
Bidirectional gaze guiding and indexing in human-robot

interaction through a situated architecture

by

Nicholas Brian DePalma

M.Sc. Computer Science, Georgia Institute of Technology (2010)
B.Sc. Computer Science, Georgia Institute of Technology (2005)

Submitted to the Program in Media Arts and Sciences
School of Architecture and Planning

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2017

@ Massachusetts Institute of Technology, 2017. All rights reserved.

I /
Signature redacted

A uthor ......................

Certified by ..........

rogram in Media Arts and Sciences
School of Architecture and Planning

Signature redacted June 1, 2017

Dr. Cynthia Breazeal
Associate Professor of Media Arts and Sciences

Accepted by
Signatu re redacted

Thesis Supervisor

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUL 3 1 2017

LIBRARIES

Dr. Pattie Maes
Academic Head

Program in Media Arts and SciencesC')
wj





Bidirectional gaze guiding and indexing in human-robot interaction

through a situated architecture

by

Nicholas Brian DePalma

Submitted to the Program in Media Arts and Sciences
School of Architecture and Planning

on June 1, 2017, in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

Abstract

In this body of work, I present a situated and interactive agent perception system that can
index into its world and, through a bidirectional exchange of referential gesture, direct its
internal indexing system toward both well-known objects as well as simple visuo-spatial
indexing in the world. The architecture presented incorporates a novel method for synthetic
human-robot joint attention, an internal and automatic crowdsourcing system that provides
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gaze of human peers. This document critically probes questions in human-robot interaction
around our understanding of gaze manipulation and memory imprinting on human partners
in similar architectures and makes recommendations that may improve human-robot peer-
to-peer learning.
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Chapter 1

Introduction

As interactive robots develop, one of the most consistently important behaviors is the ability

to follow gaze and gesture in the robot's visual field. This behavior is called joint attention,

one of the most challenging problems in social and developmental science. Joint attention

is traditionally defined as the tendency of humans and some animals to align their focus of

attention toward the same stimulus to enable social learning. Joint attention is one of the

core cognitive mechanisms that must be understood before robots or other agents can hold

meaningful, transparent verbal and nonverbal dialogue with a social partner (Seemann,

2011; Kaplan & Hafner, 2006). Transparency is the ability of a machine to reflect on its

internal state and report about it to the user of the machine (Dix, 2003). To understand why

joint attention is critical in nonverbal and verbal communication, it is instructive to explore

the meaning researchers attribute to the word attention.

Without a clear understanding of attention and how it works, a robotic system may be

misdirected when predicting changes in the attention of a human partner. The capacity

that humans have to attribute beliefs to other agents and to simulate the impact of those

beliefs on behavior has been called theory-of- mind. Theory-of-mind inspires researchers

in robotics and cognitive science to better understand and build systems to imitate these

capabilities in artificially intelligent systems. Jointly attending to the same stimulus is one

core way of aligning the affordances (Gibson, 1979) (i.e., the actions an agent perceives it

can perform upon an object) the robot would jointly infer with a human partner.

One of the largest topics in social robotics is to plausibly represent a theory-of-mind.
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Theory-of-mind is our ability to apply beliefs to others and to simulate the thought pro-

cesses of others. This mechanism allows us to predict subsequent actions and goals of

others while making inferences about others' current states-of-mind. This cognitive mech-

anism has inspired research in self-as-simulator cognitive architectures (J. V. Gray, 2010)

as well as research in modifying sequential planning algorithms for use in theory-of-mind

contexts (Adalgeirsson, 2014). More specifically, this dissertation takes the theory-of-mind

approach as being visually directed and socially coupled.

This dissertation examines differing ideas regarding the concept of joint attention, dis-

sects them and then shows a new path toward a deeper understanding of sharing attention

with a social partner. This concept is inspired by the idea that synthetic computational at-

tention systems research must be unified with deictic systems research at the sensory and

motor systems level before situated common ground can be addressed. The body of work

reported in this dissertation builds an underlying deictic system that can point and bind to

an underlying visual stimulus while simultaneously attempting to move its internal percep-

tion pointer (Ballard, Hayhoe, Pook, & Rao, 1997) closer to a social partner's gaze and

instruction. Uniquely, this system operates primarily on visual stimuli captured from a

shared environment and provides new, commonly used lexical references from an on-line

management subsystem (NIMBUS). The System for Highly Attentive Robotic Experiences

or SHARE, as seen in Figure 1-1, offers an environment that unifies image processing and

analysis for experimentation, both in human-robot interaction and through browser-based

interactions.

One key problem in attention-centered vision systems is the problem of foreground se-

lection. SHARE makes this problem explicit: how can a robot be directed to perceive or

learn about the external stimuli using dynamic selection? When a situated agent is direct-

ing its perception within its environment, the situated agent can direct the locus of attention

to any stimulus, recognizable or not. This type of directed perception has been called vi-

sual attention in computer vision literature (Rao, 1998; Tang, Srivastava, & Salakhutdinov,

2014; Frintrop, 2006; Bridewell & Bello, 2015; Tsotsos, 2011) and is the only behavioral

measure that can be studied related to attention. The direction of the eye, or in other words,

the directed perception of the human, is called gaze in interaction literature. Neurological
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evidence suggests that while gaze does not provide sufficient evidence of which stimuli are

being perceived by the agent, it instead hints at features that are not perceived through a

mechanism called peripheral gating (Desimone & Duncan, 1995). Gazefollowing emerges

in infancy and is shown to be one precursor to sharing attention (Butterworth & Cochran,

1980).

One subtle but important point that distinguishes gaze following from joint attention

is joint attention is intentionally driven by interaction with a social partner whereas gaze

following is entirely self-directed. In gaze following, no explicit social action is taken to

direct a social partner. On the other hand, in joint attention, one agent attempts to direct the

attention of another through a deictic gesture, or gesture such as pointing, that is intended

to guide a social partner. Chen Yu and Linda Smith argue that joint attention unifies visual

perception and deictic action, suggesting that these systems may be deeply coupled (Yu &

Smith, 2016). This dissertation focuses on the unification of the sensory system and motor

system toward a sensorimotor approach to joint attention and attempts to address a critical

question: How does a deictic gesture affect an agent's perception?

In addition to contributing to human-robot interaction

and socially inspired artificial intelligence, SHARE is sup-

ported by online contributors annotating and indexing the en- SHARE

vironment with the robot. Indexing is the maintenance of a

set of hypotheses of recognizable parts of the environment. NIMBUS
Subsystem.

While other robotic architectures envision the robot operat-

ing alone or even sometimes with a social partner, this sys-

tem acknowledges the constant access to social, on-line par- Figure 1-1: Situating the
NIMBUS subsystem within

ticipants even when no one else is present. This provides an the larger architecture

ever-present social partner even when the robot is seemingly (SHARE).

alone. The NIMBUS architecture unifies long term memory

using a database to store all learning examples over the course of its lifespan, providing

a substrate for long-term learning. NIMBUS also provides a caching system and pipeline

for an embodied agent to capitalize on always-present, on-line participants. As long as the

robot can connect to the Internet, it may query the Internet on-demand for new symbols
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to map to its environment. NIMBUS provides an always-on server to take these queries,

cache them, aggregate responses and respond to a robot's on-demand queries. In the end,

the robot uses a single point of entry (i.e., a single function call) to NIMBUS that operates

both synchronously or asynchronously to provide lexical labels to the environment. NIM-

BUS handles query maintenance and long-term storage to map instances to labels and may

aggregate these queries for learning at a later point. At the time of writing, the NIMBUS

architecture has been running on an IBM Blade server for three years and has supported

much of the work in this dissertation.

This dissertation contributes a number of empirical observations for systems inspired

to:

" implement a deeper model of joint attention for robots,

" implement a synthetic model of visual attention, and

" contribute a human-robot interaction experiment in longitudinal joint attention and

recall.

This work focuses primarily on the following factors:

" an analysis of eye gaze negotiation as the dynamic process of gaze following;

" an analysis of the exchange of deictic gesture directed toward the perception system;

" an analysis of memory recall between a human, a robot that directs it towards a

stimulus and a dynamic scene.

1.1 Motivation

For decades, psychologists (James, 1890; Seemann, 2011), neuropsychologists (Hebb,

1949) and more recently robotic architects (Ullman, 1996; Rao, 1998; Scassellati, 2001;

Bridewell & Bello, 2015) have investigated the central mystery of how most animals have

the ability to make sense of the "blooming, buzzing"(James, 1890) world around them.

Many scholars believe our ability to cope with the morass of stimuli depends upon our
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ability to inhibit, or ignore, peripheral and irrelevant stimuli and focus in on the most rele-

vant features in that moment.

This dissertation is primarily motivated by the idea that this core coping mechanism

impacts and relates to interactive joint attention. Additionally, this work is motivated by

the idea that crowdsourcing offers an avenue to bootstrap interactions and experiments for

a situated robotic architecture by collecting datasets quicker than ever before. In addition,

this research is conducted within an interesting problem space: that of learning to name and

index objects in the robot's environment through joint attention. The focus of this work in

joint attention is primarily on object extraction, labeling and gaze manipulation.

1.2 Objectives

This dissertation aims to understand and model an interaction between a human and a

robot in the context of both static and dynamic environments. Referencing behavior plays

a critical role in this interaction for both perceptual selection and directing the perception

system of another agent. To engage with this problem, this work defines the following

objectives:

" Define a model of perception that selects before it recognizes; that is, a model of

visual search.

" Use a simple model of deictic referencing rooted in sensory selection that is compat-

ible with this model of visual search.

" Understand how useful this model is in a human-robot interaction experiment.

" Define a subsystem within SHARE to aid in data annotation called NIMBUS.

" Investigate the behavioral dynamic of joint attention in dynamic scenes.

1.2.1 Stance and statement

Attention directing in human-robot interaction involves situated perceptual systems and

joint attention directly contributes to sustainable interaction and engagement.
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Situated and embodied eye gaze negotiation

Questions regarding artificially intelligent machines have long been focused on systems

that can learn, adapt and act with new representations. Taking it further, attentional sys-

tems make it a clear objective to decide and maintain (i.e., update) a small subset of relevant

features to the agent (Helgason, 2013) while still allowing the agent to transition to other

features. The challenge for joint attention is to ensure that a social other can manipulate

and shape this subset in meaningful ways. Only within the last couple of decades, re-

searchers in the bio-inspired robotics field have begun to understand the importance of a

social partner in shaping the relevant features that the robot should attend to during learn-

ing and referencing (Scassellati, 2001; Kaplan & Hafner, 2006; Nagai, Hosoda, Morita,

& Asada, 2003; Ognibene & Baldassare, 2015; Steels & Hild, 2012). Unfortunately, lit-

tle is known about how this socio-dynamical process proceeds over time in human-robot

interaction. This research seeks to prioritize the design of robotic behavior to understand

and address questions regarding the social exchange of gestural referencing and perceptual

selection behavior in a human-robot experiment as the two interact within a dynamic (i.e.,

moving) shared scene.

This dissertation presents a synthetic attention system that may play critical roles in ne-

gotiating relevant and shared features between a human social partner and a robot. Inspired

by behavioral and cognitive literature in joint attention (Carpenter, Nagell, Tomasello, But-

terworth, & Moore, 1998; Gallese & Goldman, 1998; Tomasello, 1995, 2000; A. M. Treis-

man & Gelade, 1980), the perception system is designed for synthetic visual search be-

havior and social negotiation (Chapter 4). This system is validated through real interaction

with a human partner where the objective is to jointly select the same stimulus (Chapter

6). Clear contributions to joint attention build on many domains where feature sharing

between a human and a robot is a primary concern, such as human-robot collaboration,

rapid interactive robotic reprogramming and human robot dialogue. In each of these three

domains, an underlying set of features must be chosen in which the robotic agent is to

achieve its goals, learn new information and resolve word references, respectively. This

shared interest in joint attention makes feature selection within the environment critical to
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the functioning of robots in all of these domains. The success of each of these collaboration

domains depends heavily on the state space the robot is currently programmed to consider.

Psychological and cognitive approaches to understanding eye behavior are roughly fo-

cused on characterizing two separate contributions to the set of features that make up the

agent's experience: exogenous and endogenous factors to the mind (Monsell & Driver,

2000). Exogenous factors can be seen from the computational view as external to the agent,

having originated from the underlying sensor systems and made relevant to the agent's

state. One example of exogenous factors having a clear impact on human behavior is when

something very loud happens in a room and everyone is directed toward this stimulus.

Someone then asks "Did you hear that?" If a synthetic agent has not routed the underlying

features in the proper way, the underlying stimulus is implicitly ignored by design. This

has serious implications for language understanding. Exophoric reference resolution is the

ability to resolve the word references to raw stimuli that were enumerated amongst the hy-

potheses. Therefore, the ambiguity present in the pronoun that is resolved. For exogenous

factors, the relevant stimuli is asserted into the agent's space of consideration. Likewise,

endogenous factors assert themselves from deep inside the agent's architecture and are not

behaviorally visible but still have considerable impact on the agent's outward behavior.

These two factors have also been called bottom-up factors and top-down factors when

used with respect to gaze behavior (Pinto, van der Leij, Sligte, Lamme, & Scholte, 2013).

Top-down approaches to gaze behavior operate primarily through an internal system that

tightly controls sensing and action toward some goal. Bottom-up approaches tend to em-

ploy direct sensor-to-action or reactive centered models when generating gaze behavior. In

the SHARE architecture presented throughout this dissertation (detailed most in Chapter

4), these bottom-up and top-down factors are unified by using a novel simulation of other

mechanism to resolve competition between the two underlying modules. Any situated vi-

sion system that can take actions to direct its focus of attention must negotiate where to

fixate next with respect to its goals. This particular system focuses on a socially inspired

architecture that negotiates the next point of fixation with respect to its social partner. This

system is validated with real interaction partners in Chapter 6.
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Driving gaze: the saliency system

Artificial saliency models, like those found by Itti and colleagues (Itti, Koch, & Niebur,

1998; Hou, Harel, & Koch, 2012; Harel, Koch, & Perona, 2006), have been successful in

reproducing saccade behavior by reweighting filters (using a mechanism frequently called

inhibiting return) in controlled ways to move the point of maximum saliency from location

to location. A saccade is a movement of the eye from one target to the next. Saliency

is defined in this context as a simple function that takes an image and returns a map of

conspicuity, or readily noticeable fixation points. Factors like color, edge orientation and

temporality of the feature are integrated in various ways to model this conspicuity.

The objective of such saliency systems is not to get the fixation order or trajectory

through an image correct, but to locate points of fixation that resemble fixation locations

that humans make on similar images. As a basic model of attention, saliency maps pro-

vide a map where all locations are available to higher order algorithms (e.g., that resolve

linguistic utterances, like the example of a loud sound in the previous section). This has

made saliency models a popular option for those studying attention in general (Itti et al.,

1998; Tsotsos, 2011). Unfortunately, this approach doesn't provide a way to recognize or

to simply index the features at the fixation location. For social saliency systems like those

found in Marek Doniec or in Yukie Nagai's work (Doniec, Sun, & Scassellati, 2006; Na-

gai et al., 2003), the selection of salient positions becomes easier to resolve from a visual

field alone, essentially allowing an embodied robot to share gaze direction. As mentioned

before, saliency systems do not have the capability to recognize the object at the point of

fixation. However, the system presented in this dissertation combines saliency with higher

level recognition systems so the robot is not just fixated on a location but actually recog-

nizes the features being referenced.

This work attempts to put these saliency systems in competition with a visual search

mechanism (Chapter 4) during social interaction. The SHARE system unifies the ability to

direct its gaze and to tether a symbol or index that same location. Psychology (specifically

evolutionary psychology) has made apparent the clear social bias that occurs in human

attention systems: attention is primarily directed to features that others attend to and the
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features others are directing us to observe. This dissertation focuses primarily on agent-

human-environment relations rather than other contexts where saliency systems may show

up (i.e., agent-environment relations). This work incorporates not just the ability to be-

haviorally direct the robot's attention to something else in the environment but to also

recognize the object. This type of attention enables a more situated, affordance-centered

(robot-human-object-action relationships and thus predictions) theory-of-mind capability

that could be leveraged in the future. Next, I will introduce a basic mechanism used in

top-down attention architectures to continually re-task the attention system.

Goal-directed object search

Significant questions still remain regarding how human partners direct and interpret gaze

and attention. One of the key questions is how do pure saliency approaches lead to object

recognition and goal-directed object search or activity recognition? Early work on gaze

following has shown up in social robotics (Scassellati, 2001) and developmental psychol-

ogy (Seemann, 2011). The only way researchers understood the process of social directing

of gaze was as a endogenous process that involves recognition of gesture and goal-oriented

object search. Recent systems integrate these problems into a single sequential context

switching process (Ognibene, Chinellato, Sarabia, & Demiris, 2013). Clearly, the pro-

cess must involve a much higher level of understanding than the modulation of simple

saliency maps. Some researchers postulate that such goal-directed mechanisms constitute

a set of primitives in which high level visual routines trigger sequential visual search goals

(Ullman, 1996). Visual routines are simply higher level functions that search images to

resolve queries such as "is object A inside object B?." This query can be resolved by fixat-

ing on A and searching around object A for boundaries of containment. Researchers have

successfully implemented visual routines for games like Sonja (Chapman, 1990) and Pengi

(Agre & Chapman, 1987). However to date, visual search as a substrate for visual rou-

tines has not proven successful for everyday images, though a scant few options have been

proposed (Rao, 1998; Forbus, Mahoney, & Dill, 2002). The architecture presented in this

document addresses two different issues at the heart of visual search:
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1. foreground extraction and recognition in Chapter 4;

2. an effort to learn to map indices through reference following using real world images

in Chapter 5.

While it is challenging to quantify, model and attribute the underlying factors that direct

gaze, it is clear that these factors exist in biological systems (Monsell & Driver, 2000).

Multiple researchers argue gaze direction factors should exist in human-robot interaction

systems (Huang & Thomaz, 2011; Kaplan & Hafner, 2006; Nagai et al., 2003; Yu, Scheutz,

& Schermerhorn, 2010; Nagai & Rohlfing, 2009). For this reason, the SHARE architecture

takes an embodied view of not just eye gaze as goal-directed action but also arm gestures

as social referencing action directed toward a partner's biological attention system. The

robotic architecture decides to move its own eyes by overriding the saliency model dur-

ing goal-directed visual search and lets the gaze process "float" when visual search is not

engaged by higher level processes.

Crowdsourcing and robotics

Crowdsourcing is a new technique that leverages massive parallel user interaction to per-

form work in short periods of time. It can also source knowledge from novices and some-

times experts to perform real work effectively. Crowdsourcing has proven itself to be a

promising avenue to rapidly bootstrap interactions and data from everyday people across

domains. Crowds of people available on the Internet offer a level of parallelism that could

potentially build large knowledge bases quickly and effectively. Computer systems that

leverage crowdsourcing have shown progress in improving social skills through mutual crit-

icism, collaborative writing and cracking challenging cyphers. This promising research has

led many in machine learning and embodied robotics to use these systems to construct new

and appropriate datasets quickly and effectively. Researchers have introduced crowdsourc-

ing work in the synthetic agent literature, followed by crowdsourcing in robotics which

deals with more situated problems.

Crowdsourcing itself is not a radically new idea. In fact, the idea of asking large crowds

of people to perform work has been around for centuries. Grier (Grier, 2011) notes that
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the idea may be traceable back to Charles Babbage (Babbage, 1832). Grier writes that

editors even constructed the almanac of the 1820s through the coordinated work of many

people using a process of assigning subtasks to qualified workers, awarding the work to the

lowest bidder. While slower at that time, this coordinated and creative process is even more

accessible and quicker today with the help of extremely fast communication networks like

the present day Internet.

One of the earliest examples of collecting ongoing large datasets from on-line crowds

was the OpenMind Initiative (Stork, 1999; Singh et al., 2002). The objective of the Open-

Mind Initiative was to source large datasets of logical statements that could be used toward

reasoning in common sense ways. Following this early work, van Ahn popularized the idea

that crowdsourcing can be an on-demand rather than an always-on process. For example,

crowdsourcing can be used to focus on time-sensitive questions like cracking CAPTCHAs

(Von Ahn, Maurer, McMillen, Abraham, & Blum, 2008). Crowdsourcing research has

also led to experiments in motivating people to provide data through on-line entertainment

like video games (Von Ahn & Dabbish, 2008; Orkin, 2013). Researchers use games to

collect context-sensitive behavior performed in specific role-playing environments. These

early experiments crowdsourcing context-sensitive behavior were performed within a video

game called Mars Escape (DePalma, Chernova, & Breazeal, 2011; Breazeal, DePalma,

Orkin, Chernova, & Jung, 2013). This work replicated the on-line environment using simi-

lar props to allow the features to map appropriately. Behaviors collected on-line were used

in the virtual environment to train the robot and demonstrate multi-modal expression of

the sourced behavior through memory-based autonomy (i.e., case-based reasoning). These

robotic behaviors were sensitive to both task and environment but were not generalizable.

Crowdsourcing in robotics has primarily been defined as subsystem dependent, focus-

ing primarily on vision, trajectory learning or allowing participants direct control of the

robot. A considerable challenge to robotics and crowdsourcing is threefold:

* The interface design for each subsystem is context sensitive, meaning the design

requires substantial work for it to be robust and usable by participants on-line as well

as to ensure effective data delivery in real time.
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" On-line participants typically provide data of poor quality. Researchers and engineers

must frequently clean and check for data outliers from participants who either did not

perform the task well or take it seriously.

" The crowdsourced dataset frequently requires a significant amount of human tend-

ing since the data collected in a batch could contain offensive actions or comments

(Breazeal et al., 2013). Systems like Microsoft's Tay are a good example of using

data directly from all participants before being verified by consensus. Because the

data is typically collected in batch and not as an ongoing and dynamic on-demand

process, participants do not provide oversight or democratically police themselves.

Unlike these previous examples of crowdsourcing in robotics using batch collection, the

NIMBUS subsystem presented in Chapter 2 provides an asynchronous system that provides

both the features of on-demand data sourcing as well as ongoing batch data collection.

The design and use of NIMBUS attempts to address the three concerns by designing each

interface piece-by-piece for each ongoing, crowdsourced subsystem. Through the design

and consideration of the expressiveness of the crowdsourced data, this architecture does not

provide an avenue for offensive responses to be sourced from the crowd. In summary, the

system presented primarily in Chapter 2 uses a principle of "vox populi" (Galton, 1907)

(i.e., the "wisdom of the crowds") with additional caching and redundancy to allow the

system to adjust and monitor the data while it proceeds from participant to participant.

1.3 Contributions

The following chapters provide a list of questions, contributions and the set of computa-

tional models used in the experiments:

* After this first introductory chapter, Chapter 2 introduces the reader to the set of com-

mitments and the agent architecture used throughout the experiments. While some

chapters rely on a different set of group-wide commitments held by the research

group, Chapter 2 introduces the reader to the pluggable architecture that comple-

ments previous work. Of special interest here is a commitment to long term memory
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and stackable cached short term memory to support the asynchronous nature of cloud

robotics.

* Chapter 3 introduces the first observation that foreground negotiation is a critical fac-

tor in coupling joint perception since humans have the capability to recognize objects

in a gestalt way. This chapter provides the core argument for the following chapter:

foregrounds offer a metric of success that allow behavior-centered observations and

interaction scientists to ask the underlying recognition system (in a generative way)

about the stimulus the robot is observing while allowing for self-report by partici-

pants. This metric may aid joint template construction toward situated visual learn-

ing.

" Chapter 4 provides an architecture that supports inquiry in social-perception learning

using the metric described in Chapter 3. This chapter constructs a visual search al-

gorithm that can recognize objects from fixation, incorporate human bias through an

underlying saliency system and also put these factors in competition through a novel

deictic simulation system. It describes the result of a simple experiment and shows

that competition can resolve referential resolution conflict between the underlying

subsystems.

" While Chapter 4 provides a blue-sky account of a system that can reason directly

about the foreground, Chapter 5 capitalizes on already selected foregrounds to learn

robust indexical references. The system presented in Chapter 5 uses a modified and

novel recurrent neural network that learns saccade trajectories across a template to

emit classification events. This system demonstrates that by biasing the learning

algorithm with a deictic gesture signal, visual learning is accelerated.

" Chapter 6 wraps up by coupling visual saccade behavior with a human participant. In

an attempt to guide the participant at certain moments of time, the robot uses deictic

referencing to direct the human at critical moments in a dynamic visual narrative.

The participants were probed for memory recall, measured for reaction latency when

correcting the robot's gaze trajectory and tested to ensure they were following the
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referential action.

* Finally, this dissertation concludes with the future direction of this work in Chapter

7.
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Chapter 2

Robotic architecture overview

The SHARE architecture is designed to better understand low-level interactions between

perception and referencing in sensorimotor joint attention experiments within a crowd-

present ecosystem. To be clear, SHARE is considered an architecture because it acknowl-

edges the combined interactions between a number of underlying subsystems (sensing and

action). It also requires caching to delay response from modular requests across two typ-

ically separate subsystems. The SHARE system leverages two mutually beneficial facets

toward lifelong engagement and learning through aspects of both crowdsourcing and the

interaction. The mutual synergy of crowdsourcing and the interaction provide two asyn-

chronous dynamic loops between a social partner (both on-line and in-person) and an agent

architecture that must reason about users in different ways.

Cognitive scientists building synthetic agent architectures are interested primarily in

modeling hypotheses and theories about the deep and internal dynamics of an agent inter-

acting with its world. They are particularly interested in adaptability, usually defined as the

flexibility and performance of agents across multiple contexts. While other architectures

like ACT-R/E (Trafton et al., 2013) and Subsumption (R. Brooks, 1986) focus primarily

on the internal dynamics toward generating robotic behavior, SHARE takes into account

both biological inspiration and the synthetic nature of an Internet-connected, robotic archi-

tecture. By leveraging these two dynamic loops, SHARE can accelerate growth and learn

faster through multiple interactions in parallel. This idea is demonstrated in Section 2.5,

within simple symbol-to-sensor learning and through long-term interaction. The following
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two sections document the architecture built to support the ongoing, three-year perceptual

learning of this agent.

2.1 Features of SHARE

The following attributes of SHARE help define its unique performance capabilities. The

SHARE architecture begins with modeling gaze through saliency hill jumping and a novel

spotlight model of sensor-to-symbol mapping, allowing the robot to saccade to novel stim-

uli while also tethering a symbol to the stimuli. SHARE subsequently believes it recognizes

the symbol underneath the point of fixation. This model of symbol tethering is closely re-

lated to and inspired by the FINST model of spatial indexing (Pylyshyn, 1989). To source

the symbols, the architecture can recall symbols from memory that are stored in a database

sourced on-line. This modular memory system operates across contexts both on-line and in

real-world situations. SHARE's memory is also compatible with both the system on-line

and the system operating in real-time on the robot. Additionally, the architecture moves

from fixation to recognition behavior to full trajectory learning (i.e., fixation-to-fixation)

which builds plausible gazing behavior.

The NIMBUS subsystem' is designed as an internal subsystem with a single entry

point to the overall architecture and supports both synchronous and asynchronous crowd-

querying. The NIMBUS subsystem provides the substrate and capability to interactively

query participants on the Internet as well as the ability to index, reference, extract and

learn directly from sensor data. The SHARE subcomponent provides the capability to

interact with participants through simple referencing and extracting behavior. Together,

these systems make up the agent architecture presented in this dissertation.

Crowdsourced robotic architectures that incorporate cloud-based resources are just now

gaining popularity (Thielman, 2015). However, researchers have launched very few in-

vestigations into these capabilities which could support further claims past the point of

speculation. In fact, some experiments have shown that pure and direct crowdsourcing

can be dangerous. For example, on-line participants unwittingly trained Microsoft's Tay

'This resource is always online at http://nimbus.media.mit.edu.
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to be racist through their questionable input. These observations are previously noted in

past work (Breazeal, DePalma, Orkin, Chernova, & Jung, 2013). Fortunately, the NIM-

BUS design ensures that the crowdsourced data is cleaned through both redundancy and

verification.

The rest of this chapter describes the architecture that is designed to support symbol-

to-image mapping while ensuring quality results. This chapter covers the following:

" Section 2.2 discusses the contributions made throughout the document to human-

robot interaction. This section provides a detailed account of the careful consid-

erations required prior to performing research in joint attention for communication

between humans and robots.

" Section 2.4 presents a system that supports synchronous and asynchronous crowd-

sourcing requests across a cloud-centered infrastructure.

" Section 2.5 presents a novel mechanism to improve quality consistently across all

crowd requests.

" Finally, Section 2.6 describes how these subsystems integrate into the larger SHARE

architecture to support the studies performed in Chapters 4, 5 and 6.

2.2 Loop 1: Joint attention for situated robotic interaction

The rest of this dissertation will focus on the problem of shared attention between a human

and a robot. While the previous chapter described the vocabulary and concepts needed

to understand the problem, this section will focus on the various approaches that were

considered prior to the development of this system. In this case, joint attention is a shared,

synthetic attention system interacting with a human which is an incredibly challenging

endeavor. This section will discuss the technical challenges that influence the design to

successfully achieve shared attention.

Shared attention is one of the most important skills for an agent to acquire prior to

language acquisition and comprehension. It is also critical for sustaining a human-robot
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interaction (as seen in Chapter 6). The phenomena is most often discussed in the context

of language learning; however, it is a significant skill for robots to possess since it shows

up in many other domains. This fundamental problem is critical for robotic programming

by demonstration in which features are shared prior to goal learning, for linguistic and

exophoric referencing for human utterance understanding and, in general, for coordinated

communication and sustained engagement between humans and robots. Chapters 4, 5, and

6 explore two major problems that impede progress in achieving sustained shared attention:

1) visual attention and 2) nonverbal gesture and gaze estimation. This chapter will focus

primarily on Loop 2, the underlying architecture that supports the systems designed in the

subsequent chapters.

Visual attention is a problematic aspect of joint attention that has received only limited

examination in the computer vision community. The problem lies in recognition: given

a fixation point, what is the agent choosing to recognize? In later sections, this problem

is called the shared visual field problem. In general, when a human directs the gaze of

the robot to attend to a particular stimulus and the robot is successfully directed through

either an action driven by a learning algorithm or a behavior-based approach, a perception

problem emerges. The robot is provided with new scene stimulus that it must assimilate

and understand. There are two different approaches to incorporating recognition into this

problem. The first approach is to perform semantic segmentation where the scene is seg-

mented into components. For each component, recognition is performed across the entire

scene in a convolutional way (left to right, top to bottom). Using this approach, the robot

can filter out recognized objects that are extraneous. This approach may not be efficient

since participants assume an agent is recognizing an object during fixation after the agent

is directed toward the new target object. An alternate approach is to direct the agent toward

a new fixation location, at which point recognition operates on just the point of fixation.

A basic algorithm for this approach is demonstrated in Chapter 4 and extended in Chapter

5. Significantly more work is needed before a robot will have the capabilities of directed

perception.

Nonverbal joint attention is typically cued from two different nonverbal signals: gaze

direction and deictic gesture (Yu & Smith, 2016). Estimation and detection of these two
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signals is key to the challenge of shared attention. The decision to direct the gaze of the

robot is typically driven by the use of nonverbal gestures and verbal commands while gaze

serves as a relatively weak signal to follow. Progress in these domains is limited to sen-

sor and machine learning technologies that detect and estimate these signals when needed.

The challenge inherent in detecting and estimating signals is often the amount of error

captured in the signal. The best gaze estimation algorithms at the time of writing have up-

wards of 200 of error from ground truth (Morimoto & Mimica, 2005) while deictic gesture

has similar estimation error profiles. State-of-the-art systems require proximal interactions

(hand and eye trackers in close proximity of the user) before the error is significantly re-

duced. For this reason, much of the work in this document exists in proximal settings.

Solving the problem of distal nonverbal directing and distal gaze estimation may require

the development of other methods. Some ideas in this direction capitalize on interaction

memory and other contextual clues as a means to resolve references. Unfortunately, there

is a lack of good research in algorithmic artificial intelligence to define context-inspired

solutions. Alternately, the system may benefit from enhanced methods and hardware to

estimate distal-target gaze with precision.

This dissertation provides contributions to the problem of human-robot joint attention.

Many of these contributions were only possible using crowdsourced datasets prior to the in-

teraction. The rest of this study will detail these contributions but next, here is an overview

of the architecture developed to support this research.

2.3 Loop 2: On-the-fly crowdsourcing infrastructure

Few socially intelligent robots support integrated real-time crowdsourcing and cloud-based

resource management into their robotic architecture. Many surveys cover the broad spec-

trum of research that utilizes crowdsourcing in robotic learning tasks, ranging from percep-

tion learning (Russell, Torralba, Murphy, & Freeman, 2008) to action learning (Sorokin,

Berenson, Srinivasa, & Hebert, 2010). For a survey of various projects that use crowd-

sourcing in machine learning and robotic tasks, the comprehensive reviews by Goldberg

and Kehoe et. al. (Goldberg & Kehoe, 2013; Kehoe, Patil, Abbeel, & Goldberg, 2015)
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offer a detailed landscape. As an example, the RoboEarth project vision is still the most

mature vision of cloud resources integrating back-end architectures to support perception,

action and mapping (Molengraft, 2016). Rapyuta, the underlying framework, can be very

powerful but its emphasis on non-interactive tasks makes real-time latency issues secondary

for their level of inquiry (Hunziker, Gajamohan, Waibel, & D'Andrea, 2013). Details on

many of these architectures are sparse, with Rapyuta (Hunziker et al., 2013) and the work

by Osentoski et. al. utilizing closed-loop control (Osentoski, Crick, Jay, & Jenkins, 2010)

with a single on-line participant providing the most concrete detail. Other architectures

treat crowdsourcing as a secondary or tertiary characteristic of the research process, per-

formed as data collection or after data collection to support annotation.

Previous research does not utilize the cloud as an alternative resource to employ au-

tonomously when other resources are unavailable. Rapyuta manages to schedule available

cloud resources for the overall real-time system using specialized scheduling algorithms.

Large tasks can be scheduled to operate on cloud-based hardware or on local embedded

systems inside of the robot, depending on the needs and demands of the entire architecture.

This newly conceived system focuses instead on the labeling task as a source of informa-

tion that can be made available on-demand through either a social interaction between the

interaction partner and the robot or as an interaction the robot can request on-line. The

concept of managing cloud-based resources through scheduling is very important and is

complementary to the architecture designed and documented in this chapter. Systems and

architecture pipelines to support robotic interaction with either the environment or with a

social other are at present not a design concern for contemporary robotic architectures.

In this work, a crowdsourcing system is used to support interactive perceptual learning

between the robot and its environment. To support this level of inquiry, this work reviews

real-time perceptual learning systems. Raptor (Goehring, Hoffman, Rodner, Saenko, &

Darrell, 2014) is a recent (and closely related) successful dynamic training process that

utilizes the power of ImageNet (Deng et al., 2009), a large database of object categories.

With ImageNet, Raptor can discover early image priors for in-situ training purposes. Re-

searchers use ImageNet exclusively for figure-ground patch discovery and employ these

image patches to dynamically train fast, whitened, HOG-based object detectors during
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Figure 2-1: a) Long term vision of longitudinal embodied visual learning, b) system archi-
tecture and design of the NIMBUS architecture: sequence diagram, server subsystem and
caching mechanisms.

an interaction. This process takes under 30 seconds for a new image patch to reify into

an object detector. The perception-action loop extends this type of system and allows

the robot to take deictic actions toward resolving figure-ground ambiguity to support ob-

ject discovery with a social partner. The following section supports this perception-action

loop documented more thoroughly in Chapter 4 while focusing primarily on incorporating

crowd-based labels into this cognitive architecture.

2.4 Architecture layout and pipeline

The SHARE system is designed around a single principle: when the agent doesn't know

a word for an object it is observing, the agent asks a social partner. Then the robot can
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either share attention with a social partner who is intimately present with the robot using

joint attention or it can extract the scene and ask the users on-line to structure the region

and symbol to be mapped to that region. Designers of a system must ask when the robotic

agent understands it is observing an object not in its database. I address this question and

provide a solution in Chapter 4.

Figure 2-1a visualizes the basic architecture while Figure 2-lb visualizes the underlying

caching system that supported the architecture. First, the agent architecture has the ability

to saccade around its environment and recognize elements that are already mapped. This

piece of the architecture is described in detail in Chapter 4 (and also extended in Chapter

5). These chapters explore how the agent finds, extracts and learns about its environment

in a basic setting. When the agent is signaled internally that it doesn't recognize the stim-

ulus, a cascade is triggered in its architecture to crowdsource the answer. The cognitive

architecture computes a signal through a competition in which the stimulus wins against

the recognition algorithm for a mapping that the architecture perceives.

Figure 2-lb describes the subsystem that must crowdsource an answer for the mapping

region to symbol. The system slightly resembles the LabelMe project (Russell et al., 2008),

in which website visitors are provided images and the visitors must lasso-select the given

region and provide a label to the symbol. The difference between NIMBUS and LabelMe

is twofold. First, NIMBUS is designed to be operated on-the-fly. It attempts to crowd-

source the answer quickly and effectively, rather than acting as an ongoing system with no

temporal constraints. Second, NIMBUS provides an interface to an always-on system that

the robot may join and use. Figure 2-lb walks the reader through this process.

First, the robot securely connects to the server using an authorized, unique token. Once

connected, the robot can make a number of requests, like requesting a label to an image

or requesting a region to be selected. It may also query a large database for images, labels

or past interactions with participants for later analysis. Each visiting participant interact-

ing with the system is identified with a cookie containing a simple global unique identifier

(GUID) or with their unique Mechanical Turk worker ID. The system can push both HTML

and Javascript to the visitor's experience as well as a supporting application server. These

systems have access at their API level to store data in the MongoDB through simple re-
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quests to the webserver and application server. The application server provides a simple

way to also store other data types (like video content) that are not well-suited for storage

in the MongoDB. In addition, the robot's API has the capability to ask sweeping statis-

tical queries across the database through the use of secure read-eval-print (REPL) loop

connections. Figure 2-lb, the basic NIMBUS subsystem, provides a system for always-on

and always-learning interactions for the robot and has been in operation for approximately

three years.

The NIMBUS architecture was integrated into a previous robotic architecture that was

built over the past few decades around the idea of synthetic lifelike agents (Burke, Isla,

Downie, Ivanov, & Blumberg, 2001). NIMBUS architecture was later adapted into a

more embodied approach that takes into account sensors and motors. It incorporates el-

ements of interactive task learning (Thomaz, 2006) and principles of animation (Breazeal

et al., 2003). Recently, the architecture has forked into two separate initiatives: one that

emphasizes the ability to take advantage of small, embedded and ever improving smart-

phones (K. Williams & Breazeal, 2013; K. J. Williams, Peters, & Breazeal, 2013; Gordon,

Breazeal, & Engel, 2015) and another that emphasizes its ability to operate across small

and large scale computer systems (DePalma, Chernova, & Breazeal, 2011; Breazeal et al.,

2013). This section will focus on a simple pipeline to unify these movements and support

lightweight requests for resources not available to the robot alone. With this innovation,

the robot can make decisions to connect with individuals on the Internet, based on the

availability of resources and participants not present at the time of interaction.

Next, let's explore a core mechanism used across the architecture to improve the quality

of results sourced on-line as documented in Section 2.6.

2.5 A core mechanism to improve contribution quality

This section proposes a novel method to exchange quality of response for speed of response

from people on the Internet. Further, this proposal is backed with empirical findings from

experiments performed with the Amazon Mechanical Turk. This method shows an im-

provement in quality as an alternative to response time using this robotic architecture. This
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novel mechanism is embedded in the NIMBUS architecture, as described in Section 2.4. In

isolation, NIMBUS allows us to perform research for architectures that take into account

crowdsourcing as a core part of their interactions. NIMBUS serves to collect and coordi-

nate information from an always-on and resilient data collection interface, to crowdsource

on-demand when needed by the robot and to act as a computational resource for highly

intensive processes.

The trade-off between the quality of response from people on the Internet and the speed

at which a response can be obtained by an autonomous system is still not well understood.

The work contained in this document traces the past few years of engineering toward build-

ing a resilient cloud infrastructure to support robots on the ground and in the field. One of

the higher level features of the system is to retrieve information from databases in the

cloud, and when unavailable, to obtain high quality labels from crowds of people on sys-

tems such as Amazon Mechanical Turk or Crowd Flower. This research measures round

trip time from the robot to the crowd and back while discussing expectations for a system

that leverages crowdsourcing as a core cognitive resource. Next, this chapter introduces a

novel mechanism to improve quality of the response at the expense of response speed. This

chapter concludes with remarks and thoughts about the future of technology built for the

purpose of efficient and interactive labeling to support interaction.

2.5.1 Problem domain: on-the-fly visual labeling

This system seeks to realize the simple abstraction that perception-action loops within in-

teraction help define an interactive and situated visual labeling task and that back-end loops

completed between the real-time embedded system and the servers support the needs of the

interactive system (see Figure 2-1). While previous research in crowdsourcing and robotics

focuses on collecting datasets and direct interaction for behavior control, this research is

based on a visual labeling task. While behavior in interaction can be highly dependent

on context, visual learning and indexing requires sizable datasets and clearly can be reused

over long periods of time. Interactive visual labeling is still a large, open problem space rich

with potential breakthroughs. Using it, a system can take early visual stimuli and dynam-
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Figure 2-2: Data collection, conditions and user interface for crowdsourcing labels for a
situated robotic agent.

ically create stable object detectors or abstract deictic pointers (A. G. Brooks & Breazeal,

2006; Ballard, Hayhoe, Pook, & Rao, 1997) in real time.

To demonstrate the power of this construct, this system is built to learn labels through

both interaction and a server architecture that manages an Amazon Mechanical Turk ac-

count. Figure 2-1 shows the cognitive architecture that surrounds the system. At the inter-

action level, the system utilizes gaze and deictic gesture to visually guide the robot toward

relevant areas in the scene. It uses finite horizon reasoning and simple low-level cues to

visually extract select image patch foregrounds from the scene. This interactive guiding

process allows the robot to be directed toward stimuli it normally detects if operated in a

purely discretized, object-oriented manner. Additionally, it allows the robot to use those

early stimuli as training instances for socially relevant deictic and lexical referencing. In

the event the user disappears, the robot still has the ability to saccade to new stimuli and

collect labels from Amazon Mechanical Turk for a small fee. The following two sections

(Sections 2.5.3 and 2.5.4) introduce a natural tension within the architecture between speed

of response and quality. This research introduces two methods that document the trade-off

one could expect to see between systems of these types: one-shot labeling and rollover la-

beling. In one-shot labeling, the system attempts to collect the label as fast as possible. The

other method, called rollover labeling, attempts to reliably secure a label in the presence

of noisy, error-prone crowd responses by rolling over the result from one crowdsourcing
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participant to another in an attempt to correct and clarify previous labels.

To test the performance of the proposed method, the following hypotheses were defined

and tested with findings presented in the following sections:

* H 1: Allowing participants to validate one another improves the reliability and quality

of the result.

" H2: Due to the extra answer validation, the process of labeling with rollover will take

more time.

2.5.2 Data collection

To test the previous hypotheses, a camera was set up to snap a single image from its view-

point and to push the image along the architecture documented in Figure 2-1b. For this sim-

ple test, the captured image was pipelined to the web server and wrapped in HTML. NIM-

BUS hosted the page on Amazon Mechanical Turk and used the jsPsych (De Leeuw, 2015)

package to save the data back to Mechanical Turk as XML. NIMBUS probed Mechanical

Turk every 1 second to check for an answer (see Figure 2- lb for a sequence diagram of

asynchronous monitoring). If the answer was waiting, then the architecture auto-approved

the data and extracted the XML data to use in a rollover. The process looks similar to the

following itemized steps:

1. The camera takes a snapshot from the sensors of the robot's architecture.

2. Upload the data to the web server from the robot and wrap it in a visually under-

standable and descriptive manner.

3. Find an available on-line participant to label it, for a price. 2

4. Wait for the participant to accept the job and read the job instructions.

5. Await the participant's response.

6. Optional experimental condition: extract response, re-wrap and repeat three times.

2This seems to be the slowest process.
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The optional experimental condition used the current result from Mechanical Turk to em-

bed the answer as a visual overlay on top of the query (see Figure 2-2 right, pink box).

The answer was posted as an HTML GET request to the webpage and could be adjusted

or corrected by the participant on-line to return a hypothetically more correct answer. To

test elapsed time and quality, the system recorded elapsed time for one-shot and rollover

requests of the crowd. Each condition (one-shot and rollover) was performed 20 times in

sequence and, due to the fact that the system used multiple assignments within a HIT, en-

sured that each of 20 unique workers received 20 unique assignments. The baseline was

computed globally for the image across both conditions using the mean of each bounding

box vertex. Mean squared error and resulting variance were computed using the different

set of pixels between the baseline and resulting bounding box.

2.5.3 Results: Time-to-response measurements

a 2

Elapsed Time AC

Figure 2-3: Elapsed times of the two conditions: with and without the novel rollover mech-
anism. Response times are significantly different (p < 0.01) with one-shot labels outper-
forming rollover.

The image and requisite interface details were uploaded to NIMBUS and a process

began to synchronously wait for a response. Total round-trip times are reported in Figure

2-3. This process used Amazon Mechanical Turk at a competitive rate of $0.25 for a 45-

second labeling task. The experiment was performed 20 times for each condition. Findings
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show one-shot labeling can be a relatively quick process (Figure 2-3) while rollover can

take a substantially longer length of time. Response times for one-shot labeling fell in the

range of 12.9s, 520s with a median of 37.5s while a rollover process fell in the range of

95s, 1217.8s with a median of 263.58 seconds, or approximately 4.3 minutes. Response

times were significantly different between the two conditions (p < 0.01). It is clear that

one-shot labeling has the potential to be a very fast process, optimistically only taking 13

seconds. Section 2.5.1 describes the vision of on-the-fly labeling and aiding robots through

crowdsourcing. For this vision to come to fruition, researchers and engineers need to reduce

response times substantially and while 13 seconds is optimistic, 30 seconds is typical for

one-shot labeling. This finding suggests that asynchronous requests for labels and help

from the on-line crowd should either a) make non-critical requests from the crowd or b)

attempt better predictions of the future 30 seconds prior to crowdsourcing the query. Now

let's explore the response itself to analyze the quality of response from the two conditions.

2.5.4 Results: Analysis of quality and speed

Figure 2-3 finds that receiving a response can be as quick, but what kind of data quality

can one expect from a quick 30-second, one-shot label? In previous experiments (DePalma

et al., 2011), it was found that the quality of on-line data can vary widely. Using the

same results acquired from the 20-participant on-line experiment, the baseline answer is

derived from calculating the mean bounding box. Following this reasoning, this study

looks primarily at the resulting sum error across the condition, assuming the user of such a

system will ask for a response once and expect a high quality answer as quickly as possible.

To measure the performance of these two conditions, this study calculates the mean

squared error (MSE) with respect to the baseline and finds that rollover significantly re-

duced the overall error. Table 2.1 shows that while the answers can begin with many errors,

rollover helps correct them. The resulting effect is that the MSE of the rollover strategy

is significantly better than the one-shot labeling. Row 1 reports the errors from the two

strategies. Row 2 reports the standard deviation of the answer. Interestingly, the error is

minimized in the rollover condition (341.5 pixels vs. 518.6 pixels) by a factor of 1.5. Addi-
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tionally, the responses from rollover provide a reduction in response variance (18.4 pixels

vs. 22.73 pixels). This suggests that the contributors' edits to another's contribution pro-

vide a higher fidelity bounding box around the training instance and thus a higher quality

result.

In the course of this experiment, other strategies also emerged as being salient. For

example, while some of the bounding boxes and labels provided are rife with error, on

average, Amazon Mechanical Turk workers provided accurate responses. The assumption

(HI) was one-shot labeling will not provide an accurate result on average and rollover is

necessary for accuracy. Instead, research found that with many answers, a researcher can

statistically remove outliers based on the results of many parallel queries. This opens up

the possibility to an alternate strategy from strict rollover to parallel one-shot queries that

may allow the agent to rely on the consensus of many to remove the untrustworthiness of

smaller numbers of individuals. Then the agent can simultaneously model these workers

and weight them appropriately. This parallel process may simply capitalize on one-shot

labeling speed and still keep high quality results.

Using these findings, these mechanisms are integrated into a broader architecture in the

next section.

One-Shot Labeling With Rollover (Final Iteration)

MSE from baseline 518.6px 341.5px

Standard Deviation 22.73px 18.4px

Table 2.1: Quality of response between one-shot labeling and labeling with rollover re-
ported as mean squared error and standard deviation with respect to baseline. Rollover
outperforms one-shot labeling in terms of accuracy of response.

2.6 Extended cloud architecture

Utilizing the previous findings in Sections 2.5.3 and 2.5.4, an overall system was developed

called NIMBUS to support crowdsourcing in future parts of this dissertation. While the

system itself is not a core aspect of this research, much of the research demonstrated was

impossible without this system. The NIMBUS system presented in Figure 2-4a describes
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the layout of algorithms meant to improve themselves over time through interactions with

the crowd. The system itself uses seven main parameters:

" A description of the experiment,

" A maximum number of participants,

" A total budget,

" A maximum elapsed time,

" Participants per iteration of the algorithm,

" The quality assurance function (see previous section),

" And, the maximum number of iterations.

Unfortunately, the latency of response found in the previous sections demonstrates the

architecture primarily supports back-channeled, asynchronous requests. This allows the

robot to continue the interaction rather than synchronously waiting for responses that may

break an interaction. The architecture presented ensures participants are exposed to the

experiment either within subject experiments or between subject experiments, depending

on the configuration of the parameters. The system has access to an internal database that

maintains running experiments as well as the set of long-term learned models (see Figure

2-4b, 2-4c and Figure 2-1). This database and the architecture used extensively for data

collection are detailed in Chapter 4 and Chapter 5.

To understand the extent of the architecture pipeline, it's helpful to take a data collection

request through the architecture. First, a simple API call triggers an experiment deployment

into either production or sandbox as long as it conforms with the following interface:

" The experiment can render a stimulus as HTML viewable by a web-browser.

" It handles a websocket callback.

" It can provide a function that can summarize a small number of responses to a stim-

ulus.
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e It can provide an HTML renderable version of a consent form.

* It can provide a simple summary statistic that improves quality.

" The experiment provides a set of overall experimental parameters like maximum

subjects, maximum budget, maximum time spent, participants per iteration and a

learning algorithm that takes a previous state and a label as input and evolves the

model one step for the next set of participants.

" The system iterates on the model until some termination condition, which is by de-

fault defined as exceeding a budget, exceeding time spent or exhausting a number of

subjects.

Following setup, the system switches to production mode and has the ability to automati-

cally monitor other global termination conditions like lifelong budget. Every experiment is

tested extensively in a sandbox prior to production.

Once an experiment is triggered, it goes through a simple process of unraveling. First,

the set of conditions are unrolled and an empty set of unique visitors are initialized. Each

condition deploys its own set of assignments to Mechanical Turk of size representing the

participants per iteration (ppi) of the algorithms evolution. Next the system renders a sum-

mary version of the experiment to draw in the participants. Once a participant accepts

and completes the assignment, the response is recorded in the long-term database. The

event-based system calls the ppi aggregator function once the number of assignments are

completed and stored in the database. These responses are then aggregated and passed

to the summary and quality assurance function to be cleaned and recorded in a separate

record. The last model state is passed, along with the response by the participants, to an

arbitrary learning algorithm to iterate once again. This process iterates, batch-after-batch,

until the budget, time or number of participants is exceeded.
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2.7 Designing an interactive perception-action system for

shared visual attention: next steps

The robotic architecture used throughout this chapter incorporates interactive perception-

action loops and interactions between the robot and crowds of people on the Internet to

learn to map words to its perception system. Section 2.5.3 demonstrates a clear need to

reason about the speed of a response and the quality of a response a robot designer can

expect. Even in the best circumstance, one-shot labeling can take at least 12.74 seconds and

take upwards of 4 minutes, depending on the availability of participants on-line. Timing

and scheduling the interaction options is an interesting dynamic challenge for this always-

on hybrid architecture but progress is definitely possible. Following this basic architecture,

this research presents the elements of SHARE that make up the core focus of this system

(described in Section 2.2 as "Loop 1"): illustrating the synthetic and robotic visual attention

system that incorporates deictic gesture following and recognition as well as sustaining this

interaction over long periods of time.
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Figure 2-4: Extending the system architecture for use within the rest of the dissertation. a)
Extended system architecture as a metaphor for ongoing learning systems. The goal of the
extended system is to enable both on-demand and longitudinal iteratively improving algo-
rithms relying on on-line social feedback. Ongoing monitoring of the constantly running
system b) in production mode and c) in sandbox mode. Sandbox mode enables testing prior
to production deployment. The overall system has been running for 3+ years without stop.
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Chapter 3

Human-robot shared attention : metric

and analysis

Human-robot attention sharing is linked to critical communicative competence for situated

learning systems (Tomasello, 2000) and is considered to be a critical factor that differen-

tiates humans from chimpanzees, (Carpenter, Nagell, Tomasello, Butterworth, & Moore,

1998) opening the door to cultural, social learning. Attention sharing is also linked to

triadic interactions between two situated agents and a present object, its affordances and

relevant shared context in general (Trevarthen, 1979). Following this line of reasoning, if

a robot can tap into this critical skill, it may tap into relevant social and cultural learning.

Though many researchers and roboticists have focused on building models of joint atten-

tion to support socio-cultural learning systems for robots, there is still significant progress

to come.

Human-robot interaction systems are engineered to study a) the effects of robotic action

on an interaction partner and b) the effects of human action on a robotic agent architecture.

This dissertation and document focuses primarily on a newly developed system (called

SHARE) which uses shared attention as a mechanism that is useful for feature sharing (on

the robot side). Chapter 1 focuses on an example that many scientists use in which simple

utterances like "Help!" require context and dialogic interaction to sufficiently resolve. In

the artificial intelligence field, the set of features, cases or frames needed to resolve such

utterances is typically considered a sufficient solution. Shared attention systems argue that
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the recall and selection of such features, cases or frames must be socially shaped and negoti-

ated whether they are internal cases recalled or external features observed. This dissertation

focuses on a visuo-social, situated (perceptual) cognitive system to support a higher level

agent architecture (c6 (Burke, Isla, Downie, Ivanov, & Blumberg, 2001)), mainly due to

the relevancy of this problem to situated robotics rather than more unembodied agents.

Unfortunately, there are a number of incredibly important problems that are unsolved

and unaddressed in the literature that are absolutely critical to developing a synthetic shared

attention system between a human and robot. For a situated visuo-motor system to support

higher level cognition, many argue that synthetic visual attention must have a plausible

way forward. Breaking these concerns down, this chapter argues that the following features

must exist in a unified way in the architecture. Each feature includes an example of why it

is important.

1. Visual search: this visual subsystem provides the capability to perform goal-directed

exophoric reference resolution. This problem is unique and unsolved in its ability

to resolve references in the visual field even if it has no corresponding symbol for

attachment. Saliency centered search usually leads to filter-based solutions that in-

corporate inhibiting activation to limit fixation at a particular location. No system

as yet incorporates a form of multi-class recognition for the purpose of higher level

indexing in its search repertoire. Just like a toddler has the ability to point and ges-

ture at objects that he or she cannot name yet, the visual subsystem should be able to

provide location indices despite a lack object class. The SHARE system implements

a basic visual search feature that leverages a novel foreground reasoning mechanism

to address foreground selection in situated computer vision (e.g., actively perceiving

and making decisions about where to look next).

2. Intrinsic and innate biases: these play a critical role in reference resolution when the

goal of the reference is unknown. A synthetic attention system that interacts with a

biological attention system must address and capitalize on similar biases that show

up. For example, red objects and motion play a role in visuo-foreground selection

in humans. While many researchers are interested in identifying these biases, re-
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searchers need more discoveries for a comprehensive and plausible system that inte-

grates these biases. While some researchers believe these problems are unimportant

to multi-robot joint attention (Kaplan & Hafner, 2006), in fact, these factors play a

key role in systems that interact with biological agents (e.g., in human-robot inter-

action) that empirically capitalize on these biases. Key discoveries in bias-finding

perform a function in integrated bias saliency systems and have led to biologically

inspired, sensorimotor robots where saliency primarily directs the robot's gaze, and

hence, its space of action. The system designed throughout this dissertation leverages

the saliency models of others in the architecture.

3. A working memory system: this allows the visual attention system to dynamically

tether unresolved lexical entities to its perceptual field while providing a memory

system designed to store data on found objects from the visual field. The SHARE

system utilizes a scoped memory system for just visual working memory.

Unique to this work and the research presented in the following chapters, the SHARE sys-

tem unifies the previously mentioned factors into an agent architecture. Any visually guided

situated system must address the problem of identification and selection. This chapter in-

troduces a new metric that attempts to unify and make progress towards social-foreground

selection. The metric also allows both recognition and saliency based approaches to be

compared using a single function. This new metric forms the intellectual backing to dis-

cuss progress made in Chapter 4.

3.1 Relevant work

Synthetic human-robot social learning systems must interact with their biological counter-

parts and while humans are significantly different, engineers can design robots to be inter-

actionally compatible with them. How then does a researcher make progress in achieving

shared attention? To resolve this challenge, it is instructive to consider the positive at-

tributes of a synthetic shared attention system. Such a system allows the architecture to

select relevant stimuli from its environment that its human counterpart directs it toward
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(regardless of whether or not it understands the object it is guided toward) and it allows the

underlying sensory stimuli to be used within a learning framework. To fully engage with

the shared attention system thought experiment, researchers and engineers must also vali-

date that the stimuli the human directs the robotic system to notice is, in fact, the correct set

of stimuli or features. Section 3.2 discusses exactly this measurement and provides a new

metric of success, allowing shared attention systems that rely on synthetic social-perception

to trust their output.

Artificial intelligence systems still lag in representing high level phenomena; however,

they are enjoying popularity in computer vision. These are the more recent foveated mod-

els in deep convolutional neural networks applied as complex classifiers (Stollenga, Masci,

Gomez, & Schmidhuber, 2014; Xu et al., 2015) in cluttered scenes or the less popular at-

tempts at incorporating elements of attentional leakage through a stacked array of global

filters (Tsotsos, 2011). The human-robot interaction domain traditionally focuses on learn-

ing gaze following behavior itself rather than representing attention explicitly. Beginning

with Scasselatti's work on gaze following (Scassellati, 2001), much work has focused on

learning the behavior itself rather than explicitly designing such behavior. Recent models

integrate elements of active learning (Doniec, Sun, & Scassellati, 2006) and reinforcement

learning (Triesch, Teuscher, Deik, & Carlson, 2006). Doniec and Scasselatti's work is most

relevant to the embodied nature of the problem. Their research shows clear evidence that

the robot influences the participant and the robot follows the pointing gesture behaviorally.

It is now evident that the robot has shared attention with a participant from a behavioral

standpoint. However, has the system successfully chosen the correct stimuli in its percep-

tual field to utilize for the purpose of recognition and learning? In this researcher's opinion,

the phenomena that are relevant are measurements of foreground and background (in the

A.I. literature) or the figure-ground separation in neuropsychology literature. It appears

there is no prior work in the context of human-robot interaction that asks the participants if

the information they report is their figure-ground separation.
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3.2 Shared attention : metric and hypothesis

Sharing attention with a human is equivalent to sharing a current world model at the current

time step. In the situated approach, an agent chooses its frame by finding regularities

in its environment that serve to advance the higher level goals the agent is attempting to

achieve. This has been called the endogenous factor in the literature (Posner & Cohen,

1984). Vice versa, when higher level goals are not activated, the agent enters into a strict

stimulus-response mode, called the exogenous factor. Artificial intelligence research that

focuses solely on the exogenous factor typically falls under the topic of saliency while

research that focuses on endogenous factors resides under the broad idea of visual routines

(Ullman, 1996), visual search, guided search (Wolfe, 1994) or some other more ecological

form of computer vision. The challenge now is to share this dynamic with another agent.

Activating or stimulating objects and regularities in the shared environment to affect a

participant's gaze and selection mechanism is difficult and the subject of many interaction

studies interested in human-robot interaction.

This research focuses primarily on foreground reports as a different, quantifiable mea-

sure of sharing attention. By priming the participant's objective to share attention with

a robot, this work hypothesizes that a specific class of nonverbal gestures called deictic

gestures will emerge and the goals of each participant and the scene being presented will

shape the actions themselves and their parameters. Regardless of the biological plausibil-

ity of the model the robot utilizes, the question is whether the human inhibits and activates

similar perceptual foreground (based on self report) and whether the robot can adaptively

shape its filtered foreground appropriately.

3.2.1 A new metric for sharing attention

Given any generative model that predicts the sensory foreground of the participant, FP and

given the reported foreground by the participant F9 from the same ego-centered camera

system, the normalized mean squared error is probably the best way to understand whether

or not attention is shared:
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NMSE(Fp, F9) = F -Fij| 2

where i, j are pixel coordinates and w is the width of the image, h is the height. This

assumes that the user selects the foreground from the robot's perspective after the fact.

If the robot is provided the goal to share attention with a specific foreground, FGOa, then

the user must provide an accurate prediction of that foreground, minimizing NMSE(FGoal, FY).

Vice versa, if the human is given a foreground to communicate, the robot must predict from

its sensors the given foreground, minimizing MSE(F'o"'. FP).

3.2.2 Human dyad pilot study

(a)

(c)

(b)

(d)

Figure 3-1: Observed deictic action and gesture during pilot. Tangrams offer a constrained
domain for both selection and recognition. a) Demonstrates an example of a tangram.
The observed gesture throughout the experiment was diverse. b) In this excerpt screen-
shot, iconic gesture (a rarely used referential act) was observed. Another gesture observed
throughout the experiment can be found in c) where single extension, sweeping gesture
were observed and d) where numerous, precise gestures were observed.

To observe this dynamic, 22 participants were recruited from the local MIT community
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to communicate a foreground to the other participants. Ten dyads were formed to exchange

gesture and report foreground. One early dyad was thrown out after results showed modi-

fications of the instructions elicited iconic gesture (e.g., Figure 3-1). This class of gesture

is characterized as mimicking the shape or dynamic of something in its environment (see

Figure 3-1). Iconic gesture has been previously linked to higher level attentional effects

such as priming that are not well represented in these perception models (Wu & Coulson,

2007).

One fundamental challenge in computer vision is to detect and use boundaries, the

fundamental trade-off between aggregates of regularities making up an object vs. the reg-

ularities themselves. This work breaks down the exchange of nonverbal behavior toward

sharing perception using the domain of tangrams. This domain allows one to arrange sub-

component pieces to build higher level object structures and to represent parts of larger

objects well. In addition, this artificial domain is easily represented on a computer screen

to allow the participant observing the gesture to select the desired foreground on a touch

screen.

Within the dyad, roles were given. One participant was told he or she would receive a

goal to communicate to the other participant, specifically a foreground. The other partici-

pant was told he or she would observe and receive the foreground. The participants were

told they had only 5 seconds to exchange gesture. This pressure forced the participants to

exchange gestures quickly to resolve the ambiguity of a single gesture.

The communicator had a private screen that primed the participant with the task goal

and the observer had a private screen to enter in the foreground. The real-life scene and

the two computer screens were synchronized and the orientation was taken into considera-

tion when presenting the screen. In other words, the participants stood side-by-side rather

than opposite one another to share scene orientation (an important consideration for human

perception).
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3.3 Analysis of behavior

After being asked to communicate a specific foreground goal to the other participant with-

out talking, one participant began to gesture using one of two major classes of intentional

referential gestures: broad sweeping gestures and a highly precise pointing gesture. The

participant used the pointing gestures to direct attention to the subcomponents of the fore-

ground tangram, using many referencing actions to refer to the foreground. Other partici-

pants seemed to use broad sweeping gestures to indicate "all of the tangram pieces within

this space" (see Figure 3-1). This may indicate the human's ability to perceive the intended

object that the tangrams compose. Similar to seeing the forest from the trees, or vice versa

without representing trees (Greene & Oliva, 2009), the participants referred to large ag-

gregates as well as precise subcomponents.

(a) (b)

Figure 3-2: An analysis of deictic exchange: action class and numeracy. a) Dyad preference
for reference strategy. X-axis: Scene (Tl-4) Y-axis: +1: 100% general gesture, 0: equal
gesture types utilized, -1: 100% precise gestures used. Each line represents a dyad (Dl-
5). b) Of those dyads that correctly communicated the foreground, this chart presents the
fraction of participants who used the basic referencing policy.

The videos from the pilot study were video coded for gesture type and numbers. They

are presented in Figure 3-2. It is clear that the variance the participants used ranges broadly

and fairly evenly from the general gestures to the precise gestures. Task 3 was a special

case scene in which ten tangram pieces were separated by a large margin of empty space

between them. Participants reacted with only precise gestures so the task was thrown out

for the comparison. There is corroborating evidence from (Saupp6 & Mutlu, 2014) that

these general gestures show up frequently within referential behavior. When robots must

execute deictic referencing behavior, Figure 3-2b shows that the robot may need to support
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both multiple, precise referencing gestures as well as single, general sweeping gestures, de-

pending on the underlying stimuli the robot is referencing. Generally, referencing behavior

policies are adaptively switched within the interaction and perception systems must support

many of these referencing behaviors. Additionally, the perception system that understands

this referencing behavior must support classifying these foregrounds into recognizable ob-

jects. This important factor is explored more in Chapter 4. Once behavior is exchanged,

the results show that the observer almost always is able to guess which foreground is being

communicated (83%) by the participant's peer.

3.4 Discussion

This study is designed to identify general patterns of deictic gesture exchange and map

them to specific referenced regions of the visual field. While only a small number of

participants were recruited, a brief glimpse of certain dynamics is evident. It is clear that

given a communicatory goal for a human participant, peers can successfully exchange both

deictic and iconic gestures (similar to those found in Figure 3-2) toward sharing foreground

(Section 3.3). The work of vision scientists like Marr (Marr, 1982) and more recently

Zhu et. al (Guo, Zhu, & Wu, 2007) postulates an internal mechanism that can sketch the

shape of the image, so called the 2.5 sketch (for Marr) or the primal sketch (for Zhu).

The work of primal sketch implementations is to represent not just the statistical patterns

found in the image but also the shape, form and sketch of the scene or region itself. These

underlying sketches may provide interesting models that become useful to the problem of

resolving referential iconic gesture (e.g., that present in Figure 3-1, top right) through re-

priming the vision system to find similar shapes in the environment. No system today can

address the problems presented by this interaction (e.g., primal sketches, visual search and

visual priming), let alone integrate them into a situated architecture. The following chapter

attempts to build one critical component of this architecture: the ability to perform visual

search within an image.
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Chapter 4

Design of a directable artificial visual

search architecture

Visual search is described by Jeremy Wolfe (Wolfe, 1994) as eye behavior that utilizes

a limited, fixed capacity towards identifying a set of objects in a serial manner under a

retinopic fixation point. This visual search behavior is not well understood but there are

actually many models of visual search that are plausible and well studied in psychology

literature (Wolfe, 1994; A. M. Treisman & Gelade, 1980). This chapter provides a model

of synthetic visual search that indexes its world based on a flexible aperture that recognizes

objects through perceptual grouping of the considered foreground. Vision scientists have

yet to solve the problem of building a visual search architecture to support this ongoing be-

havior in a way that competes with standard computer vision metrics. But progress is being

achieved in limited capacities as we'll see in Chapter 5 which explores an extension of past

models that are competitive (Mnih, Heess, & Graves, 2014) with standard convolutional

neural networks (LeCun et al., 1989) on the same dataset. Regardless, the sets of basic

mechanisms required to implement a system that can perform serial and contextual recog-

nition go beyond the current state-of-the-art in computer vision. The SHARE architecture

extends the abilities of previous models to allow an agent to share gaze and recognition

synthetically with a human partner.

A situated gaze following mechanism can be implemented in a number of ways. One

solution is to segment the scene into a number of regions followed by recognition (see
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(Girshick, Donahue, Darrell, & Malik, 2014)) of the regions. This approach is prohibitively

expensive due to its processing extraneous parts of the scene not pinpointed for recogni-

tion. This pruning can be performed at an earlier stage of the process with the region

providing the label and index that the human partner has selected. Alternately, one can

take a different and more computationally efficient approach: to build a perception system

that can reason directly about foreground (i.e., region) recognition and provide the ability

to follow both gaze and gesture toward an indexed target while simultaneously inhibiting

the process of recognizing the rest of the scene. There is a huge challenge in supporting

the types of reference goals that one may refer. This chapter (specifically Section 4-2) pro-

vides evidence that semantic segmentation may not provide a sufficient substrate on which

to resolve exophoric references.

The goal of this work is to build a flexible perception system that can be used in human-

robot interaction domains to extract and learn about select environments through human

interaction. Design of such a system depends on requirements relevant to joint attention

(Tomasello, 2000) in which a robot may be directed to attend to something new and still

have the capability to refer to and learn from this sensory experience. While the SHARE

system also generates goal-oriented deictic action (critical to directing a partner's gaze),

this chapter explores the performance of pixel-level referencing vs. indexical (i.e., object-

oriented) referencing. In essence, the approach is to extract deictic indices through the

integration of information across multiple modalities via interactions with both the envi-

ronment and a social partner. This triadic relationship between social partner, self and

environment sets the stage for a more situated approach than traditional robot-environment

interactions alone.

4.0.1 Simulating a peer's reference to improve exophoric resolution

One unique aspect of this work that will be further explored in Section 4.3 is the under-

lying model that puts internal modules in competition to select and estimate foreground.

Models of competition show up in a number of cognitive architectures. Fieldman and

Ballard described these early on and hypothesized that connectionist models were impor-
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tant (Feldman & Ballard, 1982). Scientists later applied competition to selective attention,

(Koch & Ullman, 1987) popularized in robotics through the models of behavior-based ar-

chitectures (R. Brooks, 1986; Blumberg, 1996; Burke, Isla, Downie, Ivanov, & Blumberg,

2001). Competition offers a controlled way to mediate coordinated parallel architectures

while taking advantage of the best of the trade-offs of all the submodules. Rather than

focusing on popular models, competitive learning in artificial neural learning or recurrent

networks, Section 4.3.1 proposes a new method to resolve competition and tests it against

the dataset.

Competition must be resolved in a meaningful way in an internal visual system where

multiple systems contributing to the foreground generate a number of proposals. Given an

image and a reference, which underlying system best estimates the referenced foreground?

The solution is to build an internal model of perceiving and referencing, both as a spotlight

model, and align perception and reference to the same stimulus. A visual search mechanism

that points and fixates on a particular location to identify its target seems like a natural

match to handle deictic referencing. The foreground is back-projected from the indices

and can produce a unified way of generating pointing positions, both proximal and distal,

using simple geometry. These referencing actions represent a self-as-simulator model that

allows the system to compare incoming referential actions with a most-likely foreground

reference and potential index. This novel mechanism is described further in Section 4.3.2

and is a part of the hypotheses described in the following section.

4.0.2 Conditions and hypotheses

Based on previous findings from Chapter 3, this research hypothesizes that the precision of

foreground being shared between a human and robot is highly dependent on the underlying

model of attention. Namely, the following hypotheses are stated:

o HI: When referencing objects that are already known to the synthetic agent, a goal-

directed visual search mechanism with the capability to recognize objects and pro-

duce boundaries estimates a more precise foreground than simple saliency models.

o H2: When referencing objects are unknown to the synthetic agent, a model of rec-
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ognized objects being back-projected onto the image is insufficient to model the ref-

erenced foreground compared to saliency models that could estimate the foreground

best.

e H3: Putting these models in competition to take the best of both models allows the

system to perform exophoric reference resolution and produces ideal results for all

potential goal foregrounds.

The success of H3 is important for opportunistic and embodied learning. If a robot is

designed with a signal that an exophoric reference maps to a location with an unrecognized

foreground template, then a potential opportunity to label the visual template would emerge

from the interaction. In addition, Chapter 2 explores examples of how these templates can

be sourced from on-line participants using a frame alone.

4.1 Related work

For a robot to share attention with a human participant and vice versa, it needs to take

actions in the world to affect its partner's visual system. Evidence from (Doniec, Sun,

& Scassellati, 2006; Bainbridge, Hart, Kim, & Scassellati, 2008) suggests that robotic

nonverbal deictic gesturing affects the gaze trajectories of human partners. Yu and Smith

also present evidence that joint attention occurs through multiple sensory-motor pathways,

engaging with both referential and gestural behavior as well as gaze trajectory manipulation

(Yu & Smith, 2016). For these reasons, the system presented herein internally represents

a set of deictic pointers (e.g., an origin-ray-scope model) that helps the system keep track

of location indices in a local memory. This section will cover related work in attention,

robotics and deictics.

4.1.1 Joint attention and attention in robotics

The work of Scassellati on gaze following and sociability led both to become core issues

for social robotics (Scassellati, 2001). His work focused on a number of mechanisms that

would be required to implement a deeper theory-of-mind for humanoid robots, inspired
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Figure 4-1: An illustration of synthetic and natural visual search. a) The SHARE system:
tangrams in view with foreground being selected and identified as a known "whole object."
The dataset was collected from on-line contributions. Functions available are "find," "iden-
tify" and "classify." b) A demonstration of the reader's human visual search adapted from
Wolfe (1994). The objective is to find the "T" symbol within the image. Notice how your
eye searches the image in no particular order.

heavily by the work of Butterworth (Butterworth & Cochran, 1980) and Baron-Cohen

(Baron-Cohen, 1997). The joint attention system in this cohesive system followed gaze

and pointing gestures toward a target location but was unable to recognize the object under

its fixation point. Following this work, effort began on learning to follow gaze from a de-

velopmental perspective. Nagai et. al., Doniec et. al. and Triesch et. al. (Nagai, Hosoda,

Morita, & Asada, 2003; Triesch, Teuscher, Dedk, & Carlson, 2006; Doniec et al., 2006)

are all concerned with how to map referential gesture or gaze to predetermined objects in

the world, or in other words, learning to follow a referential gesture toward objects with

an existing model. The questions investigated in this section expand on previous work by

incorporating elements of recognition at fixation locations as well as requesting self-report

foregrounds from human participants. One evaluates the success of this system by mea-

suring the error of the reported foreground (a mapping of inhibited factors and uninhibited

factors) and the predicted foreground of the shared factors.

As discussed in Chapter 1, visual attention systems can be roughly characterized as

bottom-up or top-down. Bottom-up approaches focus primarily on filter stacks (Tsotsos,
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2011; Itti, Koch, & Niebur, 1998) due to their ability to facilitate leakage while top-down

attention systems emphasize recognition systems that drive movement of the fixation to

the next point. Driving fixation behavior using conspicuity maps is typically carried out

by inhibiting observed locations and reweighting the same map to reveal new locations to

target. Recognition systems focus primarily on localizing objects within images through

some search mechanism (see Figure 4-1). Both approaches clearly affect gaze behavior

and both are incorporated in the SHARE system section presented later in this chapter.

Since both bottom-up and top-down approaches help characterize the gazing behavior,

this chapter will touch on both factors and discuss relevant work in this area. One system

that unifies saliency maps as a means to extract templates and learn new models on a roam-

ing robot is Frintrop's VOCUS attention system (Frintrop, 2006). VOCUS learned about

objects via saliency maps and a curiosity system driven to find new and novel objects in its

world. VOCUS also focused primarily on object-environment relations and was not biased

to learn from other agents in its environment. A coverage of computational attention would

not be complete without the decades-long research of Tsotsos (Tsotsos, 2011). He presents

one theory of computational visual attention based primarily on Gelade and Triesman's

model of visual search (A. M. Treisman & Gelade, 1980) that can compute saliency values

for arbitrary images. This work emphasizes the computational mechanisms surrounding

attention itself and does not account for social factors. None of these algorithms focus on

robotic joint attention in which the robot plays an active role in sharing attention with a

human participant.

The process of shared attention in this chapter examines the exchange of social cues to

generatively and collaboratively design the shared foreground map (DePalma & Breazeal,

2015b) rather than the learned development of gaze-following toward behavioral joint at-

tention.

4.1.2 Shared attention through a common representation: deictics

Referential gesture that is dependent on context is sometimes referred to as deictic. Ref-

erential gesture and deictic use in human-robot interaction has been studied in various ca-
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pacities. (A. G. Brooks & Breazeal, 2006) presents a model of multi-modal deictic genera-

tion in communication that leverages grammar models to generate deictic gesture. Saupp6

(Saupp6 & Mutlu, 2014) presents work on specifying a number of categories of deictic

use in reference which include pointing, presenting, touching, exhibiting, grouping and

sweeping. Other effects such as synchrony (Rolf, Hanheide, & Rohlfing, 2009) and mo-

tionese (Nagai & Rohlfing, 2009) may also contribute to the intentional capitalization of

innate biases that drive saccade behavior. Additionally, appropriate deictic reference use

has been attributed to improved collaboration between humans and robots in difficult tasks

(Admoni, Weng, Hayes, & Scassellati, 2016). Though joint attention has been studied in

various capacities under different definitions, (Kaplan & Hafner, 2006) convincingly argues

that true joint attention is an intentional, goal-oriented process and models that leverage

saliency systems where innate biases serendipitously grab the attention of the interaction

group should be considered unintentional shared attention. This chapter focuses primar-

ily on foreground-as-goal and utilizes deictics as a communicatory action to synchronize

foreground.

For a robot to share attention with a human participant and, vice versa, it will need to

take actions in the world to affect its partner's visual system (Bainbridge et al., 2008; Yu &

Smith, 2016). Additionally, the robot will need a sensory system that can handle the actions

that are directed at the robot. This researcher drew inspiration from a number of sources

when researching this seemingly simple question, from psychology and human-robot inter-

action to state-of-the-art robotic attention systems. This chapter documents progress made

toward a visuo-motor shared attention system that simulates others to improve foreground

sharing.

4.2 Problem: the socially driven visual search task

Many tasks in static environments require saccading from position to position while recog-

nizing and indexing the environment being observed. As described earlier, this process of

visual search may be significantly more social than previously thought. Research in joint

attention argues that these processes may be deeply social in nature. In this work, joint or
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Figure 4-2: Some observed behaviors during a pilot experiment when attempting to direct
the attention of another human participant. Left: a participant used bounded hand gestures
to refer to the space between the palms (highlighted in blue). Right: precise pointing meant
to highlight one particular region that must be interpreted to be one piece of the tangram
figure (highlighted in blue).

socially guided visual search is defined as the collaborative process in which synthetic em-

bodied agents exchange gesture toward sharing foreground (e.g., parts of the scene that are

activated and not inhibited). The foreground is a measurement space which may highlight

object silhouettes or the underlying pixel saliency itself (see Figure 4-6). An integrated

approach to improving socially driven visual search for agents will require internal robotic

processes to handle sequential classification (or recognition) of scene indices in the en-

vironment. In the case of socially driven visual search, the agent will index the scenes

together with a social partner.

4.2.1 Task requirements

Collaborative human-robot joint attention requires the visual search task to incorporate

both the ability to predict the participant's foreground and take goal-oriented action toward

changing the interaction partner's direction of gaze. Foreground is defined as binary maps

that represent the thresholded salience of the scene. This prediction allows the robot to

define a shared attentional space on which both the human partner and the robot may learn.

Expanding knowledge through attention mechanisms is one of the key ways that learning

progresses in biological agents. The investigation of key social action tools like gesture

found to affect gaze of human social partners has been conspicuously missing from robotics

literature until recently. Any system that intends to affect the gaze of a partner will need

to take real world deictic action to direct its partner's gaze. Deictic action has been shown

88



to affect gaze meaningfully in work by other researchers (Bainbridge et al., 2008; Saupp6

& Mutlu, 2014). Evidence successfully observed in dynamic scenes is presented later in

Chapter 6.

A system that can support the demands of socially driven visual search will require

advances in computer vision and interaction design. One issue impeding progress is the

lack of a key metric of success that will allow researchers to compare and incrementally

improve progress in human-robot joint attention systems. Chapter 3 attempted to rigor-

ously argue that the socially driven process should be compared across systems to improve

one key metric that would enhance dialogue, collaboration and learning systems: namely

foreground. Sharing foreground is in effect sharing an observation space. To measure

success of sharing foreground, a normalized mean squared error metric is proposed by De-

Palma et. al. (DePalma & Breazeal, 2015b) and described in Chapter 3. This metric allows

shared attention systems to compete on equal footing and compare systems that may have

radically different models relying on either recognition-based indexing or simple saliency

maps. Additionally, this metric may enable perceptual learning through simple interaction

alone. While systems like VOCUS (Frintrop, 2006) involve learning to index from simple

saliency maps, social learning could improve these systems by capitalizing on social inter-

actions and allowing these systems to compare visual-learning models across domains.

To measure the success of a solution to this problem, the task should have the following

qualities:

* It should have the complexity to compose and aggregate sub-figures and wholes so

visual recognition and indexing become core phenomena for investigation.

" It must have the capability to reference non-object type foregrounds (Figure 4-6 re-

veals one mystery).

" It must also allow the human participant to report his or her goal foreground to the

robot.

Since tangrams offer the necessary features, they were used for the purposes of these ex-

periments. Simple tangrams ensure clean templates and boundaries that can be employed

within the contexts of both learning and referencing.
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Figure 4-3: An illustration of capturing the deictic reference to use for selection and hy-
pothesis enumeration.

Investigating how indexing and recognition, saliency and peer simulation affect foreground

sharing required designing a three-factor foreground contribution system, described in de-

tail in Sections 4.3.2.1, 4.3.2.2 and 4.3.4 respectively. A sketch of the problem overview

in Figure 4-3 explains the system and roles of the exchange. In this overview, the role of

the director is to communicate a goal foreground to the viewer. A goal foreground FG re-

quires an action ah (in this case, defined as coming from a human, h). The objective of the

viewer is to infer which foreground is being communicated. This model requires the fol-

lowing input: the image of the scene, I, and the action in continuous space ah. The viewer

must make sense of the reference and its mapping on the environment, extracting just the

foreground that is relevant. This process has been called exophoric reference resolution in

discourse analysis ((G. Brown & Yule, 1983), Chapter 2).

Using a shared scene made up of tangrams, the system attempts (at a pixel level) to

predict the goal foreground provided to a user of the system. Roles are assigned to each

participant in the dyad: the observer of the action must predict the goal foreground of the

director and the director must provide a set of actions that the observer sees. Since the study

is primarily focused on the observer role for this chapter, the only information provided

to the robot is the image of the scene and the referential centers of the deictic actions.

In Figure 4-3, a goal foreground, FG is given to the director (i.e., the chalice top in the

figure) who then provides a set of actions, ah, for the observer. With only the actions from
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the human partner, a,, along with the image I, the robot observer and the algorithm must

output a binary foreground prediction Fp from each of the underlying subsystems described

in the following sections. The indexing subsystem recognizes subfigures and wholes, then

chooses the most likely referred candidate, (Fz) where Z represents the fact that it is the

result of a set of binary classifier functions hz (I) operating on different subsections of the

image. Additionally, deictic action is mapped directly to the scene to produce a secondary,

binary pixel map to produce Fa that competes with the index to support referencing of both

known and unknown objects. Through a process described better in Section 4.3.4, these

hypotheses compete to predict the foreground that the human participant is attempting to

direct the robot to observe.

To better understand the performance of this system, one compares a number of ap-

proaches to evaluate their effects on the visual attention system. The main goal was to shape

the foreground between the human and the robot with a specific interest in the deictic class

of signaling. Within this class, a referential gesture must be detected and spatially resolved.

The computational model consists of three components: 1) a visual search mechanism that

uses previously learned indexing and recognition to resolve the reference (Section 4.3.2.1),

2) a simple flashlight model interpretation of the deictic action to highlight the appearance

of the image itself, given a cone model of referencing (Section 4.3.2.2) and finally 3) a

system that allows the previous subsystems to compete through a thresholded confidence

value generated by a novel perspective-taking mechanism (Section 4.3.4). The following

subsections will cover the details of each method, respectively.

4.3.1 Competition algorithm

Using a novel self-as-simulator approach, this system resolves competition that occurs dur-

ing the unification of two different foreground prediction subsystems. These subsystems

are called proposal pumps or just proposers meant to describe the asynchronous nature of

these subsystems and the snapshots that emerge during incoming deictic action events. The

system attempts to hypothesize potential foregrounds used as input to generate potential

deictic actions the robot can take, a, which are used to compare against the incoming ob-
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Figure 4-4: Illustrating hypothesis roll-out of known and recognizable wholes from a refer-
ence. Horizon of roll-out is given by how proximal or distal the reference is to the location.

served actions ah. The internally simulated actions that the robot takes to communicate a

foreground helps the robot predict the most likely candidate foreground being conveyed.

Recognized indices produce high confidence values that the reference index is known to

the robot and is a simple reference, while new foreground stimuli from the saliency system

are routed to a learning mechanism to perform further learning.

4.3.2 Interpreting object-directed, referential action

Interpreting the object that the robot should attend to involves two complex processes: 1)

identifying possible objects that are well known or recognized and 2) identifying regions

that the human intends the robot to attend to that have no recognizable attached index.

The following subsections detail how these two competitive forces compare on foreground

activation within the model.

4.3.2.1 Proposer 1: Reference-to-object effects

This particular section is documented in published work (DePalma & Breazeal, 2016b)

which discusses this particular subsystem's contribution to the robot's visual attention sys-

tem. The pipeline is shown in Figure 4-4. First, referential action is specified as having an
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aperture-point estimate a (X, , '7 0) in space x, a vector direction F and a range (angle 0) of

affected foreground. With known objects Z = (zi, z2 , ... , Zn), the indexing recognition sys-

tem can classify a current foreground hypothesis as a known part or object. Multiple object

classification is performed by first selecting a number of foregrounds and then attempting

to classify these foregrounds using a multi-class classification technique.

The algorithm begins by using an aperture-point estimate ah(x, F, 0) to project a conic

horizon in which to enumerate the object hypotheses during the search for known objects

(see Figure 4-4). A number of foregrounds are selected by enumerating all combinations of

tangram pieces whose center points cz are within the projected ellipse from a,(L 'F, 0) +

Ca. For each foreground hypothesis, the foregrounds are filtered where the trained binary

classifiers are restricted to hz(F) = 1 for the label Z. When all of the possible labels

are classified in the given reference region, ranking occurs using simple inverse distance

di(Cz, Ca) 1 where f2 represents the L2-norm. cz is calculated by taking the
C 2 (CZ,Cu)

centroid of the foreground in which hz(F) = 1. HOG features (Dalal & Triggs, 2005)

from the rastered images of the tangrams are used to train the hz classifiers.

HOG features are computed by first convolving a set of orientation kernels to produce

eight gradient images and then binning the results. Orientation intensity is computed using

the convolution of 8 different kernels representing the 8-point cardinal and inter-cardinal

directions. For each direction of the 8 orientation images, Od, the magnitude represents

the sum of intensities within that bin fb -I EP- Z *J<P2< Oi where w is the width of the

bin, h is the height and the bounding box is bounded by pi at the top left, and P2 at the

bottom right. For this experiment, the foreground is scaled to a 320x320 image and binned

into 16 regions representing the classification feature space of f E R"6 . For each exemplar

and label, this process reduces the image to this 16 dimensional feature space and performs

classification using KNN classifiers to select the most likely label.

The object labels that emerge from the model Z, are then reprojected back and re-

rastered to produce a foreground image that is grayscaled and thresholded to produce just

the foreground that underlies the symbol. The output of this system makes up the output

set (Fz). The top ranking prediction (with smallest error), Fz, is used as the indexed and

recognized contribution.
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4.3.2.2 Proposer 2: Reference-to-foreground effects

In the event the system can't recognize the

object at the point of fixation, the system

should rely on a separate proposal. This

proposer must only work on feed-forward
C functions across the entire image and may

offer a chance for the rest of the archi-
N

tecture to learn a label from either people

nearby or on-line (Chapter 2). This pro-

r poser offers just a simple foreground to la-

bel from the real world by projecting an el-

X lipse of the action ah(2, f, 0) onto the im-

age, I. Figure 4-5 describes the problem.

Figure 4-5: Computing the reference point The point c is computed in world coordi-
against a surface from a distal location.

nates using the standard ray-plane intersec-

tion formula: c = x + rt where t = - .N) The coordinates are normalized and scaled
r-N

into image coordinates. Quaternion rotations of the direction, r, help raster the ellipse onto

the image before a flood-fill algorithm completes the foreground selection. Once the fore-

ground is computed, a nominal action estimation is used for further comparison by taking

the computed foreground and using the method described in the following section.

4.3.3 Generating referential action

Work presented in Chapter 3 included observations of two situations that the system will

need to handle (DePalma & Breazeal, 2016b, 2015a): precise pointing gestures and sweep-

ing open-palm gestures. Saupp6 and Mutlu(Saupp6 & Mutlu, 2014) provide supporting

evidence of the phenomena as well. Simulating referential and spatial deictic action re-

quires an effort to generate similar referential gesture. To generate this action, the refer-

ential action generation system takes a simple foreground and generates a cone that covers

the foreground on the image ah(t, f, 0). Since 0 is global, the position and ray must be
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calculated from the foreground.

To compute the action position x, and ray position r, a simple geometric model is

used. The common point-ray model of reference uses the centroid c of the bounding box

along with the width and height of the box to determine the radius of the point on the

object's surface. The distance from the gesture is calculated to be proportional to the inner

circumscribed circle of radius r of the foreground blob. The distance d is specifically

calculated as d = where 0 is the angle of influence of the referential gesture. Finally,

the point and ray is Y = [c; d] withT' = [0; 0; -1] for each blob. Regardless of whether

the agent wants to view the pieces of the tangram as a whole or point to each piece as

a separate foreground, the agent can still reference either foreground map with the same

simple algorithm.

4.3.4 Fan-in unification

The model of competition used to resolve the two proposal pumps is to compare the in-

coming action model ah with the generated deictic action a, and to use the distance as a

metric of comparison. The system compares the differences by examining and threshold-

ing the expected utility of a contribution from one of the pumps that would be generated

if the robot were to take the same actions in the participant's place with a particular goal

foreground hypothesis. First, the hypotheses are enumerated (Figure 4-4) and a set of ac-

tions is generated, ar for each hypothesis (Fz). Using those actions, the two action policies

are compared and scored by first computing the pairwise distances between the two point

sets: (d(ah, ar)) -- (I Xah - x, 1) where I| - I is the C2-norm. Likewise, the system

performs the same operation for the saliency contribution foreground: Fa. Finally, to bin

the contribution of the indexical system, the findings show the expectation of the median

values is the most predictive value of the indexical contribution: E[D] = E[Kd(a,, ar))]

where (d(ah, ar)) is the median of the distances of each foreground set (Fz). Finally the

expectation is thresholded empirically by E[D] < 0.3.
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4.4 Data collection

As reported in (DePalma & Breazeal, 2016b), tangrams were collected on-line over the

period of a year. These tangrams were used to train the algorithms indexical references.

Following this data collection, a number of participants were brought in to interact with the

robot, Maddox. Maddox was a 56 degree of freedom humanoid robot with two arms for

gesturing and a head with actuated eyes for gazing. Figure 4-6a shows the crowdsourcing

interface used to collect tangram figures to be shared between the participant and the robot.

The dataset included a total of 43 tangram scenes collected from the Internet, broken down

into 125 subfigures to make a total of 168 possible reference labels to figures. In addition,

the interface afforded a secondary task to random users on the Internet in which they were

asked to highlight either the low-level regions of the figure that they found most interesting

or to select the parts of the figure that can be considered 'separable.' For instance, on-line

contributors highlighted legs, wings or hulls of boats and labeled them appropriately.

In addition, Figures 4-6e and 4-6f show the interface used to share the tangrams between

the human and the robot. This interface allowed the robot to take actions toward sharing

attention and in turn, the human was able to gesture back. The actions were captured on a

device similar to Figure 4-6c. A total of 15 interactions were collected across 10 scenes,

resulting in a total of 150 total scenes in which interaction was observed. Goals were

provided to the participant on a separate screen (see Figure 4-6, middle row). The actions

collected make up the entirety of ah which were used to generate the predicted foregrounds

from the visual attention system.

Simple tangram figures were given to the participant through a simple Pepper's Ghost

illusion and instruction was provided. A scene that was collected on-line was presented to

the dyad and roles were also given to each participant. The setup included a shared scene

composed of tangrams. The participant was told that he or she had the role of showing

the robot which part of the object the robot must select and then the robot would print

out an answer on the screen (hidden from the user). No verbal communication would be

exchanged.

The Leap Motion collected the gestures and began to stream the estimated positions
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Figure 4-6: On-line and real world data collection used for collecting recognizable wholes
and in person gesturing. Top row: a) Tangram collection web interface. b) Tangram figure
taken from the dataset collected on-line. Middle row (both captured from the dataset): c)
Object-based foreground goal collected on-line. d) Pixel-based goal foreground collected
on-line. Bottom row: e) Pepper's ghost illusion used to situate the tangrams between the
participant and the robot. f) Lower portion of the illusion device that uses a Leap Motion
mounted on left side to collect gestures toward the illusion.
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and orientations when the index finger was extended. The position and ray were collected

from the proximal phalange (the "knuckle") estimate and the ray was projected extending

from the proximal phalange to the tip of the index finger (the distal phalange) without going

through the intermediate bones. The origin of the bottom left of the screen (the tangram

image was full screen on the monitor) and the normal vector were calibrated in Leap Motion

space prior to interaction.

4.5 Results

First, the goals were separated into two datasets: low-level, unknown goals (UG dataset)

and high-level, known goals (KG dataset). Next the set of actions was collected from the

human dyad dataset and analyzed. Findings show that within a single dyad session, either

one single gesture was exchanged (SG) or multiple referential gestures were exchanged

(MG). For each of those groups, the datasets were divided into two groups: those in which

the system had an object that it could predict and those in which the foreground was pixel-

based. Dividing the databases allowed for comparison of the advantages and disadvantages

of each situation that a robot might encounter. Error between the predicted foreground, FP

and the provided goal foreground, FG using the normalized mean squared error (NMSE)

is reported below. Again, Chapter 3 provides a full discussion of why this was chosen.

iJ=1..wh
N MS E = Y ( F.G - F.P )2

As expected, HI and H2 predict in Section 4.0.2 that isolating just the indexical system

cannot provide reference resolution for all referential actions toward arbitrary goals. Figure

4-7 and Table 4.1 report the results of the robot's ability to predict the foreground that the

human participant is attempting to communicate. The goal image foreground and the pre-

dicted image foreground are aligned and the normalized mean squared error is reported on

the y-axis. Figure 4-7 shows a clear performance difference between single gesture fore-

ground prediction and multiple gesture foreground prediction. Reported p-values using a
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Figure 4-7: Foreground prediction performance of the visual search mechanism compared
against multiple observed action strategies by the participant. The results show that the
designed visual attention system performs well while resolving goal foregrounds which
the system has already encountered and can recognize (known goal). However, it does not
predict the foreground goal well for objects it has never encountered (unknown goal) for
both action strategies. Reported significance in this figure are p < 0.01 but refer to Table
4.1 for more detail.

Reported Significance Average NMSE
MGKG SGUG MGUG

SGKG p<0.06 p<0.001 p<0.001 0.004
MGKG p<0.001 p<0.001 0.001
SGUG p> 0 .9  0.03
MGUG 0.03

Table 4.1: Reported significance and error of a single foreground proposer method against
known goals and unknown goals. Significance values are reported using a Student's t-test,
and the average normalized mean squared error is reported for each dataset on the far right.

Student's t-test between each group show that the visual proposal pump is not enough to

predict foreground for all goals. In addition, an agent needs to balance foreground predic-

tion between well-known object predictors and other approaches to handle pixel referenc-

ing. One example of note is Figure 4-6d, in which on-line participants wanted to reference

edges of the image itself. Without explicitly modeling the edges of an object, it becomes a

challenge to refer to such an entity with standard approaches.

4.5.1 Analysis with competition

99

Reported Error Across Each Action Policy
0.040

" 0.035 -
-O 0.030 -
a 0.025 -
" 0-0.020 -

Z 0.015
0.010 -

0.000
G 

4,'-,



Reported Error Across Each Subsystem

76

0Z

0-
o

0.035

0.030
0.025

0.020
0.015

0.005

0.000

0.030 * Proposer 1

0.025 *

4f%~

Proposer 1

Proposer 2

Unification

v4.

Figure 4-8: System performance against each test dataset. System-indexical: Proposer
pump 1 returns predicted foregrounds FP based on recognized objects. System-Saliency:
Proposer pump 2 returns predicted foregrounds based primarily on the projection of deictic
action on the scene itself, Fp. Competition: Resolving how to route each of the sub-pumps
in the system to select the correct foreground. In this figure, * refers to significance of
p < 0.05 while ** refers to significance of p < 0.01. Refer to Table 4.2 for further detail.

Reported Significance
Pump 2 Unified Average NMSE

SGKG
Pump 1 p<0.00 Insig. 0.004

SGKG Pump 2 p<0.001 0.016
Unified 0.005

MGKG
Pump 1 p<0.091 p<0.03 0.003

MGKG Pump 2 p<0.05 0.015
Unified 0.010

SGUG
Pump 1 p<0.00l p<0.001 0.030

SGUG Pump 2 Insig. 0.017
Unified 0.016

MGUG
Pump 1 p<0.00 p<0.001 0.030

MGUG Pump 2 Insig. 0.017
Unified 0.017

Table 4.2: Reported significance and error of all subsystems with respect to the dataset.
This table is separated into the dataset (by color) and the subsystem (Pump X + Unified).
Significance values are reported using a Student's t-test, and the average normalized mean
squared error is reported to three decimal places.
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The previous section reports that indexical recognition systems are insufficient to re-

solve situated referential action alone and perhaps another system is needed to support such

references. When the objects are known, indexical foreground prediction using high-level

recognition of perceptual object boundaries performs better than saliency systems alone.

The findings show saliency-centered referencing onto foreground maps provides a bet-

ter foreground estimation than indexical recognition systems where the trained object model

is unknown to the robot. Figures 4-8 and 4.2 show that combining and building confidence

values from the two proposal pump systems (Section 4.3.2) and resolving these through

a novel deictic simulation system results in competitive foreground estimation across all

situations.

The results from Figure 4-8 show that a competitive system (in blue) outperforms the

the pump 2 proposals in all cases. The competitive system even performs better than both

systems alone in combined datasets. The discrepancy between the known goal dataset and

the indexical recognition system performance could be explained by the proposal pump 2

taking over when the recognition system should have overridden it.

4.6 Discussion

The findings suggest a model that leverages both saliency systems and recognition systems

in competition to understand referencing behavior outperforms either system in isolation.

This signal can be used for gating a learning mechanism or in other reflective contexts

where the robot must indicate whether it recognizes the object at the point of reference.

For instance, signals generated within the architecture during referencing behavior can

be used both within the interaction and in crowdsourcing systems like that proposed in

Chapter 2. One can envision a flexible robotic perception system that is not only able to

follow gaze and deictic references (like those in previous joint attention systems) but can

also use a new fixation point to understand if it should attempt to learn or reuse previously

learned models. Lastly, this chapter contributes a model of self-as-simulator deictic action

generation to further clarify the visual foreground that the robot extracts to enable visual

learning from interaction in the future.
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Using the estimated foregrounds, these foreground templates can be employed as exem-

plars for higher level learning systems to map internal deictic indexicals. These indexicals

can be anchored into higher level reasoning systems through simple gaze fixation alone.

The next chapter examines improvements on state-of-the-art, attention-centered neural net-

works that rely primarily on already-segmented (e.g., selected foreground) objects as in-

put. This improvement is achieved by incorporating deictic action input to direct the visual

learning system through a novel mechanism called a deictic well.
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Chapter 5

Reference following and object

recognition with deictic wells

While the previous models of visual attention work by inhibiting entire regions of the scene

and combining them piecewise into recognizable wholes, other models inspired by atten-

tion are proven efficient at recognition in sparse scenes as well. These artificial neural net-

work models have the advantage of working on real world images (i.e., the NIST dataset)

and have the capability to recognize objects against flat matte black backgrounds in no-

clutter at high precision and accuracy comparable to deep convolutional networks (Mnih,

Heess, & Graves, 2014; Ba, Mnih, & Kavukcuoglu, 2014). Additionally, these models are

efficient, requiring orders of magnitude fewer instructions per second to emit classification

labels from their architecture. While these models have yet to address critical issues in

figure-ground selection, there is clear evidence that they have been successful at working

with real world images. This chapter provides a single iterative step at moving these neu-

rally inspired models toward a system that operates on real world images in a similar way to

the SHARE system proposed in Chapter 4 and visualized in Figure 4-1. This iterative step

takes social learning into account in a perceptual domain while integrating deictic action as

input to be capitalized on in the neural architecture.

Humans have an innate and uncanny ability to efficiently direct their visual attention to

obtain and extract relevant information in the scene while inhibiting other stimuli. Capital-

izing on this and other social cognitive machinery, we can easily establish joint attention
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with others as part of our communicatory competence. This work focuses on the use of

nonverbal deictic gesture, such as pointing, gazing and intentional directive action, as a

trigger to efficiently guide a social agent's target search within a potentially rich visual

scene. Deictic communication is defined to as an action taken by an individual with the

intention of directing another individual toward perceiving something not yet in the in-

dividual's common ground. Brooks (A. G. Brooks & Breazeal, 2006) and Clark (Clark,

Schreuder, & Buttrick, 1983) share similar definitions along with the idea of Grice's maxim

of quantity (Grice, 1975). Less formally, they can be seen as pointers that must be resolved

(A. G. Brooks & Breazeal, 2006; Admoni, Weng, Hayes, & Scassellati, 2016). In human-

robot interaction (HRI), sharing compatible mental states between humans and robots at

any one time is an ongoing challenge for researchers. Individuals (e.g., the robot or the hu-

man) must take synchronization actions by directing the perception system of one another

towards some stimulus. The stimulus could either be novel or already known, but in the

event that the stimulus is novel, the system must learn a new model to support later deictic

referencing and priming. This work focuses on advancing state-of-the-art, deep neural at-

tention networks that simulate saccade behavior in scenes toward learning and recognition.

The results show the new model, rewarded by visual gesture following, simulates saccade

behavior and maintains competitive recognition rates while improving the speed at which

learning occurs. This chapter demonstrates improvements in learning speed over baseline

RAM by trading off unrewarded explorations for rewarded deictic pointer following toward

new stimuli.

To simulate autonomous saccade behavior, this work utilizes a rather recent devel-

opment in deep neural networks that takes advantage of recognition by moving a small

window intelligently across an image rather than using convolution across the entire im-

age. This biomimetic approach (Bar-Cohen & Breazeal, 2003) is highly compatible with

human-robot interaction that tends toward the design of transparent behavior that reveals

the internal state of the robot through movements like saccades (Mutlu, Shiwa, Kanda,

Ishiguro, & Hagita, 2009). Saccades are defined as the implicit behavior of an eye as it

visually moves its focus of attention across an image or present scene. The rather recent

insight in these models is to treat the extraction window as an agent that observes its state
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and takes actions to move itself around the image more intelligently. This allows standard

reinforcement learning algorithms to move the window efficiently to find and classify ob-

jects around its fixation point (or the moment of local saccade behavior). This work takes

advantage of this innovation to bias the reward function in an attempt to direct the agent

toward areas where the social partner is also attending. This reward innovation is called the

deictic well. The deictic well utilizes observations of deictic gesture to resolve the pointer

to its target. It also takes advantage of a reward function's landscape to direct the learning

agent toward more profitable states.

With the proposed approach, the behavior of the saccading agent is able to follow the

deictic gesture provided by social partners while additionally learning about new visual

stimuli faster than the baseline RAM model. Section 5.1 describes related work in utilizing

small windows in deep recurrent models and also explores joint attention in human-robot

interaction. Section 5.2 examines the architecture of the artificial neural network needed

to produce this behavior while Section 5.3 describes the data collection and experimental

setup. Encouraging results appear in Section 5.4 by comparing the proposed model against

the baseline model examined in (Mnih et al., 2014). Finally, future work is discussed in

Section 5.5.

5.0.1 Theory and hypothesis

This work contributes a novel mechanism called a deictic well and makes two hypotheses:

" H1: The socially biased visual learning algorithm proposed in this work will improve

classification accuracy.

" H2: The socially biased visual learning algorithm will speed up learning, guiding the

agent's observation window to the correct location.

The contribution extends a previous model of visual attention called RAM which is de-

signed to reduce the number of observations within an image to classify and recognize

the object in the scene. It has comparable accuracy to competitive convolutional networks

(LeCun et al., 1989). The outcome of these hypotheses could have significant impact on
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situated perception learning agents that must adapt to perceive new objects in new environ-

ments.

5.1 Related Work

5.1.1 Deep recurrent models of attention

Deep recurrent models of attention are powerful tools that mimic biological visual attention

to perform visual search (Wolfe, 1994) tasks within images. Computer scientists use them

to:

" Perform efficient classification and object recognition tasks on large images (Mnih et

al., 2014),

" Do multi-object detection tasks (Ba et al., 2014),

" Draw learned primal sketches (Gregor, Danihelka, Graves, Rezende, & Wierstra,

2015),

" Learn to perform addition after finding digits in an image (Ba et al., 2014),

" And even generate image captions (Xu et al., 2015).

The core innovation in attention-based systems is to direct the resources of the algorithm

toward a specific region to identify objects at that position, as opposed to trying to find a

single object in the scene (object detection). In effect and at its most abstract, it is a problem

of computing which object, 0, is at location I usingp(Oll) instead of finding the location

of the object, lo, using p(lo 0). Recurrent neural networks offer a powerful way to direct

the resources of the network toward taking the most informative observations to classify an

object under a given location. This work attempts to augment previous models to accept

deictic action observations.
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5.1.2 Joint attention in agent learning

Many evolutionary psychologists, social roboticists and synthetic epigenetic scientists have

focused on the emergence of one early communicatory competence mechanism called joint

attention (Tomasello, 1995). It is considered the earliest form of communication to emerge

during development and seems to be present only in humans and the great apes (Carpenter,

Nagell, Tomasello, Butterworth, & Moore, 1998). Computer scientists have proposed com-

putational approaches to modeling the bio-inspired joint attention behavior. Triesch et.

al. (Triesch, Teuscher, Deak, & Carlson, 2006) developed a computational model of gaze

following behavior in infants. This involved reinforcement learning in a small discrete

world to learn to follow gaze to objects. Schmidhuber and Huber (Schmidhuber & Hu-

ber, 1991) studied artificial fovea trajectory for moving target detection and Ognibene et.

al. (Ognibene & Baldassare, 2015) suggested a fovea based recognition model using re-

inforcement learning. While these are impressive systems, the SHARE system seeks to

make progress toward learning a perceptual label from social signals, in essence working

toward taking advantage of synchronicity of different stimuli within the interaction (Rolf,

Hanheide, & Rohlfing, 2009).

This chapter introduces a multi-agent learning algorithm that is integrated with a robotic

perception system to jointly learn percept names and follow deictic action toward new

targets. Deictic observations are generated synthetically from the data collected in Chapter

4 that takes advantage of observations made from a human-robot dyad. These actions are

used as input along with a novel database for the learning algorithm to gain information

about targets in the scene. Future work on this project toward integrating the perception

system back into an embodied and interactive social learning system is discussed in Section

5.5.

5.2 Model design

The problem this chapter seeks to address is introducing reference following (whether from

gaze or gesture) to state-of-the-art neural network models. The model presented is an ex-

tension of the work of Mnih in which he used recurrent neural networks (RNNs) (Mnih et
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al., 2014) to control a simple observation window. At present, recurrent attention models

are agents interacting strictly with the environment and not with social others. The model

itself is called a Recurrent Attention Model or RAM. This simple window simulates foveal

saccades around an image seeking to identify objects. While these deep learning architec-

tures have been shown to be very successful in various visual perception tasks, they are not

augmented to be socially biased. For a synthetic attention system to become a synthetic

joint attention system, it must make use of the deictic signal proposed earlier in this chap-

ter. Yu and Smith (Yu & Smith, 2016) have found evidence that attention is directed by

gaze just as much as it is by gestural feedback. One theoretical unifying representation for

these types of input is the deictic code (Ballard, Hayhoe, Pook, & Rao, 1997; A. G. Brooks

& Breazeal, 2006) or internally and externally represented pointers that are maintained and

followed by the cognitive processes. The dRAM stands for deictically stimulated Recurrent

Attention Model, extending Mnih's model to support learning to follow referential gesture

in a perceptual domain. Section 5.2.1 discusses the previous visual attention model and

Section 5.2.2 discusses the modification to the model that leads to deictic following.
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5.2.1 The baseline RAM model

ft-1

0
0
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0 J
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Figure 5-1: Summary of the RAM model. (a) An example taken from the crowdsourced
dataset that resembles and is labeled "cat" (top). The basic extraction network uses the
previously computed location position, it, and the image data at time, It (bottom). (b)
The observed state, ft, is used to train the hidden recurrent network which in turn predicts
a reward, then chooses the next best action to take and the next location for moving the
artificial fovea.

The recurrent attention model (RAM) uses a sensor (see Figure 5-la) that extracts a small

image patch at location it on an image It at time t which is additionally augmented with the

location, f(It, it) = [ItIt], a state vector. Foveal location as marked using the i superscript,

t1. The feature vector is used as an input to a recurrent neural network, ht, which is used

to predict the reward that it would receive after t action steps. The action space is an

augmented space where it includes both actions to change the location l2 as well as an

emission labeling action, at which simply emits an ordinal or a no label action.

5.2.1.1 Reinforcement learning

Figure 5-1 visualizes just the reinforcement learning agent. In this figure, the observation

itself is augmented with the previous state to make up ht. In standard reinforcement learn-

ing texts, basic policies are defined as actions taken at specific states, 7r(s) - a. In this

case, the internal state is used to emit the classification action, predict the reward and the
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next location, wr(ht) -÷ [at+1, li, rti]. A single layer is trained to map the outputs from

the internal state, ht to the desired outputs during learning.

The RAM model emits classification actions for each time step but in the case of this

model, only the time step at timeT is considered. This means every test image will be

tested with T observations and will output aT, resulting in a single classification action for

an image. The learning process is described further in Section 5.2.3.

5.2.1.2 Reward signal

The architecture leverages a reward signal during training when it has chosen the correct

action after T steps. The reward function used in RAM depends on the sequence of actions

taken on the image itself. RT = ZE rt. Since the agent is trained as a reinforcement

learning agent to follow the gradient and maximize its reward, it is sensitive to changes in

the reward function gradient itself. The dRAM model presented next takes advantage of

this mechanism to teach the system to reward gesture following behavior of the agent when

it is observed toward both learning and classification.

5.2.2 The extraction window and deictic observation

(a)

Z Z

rtr

f - 1 t

(et (1'6

Figure 5-2: The proposed dRAM model. (a) Basic extraction that additionally computes
the gradient 6w and a reward rt toward an observed, social deictic pointer, 1s, at time t. (b)
The modified architecture that takes the gradient into account in its hidden state ht.
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The deictic RAM (dRAM) model incorporates deictic indexing into the learning process

(see Figure 5-2). This work introduces the concept of the deictic well. In previous models,

state is estimated from observations made from the extraction network, referred to as a

glimpse. A special treatment is made to learn an action policy based entirely on rewards

observed when the recurrent network takes the correct classification action in the right

location. The insight of the deictic well is to take advantage of a social deictic action to

induce a gradient that leads the learning agent toward discovering the maximal reward at the

correct location. Consequently, the action policy should learn to utilize the deictic gradient

features toward the referenced point to follow the pointing gesture toward the associated

classification action. This section will cover the needed updates to the RAM model to

support deictic learning through deictic referencing.

The dRAM model capitalizes on a basic extraction window to pull features out of the

image for recognition (see Figure 5-2). The glimpse observation network is modified to

take as input an image, It, and a previous location P at a time t from its previous action to

output a feature vector, f(It, l'). The extension presented in this chapter focuses on grading

the reward function using the current location and the observation of a social deictic action's

intended location 1i as parameters. Another way to think about is is to imagine that this

location is the center of the deictic well's reward. The contribution to the reward function

d =: '-I seFg rof the deictic well is defined to be the normalized L1 -norm, rT = L i - lt (see Figure

5-3 for a profile) where c = w * h, is the product of the width and height of the image. The

resulting reward function used to train the network is then defined as:

T

RT = E rf + rf(5.1)

T 1
RT = ('rT + T l-i (5.2)

i=0

Additionally, the gradient features of the deictic well,6, I- - Is 7I,2 are provided

as features (see Figure 5-2), ft = [f (It, 1I), w, 'rt], to the state, ht. The resulting feature set,

ft is composed of the 131 units in which 128 units are the current output of the window's
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observation 2 and units represent the deictic well's gradient and magnitude. The final unit is

the reward prediction computed from the difference between the current locus of attention

and the other agent's directed action target which is the intended change of the internal

extraction networks' location.

5.2.3 Training the network

02

1>0

(a)

I I$I
It 1 112

000OO00 000 00 , 000 00 000

at ~ a2CL+2

t t+J t+2

(b)

Figure 5-3: Full dRAM architecture with deictic sampling. (a) Profile of a deictic well (the
component that is summed with the previous reward function), (b) the full artificial neural
architecture. 1' is sampled uniformly from a set of pointing gestures collected from human
participants interacting with the robot (LS).

A time-indexed recurrent network with 256 hidden units is trained separately using ft

as input to the hidden units state at time ht+1 (see Figure 5-3). Learning in neural networks

typically uses back-propagation to perform weight updates between layers of artificial neu-

rons. In the case of recurrent neural networks (RNNs) which are connected to themselves

for sequence learning, the loop is unrolled for p steps and treated as a standard multi-layer

perceptron. This process is called back-propagation through time or BPTT (Werbos, 1990).

These experiment sets unroll the loop to unroll over 7 time steps (p = 7). Back-propagation
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is a process in which the inputs are propagated through the network to the end of the net-

work where they are checked against an output. Error is computed (in this experiment's

case, the dRAM network uses negative log likelihood criterion (Ioss(at, x) = -at[x] where

x is the correct classification action and is constant for a particular image). Standard BPTT

can be very problematic for networks that must make parameter updates for actions taken

each time step of the loop. Following closely the work of (Mnih et al., 2014), the RE-

INFORCE algorithm is used to estimate the gradient,J, at each loop step of the RNN.

In this case, a high-dimensional estimate of the gradient is required for all parameters of

the network: 0 = [0e, Or, a] representing the parameters of the extraction network, 0e,the

parameters of recurrent network, 0,., and the parameters of the action network, 0a. REIN-

FORCE (R. J. Williams, 1992) notes that to train the network as a reinforcement learning

agent, it must maximize the reward across the T action steps prior to the classification

action: J(0) = El,: [R] where hl:N is the sequence of T states observed during trained

policy at the present epoch. Mnih (Mnih et al., 2014) shows a sample approximation of the

gradient needed to supply to the BPTT to update the weights in the following:

Al T

VoJ = T Volog7r ([l, at Ihi:t; 0)R' (5.3)
i=i t=l

The expectation of the gradient is computed for the current agent, wF, for i = 1...A

episodes (within the epoch of training) and [li, at] are the interaction sequences. REIN-

FORCE adjusts the parameters 0 so the log-probability of the chosen actions that led to a

higher cumulative reward is increased. Overall, this procedure maximizes the cumulative

reward of the state-action trajectory and the reward provided by taking the correct classi-

fication action. If the reader is interested further, they may refer to (R. J. Williams, 1992)

for a detailed explanation. The algorithm is used with few changes to train the network

and no changes are required of the training method itself. The process of walking through

state-action saccades makes recurrent attention networks very powerful and efficient object

detectors while preserving pro-social interaction behavior.

Finally, BPTT is used to propagate the reward gradient across the recurrent network
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(a)

(b)

Figure 5-4: Data Collection. (a) The crowdsourced data collection system. On-line par-
ticipants can construct tangrams using a mouse and keyboard (left). Highlighted sections
(right) are used to select the foreground component and a label can be sourced on-line
(e.g.,"hull of boat" in this example). This allows us to collect subfigure labels for many
different tangram figures as well as full figures. (b) A few sample tangrams collected from
the dataset online.

and update the weights of the embedded RNN. The main inputs to the system are the label,

the image and the observation of a deictic action that is meant to direct the attention of

the perception system toward a region of the image that may be more profitable. Reward

gleaned from both the classification action and the deictic well is summed together during

back-propagation training of the neural network where rd < 'r .
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5.3 Data collection and experiment

To test the hypothesis (HI) that accuracy improves with social referencing and this model

can learn to follow gesture toward recognition (H2), this model was tested with a dataset

collected from participants on-line comprised of objects, figures and labels collected from

NIMBUS. The interface designed for NIMBUS was built to crowdsource tangram figures'

(see Figure 5-4a). The interface itself has the ability to construct tangrams, select subparts

and pixel maps while providing labels for the selected regions. Next, the dataset was con-

solidated and full figure images were rendered (labels applied to the entire tangram figure).

Then the figures not properly constructed (tangram pieces strewn about) were cleaned from

the dataset. A sample from the tangram dataset can be viewed in full-color rendered form

in Figure 5-4 and also processed in grayscale for use in the learning algorithm in Figure

5-6a. Figure 5-7a shows HI tested by measuring classification accuracy and H2 tested by

analyzing the trajectory after just 100 time steps on the image.

To generate the deictic actions Is from the dataset, tangram figures were separated into

subfigures and re-rendered for each subfigure, along with the associated labels. Next the

set of deictic gestures were aligned, Ls (i.e., social referencing locations) to the images

themselves. While many types of referential gestures were observed in Chapter 3, the data

used in this experiment and which make up Ls only analyzes single action, simple deictic-

conic representations for this experiment.

The dataset included a total of 43 tangram scenes broken down into 125 subfigures to

make a total of 168 possible reference labels to figures with an average 7.29 actions per

figure (l = 7.29,,7 = 1.3). This set of actions made up the discrete distribution of deictic

actions used for sampling from each scene during learning.

For the experiment, the set of actions for each figure were sampled uniformly:

L ~ [lts]

The architecture used the actions as input to the system for training (Figure 5-3b). Six

experimental groups were defined, dRAM 1 6 , where the subscript refers to probability

'Available at: http://nimbus.media.mit.edu
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that the network would successfully observe a referencing action (e.g., dRAM 1 that has a

probability of 0.1 of observing a deictic action from the dataset, dRAM 2 at a probability

0.2, etc.). Finally, the baseline case (RAM) was defined to be the model used by (Mnih et

al., 2014) that did not take advantage of deictic action to direct its learning.

5.4 Results and discussion

The following metrics were used to understand the effect of deictic action on perceptual

learning: elapsed time, classification and glimpse location. The time elapsed at which

learning occurred in the baseline RAM model was measured and then compared against

learning at various sampling probabilities.

5.4.1 Elapsed time in epochs

To understand the utility of current forms of RAMs against this model, the average duration

of learning was measured with the tangram dataset. The experimental model was tested on

both a quad core Intel i7 processor which observed each epoch to take approximately 1.5

seconds (x = 1.44s,o- = 0.28s,n = 344) and on a 16 core Intel Xeon, observed to require

0.1 seconds per epoch (- = 0.14s,- = 0.02s,n = 205). It is clear that over the course

of exposing the learning algorithm to a particular stimuli (the image) within an interaction

scenario, timing was critical. The fewer epochs it took the algorithm to converge to a

particular approximate solution, the better the algorithm could be within the same period

of time. The main objective was to preserve recall while drawing the learning agent to

the correct stimulus and to do this as fast as possible, thus making duration of an epoch

incredibly important to the interaction system. A fixation time of 20 seconds (200 epochs)

in an interaction could be considered a breakdown for the user's experience.

5.4.2 Deictics speed up convergence

Deictic action was observed for each scene in the collected dataset and learning was sim-

ulated using deictic reference and images as input to the algorithm. For each tangram, the
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Figure 5-5: Test accuracy progress over each epoch plotted with 7 groups.
RAM model converges at a slower rate than the extended model, dRAM.
subscript represents the probability of observing a deictic action from the
clear that more social interaction has a positive effect on this model.
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deictic actions were randomly sampled with an associated given probability (i.e., p = 0.1

for group dRAM 1, p = 0.2 for group dRAM 2 , etc.). For each group, the model simulated

learning across 200 epochs for 10 runs. Figure 5-5 describes the average accuracy for each

epoch as the network modifies its weights to learn to map a specific label to the stimu-

lus. It is clear from Figure 5-5 that after initial burn-in, each incremental increase in the

probability of observing deictic action improves the speed at which the learning algorithm

converges.

This model extends work by (Mnih et al., 2014) but with a focus on its applicability

to learning interactively with a participant. Findings show the faster an agent can learn

to reliably map a sign to an image at a spatial position, the more actions may become

available to the agent, based on a short interaction with the environment and a social partner.

Learning interactively will require significantly more improvements in speed prior to its

applicability in interactive situated robotics. Next, this chapter will analyze the model's

ability to follow deictic action.

5.4.3 Learned policy performance

The process of the agent saccading on the image is simulated for the classification task

to better understand how this model of socially directed selective attention performs on a

given image. Figures 5-6 and 5-7 show the performance of the baseline RAM model against

the dRAM model, respectively. The figures show 10 randomly chosen objects (the x-axis)

from the dataset with the position of the fixation point (the box) after 100 observations

(randomly chosen). The RAM model shows the results of the agent's fixation location

from each of the 10 trained models described above (y-axis). The dRAM model shows the

results from the final learned model. It is notable that after just a few (100) observations,

the dRAM model is primarily on task, making observations on the stimulus itself. Mnih

et. al. point out that by having these deep recurrent models, the recurrence itself can be

thought of as an agent making partially observable and highly stochastic observations about

the world. Since the agent itself can be directed toward other stimuli, it can be distracted

from the current task to move into more profitable spaces to classify, thus making this a
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Figure 5-6: Performance of the RAM Model after 100 observation steps. Vertical axis is the

model's performance from the 10 test simulations, each row being a particular simulation.

(a) The given scene with the fixation point overlaid on top, (b) The extracted patch used by
the algorithm. Discussion of these results can be found in Section 5.4.3.

pro-social classification model as well.

5.5 Summary

While gesture recognition can be seen as a classification problem, gesture understanding

involves resolving the sign or reference to an underlying concept. This process is called

anaphoric or exophoric reference resolution in the computational literature. This insight

is primarily inspired by human-human social learning in which people exchange gestures

and follow gaze as well as pointing gestures to target areas in the scene. In this case, the

gesture (sign) is mapped to a visual stimulus (tangram figure) and an associated label is

used to additionally map words (lexical signs) to the same stimulus. This particular system

falls into a category of artifact that is attempting to map signals to image data, in effect

learning to follow deictic action to its perceptual center.

The goal is to extend this work in many ways: one is to test this system with real human

participants to perform interactive percept learning on the robot. This effort will involve

smoothing saccade behavior for motor control and incorporating aspects of memory into an
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Figure 5-7: Performance of the dRAM Model after 100 observation steps. Vertical axis is
the 10 learned models, dRAM1 1i0 . (a) The given scene with the fixation point overlaid on
top. (b) The extracted patch used by the algorithm. Discussion of these results can be found
in Section 5.4.3. Note that the observed patch is overwhelmingly sampling from the figure
itself after 100 observations in the dRAM model vs. the baseline RAM model (Figure 5-6).

interactive system that must perform label and reward attribution. Additionally, this system

is intended to be integrated with an early model of foreground reasoning that will allow this

system to choose the underlying stimuli for use in learning to a mapping. This model is

intended to be extended to map robotic behavior to the simulated saccade behavior. It will

also generate deictic action (pointing, sweeping and palm gestures) that allows the robot

to point and gesture in many of the ways that people do. Additionally, future work should

address extending some of the previous work from Chapter 4 that predicts the foreground

of the human participant and takes actions toward synchronizing it with the robot's goal.
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Chapter 6

Sustainability of longitudinal

human-robot joint attention

in dynamic environments: adaptation

and imprinting

Joint attention is a critical problem that shows up in many applications of human-robot

interaction (HRI). The phenomenon underpins developmental and social learning (Nagai,

Hosoda, Morita, & Asada, 2003; Doniec, Sun, & Scassellati, 2006), collaboration (Yu,

Scheutz, & Schermerhorn, 2010) and, more importantly, makes up a core cognitive mech-

anism underpinning dialogue and much of social cognition in human peer groups (Kaplan

& Hafner, 2006; Seemann, 2011; Tomasello, 1995, 2000; Carpenter, Nagell, Tomasello,

Butterworth, & Moore, 1998). Joint attention may also play a critical factor in the new

and burgeoning field of socially assistive robots designed to change behavior in response

to stimuli (Matari6 & Scassellati, 2016). While researchers still need to deeply model and

understand the phenomenon of attention in order to build synthetic systems (see (Tsotsos,

2011; Bridewell & Bello, 2015) for a sample of the types of progress being made), they

have seen success with attention's behavioral outcomes on social agents. Researchers and

engineers can also mimic simple behavioral effects through behavior-based control and
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some forms of agent learning. Unfortunately, many of these algorithms focus primarily

on static environments and researchers often encounter trouble generalizing to dynamic

environments. As an attempt to move forward, this study focuses on an investigation of

the engagement and behavioral effects of longitudinal joint attention from human-robot

interaction in dynamic scenes.

Human-robot interaction systems focus primarily on the outward behavior of the robotic

architecture and its effects on a social peer. Due to this focus on behavior, joint attention

is now understood as the behavioral manifestation of an underlying cognitively inspired

robotic subsystem responsible for the mimicry of a subset of human behaviors that lead

to joint attention in humans. This definition leads one to focus primarily on the behavior

of referential gesture and gaze following through multiple sensory pathways (Yu & Smith,

2016). The phenomenon of human-robot joint attention is one of the major reproducible

experiments that occurs in the study of HRI. As a result, there are a number of successfully

reproduced experiments in bidirectional deictic gesturing toward gaze following (Saupp6

& Mutlu, 2014). Despite this progress, building large cognitive architectures around the

emergence of joint attention has not received the level of attention it deserves (see (Kaplan

& Hafner, 2006)). The focus of this contribution is not on autonomous architecture but on

the interaction and behavioral effects of longitudinal joint attention on human participants,

achieved by biasing core aspects of the architecture (described in more detail in Section

6.2). This research emphasizes the following assertion: a cognitive system that is built

around dynamic, exchanged social attention should stand the test of time and remain cou-

pled throughout an interaction. The objective is to understand more deeply the types of

interaction effects that can be expected.

6.0.1 Theory and hypothesis

In human-robot interaction, robots are designed to mimic human-like behavior in order to

understand its impact on interaction and behavior. Some examples of these effects are to

ease the human partner's cognitive load (Jung et al., 2013) and improve the legibility of

robot motions (Dragan, Lee, & Srinivasa, 2013). Roboticists frequently make assumptions
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regarding interactive artificial agents that must include specific observations within their

environment that involve an interaction partner. These hypotheses frequently don't weigh

the impact of ignoring deictic gesturing on the sustainability of the joint coupling. The

hypotheses here are based on past research in joint attention in which motionese is shown to

play a major role in how caregivers draw attention to certain objects in the environment by

incorporating dynamics into attention models. Inspiration is also derived from single agent-

environment attention models that combine saliency and visual search within a visually

guided situated robotic architecture. Finally, observations are leveraged from psychology

literature to generate hypotheses around the effects of selective attention and attention's

sister problem, memory, in how participants observe and remember events.

Dynamic environments provide many potential motion moments and distractors that an

agent may attend to as well as a new dimension for the problem of joint attention: time.

Time shows up in dynamic environments where objects and subjects are moving within the

scene and also in longitudinal settings where a human peer has extended exposure to the

experiment. In the following case, the experiment lasts for approximately 40 minutes. The

following study is designed around the following hypotheses:

* H1: Human participants follow a robot's gesture toward shared dynamic scenes.

* This hypothesis follows from two questions frequently on the minds of human-

robot interaction scientists. Despite robots being machines, should human part-

ners treat them as intentional agents and follow their directional social cues?

Does previous research in human-robot interaction in static scenes also follow

into dynamic scenes?

* H2: Human participants will follow socially-directed action (deictic gesture) over

other best practice competing models of attention like saliency maps.

o An agent that only interacts with the environment primarily leverages saliency

maps to direct its attention.

* H3: A human participant will correct a robot that is distracted by other stimuli and

bring its gaze back to the shared scene.
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" H4: A robot's deictic gesture can direct a human participant's gaze toward low

salience events in a dynamic scene and the directed event can also imprint itself

in human memory.

o Following H 1 & H2, if the robot successfully directs the human participant to a

specific location, does the human participant remember a lower salience event

they are directed toward?

" H5: Joint attention with a socially contingent robot is sustained throughout the entire

interaction.

o Focusing and holding attention between two agents can be a challenge. The

hypothesis in this case is throughout the entire interaction, participants will stay

engaged and jointly couple their gestures with the robot's gaze and gesture if

the robot is perceived as socially contingent.

These hypotheses represent a subset of questions around joint attention in dynamic scenes

where gaze and gesture are tracked in a tight loop with the robot.

6.1 Related work

Scasselatti (Scassellati, 2001) presents some of the first work in gaze following, an early

predecessor to joint attention. Some of these systems moved from behavior-based control

to learning to follow gaze. Nagai (Nagai et al., 2003) and Triesch (Triesch, Teuscher, Deaik,

& Carlson, 2006) built systems to learn to follow gaze using neural networks and reinforce-

ment learning, respectively. Following this seminal work, the bidirectionality of gesturing

back to a social partner became the emphasis of subsequent systems. Doniec (Doniec et

al., 2006) presents work on using active learning to map referential gesture or gaze to ob-

jects in the world. While this work is critical to moving forward with joint attention, the

research documented here moved from learning to follow gaze in static environments back

to behavior control in dynamic scenes where objects move fast and can become occluded
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quickly. The system presented next uses the idea of a joint saliency map built with a social

partner through the exchange of gesture.

6.1.1 Deictics in robotics

Referential gesture that is dependent on context is sometimes referred to as deictic. Ref-

erential gesture and deictic use in human-robot interaction has been studied in various

capacities. Most recently, Admoni and Scasselatti show that the use of deictic reference

improves performance in difficult collaborations (Admoni, Weng, Hayes, & Scassellati,

2016). Brooks and Breazeal (A. G. Brooks & Breazeal, 2006) present a model of multi-

modal deictic use in communication that leverages grammar models to generate deictic

gesture. Saupp6 and Mutlu (Saupp6 & Mutlu, 2014) present work on specifying a num-

ber of categories of deictic use in reference which include pointing, presenting, touching,

exhibiting, grouping and sweeping. Thomaz et. al. (Thomaz, Berlin, & Breazeal, 2005)

additionally demonstrate a model of shared attention for a social referencing task where

affect is communicated by information seeking actions toward caregivers about objects in

the shared frame of attention. Berlin, et. al. (Berlin, Breazeal, & Chao, 2008) show other

social cues associated with proxemics may contribute to intentionally passive deictic use

in a social learning context. Other effects such as synchrony (Rolf, Hanheide, & Rohlfing,

2009) and motionese (Nagai & Rohlfing, 2009) may also contribute to the intentional capi-

talization of innate biases of attention if they are jointly observed between the agents. This

work extends previous findings into dynamic scenes and narrative shared between naive

human participants and a robot.

6.1.2 Visual attention in robotics and vision

Researchers mainly use saliency models to address visual attention in robotics. VOCUS

(Frintrop, 2006) was a major attempt to unify a number of attentional phenomena including

goal-directed visual search, learning about objects via saliency maps and a curiosity system

driven to find new, novel objects in its world. VOCUS did not include a model of human

partners and did not address joint saliency in a similar fashion to past work but it was a
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landmark system for robot learning through attention alone. Meanwhile, vision researchers

have also explored visual attention for everyday images. Itti, Koch, and Niebur's Neuro-

Vision Toolkit (NVT) (Itti, Koch, & Niebur, 1998) led to many more models of saliency.

NVT is still state-of-the-art in terms of generating saliency maps from images that represent

accurate estimation of the likelihood that subjects will fixate at specific points of an arbi-

trary image (Hou, Harel, & Koch, 2012; Harel, Koch, & Perona, 2006). Finally, Tsotsos'

work (Tsotsos, 2011) presents a model of visual search inspired by Gelade and Triesman's

leakage model (A. M. Treisman & Gelade, 1980). However, other researchers have not

socially coupled this work to an interaction. These various architectures are not designed

to take social factors into account such as where to direct the agent's gaze but they have the

capability to handle dynamic scenes. The following computational model of directing the

robot's gaze through visual attention is inspired by this previous work.

6.2 Computational model

This model of attention is based primarily on a competition mechanism that leverages 1) the

saliency provided by the signature saliency model, (Hou et al., 2012), 2) previously trained

attentional trajectories from a human-environment data collection that provides trajectories

that are sensitive to the content in the movie itself and 3) a situated pointing gesture recog-

nition system. While saliency models provide a good representation of where participants

may look in a general case, they don't provide a context-sensitive decision on most likely

trajectories with respect to time. Using a dataset of participants watching the same video

prior to the human-robot interaction experiment allows us to train a most likely estimate

fovea trajectory through the environment rather than an estimate of the conspicuousness

of various aspects of the scene itself. Previously trained attentional trajectories provide

starting locations and transitions that allow the robot to make better decisions about the

trajectory of where to look without social intervention. Tsotsos (Tsotsos, 2011) previously

described this general design pattern as an architecture in which saliency biases the agent's

visual search of the environment. Variance between participants is used to inversely weight

the conspicuousness of a specific location at a specific time. When variance is low, saliency
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Low level attention system

Visual search
through
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recognition
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Figure 6-1: Synthetic attention architecture component for interaction. Experimental sec-
tion marked in blue and the attentional components highlighted in green. zt represents the
recognized deictic action from the Leap Motion as a binary event (zt C Z), M[ represents
the trajectory (T) model (M) that returns the location (Zt = E[x]) as a function of the
dataset collected from the NR condition. The [1] function is documented as the NEXTPO-
SITIONSALIENCY function while the [2] function represents a winner-take-all mechanism
(see WTAFOVEA) in Algorithm 6.1.
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Algorithm 6.1 Competition resolution algorithm for next foveal position. NEXTPOSI-
TIONSALIENCY returns the local maxima given a random location to choose next. Fix-

ations last for approximately 5s. Typically saliency is weighted lower than the trajectory

model but can override the trajectory if variance is high. The weights w, and WT are tuned

manually. The function MAXSECOND represents a maximum function that operates on the

second element of the list (the competitiveness value). The first function returns the first

element of the list (the position).

1: procedure NEXTPOSITIONSALIENCY(map,Xt_ 1)

2:

3: w +-width(map)
4: It +-height(map)
5: xi +-rand(w,h)

6: xt <-NelderMeadMax(map, xi)
7: return (xt, map[xt])
8: end procedure
9:

10: procedure WTAFOVEA(Xt_ 1,sal,MAI/, XD, Zt)
Require: Axsalx < 1
Require: z1 E Z2
11: if cond =JA and zt = I then
12: Dt +- (XD, 1 1)
13: else
14: Dt<-(XD70)
15: end if
16: XS <-- NextPositionSaliency(sal,Xt_ i) -[1.0, ws]
17: return first(max-second(Xs, MT - 0 WT], Dt))
18: end procedure

> Next Xt from saliency
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may take over, and when interrupt events like deictic gesture locations from human partners

arrive, then they override all other factors.

Figure 6.1 describes the system in more detail. A simple saliency model was used to

measure the conspicuity of the scene and a feed-forward system that leverages foreground

grouping to classify the underlying image. This helps produce meaningful symbols of

subfigures and objects based on the classification foreground. More details on this work

are found in Chapter 4. Meanwhile, the robot is biased to completely override its attention

system when pointing gestures interrupt its gaze in the JA condition (see Section 6.3.1).

The competition was biased for the sake of A/B testing (see Section 6.3). As previously

mentioned, the trajectories were trained from previous interactions where time-indexed

gaze locations were collected and aligned with the other participants. Next gaze location

was interpolated frame-to-frame and their location was averaged for the general case while

providing confidence in the form of inverse variance. A probability mass function map was

produced using a mixture of gaussians with k=2 and was rendered across the entire scene.

This time-indexed saliency map helped make decisions about where to look in winner-take-

all (WTA) competition with lower level, normalized saliency maps. Weights were tuned

for reasonable behavior.

Joint attention in this architecture was driven by social nonverbal factors as well as goal-

oriented visual search. For the sake of the experiment, previously learned gaze trajectories

were fed into the architecture to move the fovea. In this work, rather than learning to

jointly attend (Triesch et al., 2006; Doniec et al., 2006; Nagai et al., 2003), this system

was designed to sustain joint attention in a number of ways: 1) respond to interrupting

gesture from the human partner by following gesture, 2) elicit pointing gestures at specific

locations at certain times to direct human attention and 3) become distracted from time

to time to decouple from the interaction and probe the human participant for a corrective

action. The distraction in Point 3 was achieved by overriding the trajectory completely

and fixating on a location far off task. This action provided a legibility for the interaction

partner who understood the robot had disengaged.

137



Figure 6-2: Experimental setup with the robot. The robot is an approximately 3.5 foot
tall root with fully actuated hands designed to interact with a tilted screen that displays
a dynamic narrative. A Leap Motion is mounted just below the display to capture hand
gestures. The visual narrative is time synchronized with the robot's deictic action to mea-
sure the effect of a particular gesture across the narrative and across the participants. Gaze
direction is computed using the method documented in Section 6.2.

6.3 Study setup, details and recruitment

To test the hypotheses, a human robot experiment was performed with three chosen con-

ditions. 20 participants per condition were targeted and 72 participants were successfully

recruited. Twelve breakdowns occurred which left the 20 target participants. Participants

were recruited using local advertisements on Craigslist, email lists targeting local students

within the university and advertisements within the department. No (0%) local recruit re-

ported any prior experience interacting with robots (due to the multidisciplinary nature of

the department). Additionally, participants recruited from Craigslist reported no experience

in interacting with a robot. Participants ages were p = 39, c-= 17. The gender breakdown

was 63% male and 37% female.

For this experiment, a 57 degree of freedom, approximately 4 foot tall social robot was

utilized to interact with the participants (see Figure 6-2). The robot has two arms, each of
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which consists of 7 degrees of freedom for the length of the arm and 6 degrees of freedom

for each hand. The face has 12 degrees of freedom with cameras mounted in the eyes. The

neck consists of 4 degrees of freedom. The robot also has a mobile base that was unused

for this experiment.

The software stack consists of a behavior-based animation pipeline used for pointing

gestures as well as directing the cameras to specific locations using a tuned head move-

ment mechanism that biases the eye movement prior to head movement. Calibration was

performed with simple geometric transformations from a set of Vicon tracked fiducials.

Proximal pointing gestures were calibrated using simple animations and hand tuned for

precision. To track eye movements, a Tobii eye tracker mounted just below the display

was used and calibrated for each participant prior to experiment start. Participants removed

glasses on request, only to be contingent on the quality of eye tracking determined by look-

ing at specific points post calibration. Prior to the experiment start, a Leap Motion device

tracked hand locations and performed tuning and calibration. Pointing gestures were in-

terpreted as events triggered by the extension of the index finger and calculated as a ray

extending from the index finger, originating from the palm center. The Leap Motion pro-

vided all points. Assuming the Leap Motion device was parallel to the display, the screen

position and normal Leap Motion coordinates were used to calculate the ray-plane inter-

section showing where the participant was pointing. This point provided a location for the

robot to attend to within the screen coordinates.

For the shared content, the experiment utilized Creative Commons material called

Poulette's Chair (Noitamina, 2014) attributed to "Studio Colorido" (Colorido, 2014) and

directed by Ishida YuYasushi. This organization permits the use of the content in educa-

tional domains (Google, YouTube. Accessed: 2016-10-03) and allows for modification

if the need arises. The content being observed was an animated narrative short featuring

a little girl who struggles with socio-emotional issues around making friends, eventually

finding a friend in a chair that becomes animate. Using an animated narrative allowed the

stimuli being observed to be held constant so analysis of other factors could be performed.

Prior to the experiment, each participant received these simple instructions: "Today you

will be watching a movie with our robot, Maddox. Maddox will be watching the movie
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Figure 6-3: Conditions from left to right: No robot (NR) condition, non-joint attention
behavior condition (NJA) and joint attention condition (JA). The arrows represent the effect
that the factor has on subject. For this experiment, neither the robot nor the human can
affect conspicuity outcomes on the content itself.

with you. Your objective is two-fold: you will need to watch the movie and remember as

much as possible while also making sure that the robot pays attention. At the end of the

experiment, the robot will report about what it saw in narrative form. You, too, will be

asked questions about what you saw in the video as well as report as much as you can from

what you saw." The instructions were calibrated based on a pilot to make sure the user 1)

prioritized watching the movie, 2) addressed the joint attention problem by understanding

that the robot was engaged with the content as well and 3) occasionally might need to direct

the robot with referencing behavior.

6.3.1 Experimental conditions

Three experimental human-robot conditions were defined corresponding to three basic in-

teraction classes (as in Figure 6-3) that grade the various levels of triadic interactions (envi-

ronment, human participant and robot). The first condition involved an interaction between

an agent (the person) and its environment: the No Robot case (or NR). The second condi-

tion focused on incorporating a social partner that was not coupled socially; for instance,

the robot did not attempt to adjust the participant's gaze when he or she wasn't looking

and did not respond to signaling from the participant: the Non-Joint Attention case (NJA).

Finally, the last condition was the socially coupled case where the robot responded to the

participant's gesture and elicited gesture toward the directing gaze of the human participant:

the Joint Attention case (JA).

Figure 6-3, right, shows the triadic interaction with each condition activating some
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subset of the bidirectional process of joint attention. In this case, the environment had an

effect on the human subject's gaze patterns. Additionally in the JA condition, the robot may

have had an effect on the human's gaze pattern (Hypothesis 1 & 2). In the NJA condition,

the robot probed the participant to correct its gaze by looking away briefly. In this case, the

expectation was the human would direct the robot back to the shared scene.

Probes: To test H5, the robot had a mechanism to probe the user and test whether or

not the participant voluntarily remained coupled with the robot. A max time of 18 seconds

was set so if a human did not correct the robot's gaze, it would go back to attending to the

dynamic narrative. Throughout the experiment, the robot randomly chose a point in time,

about 25 10 seconds after the robot attended to the dynamic content. The expectation

was the participants would remain coupled, regardless of the condition.

Directing: To test HI and H3, the directing behavior was designed to guide the hu-

man participants to a part of the scene that was rarely observed. The NR condition was

used prior to the robot conditions to measure gaze trajectories and identify rare events that

might be missed by a majority of participants. Next the participants were directed to those

locations and asked questions about the content in a post questionaire. The expectation was

if participants saw it, they would remember it. Additionally, they would only see it if they

were directed to it, making it more likely that the JA condition would answer the question

correctly.

Post-Questionaire: To test H4, a set of questions were posed to the participants, asking

them to remember details about the dynamic narrative that the robot directed them toward.

They were expected to answer the the questions correctly in the JA condition but not in the

NJA condition.

6.3.2 Novel quantitative metrics

To test the hypotheses, two new metrics were chosen to compare saliency and social action.

Next the effect of social action was compared. Following are details on how metrics were

computed with tests of normality so they could be used in significance tests.
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6.3.2.1 Measuring the effect of social action on a participant's gaze trajectory: a

novel metric

To compare the effect of social action (e.g., pointing on a participant's gaze position in dy-

namic narrative), a novel metric was designed. The objective of this metric was to specify

a way to measure significance between two experimental groups in which two-dimensional

gaze position over time is the dependant variable and group is the independent variable.

Two groups were compared using a a MANOVA test of significance. To generate a sum-

mary statistic for a particular participant, the following metric was defined:

FL I xC

An expected estimate position X = E[x], is computed across a set of positions x within

a set of frames L. A set of frames was selected within a specific scene in which the robot

might direct its gesture for each participant. Significance was computed as a MANOVA

across the expected gaze position within the scene across all participants in a given condi-

tion.

6.3.2.2 Measuring a participant's saliency: a novel metric

To understand the contribution of saliency to gaze trajectories, the centered saliency that

the participant observed was measured. This centered saliency was a measure of currently

observed saliency at a specific time. For each gaze position x within the set of frames L,

the sum of saliency was computed within a small window of size w x h.

[]xl Ax&L Zx Eh i3j

The resulting set of sum saliency values around x is measured as O-x and compared

across conditions using non-parametric Mann-Whitney tests.

6.4 Results

This section presents the results of testing the hypotheses HI-H5. Each subsection tests

one or more hypotheses.
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(a) (b)

(c)

Figure 6-4: Goal target locations the participant was directed toward at various scenes of
the visual narrative (annotated with purple). Notice the gaussian in the JA condition is
much closer to the directed location compared to the NJA condition.

6.4.1 The effect of social action

The first test performed was on the effect of social action: does a robot follow pointing

gestures, and if so, how long do people follow gesture? Using the metric defined in Section

6.3.2.1, - is computed. First, each scene where the participant is directed by the robot is

measured for average gaze location, 1. The central moment of the gaze during these scenes

is measured (see Figure 6-4) and is found to be significantly different in every scene in the

NJA case (scene 1 (a): p ~ 0.03 < 0.05, N = 20, scene 2 (b): p ~ 0.02 < 0.05, N = 20,

scene and 3 (c): p ~ 0.043 < 0.05, N = 20). Significance is reported from a multivariate

analysis of variance (MANOVA) due to the multivariate nature of the dependent variable.

Additionally, the differences of whether the participants reported significantly more social

behavior from the robot in the NJA vs. JA case are qualitatively reported. Figure 6-5

reports the qualitative difference between the interpretation of the robot's reaction to the

participants' commands. This is an important part of sustaining a coupled social interaction

with a human participant.
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Was the robot listening to your gestures?
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Figure 6-5: A bar chart of qualitative conspicuity of the social (JA) vs. non social (NJA)
conditions as reported by the participants. Participants were able to tell a clear difference
between the robot that responded to their deictic action and in return, attempted to direct
them to the scene at important moments. Significance reported as Student's t-test.

Having a dynamic time extended domain also allowed for investigating a more longi-

tudinal set of questions around how sustained JA can be. While robots can theoretically

sustain joint attention for as long as possible, there are still questions remaining around

how long human participants remain engaged. Yu and Smith regard joint attention as a

time-extended exchange of gaze and gesture toward sharing some context (Yu & Smith,

2016). The look-away probe was leveraged to test whether or not the JA coupling had bro-

ken. Latency was computed by measuring the time from the onset of a look-away glance to

the time of gesture response from the LeapMotion. The accumulated times the robot would

probe and no human gesture was detected within the maximum 18s were also computed.

Figure 6-6 details both the latency and the misses of the human participant binned over

28s intervals. The findings show two factors be to fascinating: 1) the participant began to

respond more tightly as the interaction proceeded, performing better by the end of the ex-

periment than they did at the beginning and 2) the JA condition ended up performing better

on average than the NJA condition. This dynamic tuning of their sensory system to respond

quickly to cues from the robot is interesting for many reasons. This dynamic tuning to ad-

dress the situated events suggests the participants adapted quickly and effectively to these

low level cues. Findings also show the JA condition outperformed the NJA condition in
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Figure 6-6: Sustainability of Joint Attention: Participants performed reacted in a signifi-
cantly more timely manner after interaction with the joint interaction robot than with the
robot without joint attention. Significance was computed with a Student's t-test. Addition-
ally, it is observed that there is a clear trending reaction time improvement over time for
both conditions. Finally, participants were more engaged with or chose to engage with the
robot more in the joint attention condition. This resulted in fewer missed probes during
the joint attention interaction over time and a more sustained interaction. The number of
probes missed in the non-joint attention condition increased over time. Significance cannot
be reported due to how the misses were computed which resulted in too few samples in
both conditions.
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Figure 6-7: The participant's mean gaze target (purple) overlaid on top of the saliency
map. The purple over the little girl's dress represents the mean gaze target at the moment
the robot referenced the auxiliary character on the left. It is clear that saliency of the target
region was low at this moment in time compared to the rest of the scene, suggesting that
social effects can override the intrinsic conspicuity of the target region.

terms of minimizing the response latency of the social coupling. Finally, though no statis-

tical significance was reported, it seems to be clear and trending that the social coupling

in the JA condition also kept the participants engaged by ensuring the participants were

monitoring the robot enough not to miss critical probes when the robot became distracted

by other stimuli or objectives. The response of the robot to the participant's gesture and the

social action taken by the robot suggest that the behavior coupling was important not just

for socially inspired robotic cognition but for interaction factors as well.

In the end, the social coupling of the robot's perception system with its human partner

had the following effects: a) minimizing the response latency between the participant and

the robot and b) coupling the visual search mechanism for both the human participant and

the robot. These findings are critical to moving forward with longitudinal interaction.

6.4.2 Effects of social action: a saliency centered analysis

To test hypothesis H2, the observed saliency of each participant group with the tracked gaze

position was measured using the Tobii eye tracker against the graph based visual saliency

model (Harel et al., 2006) and against the standard Itti-Koch model of saliency (Itti et al.,

1998). A simple summary statistic (see Section 6.3.2.2) was computed for each frame of
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each participant within a group. The expectation was that the saliency being observed by

one group would be substantially smaller than the other group, meaning that robotic social

action overrode saliency for brief moments and saliency didn't completely drive the atten-

tion of an agent. Indeed, from the three chosen scenes, the null hypothesis was successfullly

rejected: the accumulated saliency observed in the NJA condition was substantially higher

than the saliency observed in the JA condition (MANOVA scene 1: p = 0.02, N = 2000

Itti-Koch saliency, p < 0.001, N = 2000 GBV saliency, scene 2: p < 0.001, N = 2000

Itti-Koch saliency, p 0.008, N = 2000 GBV saliency, scene 3: p < 0.001, N = 1400

Itti-Koch saliency, p 0.028, N = 1400 GBV saliency). This suggests that for the human

participants, social factors inhibited (through IOR) the saliency of the stimulus enough to

allow the deictic gesture to override the desired fixation target. This is an interesting find-

ing for active visual attention systems in which visual understanding drives a substantial

set of actions the robot takes (i.e., those designed in (Dickinson, Christensen, Tsotsos, &

Olofsson, 1997)) which may be designed to interact with human participants.

6.4.3 Memory and performance

While it's been shown in Section 6.4.2 that the robot has successfully directed the gaze

location of the human participants, the next question is whether the participants recalled

certain details in that location. Hypothesis H4 supposes that once a participant observes

a particular location (through some form of JA), they may remember those details. The

participants were given a post questionnaire and both the NJA and JA condition were asked

a specific question about each scene where attention was manipulated. For scene 1, the

question was: what is the color of the dress of the auxiliary character? For scene 2, partici-

pants were asked how the little girl lit her room. For scene 3, the question was: where did

she keep the chair in her room? All the questions were based on interactions between the

participants in the NR condition and the dynamic narrative. The specific details and events

were based on rarely observed positions in the narrative.

Figure 6.8 shows that although a plurality of the participants correctly answered every

question, there was no significant difference between the two cases. Though evidence
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Did the participants remember the object the robot directed them towards?
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Figure 6-8: Results of human memory recall following study in both the JA and NJA
conditions. Unfortunately, no significance was found between the two conditions for any
question despite clear evidence that most participants clearly fixated and saw the answer.

shows the participants were directed to something in the environment, it's fascinating how

they didn't necessarily commit it to memory (called imprinting). This has great precedent

in basic psychology and this tendency is called memory failure. When roboticists give

machines perfect or even very good memories, the robots may be able to remember even

low level features they observed or generate them in a reversible way through generative

models. However, it is clear here, more may be needed for the robot to initiate an imprinting

into memory.

Following this finding, the research team explored the overall actual performance and

potential performance of each participant. The participants in each condition who cor-

rectly answered the questions were identified to understand how they might have per-

formed throughout the experiment in other conditions. First, they were separated con-

dition by condition (see Figure 6-9b and Figure 6-9c). While no significance can be

reported in this case due to low N, there seemed to be a relationship between latency

and misses in those who answered correctly. This question was verified by combining

NJA+JA correct vs. NJA+JA incorrect. In this case, a standard t-test was used to verify
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Sustainability of Joint Attention Behavior
for High Recall Participants
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Figure 6-9: An analysis of the performance of the participant's conditional on how they
answered the questions in the post-questionnaire. Purple represents those participants who
answered the questions at the end of the experiment correctly while orange represents those
who answered incorrectly. Top row represents each condition: a) resulting analysis of re-
sponse times conditional on answering the question correctly. [NJA condition] b) resulting
analysis of response times conditional on answering the question correctly. [JA condition]
Note: Top row's N is too small for significance tests, leading to the aggregate analysis
in c. c) the aggregate case of NJA+JA conditional on the participant answering correctly.
Notice the tighter coupling from those who answered correctly in the post-questionnaire.
Significance was computed using a Student's t-test.
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(t ~ (140s, 196s], p = 0.025, N = 17). This finding suggests that those who performed

well at coupling the attention of the robot with their own may perform better on other

metrics like memory tests.

6.5 Discussion

Through the years, deep models of joint attention show up in many areas of interaction

design and play critical roles in social cognition. These models have clear interaction

effects and one can assume the robot's human counterparts use observation actions to co-

ordinate their motor systems to look at a specific location. However, joint target gazing

in educational and collaborative domains should not be the sole phenomenon to rely upon

when imprinting details on the human mind. Understanding how to imprint memories

on participants is a major agenda item for educational psychology studies worldwide so

looking to this body of literature could reveal new theories and a fresh perspective on the

problem. One perspective is to view the problem of attention as directly involving cog-

nitive load of the attention system itself (a sort of capacity-centered theory). Barrouillet

and colleagues (Barrouillet, Bernardin, Portrat, Vergauwe, & Camos, 2007) have offered

a theory which suggests cognitive load can be allocated toward memory as well as other

attention demanding processes. In this view, participants may have been under high load

during the interaction which has been linked to poor memory commitment (Sweller, 1988,

1994). Meanwhile, specific theories around memory involve list-like recall in which cer-

tain memories can decay (J. Brown, 1958) and be overridden by other distractor content

during instruction (Fougnie, 2008). These concerns could have also been at play due to the

demands of the interaction which may have made memory commitment less likely. Finally

Bjork and Whitten (Bjork & Whitten, 1974) have shown that the recency of stimulus can

have significant effects on recall. Figure 6.8 demonstrates that the last question asked to

the participants about the last scene observed during the interaction had the best recall per-

formance with respect to the other recall tests. This suggests that perhaps the recency of

the particular instructional interaction did have an impact on the participants' recall.

While not successful at imprinting memories in the human counterparts, this experi-
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ment demonstrates that longitudinal joint attention is sustainable over longer periods of

time than previously understood to be possible and it may be critical for long term engage-

ment (a long standing goal of interactive robotics). The experiment found that the more

social the robot (the JA condition), the more likely it was for the human participant to mon-

itor the robot to keep the triadic social coupling tight (reducing latency). Additionally, joint

attention systems that rely on synthetic visual attention systems to drive the underlying de-

cisions made for the agent should ensure that incoming events such as gestural social action

are handled appropriately by reorienting the sensor system to the directed stimulus. It is

evident from the JA condition that the attention of the social partner should also be directed

when attempting to share the underlying features with the partner. As this study demon-

strates, if these problems are not addressed, it seems likely joint attention will break down

when the human participant begins to disengage from taking corrective action to direct the

robot's sensor system.

6.5.1 Unexpected factor: action staging

One of the most unforeseen and interesting factors to show up in this study is the idea of

staging actions. As researchers move into dynamic narratives, timing of actions becomes

a premium. To solve this problem, the synthetic attention system had clear attention tra-

jectories through the narrative ahead of time. This researcher was familiar with the content

already and also knew to precompute and test it in a controlled experiment. It was under-

stood that the arm and hand must be at a location at a specific time for the robot to direct

the gaze location of the participant at the right moment in time. The time it took to extend

the arm to reference was measured and the action to execute was tuned prior to direct-

ing attention toward a predicted event. The action was split into two motion trajectories:

one trajectory that extended the arm and positioned it in a ready-state and another motion

trajectory that extended from ready-state into fully-extended state. This design is better

than the alternatives that make it seem like the robot had the ability to perfectly predict the

changing evolution of the environment (the omniscient approach). This strategy allows the

robot to stage an action in a ready position for an event it is attempting to predict.
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It's interesting that the participants would misunderstand the intention of the action with

the 'staged action' design. The robot would move the arm to approximately its waist before

extending the arm to action but naive participants frequently misinterpreted this move as

"the robot wants to shake hands." As interaction scientists move from static to dynamic

joint attention interactions, they should stage gestures ahead of time and communicate the

notion that an action is waiting to execute. This preparation should ensure participants

won't misunderstand these kinematic configurations. In addition, there is also a lack of

research on the interpretation of staged actions, an area that warrants deeper investigation

and study.

Staged referential action shows up in the general case of dynamic and triadic (environment-

peer-self) interactions. To successfully deploy these actions in an interpretable way, roboti-

cists must delve further into the interpretation of these staged actions. For instance, any

time environmental prediction is necessary to understand the state of the environment, a

decision to reference the participant to a location should be made before the event occurs.

Since embodied non-theoretical actions are typically time extended and may be designed

piecewise, they also require a deeper reasoning about when to trigger the action. Human

interlocutors and partners should carefully consider the interpretation of this type of ges-

ture.
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Chapter 7

Reflections and directions

This body of work was specifically conducted to forward researchers' understandings of

human-robot joint attention by directly linking human inspired visual attention effects di-

rectly with spatial deictic representations. The goal was to couple internal perceptual point-

ers to objects in the robot's world and use external, directed gestural action toward the robot

to direct its perception to the same stimuli. This work defines human-robot joint attention

as the ongoing process of social and sequential point-and-recognize loops. This research

confirms the use of ambiguous deictic gesture found in previous research (Saupp6 & Mutlu,

2014) in which open palm gestures are used in various ways to select multiple targets. This

work also contributes a sketch of a visual attention system that attempts to discover and

recognize targets, given arbitrary scenes. Using the preliminary evidence, researchers and

roboticists can develop a more complex and robust architecture to link visual intelligence

systems with deictic exchange in nonverbal communication. This basic architecture could

potentially support ongoing verbal exchange by contributing to exophoric reference reso-

lution in a situated manner.

7.1 Contributions

The following is a summary of the hypotheses and results from the various studies pre-

sented in this document. The hypotheses and findings submitted are constructed as HX.Y

where X is the chapter and Y is the hypothesis presented in that chapter.
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* H4.1-H4.3: A synthetic attention system with competition at the heart of stimulus

mediation predicts the foreground negotiated between a human and a robot. In this

case, the mediator was a best fit of the robot taking similar gestural actions to activate

the foreground of its partner.

Directly selecting the parts of the figure at the point of fixation has many advan-

tages, but one cannot make contextual inferences about connected components

of the foreground. On the other hand, prior to referencing behavior, using recog-

nition algorithms helps select the correct referenced figure when the object is

already known. However, this approach does not have the ability to cope with

novel visual stimuli. Competition, as hypothesized in H4.3, helps mediate the

effects to take the best of both worlds.

* H5.1-H5.2: Following deictic action from another agent can be integrated into a ma-

chine learning framework so the internal perception system can follow these actions

while performing object recognition at the same time. This is specifically demon-

strated within a recurrent artificial neural network design.

* This hypothesis is confirmed and extends work in recurrent attention models

that are not trained to respond to social gaze and gesture (Mnih, Heess, &

Graves, 2014). Additionally, these models have competitive recognition rates

with convolutional neural networks. This model will move a point of fixation

toward a referenced location and recognize the object at that location. This ex-

tension enhances previous models that are trained to follow gaze to a location

without recognition (Triesch, Teuscher, Dedk, & Carlson, 2006).

* H6. 1 -H6.3: The ongoing process of gestural and gaze exchange occurs between a hu-

man and a robot in a dynamic environment similar to the triadic interactions observed

in relation to static environments.

* The exchange of gaze and gesture toward dynamic environments resembles the

exchange of gaze and gesture in static environments. More specifically, the
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gestures must be predicted to map to the environment prior to referencing if

the references are to be temporally mapped to the environment appropriately.

In this experiment, the solution to the problem involved holding the stimulus

constant across all participants with gestures planned ahead of time. There were

other interesting gestures that emerged unexpectedly when robots decoupled

from the interaction. Namely, participants would trace the spatial line from the

robot's center of perception (its eye) to the referent using a finger. It's as though

the participant wanted to indicate that the robot should follow the finger itself

toward the referent.

" H6.4: The human interaction partner remembered the object the robot gestured to-

ward.

* I was unable to confirm this hypothesis. Further research is needed to under-

stand why. Section 7.3 discusses some potential avenues for future research in

more detail.

" H6.5: The robot's interaction partner will remain engaged throughout the experiment

as long as the robot implements the basic interaction components of sharing attention.

o The exchange of gaze and gesture in a joint attentional coupling may be out-

wardly related to engagement. In the condition where the robot responded to

referential gesturing and attempted to direct the gaze of the participant, gaze

cues elicited participant response throughout the interaction. Additionally, in

both conditions, participants adapted and improved at responding to the robot.

In the case where the robot and participant were tightly coupled, response times

and missed reference cues decreased over time consistently.

The findings presented in this document help expand scientists' understanding of the phe-

nomena of joint attention between humans and robots. While further research and engi-

neering is required to implement plausible and working joint attention, it is clear that the

behavioral coupling of gaze and gesture between a human and a robot within an environ-

mental reference is critical to ongoing engagement between humans and robots.
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7.2 Publications

Throughout the work in this dissertation, the following papers and posters were published

in collaboration with Cynthia Breazeal:

" Nick DePalma and Cynthia Breazeal. "Object Discovery vs. Selection in Social

Action: Benefits of a Competitive Attention System." In International Conference

on Intelligent Robots and Systems (IROS), 2015. (POSTER)

* This work provided the insights for Chapter 3 and the initial results for Chapter

4.

* Nick DePalma and Cynthia Breazeal. "Sensorimotor account of attention sharing in

HRI: Survey and metric." In 2nd Annual Symposium on Artificial Intelligence and

Human-Robot Interaction, 2015.

* This workshop paper provided the argument and insights that make up Chapter

3.

" Nick DePalma and Cynthia Breazeal. "Towards bootstrapping socially significant

representations through robotic interaction alone: the joint guided search task." In

Fifth International Symposium on New Frontiers in Human-Robot Interaction at the

Artificial Intelligence and Simulation of Behavior, 2016.

e This conference paper covered the majority of the results in Chapter 4.

" Nick DePalma and Cynthia Breazeal. "NIMBUS: A Hybrid Cloud-Crowd Realtime

Architecture for Visual Learning in Interactive Domains." In 2nd Workshop on Cog-

nitive Architectures for Social Human-Robot Interaction, 2016.

e This workshop paper provided the insights and fundamental system statistics

that make up NIMBUS which was documented more fully in Chapter 2.
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7.3 Recommendations for future work

This dissertation explores two major directions in human-robot joint attention that could

lead to a better understanding of the phenomenon in interaction. First, the world is not

easily separable into whole parts that are meaningfully aggregated during first contact with

new visual stimuli. When parts of objects can be decomposed and recomposed in vari-

ous fashions, situated nonverbal referencing becomes substantially more ambiguous. In

the extreme case, the ability to learn to map reference names for parts leads inevitably

to exploring multi-resolution segmentation hypotheses. While this work shows improved

understanding in how to measure progress in solving this problem, the door is still left

wide open for a solution. The next subsection examines ideas this work did not explore.

However, these ideas could potentially lead to solutions and direction on the preference of

neural networks to use.

Second, this work provides a study of joint attention in dynamic scenes within the

context of learning. I expected many similar challenges identified in earlier experiments

of joint attention in static environments but found the dynamic and fast nature of moving

scenes to be substantially more challenging for the reasons outlined in Section 6.5. The

efficient nature of goal-oriented visual search detailed in Chapter 4 is applicable progress

toward a meaningful perception system that could be used in dynamic joint attention do-

mains like those studied in Chapter 6. Joint attention as a phenomenon should be broken

down into two component parts for better understanding prior to reassembly: a deeper un-

derstanding of the pragmatics (i.e., the observer's understanding) of deictic gesture along

with visual attention. Finally, this work makes the case that two cognitive sister fields of

attention are critical components for addressing synthetic models of joint attention going

forward: artificial context and artificial memory.

Shared gaze as a subproblem of visual intelligence

There is a primary challenge in properly implementing visual attention going forward: in-

vestigating the phenomenon requires significant engineering prior to novel research tests.

Significant effort will be necessary to understand and build a visual intelligence system
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capable of unifying basic recognition and decision making. Chapter 6 showed that partici-

pants would direct their gestures toward the sensory center of the robot's perception. This

simple observation points to a synthetic ability to handle gestures at a perceptual level. To

process these referential gestures, the visual intelligence system will need to recognize a

gesture and decide to follow it in meaningful ways. Chapter 5 offers some contributions

to this domain in two dimensions; however, it still stands to be extended to handle rays in

three dimensions. Finally, recurrent attention models still do not work for objects with three

dimensional shape. Let's explore an overview of future work that should be addressed.

1. Chapter 4 and Chapter 5 are meant to be complimentary. To see why, remember

that learning in neural networks tend to require templates to be pre-annotated and ex-

tracted from the scene with associated labels. Researchers in semantic segmentation

have been making steady progress unifying segmentation and recognition for some

time, but have not made decisions about where to fixate next. On the other hand,

the work of robotics researchers have focused on where to fixate next for some time.

The pillars of visual attention must unify before visual intelligence systems will be

able to task switch between recognizing gesture, following gesture and recognizing

the target.

2. As mentioned previously, recognition and decision making comprise a basic sub-

strate for an artificial visual search mechanism as demonstrated in Chapter 4. To

unify this further, models of sequential and potentially hierarchical goal achievement

(Erol, Hendler, & Nau, 1994) must be integrated at a higher level of the architec-

ture to direct the fixations and recognition. Additionally, for systems like these to be

integrated into contexts that need joint attention systems, further research is needed

to unify them into human-robot interaction domains like collaborative robotics. In

this researcher's opinion, to address the needs in these domains, interruptible and

retaskable mixed initiative planning systems would be a best fit for these attention

systems.

3. Chapter 4 explored mediating factors between recognition and learning to unify train-

ing and testing within the same framework. Competition in SHARE makes decisions
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on when to learn and when to emit recognition signals by deciding if it is sufficiently

confident the label being applied by its social partner is toward something already in-

dexed. Competition has been very popular in neural networks through winner-take-

all mechanisms like MaxNet, LWTA and max-pooling (Srivastava, Masci, Kazerou-

nian, Gomez, & Schmidhuber, 2013). It is still ambiguous whether these mechanisms

can be integrated tightly into a more complex neural architecture. Further research

into formalizing the SHARE model into a tightly integrated neural framework could

provide a fresh avenue for exploring this work and improving efficiency and accu-

racy.

4. For this process to work appropriately, memory systems will need to maintain states

for long periods of time to ensure proper context switches between tasks. Once

gesture is recognized and pointing direction is extracted, memory systems may allow

deeper models to cache spatial indices in more meaningful ways for other systems to

utilize.

5. There is an abundance of previous work on grounding words to images but many

of these systems rely on whole-object biases (Markman, 1990). For robots to move

past these assumptions, further research is needed to understand the activation dy-

namics behind deictic referential behavior. Presently, researchers understand it with

the spotlight model, similar to visual attention. Further research in deictic gestures is

critical to understanding a more nuanced view of referential gesture. One interesting

observation found in Chapter 3 and Chapter 4 was that participants would use piece

boundaries as cues to separately reference each part of the whole object. These time

extended gestures are meant to be unified into a whole object throughout the demon-

stration. These effects also need a uniform and simple answer to understand them

better.

Incorporating visual attention for perception in dynamic scenes

One of the key advantages of fixation centered tracking and recognition is it represents an

efficient solution for real time perception in dynamic environments. The basic idea shows
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up in many systems built for tracking and recognition in dynamic environments like VO-

CUS (Frintrop, 2006) and the MarVEye system (Dickmanns, 2007). Researchers validated

both systems on moving robots in complex moving worlds like autonomous car driving

and understanding. As built thus far, the SHARE system can still provide a substrate to

make research relevant in these visually guided domains. The research performed to date

simulated working systems in these domains and made observations about their effect on

interactions. Chapter 6 details how important this ongoing process is for the interaction

itself and how without it, social interaction between the human and the robot breaks down

quickly. This occurs when human partners begin to understand they are looking but not

perceiving the nature of the content at the point of fixation. Two factors are incredibly im-

portant in dynamic scenes: 1) tracking movement at the point of fixation and 2) prediction

of social (animate) and environmental (inanimate) changes that make action forecasting

(the ability to plan an action to have effects at a specific moment) possible.

Finally, high level basic research is required to understand how to perform these tasks

in dynamic coupling with the environment.

1. Following up on work in Chapter 4 and Chapter 5, dynamic environments offer a

significantly larger challenge for perception systems. Fixation has an even shorter

amount of time to emit signals. Following biological inspiration, it's possible track-

ing must be used as a low-level mechanism to follow stimuli long enough for recog-

nition and understanding to occur. In this case, future work could provide plausible

saccade behavior toward the underlying stimulus, allowing the other visual mech-

anisms like recognition to occur. Following an underlying stimulus would allow

higher level mechanisms to work as though they were in more static environments.

2. One of the grand challenges of artificially intelligent systems is in prediction, a new

and important domain. There are two key areas in dynamic perception in human-

robot interaction: gaze prediction with sparse observation and environmental predic-

tion. When the robot estimates that a human partner is looking elsewhere and the

agent must correct its partner to a scene in which objects are moving, it's critical for

the system to provide estimates of the other two sides of the triad. For the robot to
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discriminate between animate and inanimate objects, it must first recognize them.

Following this, the agent must recall which predictive model best previews its next

behavior and then update its model. Eye behavior informs much of a social partner's

visual experience and new research is shedding light on an approach to using cues

to direct eye gaze in marketing and data visualization (Segel & Heer, 2010). This

behavior has real cognitive effects on situated understanding, only recently docu-

mented in the work of Dr. Neil Cohn (Cohn, 2003, 2013). In addition, this work

dovetails with recent research in the neural network community using attention to

debug perceptual narrative generation (Xu et al., 2015). Both bodies of work previ-

ously mentioned in cognitive and interaction science root the phenomena in narrative

understanding: the idea that primitive and predictive shared scripts help fill in gaps in

scientists' understanding of an occurrence at any one moment (Bruner, 1991). Scien-

tists and engineers are not entirely certain how to integrate these component parts but

new research could help inform this prediction and further illuminate new avenues

in mental inference through script inference. More basic research is clearly required

before anything conclusive can be said in this space.

7.4 Final remarks

Thanks to research performed in the past two decades, understanding human-robot inter-

action as a dynamical process between robot and human partner helps inform researchers'

hypotheses and drives the interest, engagement and interaction for longer periods of time

than previously reported. This work seeks to reproduce some of these mechanisms in mean-

ingful ways and demonstrate the actions of the agent are believable as a synthetic character

performing behaviors similar to humans. Conversely, this work strives to not make claims

that the synthetic models developed here are the same as those that function in naturally

intelligent animals. Clearly though, these phenomena have real effects on both the inter-

action, behavior and efficiency of an artificially cognitive system. While researchers and

roboticists are still a long way away from socially intelligent robots, it is evident that joint

attention and joint attention in dynamic scenes will continue to play large roles in under-
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standing both nonverbal and verbal linguistic acts by a social partner.
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Appendix A

Datasets used throughout the

dissertation

The following datasets were used throughout the dissertation. Figures A-1, A-2 and A-

3 is a small capture of the dataset taken on October 15th, 2015. This dataset was used

throughout Chapters 4 and 5.
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The tangram dataset (snapshot October 15, 2015)
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Body

Candle

Candle

Candleabrum Flame

Bunny

Ears

Feet

Head

Fish

Head Tail

Figure A-1: Sample 1 of the tangram dataset captured from participants on-line. Both
whole figures are shown here as well as the subfigures that were selected and labeled by
the same participants.
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Figure A-2: Sample 2 of the tangram dataset captured from participants on-line. Both
whole figures are shown here as well as the subfigures that were selected and labeled by
the same participants.
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Figure A-3: Sample 3 of the tangram dataset captured from participants on-line. Both
whole figures are shown here as well as the subfigures that were selected and labeled by
the same participants.
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Appendix B

Recruitment documentation and consent

forms

The following consent forms were signed and agreed to by all participants interacting with

the SHARE and NIMBUS system. Instructions were stated as printed to participants prior

to the interaction and a short question period was held to allow for clarifications. The

questionnaire documented in Section B.3 was administered to participants who interacted

with the robot, Maddox for the final study discussed in Chapter 6.
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B.1 Consent forms

3/10/2017 Consent Page

Consent Page

Posted on Sep 27, 2015

CONSENT TO PARTICIPATE IN NON-BIOMEDICAL RESEARCH

Software Game Character Training Experiments

You are asked to participate in a research study conducted by Cynthia Breazeal (Associate Professor), Jin Joo
Lee (Ph.D. candidate) and Nick DePalma (Ph.D. candidate) at the Massachusetts Institute of Technology
(M.I.T.). Results of this study will contribute to the Ph.D. thesis research of Jin Joo Lee and/or Nick DePalma
You were selected as a possible participant in this study because you have volunteered to label data online with
our system and you are over the age of 18 and are eligible to consent. You should read the information below,
and ask questions about anything you do not understand, before deciding whether or not to participate.

PARTICIPATION AND WITHDRAWAL

Your participation in this study is completely voluntary and you are free to choose whether to be in it or not. If
you choose to be in this study, you may subsequently withdraw from it at any time without penalty or
consequences of any kind. The investigator may withdraw you from this research if circumstances arise which
warrant doing so. This may happen if foul language is used or if it is found that the participant is undermining
the study through intentional deceit.

PURPOSE OF THE STUDY

We are investigating Machine Learning applications for software computer games.

PROCEDURES

If you volunteer to participate in this study, we would ask you to do the following things:

You will be asked to interact with a tangram game or scene in which a virtual robotic agent is jointly interacting.
You will be able to communicate with the character through the use of the keyboard and the mouse. You will be
told when the study ends and will then be asked a series of questions about your experience. In some cases, you
will have the opportunity to voluntarily exit at any time but will still be required to fill out the questionnaire. The
complete study is estimated to take less than one hour of your time.

POTENTIAL RISKS AND DISCOMFORTS

We are unaware of any potential risks in this experiment. To reiterate, you may exit at any time you feel
discomfort and we would like to request that you report any discomfort immediately to one of the investigators
through our contact information below.

POTENTIAL BENEFITS

file:///home/nd/projects/turkjs/public/story-collect/_site/consent/2015/09/27/alpha.html 1/3

Figure B-1: Page 1 of the consent form used throughout the experiments discussed in Chap-
ters 2 and 4. This consent form was covered under COUHES protocol number 1402006168.
The protocol was titled "Using Crowd-Sourcing to Understand Effects of Narrative on Per-
ception in Human-Robot Interaction."

174



Your participation will help us to build software agents and robots that are more responsive and sociable
learning partners.

PAYMENT FOR PARTICIPATION

Every participant will receive, $0.10 for doing the experiment. You can receive up to an additional $1 based on
the quality of your response.

CONFIDENTIALITY

Any information that is obtained in connection with this study and that can be identified with you will remain
confidential and will be disclosed only with your permission or as required by law.

While we do not record any identifying data from you, the participant, any information that is obtained in
connection with this study will remain confidential and will be disclosed only with your permission or as
required by law.

Every participant's session with this online system is anonymized using globally unique identifiers in
conjunction with unique identifiers that relate to the study itself. We never will ask for your name, address, or
any identifying information. Data is stored in a database that we use to train our robots and will only be used to
generate robotic behavior. Any other uses of the data will require further consent of the participant.

IDENTIFICATION OF INVESTIGATORS

If you have any questions or concerns about the research, please feel free to contact:

Nick DePalma (Ph.D. candidate)
617 452 5603
MIT Media Lab
E15-485
Cambridge, MA 02139
ndepalma@media.mit.edu

Associate Professor, Cynthia Breazeal
617 452 5601
MIT Media Lab
E15-468
Cambridge, MA 02139
cynthiab@media.mit.edu

EMERGENCY CARE AND COMPENSATION FOR INJURY

If you feel you have suffered an injury, which may include emotional trauma, as a result of participating in this
study, please contact the person in charge of the study as soon as possible.

In the event you suffer such an injury, M.I.T. may provide itself, or arrange for the provision of, emergency
transport or medical treatment, including emergency treatment and follow-up care, as needed, or reimbursement
for such medical services. M.I.T. does not provide any other form of compensation for injury. In any case,
neither the offer to provide medical assistance, nor the actual provision of medical services shall be considered
an admission of fault or acceptance of liability. Questions regarding this policy may be directed to MIT's
Insurance Office, (617) 253-2823. Your insurance carrier may be billed for the cost of emergency transport or
medical treatment, if such services are determined not to be directly related to your participation in this study.

file:///home/nd/projects/turkjs/public/story-collect/_site/consent/2015/09/27/alpha.html 2/3

Figure B-2: Page 2 of the consent form used throughout the experiments discussed in Chap-
ters 2 and 4. This consent form was covered under COUHES protocol number 1402006168.
The protocol was titled "Using Crowd-Sourcing to Understand Effects of Narrative on Per-
ception in Human-Robot Interaction."
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RIGHTS OF RESEARCH SUBJECTS

You are not waiving any legal claims, rights or remedies because of your participation in this research study. If
you feel you have been treated unfairly, or you have questions regarding your rights as a research subject, you
may contact the Chairman of the Committee on the Use of Humans as Experimental Subjects, M.I.T., Room
E25-143B, 77 Massachusetts Ave, Cambridge, MA 02139, phone 1-617-253 6787.

RESEARCH SUBJECT AGREEMENT

I understand the procedures described above. By clicking on the Agree Button below, you are agreeing that you
are of legal age to consent (18 years or older) and that you agree to the above terms.

Agree Leave Immediately

Theme Copyright C Camille Diez 2015
Powered by Jekyil

Subsystem by Nick DePalma

file:///home/nd/projects/turkjs/public/story-collect/_site/consent/2015/09/27/alpha.html 3/3

Figure B-3: Page 3 of the consent form used throughout the experiments discussed in Chap-
ters 2 and 4. This consent form was covered under COUHES protocol number 1402006168.
The protocol was titled "Using Crowd-Sourcing to Understand Effects of Narrative on Per-
ception in Human-Robot Interaction."
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3/10/2017 Epsilon Page

Epsilon Page
Posted on Sep 27, 2015

Thank you for participating in our experiment.

0
Theme Copyright 0 Camille Diez 2015

Powered by Jekyll
Subsystem by Nick DePalma

file:///home/nd/projects/nick/turkjs/public/story-collect/_site/terminate/2015/09/27/epsilon.htm 1/1

Figure B-4: The webpage presented to participants on-line who have already participated
in the study.
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CONSENT TO PARTICIPATE IN
NON-BIOMEDICAL RESEARCH

Dynamics of Social Interaction and Cooperation between I lumans and Robots

You are asked to participate in a research study conducted by Dr. Cynthia Breazeal, and

Nick DePalma from the Program in Media Arts and Sciences at the Massachusetts

Institute of Technology (M.IT). You were selected as a possible participant in this study

because you are at least of 18 years of age and have not been diagnosed with an autistic

spectrum disorder. You should read the information below, and ask questions about

anything you do not understand, before deciding whether or not to participate.

0 PARTICIPATION AND WITHDRAWAL

Your participation in this study is completely voluntary and you are free to choose

whether to be in it or not. If you choose to be in this study, you may subsequently

withdraw from it at any time without penalty or consequences of any kind. The

investigator may withdraw you from this research if circumstances arise which warrant

doing so.

* PURPOSE OF THE STUDY

The purpose of this study is to investigate the interaction between humans and between a

robot and a human. We are interested in how people communicate and interact with each

other and with robots, and we hope that the results of this study will help us to improve

the design of the robot's collaborative and social abilities.

a PROCEDURES

If you volunteer to participate in this study, we would ask you to do the following things:

You will be asked to participate in a one-on-one social interaction with either another

participant or with a humanoid robot. The participant will be asked to engage in a 10 to

30 minute interaction with the robot or with another participant. You will be instructed

what types of nonverbal gestures you can use. If you are interacting with a robot,

understand that it does not understand your words and will not speak back. If you are

interacting with another participant, no talking will be allowed.

You will be asked to complete a questionnaire after the session. After you complete your

questionnaire, you can ask questions about the experiment, the robot, and the goals of the

research.

I POTENTIAL RISKS AND DISCOMFORTS
There is a minimial risk that you might feel uncomfortable speaking to the other

participant or to the robot. If any part of the conversation is in any way uncomfortable,

you can opt to change the topic or end the interaction.

Figure B-5: Page 1 of the consent form used throughout the experiments discussed in Chap-
ters 4 and 6. This consent form was covered under COUHES protocol number 1403006294.
The protocol was titled "Dynamics of Social Attention and Cooperation with Humans".
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* POTENTIAL BENEFITS
There are no specific benefits that you should expect from participating in this study;
however, we hope that you will find the experience to be enjoyable and engaging.

Your participation in this study will help us to build robots that are better able to interact
with humans. And the information learned from this study may advance scientific
understanding of interpersonal interaction

* PAYMENT FOR PARTICIPATION
You will receive $10 at the conclusion of the experiment and a chance to win $30 gift
certificate to a vendor of your choice. There is no penalty for withdrawing before the end
of the study.

* CONFIDENTIALITY
Any information that is obtained in connection with this study and that can be identified
with you will remain confidential and will be disclosed only with your permission or as
required by law.

Your participation in this study will be record by regular cameras and by 31) cameras.
The data will be kept in a locked, secure location after the conclusion of the study. No
data that would describe an individual participant will be used, we will only use
aggregate data from all participants.

At any time during or after the experiment, you can request that all data collected during
your participation be destroyed.

* IDENTIFICATION OF INVESTIGATORS

Associate Professor Cynthia Breazeal
617-452-5601
MIT Media Lab
E15-468
Cambridge, MA 02139
cynthiab( media.mit.edu

Nick DePalma
617-452-5112
MIT Media Lab
E15-468
Cambridge, MA 02139
ndepahna~mit.edu

* EMERGENCY CARE AND COMPENSATION FOR INJURY
If you feel you have suffered an injury, which may include emotional trauma, as a result
of participating in this study, please contact the person in charge of the study as soon as
possible.

Figure B-6: Page 2 of the consent form used throughout the experiments discussed in Chap-
ters 4 and 6. This consent form was covered under COUHES protocol number 1403006294.
The protocol was titled "Dynamics of Social Attention and Cooperation with Humans".
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In the event you suffer such an injury, M.I.T. may provide itself, or arrange for the
provision of, emergency transport or medical treatment, including emergency treatment
and follow-up care, as needed, or reimbursement for such medical services. M.I.T. does
not provide any other form of compensation for injury. In any case, neither the offe'r to
provide medical assistance, nor the actual provision of medical services shall be
considered an admission of fault or acceptance of liability. Questions regarding this
policy may be directed to MIT's Insurance Office, (617) 253-2823. Your insurance carrier
may be billed for the cost of emergency transport or medical treatment, if such services
are determined not to be directly related to your participation in this study.

0 RIGHTS OF RESEARCH SUBJECTS
You are not waiving any legal claims, rights or remedies because of your participation in
this research study. If you feel you have been treated unfairly, or you have questions
regarding your rights as a research subject, you may contact the Chairman of the
Committee on the Use of Humans as Experimental Subjects, M.I.T., Room E25-1431B, 77
Massachusetts Ave, Cambridge, MA 02139, phone 1-617-253 6787

Figure B-7: Page 3 of the consent form used throughout the experiments discussed in Chap-
ters 4 and 6. This consent form was covered under COUHES protocol number 1403006294.
The protocol was titled "Dynamics of Social Attention and Cooperation with Humans".
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B.2 Instructions provided to participants

In this study, you will be helping us understand how you select components of a scene. To help us out,
one of you must show the other what he/she is looking at. That person will have the true answer on
their screen.

The instructions are as follows:

1. I will place a piece of paper between you both. One person will need to communicate to the other
which parts of the tangram scene they must select.
2. Once the paper comes down, one person will receive the scene as is and the other with the correct
parts selected.
3. You will have 5 seconds to communicate the selection.
4. Once those 5 seconds expire, the receiver of the selection will need to enter in the selection on the
screen.

Further rules of the game:
1. There is no talking.
2. You are both allowed to gesture if you would like.
3. You will have 5 seconds only beginning on the first gesture exchanged.
4. Part 2 of this study will be performed on both of you individually.
5. You are allowed to touch the paper but not rotate it or move it.
6. On the displays

1. highlighted or selected tangram shapes are outlined in white on your screen
2. tangram shapes not highlighted or selected are outlined in black on your screen

For the receiver of the experiment, you should be able to enter your selection by pressing the display
with your finger.

Once you are finished with a scene, press the next button to advance the study.

This will repeat until the administrator indicates the end of the study.

Figure B-8: The instructions provided to the
for the study discussed in Chapter 3.

participant dyad prior to exchanging gesture
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In this study, you will be sharing attention between the robot and yourself. You will receive a selection
that you must communicate that is framed as a "foreground" or "selection" of the object you are
looking at. On the display to your left, two windows will be open. The window on the left shows you
the foreground you should communicate to the robot. The window on the left will allow you to enter
the selection you think the robot is attempting to communicate back. You may not verbally
communicate with the robot and you may only communicate with the robot through nonverbal,
referential, gesture in the holographic illusion between the robot and yourself.

There will be three phases.

Phase 1: The robot is passive, you will gesture toward the robot to communicate the goal. The robot
will perceive your gesture and make a guess at your selection.

Phase 2: The robot will gesture back to you to communicate the goal. You must then enter the
foreground on the touchscreen to your left.

Phase 3: You will both receive a foreground to communicate. You and the robot will gesture to each
other to communicate the foreground. You will report both what you think the robot is
communicating as well as what you think the shared foreground is.

Figure 1: (Left) The scene presented to you and the robot. (Right) The foreground selected that you
must communicate to the robot.

Figure B-9: The instructions provided to the participants interacting with Maddox for the
study discussed in Chapter 4.
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Chair Survey N

1. What happened in the video?

2. What story do you think the robot would tell based on
your interactions with the robot?

3. What is your identifier?

4. Please rate your experience with the
scale of 1 to 7.

Did the robot
follow directions?

Do you think that I
was controlling the
robot?

Do you think the robot
was trying to direct
you?

Very
frustrating

0

Neutral

0 0 0

interaction on a

Pleasant
experience

0 0 0

o o 0 0 0 0 0

o o 0 0 0 0 0

5. Do you believe that the robot was listening to you? (i.e.

following your gestures or gaze?)
https://www.surveymonkey.com/r/TWM5KZ5 1/1

Figure B-10: Page 1 of the questionnaire administered to the participants interacting with
Maddox following the study discussed in Chapter 6.
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3. What is your identifier?

4. Please rate your experience with the interaction on a
scale of 1 to 7.

Very
frustrating Neutral

Pleasant

experience

Did the robot
follow directions?

Do you think that I
was controlling the
robot?

Do you think the robot
was trying to direct
you?

o 0 0 0 0 0 0

o 0 0 0 0 0 0

o 0 0 0 0 0 0

5. Do you believe that the robot was listening to you? (i.e.

following your gestures or gaze?)

O Yes

Q No

Other (please specify)

6. Is there anything you'd like to add about how the robot

responded to your gesture?

Done

https://www.surveymonkey.com/rTWM5KZ5

Figure B-11: Page 2 of the questionnaire administered to the participants interacting with
Maddox following the study discussed in Chapter 6.
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