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Abstract

This thesis implements a novel peer-to-peer network simulator that integrates co-
evolutionary algorithms in order to model adversarial attack and defense dynamics
in networks. Modeling this behavior is desirable as it allows for network designers
to better develop network defense strategies against adaptive cyber attackers. By
developing a network simulator that implements a peer-to-peer protocol, we were
able to control the environment and abstract away many of the complex details that
would normally arise from using a live network. Because of this environment, we were
able to design attack and defense models and grammars, construct arbitrary network
topologies, and rapidly test adversarial behavior using the integrated coevolutionary
algorithms. Second, the thesis implements the integration of the coevolutionary al-
gorithms with a more complex, proprietary emulator that implements an advanced
version of Chord. Our experiments with this system start to investigate the effective-
ness of peer-to-peer networks as defenders as well as elucidate the issues of integrating
coevolutionary algorithms in a real-world system.
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Chapter 1

Introduction

1.1 Motivation

Over the past couple of years, cyber attacks have increased in frequency, sophistica-

tion, and severity, and have been the cause of numerous disruptions in both industry

and politics. Cyber attacks have become so common that it seems as if every week,

there’s news of a new major attack threatening the digital information of individuals,

businesses, or even countries. The reason these attacks are even possible is because so

much of our personal data and transactions now flow through networks, thus making

it enticing for malicious entities to try and find ways to either intercept information

as it flows through a network or disrupt the flow altogether. As a result, it is cru-

cial for individuals and modern businesses to not only be aware of the capabilities

of cyber attackers, but also to do everything in their power to build and maintain

safe networks. The issue with the current state of cyber defenses, however, is that

they are largely reactive in nature. For example, if some entity were to get attacked,

that entity would most likely patch the vulnerability that led to it becoming exposed,

after which the attacker would seek a different point of entry and begin this iterative

process over again. This current inability of defenses to stay ahead of an adaptive

attacker makes the task of creating secure, adaptive networks seem impossible. Thus,

we must find a way to take steps to make this impossible task possible.

In order to achieve this, we have decided to test networks from an adversarial per-
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spective in which a network evolves its defenses in order to mitigate the damage done

by intelligent adaptive adversaries. The idea of modeling this adversarial behavior

between two opposing entities has been realized in benchmark problems through the

use of coevolutionary algorithms [7]. This example makes it clear that coevolutionary

algorithms may be a good fit for modeling adversarial behavior in networks. Further-

more, among networks themselves, peer-to-peer networks are decentralized in nature

and thus provide some natural defenses against cyber attacks. Thus, incorporating

these coevolutionary algorithms into a peer-to-peer network also seems like a good

fit.

While this idea may appear to be the best starting point, incorporating these

coevolutionary algorithms into an established, live peer-to-peer network is incredibly

challenging in itself as it can be very easy to get lost in the complexity of the system,

making it difficult to integrate with coevolutionary algorithms. Finding a way around

this complexity would allow us to abstract all extraneous details of a network and

focus solely on the salient properties of a network and modeling adversarial behavior.

This, in turn, would allow us to take a giant leap forward in our mission of creating

secure, adaptive defenses. For this reason, the problem of both modeling a peer-to-

peer network and integrating it with coevolutionary algorithms is the main motivation

of this thesis.

1.2 Research Vision and Challenge

The vision of this thesis is the following: if we are to protect our information and

our businesses in this digital age where cyber attacks are so common, then we must

find a way to combat attackers who constantly change strategies by creating adaptive

cyber defenses. In order to achieve this vision, the problem of deploying adaptive

cyber defenses must be broken down into smaller problems. Because the task of

integrating coevolutionary algorithms in a live peer-to-peer system is very complex,

the first question we must answer is:

1. How can we effectively implement a peer-to-peer network simulator which in-
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terfaces with coevolutionary adversarial genetic algorithms that need to manip-

ulate defensive configurations of the network?

Then, after showing it is possible to model adversarial behavior in peer-to-peer

networks using coevolutionary algorithms in a simulated environment, we can then

focus on tackling our next question, which is:

2. How can we integrate the same coevolutionary genetic algorithms with a live

peer-to-peer system with far more details and complexities and set out an ex-

ample of evaluation?

The rest of this thesis focuses on explaining exactly how we answered these two

research questions.

1.3 Contributions

The contributions of this thesis are the following:

∙ Designed and implemented a peer-to-peer network simulator that implements

the Chord protocol [11] which allowed us to model simple network defensive

behavior

∙ Integrated this network simulator with coevolutionary algorithms as part of

a larger project named RIVALS [3] to support the simulation of adversarial

behavior between cyber attacker and defender

∙ Created and ran experiments using RIVALS to show the effectiveness of peer-

to-peer networks as a defender

∙ Incorporated one of the coevolutionary algorithms used in RIVALS into a novel

proprietary software implementing an enhanced version of the Chord protocol

and obtained initial results

15
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Chapter 2

Related Work

In this chapter, we discuss a few of the works that we looked through and drew

inspiration from throughout the project. It was through reading the work of these

researchers that we were able to come up with many of the ideas presented in this

thesis. In our search for literature that would be useful to us, we honed in on the

following topics: peer-to-peer networks, distributed denial of service attacks, current

uses of coevolutionary algorithms, and current technology that models adversarial

behavior in some way.

2.1 Chord Protocol

One of the first things we looked at was the research done by [11] on the Chord

protocol. This paper focuses on peer-to-peer systems and tackling the problem of

decreasing the lookup time when attempting to locate specific data items. To address

this problem, the authors of the paper created the Chord protocol, which is essentially

a distributed hash table responsible for resolving keys to corresponding nodes that

hold the data that needs to be retrieved. Throughout the paper, the authors provide

a description of the protocol, arguments for its correctness and scalability, and pseudo

code/examples of what a basic implementation of the protocol would look like. The

reason we found this research so interesting and useful is because the pseudo code

provided seemed simple enough to implement, which would potentially allow us to

17



set up a local version of a peer-to-peer protocol for rapid testing. However, the paper

did not include every detail to go from the specifications to an implementation. I

discuss the issues and challenges arising from this lack of clarity in section 3.2

2.2 Denial of Service Attacks

The second topic we sought to learn more about was on specific types of distributed

denial of service (DDoS) attacks. DDoS attacks are a common way to disrupt certain

network resources and are accomplished by flooding the target with a high volume

of traffic. Because these attacks are so common, we decided to focus on defending

against only these attacks rather than try and defend against every kind of cyber

attack possible. In particular, we are interested in defending against the types of

DDoS attacks described by [8] as they are more dangerous and malicious than normal

DDoS attacks due to the difficulty level of detecting them. As described in the paper,

these DDoS attacks are achieved by sending periodic DDoS streams that serve to

exploit TCP’s timeout mechanism. These DDoS streams come at regular frequencies

and deter TCP flows heavily. Attacks like these are hard to detect because they can

be sent in small waves and thus are not easy to spot amongst regular traffic patterns.

Rather than detection of these attacks being our focus, however, our focus is resilience

under a hard-to-detect, perhaps intermittent, DDoS attack. When designing the

fitness functions discussed in the experiments chapter 4, we drew inspiration from

this work by rewarding attacks on the network that can disrupt the network with

minimal duration in order to mimic these hard-to-detect attacks.

2.3 Adversarial Dynamics

Although we seek to apply coevolutionary algorithms to a cyber security problem,

it is worth discussing different approaches that have been taken within the field of

Artificial Intelligence already to study adversarial dynamics in the context of cyber se-

curity. In [3], we provide a brief summary of these approaches that span the following
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sub-fields of Artificial Intelligence: Game-Theory, Machine Learning, Evolutionary

Computation, and AI-Planning. To start, Game-Theory has been used to find opti-

mal game plan for conflicting adversaries. One such study that uses this approach is

[12] where the authors study ‘autonomous, collaborative control for resilient cyber de-

fense’ to distribute computational loads in dispersed clouds. In Machine Learning, [2]

shows how trends learned from observational data can be useful in email spam-filters.

Furthermore, the following three works emplore the use of Evolutionary Computation

and focus on modeling adaptive systems in the context of cyber security: [4] analyzes

botnet detection system and the effects of botnet evolution, [10] focuses on creating

resilient infrastructures through competitive coevolution, and [6] uses coevolutionary

strateiges to analyze a criticial infrastructure model. Finally, in AI-Planning, agents

are able to devise strategies defined by goals. One work that falls under this sub-field

of Artificial Intelligence is [1] where the authors study path re-planning for UAV’s

under critical conditions.

In addition to these works, another interesting example in which adversarial dy-

namics is used in the context of cyber security is the idea of Moving Target Defenses

(MTDs). The idea behind MTDs is to coerce an attacker to change strategies con-

stantly by making the defending system frequently change its state. The research con-

ducted by [13] discusses evolving attackers using genetic algorithms that face adaptive

defenders using MTDs.

2.4 Coevolutionary Algorithms

The next two works were examples of work that aimed to apply coevolutionary algo-

rithms to a problem other than the typical benchmark problem in some way. These

works were very influential in our decision to use coevolutionary algorithms to create

robust network defenses.

19



2.4.1 STEALTH

STEALTH is the product of the work of [5] on the detection of tax non-compliance

by using a coevolutionary genetic algorithm. By modeling the tax ecosystem as

a network of nodes and edges and representing auditing processes as scores sheets,

the researchers were able to simulate the coevolutionary behavior between tax evasion

schemes and the auditing processes attempting to catch them. This research is nearly

identical to the work we are trying to achieve as the auditors from the paper can be

seen as the adaptive defending network we are trying to create, and the tax evasion

schemes can be seen as the constantly changing cyber security attacks. The core

of this research lies in the genetic algorithm used to coevolve both the tax evasion

schemes and the auditors in order to find the best strategy for each entity. As a

result, we believe that as long as we are able to create a similar framework where we

can evaluate the effectiveness of cyber attacks on certain defenses of the network and

vice versa, then we can simply run the same genetic algorithm to produce preliminary

results.

2.4.2 CANDLES

The CANDLES system from [9], like STEALTH, greatly resembles the work we are

trying to achieve in this thesis. CANDLES, Coevolutionary Agent-based Network

Defense Lightweight Event System, is a framework that incorporates the use of co-

evolutionary algorithms in order to competitively evolve strategies for attackers and

defenders in the context of cyber security. Also similar to our work is the fact that

the competitor action space of the framework is asymmetric. Although this work may

seem to accomplish some of the research questions posed in this thesis, it differs in

ways that still allows us a unique opportunity to fill in a specific niche in cyber security.

The issue with CANDLES is that it is a very abstract network security simulation.

Attacker solutions in this framework consist of a list of target machines, reconnais-

sance techniques, and exploits, while defender solutions use a paranoia threshold, a

budget, a list of suspected targets, detection systems and dynamic mitigations. In
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creating a novel network simulator, we distinguish ourselves by having a means of

concretely measuring the results of simulating the arms race between attacker and

defender using coevolutionary algorithms. Furthermore, we distinguish ourselves by

making initial steps to incorporate these algorithms and simulate this behavior not

just in the network simulator, but in a fully-developed peer-to-peer network system.
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Chapter 3

Methods

In this chapter, we first expand on some of the design decisions behind choosing

peer-to-peer networks as a starting point for creating robust and resilient defenses.

Moreover, we also explain why we chose to work with the Chord protocol specifically,

and provide a brief overview of how the protocol works. Then, we dive into the details

of how the Chord protocol is implemented in the network simulator, how the simulator

implementation differs from the actual protocol, and a few details of a proprietary

emulator that implements an enhanced version of the actual Chord protocol. Finally,

we end with a discussion on grammars and coevolutionary algorithms and how they

fit in to the framework of this thesis.

3.1 Peer-to-Peer Networks: Chord

The main reason behind choosing a peer-to-peer network as a starting point in creating

adaptive network defenses was that peer-to-peer networks have no single point of

failure and are thus inherently more robust to defend against distributed denial of

service attacks than other types of networks. As mentioned in section 2.2, distributed

denial of service (DDoS) attacks are a class of cyber attack in which the attacker

generates a large volume of traffic and directs it at a specific target. You can imagine

a target being a specific server that is connected as part of a network with other

servers. In flooding this server with a heavy volume of traffic, the server effectively
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becomes useless and thus the network struggles to route traffic through this server.

In a centralized network, this could be very damaging since a smart attacker could

choose to attack the central server, or the server that is responsible for directing

traffic to all the other servers, and wipe out the entire network that way. Peer-

to-peer networks do not suffer from this issue. In peer-to-peer networks, data and

resources are distributed and they are robust to topological changes such as nodes

dropping out of service or nodes joining and leaving the network intermittently. This

latter capability is provided in Chord via a stabilization routine. These are reasons

as to why peer-to-peer networks provide an excellent starting point when considering

setting up adaptive defensive networks.

While there were several peer-to-peer protocols that could have worked for this

thesis, we chose the Chord protocol because it is efficient and extensible. Furthermore,

the paper that presents the Chord protocol provides ample pseudocode. Although

this pseudocode is at times vague and imprecise, it still allowed us to figure out how to

take these specifications, and implement a model that runs on the network simulator.

3.1.1 Chord Overview

I now briefly describe a few of the important elements of the Chord protocol. Although

this overview encapsulates many of the features the protocol has that we make use of in

this thesis, I highly encourage the reader to read [11] if there is still any confusion left

over the protocol. At its core, Chord is a key lookup service in the form of a distributed

hash table. Chord aims to make the following process very efficient: given a key that

holds some data or piece of information, find the node that has that key among a

sea of peer nodes. Although this may seem simple enough to do, the mechanism that

underlies this process is very intricate in order to meet the performance guarantees

the authors’ specify, which is essentially to have a logarithmic number of hops between

any source node and destination node on the logical network representation. To start,

Chord assigns each node joining the network and each key m-bit identifiers, and places

each identifier in the identifier circle. We illustrate this hashing and placement process

in Figure 3.1. In this figure, each node in the physical network on the left is given

24



Figure 3-1: Physical network on the left and its virtual Chord overlay representation
on the right. Also shown are the finger tables for nodes A, G, and F.

an identifier and logically placed, thus becoming a virtual node in a location on the

identifier circle. Then, each key in the identifier circle is assigned to a node. The node

that the key is assigned to is the node that most immediately follows the spot where

the key is hashed to in the circle. For example, in Figure 3.1, if a key were given

the identifier of 2, the node responsible for this key would be the node at identifier 3

since that is the closest node clockwise of the key’s identifier. Furthermore, if a key

were given the identifier of 3 instead, the node responsible for this key would still be

the node at identifier 3, as it is already on the same identifier as a node. Each node

maintains extra information in an individual lookup table called a finger table that

it uses to direct key queries efficiently along the circle. A lookup sends the query

at least halfway to its destination by taking advantage of the information stored in

the finger table. Furthermore, Chord handles nodes entering and dropping off the

network by updating node finger tables periodically as well as reapportioning keys

around the network as needed. This stabilization naturally lends itself to adversarial

situations where an adversary intentionally forces nodes out of availability. While the

main features of Chord are advantageous and reasons why we chose to work with this

protocol, this ability to handle nodes joining and leaving the network gracefully is
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what attracted us most to it.

3.2 Network Simulator

The centerpiece behind the network simulator we implemented is an implementation

of the Chord protocol. The network simulator has two versions. One version, we

describe as the ‘logical version’, and the other, we describe as the ‘logical to physical’

version. The differences between these two versions of the software are explained

in the next two subsections. Before moving there, however, we first highlight the

differences between our implementation of Chord, and the definitive specification of

the protocol that [11] describes. While these are the differences that stand out, there

may be in fact more subtle differences since at times, the specifications given in the

paper were unclear.

To start, my implementation currently simply models Chord on a single work-

station. In addition to this, upon nodes leaving or joining the network, the original

Chord protocol eventually stabilizes itself through periodic actions. In contrast, in

the network simulator implementation, every time a node leaves or joins the net-

work, successor and predecessor pointers as well as the finger tables are immediately

repaired. Another contrast is that nodes in the Chord network become part of the

circle by receiving an m-bit identifier obtained by hashing the nodes with SHA-1. In

our implementation, we use Python’s built-in random library to provide the identifiers

instead.

3.2.1 Logical Network

Continuing from the discussion earlier on the two versions of the network simulator

we implemented, we now describe the ‘logical’ version of the simulator. To provide a

bit of context before we dive into the details, let’s refer back to Figure 3.1. Like we

mentioned before, in this figure, we have a simple physical network on the left, and the

virtual Chord overlay network that gets constructed by the protocol on the right. In

this example, recall that if we were interested in finding a specific key in the network,
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we can ask any peer, and that peer would use its finger table information to route our

query to some peer that is closer to the target peer containing the desired key in the

identifier circle. This series of queries provides a hopping pattern of the nodes pinged

along the way before reaching the target node with the key. For example, if we ask

node 𝐹 where the key with identifier 3 is, it would pass our query to node 𝐴, and

then node 𝐴 would find that they key is located at node 𝐶. This results in a hopping

pattern of 𝐹 , 𝐴, 𝐶. In the simulator implementation, rather than use the protocol

as a means of finding a key in the network, we use it as a means to represent sending

a message through the network. We achieve this by asking the peer we consider the

starting node, or the node responsible for sending the message, to find the identifier

associated with the target node. In this sense, the difference is that we now use the

protocol to lookup target node identifiers instead of key identifiers. The reason we

name this version the ‘logical’ version is because we assume the message gets sent

via the hopping pattern this lookup incurs through the virtual representation of the

physical network rather than through the actual physical network itself.

3.2.2 Logical to Physical Network

The key difference between the logical version and the logical to physical version

of the simulator is that the logical to physical version increases the complexity and

reality of the simulator by simulating messages flowing through the physical layer

of the network as opposed to just through the virtual Chord overlay representation.

As a result, in this version, when sending a message, instead of modeling this as the

message hopping through the Chord network and reaching its destination, each hop

from one node to another in the virtual representation represents a message passing

from the equivalent nodes in the actual physical representation of the network. The

reason this increases the realism of the network simulator is because this is how the

Chord overlay would actually be used in the real world.
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3.2.3 Chord Plus

With these two versions of the network simulator, we were able to come close to sim-

ulating a real network and perform rapid testing without actually having to use a real

distributed system. Towards the end of the project, however, we were able to obtain

proprietary software that implements an emulation of the fully distributed version of

the Chord protocol with significant enhancements. This software is incredibly com-

plex and uses the most current technology to implement the protocol. Because this

software is proprietary and still under development, the details of the specifications of

the system or of the implementation are unavailable. However, we can report that we

were able to successfully interface with the software through the use of configuration

files and by parsing output files to get metrics regarding the network capacity. This

is the final version of the Chord protocol we ended up with and had the opportunity

to run very basic initial experiments on.

3.3 Grammatical Representations of Attacks and De-

fenses

To support the coevolutionary algorithms that we integrated with the network sim-

ulator to be able to generate populations of random attacks on the network and tell

a given network which defense to use, we had to make use of grammatical represen-

tations. An example of the grammar for generating simulated distributed denial of

service attacks in the logical version of the simulator upon receiving the start symbol,

<Attacks>, is:

⟨Attacks⟩ ::= DDoSAttack(⟨node⟩, ⟨start_time⟩, ⟨duration⟩)

| DDoSAttack(⟨node⟩, ⟨start_time⟩, ⟨duration⟩), ⟨Attacks⟩

⟨node⟩ ::= 0 | 1 | 2 | 3 | 4 | 5 | 6

⟨start_time⟩ ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

⟨duration⟩ ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
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One of the important features of this grammar to note is that a DDoS attack is

represented by specifying a node to attack, a specific time to begin the attack, and

the duration of the attack. Also, the grammar is recursive, thus allowing for the

possibility of generating attacks on several nodes as opposed to an attack on just

one. An example of the attack grammar used in the logical to physical version of the

simulator upon receiving the start symbol <Attacks> is:

⟨Attacks⟩ ::= ‘physical_attacks’: [⟨physical_attacks⟩], ‘logical_attacks’:

[⟨logical_attacks⟩]}

⟨physical_attacks⟩ ::= DDoSAttack(⟨node⟩, ⟨start_time⟩, ⟨end_time⟩), ⟨physical_attacks⟩

| DDoSAttack(⟨node⟩, ⟨start_time⟩, ⟨end_time⟩)

⟨logical_attacks⟩ ::= DDoSAttack(⟨node⟩, ⟨start_time⟩, ⟨end_time⟩), ⟨logical_attacks⟩

| DDoSAttack(⟨node⟩, ⟨start_time⟩, ⟨end_time⟩)

⟨node⟩ ::= 0 | 1 | 2 | 3 | 4 | 5 | 6

⟨start_time⟩ ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

⟨end_time⟩ ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

The difference here is that because both the physical and virtual networks are

utilized to represent the flow of a message, an attacker is allowed to specify nodes at

the physical and virtual layers to attack. The grammar remains recursive, as before, in

nature, and stores the generated list of attacks in a dictionary. The defense grammar

in both versions of the simulator is simple as the grammar just chooses between three

routing mechanisms, or defense protocols. An example of this grammar given the

start symbol <Defense> is:

⟨Defense⟩ ::= shortest_path_protocol | flooding_protocol | chord_protocol

More details about the routing mechanisms a defender can choose from and how

attacks in general are represented are discussed in the next chapter when we discuss

our experiments.
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3.4 Coevolutionary Algorithms

Coevolutionary algorithms feature two populations competing with each other and

adapting through the process of selection and mutation. These algorithms exhibit very

complex, adaptive behavior. For more details, see the discussion on the five different

types of these algorithms used in [3]. These are the five algorithms we integrate with

the network simulator. The important aspect of coevolutionary algorithm integration

that this thesis dealt with was the design task of logically connecting the behavior

of the peer-to-peer network to the action space defined by a grammar used by all

of the coevolutionary algorithms. For example, the defensive grammar mentioned in

the previous section gives attackers the choice among “all paths”, “shortest path with

retries” and “Chord”. As a result, the challenge with the algorithms was to support

each of those mechanisms and allow the algorithms to direct the network to behave

in one of those ways. In addition to this, another challenge was collecting network

simulation outcomes and “passing” them to the coevolutionary algorithm in order to

calculate overall fitness.
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Chapter 4

Experiments

In this chapter, we discuss and analyze the experiments that we conducted once we

fully integrated the network simulator with the coevolutionary algorithms described in

the previous chapter. The experimental results, descriptions, discussion, and analysis

that follow were originally stated in [3] so credit for them is shared with the co-authors

of this paper 1. Overall, these experiments help us seek to understand how well we can

model adversarial behavior in networks. We first detail some of the steps we took in

setting up these experiments, and then discuss the results of running the experiments

across both versions of the simulator and on the proprietary Chord emulator.

4.1 Network Simulator Setup

While chapter 3 went into the details of the network simulator, there are some

experiment-specific components that we implemented into the simulator on top of

the Chord protocol in order to be able to run experiments successfully. In this sec-

tion, we give an overview of the context, terms and additional components of the

network simulations including: the network topology, missions, attacker goals and

capabilities, and defender goals and capabilities. Although most of these components

are the same across the different versions of the simulator, there are subtle differences

1Some text is verbatim from the paper, and other text has been updated to reflect refinements
to the experimentation and implementation
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and these are highlighted and discussed.

4.1.1 Simulator Components

Context: Briefly mentioned during the discussion of grammars in chapter 3, a dis-

tributed denial of service attack is a common technique used by cyber attackers

to disrupt a specific network’s resources by sending large amounts of traffic to

that network. The simulator models these attacks by using the attack grammar

specified in section 3.4 and the coevolutionary algorithms to generate attacks

on random nodes.

Missions: To best model the arms race between a cyber attacker and cyber defender,

we included the concept of a mission in the network simulator so that the

attackers and defenders each had a goal to achieve. A mission is comprised of

a series of tasks that the defender tries to complete. A task consists of a start

node, an end node, and a maximum time limit during which the defender can

complete the task. For now, tasks are modeled as sending a message through

the network from the start node to the end node. In reality, tasks could be more

complex operations such as using Internet Relay Chat (IRC), or transferring a

file using the File Transfer Protocol (FTP) from the start node to the target

node. If the defender does not complete a task on time, the task fails. If any task

fails in a series of tasks, the mission fails. For simplicity in these experiments,

we have limited the number of tasks in a mission to be one.

Attacker: The way in which an attacker is modeled in the simulator has already

been discussed both in the context paragraph and in section 3.4. The goal of

an attacker is to disrupt the flow of traffic in the network with as little effort

as possible. An attacker may achieve this by choosing nodes in the network to

launch DDoS attacks against in order to cause mission failure. As seen from the

grammatical representation of an attacker, attackers are powerful in the sense

that they can specify any node in the network to attack, the time in which the

attack starts, and the duration of the attack.

32



Defender: The goal of a defender is to ensure mission success in the face of constant

cyber attacks. A defender attempts to achieve mission success by choosing

among three different routing configurations.

∙ Shortest path protocol: The network calculates the shortest path be-

tween the start node and target node and sends a packet along this path.

If at any point along the network, the path gets blocked via a node failure

caused by an attacker’s DDoS attack, then the network waits until the

path is free to send the packet on its way again.

∙ Flooding protocol: The flooding protocol works by sending a copy of

the packet along all possible paths from the start node. If a path gets

blocked due to node failure from an attack, it stalls like in the shortest path

protocol. The difference, however, is that other paths may be available for

the packet to travel through. Once the first instance of the packet shows

up at the destination, the task is completed.

∙ Chord protocol: The implementation of the network simulator of the

Chord protocol serves as the network’s last routing mechanism. In the

logical version of the simulator, we model the node reaching its destination

via the hops specified by the node finger tables through the virtual Chord

representation. Attacks on a node of the virtual representation are modeled

by that node leaving the Chord ring, and coming back when the attack is

finished.

Network Topology: Another capability of the simulator is the ability to create net-

work topologies. During most of our initial testing, we used the simple topology

from Figure 4.1 in order to exhaustively explore simple mission scenarios and

determine the correctness of both the simulator and the coevolutionary algo-

rithms. In order to make the problem more complex and realistic, we scaled up

the topologies to the ones in Figures 4.2 and 4.3 so that the search space would

be much too large to be able to exhaustively search over all possible attack

scenarios.
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Figure 4-1: Topology 0: a very simple network used to benchmark the defensive
actions for routing of shortest-path, flooding and Chord.
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Figure 4-2: Topology 1: a larger network providing more nodes and a different topol-
ogy. The increase in the number of nodes increases the search space significantly, thus
eliminating the possibility of exhaustively searching the effects of all combinations of
attacks.

Fitness Functions: Fitness functions are the method we use to evaluate how well an

attacker or defender performed. In the case of an attacker, we reward attackers

who are able to disrupt a mission by attacking as few nodes as possible for short

amounts of time. Furthermore, we penalize attackers who succeed in disrupting

a mission, but have to achieve this goal through many attacks for long durations.

This reward system for an attacker is captured by the following fitness function:

𝑓𝑎 =
1−𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝑠𝑢𝑐𝑐𝑒𝑠𝑠

(𝑛_𝑎𝑡𝑡𝑎𝑐𝑘𝑠 · 𝑡𝑜𝑡𝑎𝑙_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛) + 𝑛_𝑎𝑡𝑡𝑎𝑐𝑘𝑠

In this function, 𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝑠𝑢𝑐𝑐𝑒𝑠𝑠 describes whether the mission succeeded (1)

or failed (0), 𝑛_𝑎𝑡𝑡𝑎𝑐𝑘𝑠 is the total number of nodes attacked in the network,

and 𝑡𝑜𝑡𝑎𝑙_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 is the aggregated amount of time nodes were under attack.

The extra 𝑛_𝑎𝑡𝑡𝑎𝑐𝑘𝑠 term in the denominator molds the fitness function to
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Figure 4-3: Topology 2: a possible real network structure designed to simulate a
more realistic mission.

reward attacks consisting of the least number of attacks.

In the case of defenders, we reward defenders who complete the mission, and also

reward those who are able to do this with a low number of hops. The motivation

behind this is to punish defenders for using up network resources. For example,

if the network decides on using the flooding protocol, this defense will most likely

succeed in transmitting the packet, but will incur a large penalty for using too

many network resources. This reward system for defenders is captured by the

following fitness function:

𝑓𝑑 =
𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝑠𝑢𝑐𝑐𝑒𝑠𝑠

𝑜𝑣𝑒𝑟𝑎𝑙𝑙_𝑡𝑖𝑚𝑒 · 𝑛_ℎ𝑜𝑝𝑠

Here, 𝑜𝑣𝑒𝑟𝑎𝑙𝑙_𝑡𝑖𝑚𝑒 is the total amount of time a specific routing protocol took

to complete the mission, and 𝑛_ℎ𝑜𝑝𝑠 is the total number of hops taken by the

protocol to complete the mission. Finally, the last assumption made in the

network simulator is that any edge cross between nodes in the topologies or in

the virtual chord representation are of unit length and thus take one timestep

to traverse.
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4.1.2 Logical to Physical Network Setup Differences

When compared to the setup of the experiments for the logical simulator, the physical

to logical simulator had only two key differences.

Chord protocol: As discussed in chapter 3, the implementations of how messages

are passed through the network differs between the two versions of the network

simulator. In this version, each hop in the virtual representation corresponds to

hops in the physical network. If a node finds it cannot make a hop to another

node in the ring because of attacks at the logical or physical layer, it simply

scans through its finger table to see what node is available that produces the

largest hop. Furthermore, attacks on a node in the physical network renders it

useless in the physical network and gets represented in the virtual network by

means of leaving the network.

Fitness functions: Because both logical nodes and physical nodes are available for

attack in this version of the simulator, the way in which we reward attackers

changes. The new fitness function for attackers is:

𝑓𝑎 =
1−𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝑠𝑢𝑐𝑐𝑒𝑠𝑠

(2·𝑛_𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙·𝑝_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛)+𝑛_𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙+(𝑛_𝑙𝑜𝑔𝑖𝑐𝑎𝑙·𝑙_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛)+𝑛_𝑙𝑜𝑔𝑖𝑐𝑎𝑙

In this equation, 𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝑠𝑢𝑐𝑐𝑒𝑠𝑠 still represents whether the mission suc-

ceeded (1) or failed (0), 𝑛_𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 describes the number of attacks launched

on nodes in the physical layer, 𝑛_𝑙𝑜𝑔𝑖𝑐𝑎𝑙 represents the number of attacks

launched on nodes in the virtual layer, 𝑝_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 represents the total ag-

gregated time nodes in the physical layer were under attack, and 𝑝_𝑙𝑜𝑔𝑖𝑐𝑎𝑙

represents the total aggregated time nodes in the logical layer were under at-

tack. When taken as a whole, this fitness function penalizes attacks launched

on the physical layer more heavily because taking out a node in the physical

layer has deeper consequences than taking out the corresponding node in the

virtual layer.
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4.1.3 Chord Plus

While these components, definitions, and formulas may have worked when using our

own simulator, we had to throw much of this out the window when seeking to work

with the proprietary Chord emulator as the emulator had a completely different way

to model attacks, routing configurations, etc. It was mostly through inspecting the

code, and working with configuration and output files that we were able to run a very

basic integration test with the coevolutionary algorithms.

4.2 Results

We ran all five of the coevolutionary algorithms discussed on the three different topolo-

gies for the logical implementation of the simulator as well as for the physical to logical

implementation. The parameters used for the algorithms are taken from Table 4.1

which was taken from [3]. The results shown are those averaged over 30 runs of the al-

gorithms. For the proprietary emulator, we managed a very basic, though successful,

integration of the coevolutionary algorithms with the live network system and report

interesting findings. The main idea behind these experiments is that in using the

grammars to generate random populations of attacks, the coevolutionary algorithms

should evolve both the attacker and defender. Then, the algorithms should be able

to state the individual with the best fitness at the end of the runs. For the attacker,

this means the algorithms should find which attack was most effective on the network

given the fitness function we specified for attackers. Similarly, for the defender, this

means the algorithms should find which network routing configuration proved most

effective based on the defender fitness function at withstanding attacks.

4.2.1 Logical Network Simulator Results

After incorporating the extra components specified in section 4.1.1 into the logical

network simulator implementation, we incorporated the coevolutionary algorithms,

and ran all five algorithms discussed. Before we made these runs, it was our hypothesis
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Table 4.1: Algorithm Settings
Parameter Setting Compare-on-one Network Simulations
Population size 10 40 (10 for Topology 2)
Archive size 10 20
Generations 1000 20
Max length 10 20
Parent archive probability 0.9 0.9
Crossover probability 0.8 0.8
Mutation probability 0.1 0.1
Mutation bias low -0.15 NA
Mutation bias high 0.1 NA
Generation loop breakout 500 NA
Grammar No Yes

that because the Chord protocol has a way of stabilizing the network upon nodes

leaving the network and finding ways to hop to the destination regardless, that it

had the best chance of the three routing configurations at withstanding the attackers.

Also, it is worth noting that before we ran the algorithms across all of the topologies we

generated, we first performed an exhaustive search over topology 0 to argue about the

correctness of both the implementations of the routing protocols and the algorithms.

In this exhaustive search, we generated all possible combinations of nodes to attack

where each attack lasted the full duration of a specified task. We found that when

using the shortest path protocol, the defender failed to complete the mission when

there was an attack along any of the nodes in the shortest path. For example, if a

task of the mission in topology 0 was to send a message from node 0 to node 4, then

we saw an attacker disrupt the mission by attacking any combination of the nodes 0,

3, or 4. Furthermore, we observed that for the flooding protocol, the set of attacks

that blocked a message going through were those that blocked nodes along all paths

from the start node to the target node. For example, we saw that to block a defender

from sending a message from node 0 to node 4, an attacker had to block nodes 1, 3,

and 5 at the same time or similar combinations that block all paths. Both of these

observations were in alignment with our expectations. Finally, we observed that out

of all of the possible attacker combinations, the only one successful against blocking

Chord was an attack which knocked out all the nodes in the network. This was as

expected as well because of Chord’s ability to handle node failure and pass messages

along the network regardless of nodes leaving the network. Chord succeeds in this
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Table 4.2: Network mission results for fixed attack, fixed defense and coevolution for
topology 0 on the logical simulator implementation.

Algorithm Attack Defense Coevolution
Coev 1.000± 0.000 0.250± 0.000 0.227± 0.05
MinMax 0.975± 0.000 0.250± 0.000 0.200± 0.060
MaxSolve 0.826± 0.014 0.207± 0.088 0.263± 0.159
IPCA 0.690± 0.079 0.250± 0.000 0.333± 0.063
rIPCA 0.698± 0.082 0.250± 0.000 0.463± 0.018

because in the case that the target node is attacked, the protocol designates a new

target node by means of passing along its keys and content to its successor node, thus

keeping the target node alive.

Because this exhaustive search is impossible on the larger topologies, we ran the

algorithms across all topologies with the parameters and number of runs specified

earlier. The results of these runs can be found in tables 4.2, 4.3, and 4.4. To explain

the tables, the values presented are the average fitness values of the last generation

over the 30 runs. Across all topologies the Attack column means we fixed the defender

to be the Chord protocol and let the attacker evolve. On the other hand, the Defender

column means we fixed an attacker and allowed the defender to evolve. Finally, the

Coevolution column means we evolved both attackers and defenders against each

other simultaneously.

We first consider the results of running our experiments on Topology 0, which

can be found in table 4.2. When fixing the defender as the Chord protocol (Attack

column), the values show how the different algorithms performed differently in finding

attackers that were better suited at disrupting the mission. This is evident through

the different levels of fitness found for defenders across all of the algorithms with

the IPCA and rIPCA algorithms finding defenders with the highest fitness. When

fixing the attack (Defense column), most algorithms converged to the Chord protocol

which has a fitness of 0.250. When both attacker and defender were allowed to evolve

(Coevolution column), the algorithms converge on Chord as the best defender with

different levels of certainty.

We next consider the results from Topology 1 in table 4.3. We first note that the
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Table 4.3: Network mission results for fixed attack, fixed defense and coevolution for
topology 1 on the logical simulator implementation.

Algorithm Attack Defense Coevolution
Coev 0.067± 0.000 0.100± 0.033 0.067± 0.031
MinMax 0.062± 0.000 0.100± 0.033 0.059± 0.013
MaxSolve 0.163± 0.002 0.111± 0.000 0.074± 0.026
IPCA 0.073± 0.001 0.111± 0.000 0.070± 0.003
rIPCA 0.079± 0.008 0.111± 1.387 0.068± 0.003

Table 4.4: Network mission results for fixed attack, fixed defense and coevolution for
topology 2 on the logical simulator implementation.

Algorithm Attack Defense Coevolution
Coev 0.173± 0.001 0.053± 0.022 0.053± 0.022
MinMax 0.102± 0.001 0.053± 0.022 0.057± 0.017
MaxSolve 0.096± 0.000 N/A 0.081± 0.027
IPCA 0.072± 0.000 0.062± 0.0 0.079± 0.000
rIPCA 0.073± 0.001 0.062± 0.000 0.062± 0.000

average fitness values of the defender populations are lower across the entire attack

column than they were under Topology 0. This is not because of the performance of

the algorithms, attackers, or defenders, but because of the increase in the number of

nodes in the topology. The defenses’ fitness function is inversely proportional to the

number of hops needed to reach its goal. Thus, an increase in the size of the topology

will lead to an overall decrease in fitness values for the defense population. The

defense column for Topology 1 is similar to that of the defense column for Topology 0

as they all converge on Chord as the best defender solution. As for the coevolutionary

results, we note again that a few of the algorithms, like IPCA and rIPCA, converged

on the Chord protocol as the best solution with more certainty than the others.

Finally, Topology 2 – the largest of the topologies. Across all columns of table 4.4,

we notice many of the same trends we saw from the earlier topologies. One exception

that we did not know how to explain, however, was that the MaxSolve coevolutionary

algorithm was unable to converge on a solution.
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4.2.2 Logical to Physical Network Simulator Results

The setup for running the algorithms on the logical to physical simulator implemen-

tation was the exact same as that in the one conducted with the logical simulator

implementation. The difference was the underlying Chord implementation that makes

use of both the physical and logical layers, and that we did not run experiments where

a defender or attacker was fixed. The results of running the algorithms on the logical

to physical network simulator can be found in table 4.5. The trends in the defender

fitness values across the topologies and algorithms closely resemble the trends we

noted in tables 4.2, 4.3, and 4.4 in the previous experiment. The difference, how-

ever, is that upon inspecting the outputs of the algorithms, rather than algorithms

converging on the Chord protocol as the best solution for the defender, it varied in

Topology 0 and Topology 1 between the Chord protocol and the flooding protocol. In

the largest topology, the flooding protocol was strictly found by all of the algorithms

as the best defender. Given these results, we claim that increasing the complexity

of the simulator to traverse the physical network between two nodes for every hop

between the corresponding nodes in the virtual layer increased the number of hops

the Chord protocol took to get the message to the destination. This, in turn, affected

its fitness score which is why it was in direct competition with the flooding algorithm.

We did observe, however, that the shortest path did not come up as a solution thus

verifying that the Chord protocol and the flooding protocol are more robust in terms

of withstanding attackers. Finally, another interesting observation we made when

conducting this experiment was the time it took to run all the algorithms across all

of the topologies for coevolution only. The amount of time it took to run just the

coevolutions for all algorithms across all topologies took the same amount of time –

about 13 hours – to complete as the experiments conducted on the logical simulator

implementation where fixed attackers and fixed defenders were included. We hypoth-

esize that the performance in this experiment was different than that of the logical

network simulator experiments because of an increase in the number of timesteps in-

curred as a result of traversing both the physical and logical networks. This difference
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Table 4.5: Network mission results for coevolution for all topologies on the logical to
physical network simulator implementation

Topology 0 Topology 1 Topology 2
Algorithm Coevolution Coevolution Coevolution
Coev 0.079± 0.010 0.007± 0.001 0.005± 0.000
MinMax 0.053± 0.023 0.004± 0.001 0.004± 0.001
MaxSolve 0.061± 0.018 0.006± 0.001 0.002± 0.001
IPCA 0.082± 0.009 0.007± 0.000 0.005± 0.001
rIPCA 0.095± 0.027 0.008± 0.001 0.005± 0.001

in performance highlights the issues that begin to arise when the complexity of the

network simulator increases.

4.2.3 Chord Plus Results

Because this experiment is still in its very early stages and because we are just be-

ginning to hash out adversarial components such as fitness functions, and attacker

and defender parameters and goals, it is hard to ground the meaning of the fitness

values and solutions returned from our experiments on this software. Despite this,

we did come across interesting results regarding the execution times of the experi-

ments. In the first experiment, we ran the most basic coevolutionary algorithm with

a population size of 3 and number of generations to be 2 on a very small custom

topology. This very small example took about 22 minutes to run. With the same

topology and the same algorithm, we slightly changed the population size to be 4 and

the generations to be 10 after which the experiment took 948 minutes or 15.8 hours to

complete. Both of these experiments were real time simulations of the network. This

time was essentially the time it took for the logical implementation of the network

simulator to run all experiments across all topologies and algorithms. In a similar

way to that of the experiments run on the logical to physical simulator version, this

report on performance points to the issues that arise when the complexity of the

system increases.
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Chapter 5

Discussion

In this chapter, we reflect on some of the key findings of the experiments and questions

that may have arisen from analyzing the results of the experiments. We separate our

thoughts across three different areas: the effectiveness of using coevolutionary algo-

rithms in modeling adversarial behavior in networks, the tradeoffs of using a network

simulator instead of a live system when integrating coevolutionary algorithms with the

network, and thoughts on the barriers remaining to successfully use coevolutionary

algorithms on the proprietary software that implements the actual Chord protocol.

5.1 Effectivness of Coevolutionary Algorithms

From the very beginning of this thesis, we hypothesized that given the correct frame-

work to use and model to work with, that coevolutionary algorithms would be very

useful in modeling adversarial behavior in networks. It is clear from the results ob-

tained across the experiments that the coevolutionary algorithms were able to find

the best average attacker solution on a network, and the best routing configurations

for a network simultaneously. While this thesis focused mainly on establishing a

framework that facilitates incorporating the use of these coevolutionary algorithms

on a network, it is clear that the output of the algorithms can be very beneficial to

an expert designing a network. By coevolving both the attacker and defender, the

expert can use the information returned about the best solutions to make better and
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more informed decisions when designing the network.

In addition to establishing the usefulness of coevolutionary algorithms to approach

the problem of creating robust cyber defenses, it is also worthy to note that different

types of coevolutionary algorithms are better suited to finding optimal solutions than

others. For example, across the experiments, we typically saw IPCA and rIPCA

converge on a solution with a higher confidence interval than the other algorithms

such as MaxSolve, MinMax, and a generic coevolutionary algorithm. This information

is useful in a future where this technology is used to create robust defenses because it

shows which algorithms are the ones we should be focused on integrating and running.

5.2 Effectiveness of Network Simulator

It is clear from the fact that we were able to run any substantial experiments to show

the effectiveness of coevolutionary algorithms on the problem of creating robust cyber

defenses that creating a novel network simulator was the key step of this research.

Without making assumptions and abstracting away all of the extraneous details that

might come as a result of working with a real peer-to-peer netowrk, we would not have

made much progress in the research questions we established in chapter 1. Developing

and using both versions of the network simulator allowed us to control the environ-

ment and make it suitable enough for us to integrate the coevolutionary algorithms

and model the coevolution of attackers and defenders on a network. As long as more

work is put into slowly building the complexity of the simulator without increasing

the difficulty of integrating the coevolutionary algorithms, then this is currently the

best approach for modeling adversarial behavior in networks.

5.3 Thoughts on Network Emulation

Although the overall goal is to be able to model adversarial behavior in live systems,

the amount of time it took to run even the simplest of experiments on the proprietary

emulator shows how much work is left to be done in this area. Along with finding a
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way to speed up running the algorithms on the system, there should also be much focus

placed on creating a system that is modular and easy to integrate with components

such as the coevolutionary algorithms. If these issues can be solved, this would be

incredibly exciting as the search space for both attackers and defenders would be

enormous in live systems. For example, in the proprietary emulator we use, we are

able to select among countless numbers of configurations and parameters for the

network thus giving it many more defense options than just three routing protocols

to work with.
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Chapter 6

Conclusions

In the very beginning of this thesis, we posed the two main research questions we

needed to address if we were to make progress towards the overall vision of creating

adaptive cyber defenses. The two questions were:

1. How can we effectively implement a peer-to-peer network simulator which in-

terfaces with coevolutionary adversarial genetic algorithms that need to manip-

ulate defensive configurations of the network?

2. How can we integrate the same coevolutionary genetic algorithms with a live

peer-to-peer simulator with far more details and complexities and set out an

example of evaluation?

To address these questions, we designed and implemented a network simulator

that implements the Chord protocol and integrated this simulator with several co-

evolutionary algorithms to see if this was an effective way to model the adversarial

behavior between a cyber attack and cyber defender. Second, we also incorporated

one of the coevolutionary algorithms into a novel proprietary software implementing

an enhanced version of the Chord protocol and obtained initial results. Through

our experiments, we were able to determine that coevolutionary algorithms are in-

deed effective in determining optimal configurations for a network and can be used

to make better decisions when designing a network, but deteriorate in performance

as the complexity of the system they are used in increases.
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Although this thesis takes us one step closer to achieving the vision of creating

robust cyber defenses in order to better protect networks from adaptive cyber attacks,

there is still a great deal of work to be done. Future work that could stem from this

thesis includes: improving the complexity and realism of the network simulator while

maintaining a level of modularity, developing similar network simulators for different

peer-to-peer protocols, and reducing the performance bottlenecks associated with

modeling adversarial behavior on live systems.
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