
MIT Open Access Articles

Storage-Optimized Data-Atomic Algorithms for Handling
Erasures and Errors in Distributed Storage Systems

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Konwar, Kishori M., N. Prakash, Erez Kantor, Nancy Lynch, Muriel Medard, and
Alexander A. Schwarzmann. “Storage-Optimized Data-Atomic Algorithms for Handling Erasures
and Errors in Distributed Storage Systems.” 2016 IEEE International Parallel and Distributed
Processing Symposium (IPDPS) (May 2016).

As Published: http://dx.doi.org/10.1109/IPDPS.2016.55

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: http://hdl.handle.net/1721.1/112674

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/112674
http://creativecommons.org/licenses/by-nc-sa/4.0/

Storage-Optimized Data-Atomic Algorithms for Handling Erasures and Errors in
Distributed Storage Systems

Kishori M. Konwar1, N. Prakash1, Erez Kantor2, Nancy Lynch1, Muriel Médard1, and Alexander A. Schwarzmann3

1Department of EECS, MIT, MA, USA, 2Department of Computer Science, NEU, MA, USA,
3Department of CSE, UConn., Storrs, CT, USA

Abstract—Erasure codes are increasingly being studied in
the context of implementing atomic memory objects in large
scale asynchronous distributed storage systems. When com-
pared with the traditional replication based schemes, erasure
codes have the potential of significantly lowering storage and
communication costs while simultaneously guaranteeing the
desired resiliency levels. In this work, we propose the Storage-
Optimized Data-Atomic (SODA) algorithm for implementing
atomic memory objects in the multi-writer multi-reader setting.
SODA uses Maximum Distance Separable (MDS) codes, and
is specifically designed to optimize the total storage cost for
a given fault-tolerance requirement. For tolerating f server
crashes in an n-server system, SODA uses an [n, k] MDS
code with k = n − f , and incurs a total storage cost of n

n−f
.

SODA is designed under the assumption of reliable point-to-
point communication channels. The communication cost of a
write and a read operation are respectively given by O(f2)
and n

n−f
(δw + 1), where δw denotes the number of writes

that are concurrent with the particular read. In comparison
with the recent CASGC algorithm [1], which also uses MDS
codes, SODA offers lower storage cost while pays more on the
communication cost.

We also present a modification of SODA, called SODAerr, to
handle the case where some of the servers can return erroneous
coded elements during a read operation. Specifically, in order
to tolerate f server failures and e error-prone coded elements,
the SODAerr algorithm uses an [n, k] MDS code such that k =
n − 2e − f . SODAerr also guarantees liveness and atomicity,
while maintaining an optimized total storage cost of n

n−f−2e
.

Keywords-atomicity, muti-writer multi-reader, codes for stor-
age, storage cost, communication cost

I. INTRODUCTION

The demand for efficient and reliable large-scale distributed
storage systems (DSSs) has grown at an unprecedented
scale in the recent years. DSSs that store massive data
sets across several hundreds of servers are increasingly
being used for both industrial and scientific applications,
ranging from sequencing genomic data to those used for
e-commerce. Several applications demand concurrent and
consistent access to the stored data by multiple writers and
readers. The consistency model we adopt is atomicity. Atomic
consistency gives the users of the data service the impression
that the various concurrent read and write operations happen
sequentially. Also, ability to withstand failures and network
delays are essential features of any robust DSS.

The traditional solution for emulating an atomic fault-
tolerant shared storage system involves replication of data
across the servers. Popular replication-based algorithms
appear in the work by Attiya, Bar-Noy and Dolev [2] (we
refer to this as the ABD algorithm) and also in the work
by Fan and Lynch [3] (which is referred to as the LDR
algorithm). Replication based strategies incur high storage
costs; for example, to store a value (an abstraction of a data
file) of size 1 TB across a 100 server system, the ABD
algorithm replicates the value in all the 100 servers, which
blows up the worst-case storage cost to 100 TB. Additionally,
every write or read operation has a worst-case communication
cost of 100 TB. The communication cost, or simply the cost,
associated with a read or write operation is the amount of total
data in bytes that gets transmitted in the various messages
sent as part of the operation. Since the focus in this paper is
on large data objects, the storage and communication costs
include only the total sizes of stable storage and messages
dedicated to the data itself. Ephemeral storage and the cost
of control communication is assumed to be negligible. Under
this assumption, we further normalize both the storage and
communication costs with respect to the size of the value,
say v, that is written, i.e., we simply assume that the size
of v is 1 unit (instead of 1 TB), and say that the worst-case
storage or read or write cost of the ABD algorithm is n units,
for a system consisting of n servers.

Erasure codes provide an alternative way to emulate fault-
tolerant shared atomic storage. In comparison with replication,
algorithms based on erasure codes significantly reduce both
the storage and communication costs of the implementation.
An [n, k] erasure code splits the value v of size 1 unit into
k elements, each of size 1

k units, creates n coded elements,
and stores one coded element per server. The size of each
coded element is also 1

k units, and thus the total storage cost
across the n servers is n

k units. For example, if we use an
[n = 100, k = 50] MDS code, the storage cost is simply 2
TB, which is almost two orders of magnitude lower than
the storage in the case of ABD. A class of erasure codes
known as Maximum Distance Separable (MDS) codes have
the property that value v can be reconstructed from any k out
of these n coded elements. In systems that are centralized
and synchronous, the parameter k is simply chosen as n− f ,
where f denotes the number of server crash failures that

need to be tolerated. In this case, the read cost, write cost
and total storage cost can all be simultaneously optimized.
The usage of MDS codes to emulate atomic shared storage in
decentralized, asynchronous settings is way more challenging,
and often results in additional communication or storage costs
for a given level of fault tolerance, when compared to the
synchronous setting. Even then, as has been shown in the
past [1], [4], significant gains over replication-based strategies
can still be achieved while using erasure codes. In [1] and [4]
contain algorithms based on MDS codes for emulating fault-
tolerant shared atomic storage, and offer different trade-offs
between storage and communication costs.

A. Our Contributions

In this work we propose the Storage-Optimized Data-
Atomic (SODA) algorithm for implementing atomic memory
objects. SODA uses [n, k] MDS codes, and is specifically
designed to optimize the total storage cost for a given fault
tolerance level. We also present a modification of SODA,
called SODAerr, in order to handle the case where some of
the non-faulty servers can return erroneous coded elements
during a read operation. A summary of the algorithms and
their features are provided below:

The SODA Algorithm: SODA assumes reliable point-to-
point communication channels between any two processes
- the collection of all readers, writers and servers - in the
system. In a system consisting of n servers, for tolerating
f, 1 ≤ f ≤ n−1

2 server crashes, SODA uses an [n, k] MDS
code with k = n − f . Each server at any point during the
execution of the algorithm stores at most one coded element,
and thus, SODA has a worst-case total storage cost of n

n−f .
We prove the liveness and atomicity properties of SODA in
the multi-writer multi-reader (MWMR) setting, for executions
in which at most f servers crash. Any number of writer or
reader processes may fail during the execution.

We construct a message-disperse primitive and use it in
the write and read operations in SODA. The primitive is used
by a process p to disperse a message m to all the non-faulty
servers. The message m can be either meta-data alone or
one that involves the value v along with a tag (where the
tag is used to identify the version associated with the value);
slightly differing implementations are used in the two cases.
Meta-data refers to data such as ids, tags etc. which are used
by various operations for book-keeping. In situations where
m consists only of meta-data, the primitive ensures that if a
server s ∈ S receives m, then the same message m is sent to
every server s′ ∈ S by some process in the set {p}∪S. Thus
if s′ is non-faulty, it eventually receives m since the point-to-
point channels are assumed reliable. During write operations,
the writer uses the message-disperse primitive where m is
the value v to be written. In this case, the primitive ensures
that every non-faulty server receives the coded element that
is targeted for local storage in that server. The primitive can
tolerate up to f server failures and also the failure of the

process p. The idea here is to ensure that the uncoded value
v is sent to f + 1 servers, so that at least one non-faulty
server receives v. This non-faulty server further computes
and sends the corresponding coded elements to the remaining
n− f servers. We show that the communication cost for a
write operation, implemented on top of the message-disperse
primitive, is upper bounded by 5f2.

The read operations in SODA use a reader-registration
and relaying technique similar to the one used in [5], where
the authors discuss the use of erasure codes for Byzantine
fault tolerance. For successful decoding, a reader must
collect k coded elements corresponding to one particular
tag. The reader registers itself with all non-faulty servers,
and these servers send their respective (locally stored) coded
elements back to the reader. Further, each non-faulty server
also sends to the reader the coded elements it receives
as part of concurrent write operations. Such relaying, by
the servers, is continued until the reader sends a message
acknowledging read completion. SODA uses a server-to-
server communication mechanism to handle the case where
a reader might fail after invoking a read operation. This
internal communication mechanism exchanges only metadata
and ensures that no non-faulty server relays coded elements
forever to any reader. No such mechanism is used in [5] to
handle the case of a failed reader. The read cost of SODA
is given by n

n−f (δw + 1), where δw denotes the number of
writes that are concurrent with the particular read. Since δw
might vary across different reads, the cost also varies across
various reads, and hence we say that the read cost is elastic.
The parameter δw appears only as part of the analysis; its
knowledge is not necessary to ensure liveness or atomicity.

We also carry out a latency analysis of successful
write/read operations in SODA. The analysis assumes that
latency arises only from the time taken for message delivery,
and that computations at processes are fast. Under the
assumption that the delivery time of any message is upper
bounded by ∆ time units, we show that every successful
write and read operation completes in 5∆ and 6∆ time units,
respectively. The read time in this model of latency analysis
turns out to be independent of the number of concurrent
writers in the system.

The SODAerr Algorithm: The SODAerr algorithm is
designed to handle the additional case where some of the
servers can return erroneous coded elements during a read
operation. The added feature of the algorithm is useful in
large scale DDSs, where commodity hard disks are often
used to achieve scalability of storage at low costs. In such
systems, a coded element accessed by the server from its
local hard-disk can be erroneous, i.e., the server obtains
an arbitrary valued element instead of what was expected;
however the server is not aware of the error when it sends this
element back to the reader. The SODAerr algorithm provides
a framework for tackling local disk read errors via the overall

erasure code across the various servers, without the need
for expensive error protection mechanisms locally at each
server. Specifically, in order to tolerate f server failures (like
in SODA) and e error-prone coded elements, SODAerr uses
an [n, k] MDS code such that n− k = 2e+ f . We assume
that no error occurs either in meta data or in temporary
variables, since these are typically stored in volatile memory
instead of local hard disk. SODAerr also guarantees liveness
and atomicity in the MWMR setting, while maintaining
an optimized total storage cost of n

n−f−2e . The write cost
is upper bounded by 5f2, and the read cost is given by

n
n−f−2e (δw + 1).

B. Comparison with Other Algorithms, and Related Work

We now compare SODA with the algorithms in [1] and
[4], which are also based on erasure codes for emulating
fault-tolerant atomic memory objects. In [1], the authors
provide two algorithms - CAS and CASGC - based on [n, k]
MDS codes, and these are primarily motivated with a goal of
reducing the communication costs. Both algorithms tolerate
up to f = n−k

2 server crashes, and incur a communication
cost (per read or write) of n

n−2f . The CAS algorithm is a
precursor to CASGC, and its storage cost is not optimized. In
CASGC, each server stores coded elements (of size 1

k) for up
to δ+1 different versions of the value v, where δ is an upper
bound on the number of writes that are concurrent with a read.
A garbage collection mechanism, which removes all the older
versions, is used to reduce the storage cost. The worst-case
total storage cost of CASGC is shown to be n

n−2f (δ + 1).
Liveness and atomicity of CASGC are proved under the
assumption that the number of writes concurrent with a
read never exceeds δ. In comparison, SODA is designed to
optimize the storage cost rather than communication cost.
We now note the following important differences between
CASGC and SODA. (i) In SODA, we use the parameter
δw, which indicates the number of writes concurrent with
a read, to bound the read cost. However, neither liveness
nor atomicity of SODA depends on the knowledge of δw;
the parameter appears only in the analysis and not in the
algorithm. (ii) While the effect of the parameter δ in CASGC
is rather rigid, the effect of δw in SODA is elastic. In
CASGC, any time after δ+1 successful writes occur during an
execution, the total storage cost remains fixed at n

n−2f (δ+1),
irrespective of the actual number of concurrent writes during
a read. (iii) For a given [n, k] MDS code, CASGC tolerates
only up to f = n−k

2 failures, whereas SODA tolerates up
to f = n − k failures. A comparison of the performance
numbers at fmax =

⌊
n−1

2

⌋
is show in Table I. Note that

fmax is the maximum number of failures for which either
of these algorithms can be designed. Also note that fmax

denotes the maximum of failures that can be tolerated by
the ABD algorithm, as well.

In [4], the authors present the ORCAS-A and ORCAS-B

Algorithm Write Cost Read Cost Total storage cost
ABD n n n

CASGC n
2

n
2

n
2

(δ + 1)
SODA O(n2) ≤ 2(δw + 1) ≤ 2

Table I
PERFORMANCE COMPARISON OF ABD, CASGC AND SODA, FOR
f = fmax = n

2
− 1. WE ASSUME n TO BE AN EVEN NUMBER.

algorithms for asynchronous crash-recovery models. In this
model, a server is allowed to undergo a temporary failure
such that when it returns to normal operation, contents of
temporary storage (like memory) are lost while those of
permanent storage are not. Only the contents of permanent
storage count towards the total storage cost. Furthermore
they do not assume reliable point-to-point channels. The
ORCAS-A algorithm offers better storage cost than ORCAS-
B when the number of concurrent writers is small. Like
SODA, in ORCAS-B also coded elements corresponding to
multiple versions are sent by a writer to reader, until the read
completes. However, unlike in SODA, a failed reader might
cause servers to keep sending coded elements indefinitely.
We do not make an explicit comparison of storage and
communication costs between SODA and ORCAS because
of the difference in the models.

In [6], the authors consider algorithms that use erasure
codes for emulating regular registers. Regularity [7], [8]
is a weaker consistency notion than atomicity. Distributed
storage systems based on erasure codes, and requiring concur-
rency/consistency are also considered in [9]. Applications of
erasure codes to Byzantine fault tolerant DSSs are discussed
in [5], [10], [11]. RAMBO [12] and DynaStore [13] are
implementations of MWMR atomic memory objects in
dynamic DSSs, where servers can enter or leave the system.

Document Structure: Models and definitions appear in
Section II. Implementation and properties of the message-
disperse primitives are discussed in Section III. Description
and analysis of the SODA algorithm are in Sections IV and
V, respectively. SODAerr algorithm is presented in Section
VI. Section VII concludes. Due to space constraints, proofs
are omitted.

II. MODELS AND DEFINITIONS

In this section, we describe the models of computation,
explain the concepts of atomicity, erasure codes, and the
performance metrics used in the paper.

Asynchrony and Crash Failures: We consider a dis-
tributed system consisting of asynchronous processes of three
types: a set of readers and writers, called clients, and a set
of n servers. Each of these processes is associated with a
unique identifier, and we denote the sets of IDs of the readers,
writers and servers as R, W and S, respectively. The set
of IDs forms a totally ordered set. The reader and writer
processes initiate read and write operations, respectively,
and communicate with the servers using messages. Also,
any client initiates a new operation only after the previous

operations, if any, at the same client has completed. We refer
to this as the well-formedness property of an execution. All
processes run local computations until completion or crash
failure. Any of the number of clients can fail. We assume up
to f , such that, f ≤ n−1

2 , servers (out of the total n) may
crash during any execution.

We assume that every client is connected to every server
through a reliable communication link. This means that as
long as the destination process is non-faulty, any message sent
on the link is guaranteed to eventually reach the destination
process. The model allows the sender process to fail after
placing the message in the channel; message-delivery depends
only on whether the destination is non-faulty. We also assume
reliable connectivity between every pair of servers in the
system. We do not make any assumption regarding relative
order of message delivery in the same channel.

Liveness: By liveness, we mean that during any well-
formed execution of the algorithm, any read or write operation
initiated by non-faulty reader or writer completes, despite the
crash failure of any other clients and up to f server crashes.

Atomicity: A shared atomic memory can be emulated by
composing individual atomic objects. Therefore, we aim to
implement only one atomic read/write memory object, say x,
on a set of servers. The object value v comes from some set
V ; initially v is set to a distinguished value v0 (∈ V). Reader
r requests a read operation on object x. Similarly, a write
operation is requested by a writer w. Each operation at a non-
faulty client begins with an invocation step and terminates
with a response step. An operation π is incomplete in an
execution when the invocation step of π does not have the
associated response step; otherwise we say that π is complete.
In an execution, we say that an operation (read or write)
π1 precedes another operation π2, if the response step for
π1 precedes the invocation step of π2. Two operations are
concurrent if neither precedes the other. The following lemma
is a restatement of the sufficiency condition for atomicity
presented in [14].

Lemma 2.1: For any execution of a memory service, if
all the invoked read and the write operations are complete,
then the operations can be partially ordered by an ordering
≺, so that the following properties are satisfied:

P1. The partial order (≺) is consistent with the external
order of invocation and responses, i.e., there are no
operations π1 and π2, such that π1 completes before π2

starts, yet π2 ≺ π1.
P2. All operations are totally ordered with respect to the

write operations, i.e., if π1 is a write operation and π2

is any other operation then either π1 ≺ π2 or π2 ≺ π1.
P3. Every read operation ordered after any writes returns

the value of the last write preceding it (with respect to
≺), and if no preceding writes is ordered before it then
it returns the initial value of the object.

Erasure coding: We use [n, k] linear MDS codes [15]
to encode and store the value v among the n servers. An
[n, k, d] linear code C over a finite field Fq (containing q
elements) is a k-dimensional subspace of the vector space Fn

q .
The parameter d is known as the minimum distance of the
code C and denotes the minimum Hamming weight of any
non-zero vector in C. The well known Singleton bound [16]
states that d ≤ n− k+ 1. Codes that achieve equality in this
bound are known as MDS codes, such codes are known to
exist for any (n, k) pair such that k ≤ n, e.g., Reed-Solomon
codes [17].

We use functions Φ and Φ−1 to denote the encoder and
decoder associated with the code C. For encoding, v is divided
into k elements v1, v2, . . . vk with each element having a
size 1

k . As mentioned in Section I, we assume that the
value v is of size 1 unit. The encoder takes the k elements
as input and produces n coded elements c1, c2, . . . , cn as
output, i.e., [c1, . . . , cn] = Φ([v1, . . . , vk]). For ease of
notation, we will simply write Φ(v) to mean [c1, . . . , cn].
The vector [c1, . . . , cn] is often referred to as the codeword
corresponding to the value v. Each coded element ci also
has a size 1

k . In our scheme we store one coded element per
server. We use Φi to denote the projection of Φ on to the
ith output component, i.e., ci = Φi(v). Wlog, we associate
the coded element ci with server i, 1 ≤ i ≤ n.

A code with minimum distance d can tolerate up to d− 1
erasures among the n coded elements. Since we wan tolerate
up to f server failures while using MDS codes, we pick
the dimension k of the MDS code as k = n− f . Since we
store one coded element per server, by using an [n, n− f]
MDS code, we get the property that the original value v
can be recovered given the contents of any n− f servers. If
C = {ci, i ∈ I} denotes any multiset of k coded elements
for some I ⊂ [n], |I| = k, we write v = Φ−1(C) to indicate
that v is decodable from C. We implicitly assume that the
process that is invoking the decoder is aware of the index
set I corresponding to the k coded elements.

Storage and Communication Cost: We define the (worst-
case) total storage cost as the size of the data stored across
all servers, at any point of the execution of the algorithm.
As mentioned in Section I, the storage cost is normalized
with respect to the size of the value v, which is equivalent to
computing the storage cost under the assumption that v has
size 1 unit. We assume metadata, such as version number,
process ID, used by various operations is of negligible
size and is hence ignored in the calculation of storage or
communication cost. The communication cost associated with
a read or write operation is the size of the total data that
gets transmitted in the messages sent as part of the operation.
As with storage cost, we ignore the communication cost
associated with metadata transmissions.

III. THE message-disperse PRIMITIVES

Now we discuss the message-disperse services that are
used to disseminate messages in SODA. They have the
property that if a message m is delivered to any server in S ,
then the same message (or a derived message) is eventually
delivered at every non-faulty server in S. The services are
implemented on top of point-to-point reliable channels. The
services are provided in terms of (i) the MD-META primitive,
used for the metadata delivery, and (ii) the MD-VALUE
primitive, used for delivering the coded elements for the
values. The MD-META (or MD-VALUE) primitive is invoked
by the send-event md-meta-send (or md-value-send) at some
process p, and results in delivery-event md-meta-deliver (or
md-value-deliver) at any non-faulty process s ∈ S . In order
to reason about the properties of the protocols, we require
precise descriptions of the flow of messages among the client,
server and communication channel processes. Therefore,
we specify their implementations using the language of IO
Automata (see Lynch [14]). Due to space constraints, only the
MD-VALUE primitive is discussed in detail. The MD-META
primitive differs from the MD-VALUE primitive only in a
minor way, and the difference alone will be discussed.

A. MD-VALUE primitive

The MD-VALUE primitive is to be used in SODA to
deliver the coded elements and the associated tags, which
are unique version identifiers for the object value, to every
non-faulty server. Below we first define the primitive, and
its desired consistency properties. Subsequently, we present
the implementation of the primitive.

Definition 1: MD-VALUE primitive sends message con-
taining tag t and value v from a sender process p ∈ S to
the set of server processes in S, such that each non-faulty
process in S delivers its corresponding coded elements. The
following events define the primitive, to an external user1: (i)
md-value-send(t, v)p: an invocation event, at a writer p ∈ W ,
that submits the version t and the value v for delivery of
the coded elements, and (ii) md-value-deliver(t, cp)p: an
output event, at server p ∈ S , that delivers the coded element
cp = Φp(v) to the server p.

Following are the consistency properties that we expect
from an implementation (also called as protocol) of the
primitive, under the assumption that all executions are well-
formed.

Definition 2: Consistency-Properties (i) validity: if
event md-value-deliver(t, cs)s takes place at some server
s ∈ S , then it is preceded by the event md-value-send(t, v)w
at a writer w, where t ∈ T and cs = Φs(v); and (ii)
uniformity: if event md-value-deliver(t, cs)s takes place at
some server s ∈ S, and as long as the number of server
crashes during the execution is at most f , then the event

1The md-value-send and md-value-deliver are the events that are used
by the SODA algorithm.

md-value-deliver(t, cs′)s′ occurs at every non-faulty process
s′ ∈ S, where cs′ = Φs′(v).

We note that the uniformity property must hold even if
the writer w itself crashes after the invocation of the event
md-value-send(t, v)w.

Implementation: The IO Automata specifications of
a sender, MD-VALUE-SENDERp, p ∈ W , and the re-
ceiving servers, MD-VALUE-SERVERs, s ∈ S, for the
MD-VALUE protocol are given in Figs. 1 and 2, respectively.
The overall protocol is obtained by composing the above
two automata and the underlying automata for the point-to-
point reliable channels (see Lynch [14]). We first describe
the data types, state variables and transitions that appear in
the protocol, and then present a description of the protocol.

Data Types and State Variables: In the IO Automata
specification of MD-VALUE, for any value v ∈ V the coded
element corresponding to s ∈ S is denoted as cs ≡ Φs(v).
MID ≡ S ×N is the set of unique message identifiers. Each
message is one of two types: TYPES = {“full”, “coded”}.
In MD-VALUE-SENDERp boolean state variables failed and
active are initially false. The state variable, mCount,
keeps track of the number of times md-value-send(∗)p has
been invoked at sender process p, and initially this is 0.
The variable send buff is a FIFO queue with elements
of the form (MID × (T × V) × TYPES) × S, and ini-
tially this is empty. State variable mID ∈ MID holds a
unique message identifier corresponding to an invocation of
the protocol, initially (0, p). Variable currMsg holds the
message that is being sent, initially ⊥. In an automaton
MD-VALUE-SERVERs we have the following state variables.
The state variable failed is initially set to false. The
variable status is a map from keys in MID to a value in
{ready, sending, delivered}. The variable content is a map
from keys in MID to a message in Fq, initially ⊥. The
variable outQueue is a FIFO queue with elements of the form
MID × (V ∪ Fq)× TYPES, initially empty. Transitions: In
MD-VALUE-SENDERp the input action md-value-send(t, v)p
invokes the protocol with tag t and value v, and the
output transition md-value-send-ack(t, v)p occurs when all
the messages with t and v are sent. The action send(∗)p adds
messages to the channels. Automaton MD-VALUE-SERVERs

has two input actions recv(∗)∗,s corresponding to the “full”
and “coded” types for receiving the values and coded
elements, respectively, and the action send(∗)s sends message
to other servers through the channels. The output action
md-value-deliver(t, c)s delivers the tag t and coded element
c corresponding to server s. Explanation of the Protocol: The
basic idea of the MD-VALUE implementation is as follows:
the sender p ∈ W invokes input action md-value-send(t, v)p
at the automaton MD-VALUE-SENDERp. The tag t = “full”
and value v are sent to the set of first f + 1 servers
D = {s1, s2, · · · , sf+1} among the set of all servers. Recall
that in our model, we assume an ordering of the n servers

in the system, and hence it makes sense to talk about the
first f + 1 servers. Further, the message m = (t, v) is sent
to the servers respecting the ordering of the servers, i.e., p
sends m to si before sending to si+1, 1 ≤ i ≤ f .

Let us next explain MD-VALUE-SERVERs, s ∈ S. In this,
let us first consider the case when s = si ∈ D = {si, 1 ≤
i ≤ f + 1}. In this case, the server si upon receiving
m for the first time, sends m to every process in the
set {si+1, si+2, . . . , sf+1}. Once again the message is sent
to these f + 1 − i servers respecting the ordering of the
servers. As a second step, the server si, for every server
s′ ∈ S − D, computes the coded element cs′ = Φs′(v)
and sends the message (t = “coded”, cs′ = Φs′(v)) to the
server s′. Finally, the server si computes its own coded
element csi = Φsi(v) and delivers it locally via the output
action md-value-deliver(t, csi)si . Let us next consider the
case when s ∈ S − D. In this case, the server s simply
delivers the received coded-element cs via the output action
md-value-deliver(t, cs)s. Next, we claim the properties of
the protocol.

Theorem 3.1: Any well-formed execution of the
MD-VALUE protocol satisfies the consistency properties.
Next theorem says that once a message is delivered via
the primitive, all the associated messages get automatically
removed from the system, i.e., there is no bloating-up of
state variables.

Theorem 3.2: Consider a well-formed execution β of the
MD-VALUE protocol such that the event md-value-send(t, v)p
appears in β. Then, for any s ∈ S there exists a state σ
in β after the event md-value-send(t, v)p such that in the
automatons MD-VALUE-SENDERp and MD-VALUE-SERVERs

for every s ∈ S, the following is true : (i) either faileds
is true or (ii) in any state in β following σ, none of the
state variables in automatons contains v or any of the coded
elements cs′ for s′ ∈ S.

B. MD-META primitive

The MD-META primitive ensures that if a server s ∈ S
delivers some metadata m, from a metadata alphabet Mm,
then it is delivered at every non-faulty server s′ ∈ S. The
primitive is defined via the events md-meta-send(m)p and
md-meta-deliver(m)p. The difference with respect to the
MD-VALUE primitive is that here we simply deliver the
transmitted message m itself at all the servers, while the
MD-VALUE only delivered the corresponding coded-elements.
Thus the implementation of MD-META primitive is in fact
simpler; the main difference is that while sending messages
to the servers in S −D by a server si ∈ D, si simply sends
m, whereas in MD-VALUE protocol recall that si calculated
and sent only the corresponding coded elements.

Fig. 3 Protocol for write(v)w, w ∈ W in SODA.

1: write-get:
2: for s ∈ S do
3: send(WRITE-GET) to s
4: Wait to hear from a majority
5: Select the highest tag tmax.

6: write-put:
7: Create new tag tw =

(tmax.z + 1, w).
8: invoke md-value-send(tw, v)
9: Wait for acknowledgments

from k servers, and terminate

Fig. 4 The protocol for reader readr, r ∈ R in SODA.

1: read-get :
2: for s ∈ S do
3: send(READ-GET) to s
4: Wait to hear from a majority.
5: Select the highest tag tr .

6: read-value :
7: invoke md-meta-send(READ-

VALUE, (r, tr))
8: Collect messages of form

(t, cs) in set M = {(t, cs) :

(t, cs) ∈ T × Fq} until there
exists M ′ ⊆ M such that
|M ′| = k and ∀m1,m2 ∈ M ′
m1.t = m2.t.

9: C ←
⋃

m∈M′{m.cs}
10: Decode value v ← Φ−1(C).

11: read-complete:
12: invoke md-meta-send(READ-

COMPLETE, (r, tr))
13: return v.

IV. SODA ALGORITHM

In this section, we present the SODA algorithm. The
algorithm employs majority quorum, and uses erasure codes
to reduce storage cost. Detailed algorithmic steps for the
reader, writer and server processes are presented in Fig.
3, 4 and 5, respectively. For simplicity, we only present
the pseudo-code instead of a formal description using IO
Automata. SODA uses an [n, k] MDS code with k = n− f .
Atomicity and liveness are guaranteed under the assumption
that at most f servers crash during any execution. SODA
can be designed for any f such that f ≤ n−1

2 . For version
control of the object values we use tags. A tag t is defined
as a pair (z, w), where z ∈ N and w ∈ W ID of a writer.
We use T to denote the set of all possible tags. For any
two tags t1, t2 ∈ T we say t2 > t1 if (i) t2.z > t1.z or (ii)
t2.z = t1.z and t2.w > t1.w.

Each server stores three state variables: (i) (t, cs), tag
and coded element pair, which is initially set to (t0, c0), (ii)
Rc, a set of pairs of the form (r, tr), where the pair (r, tr)
indicates the fact that the reader r is being currently served
by this server. Here tr denotes the tag requested by the reader
r. Initially, Rc = ∅, (iii) H , a set of tuples (t, s′, r) that is
used to indicate the fact that the server s′ has sent a coded
element corresponding to the tag t, to reader r . Initially,
H = ∅.

Two types of messages are sent, messages that carry
metadata, and messages that comprise in part or full an
object value. The messages sent from the clients are labeled
with phase names, viz., READ-GET, READ-VALUE, READ-
COMPLETE and WRITE-GET. The server to server messages
are labeled as READ-DISPERSE. Also, in some phases of
SODA, the message-disperse primitives MD-META and MD-

Fig. 1 MD-VALUE-SENDERp Automaton: Signature, State and Transitions at sender p ∈ W .

Signature:
2: Input:

md-value-send(t, v)p, t ∈ T , v ∈ V
4: Internal:

fails
6: Output:

send((mID, (t, v), “full”))p,s,
mID ∈MID , t ∈ T , v ∈ V

8: md-value-send-ack(t)p, t ∈ T

State:
10: failed, a Boolean, initially false

active, a Boolean, initially false
12: mCount, an integer, initially 0

send buff , a queue, initially ∅
14: mID ∈ N× S, initially (0, p)

currTag ∈ T initially ⊥

16: Transitions:
Input md-value-send(t, v)p

18: Effect:
if ¬failed then

20: mCount← mCount + 1
mID ← (p,mCount)

22: let D = {s1, · · · , sf+1} - the subset of
first f + 1 servers of S

send buff ←
{((mID, (t, v), “full”), s) : s ∈ D}

24: active← true
currTag ← t

26: Output md-value-send-ack(t)p
Precondition:

28: ¬ failed
active

30: send buff = ∅

t = currTag

32: Effect:
active← false

34: currTag ← ⊥

Output send((mID, (t, v), “full”))p,s
36: Precondition:

¬failed
38: ((mID, (t, v), “full”), s) =

first(send buff)

Effect:
40: send buff ← tail(send buff)

Internal fails
42: Precondition:

¬failed
44: Effect:

failed← true

Fig. 2 MD-VALUE-SERVERs Automaton: Signature, State and Transitions at server s ≡ si, 1 ≤ i ≤ n

Signature:
2: Input:

recv((mID, (t, v), “full′′))r,s,
mID ∈MID , t ∈ T , v ∈ V , r ∈ S

4: recv((mID, (t, c), “coded′′))r,s,
mID ∈MID , t ∈ T , c ∈ Fq , r ∈ S

Internal:
6: fails

Output:
8: mds-value-deliver(t, c)s, t ∈ T , c ∈ Fq

send((mID, (t, u)))s,r , mID ∈MID ,
t ∈ T , u ∈ V ∪ Fq , r ∈ S

10: State:
failed, a Boolean initially false

12: status, a key-value map, initially empty
content : MID →M ∪ {⊥}, initially empty

14: outQueue, a queue, intially empty

Transitions:
16: Input recv((mID, (t, v), “full”))r,s

Effect:
18: if ¬failed then

if (status(mID) = ⊥) then
20: let D = {si+1, · · · , sf+1} be a

subset of S s.t. |D| = f + 1− i
for s′ ∈ D do

22: append (s′, (mID, (t, v), “full”))
to outQueue(mID)

for s′ ∈ S −D do
24: append (s′, (t,Φs′ (v)), “coded”))

to outQueue(mID)

status(mID)← sending
26: content(mID)← (t,Φs(v))

Input recv((mID, (t, c), “coded”))r,s
28: Effect:

if ¬failed then
30: if status(mID) 6= delivered then

status(mID)← ready
32: content(mID)← (t, c)

Output send((mID, (t, u))s,s′
34: Precondition:

¬failed
36: (s′, (t, u)) = first(outQueue(MID))

Effect:
38: outQueue(mID) ←

tail(outQueue(mID))
if outQueue(mID) = ∅ then

40: status(mID)← ready

Output md-value-deliver(t, c)s
42: Precondition:

¬failed
44: mID ∈MID

status(mID) = ready
46: (t, c) = content(mID)

Effect:
48: status(mID)← delivered

content(mID)← ⊥

VALUE are used as services.

Write Operation: Assume that a writer w wishes to
write a value v. Recall that an [n, k] MDS code creates n
coded elements after encoding v. The goal is to store one
coded element per server. In order to optimize storage cost,
at any point of the execution, each server only stores the
coded element corresponding to one particular tag. The write
operation consists of two phases. In the first phase, the writer
queries all servers for the local tags that are stored, awaits
response from a majority and then picks the highest tag tmax.
The writer w creates a new tag given by tw = (tmax.z+1, w).
In the second phase, the writer sends the message (tw, v) to
all servers in S, via md-meta-send(tw, v), and this ensures
that every server that is non-faulty will eventually receive
the message (tw, cs), where cs = Φs(v) denotes the coded
element corresponding to server s. If the server s finds that
tw > t, then the local tag and coded element are replaced by

(tw, cs). In any case, the server sends an acknowledgment
back to the writer w. A few additional steps are performed
by the server while responding to the message (tw, cs) (in
response 3, Fig. 5). These will be explained as part of the
read operation. Finally, the writer terminates after receiving
acknowledgment from at least k servers.

Read Operation: Like a writer, a reader r during
the first phase polls all the servers for the locally stored
tags, awaits response from a majority and then picks the
highest tag, which we call here as tr. In the second phase,
the reader sends the message m = (r, tr) to all servers
in S , via md-meta-send(READ-GET, (r, tr)). The algorithm
is designed so that r decodes a value corresponding to
some tag t ≥ tr. Any server that receives m registers the
(r, tr) pair locally. Here, we use the term register (r, tr)
to mean adding the pair (r, tr) to Rc by executing the step
Rc ← Rc∪{(r, tr)} during the read-value phase at the server.

Fig. 5 The protocol for server s ∈ S in SODA algorithm in the MWMR setting.

State Variables:
(t, cs) ∈ T × Fq , initially (t0, c0)
Rc, set of pairs as (r, tr), initially empty.
H set of tuples (t, s, r)∈T ×S×R, initially
empty.

2: On recv(WRITE-GET) from writer w:
Respond with locally stored tag t to writer w.

On md-value-deliver(tw, c′s)s :
4: for (r, tr) ∈ Rc

if tw ≥ tr then
6: send (tw, c′s) to the reader r

H ← H ∪ {(tw, s, r)}
8: invoke md-meta-send((READ-

DISPERSE, (tw, s, r)).
if tw > t then

10: (t, cs)← (tw, c′s)
Send acknowledgment to the writer w.

12: recv(READ-GET) from reader r :
Respond with locally stored tag t to reader r

On md-meta-deliver(READ-VALUE, (r, tr))s :
14: if (t0, s, r) ∈ H then

Hr
def
= {(t̂, ŝ, r̂) ∈ H : r̂ = r} //temp

variable
16: H ← H\Hr

else
18: Rc ← Rc ∪ {(r, tr)}

if t ≥ tr then
20: send (t, cs) to reader r

H ← H ∪ {(t, s, r)}
22: invoke md-meta-send((READ-

DISPERSE, (t, s, r)).

On md-meta-deliver(READ-COMPLETE, (r, tr))s:
24: if (r, tr) ∈ Rc for some tag tr then

Rc ← Rc\{(r, tr)}
26: Hr

def
= {(t̂, ŝ, r̂) ∈ H : r̂ = r}

H ← H\Hr

28: else
H ← H ∪ {(t0, s, r)}

30: On md-meta-deliver(READ-DISPERSE, (t, s′, r))s
:
H ← H ∪ {(t, s′, r)}

32: if (r, tr) ∈ Rc then
Ht,r

def
= {(t̂, ŝ, r̂) ∈ H : t̂ = t, r̂ = r}

34: if |Ht,r| ≥ k then
Rc ← Rc\{(r, tr)}

36: Hr
def
= {(t̂, ŝ, r̂) ∈ H : r̂ = r}

H ← H\Hr

Similarly, by unregister we mean the opposite, i.e., remove
the pair from Rc. The server sends the locally available
(t, cs) pair to the reader if t ≥ tr. Furthermore, every time a
new message (tw, cs) is received at the server, due to some
concurrent write with (tw, v) , the server sends the message
(tw, cs) to r if tw ≥ tr. Note that there can be situations
where the server does not store cs locally, for instance, if the
local tag t is higher than the writer’s tag tw, but simply sends
the coded element cs to r. The reader keeps accumulating
(t, cs) pairs it receives from various servers, until the reader
has k coded elements corresponding to some tag tread. At this
point the reader decodes the value (tread, v). Before returning
the value v, the reader sends a READ-COMPLETE message,
by calling md-meta-send(READ-COMPLETE, (r, tr)), to the
servers, so that, the reader can be unregistered by the active
servers, i.e., (r, tr) is removed from their local variable Rc.

The algorithm ensures that a failed reader is not sent
messages indefinitely by any server. Assume that the pair
(r, tr) is registered at server s, to continue sending coded
elements from new writes for tags higher than or equal to tr.
Once k distinct coded elements for such a tag is known to
have been sent, reader r will be unregistered and server s no
longer sends messages for that read. In order to implement
this, any server s′ that sends a coded element corresponding to
tag t′ to reader r also sends (s′, t′, r) to all the other servers,
by calling md-meta-send(READ-DISPERSE, (s′, t′, r)). The
server s which receives the (s′, t′, r) tuple adds it to a local
history variable H , and is able to keep track of the number
of coded elements sent to the registered reader r. So, server
s eventually unregisters reader r and also cleans up history
variable H by removing the tuples corresponding to r.

Additional Notes on SODA: (1) Server s accumulates
any received (s′, t′, r′) tuple in its history variable H ,
even if reader r′ has not yet been registered by it. The

use of the message-disperse primitive by r′, by calling
md-meta-send(READ-VALUE, (r′, tr′)), to register the pair
(r′, tr′) ensures that s will also eventually register r′. Once
r′ gets registered at s, these entries will be used by s to
figure out if r′ can be unregistered.

(2) Since we do not assume any order in message arrivals,
a READ-COMPLETE message may arrive at server s from
reader r even before the server s receives the request for
registration from r. In this case, during the response to
READ-COMPLETE phase, the server adds the tuple (t0, s, r)
to the set variable H , where t0 is a dummy tag. If the server
is non-faulty, we know that the registration request from
the reader will arrive at s at some future point in time. The
reader r is registered by server s in response to read-value
phase only if the tuple (t0, s, r) is not in H .

(3) During each read operation the reader appends a unique
identifier (eg: a counter or a time stamp) in addition to its
own id r. Though we show in the next Section that every
server will eventually stop sending coded elements to any
reader r, it can happen that the entries in H corresponding
to r are not entirely cleared. The usage of unique identifiers
for distinct read operations from the same reader ensures
that the stale entries in H do not affect new reads. To keep
the presentation simple, we do not explicitly indicate these
identifiers in Fig. 4.

V. ANALYSIS OF SODA

In this section, we present our claims regarding the liveness
and atomicity properties of the SODA algorithm. We also
give bounds on the storage and communication costs.

A. Liveness and Atomicty

Recall that by liveness, we mean that during any execution
of the SODA, any read or write operation initiated by non-

faulty reader or writer completes, despite the crash failure
of any other client and up to f server crash failures.

Theorem 5.1: Let β be a well-formed execution of SODA.
Also, let Π denote the set of all client operations that take
place during the execution. Then every operation π ∈ Π
associated with a non-faulty client completes.

In order to prove the atomicity property of SODA for any
well-formed execution β, we define a partial order (≺) in
Π and then show that ≺ satisfies the properties P1, P2
and P3 given in Lemma 2.1. For every operation π in Π
corresponding to a non-faulty reader or writer, we associate a
(tag, value) pair that we denote as (tag(π), value(π)). For
a write operation π, we define the (tag(π), value(π)) pair
as the message (tw, v) which the writer sends in the write-
put phase. If π is a read, we define the (tag(π), value(π))
pair as (tread, v) where v is the value that gets returned in
the read-complete phase, and tread is the associated tag.
The partial order (≺) in Π is defined as follows: For any
π, φ ∈ Π, we say π ≺ φ if one of the following holds: (i)
tag(π) < tag(φ), or (ii) tag(π) = tag(φ), and π and φ are
write and read operations, respectively.

Theorem 5.2: Any well-formed execution β of the SODA
algorithm respects the atomicity properties P1, P2 and P3
given in Lemma 2.1.

B. Storage and Communication Costs

Below we state the storage cost associated with SODA.
Recall our assumption that, for storage cost, we count only
the data corresponding to coded elements that are locally
stored, and storage cost due to meta-data and temporary
variable are ignored.

Theorem 5.3: The worst-case total storage cost of SODA
algorithm is given by n

n−f .
We next state the communication cost for the write and

read operations in SODA. Once again, note that we ignore
the communication cost arising from exchange of meta-data.

Theorem 5.4: The communication cost of a successful
write in SODA is upper bounded by 5f2, i.e., O(f2).

Towards deriving the read communication cost, we first
observe the fact that no reader will be indefinitely sent
messages by any non-faulty server.

Theorem 5.5: During the execution of SODA algorithm,
any non-faulty server which registers a reader also unregisters
it, eventually.

Number of Writes Concurrent with a Read: : Consider
a read operation initiated by a reader r. Let T1 denote the
earliest time instant at which the reader r is registered by at
least one of the servers. Also, let T2 denote the earliest time
instant at which r is unregistered by all non-faulty servers.
From Theorem 5.5, we know that the time instant T2 indeed
exists (i.e., it is finite). We define the parameter δw as the
number of write operations which get initiated during the

time interval [T1 T2]. The following theorem bounds the
communication cost for a read operation in terms of δw.

Theorem 5.6: In SODA algorithm, the communication
cost associated with a read operation is at most n

n−f (δw +1).

C. Latency Analysis

In this section, we provide conditional latency bounds for
successful read/write operations in SODA. Although SODA
is designed for asynchronous message passing settings, in
the case of a reasonably well-behaved network we can bound
the latency of an operation. Assume that any message sent
on a point-to-point channel is delivered at the corresponding
destination (if non-faulty) within a duration ∆ > 0, and local
computations take negligible amount of time compared to
∆. We do not assume knowledge of ∆ inside the algorithm.
Thus, latency in any operation is dominated by the time take
taken for the delivery of all point-to-point messages involved.
Under these assumptions, the latency bounds for successful
write and read operations in SODA are as follows.

Theorem 5.7: The duration of a successful write and read
operation in SODA is at most 5∆ and 6∆, respectively.

VI. SODAERR FOR HANDLING ERRORS AND ERASURES

In this section, we explain the usage of [n, k] MDS
codes for the SODAerr algorithm. Here the parameter k is
chosen as k = n − f − 2e. The encoding and distribution
of n coded elements among the n servers remain same
as above. While decoding, we require that we are able to
tolerate any f missing coded elements as well as e erroneous
coded-elements among the remaining elements. For example,
assume that c1, . . . , cn−f are available to the decoder - the
servers which store the remaining coded elements might have
crashed, where e out of these n− f elements are erroneous,
and the decoder does not know the error locations. It is well
known that [n, k] MDS codes can tolerate any pattern of
f erasures and e errors if k = n − f − 2e. We use Φ−1

err

to denote the decoder used to recover the value v; in this
example we have v = Φ−1

err({c1, . . . , cn−f}). Once again,
we make the assumption that the decoder is aware of the
index set I corresponding to the n − f = k + 2e coded
elements that are being used in the decoder.

Now we describe the modifications needed in SODA to
implement SODAerr. In SODA, read errors can occur during
the read-value phase, where the server is expected to send the
locally stored coded element to the reader. We do not assume
any error in situations where the server is only relaying a
coded element, in response to the write-get phase, since
this does not involve local disk reads. Also, we assume that
tags are never in error, because tags being negligible in size
can be either stored entirely in memory, or replicated locally
for protection against disk read errors. SODAerr is same as
SODA except for two steps (Fig. 6), which we describe next.

(i) read-value phase initiated by the reader: Any reader
must wait until it accumulates k + 2e coded elements

corresponding to a tag before it can decode. Recall that
in the SODA algorithm, we only needed k coded elements
before the reader can decode. Also note that the decoder for
the SODAerr (which we denote as Φ−1

err) is different from
that used for SODA, since now we must accept k+2e coded
elements of which certain e elements are possibly erroneous.

(ii) On recv(READ-DISPERSE, (t, s′, r)): A server checks
if the number of coded elements sent (from various servers)
to reader r corresponding to tag t is at least k + 2e, before
deciding to unregister the reader r. We now state our claims
regarding the performance guarantees of the SODAerr.

Fig. 6 The modified steps for SODAerr algorithm.

1: readr, r ∈ R :
read-value :

2: invoke md-meta-send((READ-
VALUE, (r, tr)))

3: Collect messages of form
(t, cs) in set M = {(t, cs) :
(t, cs) ∈ T ×Fq} until there ex-
ists M ′ ⊆M such that |M ′| =
k + 2e and ∀m1,m2 ∈ M ′

m1.t = m2.t.
4: C ←

⋃
m∈M′{m.cs}.

5: Decode value v ← Φ−1
err(C).

6: at servers, s ∈ S:
7: On recv(READ-DISPERSE, (t, s′, r)) :
8: H ← H ∪ {(t, s′, r)}
9: if (r, tr) ∈ Rc then

10: Ht,r
def
= {(t̂, ŝ, r̂) ∈ H :

t̂ = t, r̂ = r}
11: if |Ht,r| ≥ k + 2e then
12: Rc ← Rc\{(r, tr)}
13: Hr

def
= {(t̂, ŝ, r̂) ∈ H :

r̂ = r}
14: H ← H\Hr

Theorem 6.1: (Liveness): Let β be a well-formed execu-
tion of the SODAerr algorithm. Then every operation π ∈ Π
associated with a non-faulty client completes.

Theorem 6.2: (Atomicity): Any well-formed execution
fragment β of the SODAerr respects atomicity properties.

Theorem 6.3: (i) The total storage cost of SODAerr is
n

n−f−2e . (ii) The write cost of SODAerr is at most 5f2, i.e,
O(f2). and (iii) The read cost of SODAerr is n

n−f−2e (δw+1),
where δw is the number of writes which are concurrent with
a read. The definition of δw is the same as in SODA.

VII. CONCLUSION

In this paper, we proposed the SODA algorithm based
on [n, k] MDS codes to emulate shared atomic objects in
asynchronous DSSs. SODA tolerates f = n−k crash failures
and achieves an optimized storage cost of n

n−f . SODAerr,
a modifiction of SODA, which tolerates both crash failures
and data read errors. Next we plan to extend this work to
(i) dynamic settings where servers enter or leave the system,
and (ii) scenarios where background repairs are carried out
to restore the contents of a crashed server.

REFERENCES

[1] V. R. Cadambe, N. A. Lynch, M. Médard, and P. M. Musial, “A
coded shared atomic memory algorithm for message passing
architectures,” in Proceedings of 13th IEEE International
Symposium on Network Computing and Applications (NCA),
2014, pp. 253–260.

[2] H. Attiya, A. Bar-Noy, and D. Dolev, “Sharing memory
robustly in message passing systems,” Journal of the ACM,
vol. 42(1), pp. 124–142, 1996.

[3] R. Fan and N. Lynch, “Efficient replication of large data
objects,” in Distributed algorithms, ser. Lecture Notes in
Computer Science, 2003, pp. 75–91.

[4] P. Dutta, R. Guerraoui, and R. R. Levy, “Optimistic erasure-
coded distributed storage,” in Proceedings of the 22nd inter-
national symposium on Distributed Computing (DISC), Berlin,
Heidelberg, 2008, pp. 182–196.

[5] C. Cachin and S. Tessaro, “Optimal resilience for erasure-
coded byzantine distributed storage,” in Proceedings of Inter-
national Conference on Dependable Systems and Networks
(DSN), 2006, pp. 115–124.

[6] A. Spiegelman, Y. Cassuto, G. Chockler, and I. Keidar, “Space
Bounds for Reliable Storage: Fundamental Limits of Coding,”
ArXiv e-prints, 1507.05169, Jul. 2015.

[7] L. Lamport, “On interprocess communication,” Distributed
computing, vol. 1, no. 2, pp. 86–101, 1986.

[8] C. Shao, J. L. Welch, E. Pierce, and H. Lee, “Multiwriter
consistency conditions for shared memory registers,” SIAM
Journal on Computing, vol. 40, no. 1, pp. 28–62, 2011.

[9] M. K. Aguilera, R. Janakiraman, and L. Xu, “Using erasure
codes efficiently for storage in a distributed system,” in
Proceedings of International Conference on Dependable
Systems and Networks (DSN), 2005, pp. 336–345.

[10] D. Dobre, G. Karame, W. Li, M. Majuntke, N. Suri, and
M. Vukolić, “Powerstore: proofs of writing for efficient and
robust storage,” in Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security, 2013,
pp. 285–298.

[11] J. Hendricks, G. R. Ganger, and M. K. Reiter, “Low-overhead
byzantine fault-tolerant storage,” in ACM SIGOPS Operating
Systems Review, vol. 41, no. 6, 2007, pp. 73–86.

[12] N. Lynch and A. A. Shvartsman, “RAMBO: A reconfigurable
atomic memory service for dynamic networks,” in Proceedings
of 16th International Symposium on Distributed Computing
(DISC), 2002, pp. 173–190.

[13] M. K. Aguilera, I. Keidar, D. Malkhi, and A. Shraer, “Dynamic
atomic storage without consensus,” Journal of the ACM, pp.
7:1–7:32, 2011.

[14] N. A. Lynch, Distributed Algorithms. Morgan Kaufmann
Publishers, 1996.

[15] W. C. Huffman and V. Pless, Fundamentals of error-correcting
codes. Cambridge university press, 2003.

[16] R. C. Singleton, “Maximum distance q -nary codes,” Informa-
tion Theory, IEEE Transactions on, vol. 10, no. 2, pp. 116–118,
Apr 1964.

[17] I. S. Reed and G. Solomon, “Polynomial codes over certain
finite fields,” Journal of the society for industrial and applied
mathematics, vol. 8, no. 2, pp. 300–304, 1960.

