sampling in the high-dimensional space, although techniques such as

Latin Hypercube sampling [143,244], sparse grids [239] or plain random number generation

are also valid strategies.
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Figure 4-1: (a) Decay of normalized singular values vs number of POD modes 𝑁 . (b) Relative errors in field
enhancement for test set parameters, evaluated for multiple POD sizes.

In Fig. 4-1a we show the decay of the normalized singular values of the snapshot matrix up

to 𝑁 = 24. In order to gauge the accuracy of the POD basis, we compute the HDG solution

for 100 random parameter values –referred to as test set– and evaluate the relative error

committed by different fidelities of the reduced order model on the test set of examples. The

results are collected in Fig. 4-1b, where for each POD basis size 𝑁 we sort the relative errors.

It should be observed that with 16 POD modes the relative error for all testing examples is

well below 0.1%, which is generally deemed sufficient for most engineering applications.

The efficiency of the POD basis is assessed timing its online performance, more specifically

the assembly, solution of the linear system and recovery of the local variables from the

trial coefficients {λg𝑛}𝑁𝑛=1. Time estimates are obtained averaging the wall time for 100

runs for each task using a single processor of a 512GB Linux 12.04 machine with 32 AMD
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Opteron(tm) Processors 6320x15, and results are collected in Table 4.2 in milliseconds. The

advantages of the reduced order model are apparent for this 3d problem, since we achieve an

online cost reduction of ∼ 4 orders of magnitude for the most expensive POD basis without

compromising accuracy, as seen in Fig. 4-1b. As anticipated, the bulk of the computational

cost to evaluate the POD basis is devoted to recovering the local variables required to

evaluate the QoI, since it involves operating with the high-dimensional POD basis functions.

This approach is particularly beneficial for large problems with parametric variability, where

Model Assembly (ms) Linear system (ms) Local variables (ms)

𝑁 = 8 0.12 0.11 5.33
𝑁 = 16 0.16 0.12 5.91
𝑁 = 24 0.21 0.18 6.51

HDG 9.4e4 2.72e5 850

Table 4.2: Computational wall time in milliseconds of HDG/HDG-POD for time-harmonic Maxwell’s equa-
tions.

the model must produce accurate solutions in real-time for multiple queries.

4.2 HDG-POD method for Maxwell’s equations in the refer-

ence domain

The reduced order model constructed above allows us to explore a variety of material con-

figurations at a cost much smaller than that of the full electromagnetic simulation with

the HDG method. However, besides material parameters it is often interesting to analyze

the electromagnetic response under different geometric configurations. In this section, we

extend the HDG-POD method introduced above to include geometric variations in the com-

putational domain. In principle, accounting for geometry variations is nontrivial, since we

want to avoid redescritizing the computational domain for each new deformation. Instead,

we develop a reference domain formulation for the time-harmonic Maxwell’s equations in

which a reference domain is mapped to the physical domain by means of a parametrized

diffeomorphism G(·,θ). More specifically, the main idea is to obtain a reduced order model

for Maxwell’s equations that comprises not only frequency and material properties, but also

the values θ that parametrize the diffeomorphism.

This approach enables us to solve, for any geometric configuration, a modified version of
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Maxwell’s equations on a fixed, parameter-independent, reference domain. We now intro-

duce a reference domain formulation for the time-harmonic Maxwell’s equations, review its

implementation and discuss the application of interpolation techniques to incorporate the

geometric parameters into the reduced order model.

4.2.1 Maxwell’s equations in reference domain

Let us assume that the physical domain Ω is subject to a deformation mapping that modifies

its geometry, parametrized by θ and defined on a compact set. We want to solve problem

(3.1) for many different realizations of θ. In such scenario, it is much more convenient to

map the physical domain Ω onto a fixed reference domain Ωr. Following Persson et al. [201],

we assume a one-to-one mapping given by a diffeomorphism G from the reference domain

Ωr ∈ R𝑛 with coordinates xr to the physical domain Ω ∈ R𝑛 with coordinates x. The

mapping can be expressed as x = G(xr,θ). The mapping deformation gradient and its

Jacobian are defined 𝒢 = ∇rG and 𝑔 = det𝒢, respectively. Note that ∇ = 𝒢−𝑇∇r.

For simplicity, we shall assume deformations only occur within the vicinity of the scatterer,

thus the outer boundaries of the computational domain –where radiation conditions are

prescribed– remain unaltered. Starting from ℒ in (3.1), to obtain the transformed equation

on the reference space Ωr, we integrate on a control volume 𝑣 ∈ Ω and use Stokes’ theorem

on the curl, namely

∫︁

𝑣
∇×V𝑑𝑣 = −

∫︁

𝑠
V × n𝑑𝑠 = −

∫︁

𝑠r

𝑔V ×
(︀
𝒢−𝑇nr

)︀
𝑑𝑠r = −

∫︁

𝑠r

𝑔
(︀
𝒢−𝑇

(︀
𝒢𝑇V

)︀)︀
×
(︀
𝒢−𝑇nr

)︀
𝑑𝑠r

= −
∫︁

𝑠r

𝒢
(︀
𝒢𝑇V

)︀
× nr𝑑𝑠r =

∫︁

𝑣r

𝒢∇r ×
(︀
𝒢𝑇V

)︀
𝑑𝑣r

where we used the identity 𝑀𝑢×𝑀𝑤 = (det𝑀)𝑀−𝑇 (𝑢× 𝑤) and the relations 𝑑𝑣 = 𝑔𝑑𝑣r

and n𝑑𝑠 = 𝑔𝒢−𝑇nr𝑑𝑠r. The other term in the equation transforms as

∫︁

𝑣
𝜔2𝜀E𝑑𝑣 =

∫︁

𝑉
𝜔2𝜀E𝑔𝑑𝑣r
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The boundary conditions can be transformed similarly, for instance

0 =

∫︁

𝑠
(E−E𝐷) × n𝑑𝑠 =

∫︁

𝑠r

𝑔(E−E𝐷) × (𝒢−𝑇nr)𝑑𝑠r =

∫︁

𝑠r

𝒢
[︀
nr × (𝒢𝑇 (E−E𝐷))

]︀
𝑑𝑠r

=

∫︁

𝑠r

nr × (𝒢𝑇 (E−E𝐷))𝑑𝑠r

Finally, the time-harmonic Maxwell’s equations read

v −∇r ×𝐺e = 0,

∇r ×𝐺v − 𝜔2𝜀e = 0, (4.6)

along with boundary conditions

nr × (𝐺e) = nr × (𝐺e𝐷), on 𝜕Ωr,𝐷,

nr × (𝐺v) = nr × (𝐺v𝑁 ), on 𝜕Ωr,𝑁 ,

nr × (𝐺v) + 𝑖𝜔
√
𝜀nr × (𝐺e) × nr = f 𝑖𝑛𝑐, on 𝜕Ω𝑆𝑀 ,

where a generic field u transforms as u = 𝑔𝒢−1U and 𝐺 = 𝑔−1𝒢𝑇𝒢. For the reference

domain case, we do not need to transform the radiation conditions, since deformation is

only prescribed in the vicinity of the scatterer and the Silver-Müller boundary remains

unaltered. Thus, we have V = 𝐺v and E = 𝐺e on 𝜕Ω𝑆𝑀 , since G�𝜕Ω𝑆𝑀
= Id.

In order to solve (4.6), we first seek an approximation (vℎ, eℎ) ∈ 𝑊ℎ×𝑊ℎ to the transformed

electric and magnetic fields (v, e). Furthermore, we also introduce a new variable ̂︀eℎ that

approximates the tangential component of the transformed electric field at the element

interfaces, that is nr×eℎ×nr. We finally introduce the approximation to the numerical traces

of ̂︀vℎ, and conservation is enforced by imposing continuity on the tangential component of

𝐺̂︀vℎ across inter-element boundaries, that is Jnr ×𝐺̂︀vℎK = 0 on ℰ𝑜
ℎ.

The HDG method for the discretization of system (4.6) seeks a solution (vℎ, eℎ,̂︀eℎ) ∈ 𝑊ℎ×
𝑊ℎ ×𝑀ℎ(0), such that the following system holds for all (𝜅, 𝜉,𝜇) ∈ 𝑊ℎ ×𝑊ℎ ×𝑀ℎ(0)

(vℎ,𝜅)𝒯ℎ − (𝐺eℎ,∇× 𝜅)𝒯ℎ − ⟨𝐺̂︀eℎ,𝜅× nr⟩𝜕𝒯ℎ = 0,

(𝐺vℎ,∇× 𝜉)𝒯ℎ + ⟨𝐺̂︀vℎ, 𝜉 × nr⟩𝒯ℎ − 𝜔2(𝜀eℎ, 𝜉)𝒯ℎ = 0,

−⟨nr ×𝐺̂︀vℎ,𝜇⟩𝜕𝒯ℎ∖𝜕Ωr,𝐷
+ ⟨𝐺̂︀eℎ,𝜇⟩𝜕Ωr,𝐷

− 𝑖𝜔⟨√𝜀𝐺̂︀eℎ,𝜇⟩𝜕Ω𝑆𝑀
= ⟨f ,𝜇⟩𝜕Ωr ,
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with

f = 𝐺e𝐷�𝜕Ω𝐷
− n×𝐺v𝑁�𝜕Ω𝑁

− f 𝑖𝑛𝑐�𝜕Ω𝑆𝑀
. (4.7)

The tangential component of vℎ is approximated as before

𝐺̂︀vℎ = 𝐺vℎ + 𝜏𝑡𝐺 (eℎ − ̂︀eℎ) × nr.

Introducing this approximation in the above system, we arrive to the final HDG system for

the frequency-domain Maxwell’s equations on a reference domain:

(vℎ,𝜅)𝒯ℎ − (𝐺eℎ,∇× 𝜅)𝒯ℎ − ⟨𝐺̂︀eℎ,𝜅× nr⟩𝜕𝒯ℎ = 0,

(𝐺vℎ,∇× 𝜉)𝒯ℎ + ⟨𝐺vℎ, 𝜉 × nr⟩𝒯ℎ − 𝜔2(𝜀eℎ, 𝜉)𝒯ℎ

+⟨𝜏𝑡𝐺(eℎ − ̂︀eℎ) × nr, 𝜉 × nr⟩𝒯ℎ = 0,

−⟨nr ×𝐺vℎ + 𝜏𝑡𝐺eℎ,𝜇⟩𝜕𝒯ℎ∖𝜕Ωr,𝐷
+ ⟨̃︀𝜏𝑡𝐺̂︀eℎ,𝜇⟩𝜕𝒯ℎ = ⟨f ,𝜇⟩𝜕Ωr ,

(4.8a)

(4.8b)

(4.8c)

where the stabilization constant ̃︀𝜏𝑡 is given in (3.7). Solving the weak formulation above is

equivalent to solving (3.6) after deforming the domain with a diffeomorphism G. However,

we prefer the formulation in (4.8) since it allows us to work on a parameter-independent

domain, where discretization elements and normal vectors are fixed, and additionally casts

a clear strategy for model order reduction, as we shall describe below.

4.2.2 Implementation

We rewrite the system (4.8) in terms of bilinear and linear forms. The weak formulation

reads: find (vℎ, eℎ,̂︀eℎ) ∈ 𝑊ℎ ×𝑊ℎ ×𝑀ℎ(0), such that

A(vℎ,𝜅) −B(𝐺eℎ,𝜅) − C(𝐺̂︀eℎ,𝜅) = 0,

B(𝐺vℎ, 𝜉) + K(𝐺vℎ, 𝜉) + D(𝐺eℎ, 𝜉) − 𝜔2A𝜀(eℎ, 𝜉) − E(𝐺̂︀eℎ, 𝜉) = 0,

−R(𝐺vℎ,𝜇) − L(𝐺eℎ,𝜇) + M(𝐺̂︀eℎ,𝜇) = F(𝜇),

(4.9)
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holds for all (𝜅, 𝜉,𝜇) ∈ 𝑊ℎ ×𝑊ℎ ×𝑀ℎ(0). The bilinear and linear forms are given by

A(v,𝜅) = (v,𝜅)𝒯ℎ , A𝜀(e, 𝜉) = (𝜀e, 𝜉)𝒯ℎ ,

B(𝐺e,𝜅) = (𝐺e,∇× 𝜅)𝒯ℎ , C(𝐺̂︀e,𝜅) = ⟨𝐺̂︀e,𝜅× n⟩𝜕𝒯ℎ ,
K(𝐺v, 𝜉) = ⟨𝐺v, 𝜉 × n⟩𝜕𝒯ℎ , D(𝐺e, 𝜉) = ⟨𝜏𝑡𝐺e,n× 𝜉 × n⟩𝜕𝒯ℎ ,
E(𝐺̂︀e, 𝜉) = ⟨𝜏𝑡𝐺̂︀e,nr × 𝜉 × nr⟩𝜕𝒯ℎ , R(𝐺v,𝜇) = ⟨𝐺v,𝜇× nr⟩𝜕𝒯ℎ ,
L(𝐺e,𝜇) = ⟨𝜏𝑡𝐺e,𝜇⟩𝜕𝒯ℎ , M(𝐺̂︀e,𝜇) = ⟨̃︀𝜏𝑡𝐺̂︀e,𝜇⟩𝜕𝒯ℎ ,
F(𝜇) = F𝐷(𝜇) + F𝑁 (𝜇) + F𝑆𝑀 (𝜇)

where the boundary form arises from (4.7). For the discretization of the above system, we

introduce 𝜙𝑖, 1 ≤ 𝑖 ≤ 𝐼 to be the basis functions of 𝒫𝑝(𝑇 ) and 𝜑𝑘, 1 ≤ 𝑘 ≤ 𝐾 the basis

functions of 𝒫𝑝(𝐹 ). The tangent vectors are defined as in Chapter 3, although they are

obviously computed using the normal vectors from the reference discretization.

Bearing in mind that the 3x3 deformation tensor 𝐺 is symmetric, we derive the contribution

from an arbitrary element 𝑇 to the global system. Furthermore, we shall make use of the

identity 𝜇 = nr × 𝜇 × nr, that is 𝜇 is spanned by t1 and t2. The elemental matrices for

element 𝑇 have the following representation:

A𝑡 =

⎡
⎢⎢⎢⎣

A𝑡
0 0 0

0 A𝑡
0 0

0 0 A𝑡
0

⎤
⎥⎥⎥⎦ B𝑡 =

⎡
⎢⎢⎢⎣

B𝑡
11 B𝑡

12 B𝑡
13

B𝑡
21 B𝑡

22 B𝑡
23

B𝑡
31 B𝑡

32 B𝑡
33

⎤
⎥⎥⎥⎦ K𝑡 =

⎡
⎢⎢⎢⎣

K𝑡
11 K𝑡

12 K𝑡
13

K𝑡
21 K𝑡

22 K𝑡
23

K𝑡
31 K𝑡

32 K𝑡
33

⎤
⎥⎥⎥⎦

C𝑡 =

⎡
⎢⎢⎢⎣

C𝑡
11 C𝑡

12

C𝑡
21 C𝑡

22

C𝑡
31 C𝑡

32

⎤
⎥⎥⎥⎦ D𝑡 =

⎡
⎢⎢⎢⎣

D𝑡
11 D𝑡

12 D𝑡
13

D𝑡
21 D𝑡

22 D𝑡
23

D𝑡
31 D𝑡

32 D𝑡
33

⎤
⎥⎥⎥⎦ E𝑡 =

⎡
⎢⎢⎢⎣

E𝑡
11 E𝑡

12

E𝑡
21 E𝑡

22

E𝑡
31 E𝑡

32

⎤
⎥⎥⎥⎦

R𝑡 =

⎡
⎣R

𝑡
11 R𝑡

12 R𝑡
13

R𝑡
21 R𝑡

22 R𝑡
23

⎤
⎦ L𝑡 =

⎡
⎣L

𝑡
11 L𝑡

12 L𝑡
13

L𝑡
21 L𝑡

22 L𝑡
23

⎤
⎦ M𝑡 =

⎡
⎣M

𝑡
11 M𝑡

12

M𝑡
21 M𝑡

22

⎤
⎦

(4.10)

Below, we provide expressions for the different subblocks for each elemental matrix, using for

the volume 𝜙 (resp. face 𝜑) basis functions 𝑖/𝑗 (resp. 𝑘/ℓ) as test/trial indices respectively,

1 ≤ 𝑐, 𝑑 ≤ 3 for the dimensionality indices and 1 ≤ 𝑎, 𝑏 ≤ 2 for the tangent vectors indices.

The matrix A𝑡 consists of mass matrix subblocks A𝑡
0,𝑖𝑗 = (𝜙𝑖, 𝜙𝑗)𝑇 in the diagonal. The
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different components of the curl-convection matrices in B𝑡 are obtained as

B𝑡
1𝑑,𝑖𝑗 = (𝜕𝑧𝜙𝑖,𝐺2𝑑 𝜙𝑗)𝑇 − (𝜕𝑦𝜙𝑖,𝐺3𝑑 𝜙𝑗)𝑇 ,

B𝑡
2𝑑,𝑖𝑗 = (𝜕𝑥𝜙𝑖,𝐺3𝑑 𝜙𝑗)𝑇 − (𝜕𝑧𝜙𝑖,𝐺1𝑑 𝜙𝑗)𝑇 ,

B𝑡
3𝑑,𝑖𝑗 = (𝜕𝑦𝜙𝑖,𝐺1𝑑 𝜙𝑗)𝑇 − (𝜕𝑥𝜙𝑖,𝐺2𝑑 𝜙𝑗)𝑇 .

(4.11)

The subblocks for K𝑡 and D𝑡 are K𝑡
𝑐𝑑,𝑖𝑗 = ⟨𝜅𝑐𝑑𝜙𝑖, 𝜙𝑗⟩𝜕𝑇 and D𝑡

𝑐𝑑,𝑖𝑗 = ⟨𝛿𝑐𝑑𝜙𝑖, 𝜙𝑗⟩𝜕𝑇 , where
𝜅𝑐𝑑, 𝛿𝑐𝑑 are given by

𝜅1𝑑 = 𝐺3𝑑𝑛2 −𝐺2𝑑𝑛3 , 𝜅2𝑑 = 𝐺1𝑑𝑛3 −𝐺3𝑑𝑛1 , 𝜅3𝑑 = 𝐺2𝑑𝑛1 −𝐺1𝑑𝑛2 ,

𝛿1𝑑 = 𝐺1𝑑(1 − 𝑛21) − 𝑛1𝑛3𝐺3𝑑 − 𝑛1𝑛2𝐺2𝑑 ,

𝛿2𝑑 = 𝐺2𝑑(1 − 𝑛22) − 𝑛1𝑛2𝐺1𝑑 − 𝑛2𝑛3𝐺3𝑑 ,

𝛿3𝑑 = 𝐺3𝑑(1 − 𝑛23) − 𝑛1𝑛3𝐺1𝑑 − 𝑛2𝑛3𝐺2𝑑 .

(4.12)

(4.13)

The submatrices for C𝑡, E𝑡 are given by C𝑡
𝑐𝑏,𝑖ℓ = ⟨𝛾𝑐𝑏𝜙𝑖, 𝜑ℓ⟩𝜕𝑇 , E𝑡

𝑐𝑏,𝑖ℓ = ⟨𝜖𝑐𝑏𝜙𝑖, 𝜑ℓ⟩𝜕𝑇 . For

simplicity, we introduce the modified tangent vectors ̂︀t𝑏 = 𝐺t𝑏, and define 𝛾𝑐𝑏, 𝜖𝑐𝑏 as

𝛾1𝑏 = ̂︀𝑡𝑏3𝑛2 − ̂︀𝑡𝑏2𝑛3 , 𝛾2𝑏 = ̂︀𝑡𝑏1𝑛3 − ̂︀𝑡𝑏3𝑛1 , 𝛾3𝑏 = ̂︀𝑡𝑏2𝑛1 − ̂︀𝑡𝑏1𝑛2 ,

𝜖1𝑏 = ̂︀𝑡𝑏1(1 − 𝑛21) − 𝑛1𝑛3̂︀𝑡𝑏3 − 𝑛1𝑛2̂︀𝑡𝑏2 ,

𝜖2𝑏 = ̂︀𝑡𝑏2(1 − 𝑛22) − 𝑛1𝑛2̂︀𝑡𝑏1 − 𝑛2𝑛3̂︀𝑡𝑏3 ,

𝜖3𝑏 = ̂︀𝑡𝑏3(1 − 𝑛23) − 𝑛1𝑛3̂︀𝑡𝑏1 − 𝑛2𝑛3̂︀𝑡𝑏2 .

(4.14)

(4.15)

In addition, the R𝑡 components are given by R𝑡
𝑎𝑑,𝑘𝑗 = ⟨[𝐺(t𝑎 × nr)]𝑑𝜑𝑘, 𝜙𝑗⟩𝜕𝑇 and the

L𝑡 submatrices by L𝑡
𝑎𝑑,𝑘𝑗 = ⟨̂︀𝑡𝑎𝑑𝜑𝑘, 𝜙𝑗⟩𝜕𝑇 . Finally, the subblocks of M𝑡 are computed as

M𝑡
𝑎𝑏,𝑘ℓ = ⟨𝜈𝑎𝑏𝜑𝑘, 𝜑ℓ⟩𝜕𝑇 , with 𝜈𝑎𝑏 = t*𝑎𝐺t𝑏.

The linear form can be defined as F𝑡 = [F𝑡
1;F

𝑡
2], where the components of the vector are

given by

F𝑡
𝑎,ℓ = ⟨(t𝑎 × nr)

*𝐺e𝐷, 𝜑ℓ⟩𝜕𝑇∩𝜕Ω𝐷
− ⟨̂︀t*𝑎v𝑁 , 𝜑ℓ⟩𝜕𝑇∩𝜕Ω𝑁

− ⟨t*𝑏f 𝑖𝑛𝑐, 𝜑ℓ⟩𝜕𝑇∩𝜕Ω𝑆𝑀
, (4.16)

for 𝑎 = 1, 2.

Assembling the elemental contributions in (4.10) we arrive at the HDG system for Maxwell’s
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equations ⎡
⎢⎢⎢⎣

A −B −C

B + K D− 𝜔2A𝜀 −E

−R −L M

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

v

e

̂︀e

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0

0

F

⎤
⎥⎥⎥⎦

where v, e, ̂︀e are vectors containing the values of the corresponding fields at the degrees of

freedom corresponding to the discretization 𝒯ℎ. Similarly as before, we locally eliminate the
degrees of freedom of v, e to obtain a system involving only the global degrees of freedom ̂︀e,
hence reducing the size of the resulting linear system. The local variables may be rewritten

as a function of the global variables using a Schur complement decomposition, namely

⎡
⎣ v

e

⎤
⎦ =

⎡
⎣ A −B

B + K D− 𝜔2A𝜀

⎤
⎦
−1 ⎡
⎣ C

E

⎤
⎦̂︀e = Ẑ︀e . (4.17)

Finally, the system involving only the global unknowns is given by

(︁
M +

[︁
R L

]︁
Z
)︁
̂︀e = F (4.18)

This procedure characterizes the solution to (3.6) in terms of ̂︀eℎ, which consists of only two

components defined on the global faces. As a consequence, the HDG method exhibits less

globally coupled degrees of freedom than other DG methods. If Z is stored element-wise the

local variables can be recovered in parallel using (4.17) at a cost much smaller than that

of solving (4.18). Finally, the physical variables may be recovered from the transformed

variables through

Vℎ = 𝑔−1𝒢vℎ, Eℎ = 𝑔−1𝒢eℎ. (4.19)

4.2.3 Empirical interpolation for Maxwell’s equations

The formulation and implementation introduced above describe the procedure for computing

solutions to Maxwell’s equations for deformable domains. It is clear that the strength of

the reference domain formulation arises from its combination with reduced order modeling

strategies, enabling the fast evaluation of the system at multiple geometric configurations.

Nevertheless, considering geometric parameters for the reduced order model gives rise to

further complications.
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The more obvious one is that affine parametric dependence is lost with respect to θ, because

even if G were affine in θ, the tensor 𝐺 most surely is not. Hence, we must resort to

advanced interpolation techniques to regain an affine expression for the weak formulation.

Additionally, the new weak formulation derived in Section 4.1.1 is no longer valid for the

reference domain Maxwell’s equations. That is, eliminating the magnetic field from (4.8a)

and substituting it into (4.8b) and (4.8c) incurs higher order products of 𝐺, impacting

computations at both offline and online stages. To circumvent this limitation, we must use

the weak formulation (4.8), as well as all field variables to develop the ROM.

The first step is to interpolate the bilinear forms (4.11)-(4.16) in the weak formulation. A

widespread technique in function interpolation is DEIM [37], that will be used for the exam-

ples in this dissertation. The idea behind DEIM is to approximate a nonaffine parametrized

function 𝑓(𝑥,θ) by a weighted combination of orthogonal spatial functions Φ = [𝜑1(𝑥), . . . , 𝜑𝑄(𝑥)]

such that

𝑓(𝑥,θ) ≈ 𝑓𝐸𝐼(𝑥,θ) = Φ(𝑥)c(θ), (4.20)

for a certain parameter-dependent coefficient vector c(θ). In addition, the DEIM treats the

spatial variable 𝑥, defined on a bounded domain, as a finite discrete set of points within the

domain. The basis functions in Φ arise from applying POD to a matrix of, for instance,

𝐼 snapshots evaluated on the discrete set 𝑥, that is [𝑓(𝑥,θ1), . . . , 𝑓(𝑥,θ𝐼)]. Nonetheless,

expression (4.20) represents an overdetermined system, thus further constraints are needed to

compute the coefficients. Starting from the first basis function 𝜑1 of Φ, the DEIM iteratively

selects 𝑄 discrete spatial point that maximize the error of the current interpolation, that is

at step 𝑞 we seek the spatial index that maximizes the residual 𝑟𝑞 = 𝜑𝑞− [𝜑1, . . . , 𝜑𝑞−1] c(θ),

and augment the basis. The result is a set of 𝑄 spatial indices I that give rise to a 𝑄 × 𝑄

system, namely

𝑓𝐸𝐼(𝑥I,θ) = Φ(𝑥I)c(θ), (4.21)

to solve for c(θ) for a new θ. It should be remarked that, for a given nonaffine function,

the matrix Φ(𝑥I) does not depend on θ, thus its LU factorization can be precomputed and

stored to economize the evaluation of coefficients. We refer the reader to [37] for details of

the algorithm.

In order to apply the DEIM to the weak formulation (4.8), we first need to identify the

76



nonaffine parametrized functions to be interpolated, as well as the discrete set of spatial

points where the interpolants will be evaluated. In the finite element context, the natural

choice is the Gaussian quadrature points x𝜉 in the discretization, needed to compute the

elemental inner products for volumes and faces. In addition, the nonaffine functions can be

readily identified from (4.11)-(4.16), and involve the components of the deformation tensor

𝐺 for the volume bilinear forms and its effect on the normal and the tangent vectors for

the face bilinear forms. In Table 4.3, we summarize the relevant information for applying

the DEIM to the various bilinear forms in (4.9). Note that each nonaffine function that is

interpolated may require a different amount of orthogonal basis functions to meet the DEIM

accuracy requirements.

Bilinear/Linear forms Spatial points Nonaffine functions # nonaffine terms

B Volume 𝐺𝑐𝑑, 1 ≤ 𝑐 ≤ 𝑑 ≤ 3
∑︀6

𝑖=1 𝑄
𝐵
𝑖

C Face 𝛾𝑐𝑏, 1 ≤ 𝑐 ≤ 3, 1 ≤ 𝑏 ≤ 2
∑︀6

𝑖=1 𝑄
𝐶
𝑖

E Face 𝜖𝑐𝑏, 1 ≤ 𝑐 ≤ 3, 1 ≤ 𝑏 ≤ 2
∑︀6

𝑖=1 𝑄
𝐸
𝑖

K Face 𝜅𝑐𝑑, 1 ≤ 𝑐, 𝑑 ≤ 3
∑︀9

𝑖=1 𝑄
𝐾
𝑖

D Face 𝛿𝑐𝑑, 1 ≤ 𝑐, 𝑑 ≤ 3
∑︀9

𝑖=1 𝑄
𝐷
𝑖

R Face [𝐺(t𝑎 × nr)]𝑑, 1 ≤ 𝑎 ≤ 2, 1 ≤ 𝑑 ≤ 3,
∑︀6

𝑖=1 𝑄
𝑅
𝑖

L Face [𝐺t𝑎]𝑑, 1 ≤ 𝑎 ≤ 2, 1 ≤ 𝑑 ≤ 3
∑︀6

𝑖=1 𝑄
𝐿
𝑖

M Face t*𝑎𝐺t𝑏, 1 ≤ 𝑎, 𝑏 ≤ 2
∑︀3

𝑖=1 𝑄
𝑀
𝑖

F𝐷 Dirichlet boundary (t𝑎 × nr)
*𝐺e𝐷, 1 ≤ 𝑎 ≤ 2

∑︀2
𝑖=1 𝑄

𝐹𝐷
𝑖

F𝑁 Neumann boundary t*𝑎𝐺v𝑁 , 1 ≤ 𝑎 ≤ 2
∑︀2

𝑖=1 𝑄
𝐹𝑁
𝑖

Table 4.3: Nonaffine functions for DEIM.

Similarly as before, we set the 𝒩 ⋆-dimensional space to be 𝑊 ⋆
ℎ := 𝑊ℎ × 𝑊ℎ × 𝑀ℎ(0),

e⋆ℎ := (vℎ, eℎ,̂︀eℎ) and 𝜉⋆ := (𝜅, 𝜉,𝜇). The system of equations in (4.9) may be compactly

rewritten, for e⋆ℎ ∈ 𝑊 ⋆
ℎ , as

A⋆(e⋆ℎ, 𝜉
⋆ ; (𝜔, 𝜀,θ)) = F⋆(𝜉⋆ ; (𝜔, 𝜀,θ)), ∀𝜉⋆ ∈ 𝑊 ⋆

ℎ .

Applying the DEIM approximations outlined in Table 4.3 to the bilinear and linear forms

in (4.9) recovers a bilinear form A⋆
𝐸𝐼 ≈ A⋆ and linear functional F⋆

𝐸𝐼 ≈ F⋆ that are affine in
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the parameters (𝜔, 𝜀,θ), namely

A⋆
𝐸𝐼(u⋆, 𝜉⋆; (𝜔, 𝜀,θ)) =A(p,𝜅) −

6∑︁

𝑖=1

𝑄𝐵
𝑖∑︁

𝑞=1

[B𝑞(𝐺u,𝜅) + B𝑞(𝐺p, 𝜉)]

− 𝜔2A𝜀(u, 𝜉) −
6∑︁

𝑖=1

𝑄𝐶
𝑖∑︁

𝑞=1

C𝑞(𝐺𝜈ℎ,𝜅)

+
9∑︁

𝑖=1

𝑄𝐾
𝑖∑︁

𝑞=1

K𝑞(𝐺p, 𝜉) + 𝜏𝑡

9∑︁

𝑖=1

𝑄𝐷
𝑖∑︁

𝑞=1

D𝑞(𝐺u, 𝜉)

− 𝜏𝑡

6∑︁

𝑖=1

𝑄𝐸
𝑖∑︁

𝑞=1

E𝑞(𝐺𝜈ℎ, 𝜉) −
6∑︁

𝑖=1

𝑄𝑅
𝑖∑︁

𝑞=1

R𝑞(𝐺p,𝜇)

− 𝜏𝑡

6∑︁

𝑖=1

𝑄𝐿
𝑖∑︁

𝑞=1

L𝑞(𝐺u,𝜇) + ̃︀𝜏𝑡
3∑︁

𝑖=1

𝑄𝑀
𝑖∑︁

𝑞=1

M𝑞(𝐺𝜈,𝜇)

F⋆
𝐸𝐼(𝜉⋆; (𝜔, 𝜀,θ)) =

2∑︁

𝑖=1

𝑄
𝐹𝐷
𝑖∑︁

𝑞=1

F𝐷,𝑞(𝜇;θ) +
2∑︁

𝑖=1

𝑄
𝐹𝑁
𝑖∑︁

𝑞=1

F𝑁,𝑞(𝜇;θ)

+ F𝑆𝑀 (𝜇; (𝜔, 𝜀)),

for all u⋆ = (p,u,𝜈) ∈ 𝑊 ⋆
ℎ , and set the HDG system with DEIM approximations as

A⋆
𝐸𝐼(e⋆ℎ, 𝜉

⋆ ; (𝜔, 𝜀,θ)) = F⋆
𝐸𝐼(𝜉⋆ ; (𝜔, 𝜀,θ)), ∀𝜉⋆ ∈ 𝑊 ⋆

ℎ . (4.22)

Additionally, we define an inner product for the approximation space 𝑊 ⋆
ℎ as

(u⋆, 𝜉⋆)𝑊 ⋆ = (p,𝜅)𝒯ℎ + (u, 𝜉)𝒯ℎ + ⟨𝜈,𝜇⟩𝜕𝒯ℎ ,

which also defines an induced norm ‖𝜉⋆‖𝑊 ⋆ =
√︀

(𝜉⋆, 𝜉⋆)𝑊 ⋆ . Again, even though the for-

mulation involves all the field variables, to compute the snapshots we leverage the structure

of the HDG method and solve a linear system only for ̂︀eℎ. We then recover the local field

variables at the element level using the Schur complement decomposition.
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4.2.4 POD formulation

The procedure to compute a POD basis from a matrix of snapshots is analogous to the

regular Maxwell’s case. The hierarchical POD space 𝑊 ⋆
𝑁 is similarly defined as

𝑊 ⋆
𝑁 = span{𝜁⋆𝑛, 1 ≤ 𝑛 ≤ 𝑁}, 𝑁 = 1, . . . , 𝑁max

for the orthonormalized basis functions 𝜁⋆𝑛 ∈ 𝑊 ⋆
ℎ . We then perform a Galerkin projection,

for a given (𝜔, 𝜀,θ), on system (4.22) to find an approximation e⋆𝑁 (𝜔, 𝜀,θ) ∈ 𝑊 ⋆
𝑁 satisfying

A⋆
𝐸𝐼(e⋆𝑁 , 𝜉

⋆ ; (𝜔, 𝜀,θ)) = F⋆
𝐸𝐼(𝜉⋆ ; (𝜔, 𝜀,θ)), ∀𝜉⋆ ∈ 𝑊 ⋆

𝑁 .

Again, the solution of the 𝑁 × 𝑁 system above are the trial coefficients {λ⋆𝑛}𝑁𝑛=1, that is

e⋆𝑁 =
∑︀𝑁

𝑛=1 λ
⋆
𝑛𝜁

⋆
𝑛.

4.2.5 Computational strategy

The linearity and affine parametric dependence of the problem allow for a similar offline-

online decomposition strategy to the regular Maxwell’s case, albeit at a larger cost as a

consequence of empirical interpolation. Formation and storage of the parameter-independent

matrices and vectors in the offline stage is considerably more expensive, since each bilinear

and linear form subject to DEIM incurs a formation and storage cost 𝑄 times larger than

before, where 𝑄 is the total number of nonaffine terms for that particular form, given in the

last column of Table 4.3. Finally, in the offline stage, we also store the DEIM indices I, the

resulting square matrices Φ(𝑥I) and its LU factorizations, see (4.21), so as to expedite the

online recovery of the parameter-dependent coefficients c(θ).

The online stage evaluates, for a new tuple (𝜔, 𝜀,θ), the nonaffine functions at the DEIM

indices with a cost 𝒪(𝒬𝒩 ⋆
I ) and the DEIM coefficients c(θ) in 𝒪(2𝒬·2) operations, where

𝒬 and 𝒬·2 are given by

𝒬 =

6∑︁

𝑖=1

[︀
𝑄𝐵

𝑖 +𝑄𝐶
𝑖 +𝑄𝑅

𝑖 +𝑄𝐿
𝑖

]︀
+

9∑︁

𝑖=1

[︀
𝑄𝐷

𝑖 +𝑄𝐾
𝑖

]︀
+

3∑︁

𝑖=1

𝑄𝑀
𝑖 ,

𝒬·2 =

6∑︁

𝑖=1

[︁(︀
𝑄𝐵

𝑖

)︀2
+
(︀
𝑄𝐶

𝑖

)︀2
+
(︀
𝑄𝑅

𝑖

)︀2
+
(︀
𝑄𝐿

𝑖

)︀2]︁
+

9∑︁

𝑖=1

[︁(︀
𝑄𝐷

𝑖

)︀2
+
(︀
𝑄𝐾

𝑖

)︀2]︁
+

3∑︁

𝑖=1

(︀
𝑄𝑀

𝑖

)︀2
.
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Evaluating the DEIM functions has 𝒩 ⋆−dependence. Nevertheless, the dimension of the

set of DEIM indices 𝒩 ⋆
I where the functions are evaluated is usually much smaller than

the discrete set of Gaussian quadrature points x𝜉, thus 𝒩 ⋆
I ≪ 𝒩 ⋆. Computing the trial

coefficients {λ⋆𝑛(𝜔, 𝜀)}𝑁𝑛=1 requires complexity 𝒪
(︀
𝑁3 + 𝒬𝑁2

)︀
, independent of the dimension

𝒩 ⋆ of the HDG approximation space.

In a similar fashion, the dependence on 𝒩 ⋆ appears when computing v𝑁 , e𝑁 , for a com-

plexity of 𝒪 (4𝒩 ⋆𝑁). The actual approximate electromagnetic fields V𝑁 , E𝑁 are obtained

applying (4.19) to v𝑁 , e𝑁 elementwise. However, the idea of localized integrals to evaluate

QoI introduced before is still valid, thus we expect a cost much lower than the theoretical

complexity.

4.2.6 Numerical results

In this section, we extend the previous periodic annular example, with geometry defined in

Fig. 3-4, to demonstrate the effectivity of ROM for geometry deformations. The objective

is to show that, when the domain is subject to deformations, instead of solving Maxwell’s

equations on the deformed discretization it is desirable to solve the modified Maxwell’s

equations (4.6) on the original discretization.

We analyze the effect of modifying the radius and gapsize of the rings at maximum field

enhancement, with nominal values 𝑅 = 16 µm and 𝑤 = 10 nm. The modifications considered

in this thesis, for both radius and gap, are homogeneous with respect to the angle of the ring.

The material parameters and gold optical constants are set to 𝜀Al2O3 = 5.5, 𝑛sapphire = 3.07,

}𝜔𝑝 = 9.02 eV, }𝛾 = 0.02678 eV, 𝜀∞ = 1, and we study two different cases: a ±30% variation

for the radius, that is 𝑅 ∈ [11.2, 20, 8] µm, denoted as (R); and a ±20% variation for both

the radius and the gap, namely 𝑅 ∈ [12.8, 19.2] µm and 𝑤 ∈ [8, 12] nm, denoted as (RG).

To maximize the predictive power of the model, frequencies ranging from 0.3 to 0.9 THz

are considered. Firstly, we introduce the diffeomorphism G that models the deformations.

The choice of G is nontrivial, since we require continuity of its derivatives for the entire

domain, in order to ensure the face integrals in the weak formulation are well defined. The

construction that will be used is detailed in Appendix B.

The POD basis for the radius (resp. radius-gap) model is formed by computing 350 (resp.
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Figure 4-2: Normalized eigenvalue decay of POD applied to nonaffine functions in Table 4.3, for model (R)
in solid black and (RG) in dashed red.

Model DEIM coeff. (ms) Assembly (ms) Linear system (ms) Local variables (ms)

𝑁 = 25 (R) 19.90 2.31 0.19 75.30
𝑁 = 50 (R) 20.01 7.77 0.36 75.77
𝑁 = 75 (R) 19.92 17.87 0.68 79.39
𝑁 = 92 (R) 19.89 30.07 0.90 79.03

𝑁 = 25 (RG) 21.93 3.52 0.20 84.21
𝑁 = 50 (RG) 21.05 8.54 0.36 81.85
𝑁 = 75 (RG) 21.77 21.92 0.69 82.48
𝑁 = 86 (RG) 21.91 27.29 0.83 83.17

HDG – 9.8e4 3.00e5 9.5e2

Table 4.4: Computational wall time in milliseconds of HDG/HDG-POD for Maxwell’s equations in reference
domain.

600) solutions of (4.8) at different (𝜔,θ) values, and then compressed on a basis of 92

(resp. 86) modes. The empirical interpolation can be performed very efficiently, since it

81



only requires evaluating G(x𝜉,θ), its derivatives, and the subsequent nonaffine functions

defined in Table 4.3. We then apply DEIM separately for each function. The eigenvalue

decay associated with the POD of each nonaffine function is shown in Fig. 4-2 and we see

that no more than 15 (resp. 30) modes are needed for any of the nonaffine functions.
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Figure 4-3: Relative error in field enhancement for test set parameters, evaluating both (R) and (RG) models
at two POD sizes.

(a) Field enhancement (b) Transmitted power (%)

Figure 4-4: Frequency and radius sweep computed with the (R) reduced order model.

Once the ROM is constructed, it can be queried in real time for any valid combination of

frequency and radius or radius-gap. We collect the wall time elapsed to evaluate the different

pieces of the ROM. Recovering the 𝒬 empirical interpolation coefficients c(θ) is independent

of the dimension of the ROM. Its cost is mainly devoted to evaluating the nonaffine functions

𝑓𝐸𝐼(𝑥I,θ) in Table 4.3 at the selected indices I. As in the time-harmonic Maxwell case, the

bulk of the cost is incurred calculating the approximate electromagnetic fields from the
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trial coefficients, since it involves operating with the high-fidelity dimension 𝒩 ⋆. Moreover,

the reference domain formulation requires non negligible additional computations, since the

actual field variables need to be recovered through (4.19). Again, the benefits of employing

a ROM to evaluate QoI of the full EM simulation are remarkable, since a speedup of more

than 3 orders of magnitude is achieved, even for the largest models, despite the overhead of

empirical interpolation, see Table 4.4. As far as accuracy is concerned, we evaluate the field

enhancement for a test set of parameters using the high-fidelity HDG model, and report the

relative error for both models in Fig. 4-3. Selecting the maximum number of modes, we

achieve a relative error on the order of 0.1%, although the increase in accuracy is modest as

the ROM is enriched.

Finally, we go one step further and show how ROM can be leveraged to achieve a deeper

understanding of this structure. For the (R) model, the field enhancement profile is shown

in Fig. 4-4a as a function of both the frequency and the radius of the dielectric aperture. It

is evident that reducing the radius has a significant impact in both the maximum field en-

hancement and the resonant frequency, both reducing the field localization and blueshifting

the resonance. Analogously, the transmission power profile is collected in Fig. 4-4b, where

a similar trend is identified.

The (RG) model gives rise to additional interpretations and results, since we can not only

study the impact of both the radius and the gap width separately, but also their interactions.

In Figs. 4-5a and 4-5c. We show, as a function of the ring radius, the value of the resonant

wavelength 𝜆* and the maximum field enhancement 𝜋* for the nominal gap width 10 nm

(solid black). In addition, we provide intervals that correspond to the sensitivities of the

resonant quantities with respect to ±5%, ±10% and ±20% relative variation of the gap

𝛿𝑤. Sensitivities as a function of the gap with respect to radius variations 𝛿𝑅 are obtained

analogously, and are presented in Figs. 4-5e and 4-5g. The ROM is essential to compute

these results, since for each ring radius value and gap width a frequency sweep to detect the

resonant quantities is required.

Furthermore, additional relevant information may be extracted from the ROM. One such

example is the relationship that maps gap relative variations 𝛿𝑤 to relative shifts in resonant

wavelength 𝛿𝜆* and relative variations of maximum field enhancement 𝛿𝜋*. Results are

collected in Figs. 4-5b, 4-5d, 4-5f and 4-5h, such that each row in Fig. 4-5 corresponds to
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one particular scenario. These mappings are obtained effortlessly once the ROM is available,

and yet contribute to acquiring a more profound understanding of the device’s behavior. For

instance, one can endow numerical simulations with the ROM methodology to predict how

manufacturing tolerances may affect the performance of the plasmonic structure, and thus

facilitate the design of robust annular gaps.

4.3 Concluding remarks

In this chapter, we have extended the HDG methods introduced in the previous chapter to

accommodate model order reduction using proper orthogonal decomposition techniques. In

general, the material properties of the dielectrics and metals are not known precisely, since

they are determined experimentally and are therefore subject to significant uncertainty.

Furthermore, the extreme scales of the plasmonic devices hamper its manufacturing, hence

faithful simulations require accounting for a certain degree of geometric variability. In order

to circumvent this limitation, an alternative formulation of the HDG method for Maxwell’s

equations has been developed for a reference (parameter-independent) domain. The refer-

ence formulation, combined with discrete empirical interpolation techniques, enables us to

incorporate the variables that parametrize the deformation mapping into the reduced order

model.

To demonstrate the effectiveness of the approach we have constructed several ROM for the

3d periodic annular structure. The offline-online decomposition pursued leads to an accurate

ROM that produces approximate field solutions and QoI in real time. This constitutes the

major advantage of the HDG-POD technique, since it encapsulates multiple geometry and

material parameter configurations on a single model that is extremely efficient to evaluate.

At the expense of a computationally demanding offline stage, in which multiple solutions

of the high-fidelity model are computed, we obtain a surrogate whereby design exploration

and optimization of plasmonic devices is much more affordable.
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Figure 4-5: Absolute and relative sensitivities of resonant quantities on geometry modifications with (RG)
model. (a)-(b) Gap variations and resonant wavelength. (c)-(d) Gap variations and maximum
enhancement. (d)-(e) Radius variations and resonant wavelength. (f)-(g) Radius variations and
maximum enhancement.
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Chapter 5
Applications

In the preceding chapters, we have introduced the HDG method as a technique to numer-

ically simulate the interaction of EM waves with metallic nanostructures. We have also

constructed a reduced order model to approximate the high-fidelity results at a fraction of

the computational cost of a single, large scale simulation. In this chapter, we seek to combine

the above methodologies to address several plasmonic applications. Firstly, we study the

phenomenon of field enhancement saturation in a 2d slit and assess the influence of nonlocal-

ity. Secondly, we provide a parametric analysis of the annular resonator structure for the far

and mid IR regimes. Thirdly, we compare numerical simulation results with experimental

data reported in literature for annular structures in order to assess the performance of our

methodologies and address the discrepancies that arise. Finally, we pursue the design of a

concentric ring structure with enhanced transmission capabilities.

5.1 Saturation of field enhancement in nanoslit

For the first application, we study the field enhancement and transmission of a 2d nanoslit

when illuminated by millimeter-long EM waves as a function of the thickness 𝑇 of the metal

film and the aperture 𝑤 of slit. This application is particularly interesting because, at a

fixed frequency, field enhancement saturates for shrinking gapsize, even without considering

nonlocality or quantum effects. This phenomenon stems from pure geometrical consider-

ations, whereby the thickness of the metal film is inversely proportional to the maximum
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enhancement that can be attained. The theory is developed in [140] for a single slit modeled

as a PEC, and some calculations with LRA are provided for films that are several microns

thick. The study is extended here for an infinite slit patterned in a thin film, with apertures

in the nanometric and subnanometric regime, which were not addressed in the original work.

Furthermore, the influence of nonlocality on both the field enhancement and transmission

is evaluated.
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Figure 5-1: (a) Schematic of gold nanoslit with dimensions. (b) Frequency-field enhancement curves with
LRA for several gap sizes and 𝑇 = 100 nm.

The structure of interest consists of a gold film of thickness 𝑇 suspended in free space with

a single aperture, illuminated from above as shown in Fig. 5-1a. Radiation conditions are

prescribed on the upper and lower boundaries, whereas periodic conditions are used for the

lateral boundaries. We choose a lateral distance 𝐿 equal to 5 mm to ensure there is no

influence of the adjancent slits for the frequency regime of interest. Indeed, for the lowest

frequency considered (0.2 THz) the distance between slits is larger than six wavelengths,

and we numerically verify that the behavior of the structure is that of a single slit. We

consider thicknesses of 100, 200 and 300 nm, and aperture widths of 0.5, 1, 2, 3, 5, 10, 50

and 100 nm, which span more than two orders of magnitude. The discretization employed is

grid-converged for the smallest gap size. In Fig. 5-1b we show the field enhancement profile

for several frequencies and slit apertures, computed with LRA for a 100 nm gold film, where

it can be appreciated that field enhancement saturates as the gap is decreased, for a fixed

frequency.

In Fig. 5-2 we show, as a function of the gap width, both the field enhancement and the

optical transmission normalized by the open area fraction 𝑤/(2𝐿 + 𝑤), where the metal
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Figure 5-2: Field enhancement and area-normalized transmission for different electron models, frequencies
and metal thicknesses as a function of gap width. Legend is the same for all subfigures.

is modeled with PEC, LRA and HM at 0.2 and 0.4 THz. These results corroborate the

saturation of field enhancement, observed also for the hydrodynamic model, and its inverse

dependence on both the frequency and the film thickness. Conversely, the model used for

light-metal interaction does have a noticeable impact on the area-normalized transmission,

exhibiting increasingly large values as either the frequency is reduced or a more accurate

model is used, for a fixed gap. Indeed, transmission is influenced by the effective aperture

size seen by the incident field, and we have extensively shown that nonlocality broadens the
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Figure 5-3: Field enhancement and area-normalized transmission ratios comparing PEC with LRA and HM,
for different frequencies and metal thicknesses as a function of gap width.

gap by diffusing the metal-dielectric interface. The ohmic losses within the metal explain

the differences in transmission.

Finally, to better contrast the effects of the models we compute several ratios of field en-

hancements and transmission, namely Π1 = 𝜋𝐿𝑅𝐴/𝜋𝑃𝐸𝐶 , Π2 = 𝜋𝐻𝑀/𝜋𝑃𝐸𝐶 and Σ1 =

𝜍𝐿𝑅𝐴/𝜍𝑃𝐸𝐶 , Σ2 = 𝜍𝐻𝑀/𝜍𝑃𝐸𝐶 , depicted in Fig. 5-3 as a function of the gap width. The field

enhancement predicted by both PEC and LRA is essentially the same, and their ratio does

not depend on the gap width. Alternatively, the discrepancy in field enhancement between

LRA and HM grows for decreasing gap size and film thickness as one would expect. As

far as transmission is concerned, both ratios increase as we consider smaller gaps. Indeed,
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introducing losses in the metal –PEC models the metal as a lossless mirror– translates into

substantial changes in the EM response of the structure at nanometric scales.

5.2 Parametric study of annular apertures

In this section, we present a parametric study of the periodic annular structure, and ana-

lyze the effects of including nonlocality for different gap sizes and frequency regimes. The

geometry under study consists of an array of annular gaps with diameter 𝐷 and periodicity

2𝐷, patterned in a 150 nm gold film, shown in Fig. 5-4.

Figure 5-4: Schematic diagram of thin gold film on substrate patterned with periodic square array of alumina
gaps under plane wave illumination.

5.2.1 Far infrared

We first focus on the low THz regime (0.2 to 2 THz), which requires diameters on the order

of tenths of microns to excite resonances. We study four gapsizes, namely 𝑤 = 1, 2, 5 and 10

nm, for which the response given by the different light-metal interaction models may differ

significantly. We shall also investigate the influence of small variations in the radius across

gapsizes and array periodicity. This is a good test to excercise the reduced order modeling

capabilities proposed in this dissertation. Analogous studies can be carried out, for instance,

for small variations on the gapsize or the optical constants.

The substrate for the gold film is sapphire, which is transparent at FIR, with a constant
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refractive index of 𝑛sapphire = 3.07 given by Grischkowsky et al. [91]. For this low frequencies,

the optical constants of gold are taken from Ordal et al. [192, 193], with nominal values

}𝜔𝑝 = 9.02 eV, }𝛾𝑝 = 0.02678 eV and 𝜀∞ = 1. The dielectric material used for the gap is

again aluminum oxide Al2O3 [92], and the nominal values used are 𝜀Al2O3 = {3, 3, 4.4, 5.5}
for 𝑤 = 1, 2, 5 and 10 nm respectively. We use the Drude permittivity to model metal

response.

We develop a collection of ROM for the gapsizes above and for diameters corresponding to

𝐷 = {12, 15, 18, 21, 24} µm. In addition, for each ROM we consider a 10% variability in the

radius of the ring. The ROMs are constructed using the procedures introduced in Chapter

4. That is, a predetermined number of snapshots is computed and then compressed with

POD, and the resulting orthonormal basis is then used for the Galerkin projection. In Figs.

5-5a to 5-5d we show the wavelength-field enhancement profile for the various gapsizes using

the corresponding nominal value of the radius, computed evaluating the ROMs.

First, we analyze the impact of the ring diameter and array periodicity on the resonant

wavelength 𝜆* and the maximum field enhancement 𝜋* observed. The variability of the ra-

dius is encoded in the ROM, enabling us to obtain 𝐷−𝜆* and 𝐷− 𝜋* curves with intervals

corresponding to a ±10% radius variation. The results are reported in Figs. 5-5e and 5-5f,

where a linear dependence between the diameter and both 𝜆*, 𝜋* may be identified, which

also holds for perturbations of the radius. This relationship bears similarity to the one

experimentally observed for two metallic nanoparticles in [273], where the localized field en-

hancement in the interparticle region is proportional to the ratio between the nanoparticle’s

diameter and the separation, although it has never been reported for annular structures.

The linear dependence is verified performing a least squares fit of the simulation data, and

we report the norm of the relative error as

𝜖 =

(︃
𝑁∑︁

𝑛=1

(̃︀𝑦𝑛 − 𝑦𝑛)2 /𝑦2𝑛

)︃1/2

in Table 5.1, where 𝑦𝑛 is the simulation data and ̃︀𝑦𝑛 is the prediction by the fitted linear

function for 𝑁 = 6 simulation data points.

Secondly, we investigate the impact of the radius relative variation on the relative variation

of both 𝜆* and 𝜋* for different diameters. More specifically, for the prescribed 𝛿𝑅 = ±10%
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Figure 5-5: Parametric study with ROM for annular structure at FIR. (a)-(d) Wavelength - field enhance-
ment curves for LRA computed with ROM for gapsize 1, 2, 5 and 10 nm. (e)-(f) Resonant
wavelength/maximum field enhancement - diameter curves, with interval for ±10% radius vari-
ation. (g)-(h) Input-output map of relative variations as a function of diameter.

aaaaaaa
Variables

Gap 1 nm 2 nm 5 nm 10 nm

𝜖(𝜆*) 3.7e−4 2.7e−4 9.7e−5 4.5e−4
𝜖(𝜋*) 4.3e−3 5.2e−3 8.8e−3 1.2e−2

Table 5.1: 𝜖 of fitting for resonant wavelength and maximum field enhancement at multiple gaps.

variation, we calculate the relative variations 𝛿𝜆* and 𝛿𝜋*, and express this input-output

map of variations as 𝛿𝑅 ↦→ (𝛿𝜆*, 𝛿𝜋*). According to Figs. 5-5g and 5-5h, we observe that

modifying the radius has a fairly constant impact on 𝜆* throughout gapsizes, slightly greater
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than the relative radius input variation of 10%. The effect of radius variation on 𝛿𝜋* is larger

for decreasing gap, and is smaller than the input ±10% radius variation.

This example illustrates the advantages of ROM for parametric studies, since relevant and

often unintuitive information can be efficiently extracted, following a computationally in-

tensive offline stage. Data from simulations may be used to gain a deeper understanding of

the phenomena of interest, as well as offering valuable insight for the design process.
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Figure 5-6: Effects of nonlocality for 1, 2, 5 and 10 nm gaps at far IR.

Finally, we assess the influence of nonlocality on the structure. To that end, we perform a

frequency sweep solving (3.8) for the various diameters and gapsizes, without any geometric

variation, and analyze the effect caused by incorporating the hydrodynamic current as the

electron model on the blueshift ∆𝜆* = 𝜆*𝐿𝑅𝐴 − 𝜆*𝐻𝑀 and the decay in maximum field

enhancement Π* = 𝜋*𝐿𝑅𝐴/𝜋
*
𝐻𝑀 . The shift in resonant wavelength, shown in Figs. 5-6a and

5-6b, is more acute for smaller gaps, and for this structure it ranges from 19% for the 1 nm

gap down to 2% for the 10 nm gap. Analogously, the maximum field enhancement attained

by the LRA is nearly 25% larger than that of the HM for the 1 nm gap, whereas for the 10

nm is merely 2% larger, see Fig. 5-6c. As anticipated by the theoretical results, nonlocality

becomes essential to accurately predict the response of devices in the nanometric regime. In

addition, we observe that both the relative wavelength blueshift and the decay in maximum

field enhancement are almost constant for all diameter sizes, hence nonlocal effects are only

relevant for changes in the aperture distance.
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5.2.2 Mid infrared

This case corresponds to the mid infrared regime, with wavelengths from 1.5 µm to 10

µm. At these wavelengths, annular structures can sustain collective plasmon excitations for

diameters in the order of hundreds of nanometers. The study is performed for 1 nm and 2

nm gap widths, and we investigate the effect of geometry variations on the extraordinary

optical transmission properties of the cavity. The enhanced tranmission is caused by Fabry-

Pérot (FP) resonances, which propagate along the length of the gap. Here we present

results for the zeroth and first order FP modes. From the simulation perspective, the

reduction in length scale mismatch renders better conditioned linear systems, thus reducing

computational power requirements.

2 4 6 8
Wavelength [µm]

0

0.5

1

1.5

2

2.5

3

ℜ[εAl2O3
]

ℑ[εAl2O3
]

(a) (b)

Figure 5-7: (a) Real and imaginary part of Al2O3 permittivity at MIR, extracted from [128]. (b) Detail of
|E𝑥| for 1 nm gap and 240 nm at aperture, for wavelengths 𝜆 = 6.86 µm (FP0) and 𝜆 = 3.35
µm (FP1).

For this frequency regime, we consider a substrate of silicon Si, which unlike sapphire is

transparent at MIR [36] with a refractive index given by

𝑛2
Si

= 11.67316 +
1

𝜆2
+

0.004482633

𝜆2 − 1.1082052

for 𝜆 in microns. The optical constants of gold are }𝜔𝑝 = 8.45 eV, }𝛾𝑝 = 0.047 eV and

𝜀∞ = 1, according to the experimental fitting in [190]. The dielectric material used for the

gap is alumina Al2O3, with a refractive index obtained by interpolating the experimental

data published in [128], and reproduced in Fig. 5-7a.

As before, a set of ROMs is constructed for Maxwell’s equations with the Drude model, for
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Figure 5-8: Parametric study with ROM for annular structure at MIR. (a)-(b) Wavelength - transmitted
power curves for LRA computed with ROM for gapsize 1 and 2 nm. (c)-(d) Resonant wave-
length/maximum transmitted power - diameter curves, with interval for ±10% radius variation.
(e)-(f) Input-output map of relative variations as a function of diameter.

both gap widths and diameters 𝐷 = {120, 150, 180, 210, 240} nm, which include a ±10%

variation in the radius. The transmitted power-wavelength curves are depicted in Figs. 5-8a

and 5-8b, where the FP0 (longer wavelength) and FP1 (shorter wavelength) modes can be

clearly identified. Both FP modes for 1 nm gap and diameter of 240 nm are reproduced in
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Fig. 5-7b, where the field enhancement along the aperture is shown at their corresponding

resonant frequency.

The parametric study for the annular ring at MIR is noticeably different from its FIR

counterpart, and we employ an exponential function to properly fit the simulation data in

Figs. 5-8c and 5-8d given by

𝜆*(𝐷) = α0 exp
(︀
α1𝐷 + α2𝐷

2
)︀
.

The triplet (α0,α1,α2) are fitting parameters whose values are computed through least

squares minimization. The norm of the relative error for the data fitting is reported in Table

5.2. As far as variations are concerned, the impact of a 10% radius variation significantly

changes among modes and diameter sizes, ranging from more than 8% shift for FP0 and 120

nm diameter to less than 2% shift for FP1 and 240 nm diameter, see Fig. 5-8e. It can thus

be concluded that a radius modification has a much stronger impact on the FP0 resonant

wavelength than that of FP1, and that it diminishes with increasing diameter.

aaaaaaaaaa
Variables

Resonance
FP0 1 nm FP1 1 nm FP1 2 nm FP1 2 nm

𝜖(𝜆*) 3.8e−3 2.2e−3 1.0e−3 5.7e−4
𝜖(𝜍*) 5.9e−3 6.1e−3 1.2e−3 4.0e−3

Table 5.2: 𝜖 of fitting for resonant wavelength and maximum transmitted power at multiple gaps and FP
resonances.

Regarding the maximum transmitted power 𝜍*, distinct trends can again be identified for

both modes. The decay of 𝜍* as the diameter increases is sharper for FP1, and it is observed

at a much narrower wavelength window (roughly half a micron, as opposed to around 3

microns for FP0). The input-output map of variations 𝛿𝑅 ↦→ 𝛿𝜍* exhibits a greater impact

on the FP0 modes than on FP1 modes, being rather constant for both across diameter sizes.

Moreover, the variation on transmitted power is considerably amplified with respect to the

variation in radius. For instance, the maximum transmission of the FP0 1 nm gap structure

is subject to an alteration that exceeds ±20% when the radius changes by ±10%. This

observation motivates the need to incorporate geometric modifications in the simulation

and design of plasmonic devices, since manufacturing errors –which are more likely to occur

for the smaller nanostructures– may lead to significant deviations in the expected perfomance

97



of the devices.
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Figure 5-9: Effects of nonlocality for 1, 2 nm gaps and FP0, FP1 resonances at mid IR.

To conclude the parametric analysis for the mid infrared annular nanogap, we perform

hydrodynamic calculations for the diameters, gapsizes and FP resonances specified above,

and gauge how the maximum transmitted power and the resonant wavelength change due

to nonlocality. The results computed for the mid IR regime, shown in Figs. 5-9a-5-9c

differ from those in low THz frequencies, since we can observe that the relative blueshift

∆𝜆* = 𝜆*𝐿𝑅𝐴 − 𝜆*𝐻𝑀 is no longer independent of the diameter of the ring, with larger ∆𝜆*

reported for smaller diameters. There are two separate factors that should be mentioned: (1)

at the FP0 resonance, the decay in relative blueshift as diameter increases is accentuated for

the 1 nm; and (2) FP1 resonances across diameters are less sensitive to nonlocality compared

to FP0, for both gaps. A possible explanation of this behavior relies on the permittivity

function of alumina, which is frequency-dependent and becomes imaginary around 𝜆 = 5

µm, recall Fig. 5-7a. Hence, the alumina may become lossy for the FP0 reonances, since

they are excited at longer wavelengths over broader ranges, compared to the more localized

FP1 modes that occur at shorter wavelengths. This circumstance may also explain the larger

∆𝜆* decay of FP0 1 nm compared to FP0 2 nm for increasing diameter. Conversely, the

increase in transmitted power Σ* = 𝜍*𝐻𝑀/𝜍
*
𝐿𝑅𝐴 due to nonlocality is fairly constant for FP0

resonances across diameter sizes, whereas for FP1 resonances it reduces with decreasing ring

diameter. The most remarkable aspect is that, for 1 nm gap, the transmitted power with

the HM increases between 60% and 80% compared to the LRA simulations.
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5.2.3 Concluding remarks

In this section, we have presented a parametric study of annular nanogap structures for

the far and the mid IR frequency regimes. The main takeaway of the study presented

above is that one can exploit the construction of ROM within the HDG method to extract

valuable and often unintuitive information that can guide the design process. To that end,

we have shown the influence of the ring diameter and array periodicity on the position of

the resonances, and obtained analytical expressions that relate these quantities with the

resonant properties of the structure.

Moreover, we have demonstrated that the ROM framework allows us to assess, for instance,

the impact of radius variations on the position of the resonance and the extraordinary optical

transmission properties of the device. These studies can be conducted for any parameter

that is subject to variability by naturally including it the ROM, which enables an efficient

postprocessing.

Finally, we have completed the study of annular structures incorporating the effect of non-

locality, demonstrating that even in the far IR, we observe relative blueshifts of around 20%

for 1 nm gap structures.

5.3 Experimental validation

The objective of this section is to validate the simulation results with experimental data

reported in literature. The idea driving this study is twofold: on the one hand, assess

the qualitative improvement obtained by introducing nonlocality in the simulations; on the

other hand, use reduced order models to quantify and explain the mismatch observed be-

tween experiments and simulations [198, 277]. Even though there may be multiple sources

of experimental discrepancy, we shall only focus on optical constants and basic geometric

properties, that is gap size and radius. The optical constants are determined experimen-

tally and thus subject to errors, whereas the extreme manufacturing constraints typically

translate into structures whose geometry differs from the specified nominal values. Both

measurement uncertainties and fabrication constraints can naturally be incoporated in the

ROM framework.
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5.3.1 Periodic annular structure at far infrared

First, we revisit the periodic structure in Fig. 3-4, and consider a gapsize of 2 nm. The

experimental data for this structure was reported in [198], where a significant discrepancy

was observed for the frequency-field enhancement profile using LRA, see Fig. 5-10a. The

optical constants used for the LRA simulations are }𝜔𝑝 = 9.02 eV, } 𝛾 = 0.02678 eV and

𝜀Al2O3 = 3.

In order to explain the mismatch, we first resort to nonlocality, and pursue simulations for

the 2 nm nanogap with the HDG method for the hydrodynamic model. Since we are only

interested in the value of the field enhancement, we may use a mesh of 1.1K cubic hexahedral

anisotropic elements, which already gives a relative error less than 1% compared to the same

mesh with quartic elements. The reduced problem for the traces comprises 138K unknowns,

as opposed to the 215K unknowns had we used quartic elements. In Fig. 5-10b a 2d slice of

the mesh for constant 𝑧 is shown, with the inset showing the concentration of elements in

the vicinity of the gap. In addition, we also present the entire 3d mesh, along with an inset

that zooms in the gold film region. This highly anisotropic mesh allows us to solve for the

full 3d EM wave field using a reduced number of degrees of freedom.
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Figure 5-10: (a) Field enhancement curve for the LRA, the HM and the LRA with minimum mismatch
compared with experimental data. (b) 3d high-order mesh and 2d slice (with details) used in
calculations.

The frequency sweep is depicted in Fig. 5-10a for the LRA and the HM, together with the

experimental data. The inclusion of the hydrodynamic current produces a 13% blueshift in

the resonance that partially bridges the gap between the LRA simulation results and exper-

imental data. In addition, we also observe a decrease in the field enhancement, consistent

100



with both experiments and hydrodynamic theory. Thus, we conclude that a significant part

of the experimental mismatch is due to inaccuracies of the physical representation of the

phenomena, in this case the overly simplistic Drude model, that neglects nonlocal electron

interactions at the nanoscale.

Parameter Values Frequency range [THz] References

}𝜔𝑝 [eV] 9.02± 0.18 < 12 [193,197,208]
} 𝛾 [eV] 0.02678± 0.007 < 12 [193,197,208]
𝜀Al2O3 2.8 - 3.2 thickness-dependent [92]
𝑛SiO2 1.96± 0.01 < 2 [166]

Table 5.3: Variability ranges for parameters, interval of validity and references for 2 nm alumina gap at low
THz frequencies.

We now examine the impact of optical constants and geometry on the experimental mismatch

for the LRA. The range of variation considered for each material parameter is given by

literature, and is summarized in Table 5.3 for the 2 nm gap. For the geometric variables

we prescribe a ±5% variation for both the gap width and the radius of the ring, typical for

these structures. A ROM is developed for these six parameters, in addition to the frequency,

using 800 snapshots that give rise to a 54 mode POD basis.

The impact of the aforementioned parameters is studied using global sensitivity analysis

(GSA) via Sobol indices [228, 241]. In a nutshell, for each parameter 𝑋𝑖, GSA assesses its

influence on a certain QoI 𝑌 = 𝑓(𝑋𝑖) using two sensitivity indices

𝑆𝑖 =
𝑉𝑋𝑖(𝐸𝑋−𝑖(𝑌 |𝑋𝑖))

𝑉 (𝑌 )
, 𝑆𝑇 𝑖 =

𝐸𝑋−𝑖(𝑉𝑋𝑖(𝑌 |𝑋−𝑖))

𝑉 (𝑌 )
(5.1)

where𝑋−𝑖 refers to all parameters except𝑋𝑖. The first order index 𝑆𝑖 measures the expected

reduction in variance of 𝑌 if 𝑋𝑖 is fixed, whereas the total effect 𝑆𝑇 𝑖 quantifies the expected

variance remaining if only 𝑋𝑖 varies. That is, it measures the combined first and higher-

order interactions of 𝑋𝑖 with the other parameters. Note that 0 ≤ 𝑆𝑖 ≤ 𝑆𝑇 𝑖 ≤ 1, and

that
∑︀

𝑖 𝑆𝑖 ≤ 1, where the equality only holds if the model is purely additive–there are no

interactions, 𝑆𝑖 = 𝑆𝑇 𝑖. In order to compute numerical estimates of the indices in (5.1) we

resort to the quasi-Monte Carlo variance-based expressions given by Saltelli et al. [227].

For this particular case, we consider as QoI the absolute blueshift 𝑌1 = 𝜈*𝑑𝑎𝑡𝑎 − 𝜈* in THz

and the ratio of maximum field enhancement 𝑌2 = 𝜋*/𝜋*𝑑𝑎𝑡𝑎. Hence, for each configuration

of parameters an entire frequency sweep is required to identify the resonant frequency-
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maximum field enhancement values (𝜈*, 𝜋*). The sensitivity indices are calculated with 40K

quasi-Monte Carlo samples [227], and bootstrapping techniques [8] are used to compute error

bars for the sensitivity indices. These are calculated with 1000 replicas of 40K resamples

(with replacement) for a 95% confidence interval.
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Figure 5-11: First order and total sensitivity indices with corresponding error bars of QoI 𝑌1 and 𝑌2 for 2
nm annular gap at FIR.

The sensitivity indices are reported in the bar chart 5-11. Both the permittivity of the

substrate and the plasma frequency may be considered irrelevant to the variance of both

QoI, whereas the collision rate only impacts the blueshift. All in all, the radius is the

parameter that has the greatest impact on QoI, followed by the Al2O3 permittivity and the

gap size. Moreover, despite the fact that confidence intervals for the first order indices are

large, one can conclude that the model is almost additive, since the sum of total effect indices

𝑆𝑇 𝑖 is only marginally greater than one, with much sharper error bars. In absolute terms,

the combination of parameters that minimizes 𝑌1 is given by } 𝛾 = 0.01978 eV, 𝜀Al2O3 = 2.8,

𝑅 = 15.2 µm and 𝑤 = 0.0021 nm shown in Fig. 5-10a as dash-dot. This combination gives

a relative blueshift of 16% with respect to LRA simulations with the original parameters.

5.3.2 Periodic annular structure at mid infrared

For the second example we focus on a periodic annular structures for frequencies in the mid

IR, for which experimental data is available [277] for several gapsizes. The structure under

consideration is an array of 125 nm radius rings with a 500 nm periodicity, and we shall

focus on the 1 and 2 nm gap width. The gap is fabricated with Al2O3, whose permittivity in
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the mid IR is shown in Fig. 5-7a, whereas the substrate used was sapphire. The refractive

index of sapphire [59] is given by the following Sellmeier formula

𝑛2sapphire − 1 =
1.4313493𝜆2

𝜆2 − 0.07266312
+

0.65054713𝜆2

𝜆2 − 0.11932422
+

5.3414021𝜆2

𝜆2 − 18.0282512
(5.2)

where 𝜆 is in microns. Sapphire becomes lossy for wavelengths greater than 9 µm, but for

the wavelengths under consideration, we assume its refractive index is real and given by the

formula (5.2).

(a) (b)

Figure 5-12: (a) Schematic of periodic annular structure. (b) 3d high-order mesh for 𝑤 = 2.3 nm and 2d
slice (with details) used in calculations.

The excitation of resonances for ring structures at mid infrared frequencies requires array

periodicites in the order of nanometers. Hence, manufacturing is specially challenging,

which often translates into discrepancies between the nominal and measured specifications.

Consequently, for the numerical simulations we employ the geometric features reported in

the Supplementary Information of [277]. These correspond to a ring radius of 119.5 nm

and gap apertures 𝑤 of 1.2 and 2.3 nm respectively, sketched in Fig. 5-12a. The difference

between the nominal and the measured geometric features is considerable – around 20% for

the 1 nm gap–, thus stressing the importance of incorporating geometry imperfections in

the simulations.

Despite these adjustments for geometry, the reported LRA simulations in [277] show a

significant mismatch compared to experimental data, see Figs. 5-13a and 5-13c. The optical

constants for gold used in the simulations are }𝜔𝑝 = 8.45 eV, } 𝛾 = 0.047 eV, whereas

the dielectric constants for sapphire and alumina are given by expression (5.2) and Fig.
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Parameter Values Wavelength range [µm ] References

}𝜔𝑝 [eV] 8.45± 0.44 0.3-25 [190]
} 𝛾 [eV] 0.047+[-0.0083,0.0128] 0.3-25 [190]
𝜀Al2O3 Fig. 5-7a 0.3-14.3 [22,128]
𝑛sapphire Equation (5.2) 0.2-9 [59]

Table 5.4: Variability ranges for parameters, interval of validity and references at mid IR frequencies.

5-7a respectively. As before, we explore two separate avenues to explain the experimental

discrepancy, that is the hydrodynamic model for electron motion and the impact of uncertain

optical constants, whose variability is described in Table 5.4, and geometry.

Again, the hydrodynamic simulations are carried out on the cubic mesh shown in Fig. 5-12b,

using the nominal value of the parameters, and we focus only on the zeroth Fabry-Pérot

mode for which the enhancement is constant along the aperture. The simulation results for

both the LRA and the HM are reported in Figs. 5-13a and 5-13c, where we observe the

significant discrepancy between the LRA and experimental data is partially explained with

the nonlocal effects. The relative blueshift in wavelength is 11% for the 1.2 nm gap and 7%

for the 2.3 nm gap, with a relative increase in transmission of 60% and 27% respectively.

Alternatively, we combine ROM with GSA to quantify the influence of the Drude model

parameters in Table 5.4 on the experimental mismatch, along with a prescribed ±5% relative

variation on the gap and the radius. The ROM is developed for these 4 parameters and the

frequency using 500 snapshots, and resulting in a basis of 45 (resp. 38) modes for 2.3 (resp.

1.2) nm gap. The quantities of interest that will be queried for GSA are the absolute blueshift

𝑌1 = 𝜆* − 𝜆*𝑑𝑎𝑡𝑎 in microns and the ratio of maximum transmitted power 𝑌2 = 𝜍*/𝜍*𝑑𝑎𝑡𝑎, and

follow the same procedure as in the far IR case to compute the sensitivity indices and its

errorbars.

The first conclusion drawn from the bar charts in 5-13b (2.3 nm) and 5-13d (1.2 nm) is that

the interactions between parameters are negligible. The blueshift may be mostly explained

by the prescribed radius variation, whereas the increase in transmission is basically due

to the uncertainty in the collision rate 𝛾. Note that the influence of the Drude model

parameters on the outputs of interest is different to the far IR, where the plasma frequency

is irrelevant and the collision rate only affects the shift. Indeed, the behavior of metals at

far IR modeled by Drude permittivity approaches that of perfect conductors. Conversely,

in the mid IR regime ohmic losses are significantly lower, allowing a greater penetration of
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Figure 5-13: Field enhancement curve for the LRA, the HM and the LRA with minimum mismatch param-
eters compared with experimental data for (a) 2.3 nm gap and (c) 1.2 nm gap. First order and
total sensitivity indices with corresponding error bars of QoI 𝑌1 and 𝑌2 for (b) 2.3 nm gap and
(d) 1.2 nm gap at mid infrared.

the incident light in the metal. Hence, their effect on the resonances is entirely different.

For both gap widths, the parameter combination that minimizes 𝑌1 is } 𝛾 = 0.0387 eV,

}𝜔𝑝 = 8.89 eV, 𝑅 = 113.525 nm and 𝑤 = 0.00241 nm (resp. 𝑤 = 0.00126 nm), and the

transmission for these values of the parameters is shown in Figs. 5-13a (resp. 5-13c) as

dash-dot. This combination gives a relative blueshift of 7% for both gap apertures, which is

comparable to the blueshift caused by nonlocality for 2.3 nm, but inferior to the blueshift

for the 1.2 nm gap.

105



5.3.3 Concluding remarks

To sum up, in the process of validating simulation results with experimental data in plas-

monic applications, it is of paramount importance to not only model appropriately the

behavior of electrons in metals, but also to account for variability in the parameters aris-

ing from manufacturing or measurement errors. We have shown that both avenues can

be important in explaining the discrepancy for annular nanogaps at different IR regimes.

Nonetheless, we have not been able to fully explain the experimental mismatch with our

models, which is specially severe as the gap shrinks to nanometric sizes.

The important conclusion that should be drawn from the GSA is that an accurate geo-

metric characterization is crucial, since minor modifications greatly impact the numerical

results. Furthermore, the fact that the model is almost additive opens the possibility of

developing, instead of a single ROM with multiple parameters, a collection of ROMs with a

single parameter in addition to the frequency. Reduced order modeling techniques are more

effective for a smaller number of parameters, due to the curse of dimensionality. The major

advantages of neglecting interactions are not only the inferior number of parameter values

required to exhaustively explore the parameter space, but also the reduced dimension of the

orthonormal bases after compression, thus accelerating the online evaluation.

Furthermore, only gap and radius modifications in the radial direction have been considered,

although annular rings often present defects in the circumferential direction as a consequence

of the manufacturing constraints [277]. Hence, a natural extension of the methodology

presented here would be to incorporate more complex geometry variations in the ROM

framework. The main drawback is the significant computational cost it entails, since it

requires not only a finer spatial discretization to represent the defects, but also complicates

the empirical interpolation necessary for an efficient ROM implementation.

In terms of physical modeling, the immediate future step is to augment the physics by incor-

porating quantum effects such as quantum electron tunnelling. These effects, deliberately

omitted by both the LRA and the HM, are however present for nanometer-wide apertures.

We therefore anticipate a better agreement between simulations and experiments in those

cases.
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5.4 Design of a concentric ring structure

The applications involving annular structures considered in this thesis have only accounted

for a single nano-aperture. Nonetheless, structures consisting of multiple concentric nanogaps

are expected to exhibit superior performance, since resonances are excited at distinct fre-

quencies. More interestingly, the question of how to arrange the concentric apertures nat-

urally arises, as different configurations may lead to dramatic changes in transmission. In

this section, we will employ the ROM framework to investigate the annular structure with

two concentric rings under several design criteria, and compare its performance with a single

ring structure at low THz frequencies.

Figure 5-14: Schematic diagram of thin gold film on sapphire substrate patterned with periodic square array
of concentric alumina gaps under plane wave THz illumination.

The reference structure is shown in Fig. 5-14, with ring diameters of 26 and 38 microns.

The material parameters and gold optical constants are set to 𝜀Al2O3 = 5.5, 𝑛sapphire = 3.07,

}𝜔𝑝 = 9.02 eV, }𝛾 = 0.02678 eV, 𝜀∞ = 1, and we consider frequencies in the range 0.3 to

0.9 THz. The gap widths are fixed to 10 nm, thus the only tunable geometric parameters

are the radii of the rings, set as ±10% of the nominal value, that is 𝑅1 ∈ [11.7, 14.3] µm

and 𝑅2 ∈ [17.1, 20.9] µm. The deformation mapping required to simultaneously deform two

concentric rings is a straightforward extension of that described in Appendix B. We then

resort to the HDG-POD method for Maxwell’s equations on a reference domain to construct

a surrogate of the high-fidelity model, using 650 snapshots computed over the 3-dimensional

parametric space formed by the frequency and the radii. The resulting ROM consists of 74
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modes, and its accuracy is examined in Fig. 5-15 evaluating the relative error for a test set

of 100 parameter combinations.

0 20 40 60 80 100

Test set parameters

10−6

10−5

10−4

10−3

10−2

R
e
la
ti
v
e
e
rr
o
r
in

π

N = 74

N = 25

Figure 5-15: Relative error in field enhancement for test set parameters, evaluated for 74 and 25 POD modes.

In order to illustrate the potential of the coaxial ring structure, we shall investigate three

distinct objective functions to drive the design process, namely

ℋ1 = max
𝑅1,𝑅2

𝜍, ℋ2 = max
𝑅1,𝑅2

𝐸𝜈 [𝜍] −
√︀
𝑉𝜈 [𝜍], ℋ3 = max

𝑅1,𝑅2

𝐸𝜈 [𝜍] − 10
√︀
𝑉𝜈 [𝜍]

where 𝐸𝜈 , 𝑉𝜈 refer to the expectation and variance respectively, for frequencies in the range

0.4 to 0.7 THz. The objective function ℋ1 seeks to maximize the transmitted power along

the spectrum considered, whereas both ℋ2, ℋ3 target radii configurations that are robust

to frequency variations (with distinct penalties) within the interval of interest. Fortunately,

since the design space is only bidimensional it suffices to discretize it and compute the

objective function invoking the ROM for all possible combinations of radii, thus avoiding

the use of optimization algorithms.

In Fig. 5-16a we show the objective functions above evaluated at multiple values of the

parameters, normalized between 0 and 1 for simplicity, along with the maximizing parameter

configuration marked with a cross. For each objective function, we depict in Fig. 5-16b the

transmitted power 𝜍 spectrum for the optima radii (solid line), and compare it with the power

transmitted by a structure with a single ring, for both the inner (dashed) and the outer (dash-

dot) radius. Note that the response of the concentric ring structure differs significantly from
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the responses of the single ring configurations. Maximum transmission is attained when

the concentric rings are separated by a small distance, whereby the transmission peaks

that would correspond to each ring fuse into a single enhanced resonance. Moreover, the

optimal configuration shown in Fig. 5-16a (left) suggests that larger transmissions may be

encountered if the separation is further reduced.
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Figure 5-16: (a) Objective functions shown as surface plot for innner𝑅1 and outer𝑅2 radii values, normalized
to [0, 1]. Optimal configuration is shown with black cross. (b) Frequency-transmission profiles
for optimal configurations.

Conversely, if robust optima are sought, the ideal radii configurations result in increased

separation, enabling the clear identification of the resonances corresponding to both annular

apertures. The main changes between ℋ2 and ℋ3 is that the former prioritizes a larger

average transmission on the interval of interest, whereas the latter renders a design less

sensitive to frequency changes, at the expense of smaller average transmission. In both

cases the concentric ring structure provides increased transmission over a broader range of

frequencies than that of the single ring.

The main takeaway of this study is the demonstration of how reduced order modeling tech-

niques can be applied to the design of plasmonic devices, since they enable a fast evaluation

109



of the objective function. Despite focusing on the two ring case, the extension to multiple

concentric rings is natural, and may potentially lead to superior designs. The main caveat

when accounting for more design parameters is always the construction of the ROM, since a

greater number of snapshots is typically required to better explore the parameter space. In

addition, multiple rings imply finer HDG discretizations, therefore increasing computational

cost to obtain each snapshot. However, once the surrogate model has been built, optimiza-

tion can be performed efficiently. Even the computation of gradients, necessary to expedite

the design process, does not entail an excessive computational burden when the ROM has

been constructed.
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Chapter 6
Conclusions and future work

We conclude with the main contributions and future research directions of this thesis.

6.1 Summary of contributions

The overarching goal of this thesis has been the development of a computational framework

to simulate electromagnetic wave propagation problems for metallic nanostructures. We have

extended a state-of-the-art high fidelity numerical scheme, the hybridizable discontinuous

Galerkin method, for two models of the electron motion in metals. We have also developed

a reduced order modeling capability to efficiently address parametric variations.

The HDG method for metals using the Drude’s permittivity is able to accommodate an enor-

mous disparity of length scales, accurately represent complex geometries and material dis-

continuities at interfaces and capture tightly localized fields. This numerical scheme enables

the efficient simulation of Maxwell’s equations for frequency regimes and structures beyond

the scope of other existing approaches, such as Comsol Multiphysics [1] or Lumerical [2],

thus constituting a powerful method for simulation and design of plasmonic structures.

The HDG formulation and implementation of the hydrodynamic model for noble metals

involves the extension of the HDG approach to grad-div operators. Consistency and well-

posedness of the weak formulation of HDG method for the hydrodynamic model have been

provided. The HM involves solving an extra PDE in the metallic region, requiring a coupling
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condition at the metal-dielectric interface. In terms of computational challenges, besides the

obvious increase in degrees of freedom that stems from the additional equation, the physics

modeled by the hydrodynamic pressure are more complex, and significantly harder to capture

for the numerical scheme. Indeed, the nonlocality generates a boundary-layer structure

inside the metal, as a consequence of the spreading of the electron density distribution at

the metal boundaries. Properly resolving these deep-subwavelength features requires finer

discretizations, that along with the additional degrees of freedom constitute a significant

computational barrier. The proposed implementation leverages common HDG advantages,

such as high-order accuracy and local elimination of degrees of freedom, and is able to

overcome the aforementioned limitations. In terms of predictive power, the hydrodynamic

model produces a better agreement with experimental results for noble metal nanostructures

than the Drude model.

Furthermore, we have developed a reduced order modeling capability for the HDG method

with the local response approximation. To that end, we first introduced two new weak

formulations for the HDG method that enable the efficient treatment of material param-

eters, such as optical constants of dielectrics and metals, as well as geometric parameters

that model deformations of the structure. We then combine these weak formulations with

interpolation and model reduction techniques, such as discrete empirical interpolation and

proper orthogonal decomposition. The result are surrogate models that provide accurate

yet inexpensive simulations of the desired plasmonic structure. The use of an offline-online

computational strategy renders this approach particulary useful for scenarios where solu-

tions for multiple parameter values are required. The accurate characterization of optical

properties and geometry specifications at the nanoscale can be difficult, and has a severe

impact on the fidelity of the simulations. The proposed methodology attempts to alleviate

these limitations. A main contribution has been to fuse model reduction techniques with the

HDG method adapted for metallic nanostructures, leading to enhanced numerical prediction

capabilities for both simulation and design.

Finally, we have demonstrated the performance of the above methodologies for various real-

istic 3d problems and applications in the realm of periodic gap structures. The applications

involve a study of a 2d nanoslit, a parametric analysis of annular gap structures, compar-

isons between simulations and experimental data and the design of a periodic concentric
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ring. Indeed, the methodology developed in this thesis has enabled us to tackle problems

and regimes that had not been addressed before, paving the way towards a deeper under-

standing of plasmonic devices and their behavior.

6.2 Future work

We now describe some possible lines of future work, together with the challenges and po-

tential benefits for the simulation and design of plasmonic devices.

6.2.1 Incorporation of quantum effects

The simulation of metallic nanostructures developed in this thesis has considered two dif-

ferent models to characterize the motion of electrons, namely the Drude permittivity and

the hydrodynamic model. We have extensively shown that the hydrodynamic model, al-

beit more computationally demanding, produces results which are in better agreement with

experimental data in the nanometric regime for noble metals. Nonetheless, these models

omit effects such as quantum electron tunnelling, which is known to greatly impact the

performance of nanoparticles and dimers at subnanometric scales [69, 229,233,249].

Current state-of-the-art quantum models were already discussed in Section 2.5.6, and the

most prominent approaches [44, 69, 70, 251] have already been described in terms of PDE

systems. The challenge is not only to derive an HDG implementation for the quantum

models, but also to devise an efficient hybridized formulation that minimizes the number of

globally coupled degrees of freedom.

In [69, 70], Esteban et al. proposed to include quantum effects by prescribing a special

permittivity for the gap region, which models the tunnelling current density between the

metallic surfaces. Alternatively, the approaches proposed in [44, 251] require solving addi-

tional equations. As opposed to the hydrodynamic model, where the additional equations

are only prescribed within the metal, these latter quantum models establish a system of aug-

mented PDEs in the metal and its surroundings. This is a consequence of tunnelling effects,

which cause the electrons to escape the metal. Mathematically, regions where electrons flow

are dictated by a nonzero equilibrium electron density 𝑛0(x) > 0. The complication stems
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from the fact that 𝑛0(x) is not known a priori, and thus needs to be computed either within

the simulation by solving a nonlinear equation [251] or specified beforehand [44]. The latter

is only available for certain simple structures such as spheres. In any case, the size of the

global linear system will perforce increase, thus adding further computational complexity.

It would therefore be interesting to account for quantum effects within the HDG method.

This would endow the numerical methods presented here not only with an enhanced pre-

dictive power, but also with the ability to simulate quantum-controlled devices within the

exciting emerging field of quantum plasmonics [248].

6.2.2 Numerical simulation

Consideration of embedded DG schemes

Numerically obtaining the electromagnetic wave solutions for extended 3d structures is com-

putationally demanding, despite the use of advanced numerical schemes like the hybridizable

discontinuous Galerkin method. The HDG method requires the solution of a linear system

for the globally coupled degrees of freedom defined on the faces of the discretization, which

are of discontinuous nature. Hence, the duplication in degrees of freedom –at the nodes in

2d, along edges in 3d– significantly contributes to the size of the linear system to be solved.

This duplication motivated the development of the class of embedded discontinuous Galerkin

(EDG) methods [51,180,200], which enforce a continuous approximation space for the hybrid

unknowns, thus leading to systems of equations of much smaller size. In fact, the systems

arising from EDG discretizations present the sparsity patterns of continuous Galerkin meth-

ods with static condensation. The main drawback of EDG methods are the loss of one

order of convergence of the fluxes due to the single-valuedness of the hybrid variable [51]

compared to the standard HDG method. In addition, one loses the natural treatment of

boundary conditions provided by the HDG method, specially in boundary edges where dif-

ferent conditions need to be prescribed for each adjacent boundary face. A promising fix for

this issue is the newly proposed class of interior EDG (IEDG) methods [74, 180], whereby

the approximation space of hybrid variables is continuous in the interior and discontinuous

in the boundaries. The IEDG leads to systems with dimension slightly larger than those of

EDG, but significantly smaller than those of HDG, while accurately enforcing the boundary
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conditions. Hence, IEDG is an attractive alternative to HDG methods if computational

power and storage is the limiting factor.

Nonetheless, implementing Maxwell’s equations with IEDG precludes the possibility of using

the tangent vectors to approximate the solution on the traces, since they are not uniquely

defined at the edges. Hence, in 3d with IEDG we need to solve for the three components

of the electrical field’s trace, as opposed to two components for HDG. The computational

savings of IEDG will therefore be more modest for Maxwell’s equations.

Implementation of more efficient radiation conditions

Simulating unbounded domains is a well known challenge for computational electromagnet-

ics with finite element methods. In this thesis, we have only employed first-order absorbing

boundary conditions as a means to simulate infinite domains, since they can be readily im-

plemented without adversely affecting the computational cost and produce satisfying results

for normally incident waves. A better approach are high-order absorbing boundary condi-

tions, see [84] for a review, that ensure greater absorption at the expense of locality and

convenience of implementation.

A widespread alternative is the use of PMLs [17, 95, 254], which were already discussed in

Chapter 1. PMLs consist of additional layers that cause an exponential decay of the outgoing

waves, impeding reflection at the boundaries. The main shortcomings of PMLs are the

increased computational requirements, since the domain of interest needs to be augmented

with the layers of absorbing materials, and the choice of the parameters modeling the decay

of the outgoing waves, which usually involves fine tuning if one is interested in minimizing

the size of the extended domain.

Incorporating either high-order ABCs or PMLs to the computational framework presented

in this thesis should be addressed. Recent studies show similar numerical effectivity from

both alternatives [207], which in any case lead to a superior performance compared to the

first-order absorbing boundary conditions used in this thesis.
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Use of iterative solvers

In this thesis, only the direct solver implemented in Matlab has been employed for linear

systems. Furthermore, the computations have been mainly carried out on a 512GB Linux

machine with four eight-core machine with 32 AMD Opteron(tm) processors 6320x15, which

have allowed for a parallel computation of the snapshots required to form the several reduced

order models. Nonetheless, the size of the linear systems in 3d is a bottleneck for direct

solvers. Unfortunately, the poor scalability of the linear system in terms of degrees of

freedom cannot be circumvented by using more powerful machines.

Hence, an option that should be considered in the future is the use of iterative methods.

Combined with efficient preconditioners, they would enable the simulation of much larger

problems, albeit increasing the computational time. Furthermore, a parallel implementation

of iterative solvers is required to achieve superior performance, as it has already been demon-

strated for the HDG discretization of Navier-Stokes equations [74,217]. The main drawback

for time-harmonic Maxwell’s equations is the lack of robust preconditioners. Consequently,

it may be necessary to solve the equations in the time domain formulation if iterative solvers

are essential to compute large scale solutions.

6.2.3 Reduced order modeling

Error bounds

The main shortcoming of the ROM strategy presented in this thesis is the lack of a posteriori

error bounds to quantify the error incurred by the surrogate. In addition, the definition of

inexpensive and sharp error bounds may further benefit the snapshot computation, since

they may be used to drive the sampling process in a greedy fashion [86, 88, 257, 259]. In

short, instead of computing the snapshots for a preestablished set of parameters, we may

sequentially select the input parameters with the largest error bound, and iteratively enrich

the model.

For noncoercive problems such as time-harmonic Maxwell’s equations error bounds have been

developed using the successive constraint method [110, 113], where a strategy to efficiently

compute approximations to the inf-sup constant is devised. More recently, a novel approach
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based on a statistically modeling the mapping between inexpensive error bounds and the

actual error using Gaussian processes has been proposed [60]. Alternatively, error bounds

may also be constructed using the mapping between input parameters and the error of

the surrogate. Even though this mapping is not directly computable, machine learning

techniques such as deep learning [162] arise as valid methodologies to learn the mapping

from computational data. The advantage of neural networks is that no assumptions on the

regularity and conditions of the data are needed, thus being ideal for complex problems such

as the one under consideration, with geometry interpolation and arbitrary outputs.

Hydrodynamic model

The ROM framework has only been developed for the time-harmonic Maxwell’s equations

with Drude metals, enabling parametric studies and assessment of uncertainty in both the

material properties and the geometric specifications. Thus, a natural extension is seeking a

dimensionality reduction strategy for the hydrodynamic model for metals.

Nonetheless, further complications can be anticipated. Firstly, the computation of a snap-

shot collection prior to compression may be very demanding for the hydrodynamic model.

As we have repeatedly shown throughout this thesis, the number of unknowns (specially in

3d), combined with the tightly localized structure of the EM solution negatively impacts

the computational requirements for the direct solution of the linear system.

Secondly, it is unclear that a reduced order model developed globally will be able to accu-

rately capture the subnanometric boundary layer that arises at the metal-dielectric interface,

a consequence of the hydrodynamic pressure term. It may therefore be interesting to com-

bine standard ROM techniques with domain decomposition approaches, which enable the

construction of surrogates for multiscale problems [41,111,152,263].

6.2.4 Applications

Simulation

The focus of this dissertation has been on periodic square arrays of annular gap structures.

Beyond periodic arrays, there is a myriad of relevant plasmonic structures that would benefit
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from the work presented in this thesis. For instance, nanoparticles are being used nowadays

for a broad range biomedical applications such as drug delivery, biosensing, disease detection

and cancer theranostics [7,27,33,58,62,66,104–106,124,133,141,264]. Nanoparticles are at-

tractive because they can be manufactured in multiple sizes and shapes, such as spheroids,

rods, stars, cubes, cages or shells, and exhibit a high tunability of their optical proper-

ties. Hence, it would be interesting to combine HDG and ROM techniques to provide not

only their optical response, but also its dependence on geometry modifications over several

frequency regimes.

Another example of plasmonic structures of interest are plasmonic antennas for advanced

data storage [35,156,187,245,280], where the extreme confinement and enhancement capa-

bilities of nanoantennas are leveraged towards a high-efficient recording by locally heating

the magnetic medium, known as heat-assisted magnetic recording.

Design

In this thesis, we have demonstrated how the construction of ROM may be further used to

design plasmonic devices, in this case a concentric ring structure. This methodology can be

readily applied to the simulation and optimization of plasmonic devices with multiple geom-

etry design variables, for example annular apertures with several concentric rings. Another

potential application are bullseye grating structures [135] combined with annular nanogaps,

where the depth, width and pitch of the grooves can be treated as design parameters.

On the other hand, an interesting although challenging avenue is producing designs that are

robust under geometry modifications. For instance, one could consider small variations in

the nominal radius and the gap, or even non-homogeneous variations in the radial direction.

These problems are commonly cast as stochastic optimization problems. Consequently, after

constructing the ROM, we need strategies to evaluate objective functions involving statistical

quantities, perhaps defined over a multidimensional stochastic space. To that end, it may

be useful to recall methodologies that combine model reduction with variance reduction

techniques [261–263], enabling the fast computation of stochastic objective functions.
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2d materials

A new and promising line of research is the combination of plasmonic devices with layers

of 2d materials, such as graphene [278] or black phosphorus [137]. The most definitive

feature is that high ohmic losses incurred by noble metals in plasmonic devices, for most

frequency regimes, can be reduced by placing a single layer of doped two-dimensional atoms

on top of the metallic structure. 2d materials exhibit remarkable tunability by electrical

or chemical doping, enabling them to sustain plasmons for broad range of frequencies, with

confinements in volumes several orders of magnitude smaller than the diffraction limit. All

in all, 2d materials offer the possibility of dramatically altering their optical properties, as

well as the behavior of noble metals, thus paving the path towards revolutionary applications

in nanophotonics [89, 115,123,129,144].

From the computational standpoint, simulating the interaction of noble metals with 2d

materials is inherently hard. The disparity in length scales is even more severe than in

conventional plasmonics, since we need to simulate atom-thin layers. In addition, graphene

and black phosphorus exhibit a highly anisotropic behavior, which needs to be taken into

account as a nondiagonal conductivity tensor. Nonetheless, we strongly believe that the high-

fidelity numerical methods introduced in this thesis may be adapted and further improved

to pursue simulation and robust design of ever complex plasmonic structures.
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Appendix A
Properties of HDG for hydrodynamic

model

In this appendix, we complete the definition of the HDG method for Maxwell’s equation

with the hydrodynamic model introduced in Chapter 3, proving it is locally conservative,

consistent and well defined.

Proposition 1. The HDG method defined by (3.11) is locally conservative and consistent.

Proof. When 𝜀∞ is constant on each face, the last two equations of (3.11) imply that

Jn× ̂︀VℎK = 0, on ℰ𝑜
ℎ,

Jn · ̂︀JℎK = 0, on ℰ𝑜
ℎ.

Substituting (3.5) and (3.10) into the expressions above we arrive to

Jn×VℎK + 𝜏+𝑡 E+
ℎ + 𝜏−𝑡 E−

ℎ − (𝜏+𝑡 + 𝜏−𝑡 )̂︀Eℎ = 0, on ℰ𝑜
ℎ,

Jn · JℎK − 𝜏+𝑡 𝑈
+
ℎ − 𝜏−𝑡 𝑈

−
ℎ + (𝜏+𝑡 + 𝜏−𝑡 )̂︀𝑈ℎ = 0, on ℰ𝑜

ℎ.

Isolating the value of the traces we get

̂︀Eℎ =
𝜏+𝑡 E+

ℎ + 𝜏−𝑡 E−
ℎ + Jn×VℎK

𝜏+𝑡 + 𝜏−𝑡
, on ℰ𝑜

ℎ,

̂︀𝑈ℎ =
𝜏+𝑡 𝑈

+
ℎ + 𝜏−𝑡 𝑈

−
ℎ − Jn · JℎK

𝜏+𝑡 + 𝜏−𝑡
, on ℰ𝑜

ℎ.

(A.1)
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Substituting these expressions into (3.5) and (3.10) we obtain

̂︀Vℎ =
𝜏+𝑡 V−

ℎ + 𝜏−𝑡 V+
ℎ + 𝜏+𝑡 𝜏

−
𝑡 JEℎ × nK

𝜏+𝑡 + 𝜏−𝑡
, on ℰ𝑜

ℎ,

̂︀Jℎ =
𝜏+𝑡 J−

ℎ + 𝜏−𝑡 J+
ℎ − 𝜏+𝑡 𝜏

−
𝑡 J𝑈ℎnK

𝜏+𝑡 + 𝜏−𝑡
, on ℰ𝑜

ℎ.

(A.2)

The expressions (A.1) and (A.2) show that the numerical traces of the HDG method are

single valued across inter-element faces, hence the HDG method is locally conservative,

by virtue of the definition of local conservation introduced in [10]. Furthermore, since

E ∈ 𝐻curl(Ω) and 𝑈 ∈ 𝐻1(Ω), we have ̂︀E = E𝑡 and ̂︀𝑈 = 𝑈 on ℰℎ. It follows from

expressions (3.5) and (3.10) that ̂︀V = V and ̂︀J = J. Finally, if we substitute them into the

first four equations of (3.9) and integrate by parts again, we arrive to

(V −∇×E,𝜅)𝒯ℎ = 0,

(𝛽2∇𝑈 + 𝜔(𝜔 + 𝑖𝛾)J− 𝑖𝜔𝜔2
𝑝E,𝜂)𝒯ℎ = 0,

(∇×V − 𝜔2𝜀∞E− 𝑖𝜔J, 𝜉)𝒯ℎ = 0,

(𝑈 −∇ · J, 𝜁)𝒯ℎ = 0.

The exact solution of (2.11) is therefore a solution of the HDG formulation (3.9), thus the

HDG method is consistent.

In addition, it can also be shown that the HDG method is well defined, that is there exists

only one solution.

Proposition 2. Assume that both 𝜔2𝜀∞ and 𝜔(𝜔 + 𝑖𝛾) are different from the eigenvalues

𝜆1, 𝜆2 of the following eigenproblem: find 𝜆1, 𝜆2 ∈ C and (Nℎ,Qℎ,Sℎ, 𝜓ℎ, ̂︀Qℎ, ̂︀𝜓ℎ) ∈ 𝑊ℎ ×
𝑊ℎ ×𝑊ℎ ×𝑊ℎ ×𝑀ℎ(0) ×𝑀ℎ such that

(Nℎ,𝜅)𝒯ℎ − (Qℎ,∇× 𝜅)𝒯ℎ − ⟨̂︀Qℎ,𝜅× n⟩𝜕𝒯ℎ = 0,

−𝛽2(𝜓ℎ,∇ · 𝜂)𝒯ℎ + 𝛽2⟨ ̂︀𝜓ℎ,𝜂 · n⟩𝜕𝒯ℎ − 𝑖𝜔𝜔2
𝑝(Qℎ,𝜂)𝒯ℎ = −𝜆2(Sℎ,𝜂)𝒯ℎ ,

(∇×Nℎ, 𝜉)𝒯ℎ + 𝜏𝑡⟨Qℎ − ̂︀Qℎ,n× 𝜉 × n⟩𝜕𝒯ℎ − 𝑖𝜔(Sℎ, 𝜉)𝒯ℎ = 𝜆1(Qℎ, 𝜉)𝒯ℎ ,

−(∇ · Sℎ, 𝜁)𝒯ℎ + (𝜓ℎ, 𝜁)𝒯ℎ + 𝜏𝑛⟨𝜓ℎ, 𝜁⟩𝜕𝒯ℎ − 𝜏𝑛⟨ ̂︀𝜓ℎ, 𝜁⟩𝜕𝒯ℎ = 0,

−⟨n×Nℎ + 𝜏𝑡(Qℎ − ̂︀Qℎ),𝜇⟩𝜕𝒯ℎ = 0,

⟨Sℎ · n, 𝜃⟩𝜕𝒯ℎ − 𝜏𝑛⟨𝜓ℎ, 𝜃⟩𝜕𝒯ℎ + 𝜏𝑛⟨ ̂︀𝜓ℎ, 𝜃⟩𝜕𝒯ℎ = 0,

(A.3)
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for any (𝜅,𝜂, 𝜉, 𝜁,𝜇, 𝜃) ∈ 𝑊ℎ × 𝑊ℎ × 𝑊ℎ × 𝑊ℎ × 𝑀ℎ(0) × 𝑀ℎ. Furthermore, if the

stabilization parameters are positive on 𝜕𝒯ℎ, then the HDG solution (Vℎ,Eℎ,Jℎ, 𝑈ℎ, ̂︀Eℎ, ̂︀𝑈ℎ)

exists and is uniquely defined.

Proof. Since the square system above is linear and finite dimensional, it is sufficient to show

that the trivial solution is the unique solution of (3.11) if E𝐷 = V𝑁 = 0. If we take

𝜅 = Vℎ, 𝜂 = Jℎ, 𝜉 = Eℎ, 𝜁 = 𝑈ℎ, 𝜇 = ̂︀Eℎ and 𝜃 = ̂︀𝑈ℎ in (3.11), multiply the second

equation by −1/𝜔2
𝑝, the fourth and sixth by 𝛽2/𝜔2

𝑝 and add them together, we arrive to

(Vℎ,Vℎ)𝒯ℎ + 𝜏𝑡⟨(Eℎ − ̂︀Eℎ) × n, (Eℎ − ̂︀Eℎ) × n⟩𝜕𝒯ℎ +
𝛽2

𝜔2
𝑝

(𝑈ℎ, 𝑈ℎ)𝒯ℎ+

𝜏𝑛⟨𝑈ℎ − ̂︀𝑈ℎ, 𝑈ℎ − ̂︀𝑈ℎ⟩𝜕𝒯ℎ = 𝜔2𝜀∞(Eℎ,Eℎ)𝒯ℎ +
𝜔(𝜔 + 𝑖𝛾)

𝜔2
𝑝

(Jℎ,Jℎ)𝒯ℎ .

Similarly, for the eigenproblem in (A.3) we have

(Nℎ,Nℎ)𝒯ℎ + 𝜏𝑡⟨(Qℎ − ̂︀Qℎ) × n, (Qℎ − ̂︀Qℎ) × n⟩𝜕𝒯ℎ +
𝛽2

𝜔2
𝑝

(𝜓ℎ, 𝜓ℎ)𝒯ℎ+

𝜏𝑛⟨𝜓ℎ − ̂︀𝜓ℎ, 𝜓ℎ − ̂︀𝜓ℎ⟩𝜕𝒯ℎ = 𝜆1(Qℎ,Qℎ)𝒯ℎ +
𝜆2
𝜔2
𝑝

(Sℎ,Sℎ)𝒯ℎ .

It follows from the previous two equations that both Eℎ and Jℎ are zero; otherwise, then

𝜔2𝜀∞ ans 𝜔(𝜔 + 𝑖𝛾) must be eigenvalues of (A.3), which contradicts the hypothesis. As a

consequence, we get

(Vℎ,Vℎ)𝒯ℎ + 𝜏𝑡⟨̂︀Eℎ × n, ̂︀Eℎ × n⟩𝜕𝒯ℎ +
𝛽2

𝜔2
𝑝

(𝑈ℎ, 𝑈ℎ)𝒯ℎ + 𝜏𝑛⟨𝑈ℎ − ̂︀𝑈ℎ, 𝑈ℎ − ̂︀𝑈ℎ⟩𝜕𝒯ℎ = 0,

hence Vℎ = 0, ̂︀Eℎ = 0, 𝑈ℎ = 0 and ̂︀𝑈ℎ = 0 since the stabilization constants are strictly

positive. In consequence, the trivial solution is the unique solution of the HDG discretization,

thus completing the proof.
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Appendix B
Deformation mapping for annular gap

structure

In this appendix, we introduce and derive the deformation mapping that is employed

throughout this dissertation for the periodic annular gap structure. Following the notation

in [201], we assume a one-to-one mapping given by a diffeomorphism G from a reference

domain Ωr ∈ R3 with coordinates xr = (𝑥r, 𝑦r, 𝑧r) to the physical domain Ω ∈ R3 with coor-

dinates x = (𝑥, 𝑦, 𝑧). The mapping can be expressed as x = G(xr,θ), where θ parametrizes

the mapping. The mapping deformation gradient and its Jacobian are defined 𝒢 = ∇rG

and 𝑔 = det𝒢, respectively.

For simplicity we present the mapping for only one ring of radius 𝑅 and gap width 𝑤,

although the extension to multiple rings is straightforward. We therefore have two parame-

ters θ = (θ1, θ2) that specify the modified radius 𝑅 + θ1 and gap width θ2. Fig. B-1 (left)

shows the computational domain for the annular gap structure. To derive the mapping, we

resort to polar coordinates for the reference domain (𝜌r, 𝛼r) and the physical domain (𝜌, 𝛼).

Furthermore, we have 𝛼r = 𝛼 since modifications occur only in the radial direction.

The physical coordinates relate to the reference coordinates as

𝑥 = G1(xr) = 𝜌(xr) cos𝛼(xr), 𝑦 = G2(xr) = 𝜌(xr) sin𝛼(xr), 𝑧 = G3(xr) = 𝑧r.

In order to obtain 𝜌(xr) we will first compute 𝜌(𝜌r, 𝑧r) and then apply the chain rule to

125



R1

α

R1 + θ1

αR0

R2

w

R0

R2

θ2

S

top viewcross section

Figure B-1: Left: Computational domain with step function. Middle: reference domain. Right: physical
domain.

compute the required derivatives. We propose to determine 𝜌 using 𝒞2 cubic splines [54]

in the radial direction. For both reference and physical domains in Fig. B-1 (middle and

right), the gray zones correspond to regions that remain fixed, that is 𝜌 = 𝜌r, thus avoiding

the singularity at the origin.

We then use splines in the remaining regions that interpolate the knots

{(𝜌r,𝑖, 𝜌𝑖)}4𝑖=1 = {(𝑅0, 𝑅0), (𝑅1, 𝑅1 + θ1), (𝑅1 + 𝑤,𝑅1 + θ1 + θ2), (𝑅2, 𝑅2)},

using cubic polynomials for each pair (𝜌r,𝑖−1, 𝜌𝑖−1) and (𝜌r,𝑖, 𝜌𝑖) such that 𝜌 = 𝑐𝑖(𝜌r), 𝑖 =

1, 2, 3. To retrieve the coefficients of the cubics we impose continuity of their first and second

derivatives (besides knot interpolation), rendering a spline that minimizes curvature. The

extra condition to ensure a smooth blending with the gray zones is to prescribe unit slope

at 𝑅0, 𝑅2, that is 𝑐′1(𝑅0) = 𝑐′3(𝑅2) = 1.

After solving a small 4x4 system and recovering the spline coefficients, the expression for the

radial component can be compactly written as 𝜌 := {𝑐𝑖(𝜌r,𝑖)}4𝑖=1. Nonetheless, this geometry

modification is constant along the vertical direction, thus the mapping far from the scatterer

(where radiation conditions are applied) is no longer the identity. In order to circumvent

this limitation, we propose to use a linear interpolation between the spline and identity

function using the continuous step function 𝒮 shown in Fig B-1 (left) in dash-dot. This

step function is one near the scatterer and continuosly fades to zero at a certain distance

–enough to ensure an accurate representation of the deformation. All in all, the expression
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that relates 𝜌r to 𝜌 reads

𝜌 := 𝒮(𝑧r){𝑐𝑖(𝜌r,𝑖)}4𝑖=1 + (1 − 𝒮(𝑧r))𝜌r.

Finally, the required derivatives are computed invoking the chain rule, for instance

𝜕𝑥

𝜕𝑥r
=

𝜕𝜌

𝜕𝜌r

𝜕𝜌r
𝜕𝑥r

cos𝛼+ 𝜌
𝜕 cos𝛼

𝜕𝑥r
=
[︀
𝒮(𝑧r){𝑐′𝑖(𝜌r,𝑖)}4𝑖=1 + 1 − 𝒮(𝑧r)

]︀ 𝑥r
𝜌r

cos𝛼+ 𝜌 sin𝛼
𝑦𝑟
𝜌r
.

It is then immediate to compute the jacobian 𝒢𝑖𝑗 = 𝜕xr,𝑗G𝑖(xr), its determinant 𝑔 and the

required symmetric tensor 𝐺 = 𝑔−1𝒢𝑇𝒢.
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