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Abstract

The overall goal of this thesis was to understand the biophysical basis for
glomerular filtration, the impairment of which characterizes most forms of kidney disease.
The permselectivity of the glomerular capillary wall in vivo is usually assessed by

measuring sieving coefficients (®) of tracer solutes, and relating these data to the intrinsic
properties of the barrier using a mathematical model. Membrane models based on the
concept of equivalent cylindrical pores have traditionally been used for that purpose, but
they do not reflect the real ultrastructure of the capillary wall, which consists of three
layers: a fenestrated endothelium, a glomerular basement membrane (GBM), and epithelial
cells spanned by slit diaphragms. We first showed that pore models could not be used to

estimate the mean transmural hydraulic pressure difference (AP) from macromolecular
sieving data, due to the effect of random measurement errors and uncertainties in the
models.

A novel "ultrastructural” model was developed to relate the sieving coefficients of
neutral macromolecules to the structural characteristics of the individual layers of the
glomerular capillary wall. To characterize solute transport across each layer, we first
measured diffusion rates of Ficoll across intact and cell-free glomerular capillaries isolated
from the rat, using confocal microscopy. The contribution of the GBM to the mass transfer
resistance of the barrier varied between 10 and 30 % of the total, depending on molecular
size. Diffusional hindrance coefficients for GBM were determined from the data, as well as
ultrastructural parameters related to the slit diaphragms. We also measured Ficoll sieving
coefficients for isolated rat GBM, and determined diffusional and convective hindrance

coefficients as a function of solute size and AP. The dependence of the Darcy permeability

of GBM on AP was examined, and the results were interpreted assuming that the GBM
consists of a random fibrous network with two populations of fibers of distinct sizes.

The ultrastructural model was then extended to permit simulations of glomerular
filtration in vivo, and predictions of sieving coefficients. The simulations indicated that
basement membrane thickness and the spacing of the epithelial slits, one or both of which
change in certain glomerular diseases, have relatively little effect on glomerular
permselectivity. The main determinants were found to be the diffusional and convective
hindrance coefficients in the GBM and the parameters which describe the structure of the
epithelial slit diaphragm. This new approach has the potential to provide a much better

understanding of the physical basis for the functional impairments seen in glomerular
disease.
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Title: Professor of Chemical Engineering
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Chapter One

Introduction

1.1 Relevance of Giomerular Function

The glomerulus piays an essential role in homeostasis by converting blood into an
ultrafiltrate that is virtually devoid of proteins. Impairment of glomerular filtration is
observed not only in most diseases affecting primarily the kidney but also in systemic
diseases, such as =ssential hypertension and diabetes. Nearly half the patients who become
diabetic in their youth develop renal failure 10 to 30 years after the onset of diabetes, and
the most common cause of mortality among that population is kidney disease.

Glomerular diseases can be related to alterations in the structure of the glomerulus,
resulting in a loss of overall permselectivity, or to variations in intrarenal hemodynatnics,
or to both. The main manifestations of glomeruiar disorder are a marked reduction in the
glomerular filtration rate (GFR) accompanied by proteinuria, i.e., the loss of serum protein
in the urine. The depression in GFR causes a decrease in the urinary output and the
accumulation in the blocd of substances at potentially dangerous levels.

To characterize these diseases, the selectivity of the glomerular capillary wall needs
to be assessed quantitatively, which constitutes the purpose of mathematical models of
glomerular filtration. By relating observable concentrations, flow rates, and pressures to
the intrinsic properties of the membrane, these models can yield measures of the hydraulic
and macromolecular permeability of the barrier based upon hemodynamic and sieving data,
and thereby provide a better understanding of the underlying causes for glomerular disease,

and a foundation for developomg new diagnostic and treatment means.

1.2 Thesis Summary
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The overall goal of this thesis was 1o develop a novel theoretics] mode! toreinte the
size-selective properties of the glomerular capillary wall (o the spec:fic elirasiractvre of U
barrier. Chapter 2 describes the structure and function ot the glomerulus and sutnes izes
previous mathematical models for glomerular filtration. The specific issues adressed in the

thesis are then as tollows:

1. The estimation of glomerular transmembrane hydraulic pressure from hemodynannc and

sieving data, using pore models of glomerular filtration (Chapter 3).

2. The development of a novel approach to glomerular filtration, based upon the structure
of the three layers forming the barrier (Chapter 4). Mass transfer coeffictents 1n an
ultrafiltration cell were measured in order to interpret anwe carlier water permeabihity datu

as well as in vitro Ficoll sieving data (Chapter 5).

3. The determination of Ficoll diffusional permeability across isolated glomerular capillany
wall and basement membrane. The data were also interpreted so as to characterize the

structure of the epithelium (Chapter 6).

4. The measurement of Darcy's permeability and Ficoll sieving coefficients for the
glomerular basement membrane (GBM). Macromolecular hindrance coefficients were then
inferred, and a new framework for interpreting the water permeability data was proposed
(Chapter 7). The experimental work presented in Chapters 6 and 7 was done in

collaboration with Dr. Barbara S. Daniels at the University of Minnesota.

5. The assembly of the novel ultrastructural model for glomerular filtration of neutral
macromolecules. Theoretical predictions compared favorably with in vivo Ficoll sieving

data (Chapter 8).

13



Chapter Two

Structure and Function of the Glomeruius

2.1 Anatomy and Role of the Kidney

The role of the two kidneys is to maintain a constant extracellular environment by
regulating the volume and concentration of the constituents of the extracellular fluid and
excreting the waste products of metabolism. The kidneys lie on both sides of the vertebral
column, between the twelfth thoracic vertebra and the third lumbar vertebra. Each is fed by
a renal artery arising from the abdominal aorta, which then divides itself into smaller
segmental, interlobar, and interlobular arteries, which in turn break into afferent arterioles.
Two zones can be distinguished in the kidney; the outer one is referred to as the cortex and
the inner one as the medulla.

The nephrons are the functional urits of the kidney. Each consists of a glomerulus,
a series of tubules and a collecting duct. The number of nephrons per kidney is
approximately 1.2x106 in humans, and 3.2x104 in rats (Tisher and Madsen, 1986). Blood
is first filtered in the glomerulus, reabsorption and secretion of water and solutes then occur
in the tubules, and urine is finally concentrated in the collecting duct.

The glomeruli are responsible for the production of an ultrafiltrate of plasma, the
first step in the formation of urine. As illustrated in Figure 2-1, each glomerulus is
composed of a capillary network, a capsule known as Bowman's space which surrounds
it, and a central region of mesangial cells. The average diameter of the glomerulus is 200
pum in humans, 135 pm in rats (Tisher and Madsen, 1986). As blood passes through the
interweaving capillaries of the glomerulus, cmanating from a single afferent arteriole and

converging towards one efferent arteriole, it is filtered selectively, and the resulting product

14
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Bowman's space
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Figure 2-1
Organisation of the glomerulus
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is collected in Bowman's capsule. In humans, about 20 % of the cardiac output flows
through the nephrons, resulting in a renal plasma flow (RPF) on the order of 550 ml/min.
Approximately one fifth of the plasma volume is filtered across the capillary walls of the
glomerulus, yielding a glomerular filtration rate (GFR) on the order of 110 ml/min (Deen et
ai., 1985), or about 170 liters of ultrafiltrate per day, most of which is then reabsorbed by
the wbules; a total volume of 1 to 1.5 liters of urine is thus produced daily (Kanwar and
Venkatachalam, 1992). In rats, measurecments are mosi often reported on the basis of a
single nephron; typical values for the afferent plasma flow rate (Q4) and the single nephron
glomerular rate (SNGFR) are 150 nl/min and 45 nl/min, respectively.

Glomerular mesangial cells are believed to also participate in the ultrafiltration of
plasma by taking up colloidal particles through endocytosis and pinocytosis (Kanwar and
Venkatachalam, 1992). The extent of their contribution has not been quantified precisely
and is usually assumed to be negligible.

The composition of the glomerular ultrafiltrate is that of nearly ideal ultrafiltrate of
plasma. The Bowman's space-to-plasma concentration ratios for glucose, amino acids and
small solutes are very close to unity, whereas the ultrafiltrate is almost entirely protein free
(Maddox et al., 1992). As described further, the glomerular capillary wall is a highly

selective filter that discriminates on the basis of size, charge and molecular configuration.

2.2 Structure of the Glomerular Capillary Wall

The glomerular capillary wall consists of three distinct layers, namely, the
endothelium, the glomerular basement membrane (GBM) and the epithelium, as illustrated
in Figure 2-2. Endothelial cells form the inner lining, in between the lumen and the
glomerular basement membrane. Firmly attached to the outer base of the GBM are the "foot
processes”, or pedicels, which are interdigitating extensions emanating from the large

central body of the epithelial cells, also termed podocytes.
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Schematic representation of the glomerular capillary wall
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2.2.1 Endothelial Cells

The endothelial cells of the glomerular capillaries are perforated by large fenestrae,
or pores. Embedding mouse and rat kidney in Epon and staining the sections with lead
hydroxide, Rhodin (1962) estimated the average diameter of the fenestrae as 70 nm. The
author also found that the fenestrae were invariably closed by a diaphragm with a thickness
identical to that of the plasma membrane of the endothelial cells. Clementi and Palade
(1969) later suggested that erdothelial cell diaphragms are composed of a protein-
polysaccharide film that is highly permeable, thus presenting no significant barrier to the
passage of even large molecules. Kanwar and Venkatachalam (1992) later concluded that
fenestrae were closed by thin diaphragms only at an early stage of differentiarion.
According to these authors, with further maturation the diaphragms disappear, fenestrae
enlarge to a diameter of 100 nm, and the cytoplasm of the endothelium becomes highly
attenuated. Most of the recent studies do not report the existence of such diaphragms
(Farquhar, 1981; Abrahamson, 1987; Avasthi and Koshy, 1988; Lea et al., 1989; Kondo,
1990; Takami et al, 1991).

Endothelial cells are covered by an anionic fiber matrix, the glycocalyx, and several
studies suggest that this cell coat also fills the fenestrae (Abrahamson, 1987; Avasthi and
Koshy, 1988). The major anionic component of the glycocalyx is podocalyxin, a
sialoglycoprotein, but heparan sulfate proteoglycans and hyaluronic acid have also been
identified in the matrix present in the fenestrae (Avasthi and Koshy, 1988).

Kondo (1990) reported that the fenestrae are 80-200 nm in diameter and have an
oval shape. Different observations were made by Lea et al (1989), who determined that the
fenestrae are channels of circular cross-section with varying radii, the walls of the
endothelial cells being curved outwards. The minimal mean diameter of the fenestrae was

measured as 61 nm, the mean cross-sectional diameter of the endothelial cells as 62 nm.
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The number of fenestrae per square micrometer was estimated as 70, yielding a fractional
area of glomerular basement membrane exposed by fenestrae of 20%.
Recent work indicates that the contribution of endothelial cells to the overall
selectivity of the glomerular capillary wall is not significant (Farquhar, 1981; Drumond and
Deen, 1994), and resistance to transport across the endothelium is assumed to be

negligible.

2.2.2 Glomerular Basement Membrane

2.2.2.1 Chemica!l Constituents

Basement membranes are specialized sheet-like extracellular matrices, which are
seen in many locations such as the dermal-epidermal junction of the skin, the base of
lumen-lining epithelia, around Schwann cells, skeletal, and cardiac muscle cells, as well as
throughout the digestive, respiratory, reproductive and urinary tracts. These thin sheets
function both as structural supports, providing interactive surfaces for cell attachment,
migration and differentiation, and as semipermeable membranes, passively regulating
exchange of solutes and cell migration.

Basement membranes were first visualized by light microscopy following staining
with periodic acid-Schiff and silver. Since then, electron microscopy of metal impregnated
aldehyde-fixed tissue has shown the existence of two separate layers, the electron-lucent
lamina lucida (lamina rara) which is adjacent to the plasma membrane, and the electron-
dense lamina densa. In the glomerular basement membrane, the lamina densa lies between
the subendothelial lamina rara intemna, and the subepithelial lamina rara externa. Yurchenko
and O'Rear (1993) report that a third type of lucent layer, the lamina fibroreticularis, has
been observed in some tissues. However these authors also suggest that basement

membrane layering could be a mere fixation artifact due to a phase separation or a
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contraction of cells; Goidberg and Escaig-Haye (1986) studied epithelial basement
membranes fixed by rapid-freeze substitution, and saw no evidence of layers in what they
described as homogeneous matrices.

Basement membranes are composed principally of type IV collagen, laminin,
entactin, heparan sulfate proteoglycan and fibronectin. Collagen is the primary structural
protein of the body, comprising about one third of the total protein content. Collagen
molecules consist of three left-handed, helical polypeptide chains assembled as a right-
handed superhelix (fa1(IV)2,02(IV)] for type IV collagen). Each of the chains contains
about 1000 amino acid residues, yielding a total molecular weight of about 300,000
Daltons. The entire molecule is approximately 300 nm long and 1.4 nm in diameter
(Grodzinsky, 1983). The molecules tend to aggregate into fibrils of varying diameter,
ranging from 2.5 to 7 nm (Yurchenko and O'Rear, 1993).

The very large glycoprotein laminin (106Da) is formed from three polypeptide
chains (A, B1, B2). Electron microscopy reveals its unique cruciform shape with one long
and three short arms. The long arm, which is about 3 nm thick (Kasinath and Kanwar,
1993) possesses a large globule thought to interact with heparin. Entactin, also known as
nidogen, is a dumbbell-shaped glycoprotein of 148,000 Da. Aumailley et al. (1989)
showed that entactin binds to type IV collagen, and suggested that it may serve an
important cross-linking function, acting as a bridge between laminin and collagen IV
polymers. Heparan sulfate is a linear polysaccharide chain composed of uronic acid-N-
acetylglucosamine repeating subunits with sulfate substitutions. It is believed to play an
important role in determining the charge-selectivity of the barrier. Heparan sulfate
proteoglycans of varying size and charge have been identified in basement membranes. The
major form, perlecan, appears to be present in all tissue basement membrane. It consists of
one elongated polypeptide chain (400-450 kDa) containing six globular domains with
heparan sulfate groups attached at one end. Laminin has been shown to bind to highly

sulfated heparan sulfates (Yurchenko and O'Rear, 1983). Lastly, tibronectin, a
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sialoglycoprotein abundant in extracellular matrices, has been observed in several types of
basement membranes, including the GBM (Courtoy et al., 1980).

Alterations in the content and structure of these components are associated with a
variety of glomerular diseases, as reviewed by Kasinath and Kanwar ( 1993). In moderate
diabetic nephropathy, an increase in type IV collagen content accounts for the observed
thickening of the GBM. Nephrotoxic nephritis and diabetic. nephropathy are both
accompanied by changes in the amount and distribution of laminin present in the GBM. A
decreased density of anionic sites is seen in proteinuric states, thereby suggesting that a
loss of heparan sulfate proteoglycans could be one of the mechanisms causing proteinuria.

In the emerging picture of basement membranes, as summarized by Yurchenko and
O'Rear (1993), two independent polymers, type IV collagen and laminin, appear to form
the basic framework. The former provides a covalently stabilized scaffolding, the latter a
more plastic network array. To this basic mesh are attached a variety of macromolecules
which give the matrix its functional properties. Basement membrane attributes such as
porosity, charge, and growth factor activity are regulated by these other components.
Entactin is believed to function as an additional link between type IV collagen and laminin.
The role of proteoglycans is the most well understood. By virtue of their sulfate and
carboxyl radicals, proteoglycans determine the charge-selectivity of the GBM. They also
contribute to its size-selectivity by steric exclusion effect, and may be responsible for the

gel-like consistency of the GBM (Kasinath and Kanwar, 1993).

2.2.2.2 Ultrastructure

The glomerular basement membrane is approximately 300-350 nm thick in humans,
125-200 nm thick in rats (Tisher and Madsen, 1986; Daniels et al., 1992). Based on
transmission electron micrographs, Laurie et al. (1984) found three structures in the

glomerular basement membrane: a predominant network of 4-nm-thick cords: straight
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hollow 7-10-nm-thick rods, referred to as "basotubules”; and 3.5 nm paired rods,
designated "double-pegs”. In addition, the authors performed immunostaining studies
showing that type IV collagen, laminin, entactin, heparan sulfate proteoglycans and
fibronectin are colocalized in the GBM, and that all these components seem to be present in
the cords.

Kubosawa and Kondo (1985) used a deep-etch replica method to examine the
ultrastructure of the basement membrane, and observed in the laminae rarae externa and
interna a three-dimensional, polygonal network, formed from interconnected 6-8-nm-thick
fibrils; the size of the mesh was variable, ranging mostly between 20 and 25 nm in width.
The lamina densa, composed of closely packed particles, showed a similar network
structure only after removal of its fine particles with trypsin or ultrasonic waves. It was
postulated that this fibrillar network consists of regularly arranged units of type IV
collagen, perhaps attached by some materials such as laminin. Using high-resolution
scanning electron microscopy, Shirato et al. (1991) confirmed some of these findings. In
their study as well, the lamina densa appeared as densely packed granular material with
scattered fibrils, while both laminae rarae formed a meshwork presenting some structural
heterogeneities. In the Jamina rara interna, the fibrils were 5-9 nm thick, enclosing round or
polygonal pores 11-30 nm in diameter; in the lamina rara externa, the fibrils were 6-11 nm
thick, and the pores were larger under the filtration slits (16-32 nm wide) than under the
foot processes (10-24 nm wide). The three-dimensional mesh-like structure of the lamina
densa was visualized in situ by Takami et al. (1991) with a quick-freeze and deep-etch
replica method. The middle layer was shown to be composed of 6 to 10 nm fibrils arranged
as a polygonal network. The average long dimension of the space between fibrils was
estimated as 16.8 + 8.7 nm, the short one as 12.0 £+ 6.2 nm. Both laminae rarae contained
perpendicular fibrils, 6-9 nm in thickness, connecting podocytes on one side and
endothelial cells on the opposite side to the meshwork of the lamina densa. Similar

observations were made by Kondo (1990), using platinum replication of embedment-free
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sections of GBM. The membrane appeared to consist of meshworks whose size was not
precisely determined, due to dimensional changes caused by the method itself. In the
laminae rara externa and interna 4 nm-thick strands, loosely arranged, were seen to cross-
link the lamina densa with podocyte pedicels or endothelial cells.

These results seem to indicate that the meshwork structure of the glomerular
basement membrane is not a rigid but rather a flexible framework, as suggested by Takami

et al. (1991).

2.2.3 Epithelial Slit Diaphragm

The plasma membrane of the epithelial foot processes is covered by a thick
polyanionic glycocalyx containing multiple residues of sialic acid (Kanwar and
Venkatachalam). This anionic coat, similar to that found on glomerular endothelial cells but
much thicker (Ryan, 1986), is believed to play a role in maintaining the charge selectivity
of the glomerular capillary wall.

The epithelial slit diaphragm is a continuous two-dimensional band which extends
between all adjacent epithelial foot processes. Rodewald and Karnovsy (1974) first
described the zipper-like structure of the glomerular slit diaphragm. Using tannic acid-
glutaraldehyde-osmium tetroxide as a fixative, the authors observed alternating periodic
cross-bridges extending from the podocyte plasma membranes to a central filament running
parallel and equidistant from the cell membranes. The cross bridges were approximately 7
nm in diameter and 14 nm in length, the central filament 11 nm in diameter. The average
center-to-center spacing of adjacent cross-bridges was estimated as 11 nm. The cross-
sectional dimensions of the pores formed by the arrangement of the cross-bridges were
found to average 4 by 14 nm.

Confirming these findings, Kubosawa and Kondo (1985) also observed the zipper-

like structure of the slit diaphragm. Transverse fibrils, 6-8 nm in thickness, were seen

23



connecting adjacent membranes of epithelial cells, with a longitudinal fibril running in the
center of the transverse ones. The width of the interpedicel space was later measured by
Kondo (1990) using two different methods: it was estimated as 40-50 nm in epoxy
sections, 60-80 nm in embedment-free sections. The author assumed that the change was
due to the dehydration procedure in the latter case, which caused the size of empty spaces
to increase by roughiy 35-40 %.

The zipper-like hypothesis was challenged by Hora et al. (1990), who compared
three different fixation procedures based on the quick-freeze and deep-etch replica method.
The authors reported that in fresh unfixed glomeruli, only sheet-like substructures were
visible. Ladder-like and zipper-like substructures appeared solely when the samples were
fixed with glutaraidehyde and osmium tetroxide. It was suggested that the sheet-like
structure is the natural form of the slit diaphragm, and that fixation is responsible for the
formation of ladder-like and zipper-like structures as podocytes undergo contraction during
sample preparation. In a later study of the same group (Furukawa et al., 1991), the width
of slit diaphragms was measured using different methods. It was found that conventional
fixation methods based on tannic acid, glutaraldehyde and osmium tetroxide, cause the
cytoplasm of foot processes to shrink by osmotic effect, thereby broadening the slits and
possibly transforming their sheet-like structure into a zipper-like structure. The average
width of the slit diaphragms was estimated to be 34 nm. Conclusive evidence regarding the

real structure of the diaphragm is still lacking.
2.3 Glomerular Ultrafiltration

The theoretical approach to ultrafiltration in the glomerulus was first developed by
Deen et al. (1972). The glomerulus is represented as a number of identical cylindrical
capillaries in parallel, without any variation in circumference or permeability properties

along their length L. Axial diffusion within a capillary is neglected. Drumond and Deen
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(1991) have shown that the effects of pulsatile flow may also be neglected, and ali
pressures and flows described below are averaged over a cardiac cycle. The local
transmlir'al flux Jy (volume flux) at a point y in the capillary can be expressed as the product

of a permeability and a driving force:

Iy(y) = % (AP(y) - GATI(y)) @1

where § is the total capillary surface area, Ky is the ultrafiltration coefficient (the product of
S and the effective hydraulic permeability of the barrier k), AP(y) = Pgc(y) - Pt is the
radially-averaged transmural hydraulic pressure difference, AIl(y) = I[Igc(y) - Il is the
radially-averaged transmural oncotic pressure difference, and ¢ is the reflection coefficient
for plasma proteins. (The subscripts GC and T stand for glomeruilar capillary and
Bowman's space, or tubule, respectively.} The axial drop in hydraulic pressure over the
entire length of the capillary has been estimated to be small, on the order of 2-3 mmHg
(Huss et al., 1975; Lambert et al., 1982). Moreover, the hydraulic pressure in Bowman's
space Pt is assumed to be independent of position. Consequently, the local pressure
difference AP(y) can be replaced by the length-averaged and time-averaged value, AP. The
fractional loss of protein along a capillary is assumed to be negligible, even in heavy states
of proteinuria, so that the reflection coefficient in equation (2.1) is equal to unity. Since the
amount of protein present in Bowman's space can be neglected, Ilt= 0, and All(y) =
IIgc(y). The oncotic pressure in the plasma is given by the following empirical nl:lation,

valid for both rats and humans (Deen et al., 1985):

Mgc = 1.629C, + 0.2935C,2 (2.2)

where G, is the plasma protein concentration in g/dl and Ilgc is in mmHg.
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Since proteins remain entirely in the circulation while solvent is being filtered across
the membrane, the oncotic pressure increases along the capillary, more so near the afferent
arteriole than towards the outlet due to the resulting decrease in the driving force. The state
of filtration pressure equilibrium is reached when the oncotic pressure at the efferent end of
the capiliary equals the hydraulic pressure difference AP. As reviewed by Maddox et al.
(1992), equilibrium conditions are commonly observed in hydropenic rats, where fluid |
losses due to surgery are not compensated; they are less often encountered in euvolemic
rats, in which hematocrit and plasma volume have been restored to normal levels. As a
rule, equilibrium is reached in hydropenic and euvolemic rats when the afferent plasma
flow rate is less then 130 ml/min. When it is greater than 130 ml/min, filtration pressure
equilibrium is very seldom achieved.

Under these conditions, the set of differential steady-state equations expressing

material balances for plasma volume, plasma proteins and solute i can be written as:

dQ

— = -8J, (2.3)

dy

aQCy _ 2.4
dy .o

a(Qs;)

—_—u - SJi 2.5
3y (2.5)

where y, the position along the capillary, has been normalized by capillary length (0 <y
< 1). Q is the local plasma flow rate, J; and C; are the flux and luminal concentration of
solute i, respectively. The complete volume flux and oncotic pressure profiles can be
determined by solving equations (2.3-2.5) knowing the afferent plasma flow rate Qp =
Q(0), the afferent plasma protein concentration Cpa = Cp(0), as well as K¢ and AP.

The single nephron glomerular filtration rate (SNGFR) is then given by:

26



1
SNGFR = [SJ,(y)dy (2.6)
0

Deen et al. (1972) derived a closed form expression relating SNGFR to Qa, Cpa . Ky and
AP; K can thus be calculated given the value of the four other quantities. This equation is
valid if the oncotic pressure difference at the efferent end of the capillary is less than the
hydraulic pressure differerce AP. If filtration pressure equilibrium does occur, the value of
the ultrafiltration coefficient remains unknown since the exact position where equilibrium is
reached cannot be determined.

In the approach described above, radial variations in protein concentration are not
taken into consideration, i.e., the model neglects the phenomenon of concentration
polarization whereby the concentration of any selectively retained solute increases near the
glomerular capillary wall relative to the midline axis. According to a study of Deen et al.
(1974), the osmotic pressure IIgc and therefore Ky are underestimated by approximately
10% when using bulk protein concentrations.

Anatomical studies of the rat glomerulus have shown that both capillary length and
radius vary significantly within a single glomerulus. Remuzzi and Deen (1986, 1989)
investigated the theoretical effects of distributions in capillary radius or length, and
calculated that the uitrafiltration coefficient Ky is underestimated by approximately 30% in
models which assume that the capillaries are identical. However, filtration of
macromolecules was not significantly affected by network heterogeneity, and tie authors
concluded that models based on uniform capillary networks remain valid. If one assumes
that the network consists of n identical capillaries in parallel, equations (2.3-2.5) are
applicable to a single capillary, a single glomerulus, or all of the glomeruli in one or both
kidneys, provided that the total capillary surface area S and the plasma flow rate Q be
defined accordingly.

The afferent and efferent arteriolar resistances R and R are defined as:
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R,= —A 2.7
A AABF @7
= _PE__._ 2.8

Re EABF (2.8)

where Pp and Pg are the afferent and efferent arteriolar pressures, respectively; AABF and
EABF correspond to the afferent and efferent arteriolar blood flow rates, respectively.
Whereas changes in Ky are directly related to alterations in capillary permeability and/or
filtration surface ar=a, changes in R and Rg refiect variations in vascular tone. Hence each
of these three parameters will be affected differently by the regulation of glomerular

filtration, according to which mechanisms are involved.

2.4 Dependence of SNGFR on the Primary Determirants ¢f Glomerular
Filtration
The single nephron filtration fraction SNFF is defined as:

SNGFR
Qa

SNFF = (2.9)

Under physiclogical conditions, the different hemodynamic determinants of
ultrafiltration vary simultaneously, making it difficult to isolate the effects of a change in
only one of these parameters. However, by pooling the results of a large variety of
measurements and comparing data with similar sets of values, theoretical trends predicted
by the model can be compared with experimental observations.

Regarding the consequences of isolated changes in Q4, AP or K, theory and data

are in excellent agreement (Maddox et al., 1992). Under filtration pressure equilibrium
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conditions, assuming that AP, 1A and K¢ are not altered, an increase in the afferent plasma
flow rate QA results in proportional changes in SNGFR, and SNFF remains constant.
Eventually, the rise in Qa provokes disequilibrium, the changes in SNGFR become
nonlinear, and SNFF decreases.

For a given set of Qa, ITA and Ky values, SNGFR and SNFF remain equal to zero
until AP reaches the value of the afferent osmotic pressure. Further increases in AP are
accompanied by increases in SNGFR and SNFF, although not in a linear manner since the
rise in the single nephron glomerular rate also causes the intracapillary osmotic pressure to
rise.

Increases in Ky, all other parameters being fixed, cause SNGFR and SNFF to rise
similarly until filtration pressure equilibrium is achieved, after which they remain constant.
The only effect of an additional increase in Ky is to bring the point along the capillary where
equilibrium is attained closer to the afferent arteriole.

According to the model, changes in SNGFR and SNFF should be inversely
proportional to changes in I1,, if Qa, AP and K¢ remain constant. Experimental evidence
however shows that a decrease in IT5 results in an increase in SNGFR smaller than
expected (Blantz, 1974; Blantz et al., 1974). The explanation lies in the fact that reductions
in I'1A produce concurrent reductions in the ultrafiltration coefficient K¢ (Baylis et al., 1977,

Tucker and Blantz, 1981), by a mechanism not yet elucidated.
2.5 Regulation of Glomerular Filtration
2.5.1 By Exogenous Substances
Indeed, far from being a constant for a given individual, Kt is constantly regulated

by a variety of hormonal and vasoactive substances that are present in the plasma or

produced by the kidney. Altering the surface arca S available for filtration is one way in
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which K¢ may be controlled, changing the hydraulic permeability k of the barrier another.
Glomerular mesangial cells are believed to play a role in the former mechanism, epithelial
cells in the latter one, both by means of their contractile properties. Contraction of the
mesangial cells could modify the pathways accessible to flow among the network
capillaries (Zimmerhackl et al., 1985; Haley et al., 1987), whereas contraction of the foot
processes could result in changes in the frequency and structure of the epithelial slit
diaphragms (Andrews and Coffey, 1983).

Glomerular mesangial cells are believed to contract in response to angiotensin II,
for which specific receptors have been identified on these cells (Shorecki et al, 1983).
Receptors for All have also been found on epithelial and endothelial cells, in fewer number
however (Maddox et al., 1992).

The renin-angiotensin system plays an important role in regulating renal
hemodynamics. Its main function is to modify vascular resistance and rznal salt excretion in
response to alterations in extracellular volume (Ballermann et al., 1986). Renin is a
proteolytic enzyme which triggers the reactions responsible for the formation of the active
octapeptide angiotensin II. A reduction in the circulating biood volume stimulates the
secretion of renin, resulting in an increased production of AIl. All causes the vascular
smooth muscles to contract (Gunther et al., 1982), thereby increasing peripheral vascular
resistance and maintaining arterial pressure constant. Both RPF and GFR decrease due to
the augmented renal vascular resistance, the reduction in GFR being cone of the mechanisms
by which renal salt excretion is diminished (Ballermann et al., 1986).

The action of angiotensin II on the glomerulus is both indirect and direct. A number
of studies show that AlI specifically constricts efferent glomerular arterioles (Edwards,
1983; Myers et al., 1975), the rise in REg leading to an increase in AP. The more direct
effect of angiotensin II is that described earlier, whereby mesangial cells contract in
response to All, causing a reduction in K¢ (Blantz et al., 1976; Brenner et al., 1982;

Dworkin et al., 1983).
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The effects of angiotensin II on filtration have been extensively studied, however
AlIl is only one among many other hormones and vasoactive substances regulating
glomerular hydrodynamics. A more detailed review is provided by Ballermann et al.(1986)
and Maddox et al. (1992).

2.5.2 Autoregulation

In the absence of any neural or hormonal control, the kidney also has the ability to
maintain relative constancy of renal plasma flow and glomerular filtration rate over a wide
range of mean arterial pressure, from approximately 80 to 200 mmHg (Forster and Maes,
1947; Robertson et al., 1972; Edwards, 1983). The autoregulation of the GFR is mediated
by changes in the afferent arteriolar resistance R, RE remaining constant. A rise in
systernic pressure provokes an increase in the afferent arteriolar tone which prevents the
pressure rise from being transmitted to the glomerulus. Conversely, a decline in systemic
pressure results in a dilataticn of the afferent arteriole so that the renal plasma flow and the
glomerular filtration rate are not affected. Below 80 mmHg, both RPF and GFR vary
directly with arterial pressure, possibly because the afferent arteriole cannot be dilated any
further (Rose, 1977).

2.6 Permselectivity of the Glomerular Capillary Wall

2.6.1 Sieving Coefficients

Fractional clearance techniques have been used extensively in experimental animals

and humans to characterize the selectivity of the glomeruiar barrier to macromolecules.

Tracers of varying size, charge, and molecular configuration are added to the plasma, and
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the amount filtered through the membrane provides a quantitative measure of its selectivity.

The urinary clearance of solute i is defined as:

CiuQ
CLi-_-_l_g__ll
iA

(2.10)
where Qy is the urinary flow rate, Cjy and Cia are the concentration of solute i in the urine
and in the afferent arteriole, respectively. The clearance of i corresponds to the rate at which
the plasma is cleared of solute i by renal excretion. If the solute is freely filtered through the
glomerular capillary wall and is neither secreted nor reabsorbed in the tubules, then its
clearance is equal to the glomerular filtration rate GFR. Such is the case with the fructose
polymer inulin, which is therefore commonly used as a marker for water. The fractional
clearance FRC; of solute i is defined as the clearance of i divided by the GFR, or
equivalently by the clearance of inulin.

The sieving coefficient ©; of solute i is defined as the ratio of the average
concentration of i in Bowman's space, < C;g >, to that in the afferent arteriole, Cja:

ei - <CiB>

Ci (2.11)

If solute i is neither secreted nor reabsorbed downstream, it can be shown that FRC; = ©;

The polymers dextran and Ficoll, the latter being a copolymer of sucrose and
epichlorohydrin, are such examples. Interpreting sieving data for these test macromolecules
has been a common means of assessing the selectivity of the glomerular capillary wall for
more than two decades. Indeed, these test solutes are available as polydisperse samples of
different charge content, and comparisons between fractional clearances of macromolecules
of varying size, charge and molecular configuration have led to a better understanding of

the barrier properties. The main findings can be summarized as follows. For a set of
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uncharged solutes of similar structure, sieving coefficients decrease progressively as
molecular size increases, a phenomenon referred to as the size-selectivity of the glomerular
capillary wall. In addition, the filtration of anions is diminished compared to that of
uncharged solutes of same size and configuration, and that of cations augmented. For
instance, the sieving coefficient of serum albumin is < 0.1%, i.e., two to three orders of
magnitude less than values of @ for neutral macromolecules of similar dimensions. All
pertinent studies have confirmed that the so-called charge selectivity of the barrier results
from the presence of negatively charged ccmponents in the capillary wall (Maddox et al.,
1992). Finally, transport of uncharged macromolecules of similar size will be restricted to
different degrees according to molecular configuration. Dextran is filtered more readily than
Ficoll, possibly owing to its random coil nature. Ficoll on the other hand has been shown
to behave as an almost ideal sphere (Oliver et al., 1992), and because its behavior is thus
easier to characterize, it is now preferred to dextran as a test macromolecule for sieving
measurements. The effects of molecular configuration on macromolecule filtration are all
the more difficult to understand as differences can not be quantified using a single

parameter.

2.6.2 Glomerular Diseases

Glomerular diseases are characterized by marked alterations in the permselectivity
properties of the capillary wall. The manifestations of glomerular injury are proteinuria
(i.e., greater than trace amounts of protein in the urine), hematuria (corresponding to an
increased excretion of erythrocytes), reduced GFR and alterations in sodiurn excretion
leading to hypertension, edema and circulatory congestion. The clinical syndromes of
glomerular injury are usually classified into three categories (Glassock et al., 1986):

- glomerulonephritis, which can be acute, rapidly progressive or chronic, depending on the

rapidity of the onset. This syndrome is characterized by variable degrees of proteinuria and
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hematuria, a loss of renal function, hypertension, and sometimes oliguria (i.e., a urine
volume of less than 500 ml per day).

- nephrotic syndrome, which is marked by heavy proteinuria (defined as a urine content of
protein greater than 3.5 gm per day) accornpanied by a significant decrease in plasma
albumin, frequently resulting in hypertension and edema.

- persistent asymptomatic urine abnormalities. Patients in that group suffer from mild
proteinuria, sometimes hematuria, but other symptoms such as reduced renal function,
hypertension or edema are seldom seen.

Whereas the glomerular capillary wall in healthy individuals acts as a highly
effective filter preventing plasma proteins from being filtered, a defect in the size-selective
barrier which affects only a small percentage of the total filtering area is sufficient to induce
massive proteinuria (Glassock et al., 1986). By allowing changes in the properties of the
barrier to be quantified, theoretical models of ultrafiltration have led to a better

understanding of the causes of glomerular diseases.

2.7 Pore Models of Glomerular Filtration

Mathematical models of glomerular filtration are designed to relate the functional
properties of the glomerular capillary wall to variables that can be measured experimentally,
such as hemodynamic quantities and sieving coefficients.

The pore model, today commonly employed to describe transport across capillary
walls, was first developed by Pappenheimer (1953) and Renkin (1954). A series of
refinements and modifications were made in the early 1970s: the effects of concentration
and flux variations along the length of the capillary were included (Deen et al., 1972;
Chang et al., 1975), and new developments in the hydrodynamic theory of restricted
transport of solid spheres in cylindrical pores were added (Bungay and Brenner, 1973;

Anderson and Quinn, 1974; Brenner and Gaydos, 1977).
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The pore model is based on the assumption that the glomerular capillary wall is a
uniform membrane perforated by pores. The main hypotheses were summarized by Chang
et al. (1975) and are presented below. In the so-called "isoporous” model, the filtration
barrier is idealized as a membrane containing a homogeneous population of pores of
identical size. Later improvements have consisted of postulating different pore-size
distributions, and the predictions of heteroporous models are in excellent agreement with
sieving data.

Models based on slits instead of cylindrical pores have been shown to yield similar
results (Hall, 1977; Lambert et al., 1972; Renkin and Gilmore, 1973) and have therefore
not received much further attention. Other approaches to glomerular filtration have been
proposed, none of which has been considered so far as a viable alternative to the pore
model. The fiber matrix model developed by Curry and Michel (1980) is based on the early
work of Ogston et al. (1958, 1973) on partitioning and diffusion in a random network of
fibers. However, in the absence of a suitable theory for solute convection in random fiber
arrays, and given that the analysis of Ogston does not take into account hydrodynamic
interactions, this model remains incomplete, as discussed in Chapter 6. Wolgast and Ojteg
(1988) attempted to treat the basement membrane as a charged, deformable gel, but

oversimplifying assumptions render their predictions unrealistic.

2.7.1 The Isoporous Model

The isoporous model assumes that the glomerular capillary wall is perforated by
right cylindrical pores of uniform radius rg. All test macromolecules are added in minimal
amounts, and the concentration of the tracer solutes is assumed to be sufficiently small so
that it does not contribute to osmotic pressure. It is also assumed that the concentration of
solute i in the Bowman's space at any positicn along a capillary is given by the local ratio

of solute-to-volume flux (Ji/Jy), the so-called ultrafiltration boundary condition. In
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addition, ail solute molecules are assumed to behave as rigid spheres, with a radius

equivalent to that of the Stokes-Einstein radius r;:

KpT
61tp,Di

L =

(2.12)

where Kp is Boltzmann's constant, T is the absolute temperature, Ji is the solvent viscosity
and D; the diffusivity of the solute in bulk solution. Based on the hydrodynamic theory of
hindered transport through uniform cylindrical pores, the solute flux J; of a neutral
macromolecule is then given by (Deen et al., 1985):

3y Cj v"i

5 = (2.13)
1 - (1-W;) exp(-Pe)

kS

J,L
D, f

Pe =

14
! (2.14)

where L here is the thickness of the membrane (the pore length), f is the fraction of the
capillary surface occupied by pores, and H; and W; are solute pore hindrance factors for
diffusion and convection, respectively. The Peclet number Pe is a dimensionless function
indicating the relative importance of the convective to diffusive forces driving the solute
through the membrane pores. The quantities f, S and L need not be explicitly determined;
needed in equation (2.14) is fS/L, the ratio of total pore area to pore length, which can be

related to Krand rg using the Poiseuille equation for flow through uniform, parallel,

cylindrical pores:
1 I

where W is the viscosity of the glomerular filtrate, taken to be that of water.
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The hindrance factors H; and W; express the steric and hydrodynamic hindrances to
transport of solute i. They depend only on the ratio of solute-to-pore radius, A = ri/rg. They
are equal to unity for small, freely-filtered molecules, to zero for solutes that are completely
excluded from the pores. In an extensive review of hindered transport, Deen (1987)
showed that both hindrance coefficients can be written as the product of a steric term, the
partition coefficient ®, and a hydrodynamic term (Kg or K¢). ® accounts for the difference
between the solute concentration in the capillary lumen and that in the pore. In cylindrical
pores, the partition coefficient is given by @ = (1- A)2. The hydrodynamic factors K4 and
K¢ account for the effects of finite pore size, the presence of pore walls resulting in an
increase in the frictional force acting on a solute moving through the pore. K is related to
the inverse enhanced drag coefficient, K-1, and K, to the lag coefficient G. The most
accurate values for Hj and W over the entire range 0< A < 1 were obtained by Bungay and
Brenner (1973), who combined centerline asymptotic results for small and close fitting

spheres. Hj and W; can be calculated using the following expressions:

K. d2-d) ‘
W = s = 77 2.16
' 2K, (2.16)
6nd
H. = 2.17
! K, 17

K,) = %nz N2 (1-A)2 [1 - %(1—1) + 1293 (1—1)2]

50,400 (2.18)
- 22.5083 - 5.6117A - 0.3363A%2- 1216 2% + 1.6472%
9 , 7 2,227
Kx=—n‘ﬁ1-x'5/2[1+—1-x . 1-x2]
s(A) 2 (1-2) 60( ) 50’400( ) 2.19)

+ 4.0180- 3.9788 A - 1.9215 A% + 4.392 22 + 5.006 \*
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The sieving coefficient 8; of solute i, the ratio of the average concentration of i in

Bowman's space to that in the afferent plasma, is then given by:

1
Jlim dy
6 = 0 (2.20)

1
Cia [14(y) dy
0

The local solute and volume fluxes J; and Jy can be determined by integrating the mass
balance equations (2.3-2.5) which yield Cy(y) and Ci(y), the concentrations of protein and
solute i at position y along the capillary, respectively. These equations can be integrated
numerically to any desired level of accuracy, but an analytical solution based on a simple
approximation is sometimes preferred. This approach was outlined by Deen et al. (1985),
and is based upon the assumption that J, decreases exponentially. This approximation is
mostly useful in heteroporous models, where equation (2.20) has to be integrated many
times for a wide range of pore radii, as described in the next section. Deen et al. (1985)
compared the results of both the exact and the approximate methods, and concluded that the
later was sufficiently accurate for its intended use in estimating membrane parameters from

sieving curves.
2.7.2 Heteroporous Models

The isoporous model predicts a sharp cut-off of sieving coefficients at rj = rg, a
feature that is not exhibited by experimental data. Typical values for rg are 45-50 Ain the
rat, yet larger tracer macromolecules are filtered through the barrier. For this reason,
heteroporous models which include varying pore sizes can fit sieving data much more

accurately. Deen et al. (1985) outlined the formal approach to account for pore-size
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distribution. Briefly, if g(r) is the pore-size probability distribution, then the fraction €(r)dr
of the filtrate volume passing through pores with radii between r and (r + dr) is given by:

- 80 @2.21)

and the sieving coefficient of solute i can be calculated by performing the following

integration:

8, = [amemdr (2.22)
0

where ©j(r) is the fractional clearance that would be predicted for solute i from the
isoporous model using ro=r.

Of most frequent use in the literature are the isoporous-with-shunt and the
lognormal models, both of which are characterized by two membrane parameters. The latter

model assumes a lognormal distribution of pore radii with the parameters u and s:

2
I S _ 1 (In(r) - In(w)
80= o rine °XP[ 2( In(s) )] (2.23)

where u is the mean value of r, and In(s) is the standard deviation of the distribution.

The isoporous-with-shunt model assumes that the membrane has a large number of
pores of uniform radius in parallel with a few large, nonselective pores of effectively
infinite size. This model is characterized by the radius of the smaller pores (rg) and the
fraction o of the filtrate volume that would pass through the shunt pores in the

hypothetical situation of Ilg = 0. In another approach, termed the two-pore medel, the
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membrane is assumed to have two homogeneous populations of pores with radii r; and rp;

the fractional number of pores of each type is given by x1 and x3 = 1 - X, respectively.

2.8 Summary and Cenclusions

The glomerular capillary wall acts as a filter which discriminates on the basis of
size, charge, and molecular configuration; its unique permselective properties are imparted
by the specific structural features of the barrier: a fenestrated endothelium, a fibrous
glomerular basement membrane, and epithelial foot processes bridged by slit diaphragms.
The selectivity of the wall is usually z5sessed by measuring sieving coefficients of test
solutes; these measurements are then related to the intrinsic properties of the barrier using
models of glomerular filtration. The most common approach until now has been to assume
that the barrier is a uniform membrane perforated by pores.

We first examined pore models of glomer'-r filtration in this work in order to
establish whether the hydraulic pressure difference, AP, can be inferred from
macromolecular sieving data. Due to the inherent limitations of these models, the most
important of which is their inability to capture specific changes in any of the three layers of
the capillary wall, a different approach to glomerular filtration was then developed, which

will be presented in the later chapters.



Chapter Three
Error Propagation In the Estimation of Glomeruiar Pressure
3.1 Intreduction

The importance of glomerular capillary hydraulic pressure as a determinant of
glomerular filtration rate has created a long-standing interest in methods for measuring that
pressure. The quantity most relevant for the filtration process is the mean transmural
hydraulic pressure difference (AP), i.e., the mean pressure in the glomerular capillary
lumen minus that in Bowman's space. As reviewed by Maddox et al. (1992), the servo-
null micropuncture technique has been used for many years to measure AP in experimental
animals under a variety of physiological or pathophysiological conditions. The most direct
measurements are possible in animals where glomeruli regularly reside on the cortical
surface, accessible to micropuncture (as in the Munich-Wistar rat); when surface glomeruli
are absent, the stop-flow technique provides a somewhat less direct, but still effective,
approach. In normal rats AP is typically 35-40 mmHg. The routine use of micropuncture is
rats and other animals notwithstanding, the inability to apply these methods to humans has
left a need for a noninvasive method for measuring AP. The interest in measuring AP in
humans has been greatly heightened by the reported association between glomerular
hypertension and glomerular disease (Anderson et al., 1986) and the consequent
importance of assessing the effects of therapeutic interventions on AP.

Fractional clearance techniques have been used extensively in experimental animals
and humans to characterize the selectivity of the glomerular barrier to macromolecules
(Maddox et al., 1992). The fractional clearance (©Q;) of solute i is the urinary clearance of i
divided by that of inulin (or some other marker for water); for a test macromolecule that is

neither secreted nor reabsorbed, @; equals the sieving coefficient of i, the Bowman's
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space-to-plasima concentration ratio. It has long been recognized on theoretical grounds that
for a given macromolecule, the sieving coefficient ®; will tend to vary inversely with AP
and that fractional clearance measurements might therefore provide a noninvasive means |
determine AP. In essence, the dependence of ©; on AP comes from the fact that only the
convective part of the transmural flux of a macromolecule is proportional to the volume
(water) flux. Thus, to the extent that diffusion also contributes to transport of a
macromolecule, increase in AP will augment macromolecule fluxes to a lesser degree than
volumes fluxes, thereby decreasing ©;. The theoretical effect of AP on a sieving curve is
illustrated in Figure 3-1. The isoporous model was used here, the capillary wall being
represented as a solid barrier perforated by a homogeneous population of pores of radius
ro. Comparing curve B with curve A, the effect of an increase in AP from 35 mmHg to 40
mmllg is as just described. The decreases in ©; are more pronounced for the smaller
molecules, where diffusion contributes more prominently to the solute flux. In contrast to
the effect of AP on the sieving curve is that of an isolated change in rg. As shown by a
comparison of curves C and A, changes in pore radius tend to yield a more uniform shift in
the sieving curve along the abscissa. Thus there is reason to believe one might be able to
distinguish the effect of AP on sieving curves from those of rg (or the parameters
describing pore-size distributions in other models), thereby allowing one to simultaneously
fit both of these quantities to a given set of data.

The ic’za of inferring values of from sieving data was first pursued extensively by
Lambert and co-workers in the 1970s (Dubois et al., 1975; Gassee et al., 1974, 1976;
Lambert et al., 1971, 1972, 1975; Vemiory et al., 1973). Values of AP were compuizd by
applying a series of increasingly rigorous mathematical models to fractional clearance data
for polyvinylpyrrolidone (PVP) in dogs. In a retrogpective study, Chang (1978) analyzed
dextran sieving data obtained in Munich-Wistar rats (Chang, 1975, 1976). More recently,

Mpyers and co-workers have used dextran sieving data to deduce information zbout
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Figure 3-1
Predicted efffects on sieving curves of selective changes in transmembrane pressure ( AP)
and pore radius (rg). The sieving coefficient {®;) is plotted as a function of Stokes-Einstein
radius (r;). Curve A: rg= 55 A, AP =35 mmHg. Curve B: 19 = 55 A, AP =40 mmHg.
Curve C: 9= 60 A, AP =35 mmHg. The other inputs in each case were glomerular
filtration rate = 110 ml/min, renal plasma flow = 550 ml/min, and afferent protein
concentration = 6.6 g/dl.
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glomerular pressures in humans, with an emphasis on inferring directional changes in AP
caused by disease or by certain experimental maneuvers.

The various attempts to calculate AP from group-mean sieving data have generally
yielded physiologically reasonable results. On a more quantitative level, however, there is
little evidence that this approach reliably gives accurate values. In the aforementioned PVP
studies with dogs, no micropuncture measurements of AP were available for direct
comparison with the values calculated from the sieving data. The approach was shown to
yield accurate results when applied to PVP sieving data obtained using synthetic
membranes, but this system posed fewer difficulties than the study of glomerular filtration
in vivo. Chang (1978) found that the values of AP inferred fromn sieving curves were 2-9
mmHg lower than those measured by micropuncture in the same groups of rats. Oliver
(1992) fitted values of AP to dextran or Ficoll sieving data from a number of published
studies in rats and found the extent of agreement with micropuncture results to be excellent
on occasion but highly variable, with the calculated values ranging from an underestimate
of 16.0 mmHg to an overestimate of 15.2 mmHg. Thus, despite the theoretical promise of
this approach, detailed comparisons with available data are mostly discouraging. Such
erratic results lead one to suspect problems arising from the propagation of errors in the
calculations, but there has been no systematic effort to identify the main sources of
difficulty and thereby to define the limitations of this method for determining AP.

The goal of this study was to determine the extent to which experimental errors and
imperfections in the theoretical models limit the ability to obtain reliable estimates of AP
from sieving curves. The approach used was to generate many sets of synthetic
"experimental data" from computer simulations of glomerular sieving and to compute
values of AP from those data in the presence of various types and magnitudes of errors.
The use of synthetic data enabled us to systematically vary the size of the simulated errors.
Success or failure was judged by comparing the computed values of AP with those used to

generate the data. The most straightforward type of error consisted of random variations in
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©;. To examine the effects of systematic errors, such as those caused by using a physically
incomplete mathematical model, we analyzed each set of data using several models, which
differed in the type of pore-size distribution assumed and/or in the mass balance equations
employed. The results permit certain generalizations to be made concerning the level of

experimental and modeling accuracy required to reliably estimate AP from sieving data.

3.2 Methods

In this section, we first describe the different models that were employed. We then
outline the approach used to create synthetic data sets. The procedures used to estimate the
unknown parameters of the modelis, including AP, are described. Finally, methods are
described for assessing the reliability of the parameter estimates and the reliability of

specific models.

3.2.1 Models for Glomerular Filtration

The glomerulus was represented as a number of identical capillaries in parallel,
without any variation in circumference or permeability properties along their length. Radial
variations in concentration within a capillary were neglected, as was axial diffusion. The
effects of pulsatile flow were assumed to be negligible, so that steady-state equations
involving only time-averaged variables were used. The resulting set of differential
equations expressing material balance for plasma volume, plasma proteins, and test solutes
was described in Chapter 2, and is repeated here for convenience:

€Q _ gy, (3.1)

dy
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d(QCp)

5 =0 3.2)
4QG;) = -8J; (3.3)
dy

where y is normalized position along a capillary (0 <y < 1); Q is the local plasma flow rate;
S is the total capillary surface area; Jy and J; are the transmural fluxes of volume and solute
i, respectively; and Cp and C; are the luminal concentrations of total protein and solute i,
respectively.

As described in Chapter 2, the volume flux out of a capillary was written as:

Kf — \
), = —Sf- (AP - Ig) (3.4

where Ky is the ultrafiltration coefficient (the product of S and the effective hydraulic
permeability), and Ilg is the intracapillary osmotic pressure, expressed as a quadratic
function of Cp,. Each test macromolecule was assumed to be present in tracer amounts, so
that its contribution to the osmotic pressure was neglected. The pressure drop has been
estimated to be a small fraction of AP, so that in equation (3.4) the local pressure
difference has been replaced by AP, which is both a time-averaged and a length-averaged
value.

Based on hindered transport theory, the solute flux was expressed as a function of
Ci, Jy, the Stokes-Einstein radius of the solute (r;), and parameters that describe the
membrane pore-size distribution; the details of these relationships are given in Chapter 2.
The sieving coefficient of the solute i was calculated by integrating J, and J; over the length

of a capillary:
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3.5)

where C;p is the afferent arteriolar (or systemic arterial) concentration of the solute.

As already mentioned, systematic errors where investigated by applying several
different models to each set of data. Pore models for glomerular filtration were described in
Chapter 2. The ones used in this study were the isoporous model, the isoporous-with-
shunt model, the two-pore model and the lognormal model. In addition simplified versions
of the isoporous and two-pore models were employed, in which the mass balance
equations (3.3-3.5) were ignored. That is, the "simplified isoporous" and "simplified two-
pore" models constitute lumped descriptions in which all variables are regarded as being
independent of position along a capillary. Thus, the simplified models were deliberately
made less accurate than the corresponding models that included equations (3.3-3.5). The

main features of the glomerular filtration models used are summarized in Table 3-1.

Table 3-1
Summary of model characteristics
Model Mass Balance Equations Pore-size Parameters
Isoporous Yes ro
Two pore Yes I, 12,X]
Lognormal Yes e,s
Isoporcus with shunt Yes I, WQ
Simplified isoporous No ro
Simplified two pore No Iy, 12, X|
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3.2.2 Creation of Synthetic Sets of Data

Baseline sieving coefficients were computed first using the input parameters shown
in Table 3-2. The three cases were based on hemodynamic values representative of healthy
humans, nephrotic humans, and normal euvolemic rats, respectively (Deen et al., 1985;
Maddox et al., 1992; Yoshioka et al., 1988). The simulations for humans used whole
kidney data, while those for rats employed single-nephron quantities. Values for K¢ (whole
kidney or single nephron) were computed from the other inputs. Various models were used
to generate sieving data for each of the three hemodynamic cases. Each sieving curve
included molecular radii in the range 28 <r; < 58 A, at intervals of 2 A, yielding a set of
16 ©; values. Random measurement errors were then simulated by adding positive or
negative "errors" to the baseline sieving coefficients. The errors were assumed to follow a
normal distribution with a mean error of zero, and a standard deviation (g;) that was a fixed
percentage of the baseline value of ©;. Random deviates with a normal probability
distribution were computed using the program GASDEV (Press et al., 1989).

Figure 3-2 shows examples of a baseline sieving curve and a corresponding sieving
curve with random errors added. For clarity, the random errors shown are larger that those

normally employed in the simulations.

3.2.3 Parameter Estimation Procedures

When a given model was applied to a specified set of sieving data, the unknown
parameters were taken to be the pore-size parameters (1 to 3, depending on the model), and
AP. The two to four unknown parameters were estimated by fitting the model to the data.
If the errors in a set of data follow a normal distribution, then the widely used method of
weighted least-squares is appropriate. This method consists of finding the parameter values

that minimize the quantity %2, defined as:
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Table 3-2

Hemodynamic quantities and pore-size parameters used to generate sieving data
Normal Humans Nephrotic Humans | Normal Euvolemic
Rats
GFR, m//min 110 50
SNGFR, nl/min 45
RPF, ml/min 550 400
Qa, nl/min 150
Cpa, g/dl 6.6 4.7 5.7
AP, mmHg 35 40 35
g, A 57 54 50
o 0.002 0.01 0.0001
u A 55 44 43
S 1.1 1.2 1.2

GFR, glomerular filtration rate; SNGFR, single nephron GFR; RPF, renal plasma flow

rate; QA, afferent plasma flow rate, Cp A, afferent protein concentration.

3.6)

where n is the number of observations (i.e., the number of molecular radii studied, 16 in

our data sets) and w; is a weighting factor. The optimal choices for the weighting factors

49



1 L B T 7 - T L O B
Q
i Q. baseline
0.8 . — & -p=0.900 .
X \6_ -0 p =0.0002 |
0.6 [ -
6 -
0.4 - -
0.2 _
o _l 1 1 1 I A 1 L 1 I L 1 1 1 J 1 i L 1 I 1 1 1 1 L.I- 1 'I. L ' 1 1 1 l_l
25 30 35 40 45 50 55 60
r. (A)
Figure 3-2

Simulated sievirg curves illustrating the meaning of the probability p. For the curve labeled
"p =0.90" in comparison to baseline curve, the 8 positive and 8 negative residuals exhibit
11 runs, a highly random distribution of residuals. For the curve labeled "p = ).0002" the
9 positive and 7 negative residuals exhibit only 2 ruus, a nonrandom distribution.
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are the elements of the covariance matrix of the measurement errors, in which case this
method is equivalent to the more rigorous method of maximum likelihood. If we assume
that the measurement errors in the sieving coefficients are independent, then the weights w;
are equal to Gj, the standard deviation of ©;. We used w; = Gj except were noted.

Because all fitting procedures rely upon assnmptions regarding the distribution of
measurement errors, we tested the hypothesis that the errors follow a normal distribution.
For this purpose we used sieving data for individual rats studied by Bohrer et al.(1979) and
Oliver et al. (1992). Two different tests were used, the Kolmogorov-Smimov statistic K,
and the Cramer-Von-Mieses statistic W2. The procedure is outlined by Krishnaiah (1980).
For a given solute radius, let n; be the number of measured sieving coefficients (written as
G)j), © the average and o the standard deviation of these nr measurements. The normalized

sieving coefficients can be written as:

j ) —
z; = © G)’ j= 1.0 3.7)
(o
K and W2 are then given by:
K = max {D*, D’} (3.8)

where D* = max {j/n,-zj }, D = max{z-(-1)/n,}, j=1,.n. 3.9)

1
12 n,

nI’
w2 = Y[z - @Qj-1)/20, F +
=1

(3.10)

The hypothesis that the distribution is normal was rejected when the significance level was

less than 5 %. This hypothesis appeared acceptable for most of the range of molecular radii
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in each of the five data sets examined. We therefore considered the assumption of normally
distributed errors to be valid.

To test the weighted least squares method, we used the simplified isoporous model.
Baseline sieving curves were first generated by adding fixed values to AP and rq; those
quantities were then estimated as parameters by minimizing 2. Because no experimental
errors were included, we used w; = 1 in this case. Powell's method (Press et al., 1989)
was used to compute the estimates. We found the least-squares method to be very reliable
for our purposes; it always yielded the original values of AP and rq, irrespective of the
initial guesses used to start Powell's method. In summary, these tests indicated that x2 was

a reliable objective function for fitting our theoretical models to the data.

3.2.4 Reliability Measures for Parameter Estimates

Assuming that the theoretical model used has the correct functional form and that
the only sources of variation in the data are random measurement errors, the standard errors
of the model parameters are given by either of two methods, one based on the covariance
matrix V of the estimates and the other obtained from Monte Carlo simulations. We
compared the two methods by using the simplified isoporous model to zenerate baseline
sieving data and then adding normally distributed errors as described above. When the
number of Monte Carlo simulations was greater than 103, the resulting standard errors of
the estimates were identical to those obtained from the covariance matrix. Monte Carlo
simulations are performed by constructing a very large number of simulated data sets based
on the original "measurement data”, estimating the parameters for each of these sets, and
finally mapping out the probability distribution of the parameters. Because V is easier to

compute, it was used in all the subsequent analysis of the precision of parameter estimates.

The covariance matrix V for the parameter vector o is given by:
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v = m! (3.11)

where
s 1 00; 06,
My = ! . (3.12)
jk Z 2 Ja.
=1 Oi° da; doy
The standard error s; of the estimated parameter ¢; is then given by:
2 V2
5 = |Vy —% (3.13)
(n-np)

where np is the number of fitted parameters. These relations assume that o is estimated
using the method of weighted least-squares, with w; = G;.

The accuracy of the parameter estimates was assessed using confidence intervals.
An interval with a 90 % confidence level for a parameter @; is defined as follows (Bard,

1974). If an experiment were repeated 100 times, then each replication would yield a
separate estimate a;”*. For each such estimate, we could form the corresponding confidence

interval. The true value of a; should be in 90 of these intervals. With the assumption of

normally distributed errors, confidence intervals for the fitted parameters are easily
determined once the matrix V is known. The method is outlined by Bates and Watts
(1988). Let c be the chosen confidence limit (e.g., c = 0.90 for 90 %). The corresponding

interval is given in terms of s; and the t-distribution by:

o; = o;° £ s;t(n --np,l—;f) (3.14)

3.2.5 Reliability Measures for Meodels
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A more difficult question is whether the model itself is sufficiently accurate to
predict the data. The answer will be affirmative if the residuals, @;model _ ©,data can be
attributed to random errors in the observations. However, whereas a poor fit to the data
constitutes strong grounds for rejecting the model, a good fit does not prove that the model
is correct; it merely indicates that there is no reason to reject the model on the basis of the
data at hand. Several criteria must be met. As discussed by Bates and Watts (1988), the
ratio sj/a; should be small, and the parameters should not be excessively correlated. In
addition, the residuals should be randomly distributed. A nonrandom behavior of the
residuals can be judged from plots of the residuals versus the fitted values; it can also be
assessed in a quantitative manner, as we shall now describe.

A run is defined as a sequence of residuals of the same algebraic sign. If the
number of runs is much lower than expected, the randomness of the residual is suspect. Let
m represent a number of runs, with mgps being the number of runs actually observed in
fitting a given set of data. Let q and v be the number of positive and negative residuals,
respectively; if there are n data points, then q + v = n, assuming that none of the data points
is fitted exactly. Swed and Eisenhart (1943) computed the probability of having a number
of runs that is no larger than myp, assuming that there are no systematic errors (i.e., the

model is complete and correct). This probability, denoted as p(m<myy;), is given by:

m
1 obs
p(m S M) = ——— 3 (V) (3.15)
q+v m=2
where
+v)!
cg,, = @Y (3.16)
q'v!

When m is even,

fm(a,v) = 2CK] ki (3.17)
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where k = m/2. When m is odd,

fn(qv) = CElck? + ck7ch] (3.18)

where k = (m+1)/2.

If p is small (ie., p < 0.05), it is likely that the residuals are not randomly
distributed. An example is shown by the curve for p = 0.0002 in Figure 3-2. A comparison
of that curve with the baseline case reveals that there are only 2 runs among the 16
residuals, leading to a value of p near zero. In contrast, comparing the curve with random
errors to the baseline case yields 11 runs, and consequently a value of p near unity. (In
those comparisons the baseline curve is treated as if it were obtained by fitting a model to
either of the other sets of points). it will be shown that p is indeed a useful means for
assessing the reliability of the model.

The computations were done using a Cray X-MP EA/464 ai the MIT

Supercomputer Center.
3.3 Results
3.3.1 Random Errors Only

The effects of random measurement errors were simulated using three of the
"complete” models, the isoporous, two-pore and isoporous-with-shunt models. (The
lognormal model was excluded here because of the excessive computer time required to fit
it to a large number of data sets.) The standard deviation G; of the experimentai errors was
taken to be 1, 2, 5 or 10% of the corresponding sieving coefficients, ©;. Each of the 4

levels of error was generated 100 times for each of the 9 combinations of hemodynamic

55



inputs and model, yiclding a total of 3,600 comparisons. To isolate the effect of random
errors, the models were made "exact” by fitting each model only to data sets generated
using that model.

Confidence intervals. When o was <5 % of ©;, the estimated pressure (E’*) was
almost always within 10% of the true value (E?) and very often within 5% (in 96.2% and
88.0% of all cases, respectively). When 6; was 10% of ©j, the corresponding percentages
fell to 80.6% and 60.1%. Thus, as one would expect, the accuracy of the pressure
estimates declined as the random errors in the sieving coefficients were increased. To test
the reliability of the confidence intervals for AP calculated using equation (3-14), the 98%
confidence interval was computed for each case. The percentage of those intervals which
actually contained the true value of AP was then compared with the predicted value of
98%. When o; was 5% of ©;, the measured level of confidence was 92.7%. When o; was
10% of ©;, the measured level of confidence declined to 89.1%. Although the actual levels
of success tended to be somewhat lower than those precicted by equation (3.14), there was
sufficient agreement to conclude that the predicted confidence intervals are reasonably
reliable when only random measurement errors are present.

Values of 2 and p. We found that neither the value of %2 nor that of the average
residual (normalized or absolute) indicated in a reliable manner whether AP* was close to
AP. There seemed to be no correlation between the magnitude of the residuals and the
accuracy of the pressure estimates; the residuals could be small and AP* very far from AP,
or vice versa. As Figure 3-3 illustrates, it was impossible to predict from the value of x2
whethe. or not AP*/AP was close to unity. Whatever the magnitude of the simulated
experimental errors, the calculated probability p that the residuals were randomly
distributed was always high (p > 0.1 in 98.6% of the 3,600 cases, and p > 0.2 in 95.2% of
the cases). The relatively large values of p were to be expected, because in these particular

comparisons the "experimental" errors were deliberately made random.
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Figure 3-3

Ratio of the fitted to the exact pressure (E */AP, where AP * is the pressure estimate) vs.
%2, based on 3600 simulations of cases involving only random errors. Dotted line indicates

unity.
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3.3.2 Systematic Errors Only

We examined the effects of systematic errors, such as those caused by employing
an inaccurate mathematical model, by generating data using the four complete models and
then using each of the other three complete models to fit the data. Thus, systematic errors
were created by attempting to fit the data using an "incorrect” form of pore-size distribution
(i.e., not the type used to generate the data). Because random errors were excluded,
confidence intervals for the estimated pressure were not calculated.

Values of x? and p. As before, neither the value of %2 not that of the average
residual was useful for predicting the accuracy of the estimated pressure. However, we
found that a large value of p was a remarkably reliable indicator of success when only
systematic errors were present. As shown in Figure 3-4, the estimated pressure was within
5% of the true value in all cases when p > 0.2.

Increacing the number of pore-size parameters. A simple strategy for increasing the
goodness of fit to a sieving curve, and perhaps then also increasing p, is to augment the
number of pore-size parameters in the model. To test the effectiveness of this approach, we
generated data using the isoporous-with-shunt model and the lognormal model and
atternpted to fit the data using three models that were physically similar but had differing
numbers of parameters. For the fit we used the isoporous model (1 pore parameter, rg), a
constrained two-pore model with x fixed at 0.5 (2 pore parameters, ry and rp), and the
usual two-pore model with x; free to vary (3 pore parameters, rq, ry and x1). We found
that augmenting the number of degrees of freedom in this manner always decreased the
values of %2, increased the probability p, and verv often yielded a better estimate for AP.
As shown by the results on Figure 3-5, when the estimate of AP failed to improve through
this strategy, it did not get significantly worse; in those cases the difference between the

estimates was less than 1.5% of the true value of AP.
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Figure 3-4
Ratio of the fitted to the exact pressure (AP */AP, where AP * is the pressure estimate) vs.
the probability p, based on 36 simulations of cases involving only modeling errors. Two
points have been omiteed for clarity, one with p = 0.0002 and AP */AP = 7.20 and the
other with p = 0.002 and AP */AP = 3.55.
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value of AP is indicated by the dashed line. "Data" were generated using either the

lognormal model or the isoporous-with-shunt model. As the number of pore-size
parameters was increased from 1 (isoporous model) to 3 (two-pore model), the fitted
pressure tended toward the correct value. Values of p were always < 0.05, except for the

point marked with an asterix, where p = 0.108.
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Importance of mass balance equations. In the four "complete” models, which
include the differential mass balance equations, changes in AP affect the sieving curve in
two ways. Both are mediated by the pressure dependence of the volume flux Jy (equation
3-4). The more direct effect is that described earlier, whereby changes in Jy alter the
convective part of the solute flux. The additional effect stems from the influence of Jy on
the rate at which solute concentrations rise with increasing distance along a glomerular
capillary. It is the latter phenomenon that explains the well-known dependence of single-
nephron glomerular filtration rate on plasma flow rate (Maddox et al., 1992). In the twe
simplified models, where equations (3.3-3.5) are not used, all concentrations are assumed
to be constant along a capillary, and the second effect is absent. Thus the simplified models
may be viewed as containing a gross systematic error.

To examine the effect of such an error, we again generated data using the
isoporous-with-shunt model and the lognormal model and fitted these data with the
simplified isoporous model (parameter rg), a constrained, simplified two-pore model with
x1 = 0.5, and the simplified twc-pore model (parameters ry, rp and x;). As seen before, the
model with the most degrees of freedom always yielded a lower %2 and a higher p. As
shown by the results in Figure 3-6, it now yielded a much worse estimate for AP. These
findings seem to indicate that, if a model contains a major error or omission, such as the
neglect of the mass balance equations, then the results can be very misleading; i.e.,
increasing the number of pore parameters may improve the fit, the residuals may be smaller
and distributed more randomly, yet the estimated pressure may be further from its true

value.

3.3.3 Random and Systematic Errors Combined

The combined effects of random and systematic errors were simulated by first

generating baseline data using the four complete models and then adding random errors as
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Effect on the pressure estimate (AP *) of augmenting the number of pore-size parameters,
by using 3 “"simpified" models without the differential mass balance equations. The exact
value of AP is indicated by the dashed line. "Data" were generated using either the

lognormal model or the isoporous-with-shunt model. As the number of pore-size

parameters was increased from 1 (simplified isoporous model) to 3 (simplified two-pore

model), the fitted pressure tended to become less accurate. Values of p were always < 0.1,
except for the point marked with an asterix, where p = 0.108.
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described\‘ébove. With 4 models, 3 sets of hemodynamic inputs, 4 levels of random errors,
and 20 examples at each level of error, a total of 960 data sets was generated. Finally, each
set was fitted using the three models that were not used to generate it. (Because of
excessive computational time, the lognormal model was not used for fitting the many sets
of data). Thus in all instances the use of a different model introduced a systematic error.

Confidence intervals. With the combination of random and systematic errors, the
predicted confidence intervals for AP* were found to be quite reliable, but also very large.
The predicted 98% level of confidence contained the true value of AP in 86.4%, 88.1%,
88.5%, and 89.1% of cases corresponding to random errors of 1%, 2%, 5% and 10%,
respectively. However, approximately two-thirds to three-fourths of these intervals
exceeded 10 mmHg (62.4%, 64.5%, 73.3% and 73.9% respectively). Estimates of AP
with such large confidence intervals are unlikely to be very useful.

Values of x? and p. Once again, neither %2 nor the magnitude of the residuals were
useful predictors of success in estimating AP. The probability p remained a reliable
predictor, provided that the random errors in the sieving coefficients were sufficiently
small. Shown in Figure 3-7 is a representative subset of results for 6j equal to 1% of ©; ;
when p > 0.2; we found that AP* was within 10% of AP in 96.5% of the cases tested and
within 5% in 92.4% of the cases. As the magnitude of the experimental errors was
increased, the criterion p > 0.2 became progressively less predictive, as illustrated on
Figure 3-8. When p > 0.2, the fitted pressure was within 10% of the true value in 80.7 %
of the cases when G was 5% of ©; and in 69.1 % of the cases when 6; was 10% of ©;. It
was also found that the higher the value of p, the more reliable were the results at any given
level of random error. For example, with o; set at 5% of ©;, AP* was within 10% of AP
in 78.2% of cases when p > 0.1, 80.7% when p > 0.2, and 87.2% when p > 0.3.

It should be acknowledged that p > 0.2 is a conservative criterion. There were a

significant number of cases in which AP* was close to AP, and yet p < 0.2. For example,
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Ratio of the fitted to the exact pressure (E */AP, where AP * is the pressure estimate) vs.
the probability p, based on 960 simulations of cases involving both random and systematic
errors. Results are shown for a representative subset of data.
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Reliability of the statistic p as a predictor of success in estimating AP. Ordinate, percentage
of cases when AP * = AP + 10 % with p 2 0.2. Abcissa, various levels of random error,
with the standard deviation (0;) expressed as a percentage of the sieving coefficient (0;).
Results are based on 2,160 simulations from only the "complete” models with mass
balance equations and a total of 6,000 simulations involving all models ("complete" plus
"simplified").
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when o; was 5% of ©;, it was found that p < 0.2 in 30.3% of all cases in which the fitted
pressure was within 10% of the true vaiue.

To further examine the influence of a gross systematic error, we enlarged the
number of data sets by also using the simplified models to generate data and added the
simplified models to those used to fit the various data sets. As shown in Figure 3-8, with p
> 0.2 and at any given level of random error, including the simplified models greatly

reduced the overall reliability of the estimated pressures.

3.4 Discussion

As reviewed in the introduction, the idea of fitting theoretical models to sieving data
as a nonivasive means to measure AP has been pursued by various laboratories over many
years. The resulting estimates of AP have sometimes been in excellent agreement with
independent measurements obtained more directly using micropuncture, but more often the
agreement has not been very satisfactory. The reasons for the erratic results have remained
puzzling. This study represents the first attempt to examine the problem using a
propagation of error analysis. By using computer simulations to generate thousands of
synthetic sets of data containing various types and levels of error, we sought to estimate the
separate influences of random experimental errors and model uncertainties on the ability to
estimate AP, and to identify criteria that would predict success or failure of the method.

When only random experimental errors are present, the level of uncertainty in a
parameter estimated by fitting a model to the data can be calculated in a well-established
manner. Cur results confirmed that the parameter covariance matrix can be used very
efficiently and reliably for this purpose (equations 3.3-3.5). In contrast, there is very little
guidance from the literature on assessing the effects of modeling uncertainties on parameter
estimation. By "modeling uncertainties” or "modeling errors”, we mean a situation where

the theoretical model used to fit the data may be largely sound but may contain a functional
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relationship between the data (sieving coefficients) and one or more of the fitted parameters
(e.g., AP) that is only approximately correct. This problem does not arise in most physical
or chemical experimentation. In the present context, however, given the complex
arrangement of the glomerular capillary network, the intricate and not fully defined
ultrastructure of the glomerular capillary wall, and the limitations of available theories for
hindered transport in porous media, such situations are unavoidable.

It is important to recognize that modeling errors are merely one kind of systematic
error and that other systematic errors may be present in any given sieving study. For
example, an inaccurate calibration of the chromatographic columns used to fractionate
plasma and urine samples by molecular size would tend to shift the sieving curve io the left
or to the right, along the molecular-size axis. Problems with, for instance, an inulin assay
might shift the mean values of the measured fractional clearances up or down. Faced with
the inability of a model to accurately fit a given set of sieving data, one finds that there is no
clear way to distinguish modeling errors from systematic experimental errors. The usual
effect of a systematic error is to make it impossible for the model to accurately fit the mean
sieving curve, even if the latter is based on a large number of repetitions. Accordingly, the
comments made here about the effects of modeling errors on the ability to estimate AP are
largely applicable to any type of systematic error.

Press et al. (1989) have proposed one way of assessing the appropriateness of a
model. If the measurement errors follow a normal distribution and if the parameters are
estimated by minimizing %2 (see equation 3.6), then one can compute the probability Q that
%2 would exceed the particular minimum value obtained in the fit, denoted as ¥ Z(obs). In
principle, the value of Q should give a quantitative measure of the goodness-of-fit of the
model; a very small Q indicates that ¥2(obs) is unexpectedly large, that the residuals are
unlikely to be random fluctuations, and therefore, that the model is inaccurate. Although the
statistic Q was easy to compute, we did not find it helpful or reliable .The values of Q

ranged from 10-13 to ~ 1.0 without any clear pattern; no correlation between Q and the ratio
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AP* AP was evident. Another approach was proposed by Eno et al. (1985), using the
partial derivatives of the model parameters with respect to the experimental observables.
The authors derived expressions for the degree of parameter deviation arising from
uncertainties in the data and discrepancies between the model and the measured quantities.
We tested their method using two elementary models defined by algebraic expressions, a
linear function and an exponential function, and found that the calculated variances did not
adequately reflect the effects of modeling errors. There was no clear relationship between
the calculated parameter variances and the extent to which the models deviated from
"reality” (i.e., the "data" generated using the other model). In another study in which this
method was applied (Yetter et al., 1989), modeling errors were attributed to uncertainties in
fixed parameters only, rate constants specifically, and did not arise from an unknown
functional relationship between the parameters and the observable quantities, which is our
concern here.

In the absence of a suitable theory for assessing the effects of modeling
uncertainties (or other systematic errors ), we opted for an empirical approach, which
necessariiy limits the generality of our conclusions. Nevertheless, the results provide
certain guidelines as to what is needed to be able to accurately estimate AP from sieving
curves. Our main findings can be summarized as follows. When random experimental
errors were the only source of uncertainty and when the experimental errors were small
enough (i.e., 0; £ 5% of ©;), then the estimate of APwas almost always accurate to within
5% and the confidence intervals obtained from equation (3-14) was always reliable. When
there were also modeling uncertainties arising fromn the type of pore-size distribution
chosen, the p statistic defined by equation (3.15), which is based in the number of runs in
the residuals, was a useful predictor of success. Specifically, there was a high probability
that the estimate of AP was within 10% of the true value, provided that p > 0.2. For g; <
5% of ©; and p > 0.2, the probability that the pressure estimate would be at least that

accurate was 88.3%. Larger random errors in the sieving coefficients materially reduced the
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probability of accurately estimating AP. Modeling errors of a more major type, as
exemplified by omission of the mass balance equations, tended to negate the predictive
ability of p.

Insight into the inherent limitations in attempting to estimate AP from real sieving
data is provided by a retrospective analysis of several studies in rats which reported
micropuncture measurements of AP together with sieving data for dextran or Ficoll. As an
extension of the study done by Oliver (1992), we analyzed the results of eight such studies,
comparing the micropuncture values of AP to estimates we obtained using three different
sieving models. For this purpose we chose pore-size distributions that are in current use
and are presently viewed as being the most realistic available. We used the isoporous-with-
shunt model and the lognormal model as described above and a "lognormal-with-shunt"
model as described by Oliver et al (1992). The results are shown in Table 3-3. The fitted
AP was within 3 mmHg of the measured value in only 14 of 54 cases. Given that o;
tended to be large (averaging from 13-87 % of ©; in the various experimental conditions)
and that p was generally very small, this is not surprising. Indeed, p = 0.2 in only seven
cases, in all of which the average g; was 2 17% of ©j, and in all of which the estimated
pressure was not very accurate. As already emphasized, random experimental errors in ©;
must be small for p to be an accurate predictor of success in estimating AP. It is
noteworthy that the most complex of the three models, the lognormal-with-shunt model,
did not necessarily give a better estimate of AP than the other two. In addition, although
Ficoll is a more ideal tracer than dextran, its use in the studies by Oliver et al. (1992) did
not lead to better pressure estimates.

Differences in AP between superficial and deep nephrons, to the extent that they
exist, might contribute to the discrepancies between the measured and estimated values in
Table 3-3. The micropuncture results are for superficial nephrons, whereas the whole-
kidney sieving data reflect the average function of all nephrons. If, for example, values of

AP in deep glomeruli are larger than in superficial ones, then the values of AP derived
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Table 3-3

Comparison of directly measured pressures in rat with estimates from fits to sieving data

Condition 6i/©i, % AD, AD*, Reference
mmHg mmHg
Isoporous | Lognormal | Lognormal
with shunt with shunt

Normal 14 34.0 32.0 34.5 345 Chang et al,,
hydropenia . . 1975

Normal +| 16 38.0 27.4 27.4% 27.7 |Chang et al.,
PVE ) _ _ 1975

NSN 13 39.9 29.4% 24.3 24.3 Chang et al.,
hydropenia 1976

NSN + 19 40.0 29.8 23.9 21.5 Chang et al.,
PVE 1976

Normal 19 33.9 34.5 34.5 34.5 Ichikawa and
euvolemia _ - Brenner, 1979
Norn:al + 17 39.5 30.4* 305 1 3041 |Ichikawa and
histamin Brenner, 1979
Normal 14 33.0 34.3 314 31.5 Yoshioka et al.,
euvolemia 1986

Normal + 26 42.0 38.7 36.7 36.8 Yoshioka et al.,
RVC ) 19%6

PHN 29 40.0 42.2 30.9 31.1F Yoshioka et al.,
baseline _ _ _ 1987

PHN + 39 52.0 45.4 38.7 38.6F Yoshioka et al.,
ANG II _ _ 1987

PHN 25 42.0 48.0 329 33.1% Yoshioka et al.,
baseline _ 1987

PHN + 30 35.0 50.8 30.0 30.2 Yoshioka et al.,
ACh . _ 1987

NPX 26 52.0 399 33.1% 33.3¢ Yoshioka et al.,
baseline 1988

NPX + Ver 24 34.0 35.0 26.9 25.9 Yoshioka et al.,

1988

Normal 47 33.8 | 87.8 31.6 35.0% | Oliveret al., 1992
cuvolemia

Normal 67 338 122.4 394 36.1 Oliver et al., 1992
euvolemia{

FH UNX 87 55.9 45.1 29.9 28.5 Oliver et al., 1994
| baseline{

FH UNX + 61 43.6 36.9 31.5 31.5 Oliver et al., 1994
ENAg

AP, measured hydraulic pressure difference; AP*, estimated values of AP. PVE, plasma
volume expansion; NSN, nephrotoxic serum nephritis; RVC, renal vein constriction; PHN,
passive Heymann's nephritis; ANG II, angiotensin II; ACh, acetylcholine; NPX, subtotal
(~5/6) nephrectomy; Ver, verapamil; FH, Fawn-hooded rats; UNX, uniphrectomy; and
ENA, enalapril. Excep where noted, all studies used dextran in Munich-Wistar rats, and p
< 0.1 from Eq. (3-15). ¥*0.1 £p £0.02. ¥ p 2 0.2.  Ficoll sieving data.
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from sieving data might tend to be larger than those obtained by micropuncture. However,
judging from the random nature of the discrepancies between the measured and calculated
values of AP in Table 3-3, it seems unlikely that differences in nephron populations were
an important factor.

In conclusion, the experimental precision typically achieved in sieving studies in
vivo, together with the limitations of current mathematical models, make it unlikely that an
accurate group-mean value of AP will be estimated from any given set of sieving data. The
fact that good pressure estimates are sometimes obtained is probably fortuitous. The
refinement of laboratory techniques may help to some extent, but actual subject-to-subject
variability will always introduce some random error in the mean values of sieving
coefficients. Most studies have been hampered also by systematic errors, one of which
comes from interpreting dextran data using theories derived for rigid, spherical molecules.
That problem can be mitigated in future studies by the use of more ideal tracers such as
Ficoll, but it is less clear how to overcome other systematic errors, including those inherent
in the current generation of equivalent-pore models. The predicted effects of pressure on
sieving curves are relatively subtle, making the estimation of AP a much more demanding
task than other uses of these mathematical models. Accomplishing that task may require a

much more sophisticated and structurally accurate representation of the glomerular barrier.
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Chapter Four

Previcus Work on Ultrastructural Models for Glomeruiar Ultrafiitration

4.1 Introducticn

Many glomerular diseases are characterized by changes in the morphoiogy of the
capillary wall, such as a thickening of the basement membrane or broadening of the foot
processes. These subtle variations cannot be captured by the pore models, which treat the
membrane as a homogenous barrier perforated by uniform cylindrical pores. In addition, we
have shown that pore models are not accurate enough to allow us to determine the mean
hydraulic pressure difference AP from sieving data. A more faithful representation of the
glomerular capillary wall is thus needed. For this purpose, a new model based on the fine
ultrastucture of the barrier has recently been proposed oy Drumond and Deen (1994a, 1994b,
1995), describing water flow across the capillary wall and solute transport across the
epithelium. Our goal is to extend this so-called ultrastructural model to predict overall sieving
coefficient of macromolecules.

This chapter summarizes the previous work based on this approach. The model for
water flow and that for the filtration of solutes across the epithelial slits are described in

sections 4.2 and 4.3, respectively.

4.2 Mathematical Model for Hydraulic Permeability

4.2.1 Idealized Structural Unit

Electron micrographs indicate that the glomerular capillary wall can be accurately

represented by an alignment of approximate repeating units, termed unit cells, each composed
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of a single filtration slit in between two foot processes, a layer of basement membrane lying
undemneath, and fenestrated endothelial cells at the interface between the membrane and the
capillary lumen. The model assumes that a pericdic idealized unit cell, shown in Figure 4-1,
repeats iiself along the entire length of the capillary. Flux occurs in the z-direction, from the
lumen to Bowman's space; W corresponds to the width of the structural unit, and Sgi,m to the
thickness of the glomerular basement membrane.

The fenestrae are assumed to be channels of circular cross-section with varying radii,
as indicated by Lea et al (1989). As described in Chapter 2, the glomerular basement
membrane is a network of fibers whose exact size, shape and orientation have not been fully
characterized. The GBM is therefore treated as a homogenous random fiber array. As also
indicated in Chapter 2, two configurations have been proposed for the siit diaphragm,
referred to as the "ladder” and the "zipper", respectively. Both are illustrated on Figure 4-2.

[

The three layers are first treated separately in this approach, water flow across each
one of them being determined independently. The overall permeability of the barrier k is then
calculated based upon the individual hydraulic permeabilities of the three layers:

k; = (i=en, gbm, ep) “4.1)

Jv
AP,

where the subscripts en, gbm and ep refer to the endothelium, glomerular basement
membrane and epithelium, respectively. Jy is the volume flux, and AP; the net pressure
difference across the layer i, both averaged over the cross-sectional area of a unit cell. The

hydraulic permeability of the glomerular capillary wall is then calculated by:

1 1
i Zk—i (4.2)
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Bowman’s Space

Epithelial Slit

Epithelium
8gbm Basement
Membrane
Endothelium
Fenestra

Capiilary Lumen

Figure 4-1
Idealized structural unit of the glomerular capillary wall. The unit cell corresponds to one
filtration slit and is repeated periodically along the length of the capillary.
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Ladder Zipper

Bowman’s space

Figure 4-2
Structure of the epithelial slit diaphragm. The direction of the flow is along the z-axis, as
indicated by the arrow. The center and right panels are top views, corresponding to the ladder
and zipper configuration of the diaphragm, respectively.
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The fluid mechanics equations in the endothelial and epithelial layers are solved using
the software package FIDAP (Fluid Dynamics International, Evanston, Illinois) which is
based upon a Galerkin finite element method.

4.2.2 Endothelium

The fenestrae are assumed to be filled with fluid. Since the Reynolds number is very
small under the conditions examined (Re ~ 10-6), the Stokes and continuity equations can be

used to determine the local pressure P and the velocity vector V:
VP = uvv (4.3)
Vev=0 4.4)

where |1 is the viscosity, and V and V? are the gradient and Laplacian differential operators,
respectively. The boundary conditions are described in detail by Drumond and Deen (1994a),
and can be summarized as follows: fluid velocity is zero on all surfaces; at the entrance of the
fenestrae, the radial and angular components of the fluid velocity are also equal to zero and
the net pressure (Pgc - [Igc), i.e., the difference between the hydrauiic and the osmotic
pressure in the capillary lumen, is imposed; at the interface between the fenestrae and the
basement membrane, pressure and viscous stresses are matched.

The hydraulic permeability of the endothelium ke, is then given by:

— Jv - Ef Vz
(Pgc - Nge)-Py (Pgc - Nge)-Py

Ken 4.5)

where Py is the average pressure at the exit of the fenestra, V; is the average fluid velocity in

the z-direction (based on the cross-sectional area at z = 0) and €y is the fraction of the capillary
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surface covered by the fenestrae. Assuming that rf= 30 nm (Kubosawa and Kondo, 1985)

and that € = 0.2 (Lea et al., 1989), Drumond and Deen (1994a) obtained ke, = 2.0x10-7
m/s/Pa.

As described below, the contribution of the endothelial layer to the overall resistance
of the barrier to water flow is negligible. The case of fenestrae filled with a glycocalyx was

also considered and led to similar conclusions.
4.2.3 Glomerular Basement Membrane

The glomerular basement membrane is considered as a porous medium, for which

Darcy's law can be used to determine the flow:

K
V = . DAy gp (4.6)
m

Kparcy is the Darcy permeability of the GBM fibers. As described in Chapter 7, its value was
determined from a series of filtration experiments with isolated fragments of glomerular

basement membrane. The boundary conditions are:

%P: =0 at all the areas covered by the endothelium and epithelium  (4.7a)

z

oP . o

8_ =0 at x =0 and x = W/2 (symmetry in the x-direction) (4.7b)
X

oP . o

> =0 aty =0and y = L/2 (symmetry in the y-direction) (4.7¢)
y

In addition, at the endothelial and slit openings, one can specify either constant pressures, or

constant velocities. These two assumptions are almost equivalent as shown by Drumond and
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Deen (1994a). The authors also demonstrated that, with no significant effect on the results,
the original three-dimensional domain can be transformed into a two-dimensional domain
(Figure 4-3) by substituting for the circular openings of the fenestrae stripes of equivalent
area. Using constant velocity boundary conditions, analytical expressions can then be
obtained for P, V and the hydraulic permeability kghm of the GBM. kgbn, is given by:

Iy

k = 4.8
gbm PO i Pl ( )

where P is the average pressure at the slit opening. The two-dimensional pressure field with

constant velocity boundary conditions can be written as:

Jou [ &, cosh(A,z/W) - v, sinh(A z/W)]
P= A - —X n L n L cos(Ax/W)
KDarcy n=l( Ap sinh(Ay8 gbm /W) n
(4.9)
where
Ap = 27" (4.10a)
g - 2sin(ome;) (4.10b)
nme
1 N
Y = [ sin(Apx2; /W) - sin(Agxi_1/W) ] (4.10c)
nmneE¢ i=1

A is a constant depending on Py, and x3;.; and x; (i = 1, .., Ny) are the x-coordinates
defining the positions of the fenestrae in a unit cell. The analytical expressions for the two
components of the velocity vector V are then obtained by multiplying the gradient of P by (-
KpDarcy /1), as shown by equation (4.6). The hydraulic permeability of the glomerular

basement membrane is then given by:
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KDarcy sgbm - 'Ynz + §n2
ke = 4.11
g =W |Tw T ) 2 A, tanh(A,B e /W) @10

n=l

Representative values for the ultrastructural parameters of the GBM are W = 360 nm,

L =120 nm, Sgbm = 200 nm, and Nr = 3 (Drumond and Deen, 1994a). Based upon the
study of Daniels et al. (1992), the value of the Darcy permeability was estimated as 2.7 nm?2,

yielding kgpm = 8.3x10-9 m/s/Pa.

4.2.4 Epithelium

For the water flow model, both the ladder and the zipper configurations of the slit
diaphragm were considered, and yielded very similar results. As in the endothelium, the local

pressure P and fluid velocity V in the filtration slit can be obtained by solving Stokes and

continuity equations:
VP = pv2y (4.12)
VeV=0 (4.13)

The velocity should vanish on ali solid surfaces; due to symmetry, we have:

Vy = O0aty=0andy=L; (4.14a)
Vg = Vy =0atz=0 (4.14b)
and for the ladder configuration, V, = 0 atx=0 (4.14c¢)
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The boundary conditions upstream and downstream are based upon the assumption of

unperturbed plane Poiseuille flow at a distance 8 far enough from the cylinders:

3 X 2 -
Vv, = 5 V, [1 - (Ws) ] , Vg = Vy =0 atz=19 (4.144d)

where V; is the average fluid velocity in the z-direction i:. :he slit channel.
The hydraulic permeability of the epithelium ke, is given by:

k = JV = eS v,S
® R-Pr PR-P

(4.15)

where Pr is the pressure in Bowman's space, and € is the fraction of the capillary surface
covered by the filtration slit. Rodewald and Karnovsky (1974) reported the following
average measurements for the ultrastructural parameters: rp, = 3.5 nm, 1 = 5.45 nm, Ly = 5.6
nm, and Ws = 19.7 nm. Using these values, the hydraulic permeability kep is found to be
equal to 8.6x10-2 m/s/Pa (Drumond and Deen, 1994b).

4.2.5 Comparison with Experimental Data

Combining all these results, the overall hydraulic permeability of the barrier is
calculated to be 4.1x10-9 m/s/Pa. This predicted value is in excellent agreement with
experimental measurements in normal adult Munich-Wistar rats, the observed range of k
being 3-5x10 m/s/Pa (Maddox et al, 1992; Pinnick and Savin, 1986). It appears thus that
the contribution of the endothelium to the overall resistance to water flow across the
glomerular capillary wall is negligible (~ 2%), and that those of the glomerular basement

membrane and the epithelium are nearly similar (50 % and 48 %, respectively).
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The ultrastructural model for water flow has also been very successfully applied to
cases of glomerular diseases, both in humans and rats. Data for nephrotic rats reported in a
study by Miller et al (1990) agreed very well with theoretical predictions based on the model
(Drumond and Deen, 1994a). In another study of patients with miminal change or
membranous nephropathies, the mean values of the experimental and theoretical hydraulic
permeabilities were very similar (Drumond et al., 1994), thereby indicating that
morphological changes such as a thickening of the basement membrane and/or a decrease in

slit frequency are properly accounted for by the ultrastructural model.

4.3. Transport of Macromolecules Across the Epithelial Slit Diaphiragm

4.3.1 Mathematical Model

Filtration of macromolecules across the epithelial layer can be modeled assuming that
the slit diaphragm is formed by a row of infinitely long cylinders, that is, assuming the ladder
configuration without taking into consideration the wall effects due to the podocytes. For this
purpose, Drumond and Deen (1995) developed an approximate hydrodynamic model for
rigid, non-interacting spherical particles of radius rg moving with velocity U through a row
of infinitely long cylinders of radius rc; their approach is summarized here. As shown on
Figure 4-4, L is the half distance between the centers of two adjacent cylinders. If V is the

local velocity of the solvent, a force balance on a single particle yields:

-kTVInC - 6npur, (feU - geV) =0 (4.16)

where k is Boltmann's constant, T is the absolute temperature and C is the solute
concentration. The first term in equation (4.16) represents the effective body force acting on

the sphere, due to a gradient in chemical potential. This force is equal and opposite to the
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Figure 4-4
Idealized representation of the epithelial slit diaphragm for solute transport.
The direction of the flow is indicated by the thick arrow.
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hydrodynamic force exerted on the particle, expressed by the second term. The tensors f and

g account for translation of the sphere and flow past the sphere, respectively. The solute flux

N can then be expressed by:

N=UC=-D_,deVC + hoVC (4.17)

where D.. is the diffusivity of the solute in dilute bulk solution, and the tensors d and h are

given by :
d=f1 (4.18a)
h=fleg (4.18b)

In addition, the solute conservation equation can be written as:

VeN =0 (4.19)

Combining equations (4-17) and (4-19), the steady-state concentration field in the slit is

obtained by solving:
V' e (-deV'C + Pe,heV'C) = 0 (4.20)

where V* = .V, Vi=v/ Vs, Vs is the undisturbed fluid velocity far from the cylinders

and Pes is a Peclet number based on the cylinder radius:

V; 1.
D.,

(4.21)

Pe; =

The boundary conditions are the following:
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N, = Ny atz=-9 (4.22a)
C

=Cpg = -ISQ asZ->o0 (4.22b)

VS
Ny =0 aty=0andy=1Lg (4.22c)
N, =0 atr=rc + 1y (4.224d)

where 9 i3 the distance from the basement membrane to the center of the cylinders, Cp the
solute concentration in Bowman's space (i.e., downstream) and Ny a specified constant flux.
The fluid velocity field V is determined using Stokes and continuity equations, as shown
above (equations 4.12, 4.13). Since the cylinders are assumed to be infinitely long in this

configuration, the boundary conditions after adjustment become:

Vy =0 aty=0andy=Lg (4.23a)
Vy =0 atz=-8andz-> (4.23b)
V=20 atr=rg (4.23¢c)

In the absence of theoretical results for the tensors f and g in that configuration, Drumond
and Deen (1995) opted for an approximate approach, dividing the fluid domain into
hydrodynamic regions of simple shape, for each of which existing results could be used to
estimate f and g. Their method is outlined elsewhere (Drumond and Deen, 1995). The
downstream boundary condition for both V and C was applied at a finite value of z, z = §;,
chosen large enough so that further increases would not affect the sieving coefficient (see
equation 4.24 below). It was verified that 8| = 5L was sufficient for all cases.

Having thus determined solute concentration profiles, sieving coefficients for the slit

diaphragm were computed as:
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(4.24)

where Cy is the average concentration at z = - §, adjacent to the basement membrane. The
subscript loc indicates that Ogq is a local quantity here, calculated on the basis of one unit
cell. An approximate analytical relationship between @sdloc and its determinants was found to

fit the data well and was used in all subsequent calculations:

1-A

04! = (4.25)
§ 1-A[1 - e-Pesﬁ/rc(l ) c-APeS)]
where
I,
A= s 4.26a
L. -r ( )
A = 3.65 + 0.573 (4.26b)

I'c/]-‘s 1 - l'(:/Ls

4.3.2 Distribution of Cylinder Spacings

The model presented above predicts a sharp cutoff in sieving curves for the filtration
slit, as macromolecules larger than the gap between adjacent cylinders are expected not to be
able to go through the slit diaphragm. However, whereas the average distance between
cylinders reported by Rodewald and Karnovski (1974) is 40 A, macromolecules of radius
greater than 60 A have been shown to cross the barrier (Oliver et al., 1992; Remuzzi et al.,
1993). This result could be explained by the existence of inhomogeneities in the structure of
the slit diaphragm, which recent electron microscopy data also indicate (Hora et al., 1990).

To account for such heterogeneities, Drumond and Deen (1995) assumed that the
spacings between cylinders follow a continuous probability distribution. Defining u as the
half-width of the gap between two neighbouring cylinders, that is, u = L - r, the average

sieving coefficient for the slit diaphragm <@4>!0¢ is then given by:
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<@y > = jesdlm(u) G(u) du (4.27)
0

where G(u)du is the fraction of filtrate volume passing through gaps of half-width between u
and u+du. The function G(u) is equal to the product of the probability function for the gap
half-width, g(u), and the volume flow rate of filtrate q(u) passing through gaps of half-width
u. Introducing the dimensionless hydraulic resistance fr defined by Deen and Drumond

(1994b) as:

L (AP) _ (5 +u) (AP),
HVs B Vs

fr = (4.28)

where (AP); is the net pressure difference across the slit channel, the volume flow rate q(u),

proportional to L Vg, can be written as:

qu) = % (. +u)? £r71(u) (AP), (4.29)

where K is a constant. Noting that j G(u) du = 1, the function G(u) is therefore given by:
0

g(u) (i +u)? £ (u)

oo

[ e @ + w7 )
0

G(u) =

(4.30)

Approximate analytical expressions for the dimensionless hydraulic resistance

fr = fr (§/Ls, r./Lg, Lg/W;)were derived for the ladder configuration (Drumond and

Deen, 1994b), and later extrapolated in order to be valid for the entire range of spacings and
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slit widths considered here (Drumond and Deen, 1995). The wall effects due to the

podocytes, neglected in computing ©44!°¢, are nevertheless accounted for in the calculation of

fr. fT can be expressed as the sum of the dimensionless Poiseuille flow resistance fp

(f, = 367 Lg / WS2 , where 8T is the total length of the slit channel), and a dimensionless

additional flow resistance f. Since the value of 81 doesn't significantly affect the results, &t =
§ is used in the calculations. The results are repeated here for convenience. For Ly/Wg >> |

and ro/Lg << 1, it was shown that:

2
f = 3(-"—5) { J ! [n + 2tan’!( /bs ). )

LA | - (/L) J1 - (/L) 431)
_6Lsr
w2
For Ly/W, <4 and 0.7 < r./Lgs < 0.9, we have:
f=A( - r./Lg)® (4.32a)
o L L 2
log A = logl| —= | + 0.144) == | + 0.0111| = 4.32b
o=t ) » ore ] - oon R
L L, Y
B = -25+0.116| = | + 0.00957| = (4.32¢)
WS wS
For Ly/W¢ <4 and 0.1 <r./Lg <0.7, we have:
L
f=C+ D(—i) (4.33a)
wS
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2 3
C =033 +274| | -274| ) +3.16| < (4.33b)
LS LS LS

2 3
00639 +0.454 || - 0652 | +0512| %= (4.33¢)
L, L L,

S

Y
]

For Ly/W¢ > 4 or re/Ls < 0.1, f was given by a linear interpolation betw~=n the equations

(4.32) and (4.33). The average hydraulic permeability <ks> is then given by:

J (rp +u) g(u) Vg du
ck> = S . 0 (4.34)
) (AP)g
(AP) I(rc +u) g(u) du
0

where <V¢> is the mean filtrate velocity in the slit channel, averaged over all cylinder

spacings. Combining equations (4.28) and (4.34), we obtain:

[ +w)? gy fr7' () du
0 (4.35)

I(rc + u)2 g(u) du
0

<ks> =

1
m

Since the hydraulic permeability of the slit was determined previously (see paragraph
4.2.4), the value of <ks> is known in equation (4.35), and a constraint thereby imposed on
the probability distribution function g(u). In the absence of quantitative data regarding
structural heterogeneities in slit diaphragms, several choices can be made for g(u); the gamma
and lognormal distributions appear to be reasonabie options. In both cases g(u) is cer’

around a single value and vanishes as the gap half-width u goes to zero or to infinity. bsoia
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probability functions are defined by two parameters, one of which needs to be specified, the
other one being implicity given by the relationship presented above.

The gamma distribution is given as:

exp [ 1iIn(y2) +(y; -1in(u) - uyy)] (4.36)

g(u) = T

where T is the gamma function. The mean ard variance of g(u) are y/y2 and y)/y22,

respectively. With this choice for g(u), the denominator in equation (4.35) is equal to

I. + ¥1/Y2 - A possible choice for the parameter to be specified is ¥;!/2, i.e., the standard

deviation divided by the mean. As described in Chapter 2, the lognormal distribution is

defined by:

—\2
1 ! ( In(u) -In(u)
= — — SR o Sod s St 4.37
B(w) fiﬁuln(s) P [ 2 [ In(s) ) ] ( )

where u is the mean of the disiribution, and In(s) the standard deviation. In this case, the
denominator of equation (4.35) is equal to r, + u exp (lnz(s)/2). As will be shown later in
Chapter 8, the lognormal distribution yielded more consistent results than the gamma one.

We chose s as the independent parameter, and u was calculated using equation (4.35), with

<ks> = kep/€s = 7.9x108 m/s/Pa.
4.4 Conclusions

To complete this new approach to glomerular filtration, the modei must be extended
to account for the filtration of macromolecules across the two remaining layers, the
glomerular basement membrane and the endothelium. Since the resistance of the latter is

believed to be negligible, our main effort was to characterize the transport properties of the
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GBM. In the absence of well established theories for hindered transport in random fibrous
media, experiments were performed to obtain direct measurements of the permeability of
isolated rat GBM to macromolecules. These studies are described in the following three
chapters. In the first set of experiments, the diffusion of narrow fractions of Ficoll across
isolated glomerular capillary wall and isolated GBM was assessed by confocal microscopy,
and diffusive hindrance coefficients were thereby obtained. In the second set of
measurements, isolated fragments of rat GBM were packed to form a uniform membrane in
an ultrafiltration cell, and sieving coefficients of Ficoll were then determined. To interpret
these results, the effects of concentration polarization have to be taken in consideration,

which is the purpose of the preliminary study described in Chapter 5.
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Chapter Five

Concentration Polarization in Ultrafiitration Studies

The permselective properties of the GBM were determined by performing two sets
of experiments which are described in the following chapters. In particular, we studied the
convection and diffusion of Ficoll across a membrane formed of packed isolated GBM
fragments. Filtration studies require that the effects of concentration polarization next to the
permeating membrane be taken into account. Because of significant uncertainties in
literature data, our aim in the present chapter was to determine experimentally the value of
the mass transfer coefficient in the filtration studies with Ficoll. For this purpose, we
performed a parallel set of experiments, using a similar ultrafiltration cell, and maintaining
identical flow rates and concentration levels. Based on our results, we then interpreted

anew GBM permeability data published in the literature.

5.1 Background

Transport of a solute across a membrane is partially controlled by the concentration
boundary layers adjacent to the membrane, which offer additional resistance to mass
transfer. This effect can be minimized by increasing stirring next to the membrane, yet
never entirely eliminated. In ultrafiltration, the solute concentration in the boundary layer
rises exponentially from the bulk retentate towards the membrane, as shown in Figure 5-1.
In this stagnant film model, the mass transfer coefficient ks is equal to the ratio of D, the
solute diffusivity, over d, the boundary layer thickness. The determinants of kg in various
systems have been widely investigated. Many early studies (Johnson and Huang, 1956;
Marangozis and Johnson, 1961; Holmes et al.,1963; Scattergood and Lightfoot, 1968)

were limited in scope and largely experimental in nature. The first extensive analysis was
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Retentate Membrane Filtrate

Figure 5-1
Concentration polarization iu an ultrafiltration cell. 8 is the thickness of the boundary layer.
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performed by Smith et al. (1968), who studied convective transport in an agitated batch
dialyzer and proposed a correlation to estimate liquid-phase mass transfer coefficients.
Colton and Smith (1972a,b) then studied both theoretically and experimentally mass
transfer to the base of a cylindrical tank agitated by an axially-mounted impeller. In a first
paper, they developed solutions for mass transfer between a fluid undergoing solid body
rotation and a coaxial disk locate on a stationary infinite surface. These results were then
used in a second paper in conjunction with measurements of local mass transfer coefficients
for benzoic acid in a diaphragm cell, and expressions for ks in both laminar and turbulent
regimes were derived. Defining 7y as the dimensionless ratio of the angular velocity in the
core above the stationary base to the impeller angular velocity, the authors derived the
following asymptotic expression for the Sherwood number as the Schmidt number
increases towards infinity:
kS

Sh = D—b = 0.768 y'/2 sc!/3Re!/? (5.1

where Re = wb2/v and Sc = v/D,,, b being the tank radius, o the stirring rate, and v the
kinematic viscosity. For laminar flow, a best fit of their experimental results to the theory
yielded y = 0.49. The data showed a dependence of Sh on Re0-567  a result also obtained
by Smith et al. (1968).

Malone and Anderson (1977) determined overall mass transfer coefficients for
potassium chloride diffusion across track-etch membranes of uniform, low porosity. While
their results showed a Sherwood number dependence on Re which agreed very well with
the correlation of Colton and Smith (1972), the mass transfer coefficients that the authors
measured were three times lower than those predicted by that correlation. It was not
concluded whether these discrepancies were due to a slightly different cell design or to the
heterogeneous nature of the membrane. Deen et al. (1981), in their study of the effects of

molecular size and configuration on diffusion on microporous membrane, found mass
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transfer coefficients for sucrose and glucose about twice those predicted by that same
correlation. Bohrer (1983) measured diffusional fluxes across well-characterized track-etch
membranes, and observed a strong dependence of the diffusional boundary layer resistance
on membrane porosity, the mass transfer coefficient varying by as much as a factor of 2. 2s
the porosity changed. More recently, in a study of diffusive and convective protein
transport through asymetric membranes using a 25-mm-diameter Amicon UF cell, Opong
and Zydney (1991) obtained experimental values of the mass transfer coefficient and fitted
to their data the expression first presented by Smith et al. (1968). The values they report are
about 17% less than those predicted by the correlation. Finally, Juhasz and Deen (1991)
showed in their analysis that the stagnant film model should be used with caution when
using heterogeneous membranes with active areas, i.e., pores or active sites. When the
Peclet number (based on the film thickness and maximum velocity) exceeds 10~102, the
convective interactions between these sites cannot be neglected.

All these studies underline the danger in extrapolating results of previous studies in
order to calculate mass transfer coefficients for a specific system. For this reason, we opted
for an experimental approach to determine the value of ks in our filtration studies. The
design of the experiments described below was analogous to that described later in Chapter
7; bovine serum albumin was filtered across a cellulose membrane, and we determined the
solute concentration in the bulk retentate, the retentate adjacent to the membrane, and the

filtrate in order to calculate the mass transfer coefficient.

5.2 Methods

All experiments were done using a 25-mm-diameter Amicon UF cell (Amicon
Corporation, Danvers, MA). An applied pressure ranging from 25 to 75 mmHg was
generated with compressed nitroen, measured by a pressure transducer (Model DP15,

Validyne Engineering, Northridge. CA), and modified by a pressure regulator. The stirrer,
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previously calibrated using a strobe light, was set at a rotational speed of 220 RFM. A
10,000 MW cut-off cellulose membrane (Millipore, Bedford, MA) was mounted in the
stirred cell, allowing less than 3 % of albumin to be filtered. After a 10-min equilibration
time, the filtration rate was evaluated by collecting filtrate for 10 minutes, the mass of
which (on the order of 0.05 g) was then determined using a digital balance. A 3 ml volume
of NaCl solution (0.15 M, ph = 7.40) were first added to the cell, and the hydraulic
permeability of the membrane determined. The cell was then rinsed, and filled anew with 3
ml of bovine serum albumin (BSA, Sigma Chemical Compary, St-Louis, Missouri)
suspended in NaCl buffer at a concentration of 4 g/dl. After a 10 minute equilibration
period, the filtrate was collected for 10 minutes. The retentate was sampled at the start and
completion of the collection period. BSA concentration in the bulk retentate and in the
filtrate was measured by spectrophotometry (Shimadzu, Columbia, Maryland), at a
wavelength of 280 nm. This procedure was followed by another measurement of the
membrane hydraulic permeability with NaCl solution only. Only if it differed by less than
5% from the value determined at the start of the experimental run were the results taken into

account. All experiments were conducted at room temperature (21°C).

Statistics

Results are given as mean + SE. For group comparisons, t tests were performed to

determine significance. P < 0.05 was considered to be significant.

5.3 Calculations

5.3.1 Sieving Coefficients

The measured sieving coefficient (') of a macromolecule is given by :
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Ce
Cr

e = 5.2)

where Cfg and CR are the solute concentration in the filtrate and in the bulk retentate

respectively, as shown in Figure 5-1. The true membrane sieving coefficient (©) is defined

as:

Cr
0= — 5.3
Cu (5.3)

where Cyp is the solute concentration on the retentate side immediately adjacent to the
membrane surface. Because of concentration polarization at the membrane surface, Cy 2

CR, or O < ©'. At steady-state, the solute flux Js in the solution is given by :

aC
Js= -DK +JVC 5.4)

where Jy is the filtration rate, and D the solute diffusivity, assumed here to be equal to its

value in dilute bulk solution, D, . Under steady state conditions, solvent and solute fluxes
are constant across the membrane, and equation (5.4) can be integratec to determine the

concentration profile of the solute, using the ultrafiltration boundary condition :
Js=Cgly (5.5)

As C(x = 0) = Cp, we find that :

M _ q.enB + @ (5.6)
Cr

where
B = exp (J /kg) 5.7
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As defined above, the mass transfer coefficient kg is equal to D/3, where § is the boundary

layer thickness. The relationship between © and @' can then be obtained by rearranging

equation (5.6) :

_ @
(1-0)B +0

(5.8)

5.3.2 Mass Transfer Coefficient

When albumin is the only osmotically active solute, the hydraulic permeability Lp of

the membrane is related to the filtration rate J, by Starling's equation :

Jy = Lp (AP - GgpAllyy, ) (5.9

where AP is the transmembrane hydraulic pressure difference, and 51, and Al the
reflection coefficient and oncotic pressure difference, respectively, for albumin. We
assumed that Gajp = ! - O4p. To obtain AP, the hydrostatic pressure was substracted from
the value given by the pressure transducer. The contribution of capillary pressure was
calculated to be negligible. We first determined the hydraulic permeability of the membrane,
in the absence of albumin, when Ly, is simply the ratio of J over AP.

In the presence of albumin, equation (5.9) yields the product (1-@a)p)AIla1p, all
other quantities being measured or known. To determine the albumin concentration Cp at
the membrane on the retentate side, we usced the semi-empirical correlation developped by

Vilker et al. (1981), relating albumin osmotic pressure to albumin concentration :

zC
Mp = RT {2[ (=202 4 m 212 - om, )
RT ) 3
+ (Calb + A2Calb + A3Calb ) (5.10)
M
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where M)y is the molecular weight of albumin, Cy)p, its concentration in g/l, and mg the
molar salt concentration. At pH = 7.40, under the conditions described above, we have A;
=-1.089x102 and A3 = 1.243x10-4. Al and Oy (or equivalently, Cyj = CE/Qap) were
calculated by an iterative procedure, solving simultaneously equations (5.9) and (5.10),
taking ©';1p = CE/CR as a first approximation for ®,)p. Rearranging equation (5.8), the

polarization factor B is given by

Cym - Cg
Cr - Cg

B= (5.11)

and the mass transfer coefficient kg for albumin under these experimental conditions thus

determined.

5.4 Results

In order to interpret in vitro Ficoll sieving data, the mass transfer coefficient of each
Ficoll fraction has to be determined. The experiments with BSA in NaCl solution were
done using a filtration cell identical to that used in the Ficoll studies, at the same stirring rate
of 220 RPM, with the same initial BSA concentration of 4 g/dl, and adjusting the pressure
to obtain similar volume fluxes. Under these conditions, the mass transfer coefficient of
BSA was found to be equal to 2.00x10-4 £ 0.05 cm/s (n = 16), at 21°C, for an averaged
volume flux of 1.20x10- cm/s. The results are illustrated on Figure 5-2.

The value of the mass tranfer coefficient at 27°C, the temperature at which the Ficoll
studies were performed, for albumin or any Ficoll fraction of a given Stokes-Einstein
radius, can be obtained by using the theoretical expression of Colton and Smith (1972),

which yields :
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Mass transfer coefficient of albumin at 21°C versus volume flux
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ke o o?v/®p23 (5.12)
It was thus calculated that k¢alb = 2.28x10-4 cr/s at 27°C.

We also performed similar measurements of kg on a wider range of filtration rates,
to gain additional insight into the determinants of ks. The value of the mass transfer
coefficient should be independent of the filtration rate, as shown by equation (5.12).
Shown on Figure 5-2 and Table 5-1 are results obtained for J, ranging from 0.72x10-4
cm/s to 3.7x10-4 cm/s. Four groups were distinguished: J, was comprised between
7.2x10-5 and 8.3x10°5 cm/s, 1.0x10-4 and 1.3x10-4 cm/s, 1.7x10-4 and 2.3x10-4 c/s,
and 2.8x10-4 and 3.7x10-4 cm/s, in groups 1, 2, 3 and 4, respectively. As expected, we
found no significant difference in the value of the mass transfer coefficient between groups
1, 2 and 3. There is however a significant difference between the values of kg reported for

each of these three groups and that of the fourth one, but the reason for this phenomenon is

not well understood.

Table 5-1

Mass transfer coefficient of albumin at 21°C

n flow rate Q (ml/h) Jy (10-4 cm/s) ks (10-4 cmv/s)
9 0.318 + .005 0.78 £ 0.01 2.01 £ 0.09*
16 0.492 £ .006 1.21 £ 0.01 2.00 £ 0.05
8 0.718 £ .026 1.76 £ 0.06 2.08 +0.03*
11 1.291 £ .033 3.17 £ 0.08 2.69 + 0.06¢

Values are mean + SE. The baseline case of corresponds to an average flow rate of 0.492
mb/h.* P > 0.05 vs. baseline. T P < 0.05 vs.baseline.
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5.5 Discussion

Daniels et al. (1992) performed in vitro studies of water and protein permeability
of the glomerular basement membrane by consolidating isolated cell-free glomeruli in an
ultrafiltration cell identical to the one we used, and measuring fluxes across the membrane
following a protocol similar to that described above. In their study, the value of the mass
transfer coefficient was estimated from the correlation of Colton and Smith (1972b) as
4.34x104 cm/s at 25°C, i.e., twice the value that we determined here (2.18x10-4 cm/s at
25°C). We therefore interpreted their data anew based on our results for k.

We first calculated again the hydraulic permeability of the GBM membrane as a
function of the transmembrane pressure AP, in the presence of 4 g/dl of albumin in the
buffer. The results are summarized in Table 5-2, and do not differ significantly from those
reported by Daniels et al. (1992, Table 1). As illustrated, the effects of AP on the
membrane hydraulic permeability are very important: Lp decreases by a factor 2.5 when AP

is increased from 50 to 150 mmHg.

Table 5-2

Effect of transmembrane pressure on the permeability of GBM filters at 4 g/dl aibumin

AP (mmHg) Ly, (10-6 cm.s-1. mmHg1)
ks = 2.18x104 cm/s ks = 4.34x10-4 cm/s
(present results) (Daniels et al., 1992)
50 4.16 + 0.52 4.61 + 0.49
150 1.69 + 0.08% 1.45 + 0.03}

Values are mean + SE. f P < 0.05 vs. 50 mmHg.
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We then determined the effect of albumin concentration on Ly, at AP = 50 mmHg.
As shown in Table 5-3, there was no significant difference in the permeability of the
membrane when the albumin concentration was increased from 0 to 4 g/dl (4.24x10°6 vs.
4.59x10°6 cm.s"!.mmHg-!). The data obtained at a concentration of 8 g/dl were not all
consistent, sometimes yielding negative values of Ly, and are not reported here.

Combining the results of Tables 5-2 and 5-3, the averaged hydraulic permeability
of the GBM filters at AP = 50 mmHg and Cayp = 4 g/dl was estimated as Lp25'= 4.38x10-6
cm.s"!.mmHg-!. The Darcy permeability of the glomerular basement membrane at 37°C,

AP = 50 mmHg, and C;)p = 4 g/dl was then calculated as:
KDarcy - Lp37° u37' L= Lp25‘ u25’ L (5.13)

where L is the thickness of the membrane, which was estimated as 8.8 pm. We thus
obtained the following estimate: Kparey = 2.57x107'8 m? = 2.6 nm?. This value differs
very little from the estimate of 2.7 nm2 used by Drumond and Deen (1994a), and does not
change significantly the relative hydraulic resistances of the three layers of the glomerular
capillary wall, as shown in Table 5-4.

These Darcy permeability values differ however significantly from those which we
obtained in experiments analogous to those of Daniels et al. (1992), as will be described
later in Chapter 7. Based on our measurements, we estimated Kpaycy as 1.48 and 0.82 nm?
at AP = 35 and 60 mmHg, respectively, yielding a value of 1.08 nm?2 at AP = 50 mmHg by
linear intrapolation. The reason for this discrepancy is not clear. It is possible that the
estimate of L = 8.8 pum in the study of Daniels et al. (1992) is too high, since the membrane
thickness was not measured systematically, nor was it corrected to account for deformation
under pressure. However the values of L, in the study of Daniels et al. (1992) were also
significantly higher than those we measured in our experiments, and uncertainties in L

cannot account entirely for the discrepancy.
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The in vivo conditions are best approximated by AP = 35 mmHg, and we
recommend for the Darcy permeability under typical conditions a baseline value of 1.48
nm2, based on the data presented in Chapter 7. This value seems preferable over the one
obtained from the study of Daniels et al. (1992) because more attention was paid to
determining the thickness of each membrane. From this estimate, we calculated again the
relative hydraulic resistances of the three layers. The results are shown in Table 5-4. Since
the hydraulic permeability of the GBM is lowered by a factor 1.7, the relative resistance of
the GBM is now almost twice that of the epithelial layer, while the calculated permeability
of the capillary wall is at the lower end of the experimental range (~ 3-5 x10-9 m.s"1.Pa-l,

as reviewed in Chapter 4).

5.6 Conclusions

Our conclusions are different than those reached previously in two respects. Firstly,
our results indicate that there is no significant difference between the hydraulic permeability
of the GBM in the presence of 0 and 4 g/dl albumin, respectively, whereas Daniels et al.
(1992, Table 3) had observed a biphasic relationship, with Ly, significantly lower at 4 g/dl
than at either 0 or 8 g/dl albumin. The conclusion attained here justifies one aspect of the
experimental protocols described in the following two chapters. In diffusion experiments
across isolated glomerular capillary wall and GBM (Chapter 6), no albumin was present in
the solution in order to pieserve cell viability, while the buffer in filtration experiments
across isolated GBM (Chapter 7) contained 4 g/dl to simulate normal physiological
conditions.

In addition, we estimated the hydraulic resistance of the GBM to be twice that of the
epithelial layer, as opposed to equivalent to it (Drumond and Deen, 1994a). These results

should be accounted for in determining the in vivo ultrafiltration coefficient of the barrier.
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Table 5-3

Effects of albumin concentration on L, at AP = 50 mmHg

Calp (g/d]) Ly (106 cm.s-!. mmHg-!)
0 424 +0.46
4 4.59 + 0.74*

Values are mean + SE. * P > 0.05 vs. 0 g/dl.

Table 5.4
Hydraulic resistance of the capillary wall
Drumond and Deen (1994a)| Kparcy = 2.56 nm? | Kparcy = 1.48 nm?
(Daniels et al., 1992) (Chapter 7)
k (m.s"1.Pal) 4.1x109 4.1x10? 2.9x10°9

% resistance 2.1 2.0 1.5
endothelium

% resistance 49.8 50.8 64.4

GBM
% resistance 48.1 47.2 34.1
epithelium
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Chapter Six

Hindered Diffusion of Macromolecules across Isolated Glomerular

Basement Membrane and Glomerular Capillary Wall
6.1 Introducticn

We first determined the diffusional resistance of the GBM in a series of experiments
whereby the diffusion of Ficoll across isolated rat GBM was assessed by confocal
microscopy. In an effort to better characterize the epithelial slit diaphragm, we also
measured Ficoll diffusion rates across isolated intact capillary wall and developed a model
to interpret the results. These measurements enabled us in addition to estimate the relative
contribution of each layer to the overall permeability properties of the glorerular capillary
wall.

The relative resistance of the GBM and the cell layers has been an open question for
many years. While some authors have emphasized the importance of the glomerular
basement membrane (GBM) in restricting solute transport (Farquhar et al., 1961; Rennk. et
al., 1975; Kanwar, 1984), others have remained more skeptical (Bray and Robinson,
1984; Daniels et al., 1992). Since all‘these studies were based either on the localization of
electron dense tracers within the GBM in fixed tissues or on permeability measurements of
GBM, they did not allow for a quantitative assessment of the role of each layer.

Daniels et al. (1993) developed a new technique to isolate rat glomeruli and
glomerular basement membrane, and measured the diffusion rate of dextran from the
capillary lumen with confocal microscopy. While their study showed an important effect of
the cells in the overall resistance to solute transport, the results were difficult to interpret
quantitatively, due to the non-ideal behavior of the tracer and the fact that a polydisperse

sample was used. In the present study, we used their method to determine the diffusion
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rates of narrow fractions of Ficoll across intact or denuded glomeruli. Four narrow
fractions of Ficoll were labeled with fluorescein, the diffusion of the macromolecules
across isolated rat glomerular capillary wall and glomerular basement membrane (GBM)
was assessed by confocal microscopy, and mass transfer coefficients were obtained from
the experimental data. The results were then interpreted using a theoretical modei for

diffusion across each layer of the filtration barrier.

6.2 Methods

Preparation of Glomeruli

Adult male Sprague-Dawley rats weighing ~ 350 g were anesthetized with Inactin
(100 mg/Kg body weight) and kidneys were perfused in situ at 110 mmHg with modified
Eagle's medium (pH 7.4) to remove blood. The perfusion was completed within 10 s. The
cortex was diced into 1 mm3 bits and passed sequentially through 250, 150 and 75-mm
pore size nylon filters to isolate glomeruli. The isolation procedure was performed on ice in
the presence of buffer with 5 mM pyruvate, 5 mM butyrate, and 1 mM alanine. As revealed
by light microscopy, the resulting glomerular preparation contained >95% glomeruli and
<5% tubular fragments. Over 95 % of the glomeruli were devoid of Bowman's capsule and
arterioles.

Diffusion studies were performed using both intact glomeruli and glomeruli from
which the cells had been removed. Acellular glomeruli were prepared by incubating
glomeruli with N-lauryl sarcosine to remove cells and DNAse to remove nucleoprotein, as
described previously (Ligler and Robinson, 1977; Daniels et al., 1992). The resulting
glomerular skeletons maintained the general shape of the glomerulus, and were composed
predominantly of GBM, with a few areas of residual mesangial matrix.
Immunofluorescence microscopy of GBM obtained in that manner shows the presence of

laminin, type IV collagen and heparan sulfate proteoglycan (Daniels et al., 1992).
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Confocal Microscopy Apparatus

Diffusional permeabilities of intact or cell-free capillary loops to fluorescein-labeled
macromolecules were measured using the confocal microscopy apparatus described by
Daniels et al. (1993). Briefly, a fluorescent cell analysis system (model ACAS 570;
Meridian Instruments Inc., Okemos, MI) modified by the cell manufacturer for confocal
microscopy was used. A 5-W Argon laser (Coherent Inova 90-5) was the source for
fluorescence excitation. An Olympus epifluorescence inverted microscope was equipped
with a precision gear to provide measured alteration in the vertical axis. Either phase
contrast or fluorescent images could be obtained. A pinhole limited the entrance of light to
the photodetcctor to that originating from within the plane of focus and was adjustable to
facilitate variations of optical section thickness. For these studies, a pinhole of 225 pm was
used to produce a section thickness of about 1 um. A 28-um line was scanned at a step size
of 0.4 um, a peak velocity of 0.4 mm/s, using a laser power of approximately 3 mW. Each
point was sampled 8 times, the first time for 8 pus and subsequent samplings for 4 s so
that the total laser exposure time was 36 ps. Approximately 30 % of the laser power is
present in the 488-nm line (the excitation length used) so that about 0.9 mW of laser power
was transmitted to the sample. All laser parameters were set to limit photobleaching to less
than 5% loss of the initial fluorescence per 100 scans. Images were stored digitally on
Bernoulli disks and subsequently analyzed with image analysis software integral to the

ACAS system.

Macromolecules

Four narrow fractions of Ficoll, with Stokes Einstein radii (r5) of 3.0, 3.8, 4.8 and
6.2 nm were obtained by special order from Pharmacia LKB (Piscataway, NJ). These
samples were labeled with fluorescein and characterized as described previously (Johnson

et al., 1996). The values of the polydispersity index (ratio of weight-average to number-
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average molecular weight) ranged from 1.13 to 1.22, as determined by the manufacturer.
The number of fluorescein molecules per Ficoll molecule was estimated to be less than 3,
so that the net molecular charge resulting from the fluorescein label was assumed to be

negligible.

Permeability Measiirements

Diffusional permeabilities were measured using the procedure described by Daniels
et al (1993). Intact or aceilular glomeruli were incubated at 27°C for 20 min in a buffer
solution containing 2 g/ml of one of the fluorescent-Ficoll fractions. The buffer consisted
of DME (25 mM Hepes) buffer with 5 mM butyrate, 5 mM alanine and 5 mM pyruvate
substituted for equimolar NaCl. This resulted in diffusional equilibration of Ficoll between
the bath and the capillary ltmen. Glomeruli were then placed in a coverglass chamber
(Nunc Inc., Naperville, IL) and immobilized with weighted nylon mesh to minimize
movement during the scans. A longitudinal section of glomerular capillary without ar
overlying epithelial cell body was located by phase contrast microscopy and a plane of
focus through the maximal diametcr of the capillary was selected for ease in repeated
identification of the original place of focus. An initial fluorescent scan was then obtained to
quantitate intracapillary fluorescence. The background fluorescence was rapidly decreased
by diluting the bathing fluid with Ficoll-free buffer; this resulted in a 75% decrease in bath
fluorescence over 2 s. Although the change in bath concentration required only a few
seconds, the first scan was delayed by up to 120 s to confirm the original plane of focus.
Since the diffusion of Ficoll was very rapid across acellular glomeruli, only glomeruli that
did not move were used. The decline in fluorescence within the capillary was assessed by
obtaining confocal images every 20-40 s. The bath fluorescence usually remained constant

because of its large volume relative to intraglomerular or intracapillary volume. The lumen
and the bath were characterized by the mean pixel fluorescence for a 5 and 17 pm line,

respectively, typically separated by a distance of 7 pm. The number of experiments
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performed for each of the 8 combinations of molecular size and barrier type ranged from 7
to 1.

The capillary lumen and the bath (corresponding to Bowman's space in vivo) were
assumed to be well-mixed compartments separated by a membrane of surface area A.
Because the bath concentration (Cg) remained constant during the period of observation,

the mass-balance equation governing the concentration in the lumen (Cp ) is:

A
—— = - k.—(Cy -C 6.1
& SVL( L B) 6.1

where V| is the volume of the luminal compartment, and ks is the diffusional permeability
of the intact or acellular capillary wall for the test solute (ks=ks%¥all and k=kgbare,

respectively). For a capillary segment of radius R and length L, the surface-to-volume ratio

A/VL = 2/R. Integration of equation (6.1) gives:

0 (L(‘)ﬁ) = 2kt (6.2)
CL(0) - Cp R

The value of kg/R was obtained from the slope of a semilogarithmic plot of the bracketed
concentration ratio versus time. The capillary radius R was determined using the image
software analysis integral to the ACAS system, allowing calculation of ks. The change in
fluorescence in the lumen and in the bath as the macromolecules diffuse across the barrier is

shown in Figure 6-1 for a representative glomeruius.
The measurements were done in the laboratory of Dr. Barbara S. Daniels at the

University of Minnesota with the technical assistance of Michael Ahlquist. We prepared

and provided the narrow fractions of fluorescein-iabeled Ficoll.

110



fluorescence

3000
capillary tumen

2500 - o external bath
2000 |

[ )
1500 |- .

[ ]
-]

1000 ‘oo, ..

. [ ]

0000000000008888888809900
500 |

0 | | | | | | ]
0 100 200 300 400 500 600 700
seconds

Figure 6-1
Fluorescence in the capillary lumen and in the bath as a function of time. The exponential
decline of concentration in the lumen as fluorescein-labeled Ficoll diffuses out is apparent.
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In order to justify the assumption that the concentration in the bath is uniform, we
computed the corresponding Biot number, i.e., the bath-to-wall resistance to mass transfer
ratio, given as Bi = ks‘”a“ Ly /D .» where Lp is a characteristic dimension for the bath.
Since the mean pixel fluorescence in the bath is calculated over a distance Lg = 17 pum, the
upper limit on Bi was estimated as 0.043, thereby confirming the validity of our

assumption.

6.3 Resuits

The Ficoll permeabilities measured for the intact capillary wall (ks%all) and the
acellular capillary (ksbare) are shown in Figure 6-2 and Table 6-1. As expected, both k¢%all
and kbare were found to decrease with increases in solute size. Moreover, for any given
solute size, ksbare greatly exceeded kgwall,

An assessment of the relative contribution of the cells and the GBM to the overall
diffusional resistance of the capillary wall requires that account be taken of the fact that, in
the intact capillary wall, most of the surface of the GBM is covered by cells. The exposed
areas on the luminal and the Bowman's space sides correspond to the endothelial fenestrae
and epithelial filtration slits, respeciively. The blockage of most of the GBM surface by
cells results in tortuous rather than straight diffusion paths across the GBM, which tends to
increase the concentration drop across this layer. Thus, an indirect effect of the cell layers is
to make the apparent diffusional resistance of GBM in the intact capillary wall greater than
that for bare GBM. To determine the apparent pernieability of the GBM within the intact
capillary (ks8b™), we used the following approach.

The GBM was modeled as a homogeneous, isotropic material. Accordingly, for the
pseudo-steady state conditions of our experiments, the concentration C of any solute was

assumed to be governed by Laplace's equation:

112



l 0-3 : ) I L] 1 ] 1 I 1 ) T 1 I T 1 A\l T I LI ] 1 l T T T T T T T l Ll 1 1 T :
—o— bare GBM ]
- —e— capillary wall

104 ¢ e
[ ]
k _ \§ —
8 o ~
(cm.s)) - -
10° £ E
N ]
- .
I ]

l 006 LLL P S | l 1 1 1 1 I 1 1 1 1 l 1 1 1 1 I 1 1 1 1 ' 11 | 1 L 1 1 1 1

30 35 40 45 50 55 60 65

solute size (A)

Figure 6-2
Mass transfer coefficient for the isolated capillary wall (kW) and bare GBM (ksbare), as
a function of Ficoll Stokes-Einstein radius. Results are shown + SE.
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Table 6-1

Ficoll permeabilities for the glomezujar capillary wall
Is (nm) ksWwall kgbare ks8bm kgcells
(x10-6 cn/s) (x10°6 crys) (x10°6 crnss) (x10°6 cry/s)
3.0 28.51 + 1.49 508 + 31.0 219+ 134 328+23
3.8 14.15 + 0.97 2141250 92.2+ 108 16.7+ 1.7
4.8 9.15::1.19 81+75 349+ 33 124+ 2.6
6.2 2.47 £0.32 23.51 £ 3.7 10.1 £ 1.6 3.25+0.73

Results are given as mean * SE. The number n of experiments in each case varied from 7

(6.3)

Refering to the idealized structural unit shown in Figure 4-3, the boundary conditions used
were neVC = 0 at the cel] surfaces and planes of Symmetry, and ne VC equal to
specified constants on the areas occupied by endothelial fenestrae and epithelial filtration
slit, where n is a unit vector normal to the boundary. The mathematical problem just
described is identical to that for water flow governed by Darcy's law; in that case, the
pressure replaces C. Accordingly, an analytical solution derived previously for the water-
flow problem (equation 21 of Drumond and Deen, 1994a) was used to compute kg8bm

from kgbare Tpe following expression was obtained:

-1
oo 2 2
ksgbm = ksbare [1 + w En * Yn J (6.4)

Sgbm n=12 }\.n tanh(kn Sgbm /W)
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where the parameters Ap, En and yp were defined in Chapter 4 (equation 4.10). Values
representative of glomerular capillaries in normal rats are W = 360 nm, 8gbm = 200 nm,
and Nf = 3 fenestrae per unit cell (Drumond and Deen, 1994a). For these inputs, it was
found that ks8bm = kbarey 33,

We also compared results for ks85M given by four different sets of boundary
conditions, using a Galerkin finite elements method in each case, with a total of 1600
elements. At each interface (i.e., with the endothelial fenestrae or the epithelial filtration
slit), either the concentration or the flux was kept constant, and calculations were done for
solute radii ranging from 20 to 70 A. We found that the dependence of kg85™ on the type
of boundary conditions was not significant. The maximum difference between the estimates
of ks&PM was 9%, and it was always less than 6.2% when results for constant flux and

constant concentration boundary conditions were compared.

Using the concept of resistances in series, the individual permeabilities for the intact

capillary wall are related by:
1 I 1
= + 6.5
kswall ksgbm kscells (6.5)

where ksCells represents the combined contribution of the two cells layers. As will be
discussed, we assume that ks€ells is determined almost entirely by the epithelial slit
diaphragm. The calculated values of ks85™ and kgCells are shown in Table 6-1. Even with
the correction factor 2.33 embedded in ks8DM, the cells still offered the greater resistance to
diffusion. Nonetheless, the diffusional resistance of the GBM was not negligible. As
shown in Figure 6-3, the relative contribution of the GBM to the overall diffusional

resistance increased with molecular size, from 13% at rg = 3.0 nm to 26% at rg = 6.2 nm.
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Figure 6-3

Relative resistance of the GBM and the epithelial layer to macromolecular diffusion across
the glomerular capillary wall.
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For diffusion through a simple aqueous layer, the permeability will vary in
proportion to the solute diffusivity in dilute bulk solution (D, ), so that ks/D, will be
constant for all molecular sizes. As shown in Table 6-2, ksbafe/Dm was found to decrease
with increasing molecular size, confirming that the GBM offers size-dependent hindrances

to diffusion. The cellular contribution to the permeability depended somewhat less strongly

on molecular size than did that for GBM. That is, ks¢€lls/D _ declined by a factor ~ 5 over
the range of molecular sizes studied, whereas ksbare/ D, (or ksgbm/ D, ) decreased by a
factor ~ 10. Consequently, the GBM resistance became a greater fraction of the total for

larger molecular sizes, as already noted.

A more detailed examination of the factors which determine the permeability of the

GBM reveals that:

ke o OD _ OKyD., 6.6)
8gbm 8gbm

where @ and D are the partition coefficient and diffusivity of the solute, respectively, in the
GBM and 5gbm is the GBM thickness. The partition coefficient is defined here as the
volume-average solute concentration in the GBM divided by that in external solution, at
equilibrium. The apparent diffusivity of a solute in the GBM, relative to that of an
equivalent layer of water, is given by the factor ®K(, where K4 = D/D ., . Values of ®K(
were calculated from ksPar€ and D, by assuming a typical GBM thickness in the rat of
5gbm = 200 nm (Daniels et al, 1993). The results are shown in Table 6-2. Whereas ®K{ =
1 corresponds to no steric or diffusional hindrances, the actual values in the GBM are
roughly 10-2 to 10-3. These low values indicate that the GBM does indeed represent a
substantial barrier to diffusion. The results for ®K{ are represented well by the empirical

formula,

P Ky = 0.1045 exp (-0.7302 ry) 6.7)
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where rg is in nm. This expression should be used only within or near the range of
molecular radii studied, 3.0 £ rg £ 6.2 nm.

This study provides the first direct measurements of the diffusional permeabilities
of isolateu glomerular capillaries to well-characterized macromolecules of varying size. In
the previous applicatior of our confocal microscopy technique, the diffusion data were
limited to a single dextran fraction (Daniels et al., 1993). In addition to covering a wide
range of molecular sizes, the Ficoll fractions used here as test macromolecules offered two
advantages: they were relatively monodisperse, and it has been shown that Ficoll (unlike
dextran) diffuses through small pores at the rates expected for ideal, neutral spheres
(Davidson and Deen, 1998). Thus, a more definitive characterization of size-dependent

restriction was possible. For any given size of Ficoll, a comparison of the permeabilities of

Table 6-2
Size-dependeat hindrances to diffusion in the GBM and the cell layers
rg (nm) Doo kgbare gbm/p_ | kecells /D, DKy
(cm2/s) (cm'l) (cm'l)

3.0 8.52x10-7 596 + 36 38+ 3 1.19x10-2
3.8 6.79x10-7 315+ 37 25+3 6.30x10-3
4.8 5.36x10-7 151 + 14 23%5 3.03x10-3
6.2 4.14x10-7 5719 842 1.13x10-3

Results are given as mean 1 SE. The values of ®K{ are based on data for bare GBM.
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intact and acellular glomerular capillary loops showed that the cell layers offered the
dominant resistance to diffusion. This is in keeping with the conclusion reached in the
previous study with dextran (Daniels et al., 1993). Although the GBM was calculated to
offer an average of only about 20% of the diffusional resistance of the intact capillary wall,
it is by no means a negligible part of the barrier. Indeed, bare GBM was found to have a
diffusional permeability ranging from 10-2 to 10-3 times that of a layer of water of the
same thickness, depending on molecular size.

It has been shown that for a given Stokes-Einstein radius (rs), dextran diffuses
more readily than Ficoll through synthetic membranes (Davidson and Deen, 1988),
suggesting that such a difference may occur also in GBM and other biological structures.
Consistent with this supposition is that the glomerular sieving coefficient (filtrate-to-plasma
coacentration ratio) for dextran in vivo has been found to exceed that for Ficoll of the same
rs (Oliver et al., 1992). Steric, hydrodynamic, and other factors which may cause ®K{ to
depend on molecular configuration as well as molecular size are discussed by Davidson and
Deen (1988). The dextran fraction employed previously had a weight-average molecular
weight of 70,000, corresponding to an average rs of 6.4 nm, and its permeability in
acellular glomeruli (ksbare) was found to be 1.6x10-5 cm.s-1 (Daniels et al., 1993). A
modest extrapolation of the present data for Ficoll, using equation (6.7), gives kgbare =
2.0x10-3 cm.s-1 for rg = 6.4 nm, or ~ 25 % higher than the value for dextran. However,
these numbers may not reflect the actual difference between dexiran and Ficoll, since the
dextran sample is likely to have been much more polydisperse than the Ficoll fractions used
here, which would have led to an underestimate of the true value of ksPar€ for a 6.4 nm
dextran. Because the smaller molecules in a mixture reach diffusional equilibrium first, any
delay in data acquisition (e.g., the ~ 120 s delay in acquiring fluorescence data by confocal
microscopy) will cause the measured permeability to be more representative of the larger

molecules in the mixture; a more quantitative discussion of this effect in given by Davidson
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and Deen (1988). It is therefore not possible to conclude from these results whether dextran
diffuses faster than Ficell in GBM.

The permeability properties of GBM are discussed in more detail in Chapter 7,
where additional data are presented concerning the hydraulic permeability and the size-
dependence hindrances to convective movement of macromolecules through this structure.
In the remainder of the present chapter, we focus on the cellular contribution to the
diffusional resistance of the glomerular capillary wall, in an effort to elucidate the specific

structures which might be responsible for that part of the resistance.

6.4 Difiusional Permeability of the Epithelial Slit

The slit diaphragm, which spans the filtration slits formed by the spaces between
the epithelial foot processes, has been shown to have a fibrous structure which makes it a
likely candidate to present the major part of the cellular resistance. As described in Chapter
2, two possible structures have been suggested, a "zipper" and a "ladder" configuration.
Although the two structures differ in detail, they share the important feature that permeating
molecules must pass through a single row of cylindrical fibers, in which the smallest
dimension of the opening is the distance between adjacent cylinders. We wished to explore
the hypothesis that the slit diaphragm accounts for essentially all of the cellular part of the
diffusional resistance, just as it has been shown to account for virtually all the of the
cellular resistance of the glomerular filtration of water (Drumond and Deen, 1994a). This
hypothesis assumes that the diffusional resistance of the endothelial fenestrae is equivalent,
at most, to that of a slight increase in the thickness of the GBM.

To describe the diffusion of macromolecules through the filtratior: slit and slit
diaphragm, we adapted the hydrodynamic model used by Drumond and Deen (1995) to
describe convective movement of macromolecules through these structures. The mode!

used here for diffusion estimated the increased hydrodynamic drag, and the consequent
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reduction in the local mobility or diffusivity, which is experienced by a spherical
macromolecule moving through a single row of closely spaced cylinders. To simplify the

computations, only the ladder geometry was considered. The primary geometric parameters

were the solute radius (rs), the radius of the cylinders which constitute the slit diaphragm
(rc) and the center-to-center spacing of the cylinders (2Lg). As described in Chapter 4, a
more useful measure of cylinder spacing is the opening half-width, u = Lg - rc. As also
discussed earlier, the spacing of the slit diaphragm is not uniform. Ficoll macromolecules
of approximately 12 nm in diameter (i.e., 6.2 nm Stokes-Einstein radius) were found here
to diffuse across the intact glomerular capillary wall, and even larger Ficolls appear in the
urine of normal rats (Oliver et al., 1992). As already mentioned, previous structural,
hydrodynamic, and diffusion data suggest that Ficoll closely resembles a rigid sphere
(Davidson and Deen, 1988). Thus, the transmural passage of these large Ficoll molecules
is plainly inconsistent with uniform openings in the slit diaphragm of 4x14 nm, as in the
zipper structure. In particular, suppose that the hydraulic permeability of the slit diaphragm
is equal to that predicted for the zipper structure (i.., 7.9x10-8 m.s-1.Pa-1, Drumond and
Deen, 1994b). To achieve that same hydraulic permeability with the ladder structure,
assuming uniformly spaced cylinders with r¢ = 2 nin, the required opening between the
cylinders (corresponding to the quantity 2u) is only 2.4 nm. Such small openings would
preclude the passage of rigid spheres of even 2 nm in radius, again in clear contradiction
with experimental findings. For the reasons just described, we assumed that in the slit
diaphragm there is a distribution of gap haf-widths, u. A lognormal distribution was used,
characterized by 2 mean spacing u and a parameter which describes the variance of the
spacing (s). As described in Chapter 4, the hydraulic permeability of the slit was fixed at
the value given above, so that only one of these parameters could be varied independently.
The independent parameter in the lognormal distribution was chosen as s, and the slit

diaphragm structure was characterized by r¢, s and the hydraulic permeability.
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6.4.1 Epithelial Slit Diaphragm

The slit diaphragm was treated separately from the channel, as justified below. The
key aspect of the diffusional problem for the slit diaphragm is that hydrodynamic
interactions with the cylinders cause the diffusivity of a spherical macromolecule to depend
on both its position and its direction of movement. Accordingly, the scalar diffusivity
D, must be replaced by a position-dependent tensor. Using the dimensioniess tensor d
computed by Drumond and Deen (1995), which is defined such that the diffusivity is given

by dD,, , the steady concentration field is governed by:

Ve(deVC) =0 (6.8)

Equation (6.8), subject to the boundary conditions stated below, was solved using a

Galerkin finite element method with quadrilateral elements and bilinear basis functions.

With references to the coordinates shown in Figure 6-4, the boundary conditions used

were:
e,e(deVC) = -Jy/D,, atz = -oo (6.9a)
C=Cp atz > +oo (6.9b)
e, o(deVC) = aty=0andy=Lg (6.9¢)
ey o (deVC) = 0 at r = re+fs (6.9d)

where e€j is a unit vector directed along coordinate j. Equation (6.9a) specifies a constant
flux Jo far upstream from the cylinders and equation (6.9b) sets a constant concentration
Co far downstream. It was found that z = + 15 Lg was large enough to approximate * o in
all cases. That is, applying the upstream and downstream conditions farther away had a

negligible effect on the results. Equations (6.9c) and (6.9d) state that the solute flux normal
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Figure 6-4
Schematic representation of the slit diaphragm. The arrow indicates the direction of
diffusion.

| 123



to the boundary of the domain is zero at the symmetry planes and where a sphere contacts a
cylinder.
The permeability for a row of uniformly spaced cylinders, ksCY}, was defined as:

ke = 0 (6.10)
(AC)ey

where (AC).y; is the concentration drop in the z-direction above that corresponding to a

uniform flux Jp and a constant diffusivity D,,. The results for various combinations of the
geometric parameters were correlated in terms of the dimensionless mass transfer

coefficient, or Sherwocd number, defined by:

kY 1
D

Sh = (6.11)

The Sherwood number could be expressed as a function of only two dimensionless

quantities, r. /L andr./u, where u = Lg - rc. For convenience in other calculations, the

results were fitted by an empirical formula:

AlL- (5 /w)BL1 - (5 /LIS (5 /L )P

Sh =
1 +(r,/u)B (. /L)F

(6.12)

which was chosen to give the correct limit of Sh - 0 for r,/lu— 1 or r,/L; = 1.

Results were obtained for 0.1 < r, /u < 0.95, and 0.1 < r. /L < 0.9, for a total of 306

values of Sh. Powell's method (Press et al., 1989) was used to find the constants in
equation (6.12), giving A = 0.111, B =0.795, C = 1.138, D = 0.080, E = -0.883, and F
= 3.731. Equation (6.12) represented the numerical results very accurately, the root-mean-

square error being only 3.9 %.
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As mentioned above, non-uniformities in the structure of the slit diaphragm were
modeled by assumed a lognormal distribution of cylinder spacings. To determine the
average permeability for the slit diaphragm, ksS4, the results were integrated over the

distribution. The average permeability for a given solute size was calculated as:

[ sh() @, +u) gu) du
Sl Y (6.13)
D.. o
I(rc +u) g(u) du
0

The weighting factor Lg = rc+u, comes from the fact that the solute flux must be
integrated over the total cross-sectional area of the slit diaphragm; the area of a single unit
(pair of adjacent cylinders) is proportional to Lg. The integrals in equation (6.13) were

evaluated numerically vsing Romberg's mathod (Press et al., 1989).

To justify the assumption that the slit diaphragm and the slit channel can be treated
separately, that is, as resistances in series, we first verified that the concentration in the slit
becomes almost con.tant in the direction normal to diffusion at a short distance after the
diaphragm. In the coorainate system shown in Figure 6-4, the maximum variation of the
solute concentration in the v-direction was determined to be less than 1% at a distance
greater or equal to 2(rc+rg) from the cylinders. In addition, we found that the gradient of
solute concentration in the z-direction becomes uniform relatively soon after the cylinders.
The distance afier which it varies by less than 1% is approximately 10(r¢+rg) for the entire
parameter range; however, that distance is much shorter when the cylinder and the solute
radii are of comparable size. In the worst case, with a cylinder radius of 4 nm and a solute
radius of 6 nm, the gradient varies by less than 5 % at a distance of 5(rc+rs) from the

cylinders, or 50 nm, i.e., less than half the slit channel length (see below). Assuming that
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the diaphragm in the slit can be treated separately from the rest of the channel therefore

appears reasonable.

6.4.2 Epithelial Slit Channe!

The filtration slit between two adjacent podocytes was modeled as a channel
bounded by flat, parallel walls, with a half-width h and length H. Electron micrographs
indicate that, in reality, the slit generally tapers outward as one moves away from the
basement membrane, as shown in Figure 6-5. That is, the half-width is smaller a¢ the
upstream end (hmin) than at the downstream end (hmax). To simplify the model for the
slit, we replaced the tapered channel by a parallel-wall channel which had an equivalent
diffusional permeability. This was done by setting h = hppin, and computing the value of H
which gave equivalent results to those for a channel where the half-width varies linearly
from hmin to hmax over an actual length Hg. A consequence of choosing h = hppip is that
H < Hyp.

The diffusional permeability of a tapered channel was computed by solving
equation (6.3) with a constant flux at the upstream end, a constant concentration at the
downstream end, and no flux normal to the walls. The Galerkin finite element method was
used, with quadrilateral elements and bilinear basis functions. Results were obtained for
hmin = 20 nm, 60 < hmax < 110 nm, and 200 < Hg < 400 nm, corresponding to
approximate ranges of values determined form electron micrographs. To confirm the
validity of our calculations, the results were compared to the analyticai lution in the limit
of slow tapering, i.e., when (hpay - Brin)/Bmin << 1. In that limit, a regular perturbation

method can be used to find the concentration profile in the channel, given the boundary

conditions stated above. Let € = (hjp,y - hpin )/Rmin - It can be shown that:
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We found an excellent agreement between the analytical results and the FEM solution for €

<0.1. The two methods yielded values of Hp which were equal up to 3 digits. The results

for all cases were then fitted to the expression:

c b
H _ ('_‘m) exp a[hmax ] 1) (6.15)
Hy Bmin hmin

which ensures that H/Hy — 1as hp,, /hpin — 1. Using Powell's method (Press et

al, 1989), the best-fit values for the constants were found to be a = - 0.7010, b = 0.6511

and ¢ = - 0.4426. The root-mean-square error for 121 cases was 0.8%. Choosing hmax =
90 nm and HQ = 300 nm as most representative of the actua® shape, equations (6.15) gives
H =132 nm.

Hindered diffusion of a macromolecule through a parallel-plate channel has been

analyzed by Pawar and Anderson (1993). Their result for the diffusivity, denoted here as

Dsc. is:

% =1+ %Mnk - 1.19358 + 0.15931723 + 0\ (6.16)

with A = r/h. This is the apparent diffusivity based on concentration difference between

bulk solutions at the ends of the channel; that is, it includes the effects of steric partitioning
between the channel and external solutions. For h = 20 nm and the range of Ficoll sizes

used here, 0.15 < A £ 0.31, so that 0.43 < Dg¢/D,, < 0.66.

128



Using equation (6.16), the permeability of the slit channel is given by:

D
kS = —=£ 6.17

6.5 Discussion

We first examined the theoretical effects on ksCells of varying r¢ and s, with the
hydraulic permeability of the slit diaphragm fixed. Resuits are given in Figure 6-6 for rc =
2 or 4 nm, and s ranging from 1.5 to 2.0. All of the curves in this semilogarithmic plot are
roughly linear. In response to selective increases in either r¢ or s, the slopes decrease and
the absolute values of ksCells increase. Also shown in Figure 6-6 are the measured values
of kgcells, Although the data are within the overall range of the theoretival curves, it is seen
that for parameters combinations which give the correct order of magnitude for ksCells, the
slopes predicted by the hindered diffusion model are much too large. In other words, the
data show much less size-selectiviy than is expected for a structure with the hydraulic
permeability that has been inferred for the slit diaphragm.

A possible explanation fo: the discrepancy between the predicted and the measured
values of ksCells is that, in addition to a continuous distribution of cylinder spacings, there
were defects in the slit diaphragm consisting of areas of missing cylinders. That is, the
ladders might have had missing rungs. To test this hypothesis, it was assumed that the
fractional area of the slit occupied by the defects was f, so that the fractional area containing

a distribution of cylinders was 1-f. Thus the cellular permeability was given by:

kool = ke = g, [ (1-0(1/k + 1) + £k 6.18)

where k¢S4 and kgSC are the permeabilities of the slit diaphragm and slit channel,

respectively, based on the cross-sectional area of a single filtration slit. The factor €g, the
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Figure 6-6

Measured values and theoretical predictions of the mass transfer coefficient for the cells,
assuming that all filtration slit diaphragms are either intact or entirely absent. The measured
values of ksC€lls are shown as mean + SE. Resuits are shown for two values of the slit
diaphragm cylinder radius, r¢c = 2 and 4 nm, with the parameter s of the cylinder spacing
distribution varying between 1.5 and 2.0.
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fraction of the basement membrane area in contact with filtration slits, is needed because
ksCells and the epithelial permeability k<P are based on total surface area tather than slit
area. It is seen that if the slit diaphragm is assumed to be absent (i.e., f = 1), the diffusional
permeability of the slit will equal that of the open channel. As shown by the curve in Figure
6-6 labeled "no slit diaphragm", ksCIS in this case would have a smaller slope, and much
larger absolute values, than the experimental data. Thus, it appears that a very small value
of f shoud be sufficient to account for the experimental results.

To determine the values of rc, s and f which provided the best fits to the data for

ksCells, we minimized the error given by:

4 2
2 = Z(ln(Yi/zi)J (6.19)

i1 lnGi

where y; and zj are the measured and calculated values of kCells, respectively, for Ficoll
fraction i, and oj is the standard deviation of yj. Logarithms were employed in the sum of
squares because of the wide range of kscells. Powell's method (Press et al., 1989) was
used for the nonlinear parameter estimation. Preliminary calculations revealed that small
values of r¢ (<< 1 nm) tended to give the best fits to the permeability data. However, as
discussed by Drumond and Deen (1995), values of r¢c < ~ 2 nm are inconsistent with the
range of slit diaphragm thicknesses estimated from electron micrographs in several
published studies. For example, the bridge fibers reported by Rodewald and Karnovsly
(1974) have a radius of 3.5 nm. Accordingly, we chose to fix r¢ at either 1.0, 2.0 or 4.0
nm. Fits were performed by allowing s to vary with f = 0, or by allowing both s and f to
vary.

The parameters values calculated for the slit diaphragm are shown in Table 6-3. As

expected, allowing f to be non-zero provided much better fits to the data. This was true for

either choice of r¢, as shown by the values of 12 in Table 6-3 and by the plots of ksC€lls jn
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Figure 6-7. Based on a F-test (Motulsky and Ransnas, 1987), the improvements in the fits
to the data with f # 0 were greater than what could have been expected by increasing the
number of adjustable parameters from 1 to 2. With or without the postulated defect in the
slit diaphragm, the model predictions for r¢ values of 1.0, 2.0 and 4.0 nm were quite
similar. For all cases, the best fit value of f was ~ 0.002. That is, the area occupied by the
postulated defects is inferred to be very small, only ~ 0.2% of the slit area.

An important feature of the present experiments is that the fluorescent
measurements were so localized that any one permeability determination was affected by a
very small number of slits. A critical examination of the slit diaphragm model requires
some consideration of the anatomical implications of the best-fit parameter values. The
filtration slits extend around the circumference of the capillaries, the slit diaphragm being
located typically at a diameter of ~ 8 pum. Accordingly, the total length of a single, idealized
slit diaphragm is ~ 25 um. The average center-to-center distance between the cylindrical
fibers is 2(E+rc), so that taking rc = 2 nm, and u=1nmasan example (Table 6-3), the
length occupied by the average unit is 6 nm. Thus, the number of openings in one slit
diaphragm is calculated to be extremely large, (25um)/(6nm) = 4x103. This justifies the
use of a continuous (e.g., lognormal) probability distribution for the cylinder spacings in
the model. With f = 0.062, the length of the perimeter occupied by defects is only
0.002x25um = 50 nm, a space equivalent to that needed by ~ 8 average units. This
emphasizes how tiny a defect is needed to significantly reduce the slope of a plot of ksCells
versus rs. Similar conclusions are reached with r¢ = 1 or 4 nm. Given the consistency of
the permeability results from one experiment to another, it appears that the same structural
features were present, to only a slightly varying degree, in the slit diaphragms of all the
regions examined. The value of f = 0.002 cannot be explained, for example, by postulating
that two of every thousand slit diaphragms were completely absent.

Molecular charge has been shown to be an important determinant of the selectivity

of the glomerular barrier to macromolecules, the passage of negatively charged molecules
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being normally more restricted that that of neutral molecules of similar size and chemical
structure (Farquhar et al., 1961; Rennke et al., 1975; Bray and Robinson, 1984; Kanwar,
1984). Although the GBM was found to offer less resistance than the cells to diffusion of
neutral macromolecules, it remain possible that the GBM is a more prominent part of the
barrier to anionic macromolecules. Future studies are needed to characterize the charge-
selectivity of the GBM in diffusion.

In summary, we measured the diffusional permeability of intact and acellular
glomerular capillaries to Ficoll of varying molecular size. The cellular part of the resistance
to diffusion, which we attribute largely to the epithelial slit diaphragm, was found to greatly
exceed that of the GBM. A novel hydrodynamical model was developed to relate the
cellular part of the diffusional resistance to proposed structures for the slit diaphragm. The
data were most consistent with a ladder-like structure having a broad distribution of rung

spacings, together with occasional regions devoid of rungs.
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Table 6-3

Parameters values calculated for the slit diaphragm

I (nm) 1.0 1.0 2.0 2.0 4.0 4.0
s 2.20 1.82 1.89 1.53 1.63 1.30
f 0 0.0020 0 0.0026 0 0.0028
umm) | 040 0.55 0.75 0.98 1.33 1.62
x3x102 | 0.56 0.16 1.09 0.19 2.15 0.22

rc corresponds to the cylinder radius in the slit diaphragm, s and u are the parameters

characterizing the lognormal distribution of cylinder spacings, and f is the fraction of the
epithelial surface which is denuded of diaphragms.
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Figure 6-7

Measured values and theoretical predictions of the mass transfer coefficient for the cells,

assuming that a small fraction of the filtration slit diaphragms were removed. The measured
values of ksC¢lls are shown as mean + SE. The calculated values were obtained by

assuming a cylinder radius of 1, 2 or 4 nm, and determining the parameters s and f that best
fitted the data.
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Chapter Seven

Filiration of Macromolecules across Isolated Glomerular Basement

Membrane

7.1 Introduction

In this chapter, we further investigated the permselective properties of the
glomerular basement membrane. The filtration of Ficoll across isolated GBM was studied
using a technique developed by Daniels et al. (1992, 1993). Fragments of acellular
glomeruli were packed in a filtration cell to form a homogeneous membrane across which
test macromolecules were then filtered under applied pressure. Measurements of sieving
were obtained with dextran in earlier experiments (Daniels et al., 1993), but the non-ideal
behavior of that tracer has made it difficult to interpret the results quantitatively. The
objective of our study was to apply that technique to Ficoll, which more nearly resemble
ideal solid spheres (Davidson and Deen, 1988; Oliver et al., 1992), and to interpret the data
using results of Chapter 6.

In the absence of a complete description of its ultrastructure, the GBM is treated as
a random fiber network. In this isotropic medium, the flux J5 of a macromolecule is the

sum of two terms, a diffusive and 4 convective component, respectively:

Jg = -K4D..VC + K .1, C (7.1)

Jy is the local solvent flux, C is the solute concentration, D, is the diffusivity of the solute
in dilute bulk solution, and V the gradient differential operator. K4 and K. are the
hindrance coefficients for diffusion and convection, respectively, which account for the fact

that the presence of fibers restricts solute diffusion and convection by means of steric
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obstruction and hydrodynamical interactions. Assumed to be independent of position in an
isotropic medium, these factors depend upon pressure, molecular size and membrane

structure. Because of the boundary conditions, the relevant quantities are in actuality the

products ®K4 and @K, where ® is the partition coefficient of the macromolecule in the
GBM. We determined empirically ®Kj in isolated GBM as described in Chapter 6, and the
present experiments were designed to obtain @K, as a function of the hydraulic pressure
difference across the membrane (AP) and solute radius (rs).

In the filtration cell, solvent and solute fluxes across the GBM membrane are
assumed to be one-dimensional. At . :ady-state J, and Js are constant, and equation (7.1)
can be integrated to determine the concentration profile of the solute, using the ultrafiltration
boundary condition J; = Cg J,,, where Cr is the solute concentration in the filtrate. The
solute concentration is dependent on the Peclet number, Pe, which expresses the relative

importance of convective to diffusive forces acting on the macromolecule:

®K J, L
® K, D..

Pe = (7.2)

where L is the membrane thickness.

The true membrane sieving coefficient (©) of a macromolecule is defined as:

Sk
Cm

o = (7.3)

where Cy is the solute concentration on the retentate side immediately adjacent to the

membrane surface. It can be shown that:

DK,
1 - (1-®K,)exp(-Pe)

(7.4)
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To illustrate the dependence of sieving coefficients vn the Peclet number, changes

in © with the flow rate Jy for an ideal case are plotted on Figure 7-1. Although these curves
were obtained assuming that the membrane is perforated by a homogeneous population of
pores, in which case ®Ky and ®K. can be readily computed using available theories for
porous media, similar qualitative trends are expected in the GBM. As shown in Figure 7-1,
the sieving coefficient of a macromolecule of given radius decreases when Jy increases,
since the solute flux rises less than the solvent flux due to its diffusive component.
Moreover, the decrease in © is more pronounced for smaller macromolecules, diffusion
playing a lesser part as the size of the solute becomes large. Figure 7-1 thus illustrates the
theoretical effect of pressure (or flow rate) on the permselective properties of the
membrane, which we studied experimentally by measuring sieving coefficients across

isolated GBM at two different values of AP, 35 and 60 mmHg, respectively.

7.2 Methods

Preparation of Acellular Glomeruli
The experimental procedures were as described in Chapter 6.

Filtration Cell

The GBM fragments were consolidated in a modified mini-ultrafiltratior: cell (model
3; Amicon, Beverly, MA) as described previously (Daniels et al., 1993). Briefly, 150 pm
GBM suspended in Krebs HCOj3 buffer (pH 7.4) were added to the cell. Stirring was
initiated, and 1,500 mmHg of pressure, generated with compressed air, was applied for 1 h
to pack the GBM into a homogeneous layer. The GBM then formed at the base of the cell a
filter which was uniform, as assessed by light microscopy, and impermeant to 1,000,000
MW blue dextran. After consolidation, the buffer was removed and replaced with identical

buffer containing 4 g/dl bovine serum albumin (BSA). Filtration studies were performed at
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Figure 7-1

Predicted efffects of changes in the flow rate (Jy) on sieving coefficients (®) across a

membrane perforated by uniform pores (60 A in radius). The flow rate was increased from
0.75x10-7 m/s to 3x10-7 my/s.
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27°C, with an applied pressure of either 35 or 60 mmHg. The stirring rate was 220 RPM.
After a 10-min equilibration period, the filtrate was collected for an hour, and the water flux
and fractional clearance of albumin were calculated. The retentate was sampled at the start

and completion of the collection period.

Ficoll Sieving

Four narrow fractions and a polydisperse sample of Ficoll were obtained from
Pharmacia LKB (Piscataway, NJ), and labelled with DTAF (dichlorotryazinyl amino
fluorescein, Sigma Chemical Co., St. Louis, MO) using a procedure described by De
Belder and Granath (1973). Samples were purified from unreacted label using desalting
columns (Bio-Rad, Hercules, CA) and freeze-dried until used. The number of fluorescein
molecules per Ficoll molecule was estimated to be less than 3, and the added charged
components were assumed to have a negligible effect.

Polydisperse fluorescein-labelled Ficoll (0.05 g/dl) was added to the filtration cell,
and after a 10-min equilibration period, the filtrate was collected throughout a 1 h clearance
period.

Ficoll Separation

Filtrate and retentate were subjected to gel permeation chromatography. GPC
columns of 2.6 cm diameter (Model C 26/100, Pharmacia Fine Chemicals, Piscataway,
NIJ) were packed with Sephacryl S-300 HR (Pharmacia). The eluent buffer was 0.05 M
ammonium acetate at pH 7.0. Continuous Ficoll elution curves were determined by
fluorescent light spectrophotometry (spectrofluorometric detector model RF-551,
Shimadzu, Columbia, MD). The void volume of the column was determined by the elution
of fluorescent isothiocyanate dextran (FITC-dextran, 2,000,000 MW, Sigma); the elution

volume of four narrow fractions of fluorescein-labelled Ficoll of known Stokes-Einstein
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radius (rg = 30.3, 38.0, 48.2 and 62.3 A, respectively) was also measured, and the GPC

columns were thus calibrated.

Morphometry

The thickness of the GBM layer was determined after completion of the filtration
study by use of standard morphometric techniques, as described previously (Daniels et al.,
1992).

Statistics

Results are means + SE except where noted.

Calculations

Due to concentration polarization, the solute concentration in the bulk retentate, Cg,

is smaller than Cy, and the measured sieving coefficient (®') is larger than the true
membrane sieving coefficient, as described in Chapter 5. The relationship between © and

©' was derived earlier and is repeated here:

o

= , ; (7.5)
(1-©)B +0©
where B, the polarization factor, is related to the mass transfer coefficient kg by :
B= exp (J,/k) (7.6)

The mass transfer coefficient ks was determined experimentally as described in Chapter 5.
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The tissue isolation and the sampling of Ficoll were performed in the laboratory of
Dr. Barbara S. Daniels at the University of Minnesota, while the chromatography studies
were done by us at MIT.

7.3 Resuits

7.3.1 Darcy Permesability of the GBM

Membrane thickness (L) was measured in our study after completion of the
experiment, when the membrane was no longer under applied pressure. To account for the
change in thickness due to compression, we used experimental results obtained by Walton
et al. (1992). Reported in their study were measurements of L under a wide range of
pressure conditions, from which we derived a relationship between the deformation of the
GBM membrane and the applied pressure. It was thus estimated that L/Lg , where Ly is the
membrane thickness under a0 compression, is equal to 0.939 at 35 mmHg and 0.896 at 60
mmHg.

The hydraulic permeability Ly of the membrane was determined for each run, based
on equation (5.9). Both AP and J, were measured; the reflection coefficient G, and the
oncotic pressure difference Ally, were calculated knowing the measured sicving coefficient

of albumin and its concentration in the bulk retentate (4 g/dl). The Darcy permeability of the

membrane is then given by:

Kparcy = RLL, 1.7
where L is the viscosity of the solvent at 27°C, taken to be that of water. The average Darcy
permeability was found to be equal to 1.48 + 0.10 nm2 (n = 6) at 35 mmHg, and 0.82 +

0.07 nm? (n = 6) at 60 mmHg. The results are summarized in Table 7-1.
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Table 7-1

Experimental values of flow rates and permeabilities

AP = 35 mmHg AP = 60 mmHg
Jy (x10-7 m/s) 6.26 + 0.44 9.34 + 0.38
Lo (um) 1.77 £ 0.69 6.02 + 0.49
L (um) 7.29 £ 0.65 5.42 £ 0.44
Lp (x10-8 m/s/mmHg) 3.29 £ 0.29 2.37+0.13
[ Kparey (nm2) 1.48 + 0.10 0.82 + 0.07

Results are given as mean + SE. The number of experiments was 6 for each value of AP.

7.3.2 Sieving Curves

Filtration experiments were performed at two different pressures in random order,
35 and 60 mmHg; the averaged measured sieving coefficients are given in Table 7-2, and
the calculated ones are shown in Table 7-3 and plotted in Figure 7-2. The curves
correspond to theoretical predictions and are described below. The sieving coefficient of
Ficoll decreases with increasing solute radius, due to the size-selectivity of the glomerular
basement membrane. In addition, as expected, the sieving curve is shifted upwards when
the pressure difference applied across the membrane is decreased from 60 to 35 mmHg.
However, this shift is not due to a significant change in Pe, as opposed to Figure 7-1,
Indeed the average product J,L is equal to 5.05 + 0. 41 (x10-6 m2.5-1) for AP = 60 mmHg,
and 4.46 + 0.26 for AP = 35 mmHg. As the Darcy permeability results suggest, the
differences between the two curves arise from the fact that the permeability properties of the
membrane depend upon the hydraulic pressure difference. It should also be noted that

sieving coefficients do not decrease drastically as ry goes from 20 to 70 A: there is less than
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Ficoll measured sieving coefficients for isolated glomerular basement membrane

Table 7-2

\

15 (A) ©' (AP = 35 mmHg) ©' (AP = 60 mmHg)
20 9.46x10°1+2.56x10-2 6.85x10-1+2.46x10-2
22 9.12x10-142.59x10-2 6.29x10-1+1.81x10-2
24 8.43x10-1+2.45x10-2 5.72x10°1+1.72x10-2
26 7.52x10-1+2.22x10-2 5.17x10-1£1.95x10-2
28 6.56x10-14+2.18x10-2 4.59x10-1+2.21x10-2
30 5.62x10-142,18x10-2 4.04x10-14+2.35x10-2
32 4.76x10-1£2.09x10-2 3.53x10-1+2.31x10-2
34 4.00x10-142,02x10-2 3.05x10-142.20x10-2
36 3.35x10-1+1.93x10-2 2.66x10-142.09x10-2
38 2.61x10-1+1.81x10-2 2.12x10-1+1.89x10-2
40 2.23x10-1+1.71x10-2 1.82x10-1+1.78x10-2
42 1.89x10-1+1.54x10-2 1.56x10-1+1.65x10-2
44 1.63x10-1+1.42x10-2 1.35x10-1£1.56x10-2
46 1.39x10-1+1.30x10-2 1.16x10-1+1.41x10-2
48 1.22x10-14+1.23x10-2 1.02x10-14+1.37x10-2
50 1.01x10-1+1.13x10-2 8.55x10-2+1.27x10-2
52 9.07x10-2+1.06x10-2 7.71x10-2£1.22x10-2
54 8.23x10-2£1.04x10-2 6.99x10-2+1.17x10-2
56 7.76x10-2+1.04x10-2 6.47x10-2+1.14x10-2
58 6.81x10-249.51x10-3 5.97x10-2+1.12x10-2
60 6.58x10-249.47x10-3 5.63x10-2+1.14x10-2
62 6.06x10-249.58x10-3 5.13x10-2+1.11x10-2
64 5.80x10-249.59x10-3 4.85x10-2+1.12x10-2
66 5.67x10-2+9.85x10-3 4.70x10-2+1.12x10-2
68 5.46x10-249.45x10-3 4.52x10-2+1.09x10-2
70 5.29x10-249.61x10-3 4.26x10-2+1.03x10-2

Results are given as mean * SE. The number of experiments was 6 for each value of AP.
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Ficoll calculated sieving coefficients for isolated

Table 7-3

lomerular basement membrane

15 (A) © (AP = 35 mmHg) © (AP = 60 mmHg)
20 9.37x10-1+2.89x10-2 6.25x10-1+2.46x10-2
22 8.96x10-1+2.97x10-2 5.59x10-1+1.73x10-2
24 8.14x10-14+2.77x10-2 4.96x:0-1+1.64x10-2
26 7.10x10-1+2.41x10-2 4.36x10-1+1.85x10-2
28 6.03x10-142.29x10-2 3.76x10-1+2.03x10-2
30 5.03x10-14+2.20x10-2 3.22x10°142.07x10-2
32 4.15x10-142.02x10-2 2.74x10-1+1.96x10-2
34 3.39x10-14+1.86x10-2 2.30x10-1+1.79x10-2
36 2.78x10-1+1.70x10-2 1.95x10"1+1.64x10-2
38 2.11x10°1+1.53x10-2 1.51x10-1+1.40x10-2
40 1.77x10-1+1.40x10-2 1.26x10-1+1.27x10-2
42 1.48x10-1+1.23x10-2 1.06x10-1+1.14x10-2
44 1.25x10-1+1.13x10-2 8.94x10-2+1.05x10-2
46 1.05x10-1+1.02x10-2 7.52x10-249.29x10-3
48 9.11x10-249.56x10-3 6.53x10-248.82x10-3
50 7.44x10-248.72x10-3 5.35x10-248.04x10-3
52 6.61x10-248.09x10-3 4.74x10-2+7.58x10-3
54 5.93x10-247.83x10-3 4.23x10-247.14x10-3
56 5.56x10-2+8.09x10-3 3.86x10-246.91x10-3
58 4.82x10-2+7.19x10-3 3.51x10-246.71x10-3
60 4.62x10-247.06x103 3.26x10°246.79x10-3
62 4.22x10-247.07x10-3 2.93x10-246.47x10-3
64 4.01x10-246.99x10-3 2.75x10246.47x10-3
66 3.88x10-247.12x10-3 2.62x10-246.41x10-3
68 3.71x10-2+6.80x10-3 2.48x10-2+6.21x10-3
70 3.56x10-2+6.82x10-3 2.31x10-245.73x10-3

rResults are given as mean * SE. The number of experiments was 6 for each value of AP.
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Figure 7-2
Ficoll sieving coefficients for isolated GBM, for AP = 35 mmHg (filled circles) and 60
mmHg (open circles), respectively (n = 6 in both cases). Results are given as mean + SE.
The curves correspond to the theoretical predictions of the model, assuming a linear
dependence of the hindrance coefficients on AP.
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a two order of magnitude difference between the value of © at the extremes of molecular
radius.

In order to gain more insight into the specific role of the GBM in glomerular
filtration, we compared Ficoll sieving curves obtained for acellular glomeruli in vitro with
those obtained for intact glomeruli in vivo. In vivo rat sieving data analyzed in our
laboratory in a similar manner were provided by Oliver et al. (1992). To be fair, the
comparison has to be made on the basis of a constant product JyL, as appears in the Peclet
number (equation 7.2). We therefore adjusted our experimental curve for GBM at 35
mmHg by estimating the thickness of one layer of GBM as 200 nm (Daniels et al., 1992);
the value of the SNGFR in the study of Oliver et al (1992) was 49.8 nl/min, and a typical
value for the glomerular filtration surface area is 0.002cm?2 (Maddox et al., 1992), yielding
a flux Jy of 4.17 x10-6my/s. The resuits are shown in Figure 7-3. It should be noted that in
general, the overall sieving coefficient for the capillary wall is equal to the product of the
sieving coefficient for the GBM and that for the cell layers; it is not strictly the case here
since the flux across bare GBM is one-dimensional, as opposed to two-dimensional when
the GBM is lined by the endothelium and the epithelium. Nevertheless, for the purpose of
comparison, the sieving coefficient for the cell layers, @ceyis, can be roughly estimated as
the ratio of the overall @y, by OGaM. At 25 A, O is equal to 0.944 for GBM (adjusted
curve) and 0.074 for intact glomeruli, therefore ©jis ~ 0.08. At 65 A, © is about 60 times
larger in the GBM than in intact glomeruli (@ = 5.8x10-2 and 7.1x10-4, respectively),
yielding Ocejis ~ 1.2x10-2. Although the in vivo experiments were performed on a different
strain of animals (i.e., Munich-Wistar rats) and flux across the GRM was modified in the
absence of cells, these results seem to confirm the fact that the contribution of the cell layers
to the overall size-selectivity of the intact glomerular capillary wall is dominant throughout

the range of solute radii considered here, but that the role of the GBM is not negligible.

7.3.3 Hindrance Coefficients
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Figure 7-3
Ficoll sieving coefficients for in vitro GBM (n = 6) and in vivo glomerulus (n=9). For the
purpose of comparison with the in vivo glomerulus data, the in vitro GBM curve was
adjusted based on the values of solvent flux and membrane thickness characteristic of the in
vivo data.
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The product of the partition and the diffusional hindrance coefficients, ®Kg, was
determined for a zero transmembrane pressure in Chapter 6. The following empirical

relationship was obtained:

(@ Ky)p = 0.1045 exp (-0.07302 1, ) (1.8)

where the subcript "0" corresponds to AP = 0. To extrapolate the results to the present

conditions (AP = 35 and 60 mmHg), we assumed a linear depencdence of ®K4 on the
hydraulic pressure difference, i.e.:

(®Kadap _ ; _gap 7.9)
(PKg)o P (

This assumption was justified as described below. We assumed in addition that the product
@K depends on AP in the same manner:

(®Ko)ap _ (DKd)pp

=1 - AP 7.10
(PK¢)o (®K4)o P (719

For each solute size, the two unknowns f and (®K¢)o were then determined from the two
sieving curves, using the relationship between ©, ®K; and ®K4 (equation 7.4). Since the
dependence of the slope B on solute radius appeared to be very weak, we then considered
the assumption that B remains constant for all rs. The most consistent results were obtained
assuming that f = 0.0096 mmHg-!.

Plotted in Figure 7-4 are the products (#Kg)p and (PK)o as a function of solute
radius, with = 0.0096 mmHg-!- The partition coefficient ® is expected to decrease
significantly between 20 and 70 A, as size-exclusion effects become more important,

Nevertheless, as described below, ultrastructural studies of the GBM indicate that the
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Figure 7-4
Hindrance coefficients in the GBM as a function of macromolecular size. ® corresponds to

the partition coefficient, K. and K4 to the convective and diffusional hindrance coefficients,
respectively. The subscript "0" denotes zero pressure.
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spacings between the GBM fibers are quite large, and the partition coefficient should not
become infinitely small for that size-range. For the convective hindrance coefficient K,
which corresponds to the solute-to-solvent velocity ratio, the following behavior is
expected: because of their finite size, macromolecules can not sample flow regions near
solid boundaries where velocities are smaller, and small solutes are thus expected to move
slightly faster than the solvent (i.e., K; > 1). As the size of the particle increases however,
the hydrodynamic interactions with the fibers become predominant and K should start to
decrease, reaching zero when the particle is too large to pass through the medium. As
illustrated in Figure 7-4, these trends were confirmed by our results: (®PK,)gdecreases in a
monotonic manner with increasing molecular size, from values slightly above 1 for the
smallest solutes to values on the order of 5xi0-2 for the largest ones. The values of (PK.)o
for small solute radii are slightly above what we would expect. @ is always smaller than
unity, and the convective hindrance coefficient K¢ should not be greater than 1/(1 - ?),
where ¢ is the solid volume fraction in the GBM; assuming a value of ¢ as large as 0.2,
(PKc)o shouldn't exceed 1.25, whereas we obtained a value of 1.41 for rg = 20 A. The
reason for which we are slightly overpredicting (PKc)g is probably that our assumptions
based on linearity are oversimplified. We also examined the effect of assuming that the
slope of ®K4 versus AP was different than that of ®K_ versus AP, and found very similar
results; the difference between the two slopes was small, and the predicted values of
(PK,)o close to those obtained above.,

There is no avaiiable model predicting the convective hindrance coefficient in
random fibrous media. Phillips et al. (1990) applied generalized Taylor dispersion theory to
determine K, in square and checkered lattices of bead-and-string fibers, but their study is
limited to spatially periodic media, making any comparison with our results difficult.
Nevertheless, the trends appear to be qualitatively similar.

For convenience, an analytical relationship between (PK;)o and rs was found to

predict the data well:
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(PK.)g = 6.0240 exp (-0.07469 r; ) (7.11)

where r; is expressed in A. Shown in Figure 7-2 is a comparison between the experimental
sieving data and the theoretical curves obtained using the correlations we determined for
(®Kyg)o and (PK,)g, and assuming a linear dependence of these coefficients on AP as given
by equation (7.10) with B = 0.0096 mmHg-1. The total number of data points was 102,
and that of adiustable parameters only 3. The agreement between the measured and
calculated sieving coefficients is very good, and our assumption that ®K. and ®K; depend
linearly on AP with an identical slope appears to yield accurate results. Equation (7.4)
combined with the expressions (7.8-7.11) can therefore be used to predict © for GBM at

any pressure, given the flow rate J, and the membrane thickness L.

The Ficoll sieving data were then compared to dextran sieving data obtained in a
similar manner in a previous study (Daniels et al., 1993). Because the experiments with
dextran were performed at AP = 50 mmHg, we determined the Ficoll sieving coefficients
for that AP value as described above, i.e., based upon equations (7.4, 7.8-7.11) and the
values of J, and L given in the dextran study. The corresponding curves are shown in
Figure 7-5. As illustrated, the sieving coefficients were lower with Ficoll than with dextran
throughout the entire size range (rs < 60 A), confirming the results of previous studies
(Oliver et al, 1992). However, one should be cautious in making that comparison since the
value of the Darcy permeability in the dextran study was not measured, and there could

have been differences in the GBM filters from one study to the other.

7.4 Discussion
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Figure 7-5
De-..ran and Ficoll sieving coefficients for isclated GBM. For the purpose of comparison,
the Ficoll curve was extrapolated to AP = S0 mmHg assuming a linear dependence of ®K,
and ®K4 on AP, and using the values of solvent flux and membrane thickness obtained in

the dextran study.
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The goals of this study were to provide a biophysical interpretation of GBM permeability
data and to develop a model to predict sieving coefficienis in the GBM. In this section,
several fiber matrix models are discussed. We first compared the hindrance coefficients
predicted by these models with our results, and then interpreted the water permeability data

using two different approaches.

7.4.1 Comparison with Fiber Mairix Models

We compared our experimental results for ®Ky with theoretical predictions using a
recently developed theory for hindered diffusion in random fibrous media. As recently
suggested (Brady, 1994; Johnson et al., 1996), K4 can be expressed as the product of two
terms, one of which accounts for hydrodynamical interactions due to the presence of fibers,
the other for steric effects. The first term, referred to as K4, can be derived from
Brinkman's effective medium calculation of the viscous force exerted by a flowing fluid on

a spherical particle embedded in porous media (1947):

th = (712)

2
1 + I s

+
\[ KDarcy 3KDarcy

where Kparcy is the Darcy permeability of the medium. The second term, Kqs, takes
exclusively into consideration the geometry of the system, and was derived from
calculations made by Johansson and Loéfroth (1993), who performed Brownian dynamics
simulations of hard sphere diffusion in polymer networks of wormlike chains, neglecting
all hydrodynamical interactions. The following semi-empirical expression for K45 was

obtained:
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Kgs = exp{ - 0.84[o (1 + = )2 10 (7.13)
If

where rr is the fiber radius. Assuming that Kg = Kgn Kgs as given by equations
(7.12,7.13), Johnson et al. (1996) were able to predict well protein and Ficoll diffusion
data in agarose gels without any adjustable parameters.

The partition coefficient ® was computed using the expresssion derived by Ogston

(1958), based upon the distribution of spaces in a random network of fibers:

<b=exp[-¢*(1+;—5)2] (7.14)
f

where ¢* is the solid volume fraction occupied by the fibers, corrected to account for
overlap. Indeed, the calculations of Ogston (1958) are based upon a total length of fiber per
unit volume; in calculating the solid volume fraction, the space occupied by two

overlapping fibers should be counted only once.The relationship between the "corrected"

(¢*) and the "ur.corrected” (¢) solid volume fraction is given by:
0 = 1-exp(¢¥ (7.15)

The validity of equation (7.14) was recently confirmed by Booth and Lumsden (1993),
who calculated the void volume accessible to hard spheres in computer-generated three-

dimensional random fiber matrices.

Our assumptions regarding the fiber thickness were founded upon morphological
observations from previous studies, reviewed in Chapter 2. Based on transmission electron
micrographs, Laurie et al (1984) observed in the GBM 4-nm-thick cords, straight 7-10-nm-

thick rods, as well as 3.5 nm paired rods. Kubosawa and Kondo (1985) found in the
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lamina rarae externa and interna a three-dimensional, polygonal network, constituted by
interconnected 6-8-nm-thick fibrils. The size of the mesh was quite variable, ranging
mostly between 20 and 25 nm in width. The three-dimensional mesh-like structure of the
lamina densa was also visualized in situ by Takami et al. (1991); the authors observed in
the middie layer of the GBM 6-10 nm fibrils arranged as a polygonal network. The average
long dimension of the space between the fibers was estimated as 16.8+6.2 nm, the short
one as 12.0+6.2 nm. Thus, in the following analysis, we assumed a fiber radius comprised
between 2 to 5 nm, corresponding to 4-10 nm thick fibers.

Since no measurements of ¢ in GBM have been reported, it was assumed to vary
between 0.10 and 0.50. To our knowledge, the only estimates of fiber volume fraction in
basement membranes are 0.11-0.12 in mice EHS tumors (Haskin et al., 1993), and 0.17-
0.21 in Descemet's membrane (Krause, 1934; Dohlman and Bazals, 1955). It is not clear
whether these values are representative of the GBM. For the Darcy permeability, we used
as an estimate the value of 2.40 nm?2 when there is no pressure difference across the
membrane, as derived below. Varying the parameters ¢ and rg, we found a poor agreement
between the values of (PKq)g calculated using equations (7.12-7.15) and those derived
from our measurements. The slope of (®Kg)g versus solute radius predicted by the model
tended to be too elevated. The best results were obtained with a fiber radius of 4 nm and a
solid volume fraction of 0.39, which is very likely too high an estimate as discussed below;
even in this "optimal"” case, (®PKg)o was overpredicted by a factor ~ 2 for rg = 20 A and
underpredicted by a factor ~ 3 for rg = 70 A, as shown in Table 7-4. In the study of
Johnson et al. (1996), the solid volume fraction was much smaller (< 0.08), and one
possibility is that the theory presented above is not as accurate in denser fibrous networks.

In the absence of any accurate model, we used this theoretical approach to justify
our assumption that the produci ®K4 varies linearly with the hydraulic pressure difference
AP. To do so, we examined whether the model proposed by Brady (1994) predicts a linear

dependence for a certain combination of parameters. The fiber radius rf was varied between

156



2 and 5 nm. For AP = 35 and 60 mmHg, the values of Kparcy were those obtained in the
experiments, and the solid volume fraction ¢ was computed using the correlation of
Jackson and James (1986, equation 7.18 below). These results were extrapolated to obtain
the solid volume fraction at zero pressure difference, knowing that the product ¢L remains
constant. We then calculated the product ®Kq for AP = 0, 35 and 60 mmHg using

equations (7.12-7.15). With a fiber radius of 4 or 5 nm, we found that the dependence of

DK on AP was almost linear for all solute radii. Shown on the two panels of Figure 7-6
are results corresponding to rf = 5 nm. The theoretical values of ®Ky are plotted as a

function of AP for several molecular sizes. As illustrated, the assumption of linearity

appears very reasonable for all solute sizes.

Table 74
Measured and predicted values of (PKg)o
15 (A) (PKg)gmeas: (DK g)ocale: (PKg)pcale:
Brady (1994) Ogston et al.(1958,1973)

20 2.43x10-2 5.58x10-2 5.92x10-2

30 1.17x10-2 1.90x10-2 1.26x10-2

40 5.63x10-3 6.10x10-3 2.03x10-3

50 2.71x10-3 1.83x10-3 2.50x10-4

60 1.31x10-3 5.02x104 2.35x10-5

70 6.30x10-4 1.26x10-4 1.68x10-6

(®PKg)o denotes the product of the partition and the diffusional hindrance coefficient for a
transmembrane pressure equal to zero.
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Figure 7-6
Theoretical dependence of the diffusional hindrance coefficient on the transmembrane
pressure. Results are given for solute radii varying from 20 to 40 A (panel A), and from 50
to 70 A (panel B).
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A fiber matrix theory for random fibrous networks was also deve:\oped by Michel
and Curry (1980). In their model, the transport of macromolecules is assumed to be
restricted only by steric obstruction. Both the partition coefficient and the diffusive
hindrance coefficient are based on calculations made by Ogston et al. (1958, 1973), who
neglected the hydrodynamical interactions between the fibers and the permeating molecules
in determining K. In the absence of a theory for solute convection in random fiber media,
reflection coefficients are taken to be equal to (1-®)2, an approximation only valid when
convection is dominant. The hydraulic permeability is calculated based upon the Kozeny-
Carman equation (Carman, 1956), which relates Ly, to the fiber radius and the length of

fiber per unit volume (If):

l‘f2 (1-m l'lef )3

= (7.16)
P 4uKL(nr2)?

where K is the Kozeny constant.
We first compared our results for (#K4)g with theoretical predictions based upon

the calculations of Ogston et al. (1958, 1973). In their model, K4 is given by:
Kq = exp( - rs,/nlf) (7.17)

where ¢ is related to the solid volume fraction by Iy = <|>/ T rf2 . Throughout the parameter
range, we observed differences of several orders of magnitude between the data and the
model predictions. The smallest differences were obtained assuming with a fiber radius of
2 nm and a solid volume fraction as high as 0.42, But even with these values, the
discrepancies remained very large, as illustrated in Table 7-4. The product (PKq4)o was
overestimated by a factor ~ 2 at 20 A, and underestimated by a factor 400 at 70 A. This
theory also predicted too sharp a decline of (®Kgy)g with solute size.
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We then attempted to interpret our data using the model of Curry and Michel
(1980), according to the method outlined by Robinson and Walton (1989). For a given
solute and at a given pressure difference, we determined the unique set of parameters (ry,lf)
which predicted both the sieving coefficient (taken as 1- (1-®)2) and the hydraulic
permeability as given by equation (7.16). We then examined whether the value of ry which
was obtained could be used to predict sieving coefficients for other solute sizes and
pressure values. It should first be emphasized that the assumption that the Kozeny constant
has a fixed value of 5 - the value used by that Robinson, Walton and their coworkers
(1987, 1989, 1992) - is only valid for solid volume fractions greater than 0.40 (Happel and
Brenner, 1983); we nevertheless also used that value for the entire range of ¢ for lack of
better knowledge. Since the approach of Curry and Michel {1980) can only be used when
convection is dominant (i.e., Pe 2 3), we restricted our analysis to solute radii greater than

30 A, given the value of Pe in our studies (reported in Table 7-5).

Table 7-5
Values of the Peclet number in the filtration experiments
rs (A) Pe @ AP = 35 mmHg Pe @ AP = 60 mmHg
20 1.81 2.03
30 2.96 3.31
40 4.28 4.79
50 5.82 6.51
60 7.59 8.49
70 9.62 10.8
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For each solute size, we determined the value of the fiber radius which gave the
best agreement between © and L, at AP = 60 mmHg. From this value of rf and that of © at
AP = 35 mmHg, we then calculated Lj, at the latter pressure difference and compared it to
the data. Results are shown in Figure 7-7. There was a fair agreement between the
calculated and the measured value of L at 35 mmHg in the intermediate range of solute
radii; however, Ly, was overpredicted by 50 % at 30 A and underpredicted by 20 % at 70
A. Moreover, the value of the fiber radius which best fitted the data varied significantly
with solute radius, ranging from 1.7 nm for rs = 30 A to 2.5 nm for rg = 70 A (by
comparison, estimates of the GBM fiber radius obtained by Robinson and Walton (1989)
varied between of 0.8 to 1.15 nm, values which are not in the range of those reported in
morphological studies). Since the hydraulic permeability in the Kozeny-Carman equation is
proportional to r¢2, changes by a factor 1.5 are significant. To illustrate that point, we fixed
the values of r¢ and If (chosen so as to fit the water permecability and the sieving data at
midrange, i.e., for rs = 50 A) and calculated the sieving coefficients from 30 to 70 A, at 35
and 60 mmHg, respectively. As shown in Table 7-6, the discrepancy between the predicted
and the measured values of © could be as high as 80 %. These results indicate that the
model fails to predict sieving data accurately with a fiber radius independent of solute size.

For all these reasons, the fiber matrix model of Michel and Curry appears to be incomplete.

7.4.2 Models for the Darcy Permeability

One Fiber Approach

In order to understand the ultrastructural basis for the permselective properties of
the GBM, we then compared two possible representations of the GBM as a random fibrous
network. In the first approach, we made the traditional assumption that all the GBM fibers

were identical, of radius rf. The solid volume fraction ¢ of the matrix, for which no
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Figure 7-7
Theoretical predictions of the membrane hydraulic permeability at AP = 35 mmHg using the
fiber matrix model of Curry and Michel (1980). The dashed line indicates the measured
value of Ly, in our experiments.
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Table 7-6

Measured and predicted sieving coefficients using the fiber matrix model of Curry and

Michel (1980)
AP = 35 mmHg AP = 60 mmHg
Is (A) @meas. @calc. @meas. @gcalc.
(% error) (% error)
30 0.497 0.396 0.319 0.347
(-20.2) (+8.9)
40 0.181 0.0190 0.129 0.153
(+5.4) (+18.5)
50 0.0764 0.0764 0.0549 0.0549
0) (]
60 0.0456 0.00256 0.0321 0.00166
(-46.9) (-48.3)
70 0.0355 0.00736 0.0231 0.00420
(-79.3) (-81.9)

The values of the fiber radius (rf) and the length of fiber per unit volume (If) at 35 and 60
mmHg were chosen so as to best fit the data at 50 A.

measurement is available, was calculated using the correlation of Jackson and James (1986)

for three-dimensional arrays, which relates ¢ to the fiber radius and the Darcy permeability:

2
KDarey = % [-In¢- 0931 +O(n¢)"' ] (7.18)
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To determine the Darcy permeability of the GBM in the absence of a hydraulic
pressure difference, we assumed a linear dependence of Kparcy upon AP. Extrapolating the

measured values obtained at 35 and 60 mmHg, we obtained the following relationship:

Kparcy = 2404 - 0.0264 APy, (7.19)

where AP is expressed in mmHg. As shown, the estimate of the Darcy permeability of
GBM at AP = 0 mmHg is 2.404 nm2.

There seems however to be a discrepancy between the calculated volume fractions
using this model and those inferred from structural observations. With a fiber radius of 20
A, the correlation of Jackson and James yields a solid volume fraction ¢ equal to 0.19 at 0
mmHg, 0.23 at 35 mmHg, and 0.27 at 60 mmHg (with rf = 50 A, ¢ = 0.32, 0.34 and
0.36, respectively). Assuming that the coarse fibers form a square or hexagonal array, we
estimated that the average spacing between fibers should then be on the order of 3-7 nm, a
value which is lower than that reported in the literature. A spacing of 16 nm as reported by
Takami et al. (1991) corresponds to a volume fraction of 0.04 with rf = 20 A, and 0.13
with rg = 50 A, assuming a hexagonal fiber array. Thus the values of ¢ yielded by this one
fiber model appear to be too high.

One possible source for this discrepancy could be the expression we use to obtain ¢
from rf and Kpazcy (equation 7.18). As illustrated in the paper of Jackson and James
(1986), actual permeabilities can differ by a factor of 4 from the value given by their
correlation. Overestimating or underestimating Kparcy by a factor of that magnitude would
translate into an error in the volume fraction ¢ of only 10 to 40 % in our case. Such

deviations are hence not likely to explain the discrepancy apparent 1n the results.

Two Fiber Approach
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Another possibility is that our representation of the GBM as a network of identical
fibers with a uniform radius is overly simplified. Indeed, the main components of the GBM
(type IV collagen, laminin, heparan sulfate proteoglycans, entactin and fibronectin) vary in
size and structure, and a more accurate picture of the membrane seems to be that of a basic
fiber meshwork to which a variety of particles are linked, as described in Chapter 2. The
real structure of the matrix might be more closely approximated if the GBM were treated as
a composite fibrous medium, with at least two different types of fibers. Shown in Figure 7-
8 is a possible schematic picture, in which we considered two populations of fibers in the
GBM, one consisting of thick strands, the other of finer fibrils. In this second approach,
the two-component matrix was idealized as a random array of coarse fibers (radius a,
volume fraction ¢.) embedded in a matrix of fine fibers (radius af, volume fraction ¢r).

Ethier (1991) developed a model for flow through a mixed fibrous material
composed of two types of fibers with significantly different radii. In this analysis, the
disparity in sizes has to be such that the fine matrix appears homogeneous on the length
scale of the coarse fibers. The Debye-Brinkman equation was used to model the flow. For
a fibrous random array, a cylindrical unit cell was constructed around each coarse fiber; and
the effect of surrounding fibers was accounted for via the boundary conditions at the cell
boundary (r = be). Two sets of conditions were examined: at r = b, the shear was set to
zero or the velocity was matched to an idealized external flow field. The net Darcy
permeability of the matrix was then calculated as a function of the solid volume fraction of
the coarse fibers, the fine fiber radius and the perineability of the fine matrix.

We used these results to show how the concept of a two fiber model might apply to
the GBM. Assuming a fine fiber radius of 0.40 nm, the value obtained by Ogston (1973)
for hyaluronic acid based on partitioning experiments, and a coarse fiber radius comprised
between 2 and 5 nm as suggested above, we computed the net Darcy permeability of the
matrix as a function of the coarse fiber solid volume ¢, applying the zero shear model of

Ethier (1991; equations 22, 40 and 46) which yields an analytical solution for Kparcy- ¢c
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Figure 7-8
Representation of the GBM as a composite fibrous medium with two populations
of fibers. a_ and a; are the radius of the coarse and fine fibers, respectively.
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was then related to the spacing between the coarse fibers assuming that the latter formed a
hexagonal array. Three different values of the total solid volume fraction, ¢4 = ¢ + ¢f, were
considered, and the permeability of the fine matrix was calculated using the correlation of
Jackson and James (equation 7.18). The results are qualitatively similar for a; ranging from
2 to 5 nm, and are shown in Figure 7-9 for 3 different cases: ¢; = 0.10, 0.15 and 0.20,
with ac = 4 nm. As expected, for a fixed coarse fiber spacing (i.e., a fixed ¢.), the smaller
the total solid volume fraction, the larger the net permeability of the matrix. Given ¢,
Kparcy increases with ¢, i.e., it decreases as ¢r increases, showing that the permeability is
predominantly determined by the population of small fibers. Also indicated in Figure 7-9
are the values of the Darcy permeability which we measured in this study at AP = 35 and 60
mmHg, and that extrapolated at AP = 0. If we assume a certain value for the total solid
volume fraction of the GBM, the coarse fiber spacing can be determined from the curve. If
we postulate that ¢y = 0.15, the coarse fiber volume fraction for AP = 0 is equal to 0.13 and
the corresponding fiber spacing to 13 nm (10 nm with ac = 3 nm). With ¢; = 0.10, ¢ =
0.08 and the computed spacings are on the order of 19 nm (15 nm with ac = 3 nm). These
values are close to experimental measurements, thereby showing that a mixed fibrous
medium model for the GBM can accomodate the water permeability data quite well.
Unfortunately, no such model is available presently for solute transport, and additional
theoretical and experimental studies are needed to further extend this model to account for

macromolecular sieving.

7.5 Conclusion

In summary, we found that the contribution of the GBM to the overall size-
selectivity of the ¢ _.illary wall is smaller than that of the cell layers, yet not negligible. We
obtained cousistent results for permeability coefficients assuming a linear dependence on

AP. The semi-empirical expressions for the hindrance coefficients presented here allow for
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predictions of sieving data across the GBM given any AP. Water permeability data for
isolated GBM are consistent with a representation of the GBM as a random fibrous

network with two homogeneous populations of fibers.
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Figure 7-9
Theoretical predictions of the Darcy permeability of the matrix as a function of the spacing
between the coarse fibers, using a two-component fibrous medium approach. The results
are plotted for three different values of the total solid volume fractions, ¢; = 0.10, 0.15 and
0.20, assuming a fine and coarse fiber radius of 0.4 and 4 nm, respectively. Also shown
are the experimental values of the Darcy permeability for AP = 0, 35 and 60 mmHg (dashed
lines).
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Chapter Eight

Macroemolecular Sieving Coefficients across the Glomerular Capillary Wall

8.1 Introduction

Glomerular permselectivity is usually assessed by measuring the urinary clearance
of exogenous test solutes and inferring from these measurements, by means of a
mathematical model, geometrical parameters related to the structure of the wall; the effects
of diseases can thereby be associated witix changes in these parameters. We therefore
wished to extend the ultrastructural mode! to predict macromolecular sieving coefficients.
The development of the model for that purpose is presented in this chapter.

The transport of macromolecules across the glomerular basement membrane is first
described in part 8.2, and an estimate of the contribution of the endothelium is calculated in
part 8.3. The assembly of overall model is then presented in part 8.4. Shown in section 8.5
are theoretical sieving curves for various ultrastructural parameter values, as well as results
of fits to experimental data. Finally, the strengths and weaknesses of this approach are

discussed in the last part.

8.2 Transport of Macromolecuies across the Glomerular Basement Membrane

As described in Chapter 7, the flux N of a macromolecule in the GBM is given by:

N=-K4D.VC +K,VC (8.1)

where C and V are the solute concentration and the filtrate velocity, respectively, both

averaged over a length scale that is large compared to that of the microstructure of the GBM
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fibers. The hindrance coefficients for diffusion and convection, Kq and K, respectively,
were determined in the last two chapters. The velocity vector V was obtained by solving
Darcy's equation, as described in Chapter 4. At steady-state, the (local) concentration profile

based upon the unit cell (Figure 4-3) is obtained by solving the solute conservation equation:

VeN =0 (8.2)

with the following boundary conditions:

N, = ﬁ at the interface between the GBM and the fenestrac  (8.3a)
ef

C=0C, at the interface between the GBM and the slit (8.3b)

VCen =0 at the areas covered by cells (8.3c)

where Co is the average concentration in the fluid adjacent to the slit opening, n is a unit
vector orthogonal to the surface, and @ the partition coefficient of the solute between the
GBM and the adjacent fluid. If the sieving coefficient for the slit diaphragm (written as
<G)sd>|°°, as described in Chapter 4) is known, the second boundary condition at the

interface between the GBM and the filtration slit can be replaced by:

®Cy @ N,

C = =
<Oy >*  <V> <0

(8.3d)

The set of equations (8.1-8.3) was solved using a Galerkin finite element method.We used a

finite element mesh with 1600 elements, and the CPU time needed to solve this problem was
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about 20 seconds on a DECstation 5000/133. The sieving coefficient for the GBM is then

given by:

Ogpom ™ = =2 (8.4)

where C| is the average concentration at the endothelial opening adjacent to the GBM, and
the subscript "loc" indicates that Ogpy, is a local quantity here, calculated on the basis of one
unit cell. A non-dimensional analysis shows that ngmloc is a function of ®K¢, Pe, &, &,

dgbm/W, and <®sd>l°°, where:

DO K<V > dgp
dKy D,

Pe = (8.5)

Since the computational time needed to determine the concentration profile is not negligible,

we determined an approximate analytical relationship to relate all the variables. The following

expression was fitted to numerical values of (-)gbmhc:

O, loc _ ? K,
gom <Oy >% - (< Oy >'® -@K_) exp [-Pe(l +f)]

(8.6a)

where

f= a(l - €€f)® Bgom/W)™ (8.6b)

and a, b and c are three positive constants. This expression has the expected limiting
behavior, namely: (i) if € and € approach 1, then ngmk’c approaches the solution of the one
dimensional probler: ; (ii) if Sgbm/W >> 1, ngmloc approaches the solution of the one

dimensional problem as well ; (iii) if Pe = 0, then Ogbmloc is equal to 1. It was assumed that
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the fractional area covered by the fenestrae remains constant (€f = 0.20). The range of
parameters used to fit the numerical data was 105 <Pe <10, 104 <®K.< 1,001 <g < 1,
0.05 < dgpm/W < 1, and 10-4 < <®@4g> < 1. Using Powell's method (Press et al., 1989) and

10,600 data points, we obtained the following values, with a root-mean square of 5 %:

2a=0.7366 ; b=11.9864 ; c = 1.2697. 8.7

8.3 Contribution of the Endothelium te the Permselectivity of the Barrier

As described in Chapter 4, the resistance of the endothelium to water flow is
negligible when compared to that of the slit diaphragm and the glomerular basement
membrane, due to the large size of the fenestrae. The exact composition of the fenestrae has
not been entirely elucidated. It has been suggested that they are filled with a sparse
glycocalyx (Abrahamson, 1987; Avasthi and Koshy, 1988). To determine whether the role
of the endothelial layer in solute transport could be neglected, we calculated an upper bound
on its contribution by assuming a worst-case scenario, namely, that the fenestrae are filled
with the same dense matrix as the glomerular basement membrane. Making that assumption,
we computed solute sieving coefficients across the two layers, i.e., endothelium plus GBM,
and compared the results with those obtained neglecting the contribution of the endothelium.
The fenestrae were represented by two-dimensional rectangular channels, as shown in Figure
4-3.

The concentration profile in the domain composed of the fenestrae and GBM is given
by solving equations (8.1-8.2), applying the boundary condition (8.3a) at the interface
between the fenestrae and the capillary lumen in this case. The analytical results for the
pressure and the velocity in the GBM presented in Chapter 4 are no longer valid here. To
obtain the velocity vector V, we used Darcy's law (equation 4.7) in the entire domain defined

by the GBM and the fenestrae. The continuity equation implies that P verify Laplace's
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equation, V2P = 0. Constant volume flux boundary conditions were used at the interface
with the capillary lumen on one side and with the slit opening on the other. (As demonstrated
in chapter 6, differences due to different types of boundary conditions when solving
Laplace's equation are not significant). Once the concentration profile is known, the solute

sieving coefficient for that domain can be computed as:

C
G)gbm+f¢:nloc = C_‘l) (8.8)

where C; is here the mean concentration at the interface between the fenestrae and the lumen,
averaged in the x-direction.

We assumed that the fenestrae are straight channels 60 nm in length, and of such
width that € ¢ equals 0.2 and the frequency of fenestrae is 1/120 nm-! (Drumond and Deen,
1994a). A Galerkin finite elements method was used to solve the problem numerically, and
results are shown for solute radii ranging from 20 to 70 A. As indicated in Table 8-1, we
found that the difference between sieving coefficients with and without the endothelial
fenestrae never exceeded 20 %. Since this figure represents an upper bound, it seems
reasonable to neglect the contribution of the endothelial fenestrae to the overall resistance to
macromolecular transport. With that assumption, the sieving coefficient for the unit cell is

given by:
0% = Ogpm'™ <O5g>'™ (8.9)

8.4 Glomerular Capillary Wall Sieving Coefficients
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Table 8-1

Upper bound on the effect of endothelial fenestrae upon solute sieving

15 (A) 9gbm+fenl°c (‘)gbml°° percent difference (%)
20 0.733 0.789 7.1
25 0.559 0.629 11.1
30 0.387 0.453 14.6
35 0.254 0.303 16.2
40 0.167 0.198 15.7
45 0.114 0.133 14.3
50 0.0812 0.0946 14.2
55 0.0591 0.0701 15.7
60 0.0428 0.0524 18.3
65 0.0311 0.0387 19.6
70 0.0228 0.0282 19.1

The superscrit "loc” indicates that the sieving coefficients are calculated locally, on the basis
of one unit cell. Bgpy!¢ corresponds to the sieving coefficient across the GBM only, and

Ogbm+fcn1°° to that across the endothelial fenestrae and the GBM, assuming that both are

filled with the same fibrous matrix.
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The coefficients @gbmloc and <®sd>1°° determined above are local sieving coefficients,
corresponding to a given volume flux Jy = <V> based on the area of a unit cell. However,
J, varies along the length of the capillary; since proteins do not cross the barrier as plasma
is being filtered, their concentration and thus the osmotic pressure rise in the lumen,
thereby decreasing the solvent flux across the capillary wall. As described in Chapter 2, the

local volume flux at position y along the capillary is given by Starling's equation:

J,(y) = k(AP - Al(y)) (8.10)

where the hydraulic permeability k of the capillary wall is calculated based upon the
hydraulic permeability of each of the three layers as shown in Chapter 4. The values of kep
and ke, were derived previously (Drumond and Deen, 1994a, 1994b) and are assumed to

be fixed, while the hydraulic permeability of the GBM depends on the average hydraulic

pressure difference across the GBM, APy, . Combining earlier results (equations 4.12

and 7.19 ), kgbm can be written as:
kgbm = Kj Kparey = Ky KDm'cyo(l - B APgpm ) (8.11)

where K is a proportionality constant and KDmins the Darcy permeability of the GBM

at zero pressure difference. In order to determine kghm and thus k, APy, has to be

obtained first. It can be shown to satisfy the following relationship:

Ky B BPgom_ - (1 + Ky ) APy + AP = 0 (8.12a)

where

1
Ky = Kj Kparey? ( —+

L ) (8.12b)
en kep

176



The solute concentration profiles can then be determined by solving the mass balance

equations (2.3-2.5), where the solute flux is given by the ultrafiltration boundary condition:

Jiy) = Ogom!™ <Oy >'* Ci(y) J,(y) (8.13)
The overall sieving coefficient of solute i is then computed as:

1
[5in dy
0

e, = (8.14)

1
Cia [Ju() dy
0

where C;4 is the afferent concentration of solute i.

All integrals were evaluated using Romberg's method, and differential equations
were solved using a Runga-Kutta scheme of order 4 (Press et al., 1989). The CPU time
required to compute the sieving coefficients of solutes ranging from 20 to 70 A in radius on

an IBM RS 6000 (model 370) station was approximately 10 s.
8.5 Results
8.5.1 Effect of Ultrastructural Parameters on Sieving Curves

The effect of various ultrastructural parameters on the sieving curves was then
assessed as follows. The permeabilities kep and kep of the endothelium and epithelium,
respectively, were assumed to retain the values given earlier (Chapter 4), as wcll as the
number density of fenestrae, the fractional area of fenestrae, and the width of the filtration
slit. Values of GBM thickness and filtration slit density were obtained from the study of
Drumond et al. (1994), together with hemodynamic inputs. All the parameters used for the

simulations are listed in Table 8-2.
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As described in Chapter 4, the epithelial slit diaphragms in this model are
represented as parallel cylinders (radius r¢), and the spacings between thes. cylinders are
assumed to follow a continuous probability distribution. Caiculations were done assuming
either a gamma or a lognormal distribution. As shown below, the latter probability function
yielded more accurate predictions of in vivo sieving data than the former one. Using a
gamma distribution, the model systematically predicted exceedingly small sieving
coefficients for large solute radii. For all these reasons, a lognormal distribution of cylinder
spacings was preferred and subsequently retained for all calculations. As seen in Chapter 4,
this distribution is characterized by two parameters, u and ¢, which can not be chosen
independently if we assume that the hydraulic permeability of the slit diaphragm s fixed.
The latter hypothesis was made in all subsequent calculations; the parameter s was
specified, and the value of u was then inferred according to equation (4.35).

Estimates of the ultrastructural parameters related to the slit diaphragm were
obtained based on measurements of the diffusional permeability of isolated glomeruli, as
described in Chapter 6. Due to the small number of data points (four narrow fractions were
used in this study), the uncertainty regarding these parameters is quite high. Using equation
(3.14), we computed the 90 % confidence intervals for s based on the results presented in

Table 6-4, and obtained the following bounds:

forre =1.0nm, 1.64 <s < 1.96 (8.15a)
forrc =2.0nm, 1.40<s<1.64 (8.15b)
forrc=4.0nm, 1.22<s<1.38 (8.15¢)

In the absence of more precision, we first examined the effect of varying these two

parameters on the sieving curves. The qualitative effects on © of changes in the cylinder
radius for a given spread of the distribution, which translate into changes in u for a fixed s,

are illustrated in Figure 8-1. The general shape of the sieving curve appears to be dictated
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Table 8-2

Ultrastructural parameters and hemodynamic quantities used to predict sieving data

Ultrastructural parameters :

Permeability of endothelium ke, (1/s/Pa) 2.0x10-71
Permeability of epithelium kep (m/s/Pa) 8.6x10-9f
Fractional area of fenestrae &f 0.2f
Number density of fenestrae N¢W (m'1) 8.33x106%
Width of epithelial slits W (nm) 39t
Darcy permeability of GBM for APy, =0 (nm2) 2.401
GBM thickness 8gbm (nm) 518*
Width of structural unit cell W (nm) 465*
Hemodynamic parameters :

GFR (mV/min) 113*
Afferent plasma flow rate Qa (ml/min) 618*
Afferent oncotic pressure IIgc A (mmHg) 23.2%

AP (mmHg) 40*

T Drumond and Deen (1994a); 1 Chapter 7; * Drumond et al. (1994).
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by s; if s remains conastant, the curve is nearly uniformly shifted downwards as the cylinder
radius decreases, as confirmed by similar plots for other fixed values of s (data not
shown).

For a fixed value of the cylinder radius, s. was then varied from 1.6 to 2.0.
Representative results are plotted in Figure 8-2, for the case r; = 2 nm. Assuming that the
cylinder spacing remains constant (i.e., s = 1.0), the gap half-width is equal to 12 A, so
that solutes with a radius larger than 20 A can not be filtered (® = 0). As expected, for a
fixed rc, the larger the spread of distribution, the larger O(rs). As shown in Figures 8-1 and
8-2, the sieving curves are strongly dependent upon the values of r; and s.

We then investigated the effects of an increase in the thickness Sgbm of the
glomerular basement membrane, and/or a decrease in the filtration slit frequency (i.e., an
increase in the width W of the unit cell, which is based upon one epithelial slit). The
parameters of the cylinder spacing distribution were kept identical in all cases, and changes
in the sieving curves following a two-fold increase in Sgbm and/or a threefold increase in W
were examined. Such structural changes are representative of what has been observed in
patients with membranous nephropathy and minimal change nephropathy (Drumond et al.,
1994). The baseline inputs were those given in Table 8-2. Results are show .. in Figure 8-3
for rc = 2 nm and s = 1.50. Changes in W and/or 8gbm appear to have very little effect on
overall sieving coefficients. The biggest differences in © are seen for the largest solute radii
and never exceed one order of magnitude. The largest deviations from the baseline case
occur when 8gpm is multiplied by two and W kept constant. The sieving coefficients are
then increased, as the direction of the flow in the GBM is then more unidirectional.
Conversely, when W is multiplied by three and 8gbm kept constant, © slightly decreases,
since the unit cell beccmes larger and the flow in the GBM more tortuous. When both W
and dgbm are multiplie:d, the opposite effects do not compensate each other, and the sieving

coefficients remain lower than in the baseline case. Overall, changes in the filtration slit
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frequency and Ogp only are unlikely to explain large difference in the permselective
properties of the glomerular capillary wall.

Macromolecular hindrance coefficients for the GBM were determined based on the
results presented in Chapters 6 and 7. The effects of uncertainties in ®K; and ®Kgy on
sieving curves were assessed here by assuming an error by a factor 2 or 0.5 in either of
these coefficients. As indicated by equation (8.6), the local sieving coefficient for the GBM
depends significantly on ®K and ®Ky, and ©'°° = O *°<@5g>' is thus expected to
vary accordingly. Results are shown in Figure 8-4. As predicted by the theory, sieving
coefficients vary significantly with ®K; and ®K4, and the magnitude of the changes
decreases with increasing solute size. The sieving curve is shifted upward as either K is
increased, or ®Kj is decreased; in the latter case, the increase in Pe which is the only effect
results in an increase in © because of concentration polarization. Conversely, the sieving
curve is lowered when ®Kj increases or @K decreases; the effect of multiplying ®Ky by 2
is almost indistinguishable from that of dividing ®K, by 2. When the two coefficients are
either both multiplied or both divided by the same factor, the Peclet number remains
unaffected and the changes in ® are minimal, as shown by the curves labeled "2®K
-2®K4" and "0.5@K. -0.5®0K4". Overall, uncertainties or changes in the hindrance
coefficients can affect the sieving curve significantly. The physiological factors that would
cause isolated changes in ®K; and ®Kq4 remain to be investigated, possibly using the

methods that we are pioneering.
8.5.2 Predicting In Vivo Ficoll Sieving Data

The ultrastructural model was then used to predict in vivo sieving data. Ficoll
sieving measurements in rats were obtained from Oliver et al (1992, 1994) and Remuzzi et
al. (1993). The hydrodynamical inputs were those given in each of these studies, and the

ultrastructural parame:ers were those listed in Table 8.2, except for ihe unit cell width and
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Figure 8-1
Theoretical effects of changes in the slit diaphragm cylinder radius on the sieving coefficients
(©). Results are plotted for a spread s of the cylinder spacing distribution equal to 1.50, and

three different values of the cylinder radius (ro = 1, 2 and 5 nm).
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sieving coefficients (©). Results are given for a fixed r; of 2 nm.
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Figure 8-3
Theoretical effects of changes in GBM thickness and unit cell width (i.e., filtration slit
frequency) on the sieving coefficients (©). Results are plotted for r; =2 nm and s = 1.50.
The curve labeled (W*, ngm*) corresponds to the baseline case.
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Figure 8-4
Theoretical effects of changes in the GBM hindrance coefficients (®PK., ®Kq4) on the
sieving coefficients (©). Results are plotted for rc = 2 nm and s = 1.50. The plain line

corresponds to the baseline case. The hindrance coefficients were varied by a factor 0.5 and
2.0.
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the GBM thickness; values of 360 nm for W and 200 nm for Sgbm were chosen as more
repr -ntative of rat data. The transmembrane pressure difference AP was not measured by
Renuuzzi et al. (1993), and we assumed a value of 40 mmHg. The parameters rc and s were
those obtained in Chapter 6, as listed in Table 6-3. We assumed that the correct parameters
were those calculated if small defects in the epithelial slit diaphragm were postulated in the
Ficoll diffusion experiments (f # 0), defects which we assumed were not presert in vivo.
Results are shown in Figures 8-5, 8-6 and 8-7, corresponding to the data of Oliver et al.
(1992), Remuzzi et al {1993) and Oliver et al. (1994), respectively. In general, there was a
poor agreement between the data and the theoretical predictions of our model with these
sets of parameter values for r; and s. In Figure 8-5, the slope of the experimental cuve was
close to that predicted with r; = 1.0 nm, but the absolute values of ©® were significantly
lower. The data of Remuzzi et al. (1993, Figure 8-6) were best predicted assuming rc = 2.0
nm, but in that case the sieving coefficients were overpredicted by a factor 2-5 in the middle
range of solute sizes. The best agreement between the theory and the measurements was
obtained with the data of Oliver et al. (1994); as illustrated in Figure 8-7, the experimental
sieving curve was close to that calculated assuming rc = 4.0 nm, except for large solutes (rs
> 50 A). In light of the significant uncertainties in the values of rc and s, as well as the
important effects that small changes in these parameters have on sieving coefficients, these
results are hardly surprising. We then considered the opposite approach: the parameters r¢

and s were inferred from the sieving data, and used to predict the diffusion data presented

in Chapter 6.

8.5.3 Fitting In Vivo Ficoll Sieving Data

The Ficoll sieving data were fitted by finding the values of r. and the parameis: ., i

the distribution which minimized the least-square difference %2 given by:
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Figure 8-5
Experimental values and theoretical predictions of in vivo Ficoll sieving coefficients (®)
from the study of Oliver et al. (1992). The experimental results are given as mean + SE.
Theoretical predictions were obtained assuming a lognormal distribution of cylinder
spacings, the values of the ultrastructural parameters (rc,s) being those given in Table 6-3
(corresponding to f20).
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Figure 8-6

Experimental values and theoretical predictions of in vivo Ficoll sicving coefficients (©)
from the study of Remuzzi et al. (1993). The experimental results arc given as mean + SE.
Theoretical predictions were obtained assuming a lognormal distribution of cylinder
spacings, the values of the ultrastructural parameters (rc,s) being those given in Table 6-3
(corresponding to f#0).
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Figure 8-7

Experimental values and theoretical predictions of in vivo Ficoll sieving coefficients (©)
from the study of Oliver et al. (1994). The experimental results are given as mean + SE.
Theoretical predictions . :re obtained assuming a lognormal distribution of cylinder
spacings, the values of the ultrastructural parameters (r,s) being those given in Table 6-3
(corresponding to f#0).

180



(8.16)

where n is the number of data points in the sieving curve, ©;¢P and ©;calc are the measured
and calculated sieving coefficient of solute i, respectively, and oj is the standard deviation
of ©;¢*P. Because the data from three experimental studies wei. obtained from different rat
species and/or different physiologica! conditions, the parameters were fitted to each set
separately.

Powell's method (Press et al., 1989) was employed to minimize %2, and no
boundaries were set on the parameters. The results of the fit are shown in Table 8-3. We
considered here two possible distributions for the cylinder spacings, a gamma and a
lognormal distribution. The gamma distribution can be characterized by the parameter 12
(Drumond and Deen, 1995), i.e., the standard deviation divided by the mean, which would
correspond to In(s)/ u for the lognormal distribution. As illustrated, the model yielded in the
former case a smaller cylinder radius and a wider distribution than in the latter one. Better
fits were consistently obtained with a lognormal distribution: the minimum value of x2 was
about twice higher using a gamma distribution. In light of these results, the lognormal
distribution appears to be preferable.

Plotted in Figure 8-8 are the measured and calculated sieving curves, assuming a
lognormal distribution. The sieving coefficients predicted by the model are in excellent
agreement with all three set.. of data. The values of r; obtained from the data of Remuzzi et
al. (1993) and Oliver et al. (1994) are consistent with physiological estimates. In the latter
case, the parameters which yielded the best fit (rc = 4.02 nm and s = 1.32) were close to
one of the sets of parameters inferred from the diffusion experiments (ro =4.0 nm and s =
1.30), as expected from Figure 8-7. The value of the cylinder radius corrresponding to the

study of Oliver et al. (1992), ro = 0.5 nm, appears to be relatively small compared with
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estimates reported in the literature, but the reason fo. that remains unclear. It is possible that
there was an artefact in the measure” “ents; this set of data is peculiar in that there is only a

50-fold reduction in © between 20 and 65 A, as opposed to a 300 or 400-fold reduction

over a comparable range in the other sets.

We then examined whether the parameters rc and s obtained by fitting in vivo
sieving data are consistent with the in vitro diffusion data obtained in Chapter 6. Three sets
of parameters were considered, corresponding to the best-fitted values calculatzd for the
studies of Oliver et al. (1992), Remuzzi et al. (1993) and Oliver et al. (1994), respectively
(see Table 8-3). Plotted in Figure 8-9 are the theoretical predictions of the mass transfer
coefficient for the cell layers versus the experimental data. The agreement between the
caiculated and the measured values is poor if we assume that the epithelial layer remained
intact during the diffusion experiments. However if a small fraction (~ 0.20-0.30 %) of the
surface area was damaged, thereby creating a shunt pathway, the agreement is almost as
good as the best fit to the data. These results illustrate once more the fact that since different
sets of parameters can predict the diffusion data quite well, r; and s can not be inferred
from them without large uncertainties.

In conclusion, the parameters inferred from in vivo sieving data appear to be
consistent with in vitro measurements of diffusion rates across the capillary wall,

confirming the validity of our theoretical approach.

8.5.4 Comparison with Pore Models for Glomerular Filtration

Reported in Table 8-4 are the values of %2 obtained by the authors of the three
studies when fitting to their sieving data the most sophisticated of pore models, the
lognorrnal plus shunt pore models, which has 3 fitted parameters, i.e., one more than the

ultrastructural model. Based on this comparison, the ultrastructural model assuming a
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Table 8-3

Ultrastructural parameters for the slit diaphragm

Data Lognormal distribution Gamma distribution

r¢ (nm) s Ingsy/u %) | x2 | re@m) [nV2(%)| %2

Oliveretal. [0.5110.08 | 1.731£0.03 | 128.8+25.2 | 44.68 | 0.0310.04 | 747£1018} 103.75
(1992)

Oliveretal. { 4.0240.21] 1.32+0.01 | 16.94+1.29 | 75.33| 2.6740.37| 43.413.4 | 138.20
(1994)

Remuzziet | 1.5310.08 | 1.50+0.01 | 46.62+2.99 | 3.07 | 0.1410.10f 212£105 | 7.48

al. (1993)

Values for fitted parameters are best-fit values + SE. The cylinder radius of the slit
diaphragm is denoted as rc; s and u are the parameters characteristic of the lognormal
distribution of the cylinder spacings, and y;-1/2 that of the gamma distribution.

lognormal distribution of cylinder spacings appears to fit the data almost as well as the
lognormal plus shunt pore model. Morevoer, it always yields a better agreement with the
data than all the other pore models (data not shown).

Due to the complexity of the ultrastructural model, non-negligible CPU times are
required to fit experimental sieving data. To estimate the difference relative to pore models,
we compared the length of time needed to find the parameter values minimizing 2 using
the ultrastructural model with that using the lognormal plus shunt model. The same
parameter vector was used as a starting point in all three studies, and computations were
carried on a IBM RS 6000 (model 370) workstation. The results, shown in Table 8-4,

indicate that the fit can be ~ 3 to 20 times slower with the ultrastructural model. We do not

192




feel however that this is a strong limitation, since significant improvements in CPU time

could be obtained by performing ihe calculations on faster computers.

8.6 Discussion

The ultrastructural model for glomerular filtration presented above is based upon a
representation of the glomerular capillary wall which is closer to the real structure than any
previous model. It is therefore able to account for changes that previous pore models could
not capture, by predicting the effect of specific alterations in any of the three layers of the
barrier. Theoretical predictions show that changes in the structural parameters of the slit
diaphragm affect the sieving curve very significantly, as well as changes in the hindrance
properties of the GBM; variations in GBM thickness or filtration slit frequency have little
effect. The GBM may play besides an important role in determining the charge-selective

properties of the barrier, which remains to be elucidated.

Table 8-4
Comparison between the ultrastructural and pore models
Source of data Ultrastructural model Pore modcl
lognormal distribution of spacings lognormal+-shunt
X time (min) x? time (min)

Oliver et al. (1992) 44.68 23.0 12.5 1.0
Oliver et al. (1994) 75.33 26.0 44.6 1.5
Remuzzi et al. (1993) 3.07 5.0 1.6 1.5

The quantity 2 was minimized to fit the model to experimental data. Reported here also is
the time required to compute the fitted parameters on an IBM RS 6000 workstation.
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The most severe limitation of the model today stems from the fact that the exact
structure of the epithelial slit has not been precisely determined. The zipper configuration
observed by Rodewald and Karnovsky (1994) was confirmed by Kubosawa and Kondo
(1985), but questioned by other groups (Hora et al. 1990; Furukawa et al., 1991). In the
absence of a precise description, the slit diaphragm was modeled as a row of parallel
cylinders in order to estimate the diffusional and convective hindrances based on available
hydrodynamic theories (Drumond and Deen, 1995). As experimental techniques improve,
we hope to direct the model to more accurate observations.

Yet, despite the large number of parameters involved, the ultrastructural model
appears to give very accurate theoretical predictions for sieving coefficients of neutral
macromolecules. Although several of the parameters that are needed, such as the frequency
of filtration slits and the thickness of the glomerular basement membrane, were not
measured in routine experiments and had to be estimated, fits to available Ficoll sieving
data were very satisfactory.

In comparing the ultrastructural model with the widely used pore models of
glomerular filtration, we found that it is able to predict published Ficoll sieving data as well
as the most performing pore model, the lognormal plus shunt model, which has
nevertheless an additional degree of freedom; that, despite the large number of
ultrastructural parameters which have to be estimated. Although the calculations for our
model are lengthier, we do not feel that this constitutes a major cbstacle. It should be noted
that our results do not invalidate the use of pore models for comparative purposes.

The model for glomerular filtration therefore appears very promising, and its usefulness
will increase as morphological studies provide more accurate data on the exact structure of the
capillary wall. It should also be extended to account for the charge selectivity of the glomerular

capillary wall, in order to predict the transport of anionic or cationic solutes.
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Figure 8-8

Best-fit to in vivo Ficoll sieving data. The experimental results are given as mean * SE.
Theoretical predictions were obtained assuming a lognormal distribution of cylinder

spacings, and finding the parameters r¢ and s for the slit diaphragm which best fitted the
data.
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Figure 8-9
Experimental values and theoretical predictions of in vitro mass transfer coefficients for the
epithelium (kcells). The experimental results are given as mean + SE. The three sets of the
ultrastructural parameters r; and s were those obtained in fitting in vivo Ficoll sieving
coefficients. Two hypotheses were considered: in the first case, all the slit diaphragms were
assumed to remain intact; in the second one, a fraction of ~ 0.20 % of the epithelial slit
surface had no "ladder rungs".
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Chapter Nine

Conclusions and Recommendations

The main contribution of this thesis was to provide a better understanding of the
ultrastructural basis for the filtration of macromolecules by glomerular capillaries.
Traditional pore models do not account for the romplex structure of the filtration barrier,
which consists of an endothelial layer, a glomerular basement membrane and an epithelial
layer. In this work, we developed a new approach to glomerular filtration by a combination
of experimental and theoretical studies.

In Chapter 3, we first demonstrated that pore models of glomerular filtration can not
be used to infer the mean transmembrane hydraulic pressure difference ( ZL_D) from
macromolecular sieving data. Although these models have been repeatedly employed for
that purpose, they appear to be unable to capture the subtle effects of pressure on the
sieving curves, and we strongly recommend that they not be used to estimate AP.

The pore models of glomerular filtration were abandoned in the later chapters in
favor of an approach based on the ultrastructure of the capillary wall, presented in Chapter
4. The permselective properties of the glomerular basement membrane (GBM) and the
epithelial slit were determined by performing two sets of experiments. We first measured
the diffusional permeability of Ficoll across isolated glomerular capillary wall and GBM
(Chapter 6), and thereby determined the diffusional resistance of each layer. We then
studied the convection and diffusion of these same test solutes across isolated GBM packed
in an ultrafiltration cell (Chapter 7). The effects of pressure on water and solute
permeability were assessed, and hindrance coefficients in were obtained. We also showed
that a two-fiber model, which assumes that two populations of fibers are present in the
GBM, was consistent both with the Darcy permeability data and electrom-micrographs

observations.
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This analysis was then combined with previous results to assemble the
ultrastructural model for glomerular filtration, described in Chapter 8. We showed that this
model is able to fit in vivo sieving data as well as pore models. Its main advantage is that it
can account for specific changes in any of the layers of the capillary wall, and it is our hope
that it will eventually provide a much better understanding of the relationship between
structural changes and alterations in glomerular function observed in specific diseases.

These conclusions do not invalidate the use of traditional pore models for
comparative purposes. However, interpretation of their results is necessarily limited.

The next step in improving upon the ultrastructural approach to glomerular filtration
will be to incorporate the effects of macromolecular charge. The charge-selective properties
of the glomerular capillary wall are very significant and need to be taken into consideration.
In addition, when a more accurate physical description of the epithelial slit diaphragm is
available, further improvements in the model will be possible.

We also suggest that a more systematic investigation of the effects of pressure on
the permeability of the glomerular basement membrane be performed. Finally, we

recommend additional theoretical and experimental studies in order to extend the two-fiber

approach to account for solute transport in such a medium.
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Appendix A

List of Principal Symbols

polarization factor

solute concentration

concentration of albumin

afferent concentration of solute i

afferent protein concentration

solute concentration in the filtrate

solute concentration on the retentate side adjacent to the membrane surface
solute concentration in the bulk retentate

diffusivity of the solute in dilute bulk solution

fraction of the epithelial surface denuded of slit diaphragms
glomerular filtration rate

haif-width of slit channel upstream

length of slit channel

solute flux

solvent (water) flux

mass transfer coefficient

convective hindrance coefficient

diffusional hindrance coefficient

Darcy permeability of the GBM

ultrafiltration coefficient

hydraulic permeability of the membrane

half-distance between the centers of two adjacent cylinders in the slit
molecular weight

number of endothelial fenestrae per unit cell

probability that residuals are randomly distributed
glomerular hydraulic pressure

hydraulic pressure difference

average capillary transmural hydraulic pressure difference
Peclet number

single nephron afferent capillary plasma flow rate
cylinder radius in slit diaphragm
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If fiber radius

10 isoporous pore radius

Is Stokes-Einstein radius

R capillary radius

RPF renal plasma flow

S lognormal distribution parameter
SNGFR single nephron glomerular filtration rate
T absolute temperature

u lognormal distribution parameter

u half-width of gap between the cylinders
w width of the unit cell

Greek symbols

dgbm thickness of GBM

& fractional area covered by the endothelial fenestrae
& fractional area covered by the slit

C) true membrane sieving coefficient

o' measured sieving coefficient

1) solvent viscosity

v kinematic viscosity

A afferent arteriole oncotic pressure
Allap oncotic pressure difference for albumin
c standard error of the mean

Oalb reflection coefficient of albumin

¢ solid volume fraction

o partition coefficient

x2 sum of squared residuals

W shunt parameter for heteroporous models
A% gradient operator
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Appendix B

Program for Computing Sieving Coefficients

with the Ultrastructural Model

%k % 3k 3k ok 3 3 3k ok e e ok ok ok o ok sk o= ok ok ok ok bk ok ok ok ok ok ok ok ok ok ok sk o ok ok 3k ok ok sk ok o 3k ok 3k ok ok ok ok ok ok ok ok ok ok e ok ok ok ok ok sk ok ok

* this program yields overall sieving coefficients for the glomerular
* capillary wall based on a lognormal distribution of the cylinder
* spacings in the slits and the GBM hindrance coefficients obtained in vitro.

sk 3k ok e ok ok 5k 3k 3 3 ke ke ke ok 3k Ok 2k ok ok sk ok 3k ok 3K 3k ok sk ok 3 ke ok Sk ok sk ok ok ek ok 3K 2k %k ok ok ok 3K ok ok ok sk ok ok sk ok ok o e ok sk ok sk ok ok ok ok ok

program thetawall

implicit double precision(a-i,0-z), integer(i-n)
external funcdg,funcjv,funcjs,funkg,midpnt,midinf
parameter(nterms=200)
common/hemo/hqa,hcpa,hdp,hfkf,hgfr
common/values/surf,delg,xchar,es,nrs,nsol,yl
commorn/solute/rs(40),phikc(40),phikd(40)
common/sieving/thetabm(100,40),thetasl(100,40)
common/data/sc(40),sig(40),theta(40)
common/path/xx(5002),qcs(40,5002),fjv(5002),nstepar
common/bl 1/permslit,visc,rc,uav,denom
common/bl2/alfit,a2fit,s,per,ped,rso,dif delta,delpslit
common/bl3/deltat,ws
common/array/params(10),lista(10)

dimension xf(20),nf(20),temp(20),p(10),xi(10,10)
dimension valbegin(40)

% 2 o 2k sk ok ok ok o oK ok ok sk o o ok o ok o 3k ok ok sk ok o ok ok ok ok ok

* description of parameters
2k 2k 3f¢ e ok 2k % ok ok ok ok ok ok ok sk o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

hqa: RPF or QA (in ml/min)

hcpa: afferent plasma protein concentration (in g/dl)

hfkf: ultrafiltration coeiticient of capillary wall (ml/min/mmHg)
hgfr: GFR or SNGFR (in ml/min)

hpd: deltaP, hydraulic pressure difference across the wall (mmHg)
darcyk: Darcy permeability of GBM (in m2)

rc: cylinder radius in slit diaphragm (in m)

s,uav: parameters of lognormal distribution (uav non-dimensionalized by rc)
nrs: number of observations (number of solutes)

sc: measured sieving coefficient

sig: standard deviation of measured sieving coefficient

theta: predicted sieving coefficient

thetabm: local GBM sieving coefficient

thetasl: local slit diaphragm sieving coefficient

OO0 0O0O00000O0
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surf: surface area available for filtration (m?2)

xchar: characteristic length, length of the unit cell (m)
delg: non-dimensional thickness of GBM

es: fractional area covered by the slit

ef: fractional area covered by the fenestrae

permslit: hydraulic permeability of slit diaphragm (m/s/Pa)
permfen: hydraulic permeability of fenestrae (m/s/Pa)
visc: viscosity of solvent

delta: distance between GBM interface and center of slit cylinders
ws: width of filtration slit (m)

delpslit: pressure drop across the filtration slit

delpgbm: pressure drop across GBM

cooco0oo0oo00o00000

3 3 3 ok 2k 3k 5k 3k 3K ok ok ok ok sk o ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok %k

* Read input parameterts
3 2k ok 3k 3k 3k 3k e 3 ok ok e ek ok ok b sk ok sk oK K 3 ok ok ok ok ok ok ok ok

open(1,file="lognormalin’,status="o0ld")
open(2,rile="lognormalout’,status="old")
read(1,*) hqa,hcpa,hdp,hfkf

read(1,*) xchar,delg,es,ef

read(1,*) visc,permslit,permfen
read(1,*) nrs

read(1,*) (rs(i),i=1,nrs)

read(1,*) (sc(i),i=1,nrs)

read(1,*) (sig(i),i=1,nrs)

read(1,*) rc,delta,deltat,ws

read(1,¥) alfa,beta,alfit,a2fit,s
close(unit=1,status='keep’)

write(2,*)'hemodynamic parameters : RPF,Cpa,DP'
write(2,16)hqa,hcpa,hdp

write(2,*)"ultrastructural parameters : w,delbm,es,ef'
write(2,16)xchar,delg*xchar,es,ef
write(2,*)'permeabilities : slit and fenestrae’'
write(2,16)permslit,permfen

write(2,*)'radius of cylinders :'

write(2,16)rc

3 o o o 2 ok ok ok ok ok e ok 2 o 3 ok ok ok ok ok ok o ok ok ke ok ok 3 sk ok ok oK sk ok ok sk ok ok ok ok ok o ok ok 3k oK ok ok K ok ok K ok sk

* Calculate coordinates of slit (xs) and fenestrae (xf(i))
3 %k 2k ok ok ok ok 2k ok ok 3 ok o ok o ok ok 3k ok ok o sk ok ok ok ok ok K ok ok ok ok 3k ok ok sk 2k ok ok 3 ok ok 3k ok ok 3k ok ok ok ok ok ok R sk ok

pi = 4.d0*datan(1.d0)
nfen = int(xchar/120.e-9)
xs = es/2.d0
* wfnd,wsnd = dimensionless width of fenestra and slit
wsnd = 2.d0*xs
wfnd = ef/real(nfen)
xf(1) = (1.d0-ef)/real(nfen)/2.d0
xf(2) = xf(1)+wfnd
nxf=2
do 20 1=3,nfen,2
xf(l) = xf(1-1)+(1.d0-ef)/dble(nfen)
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20

xf(l41) = xf()+wfnd
nxf = 1+1
continue
if (nxf.eq.nfen+1) xf(nxf) = 0.5d0

* Change coordinates of fenestrae (still symmetric unit cell)

33

34

do 33 ifen=1,nxf
temp(ifen) = 0.5d0-xf(ifen)
continue
do 34 ifen=1,nx{
xf(ifen) = temp(nxf-ifen+1)
continue

ok 3k 3 ok o 3k 3k ok 3 e 3 3K e ok e ok ke ok 3k 3k o ok dk o ok 2 ok ok ok ok ok ok ok ok ok sk ok ok Ok kR Kok ok sk ok ok

*

Calculate hydraulic permeability of GBM and GCW

3k e 3 3 o 5 ¥ 3k oK 2 o e ok ok ok o 35 e o e s o ok e 3 ok ok o ok oK oK ok o ok o ok 3 ok 3k ok ok ke ok 3k ok ok ck ok

42

darcyk0=2.404
denom = delg
do 40 n=1,nterms
ev = 2.d0*dble(n)*pi
aux = 0.
do 42 1=1,nxf
sign = (-1.)**]
aux = aux+sign*sin(ev*xf(l))
continue
gama = aux/dble(n)/ef/pi
zeta = sin(ev*xs)/dble(n)/es/pi
denom = denom+2.d0*(zeta**2+gama**2)/ev/tanh(ev*delg)
denom = denom-4.d0*gama*zeta/ev/sinh(ev*delg)
continue
permgbmO = darcyk0/visc/xchar/denom
enres=1./permfen/ef
epres=1./permslit/es
rescells=enres+epres

* Determine the pressure drop across the GBM in order to compute KDarcy

a = rescells*permgbm0%*(0.0264/2.404)

b = (1+rescells*permgbmO)

c=hdp

discrim=(b**2-4*a*c)
delpgbm=(b-sqrt(discrim))/(2*a)
darcyk=darcyk0*(1-0.0264/2.404*delpgbm)
permgbm=permgbm0*(1-0.0264/2.404*delpgbm)
gbmres=1./permgbm
totalres=enres+gbmres+epres

permgcw = 1./totalres

write(2,*)'Darcy permeability of GBM :'
write(2,16)darcyk

write(2,*)

write(2,*) 'kgbm (m/s/Pa) =',permgbm
write(2,*) 'kgecw (m/s/Pa) =',permgcw

* 1 mmHg = 133.322 Pa => 1 m3/s/Pa = 8.0¢9 ml/min/mmHg
* hfkf in mI/min/mmHg

surf = hfkf/(permgcw*8.0d9)

e sk o o ook ot o ook o ok o o o o oo ok ook e i ke o oo s ok o o b e oo ko ok o oK
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* Compute the GBM hindrance coefficients

e 3k 2 3 oK ok oK o oK ok e 3k ok ok b ok ok o ke 3 ke 3 o ok ok ok 8 o ok o ok ok ok o ok o oK o oK oK 3K oK oK oK

do 100i = 1,nrs
rsa=rs(i)*1.d10
phikd(i)=0.1045*exp(-0.07302*rsa)*(1-0.0096*delpgbm)
phike(i)=6.0240*exp(-0.07469*rsa)*(1 -0.0096*delpgbm)
100  continue

ek ok ok ok ok o o e e o ook o ok oK ok ok 3 ok o 8 o o ook ok o o o ok ok ok S o ke ok ok ok ok ok ok ok

* Find parameter uav of spacings distribution
*******************************************

pi = 4.*datan(1.d0)

uavinit = 0.50

ftol = 1.d4

nparamsmax = 2

nparamsfit = 1

params(1) = uavinit

do 150 i=1,nparamsfit
lista(i) = i

150  continue

do 180 i=1,nparamsmax
p(i) = params(i)
do 190 j=1,nparamsfit

xi(i,j) = 0.0
if (i.eq.j) xi(i,;) = p(1)*0.10
190 continue

180 continue
call powellbis(p,xi,nparamsfit,nparamsmax, ftol,iter, fret)
do 200 i=1,nparamsfit
params(i) = p(i)
200  continue
uav = params(1)
write(2,*)
write(2,*)'parameters v and s of the distribution '
write(2,16)uav*rc,s
print* 'final u and s :',uav*rc,s

**********************************************

* Determine the local thetas (GBM and slit)

Ao e ke o o o ok of o o o oo oo ok ok e ok o o ok ook ok o ok o K ok ok ok ok ok ok o o ok ok ok

nstepar = 2**5
ya = 0.0d0
yb = 1.0d0
h = (yb-ya)/nstepar
do 300 k=1,nstepar+1
y =ya + h*(k-1)
do 320 irs=1,nrs
thetasl(k,irs) = tetasloc(y,irs)
thetabm(k,irs) = tetabmloc(y, irs)
320 continue
300 continue
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* Determine Q, Jv and Q*soluteconcentration
3k 3k ok ok 2k o ok 2% 3 3k o ok e sk ok ok e 3 ok s 3 o e ofe ok 550 ok st o e e ke o ok ok ok ok ok sk ok ke k-

* the array qcs(1,1) is the flow rate Q
* the array qcs(j+1,i) is Q*C for solute j at position i
do 400 irs=1,nrs+1
valbegin(irs) = hqa
400 continue
call rkdumb(valbegin,ya,yb,nstepar)
hgfr = qes(1,1)-qes(1,nstepar+1)
write(2,¥)
write(2,*)'glomerular filtration rate (ml/min) :',hgfr
do 420 i=1,nstepar+1
fint = 1.629*ha=2*ncpa/qcs(i,i)+ 0.2935*(hga*hcpa/qces(1,1))**2
fjv(i)= hfkf/surf/6d+07*(hdp-fint)
420 continue
* hfkf in ml/min/mmHg => *1.d-6/60 in m3/s/mmHg

3k 3k ok ok 3 s ok ok 3 5 2 3k 3 ok 3 ok ok o ok o sk ok ok ok ok ok ok 3k ok ok o ok ok sk sk s ok ok ok ok oK ok ok ok ke o ok ok ok ok ok 3k ok ok ok ok %k

* Determine sieving coefficients by integrating fromy =Cto 1
3k ok o 3 % oK 3k o ok o 2 sk ok ok 3k ok 2k ok 3k ok 3 ok ok ok ok 3 3k 3K e 3k ok e ok ok o ok 2k ok ok o ok ok K ok 3k ok Ak ok ok ok ok ok ok ok kK

call grombflux(ya,yb,totflux,funcjv)
do 700 irs=1,nrs
nsol=irs
call grombflux(ya,yb,sum,funcjs)
theta(irs)=sum/totflux
700  continue
write(2,*)
do 750 i=1,nrs
write(2,16)rs(i),theta(i)
750  continue
16 format(5(ix,d12.6,1x))
END

ek ok o o ok ok ok R ok ok ok ok ok ok ok ok ok ok ok o o ok sk kR ok ok ok ok ok o ok ok sk ok ok ok ok

* To find the parameter uav of cylinder spacing distribution
3% 2 A 2 o 2 e 3 3 3 3 o o o o e ok o o o ok o kK oK 3K ok ok 2k 3 e 2 ok o ok sk K ok ok ok Ak ok ok e o ok o o ok K ok Kok R

function chisqgbis(pms)
implicit double precision (a-h,0-z), integer(i-n)
external midpnt,midinf,funkg
common/bl1/permslit,visc,rc,uav,denom
common/bl2/alfit,a2fit,s,per,ped,rso,dif delta,delpslit
commorn/bl3/deltat,ws
dimension pms(10)
uav = pms(1)
if ((uav.le.0.05).or.(uav.gt.10)) then

chisqbis = 1.d23

returm
endif
call gromo(funkg,0.d0,1.d0,s1,midpnt)
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call gromo(funkg,1.d0,1.d32,s2,midinf)
denom = s1+s2

chisgbis = (permslit*visc/rc - denom)**2
return

end
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* To calculate local sieving coefficient for GBM
3 % 3 K % % % % ok % o ok ok ok ok 3k 3k ok ok ok ok ok ok ok 5k 3 R ok ok ok kok ok ok ek ok ok ok ok b ok ok ok ok ok ok

function tetabmloc(y,i)
implicit double precision(a-h,0-z), integer(i-n)
common/hemo/hqa,hcpa,hdp,hfkf,hgfr
common/solute/rs(40),phikc(40),phikd(40)
common/sieving/thetabm(100,40),thetasl(100,40)
common/path/xx(5002),qcs(40,5002),fjv(5002),nstepar
common/values/surf,delg,xchar,es,nrs,nsol,yl
common/bl1/permslit,visc,rc,uav,denom
dinf = 2.270647658d-22/rs(i)/visc
call cpand;v(y,cprot,wflux)
pe=wflux*phikc(i)*delg*xchar/(dinf*phikd(i))
k = y*nstepar+1
tets] = thetasl(k,i)
tetabmloc=phikc(i)/(tets] - (tetsl-phikc(i))*

$ dexp(-pe*(1+0.7366*((1-0.2*es)**11.9864)/(delg**1.2697))))
retum
end
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* To calculate local sieving coefficienis for slit
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function tetasloc(y,i)

implicit double precision(a-h,0-z), integer(i-n)

double precision perraslit,delpslit,unifinite,rso,visc
double precision dinf,rc,snum,s1,s2

external funcdg,funkg,funkgi,ft3d,funk,midinf,midpnt
common/hemo/hqa,hcpa,hdp,hfkf,hgfr
common/solute/rs(40),phikc(40),phikd(40
common/values/surf,delg,xchar,es,nrs,nsol,yl
common/bl1/permslit,visc,rc,uav,denom
common/bl2/alfit,a2fit,s,per,ped,rso,dif delta,delpslit
common/bl3/deltat,ws

call cpandjv(y,cprot,wflux)

delpslit = wflux/es/permslit

uinfinite = 1.d32

rso = rs(i)

dif = 2.270647658e-22/rs(i)/visc

call gromo(funk,rso/rc,uinfinite,snum,midinf)
tetasloc = snum/denom

end
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* To find protein concentrations along the capillary
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subroutine cpandjv(y,cprot,wflux)

implicit double precision(a-h,0-z), integer (i-n)
external funcdp
common/hemo/hqa,hcpa,hdp,hfkf, hgfr
common/array/params(10),lista(10)
common/values/surf,delg,xchar,es,nrs,nsol,yl

yl=y
cpacc = 1.d-10
cpinf = 0.d0

discrim = 1.629d0**2 + 4.d0*0.2935d0*hdp

cpsup = -(1.629d0 - dsqrt(discrim))/(2*0.2935d0)/hcpa
cp = rtnewt(funcdp,cpinf,cpsup,cpacc)

cprot=cp*hcpa

wflux = hfkf*(hdp-1.629e0*cprot-0.2935e0*cprot**2)/(surf*6.0e7)
if (wflux .le. 0.e0) then

cprot = cprotmax

wflux = 0.e0

endif

return

end

subroutine funcdp(var,f,df)

implicit double precision(a-h,o-z), integer(i-n)

common/hemo/hqa,hcpa,hdp,hfkf, hgfr

common/values/surf,delg,xchar,es,nrs,nsol,yl

aal=1.629d0

aa2=0.2935d0

al=aal*hcpa/hdp

a2=aa2*hcpa*hcpa/hdp

delta = al **2.d0+ 4.d0*a2

sdel=dsqrt(delta)

funcl=-1.0d0 - a1/2*diog(abs(1-al-a2))+(al**2+2*a2)/(2*sdel)*
$  dlog(abs((2*a2+al+sdel)/(2*a2+al-sdel)))

rhs= func1+hfkf*hdp*yl/hqa

cp = var

func=-1/cp + al/2*dlog(abs(cp**2/(1-al*cp-a2*cp**2)))
$ +(al**2+2*a2)/(2*sdel)*dlog(abs((2*a2*cp+al +sdel)/
$ (2*a2*cp+al-sdel)))

f= func - rhs

df = 1/(cp**2)/(1-al*cp-a2*cp**2)

return

end
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* Subroutines for slit diaphragm, adapted from Drumond and Deen (1995)
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function funkg(u)
* Integrand in calculation of average hydraulic permeability
implicit double precision(a-h,0-z)
external ft3d
common/bl 1/permslit,visc,rc,uav,denom
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common/blZlalﬁt,a2ﬁt,s,per,ped,rso,dif,delta,delpslit
common/bi3/deltat,ws

pi = 4*datan(1 .do0)

z = dlog(s)

exterm:dexp(—o.5d0*((dlog(u)-dlog(uav))/z)**2)

sum = dexp(dlog(uav) + 2**2/2

funkg = 1/dsqn(2*pi)/zju*cxterm*(1 .+u)**2l(1.+sum)/ft3d(u)
end

function ft3d(u)
implicit double precision(a-h,0-2)
* fi3d = total dimensionless resistance
* u corresponds to w/rc
commonlblllpennslit,visc,rc,uav,denom
common/bl2lalﬁt,a2ﬁt,s,per,ped,rso,dif,delta,delpslit
common/bl3/deltat,ws
pi = 4.*datan(1.d0)
w = 1c/ws
plw = (u+l.)*rw
rl = 1./(u+l.)
fp= 3.d0*deltat/ws*plw
if ((plw.le.4.).and.(rl.ge.O.1)) then
£3d = fladder(rl,plw)

else
f0= 3.*plw**2*((pi+2.*datan(rl/sqrt(1.-rl**2)))/
$ sqn(l.-rl**2)-pi)-6.*rw*plw
plwl = 4.
il = rw/plwl
if (rl1.ge.0.1) then
f1 = fladder(rll,plwl)
£3d = fO+(f1-f0)/0.25/plw
else
ri2=0.1
plw2 = twi/rl2
f2 = fladder(rl2,plw2)
£3d = fO+(£2-f0)/0.1*rl
endif
endif
ft3d = f3d+fp
end
function fladder(rl,plw)

implicit double precision(a-h,0-z)

pi = 4.*datan(1.d0)

if (r1.1t.0.7) then
c= 0.336+2.74%11-2.74*1**2+3.16%11**3
d = 0.0639/r140.454-0.652*r1+0. 152*11**2
fladder = 10.d0**(c+d*rl*plw)

else
a = 9.d0*pi/4.d0/dsqrt(2.d0)*

$ 10.d0**(0.144*plw+0.011 1*plw**2)

b = -2.5d0+0.1 l*plw+0.()0957*plw**2
fladder = a*(1.d0-r1)**b

endif
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end

function funk(u)

* Integrand in calculation of average sieving coefficient
* u corresponds to w/rc

implicit double precision(a-h,0-z)
external funkg
common/bl1/nermslit,visc,rc,uav,denom
common/bl2/aifit,a2fit,s,per,ped,rso,dif,delta.delpslit
common/bl3/deltat,ws
velslit=delpslit*rc*(u+1.)/visc/ft3d(u)
per = velslit-rc/dif

ped = per*delta/rc

a = a2fit*(u+1.)/u+alfit*(u+l.)

d = 1.-dexp(-ped)*(1.-dexp(-a*per))
theta = (u-rso/rc)/(u-d*rso/rc)

funk = theta*funkg(u)

end
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*

Subroutines to determine integrals of solute and solvent fluxes
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SUBROUTINE grombflux(a,b,ss,choose)
implicit double precision(a-h,0-z),integer(i-n)
external choose
common/values/surf,delg,xchar,es,nrs,nsol,yl
parameter (eps = 1.d-6, jmax = 14, jmaxp = jmax+1, k=5, km=k-1)
dimension h(JMAXP),s(JMAXP)
h(1)=1.
do 11 j=1,JIMAX
call trapzd(a,b,s(j),j,choose)
if (j.ge.K) then
call polint(h(j-KM),s(j-KM),K,0.,ss,dss)
if (abs(dss).le.EPS*abs(ss)) return
endif
s(j+1)=s(j)
h(j+1)=0.25*h(j)
continue
pause 'too many steps in grombflux'

SUBROUTINE trapzd(a,b,s,n,choose)

implicit double precision(a-h,u-z),integer(i-n)

external choose

common/hemo/hqa,hcpa,hdp,hfkf,hgfr
common/solute/rs(40),phikc(40),phikd(40)
common/path/xx(5002),qcs(40,5002),fjv(5002),nstepar
common/values/surf,delg,xchar,es,nrs,nsol,yl

if (n.eq.1) then
funca = choose(1)
funcb = choose(nstepar+1)
s=0.5*(b-a)*(funca+funcb)
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else
it=2**(n-2)
tnm=it
del=(b-a)/tnm
x=a+0.5*del
sum=0.
do 11 j=1,it
k = nstepar*(j-0.5)/mm + 1
funcx = choose(k)
sumn=sum+funcx
x=x+del
11 continue
s=0.5*(s+(b-a)*sum/tnm)
endif
return
END

function funcjv(k)

implicit double precision(a-h,0-z),integer(i-n)
common/path/xx(5002),qcs(40,5002),fjv{5002),nstepar
funciv=fjv(k)

return

end

function funcjs(k)

implicit double precision(a-h,o0-z),integer(i-n)
common/path/xx(5002),qcs(40,5002),fjv(5002),nstepar
common/values/surf,delg,xchar,es,nrs,nsol,yl
common/sieving/thetabm(100,40),thetasl(100,40)
irs=nsol

tetbm=thetabm(k,irs)

tetsl=thetasl(k,irs)

funcjs = qcs(irs+1,k)*tetbm*tetsl *fjv(k)/qcs(1,k)
return

end
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* To calculate derivative of the product Q(y) and Q*Cs(y)
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subroutine derivs(pos,qci,derivee)
* qci(1) is actually the flow rate Q itself
implicit double precision(a-h,0-z),integer(i-n)
common/hemo/hga,hcpa,hdp,hfkf,hgfr
common/values/surf,delg,xchar,es,nrs,nsol,yl
common/solute/rs(40),phikc(40),phikd(40)
common/sieving/thetabm(100,40),thetas!(100,40)
common/path/xx(5002),qcs(40,5002),fjv(5002),nstepar
dimension derivee(40),qci(40)
derivee(1) = -hfkf*(hdp-1.629*(hqa*hcpa)/qci(1) - 0.2935*
$ (hqa*hcpa/qei(1))**2)

do 20 irs=1,nrs

k = pos*astepar + 1

tetsl = thetasl(k,irs)
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tetbm = thetabm(k,irs)

derivee(irs+1) = derivee(1)*tetbm*tetsl*qci(irs+1)/qci(1)
continue
retum
end
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Subroutines for integration
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subroutine qgromoy(func,a,b,ss,choose)
implicit double precision(a-h,0-z)
external func,choose
parameter (eps=1.d-6, jmax=14, jmaxp=jmax+1, k=5, km=k-1)
dimension h(jmaxp),s(jmaxp)
h(i)=1.
do 11 j=1,jmax
call choose(func,a,b,s(j),j)
if (j.ge.k) then
call polint(h(j-km),s(j-km),k,0.,ss,dss)
if (dabs(dss).le.eps*dabs(ss)) return
endif
s(j+1)=s(j)
~ h@+1)=h@)P.
continue
pause 'tco many steps in gromo'
end

subroutine polint(xa,ya,n,x,y,dy)
implicit double precision(a-h,0-z)
parameter (nmax=10)

dimension c(nmax),d(nmax),xa(n},ya(n)

ns=1
dif=dabs(x-xa(1))
do 11 i=1,n
dift=dabs(x-xa(i))
if (dift.lt.dif) then
ns=i
dif=dift
endif
c(i)=ya(i)
d(=ya(i)
continue
y=ya(ns)
ns=ns-1
do 13 m=1,n-1
do 12 i=1,n-m
ho=xa(i)-x
hp=xa(i+m)-x
w=c(i+1)-d(i)
den=ho-hp
if(den.eq.0.)pause 'failure in polint’
den=w/den

d(i)=hp*den

222



12

13

I1

c(i)=ho*den

continue
if (2*ns.lt.n-m)then
dy=c(ns+1)
else
dy=d(ns)
ns=ns-1
endif
_y=y+dy
continue
return
end

subroutine midpnt(func,a,b,s,n)

implicit double precision(a-h,0-z)

external func

if (n.eq.1) then
s=(b-a)*func(0.5*(a+b))

it=3**(n-2)

tnm=it

dei=(b-a)/(3.*tnm)

ddel=del+del

x=a+0.5%*del

sum=0.

do 11 j=1,it
sum=sum+func(x)
x=x+ddel
sum=sum+func(x)
x=x+del

continue

s=(s+(b-a)*sum/tnm)/3.

else

endif
return
end

subroutine midinf(funk,aa,bb,s,n)

implicit double precision(a-h,0-z)

external funk

func(x)=funk(1.d0/x)/x**2

b=1./aa

a=1./bb

if (n.eq.1) then
s=(b-a)*func(0.5*(a+b))

it=3**(n-2)

tnm=it

del=(b-a)/(3.*tnm)

ddel=del+del

x=a+0.5*del

sum=0.

do 11 j=1,it
sum=sum-+func(x)
x=x+ddel

else
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sum=sum-+func(x)
x=x-+del
continue
s=(s+(b-a)*sum/tnm)/3.
endif
return
end

function rtnewt(funcd,x1,x2,xacc)

* Modified from original subroutine in Numerical Recipes

10

11

implicit double precision(a-h,0-z)
external funcd
parameter (jmax=100)
x2in=x2
icycle=0
continue
icycle=icycle+1
if (icycle.eq.2) x2=0.5*x2in
if (icycle.eq.3) x2=2.*x2in
if (icycie.gt.3) pause
‘tnewt did not converge for given initial guesses'

rtnewt=.5*(x14x2)

do 11 j=1,jmax
call funcd(rtnewt,f,df)
dx=f/df
rtnewt=rtnewt-dx
if((x1-rtnewt)*(rtnewt-x2).1t.0.) goto 10
if(dabs(dx).It.xacc) return

continue

pagse ‘rinewt exceeded maximum iterations'

en
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*

Subroutines for differential equations (Runge-Kutta scheme)
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subroutine rkdumb(vstart,x1,x2,nstep)
implicit double precision(a-h,o-z),integer(i-n)
parameter(nstpmx=10000)
common/path/xx(5002),qcs(40,5002),jv(5002),nstepar
common/hemo/hqa,hcpa,hdp,hfkf,hgfr
common/values/surf,delg,xchar,es,nrs,nsol,yl
dimension vstart(40),v(40),dv(40)
do 10 irs=1,nrs+1

v(irs) = vstart(irs)

qes(irs, 1) = v(irs)
continue
xx(1) =x1
x=xl
h = (x2-x1)/nstep
do 20 k=1,nstep

call derivs(x,v,dv)

call rk4(v,dv,x,h,v)
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if ((x+h) .eq. x) PAUSE 'Stepsize not significant in RKDUMB'
x=x+h
xx(k+1)=x
do 30 irs=1,nrs+1
qes(irs,k+1) = v(irs)
continue
continue
do 40 irs=1,nrs+1
qcs(irs,nstep+2)=qcs(irs,nstep+1)
continue
return
end

subroutine rk4(y,dydx,x,h,yout)
implicit double precision(a-h,0-z),integer(i-n)
common/hemo/hqa,hcpa,hdp,hfkf hgfr
common/values/surf,delg,xchar,es,nrs,nsol,yl
g;lmen;lsngn y(40),yout(40),dydx(40),yt(40), dyt(40) dym(40)
h6 = h/6.0
xh=x+hh
do 10 irs=1,nrs+1
yt(irs) = y(irs) + hh*dydx(irs)
continue
call derivs(xh,yt,dyt)
do 20 irs=1,nrs+1
yt(irs) = y(irs) + hh*dyt(irs)
continue
call derivs(xh,yt,dym)
do 30 irs=1,nrs+1
yt(irs) = y(irs) + h*dym(irs)
dym(irs) = dyt(irs)+dym(irs)
continue
xhh=x+h
call derivs(xhh,yt,dyt)
do 40 irs=1,nrs+1
yout(irs) = y(irs) + h6*(dydx(irs)+dyt(irs)+2.0*dym(irs))
continue
return
end
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*

Subroutines for Powell's method, from Numerical Recipes (Press et al, 1989)
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C POWELL'S ROUTINE

SUBROUTINE POWELLDbis(P,XI,N,NP,FTOL,ITER,FRET)
implicit double precision (a-h,0-z), integer (i-n)

PARAMETER (NMAX=20,ITMAX=200)

DIMENSION P(10),X1(10,10),PT(nmax),PTT(nmax),XIT(nmax)

FRET = chisqbis(P)
DO 11 J=1,N
PT(J)=P(QJ)
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11 CONTINUE
ITER=0
1 ITER=ITER+l
FP=FRET
IBIG=0
DEL=0.
DO 13 1=1,N
DO 12 J=1,N
XIT()=XI1(J,)
12 CONTINUE
FPTT=FRET
CALL LINMINDbis(P,XIT,N,FRET)
IF(ABS(FPTT-FRET).GT.DEL)THEN
DEL=ABS(FPTT-FRET)
IBIG=I
ENDIF
13 CONTINUE
IF(2.*ABS(FP-FRET).LE.FTOL*(ABS(FP)+ABS(FRET)))RETURN
IF(ITER.EQ.ITMAX) then
print*, 'Powell exceeding maximum iterations.’'
return
endif
DO 14 J=1,N
PTT(J)=2.*P(J)-PT(J)
XIT(J)=P(J)-PT(J)
PT(J)=P(J)
14 CONTINUE
FPTT =chisqbis(PTT)
IF(FPTT.GE.FP)GO TO 1
T=2.%(FP-2.*FRET+FPTT)*(FP-FRET-DEL)**2-DEL*(FP-FPTT)**2
IF(T.GE.0.) GO TO 1
CALL LINMINbis(P,XIT,N,FRET)
DO 15 J=1,N
X1(J,IBIG)=XIT(J)
CONTINUE

GOTO1
END

15

SUBROUTINE LINMINDbis(P,XI,N,FRET)
implicit double precision (a-h,0-z), integer (i-n)
PARAMETER (NMAX=50,TOL=1.d4)
EXTERNAL F1DIMbis
DIMENSION P(n),XI(n)
COMMON /F1ICOM/ PCOM(NMAX), XICOM(NMAX),ncom
NCOM=N
DO 11 J=1,N
PCOMQ)=P(J)
XICOM@)=XI(J)
11 CONTINUE
AX=0.
XX=1.
CALL MNBRAKDbis(AX,XX,BX,FA FX,FB)
FRET=BRENTbis(AX,XX,BX,TOL,XMIN)
DO 12 )J=1,N
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XI(N)=XMIN*XI(J)
P@)=P()+XI(J)
12 CONTINUE
RETURN
END

SUBROUTINE MNBRAKDbis(AX,BX,CX,FA FB,FC)
implicit double precision (a-h,o-z), inieger (i-n)
PARAMETER (GOLD=1.618034, GLIMIT=100., TINY=1.d-20)

FA=f1dimbis(AX)
FB=f1dimbis(BX)
IF(FB.GT.FA)THEN

DUM=AX

AX=BX

BX=DUM

DUM=FB

FB=FA

FA=DUM

ENDIF
CX=BX+GOLD*(BX-AX)
FC=f1dimbis(CX)

1 IF(FB.GE.FC)THEN
R=(BX-AX)*(FB-FC)
Q=(BX-CX)*(FB-FA)
U=BX-((BX-CX)*Q-(BX-AX)*R)/(2.*SIGN(MAX(ABS(Q-R),TINY),Q-R))
ULIM=BX+GLIMIT*(CX-BX)
IF(BX-U)*(U-CX).GT.0.)THEN

=f1dimbis(U)
IF(FU.LT.FC)THEN
AX=BX
FA=FB
BX=U
=FU
RETURN
ELSE IF(FU.GT.FB)THEN
CX=U
FC=FU
RETURN
ENDIF
U=CX+GOLD*(CX-BX)
FU=f1dimbis(U)

ELSE IF((CX-U)*(U-ULIM).GT.0.)THEN
FU=f1dimbis(U)
IF(FU.LT.FC)THEN

BX=CX

CX=U
U=CX+GOLD*(CX-BX)
FB=FC

FC=FU

FU=f1dimbis(U)

ENDIF

ELSE IF((U-ULIM)*(ULIM-CX).GE.0.)THEN
U=ULIM
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FU=f1dimbis(U)
ELSE
U=CX+GOLD*(CX-BX)
FU=f1dimbis(U)
ENDIF
AX=BX
BX=CX
CX=U
FA=FB
FB=FC
FC=FU
GOTO1
ENDIF
RETURN
END

FUNCTION BRENTbis(AX,BX,CX,TOL,XMIN)
implicit double precision (a-h,0-z), integer (i-n)
PARAMETER (ITMAX=100,CGOLD=.3819660,ZEPS=1.d-10)

A=MIN(AX,CX)
B=MAX(AX,CX)
V=BX

w=V

X=V

E=0.
FX=f1dimbis(X)
FV=FX

FW=FX
DO 11 ITER=1,ITMAX
XM=0.5%(A+B)
TOL1=TOL*ABS(X)+ZEPS
TOL2=2.*TOL1
IF(ABS(X-XM).LE.(TOL2-.5%(B-A))) GOTO 3
IF(ABS(E).GT.TOL1) THEN
R=(X-W)*(FX-FV)
Q=(X-V)*(FX-FW)
P=(X-V)*Q-(X-W)*R
Q=2.*(Q-R)
IF(Q.GT.0.) P=-P
Q=ABS(Q)
ETEMP=E
E=D
IF(ABS(P).GE.ABS(.5*Q*ETEMP).OR.P.LE.Q*(A-X).OR.

U=X+D
IF(U-A.LT.TOL2 .OR. B-U.LT.TOL2) D=SIGN(TOL1,XM-X)
GOTO 2
ENDIF
IF(X.GE.XM) THEN
E=A-X
ELSE
E=B-X

* P.gE.Q*(B-X)) GOTO 1
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ENDIF
D=CGOLD*E
2 IF(ABS(D).GE.TOL1) THEN
U=X+4D
ELSE
U=X+SIGN(TOL1,D)
ENDIF
FU= f1dimbis(U)
IF(FU.LE.FX) THEN
IF(U.GE.X) THEN
A=X
ELSE
B=X
ENDIF
V=W
=FW
W=X
FW=FX
X=U
=FU
ELSE
IF(U.LT.X) THEN
A=U
ELSE
B=U
ENDIF
IF(FU.LE.FW .OR. W.EQ.X) THEN
V=W
FV=FW
w=U
FW=FU
ELSE IF(FU.LE.FV .OR. V.EQ.X .OR. V.EQ.W) THEN
=U
FV=FU
ENDIF
ENDIF
11 CONTINUE
¢ PAUSE 'Brent exceed maximum iterations.'
3 XMIN=X
BRENTDbis=FX
RETURN
END

FUNCTION F1DIMbis(X)

implicit double precision (a-h,0-z), integer (i-n)
PARAMETER (NMAX=50)
COMMON /F1COM/ PCOM(NMAX), XICOM(NMAX),ncom
DIMENSION XT(nmax)
DO 11 J=1NCOM

XT(J)=PCOMI+X*XICOM(J)

CONTINUE

F1DIMbis = chisqbis(XT)
RETURN
END

11
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