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Abstract

This thesis uses machine learning methods to construct emotional arcs in movies,
calculate families of arcs, and demonstrate the ability for certain arcs to predict
audience engagement. The system is applied to Hollywood films and high quality
shorts found on the web.

We begin by harnessing deep convolutional neural networks for audio and visual
sentiment analysis. These models are trained on both new and existing large-scale
datasets, after which they can be used to compute separate audio and visual emo-
tional arcs for any video. We then crowdsource annotations for 30-second video clips
extracted from highs and lows in the arcs in order to assess the micro-level precision
of the system. Precision is measured in terms of agreement in polarity between the
system's predictions and annotators' ratings. The final model combining audio and
visual features achieves a precision of 0.894.

Next, we look at macro-level characterizations of movies by investigating whether
there exist 'universal shapes' of emotional arcs. In particular, we develop a clustering
approach to discover distinct classes of emotional arcs.

Finally, we show on a sample corpus of short web videos that certain emotional arcs
are statistically significant predictors of the number of comments a video receives.
These results suggest that the emotional arcs learned by our approach successfully
represent macroscopic aspects of a video story that drive audience engagement. Such
machine understanding could be used to predict audience reactions to video stories,
ultimately improving our ability as storytellers to communicate with each other.
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Chapter 1

Introduction

"Facts don't persuade, feelings do. And stories are the best

way to get at those feelings."

- Tom Asacker

Stories have long served as the throughline threading together hundreds of genera-

tions of humans. As social creatures, we have used stories to entertain, inform, and

forge bonds. Theories behind the origin and purpose of stories are numerous, with

interpretations including story as a form of "social glue", escapist pleasure, practice

for social life, and cognitive play [18, 17, 28].

However, not all stories are created equal. What can make one story draining, another

story cathartic, and yet another story fall flat?

Can we understand such differences in response through the lens of emotional arcs?

The existence of a core set of emotional arcs has long been discussed. Kurt Vonnegut

once proposed the concept of "universal shapes" of stories, defined by the "Beginning-

End" and "Ill Fortune-Great Fortune" axes. He argued nearly all stories could be

categorized by the shape of its emotional arc, ranging from "Cinderella" (rise-fall-rise)

to "bad and getting worse" (fall-fall) [2, 771. Others have made similar claims, whether

17



it be 7 Jungian-derived arcs [15], 7 arcs defined by the nature of the antagonist 191,
or 20 arcs defined by various drivers of plot [72].

There is, in fact, evidence that measuring stories along emotional dimensions can

explain the degree to which a story engages its audience. In studying the virality of

online content, the authors of [13] and [52] examined whether the valence, emotion-

ality, and likelihood of eliciting specific emotions was predictive of New York Times

articles making the Times' most e-mailed list. Ultimately, they found that emotional

and positive media were more likely to be shared.

Perhaps not too long ago, the idea that a machine could watch a film, recognize

emotions a human might, and use that experience to predict how engaging it is could

sound highly improbable. But due to advances in neural networks and availability of

data, we believe such a machine is increasingly within reach.

Motivated by the surge of video as a means of communication [35], the opportunities

for machine modeling, and the lack of existing research in this area, we tackle these

questions by viewing movies through emotional arcs.

1.1 Contributions

1. Construction of audio and visual-based emotional arcs. We use both

existing and novel datasets to train deep convolutional neural network-based

sentiment classifiers that can in turn be used to compute emotional arcs for

movies for each of the two modalities. Critically, we also describe and use

a crowdsourcing approach to evaluate the precision of key moments in these

emotional arcs.

2. A method for finding typical shapes of emotional arcs. We motivate

both a) the use of dynamic time warping as a metric to compare the shapes of

emotional arcs, and b) k-medoids as a method to cluster the emotional arcs and

18



find typical shapes that reflect commonly occurring types of stories in movies.

We find these arcs for high quality films created to tell stories, both of the

feature-length and shorts variety.

3. Analysis of how well emotional arcs predict audience engagement.

We provide an example in which a movie's emotional content features and emo-

tional arc are statistically significant predictors of engagement, where we define

engagement as the number of comments an online video receives.

1.2 Overview

Figure 1-1 illustrates the most salient pieces of the system, as well as how

the pieces relate to each other. Here we also introduce some general concepts

and terminology used to frame and describe this work.

Notably, we distinguish between modeling at two different scales - micro-level sen-

timent and macro-level emotional arcs. At the micro-level, we use visual and audio

neural networks to predict sentiment on the order of seconds. The visual model takes

a single image (frame) as input, while the audio model takes a 20-second sample as

input. Modeling at the micro-level is in turn used to model at the macro-level, where

the time scale is the length of the movie. An arc is composed using the sequence of

predictions for seconds-level moments.

19
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Reflecting this distinction, we evaluate each level separately and in parallel streams.

First, we evaluate the system's ability to accurately extract micro-level emotional

highs and lows, which we sometimes refer to as emotionally charged moments or

emotional peaks and valleys. This stream is shown on the right side of the evaluation

section in Figure 1-1. Specifically, we measure precision as the amount of agreement

in polarity between the micro-level models' sentiment predictions and annotators'

ratings.

At the same time, the macro-level modeling is expanded upon and evaluated on

the left side of Figure 1-1. First, we cluster the arcs into what we call families

of arcs, each typified by a typical arc. These have colloquially been described in

theories of narrative as "core emotional arcs" or "universal shapes" of stories. We may

occasionally, in similar fashion, refer to arcs as shapes. These are in turn used by the

subsequent engagement analysis.

Finally, we emphasize the main thrust of the work, which is to demonstrate that

emotional arcs exist in movies and have predictive power for some measure of en-

gagement, albeit in a small example. In Figure 1-1, the relevant stream of work is

(A) -> (D) -> (F) -> Engagement Analysis 2, which ultimately shows that certain

emotional arcs are statistically significant predictors of the number of comments a

video receives.

1.3 Outline

The remaining chapters are arranged into parts, with Part I covering the modeling,

Part II the evaluation, and Part III the conclusion.

Part I is divided as follows:

* Chapter 2 introduces the movie datasets for which we construct emotional arcs.

We also describe the methodology used to create audio and visual emotional
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arcs.

* Chapters 3 and 4 detail the datasets and architectures used to train audio and

visual sentiment classification networks.

" Chapter 5 describes emotional arcs through typical arcs found through k-medoid

clustering with dynamic time warping.

Part II is divided as follows:

" Chapter 6 evaluates the micro-level modeling by crowdsourcing ground truth

data in order to a) measure the difficulty of the sentiment prediction task, b)

evaluate the precision of emotionally charged moments in the arcs, and c) learn

a model that combines the predictions from the audio and visual classifiers.

* Chapter 7 evaluates the macro-level modeling by using general emotional fea-

tures and the categorization of emotional arcs in order to predict online engage-

ment.

Part III is divided as follows:

" Chapter 8 discusses related work in emotional arcs, sentiment analysis, deep

convolutional neural networks, and computational methods for understanding

story.

" Chapters 9 and 10 conclude with limitations, suggestions for future research,

and a discussion on the impact of the work.
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Chapter 2

Constructing emotional arcs

In this chapter, we first introduce the two sets of movies for which we construct

emotional arcs. We then provide an overview of how emotional arcs are created using

our image and audio models, with chapters 3 and 4 providing details on the models

themselves.

2.1 Video datasets

The system operates on two datasets collected for this work - the first consisting of

Hollywood films, and the second consisting of high quality short films from the video-

hosting website Vimeo. We selected films because they are specifically created to tell

a story. This is in contrast to, for example, the YouTube videos often shared on social

media. These stories are also contained, in contrast to serial television shows that

would require modeling across episodes (though movie sequels do somewhat fall into

this category). Finally, that there exist common film-making techniques to convey

plot and elicit emotional responses from viewers suggests that we may be able to find

typical shapes of emotional arcs.

Next, the motivations to include Vimeo shorts is threefold. First, it allows us to find
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differences in storytelling that may exist between films and possibly newer, emergent

formats unconstrained by studio demands. Second, modeling shorter form films could

be the gateway to modeling, more generally, the short form videos that commonly

spread through social networks. Finally, there is readily available engagement data for

these shorts in the form of online comments left on Vimeo. This allows us to examine

the predictive power of various emotional features, as shown in Chapter 7.

60

50 -

40 -

30 -

E
20

.. . . . . 1. .. ill ||
1940 1950 1960 1970 160 1990 2000 2010 2020

Figure 2-1: Films Corpora: distribution of release year

The first dataset is a collection of 509 Hollywood films, which we refer to from now

on as the Films Corpora. The movies were released anywhere between 1944 and 2016,

with the median release year being 2007. The distribution is shown in Figure 2-1. No-

tably, there is considerable overlap between this collection and the MovieQA [69] and

M-VAD [731 datasets. This was a deliberate decision such that future work can build

off of and incorporate the detailed captioning data included in these datasets.

The second corpora, which we call the Shorts Corpora, is a collection of 1,326 shorts

collected from the Vimeo channel 'Short of the Week' 1. These shorts are collected

and curated by a team of filmmakers and writers. Each short is anywhere from 30

seconds to over 30 minutes long, with the median length being 8 minutes and 25

seconds. The distribution is shown in Figure 2-2.

lhttps://vimeo.com/channels/shortoftheweek
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2.2 Methodology
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Figure 2-3: Visual emotional arc

Once the visual and audio models are trained for sentiment prediction (to be explained

in Chapters 3 and 4), each can be applied separately across the length of the movie

to create a visual emotional arc and audio emotional arc. To construct the visual

emotional arc, we extract a frame from every second in the movie. Each frame

is then resized and center cropped to size 256 x 256 and passed through the visual

sentiment classifier. Similarly, to construct the audio emotional arc, we extract sliding

20-second windows from the video. Note that these windows can be overlapping, with

a greater overlap leading to a smoother arc. In practice, a 50% overlap is used, with

each window sharing 10 seconds with the previous window.

Both the visual and audio predictions can be quite noisy from frame to frame and
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Figure 2-4: Emotional arcs: effect of smoothing values

Visual emotional arc for the movie 10 Things I Hate About You. In the left column, the values of
w are none (no smoothing), 0.01 * n, and 0.03 * n. In the right column, the values of w are 0.05* n,

0.1 * n, and 0.2 * n.

window to window, as temporal continuity is not an explicit part of the models. While

the upper-left plot in Figure 2-4 shows that the macro-level shape is still visible from

the raw predictions, it is helpful to smooth these signals to produce clearer emotional

arcs. To do so, each 1D signal is convolved with a Hann window of size w, which is

an approximately bell-shaped function. Figure 2-4 demonstrates the effect of various

window sizes. In later downstream tasks, commonly used window sizes are 0.05, 0.1,

and 0.2 x n, where n is the length of the video.

The audio and visual emotional arcs for the movie Her are shown in Figures 2-3

and 2-5. The audio emotional arc is also bounded by the confidence intervals to be

described in chapter 4.
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Chapter 3

Image modeling

A video without visual is no video at all. Movies are watched, with light, color,

framing, subject matter, and setting all playing a role in how the movie is perceived.

The effect of various properties of the visual medium have been well studied, ranging

from the positive psychological effects of nature scenes [74] to how color in movies

is used to express story and emotion [1]. The primacy of color is so immediate and

powerful that some filmmakers even employ colorscripts in pre-production, explicitly

mapping color to target emotions [10]. With all this in mind, we built models that

can take as input the core unit of film - the frames that compose it.

3.1 Sentibank dataset

Key to our work is the Sentibank visual sentiment dataset [16]. This dataset includes

nearly half a million images, each of which is categorized according to an ontology of

1,533 adjective-noun pairs. There are a total of 213 adjectives and 356 nouns. These

pairs, such as "charming house" and "ugly fish", are termed emotional biconcepts.

An example image for "dark clouds" is shown in Figure 3-1. Each biconcept is also

mapped to an associated sentiment using an existing sentiment lexicon. We use these
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values to train our sentiment classifier.

Figure 3-1: Example emotional biconcept

To construct the dataset, the authors used the 24 emotions found in Plutchik's wheel

of emotions as query terms to the photo-sharing website Flickr and video-hosting

website YouTube. The most frequently associated tags for each emotion were then

used to create candidate adjective-noun pairs. Pairs were then selected to create

the final ontology according to a number of criteria, including but not limited to

frequency, coverage, and specificity.

3.2 Model

We use a deep convolutional neural network to classify images, with the model ar-

chitecture described in Table 3.1. This model is based on the AlexNet architecture,

which was originally used to detect objects and scenes in the ImageNet challenge

[42].

While an architecture that better reflects the state of the art would likely have higher

accuracy, image-level classification accuracy was not the emphasis of our work. In-

stead, our focus was on building higher order arcs, for which this relatively simple

model sufficed. However, we did make a few modifications to the original AlexNet

design to reflect advancements since the time it was published. We briefly note each

one and its purpose in the following:
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" PReLU: parameterized version of the rectified linear unit (ReLU), both designed

to combat the vanishing gradient problem, which can make training deeper

neural networks difficult [32]. This was chosen over ReLU following experiments

comparing different rectified activation functions in [78], as well as empirical

results on tasks for this work.

" Batch normalization: the batch normalization layer speeds up training by nor-

malizing the layer responses per mini-batch in order to reduce covariate shift.

It also often improves generalization performance [36].

" ADAM: instead of using standard stochastic gradient descent to train our net-

works, we use ADAM, which computes adaptive learning rates using first and

second order moments of the gradients [41].

Networks were implemented and trained using TensorFlow [8].

3.3 Sentiment prediction

To convert biconcepts to sentiment values, the authors used the SentiWordnet senti-

ment ontology. Each biconcept was mapped to a sentiment value as follows:

S(anp) = S(adj) sgn{S(adj)} # sgn{S(noun)} (3.1)

S(adj) + S(noun) otherwise

where S(adj) and S(noun) is returned by SentiWordnet, and sgn indicates the sign of

the value. If the sentiment of the adjective and noun share the same polarity, then the

sentiment of the biconcept is simply the sum of the two values. If they differ, however,

the sentiment of the adjective is used, as the authors argue that the adjective is a

stronger descriptive indicator of sentiment. Values in SentiWordnet are in the range

-1.0 to 1.0. Thus, each adjective-noun pair is assigned a float value between -2.0 and

2.0. In order to train our classifier, we labeled all images with a sentiment greater
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Group # Layer

1 Conv: kernel=3 x 3, filters=96, stride=4 x 4

PReLU
BatchNorm

MaxPool: size=3 x 3, stride=2 x 2

Local response normalization: depth=4, bias=1.0, alpha=0.001 / 9.0, beta=0.75

2 Conv: kernel=5 x 5, filters=256, stride=4 x 4

PReLU

BatchNorm

MaxPool: size=3 x 3, stride=2 x 2

Local response normalization: depth=z4, bias=1.0, alpha=0.001 / 9.0, beta=0.75

3 Conv: kernel=3 x 3, filters=384, stride=1 x 1

PReLU

BatchNorm

4 Conv: kernel=3 x 3, filters=384, stride=1 x 1

PReLU

BatchNorm

5 Conv: kernel=3 x 3, filters=256, stride-i x 1

PReLU

BatchNorm

MaxPool: size=3 x 3, stride=2 x 2

6 Fully connected: units=2048

PReLU

Dropout: prob-0.5

7 Fully connected: units-2048

PReLU

Dropout: prob-0.5

8 Fully connected: units=output dimension

9 Softmax

Cross entropy loss

Table 3.1: Modified Alexnet architecture used for image classification

than 0.5 as 'positive', and those with a sentiment less than -0.5 as 'negative'.

Training details for sentiment classification. The network was trained with a

learning rate of 0.01, a batch size of 128, and a batch normalization decay of 0.9.

Results. The performance of the classifier is shown in Table 3.2. We note that the

final accuracy is likely hurt in part by the noisiness of the dataset, which is a function

of how it was created automatically. Figure 3-4 in the last section of this chapter
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illustrates some of this noise. To address this problem, [79] introduces a framework

for progressively fine-tuning networks by discarding noisy training examples.

Accuracy Precision Recall F1
0.652 0.753 0.729 0.741

Table 3.2: Performance of sentiment classifier

3.3.1 Sentiment and color - image scrambling experiments

Color plays a large role in eliciting emotional responses [1, 10]. Imagine, for exam-

ple, the simple difference between a dark room and the same one warmly lit. To

better understand how much our network classifies based on objects versus color, we

performed a simple experiment based on scrambling input test images.

Original Uniform Recursive

Figure 3-2: Image scrambling

We scramble an image of dimensions n x n by dividing it into blocks, and then

permuting those blocks. We define two different methods for scrambling - uniform and

recursive. Both scrambling functions take a parameter b, which defines the dimensions

of one block. Here we assume n is divisible by b. In uniform scrambling, the image is

divided into (n/b)2 blocks, after which the blocks are randomly permuted. In recursive

scrambling, we recursively subdivide an image until we reach blocks of size b x b. After

every recursive subdivision into four blocks, we randomly permute these four blocks.

Examples of each method are shown in Figure 3-2, while Figure 3-3 illustrates the
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effect of different block sizes. At a high level, recursive scrambling preserves more of

the semantics of the image than uniform scrambling.

0

"'E

U

128 64 32 16

Figure 3-3: Image scrambling: varying blocksizes

Results. Table 3.3 shows the effects on accuracy of scrambling a 224 x 224 image. As

expected, when the block size is small (e.g. b = 7), performance is worse for uniform

scrambling compared to recursive scrambling. On the whole, however, performance

doesn't suffer too greatly once the block size is large enough. This suggests that the

network is indeed largely classifying images based on color distribution features.

This is in part to be expected. First, splitting the data into only two classes (positive

or negative) results in each class containing a extremely wide distribution of images.

This may preclude the network from learning much beyond color and basic texture-

based features. Second, we would expect a deeper neural network with a larger

receptive field size to be more strongly affected by scrambling. To make a sentiment

classifier that takes objects and scenes into greater account, we could fine-tune a

network pre-trained for object or biconcept recognition.
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Scramble mode Block size Accuracy Precision Recall F1
Uniform 7 0.403 0.661 0.153 0.245

14 0.616 0.674 0.704 0.687
28 0.625 0.650 0.736 0.690
56 0.627 0.671 0.650 0.660
112 0.618 0.670 0.603 0.635

Recursive 7 0.557 0.669 0.478 0.558
14 0.590 0.670 0.560 0.611
28 0.619 0.671 0.644 0.657
56 0.618 0.667 0.628 0.650
112 0.617 0.671 0.600 0.637

Table 3.3: Performance of sentiment classifier: effect of image scrambling

3.4 Emotional biconcept prediction

While reducing the biconcepts to a single sentiment value is useful for creating emo-

tional arcs, it also throws away a lot of information. Thus, we trained a second

network that treats the biconcepts as labels. This network proves useful in creat-

ing 'movie embeddings' that capture in broad strokes a movie's emotional content.

Details are discussed in section 6.6.2.

Training details for biconcept classification. We used only biconcepts that had

a minimum of 125 images, leaving 880 valid biconcepts. The network was trained

with a learning rate of 0.01, a batch size of 128, batch normalization decay of 0.9,

and a weight decay of 0.005.

Quantitative Results. The accuracy of the classifier is shown in a) of Table 3.4.

Top-k accuracy is defined as the percent of images for which the true label was found

in the top-k predicted labels. Again, labels are adj-noun pairs.

Top-i Top-5 Top-10
7.4% 19.9% 28.4%

(a) Predicting adj-noun pair

Match Top-i Top-5 Top-10
Adj 12.0% 30.2% 41.5%

Noun 15.1% 31.7% 40.7%

(b) Matching adj / noun in predicted adj-noun
pair

Table 3.4: Performance of emotional biconcept classifier
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We also calculate top-k accuracy for adjectives and nouns. The predictions are still

adj-noun pairs, but we calculate the percent of images for which the true adj/noun

is found in the top-k predicted adj-noun pairs. Results are shown in b) of Table 3.4.

The higher accuracy suggests that even though the predicted adj-noun pair may be

incorrect, the label has learned both emotional and semantic relationships between

images. This idea is reinforced in the subsequent qualitative analysis.

Qualitative Results. We also qualitatively examine the top predicted labels for a

few images, as shown in Figure 3-4. The true label is beneath each image, the top

10 predicted labels are on the right of each image, and any correctly predicted labels

are bolded.

The results show that even when the true label isn't found in the top 10 predicted

labels, the predicted labels still largely returns semantically relevant biconcepts. This

examination also serves to illustrate a number of things about the dataset. Specifi-

cally, we see:

e Noisy labels. For instance, one could argue "little beauty" hardly describes

a spider, no matter how colorful it looks. The image for "young artist" also

describes the work of the artist, not the artist themselves.

9 Abstract biconcepts. It's not clear what set of images could accurately en-

capsulate a concept like "bad guy".

e Missing biconcepts. Though "violent crime" is a biconcept, it's highly unlikely

any image found on Flickr would actually depict the act of a violent crime.

Likewise, we're unlikely to see images in this dataset related to concepts such

as gore or death.

38



rough-kIblc&
deac fly

broknr glass
broken_mirrsor
fall rg angel
cdarr
dead lag

sexy dines

talng-Sana&

young artist bad guy

cute cat
we:_cal
cWo face

adeoale_'slly
pretyjr rty
sweel kitty

'trakilty
cotn aniitra1s
O ndy Oss C~

fluffy-ears nappyKICS

i-sriny-sircrt

lr'cly_.rad
dnadond

erply chai'
cet road
clear car

drunk d'iva
busy street
OsI_coAra

violent-crime tiny-car

Figure 3-4: Biconcept predictions
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Chapter 4

Audio modeling

Imagine 'watching' a movie with your eyes closed - even limited in such a way, you

would likely still be able to pinpoint moments of suspense, silliness, and sadness.

Together with the visual events, audio is used in movies to to elicit emotional responses

from viewers [58]. Sound and music can also play against the scene displayed, with

the ear scene in Quentin Tarantino's Reservoir Dogs and the Hip to Be Square scene

in American Psycho as prime examples of how such contrast can heighten a scene.

Audio is often secondary to the more obvious visual stimuli, and one can argue that

an effective score floats just beneath the surface, arising at key moments to grab the

viewer [6]. With the idea that just a few seconds is enough to set the mood, we

created a model for sentiment classification that operates on 20-second snippets of

audio.

4.1 Spotify dataset

We first started with the Million Song Dataset [14], which contains various metadata

for approximately one million songs. Several of these features, such as tempo or ma-

jor/minor key, could theoretically be used as a proxy for valence, energy, and other
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relevant target features. We could also use the associated Last.FM dataset, which

provides user-provided tags such as "happy" or "sad" for a subset of songs. Unfortu-

nately, the subset of tagged songs is significantly smaller than the full dataset. We also

note that the audio for the songs is not included in the Million Song Dataset.
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(a) Valence (b) Energy

Figure 4-1: Spotify dataset: distribution of valence and energy features

To address our needs, we turned to the Spotify API. The API provides not only 30-

second samples for songs, but also a number of audio features used by the company

internally. These include valence, which measures the "musical positiveness conveyed

by a track", and energy, which measures the "perceptual measure of intensity and

activity". The distribution of valence and energy values are shown in Figure 4-1

We used song titles from the Million Song Dataset as queries to the API and collected

data for a total of 635,399 songs.

For the task of sentiment prediction, we use all samples that have a valence either

greater than 0.75 or less than 0.25. This leaves a total of approximately 200,000

'More from https://developer.spotify.com/web-api/get-audio-features/:

" "Tracks with high valence sound more positive (e.g. happy, cheerful, euphoric), while tracks
with low valence sound more negative (e.g. sad, depressed, angry)."

* "Typically, energetic tracks feel fast, loud, and noisy. For example, death metal has high
energy, while a Bach prelude scores low on the scale. Perceptual features contributing to this
attribute include dynamic range, perceived loudness, timbre, onset rate, and general entropy."
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samples. While we don't train a network to predict energy in this work, we believe

it could be a useful and complementary signal, especially in the context of movies.

Consider a fighting scene in a superhero movie - the sounds may not be explicitly

positive or negative, but it's quite possible that they have high energy. The energy

could then affect the magnitude of excitation and arousal in the viewer. This also

aligns with emotional frameworks that include pleasure (valence) and arousal (energy)

[51]. Further suggesting that energy could be a non-redundant, complementary signal,

Figure 4-2 shows the non-linear relationship between the two.

0.8

0.6

O,

07

0.0
0.0 0.2 0 .4 0.6 0.8 1.0

Valence

Figure 4-2: Spotify dataset: relationship between valence and energy.

The brightness of each hexbin denotes the density of audio samples, with brighter values indicating
greater density.

4.2 Audio representation

We represent each 30-second audio sample as a mel-spectrogram. Frequencies in the

spectrogram are transformed to the mel scale according to equation 4.1. The result

of perceptual listening experiments, the mel scale attempts to reflect the non-linear

human sensitivity to different pitches. An example mel-spectrogram for a 20-second

slice of audio is shown in Figure 4-3. We use 96 mel-bins for our models and the
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Python package librosa to compute the mel-spectrograms [50].

m = 2595 logio(1 + f /700)

7503

341-1

1609,6

715.2
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Time
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Figure 4-3: Example mel-spectrogram

We briefly note that mel-frequency cepstral coefficients (MFCC's) are another com-

monly used representation. Not too unlike mel-spectrograms, MFCC's are (roughly)

created by taking windowed Fourier transforms, mapping onto the mel scale, and then

taking the discrete cosine transform of the logs of the powers on the mel scaled fre-

quencies [70J. [21] demonstrate that mel-spectrograms and MFCC's have comparable

performance on a music tagging task.

4.3 Model

Once an audio sample is represented as a 2D mel-spectrogram, we can utilize the

power of deep convolutional neural networks (CNN's). Following [211, we adopt the

architecture shown described in Table 4.1. While it's possible to stack a recurrent

neural network on top of a feature-extracting CNN in order to model the temporal

aspect of audio, [22] shows this provides only marginal gains at the cost of increased

computational complexity.
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Group # Layer
1 Conv: kernel=z3 x 3, filters=32, stride=1 x 1

ELU

BatchNorm

MaxPool: size=-2 x 4, stride=2 x 4

2 Conv: kernel=3 x 3, filters=128, stride=1 x 1

ELU
BatchNorm

MaxPool: size=2 x 4, stride=2 x 4

3 Conv: kernel=3 x 3, filters=128, stride=1 x 1

ELU
BatchNorm

MaxPool: size=2 x 4, stride=2 x 4

4 Conv: kernel=3 x 3, filters=192, stride=1 x 1

ELU
BatchNorm

MaxPool: size=2 x 4, stride=2 x 4

4 Conv: kernel=3 x 3, filters=256, stride=1 x 1

ELU
BatchNorm

MaxPool: size=4 x 4, stride=4 x 4

6 Reshape

Dropout, prob=0.5

Fully connected: units=2

7 Sigmoid
Cross entropy loss

Table 4.1: CNN architecture used for audio sentiment classification

4.4 Sentiment prediction

The performance of the sentiment classifier on the test set is shown in table 4.2. The

accuracy is 89.6% and the Fl-score is 0.900.

Accuracy Recall Precision F1
0.896 0.871 0.931 0.900

Table 4.2: Performance of audio sentiment classifier
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4.5 Uncertainty estimates

We face a problem when blindly applying a model trained on the Spotify dataset

to audio found in movies. Namely, the audio found in movies will often contain

sound not found in the song-based dataset. For instance, movies may have significant

sections where the audio is background noise, conversation, or silence, to name a few

possibilities.

This problem is an example of covariate shift, in which the distribution P(x) for data

modeled as being generated by P(ylx)P(x) changes between training and test time

[61]. One approach to handle 'unfamiliar' inputs is to explicitly predict if the audio

comes from the training distribution. Another approach is to produce confidence

intervals for every prediction. Both have the end goal of weighting predictions.

We sought a solution under the second approach. While the softmaxed activations

from a neural network can be interpretcd as probabilities, and hence a reflection

of confidence, these probabilities can often be biased and require calibration [55].

Bayesian neural networks that can produce these uncertainty estimates by modeling

parameter uncertainty is an active area of research.

We follow a method introduced in [26], which produces approximate uncertainty

estimates for any neural network that contains dropout. Commonly used to prevent

overfitting, a dropout layer with prob = 0.5 operates by 'dropping out' (setting to

zero) each unit in the layer before it with probability 0.5 during training [67]. At

test time, however, the dropout probability is typically 0. The proposed method

bootstraps confidence intervals for an input point by setting the probability to 0.5

during test time, passing the point m times through the network, and using as the

standard deviation of the predictions to define a confidence interval around the mean

of the predictions. We can see an example of confidence intervals for the audio

predictions on movies in Figure 2-5.

We briefly note that this method can also be applied to our image models. We should
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expect that the standard deviations be smaller as there is less covariate shift. This is

indeed the case - standard deviations reach as high as 0.2 for audio predictions but

only about 0.05 for image predictions.
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Chapter 5

Finding families of emotional arcs

With the machinery to create emotional arcs, we now seek to find the typical "shapes

of stories" that Vonnegut and others have long theorized about.

Results shown in this section are based on the visual emotional arcs. The audio arcs

can also be clustered into coherent families, but we believe it makes much more sense

for a movie to be contoured by a visual-scape than an audio-scape. Again, audio

tends to be more localized to specific moments in a movie.

5.1 Approach: clustering using k-medoids and dy-

namic time warping

A naive approach to clustering emotional arcs could be to simply use a popular

clustering algorithm such as k-means [47] with a Euclidean metric to measure the

distance between two arcs. K-means is an iterative parametric algorithm where the

user specifies apriori the number of clusters k. The algorithm starts by randomly

selecting k points as the centroids of k clusters. It then alternates between assigning

each point (e.g. an emotional arc) to the nearest centroid and updating each centroid
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as the mean of all the points assigned to it. However, this is a poor approach for our

problem, for it fails in two ways:

1. Taking the mean of emotional arcs can fail to find centroids that accurately rep-

resent the shapes in that cluster. Figure 5-1 illustrates a pathological example

of when this fails. The mean of first two signals, representing emotional arcs,

has two clear peaks instead of one. While this is a contrived, pathological case,

we argue that this is still a fundamental flaw in this approach.

2. On a related note, we shouldn't be operating in Euclidean space, as the Eu-

clidean distance between two emotional arcs doesn't necessarily reflect the sim-

ilarity of their shapes. Again, consider the first two plots in Figure 5-1. While

these curves are clearly similar in shape, their Euclidean distance may be quite

large.

With these limitations in mind, we turn to k-medoids [39] with dynamic time warping

(DTW) [241 as the distance function. K-medoids operates very similarly to k-means -

the main difference is that the centroid is replaced with the medoid. Namely, instead

of using the mean of all the points in the cluster, we update the medoid as the point

that is the median distance to all other points in the cluster.

Next, DTW is an effective distance function for measuring the difference between

two time series that may operate at different time scales. It has traditionally been

used in speech recognition tasks, where a given utterance has a similar characteristic

waveform regardless who speaks it, but one person may speak faster or slower than

another.

5.2 DTW formulation

Given two time series A and B both of length n, we first construct a n x n matrix M,

where M[i][j] contains the squared difference between Ai and Bj. To compute the
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Figure 5-1: Pathological example of how k-means
clustering emotional arcs

and Euclidean distance fails for

DTW distance between A and B, we compute the shortest path through this matrix.

This optimal path can be found in O(n2 ) using dynamic programming by:

c(i, j) = M[i][j] + min{c(i - 1, j - 1), c(i - 1, j), c(i, j - 1)} (5.1)

In Figure 5-1, for example, the DTW distance between the first and second time series

is 0.

5.3 LB-Keogh for speed-up and better modeling

Several existing techniques to speed up DTW center around creating a 'warping

window' that limits the available paths through the matrix M. Two commonly used

windows are shown in 5-2. Using either of these windows, the popular Keogh lower

bound approach creates upper and lower bound time series that envelop the original

time series A as shown in Figure 5-3 [40]. Formally, these are defined as:

U = max(Ai_, : Ai+r)

Li = min(Ajr: Ai+r)

(5.2)

(5.3)
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Figure 5-2: Warping windows for Keogh lower bound

This figure was adapted from [40].

where r is a parameter reach that controls the size of the window. Intuitively, this

controls how much a time series is allowed to warp. The lower-bounded LBKeogh

distance between A and B is then given as:

(B, - U,)2 if B, > Us
n

LBKeogh(A, B) = (Bi - Li) 2  if Bi < Li (5.4)

0 otherwise

If B lies inside the envelope of A, then the distance is 0. If B lies outside the envelope,

however, then its distance is essentially the distance to the nearest orthogonal edge

of the envelope.

Importantly, this approach has ramifications beyond increased speed up. Consider

again the first two emotional arcs shown in Figure 5-1. While they do have very

similar shapes, both being characterized by one large peak, one could argue that they

might impact a viewer very differently. The first hits the viewer with a emotionally

charged moment as soon as the movie starts. The rest of the movie, however, is flat.

The second, however, delivers the emotional blow at the end of the film - a moment

timed in such a way could have a greater impact. Consequently, we would like our
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Figure 5-3: Envelopes for Keogh Lower Bound

This figure was adapted from [401.

distance function to only allow warping to a certain extent. The window does exactly

that.

5.4 Practical notes

There are several practical considerations when applying DTW to the emotional arcs

generated for our videos. First, the above formulation considers the distance of two

time series both of length n. In practice, our movies are of different lengths. To

account for this, we set a maximum length m for each corpora with m = 10000

for the Films Corpora and m = 1800 for the Shorts Corpora. Next, each video is

stretched to length m, with missing intermediate values being interpolated. While

it's capable to formulate DTW for time series of different lengths, experiments on a

variety of tasks in [63] show there is little empirical evidence that either approach has

a statistically significant effect on accuracy.

A few movies in each corpora exceed m and are excluded from the clustering analysis.

Rather than a limitation, these videos can be considered outliers that should indeed

be withheld. For instance, considering a 80 minute video in the Shorts Corpora as
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a 'short' makes little sense. Including it would also force every movie, such as one

lasting two or three minutes, to be stretched to 80 minutes.

Second, since we are interested in the overall shape of the emotional arc, we z-

normalize each emotional arc such that all values lie in the range [0,1]. Specifically,

a given emotional arc A, whose original values representing the valence predictions

may lie in the range [0.4, 0.8], is normalized by the following:

Arange =max(A) - min(A) (5.5)

Ai = (Ai - Arange)/Arange (5.6)

Finally, we consider how to select r. 0.1 * n was commonly used in the speech recogni-

tion community, though recent experiments indicate that value was historical rather

than practical. After testing a few different values, we settled on 0.025 * n. This

is close to 0.03 * n, the value found to be optimal for a number of different tasks

[63].

5.5 Cluster results

Though there is no 'right' number of clusters, there are a number of techniques for

finding an optimal k. We use the elbow method [29], which plots the within cluster

distance defined in Equation 5.7 against the number of clusters k. We then look for

'elbows' in the curve where the curve 'flattens' out. In Figure 5-4, for example, we

can see possible 'elbows' at k=5 and k-=9. We also briefly note that an experiment

with k-means resulted in elbow plots with no clear decrease in the within cluster

distance, let alone a discernible elbow. This reinforces our decision to use k-medoids

and DTW.
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K

WCD = E E dist(x, mi)2  (5.7)
i=1 XEmi

where mi is the i-th medoid, x E mi signifies x belongs to the cluster with mi medoid,

and dist(x, mi) is the DTW distance between x and mi.
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Figure 5-4: Elbow plots
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(b) Shorts Corpora

for k-medoid clustering

We show one example clustering for k=5 and w=O.1 in Figure 5-5 and 5-6. These arcs

represent five typical emotional arcs. We note that the steep inclines and declines at

the start and end of arcs are simply artifacts of a movie's opening and closing scenes

and credits. When comparing Film arcs to Short arcs, we not surprisingly see that

Short arcs are less complex. However, we also note more extreme arcs in the Shorts

Corpora, such as the yellow arc that ends on a steady, depressing decline.
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Figure 5-5: K-medoids on Films Corpora for k=-5
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Figure 5-6: K-medoids on Shorts Corpora for k=5
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Part II

Evaluation - moments and arcs
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Chapter 6

Crowdsourcing ground truth

In this chapter, we evaluate the micro-level accuracy of our system and its ability to

extract emotionally charged moments from a movie. In order to do so, we had to

first collect ground truth data on movies. Having ground truth is critical because it

allows us to:

1. Understand the difficulty of the task. Sentiment is subjective, and the

accuracy of the system should be baselined against how much human responses

may vary and contradict each other.

2. Evaluate the accuracy of our audio and image sentiment models. This

is measured through precision, where we calculate the amount of agreement in

polarity between our sentiment predictions and annotators' ratings.

3. Combine the audio and visual predictions. We can learn how to weight

the two modalities. For example, if the predicted audio valence is high but the

predicted visual valence is low, what is the likely actual valence?

The constructed emotional arcs were initially sanity checked and qualitatively assessed

by having people a) visually inspect emotional arcs of movies they were familiar with,

and b) compare moments in the audio and visual emotional arc that were high or low
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against the actual video and audio at that moment in the movie. While this suggested

that the system had some level of accuracy, it was far from quantitative.

One particularly thorough approach could be to have n subjects watch m videos and

record their physiological responses throughout the viewing. While we briefly consid-

ered this with n = 1, due to time constraints, we looked to another approach.

Instead, we turned to crowdsourcing to annotate 30 second video clips extracted

from various movies in the Films Corpora. Annotating an entire film, let alone

multiple films, would be too cost and time intensive. Therefore, to keep the cost

down and maximize the value of each annotation, we extracted video clips at high

and low moments in the emotional arcs. We hoped that these moments, as opposed

to scenes from more neutral moments, would lead to more interesting and informative

annotations.

Workers were asked to watch a clip and answer four questions regarding its sentiment.

We also highlight that each video clip was annotated by three workers in order to

assess the difficulty of the task.

6.1 Video clip extraction

Overall, anywhere from one to seven clips were extracted from 168 films. In this

section, we describe the methodology and design decisions that we used to select

clips.

We refer to local maxima in an emotional arc as peaks and local minima as valleys.

Combined with the two modalities, this gives us four types of clips - audio-peaks (a

peak from the audio emotional arc), audio-valleys, visual-peaks, and visual-valleys.

We extracted a roughly equal number of each, with a target of approximately 1000

clips total. Table 6.1 shows the exact numbers.

A common framework that underlies several methods for peak detection in signal
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Number of clips

Audio-peak 220
Audio-valley 253
Visual-peak 230

Visual-valley 259

Table 6.1: Number of video clips

processing literature is to first a) smooth the signal, and then b) find peaks using a

filter, auto-correlation technique, or simple outlier detection method.

In our case, the emotional arcs were smoothed using the Hann window of size w. We

use a window size of w = 150 for the audio emotional arcs and w = 600 for the visual

emotional arcs. The w for audio is smaller to reflect the idea that audio in movie acts

as a sharper tool for eliciting emotional responses and hence operates at finer time

scales.

In our case, we find peaks by an auto-correlative method that compares a signal x

to X--1, where x- is x shifted by one. Peaks are then detected using the difference

between x and x- 1 , which essentially compares a point xi against its neighbor. In

addition, there are several tunable parameters, including a threshold for 'peakiness'

of a point relative to its neighbors, 'peakiness' relative to the entire signal, distance

between peaks, and flatness of peak (accounting for more neighbors). Figure 6-1

shows an example of peak detection.

To slice out a 30-second clip from a peak at point xi, we take the segment Xi- 5 :i+1 5 .

In other words, we take the 15 seconds on either side of the peak.

Peak detection is performed on the audio and visual emotional arcs separately. In

the infrequent but interesting case that the 30-second segment around a peak/valley

in the audio arc overlapped with the 30-second segment around a peak/valley in the

visual arc, we defined the joined extremum point as the midpoint of the overlap. A

30-second clip is then extracted centered around that midpoint, as shown in Figure

6-2. For simplicity's sake, the program is designed to discard any cases that had 2
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Figure 6-1: Peak detection example on the visual emotional arc of Fantastic Mr. Fox

or more overlaps, as there is ambiguity around what time best to extract from. In

practice, no such cases occurred.

30 secon&d 30 seco&s

1lovorlup 2+ overlaps

Figure 6-2: Clip extraction edge case: overlapping peaks/valleys

Finally, when extracting clips from audio-peaks or audio-valleys, there is the added

consideration of how to sample with respect to the confidence intervals described in

chapter 4. We hoped to show that predictions with smaller confidence intervals were

more accuate. In other words, peaks/valleys with small confidence intervals would

be more emotionally charged than peaks/valleys with larger confidence intervals. In

order to do so, we needed a healthy sample size at varying confidence interval bins.

Because there were relatively few audio-peaks with small confidence intervals, we

performed biased sampling by taking as many clips from small confidence interval
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audio-peaks as possible. Even so, the distribution was non-uniform, with, for example,

11 clips with standard deviations (which define the confidence interval) in the range

[0.02, 0.04), and 68 clips with standard deviations in the range [0.08, 0.1). The exact

numbers are shown in Table 6.4.

6.2 Crowdsourcing experiment

We chose to use the CrowdFlower platform for its simplicity and ease of use. While

Mechanical Turk, another popular crowdsourcing platform, has greater flexibility in

customizing an experiment, our task was relatively straightforward. Moreover, stud-

ies comparing the two indicate that the quality of annotations can be comparable

[25].

6.2.1 Instructions and questions

6.2.1.1 Task

In our annotation task, users are first provided with a set of instructions and guide-

lines. Next, they are given five test questions that serve both to assess the quality of

the worker and give the worker some practice examples. Once completed, they can

move on to annotating clips.

6.2.1.2 Instructions

Overview

After watching a 30-second video clip, you will be asked to answer

questions about the sentiment and emotions surrounding the video.

Rules & Tips
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" Watch the entire video with sound on.

" Please try to make your decisions based on the overall video

clip, as opposed to just the beginning or end.

" As you watch, please take note of the cues (auditory, dialogue,

visual) that help you make your decisions.

" Decisions should be based only on the current video clip - each

video clip is meant to be independent.

Guidelines:

A positive video clip may depict or be described by:

" acceptance

* awe

* happiness

" hope

* humor

" inspiration

" joy
* love

* peace

" pride

" relief

" serenity

" trust

A negative video clip may depict or be described by:

* anger

" anxiety

* apprehension

* disgust

" fear

* sadness
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6.2.1.3 Questions

1. How positive or negative is this video clip? (1 being most

negative, 7 being most positive)

2. How confident are you in your previous answer? (1 being least

confident, 10 being most confident)

3. Which emotion(s) does this video clip contain or convey? (check

all that apply or none of the above)

* Options: anger, anticipation, disgust, fear, joy, sadness,

surprise, trust, none of the above

4. Which of the following contributed to your decisions? (check

all that apply)

e Options: audio, dialogue, visual (actions, scene, setting)

6.2.1.4 Design considerations

Q1. Aiming to cover common positive and negative emotions, the words used to

characterize 'positive' and 'negative' in the guidelines were manually selected from a

combination of [3] and [60]. The phrases 'depict' and 'be described by' were chosen to

cover both the emotional content and how the video was conveyed emotionally.

Q2. In addition to using the inter-annotator agreement on each clip, we used this

question to probe into the difficulty of the task.

Q3. The 8 emotions were selected from Robert Plutchik's theory of emotion [60].

Q4. This question was included in part to assess the importance of the audio signal

versus the visual signal. Moreover, this question allows us to get a sense of the gains

that could be achieved by explicitly modeling dialogue.
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6.2.2 Experimental setup and stats

6.2.2.1 Stats

Workers and judgments. A total of 100 unique workers participated in the job.

The number of annotations per worker is shown in Figure 6-3. A total of 2,930

annotations were collected.

Demographics. Only workers in the United States were allowed to participate in

the job. Each worker's state and city are known, but this information was not used

for any analysis.

Time. To assess the clarity of the guidelines, efficacy of golden ticket clips, and

appropriateness of the payment per annotation, an initial task with 47 clips was

launched. 143 annotations were collected in 2 hours. The remaining 2,787 judgments

were collected 1 day later in 27 hours.
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Figure 6-3: Number of clips annotated per worker

Annotators in CrowdFlower are also asked to evaluate the annotation task. The

average scores are shown in the following list. We lack data for ratings on comparable

tasks, but we provide these stats for posterity and as possible reference for others
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designing CrowdFlower experiments.

" Overall: 4.7/5

" Instructions Clear: 4.6/5

" Test Questions Fair: 4.3/5

" Ease of job: 4.5/5

* Pay: 4.4/5

6.2.2.2 Quality control

The labels provided by workers on crowdsourcing platforms can vary greatly in quality.

In addition to placing careful consideration upon the task instructions, one large lever

in attracting workers and increasing quality is paying enough per annotation. In this

section, we document the other methods used to assess worker quality.

Quality-based worker tiers. CrowdFlower allows one to filter workers from three

different quality-based tiers [7]. A worker's tier level is based on the channel the

worker comes from, his or her experience, and his or her past performance on other

jobs. Allowing workers from tier 1 casts a wide net - your job will likely finish faster,

but the quality may suffer. We allowed only workers from tier 3, the highest available

tier.

Gold standard clips. Even after filtering by tier, it is prudent to actively assess the

performance of annotators while the job is live. CrowdFlower allows further quality

control through the use of 'test questions'.

In our case, 'test questions' are clips for which we were certain were highly positive

or highly negative. These clips are here to referred to as gold standard clips. When

a worker first joins the job, they are presented with five such clips. If they failed to

correctly rate at least 3/5 clips, they weren't allowed to continue to the actual job.

Here, 'correctly rate' means that the polarity of their valence rating must match the
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clip's given ground truth. For instance, a 'positive' golden standard clip must be

rated either 5, 6, or 7 (out of 7) to be considered correct.

We acknowledge that this is a rather loose assessment. However, asking for greater

agreement (e.g. only 6 or 7) on this question is infeasible given the subjectiveness of

the task. In the same vein, using question 3 (which emotions does this clip contain)

is even more subjective and impractical.

To create an initial set of golden standard clips, we manually watched a number

of clips and attempted to select ones that were highly positive or highly negative.

Annotators are allowed to provide feedback or dispute test questions they disagree

with. A handful of golden standard clips that received ambiguous feedback, such as

both a positive rating and a negative rating from different annotators, were removed

from the pool. This process further highlighted the subjectiveness of the task. Even

clips that one might think is unequivocally positive could be considered negative by

someone else.

After the job started running, clips that received strongly negative or strongly positive

mean ratings were added as gold standard clips. A total of 24 gold standard clips

were used.

Taking the job seriously. Finally, we attempted to filter out workers that weren't

exercising due diligence. Annotators are shown a page with five clips at a time. As

each clip is 30 seconds long, a page should require a minimum of 150 seconds to

complete. Accounting for a few seconds per clip to assess the video and answer the

questions, we set the expected minimum to be 175 seconds. Any annotator who

completed a page in less time was automatically removed from the job and their

annotations discarded.
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6.3 Definitions and terminology

Here we define some terms that will be used when describing the results. These are

in addition to the previously mentioned:

" Peak. A clip extracted from a high moment in an emotional arc.

" Valley. A clip extracted from a low moment in an emotional arc.

" Audio-peak. A clip extracted from a high moment in an audio emotional arc.

" Audio-valley. A clip extracted from a low moments in an audio emotional arc.

" Visual-peak. A clip extracted from a high moments in a visual emotional arc.

" Visual-valley. A clip extracted from a low moments in n visual emotional arc.

The following terms will also be used:

" Valence rating. An annotator's answer to Q1, rating the valence of the clip

on a scale of 1 to 7.

" Mean valence rating. The mean of the three answers to Q1.

* Positive/negative rating. A positive rating is an answer to Q1 that is either

5, 6, or 7. Similarly, an answer of 1, 2, or 3 counts as a negative rating.

" Positive/negative clips. A positive clip is one in which the mean of the three

valence ratings is greater than four. Similarly, a negative has mean valence

ratings less than four.

" Neutral clips. Loosely counted as clips with a mean valence rating around 4.

" Confidence rating. An annotator's answer to Q2, regarding how confident

they are in their answer to Q1.

" Confidence of a clip. The mean of the three answers to Q2.
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6.4 Difficulty of task: inter-annotator agreement and

confidence of ratings

To assess the difficulty of this labeling a video clip with sentiment, we look at three

results.

6.4.1 Ambiguous clips

Recalling the definitions of positive and negative ratings in section 6.3, we define

ambiguous clips as clips that received both a positive rating and negative rating.

Under this definition, 16.99% of all clips were ambiguous.

6.4.2 Variance of valence ratings
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Figure 6-4: Variance of valence ratings

We also looked at the variance of the valence ratings of all clips. The variances are

plotted in Figure 6-4, with the average variance across all clips being 0.8932. We

note that the gaps in the distribution are simply a function of both the sparsity

of annotators per clip and the small range of discrete answers possible. With more

annotations, the roughly log-normal shape might be clearer. Also, there is a noticeable

long tail of clips with relatively higher variance.
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Next, for every clip, we compare the mean valence rating to the variance of the valence

ratings. We would expect highly positive or highly negative clips to have relatively

lower variance, as these clips may be more universally positive or negative. Likewise,

we would expect neutral clips to have greater variance. This is exactly what occurs,

as shown in plot (a) of Figure 6-5.
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In addition, for every clip, we compare the mean valence rating against the mean

confidence rating. We would expect highly positive or highly negative clips to have
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Figure 6-6: Q2: Confidence ratings

greater confidence. Likewise, we would expect neutral clips to have lower mean con-

fidence ratings. This is confirmed in plot (b) of Figure 6-5.

Finally, we note an interesting relationship between the variance of valence ratings

and the mean confidence rating. One might expect confidence to decrease as the

variance of valence ratings increase. In a counter-intuitive result, Figure 6-7 shows

that as the variance of the valence ratings increase, so too does the confidence. One

hypothesis posits that clips with higher variance receive ratings at the far ends of the

spectrum. One annotator might rate a clip a 6, while a second annotator might rate

it a 3. In this case, the first annotator is giving a highly positive rating. If they have

such a strong emotional reaction, they might be likelier to be extremely confident,

thus raising the mean confidence rating.

6.5 Accuracy of system

6.5.1 Defining precision

With ground truth data in hand, we would like to assess the precision of our sys-

tem.
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Figure 6-7: Variance of valence vs. Confidence

Recalling that every clip was extracted from a peak/valley in either the audio or

visual emotional arc, we define the overall precision as:

(peak & positive) + (valley & negative)

(6.1

all clips

In other words, a clip was 'accurately' extracted if a) it was extracted from a peak in

either emotional arc, and it was labeled as a positive clip, or b) it was extracted from

a valley in either emotional arc, and it was labeled as a negative clip.

6.5.2 Overall precision

In table 6.2, we list the precision on both the full dataset and the full dataset with

ambiguous clips removed. We note that random chance would be 3/7 = 0.429.

We argue that ambiguous clips should not be included in the evaluation, as it is

unclear what their valence might be without more annotations. As such, all further

numbers are calculated on the set with ambiguous clips removed. However, we note

that later analyses exhibit a similar difference of four to five percentage points between
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the two sets.

Set Precision
All 0.642

No ambiguous clips 0.681

Table 6.2: Precision of clips: overall

6.5.3 Precision by various cuts

We can also calculate the precision on various subsets of the data. We look at peaks

versus valleys, audio versus visual, and the cross between the two.
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Figure 6-8: Valence Ratings: Cuts

The precision of these cuts are shown in Table 6.3, with the distribution of valence

ratings shown in Figure 6-8.

74



Cut Precision
Audio 0.724
Visual 0.640

(a) Audio vs. Visual

Cut Precision
Peaks 0.596

Valleys 0.759

(b) Peaks vs. valleys

Cut Precision
Audio-peaks 0.683
Audio-valleys 0.758
Visual-peaks 0.508
Visual-valleys 0.757

(c) Cuts

Table 6.3: Precision of clips: various cuts

We highlight and summarize the results in three broad statements:

" Audio is more precise than visual.

" Valleys are more precise than peaks.

" Audio-peaks have low precision. This is also reflected in the bottom left subplot

of Figure 6-8, where the mode rating is 3 out of 7. The poor precision of audio-

peaks is explored in section 6.5 and used to motivate feature engineering for the

combined model in section 6.6.4.

6.5.4 Precision of audio

Next, we examine the precision of clips extracted based on the audio emotional arc,

recalling that they were selected at points with varying confidence interval sizes. We

examine data for our hypothesis that clips selected at points with smaller confidence

intervals (defined by the standard deviation) would be more accurate.

As shown in table 6.4, smaller confidence intervals do indeed correspond with in-

creased precision.

6.5.5 Precision by genre

Finally, we use the CMU Movie Summary Corpus [12] to tag each movie with genres.

Each movie can belong to multiple genres. We then calculate precision per genre,
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Stddev Audio-peak precision Audio-valley Precision
[0, 0.2) 4/ 4 = 1.0 81 / 88 = 0.921

[0.2, 0.4) 11 / 11 = 1.0 38 / 56 = 0.679
[0.4, 0.6) 28 40 = 0.7 21 / 35 = 0.6
[0.6, 0.8) 39 / 60 0.65 13 / 21 0.619
[0.8, 1.0) 43 / 68 0.632 8 /23 0.615

Table 6.4: Precision of clips extracted from audio emotional arc: smaller confidence
intervals are more precise

with a subset of results shown in table

extracted from visual-peaks.

6.5, rank-ordered by the precision of clips

Genre Overall Visual-peak
Action 0.678 0.264

Science Fiction 0.699 0.333
Thriller 0.678 0.382

Crime Fiction 0.643 0.438
Adventure 0.726 0.443

Drama 0.660 0.520
Fantasy 0.769 0.590
Comedy 0.705 0.667

Animation 0.798 0.667
Romantic Drama 0.667 0.692

Family Film 0.760 0.722
Romance 0.678 0.757

Romantic Comedy 0.677 0.823

Table 6.5: Precision of clips: genre

While there are some differences in the overall precision, the key insight is the large

variance in visual-peak precision. The relatively poor precision of visual-peaks, as

noted in section 6.5.3, appears to be a product of poor precision on a number of

genres.

Moreover, there is some natural grouping of the genres when listed in this order.

Genres that have high visual-peak precision are lighter films falling in the romance,

comedy, and family film genres. Genres that have low visual-peak precision fall in

the category of action, adventure, science fiction, and thrillers.
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Upon manual inspection of a few 'incorrect' clips, we find that visual-peak clips se-

lected from this latter category of genres often depict, for example, outdoor battle

scenes. That such scenes, which may include blood and dead bodies, would be incor-

rectly classified by the visual model actually makes sense considering the dataset. As

the dataset was culled from publicly available images on Flickr, one would be hard

pressed to find images of gore or death in the training set.

Critically, this knowledge that genre can play an important role in assessing the

emotional effect of a scene is used in the next section.

6.6 Combined audio-visual model

Using the mean valence ratings as target values, we use a linear regression model to

combine the audio and visual sentiment predictions.

6.6.1 Model and features

We use the Python package scikit-learn [59] to perform linear regression with poly-

nomial interaction features of degree two. The following features, extracted from the

midpoint of every clip, are used to predict the mean valence rating:

1. value of visual valence

2. (value of visual valence) - (movie's mean visual valence)

3. (max of movie's visual valence) - (value of visual valence)

4. (value of visual valence) - (min of movie's visual valence)

5. peakiness* of visual valence

6. value of audio valence

7. (value of audio valence) - (movie's mean audio valence)

8. (max of movie's audio valence) - (value of audio valence)

9. (value of audio valence) - (min of movie's audio valence)
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10. peakiness* of audio valence

11. binned audio stddev

12. time in movie

13. movie embeddings**

where the (mean) audio/visual valence is calculated from the audio/visual arcs. An

example is provided in Appendix C.

*The peakiness function p(a, i, r) roughly approximates the slope and mean around

the given point i for arc a (either visual or audio). r is a parameter that controls

the size of the window around aj. The function returns four values: ai_ 1 - air

(proportional to the slope left of the point), ai+r -ai+I (proportional to the slope right

of the point), mean(ai,:_1) (the mean value left of the point), and mean(ai+i+ir)

(the mean value right of the point). This covers both peaks, valleys, and inflection

points. We use r = 0.025 for our analyses.

**The movie embedding features are described in the next section.

6.6.2 Movie embedding features

Motivated by findings regarding the impact of genre in section 6.5.5, we sought to

create features that could loosely 'summarize' the emotional gestalt of a movie.

We use the biconcept classifier described in chapter 3 as shown in Figure 6-9. First,

every frame is passed through the classifier. Next, the activations of the second to last

layer are used as an embedding for that frame. We then average these embeddings

across 10% of the movie, ultimately ending up with a 10 x 2048 matrix.

We use the dimensionality reduction algorithm TSNE [46] to visualize the 10 x 2048

movie embeddings. Again using the genres provided in [12], we can see if there is

any correspondence between visible clusters and genre. Indeed, figure 6-10 shows a

number of clusters and movies grouped loosely by genre.
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Figure 6-10: TSNE of movie embeddings, overlaid with genre

To translate these movie embeddings to features, we take the mean of each of the 10

2048-sized vectors. Thus, the final feature vector is a vector of size 10 x 1.
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6.6.3 Final combined precision

The performance of the final combined model is shown in Table 6.6, along with various

ablations. Using all the features, we achieve a precision of 0.894.

Feature set Overall Aud-peak Aud-valley Vis-peak Vis-valley
All features 0.894 0.940 0.884 0.872 0.886

No movie-embedding features 0.784 0.869 0.786 0.722 0.752
No 'peakiness' feature 0.815 0.836 0.828 0.765 0.824

Raw stddev instead of bins 0.868 0.907 0.870 0.834 0.871

Table 6.6: Precision of combined model

6.6.4 Combined arc

With this model in hand, we can create a combined emotional arc. An example is

shown in Figure 6-11. Unfortunately, it appears that the combined arcs, while highly

precise at certain moments, are in fact often 'incorrect' at a macro-scopic level. This

was discovered when clustering arcs - clustering the combined arcs largely produced

indistinct clusters, where most of the typical arcs were largely flat throughout the

course of the movie.

This is likely due to lack of annotated data that covers the empirical joint distribution

of all the features in the combined model. Over the length of the entire movie, there

likely exist moments for which the model lacks representative ground truth data. For

example, we don't have clips that were extracted from flat regions in both the visual

arc and the audio arc. This limitation is discussed in more detail in section 9, and

we do not use the combined arc in subsequent sections.
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Chapter 7

Engagement analysis

Now armed with tools to extract emotional features and categorize emotional arcs,

we can evaluate at a macro-level and return to one of our original questions - do

a video's emotional content and arc affect the degree to which people engage with

it?

To tackle this question, we perform a small experiment on our Shorts Corpora in

which we use a) metadata features, and b) emotional content features to predict the

number of comments a video received on Vimeo. The number of comments received

are shown in Figure 7-1, with the median video receiving 38 comments.
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Video metadata features include, for example, the video length and when it was

uploaded. Intuitively, we can imagine certain metadata features to be predictive

variables. For instance, one might expect that longer videos receive fewer comments.

Ideally, however, we would also find certain emotional features to be statistically

significant predictors.

Both analyses were performed using the StatsModels Python package [65].

7.1 The effect of emotional content features

In an extensive study on what makes online content go viral, [13] and [52] demon-

strated that news articles tended to spread widely if they were emotional, with positive

content tending to be more viral than negative content. Would we find something

similar on the stories being told and shared through video?

Feature Coefficient p-value
Intercept -0.0550 0.281
Duration -0.0776 0.057

Year -0.1747 0.000
Month -0.0554 0.115

Day -0.0169 0.624
Hour 0.015 0.665

Author _num comments 0.0195 0.545
Visual_ valence_ mean 0.0898 0.090
Visual valence std -0.0252 0.613

Audio_ valence_ mean -0.0895 0.0704
Audio valence std 0.0587 0.235

Biconcept _mean 0.0722 0.1313
Biconcept_std -0.0562 0.176

Visual valence mean:Visual_ valence std -0.0275 0.421
Audio valence mean:Audio valence std 0.093 0.018

Biconcept _mean:Biconceptstd -0.0260 0.410

Table 7.1: Emotional content features: coefficients and p-values for model

Using a linear regression model, we investigate which features are statistically signif-
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icant predictors of the number of comments received. Features with a p-value less

than 0.1 are italicized, while statistically significant features with a p-value less than

0.05 are bolded. The biconcept_* features are based on the biconcept-based movie

embeddings described in section 6.6.2.

7.1.1 Results

Not surprisingly, longer videos tend to have fewer comments. Also, as expected,

videos uploaded earlier tend to have more comments.

Intriguingly, certain emotional content features are also correlated with the number of

comments. Videos that are more visually positive tend to have more comments, with

a p-value of 0.090. Videos that are more negative according to the audio emotional

arc, on the other hand, tend to receive more comments. Finally, the interaction

feature between the mean and standard deviation of the audio valence is a statistically

significant predictor - videos that have high audio valence and high audio variance

tend to get more comments.

7.2 The effect of certain emotional arcs

Finally, the last piece of the puzzle is to assess whether certain emotional arcs them-

selves might be predictive of engagement.

Using the same metadata features, we run the previous analysis but with categorical

cluster assignment features (which family of arcs does this movie belong to).

Following the reasoning given at the start of Chapter 5 and the description of audio

given at the start of Chapter 4, we use the clusterings based on the visual arcs and

not the audio arcs. In brief, we believe the visual arc to be a better global descriptor

of a movie than the audio arc. We also don't use the combined arcs due to limitations
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described in Section 6-11 and expounded upon in Chapter 9.

Nine models are created - one for each value of k in the range [2,10]. A total of

three emotional arcs are statistically significant predictors, with the arcs shown in

Figures 7-2, 7-3, and 7-4. The results of the models are shown in Tables 7.2, 7.3, and

7.4.

7.2.1 Results

Are any particular shapes 'good' or 'bad' in terms of audience engagement? Ulti-

mately, we found three arcs to be statistically significant variables, each predictive

of a greater number of comments. We also qualitatively examine a few prototypical

films for each arc by examining the story and comments. These prototypical shorts

are defined and selected by their DTW distance to the typical arc.

7.2.1.1 Good shape #1.

The arc shown in Figure 7-2 could fit the "Icarus" (rise-fall) family of stories. The

model results are listed in Table 7.2. One can imagine that a story that ends so

bleakly could leave quite an impact on a viewer.

Example 1 - Nowhere Line: Voices from Manus Island.1 This short tells the

story of immigrants seeking asylum in Australia, and the riot that erupted on their

island detention center. An animated recreation of their journey and time there is

narrated by recordings of two immigrants, Behrouz and Omar. Backgrounded by the

threat of death from thirst or starvation, there is nevertheless a visual peak in the

middle of the short, depicting Behrouz's journey across the seas. At this point, there

is still hope for a life better than the one he was escaping in Indonesia. This better
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Figure 7-2: Statistically significant arc in k = 5 clustering

Feature Coefficient p-value
Duration -0.1180 0.001

Year -0.1720 0.000
Month -0.0688 0.048

Day -0.0106 0.759
Hour 0.0105 0.761

Authornumcomments 0.0053 0.878
k=5 cluster 0 -0.1574 0.203
k=5 cluster 1 -0.0729 0.213
k=5 cluster 2 0.0366 0.606
k=5 cluster 3 -0.0710 0.439

k=5 cluster 4 0.1948 0.011

Table 7.2: Emotional cluster features k=5: coefficients and p-values for model

life was not to be found, as he was forcibly held with others who had already been

kept, in cases, for over a year.

Following the riot incited by locals and police officials, the film ends on two notes.

First, it shows that 23 year-old Reza Barati was beaten and killed. Omar then states

"I used to have a bright future. If I want to go back to my country, I don't know what

might happen to me. But here, I have neither safety and security, and no good life.

I don't want to pray, because I have no religion. Even those who pray, their prayers
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didn't work. These things don't work on Manus Island." His friend Hamid Kehazaei

is then shown to have died shortly after from a treatable infection, contracted during

his time on the island.

Like nearly every short, this film receives a number of short, non-specific but highly

effusive comments such as "A Really Great Work!!" or "Great job! Well done".

However, this particular video also has a great number of comments highlighting the

story itself and the emotional impact it had on them. We highlight some of them in

the following list.

* "Superb.... so so powerful... it hits you like a wrecking ball"

" "i really feel so down and frustrated. how human could be so twisted. either

way this is the best short animation story ive seen so far."

* "Haunting. Oh man. You know, I hear all the time about how hard people have

it. They have no idea how bad it can really get. Impossible odds. Oh man.

You've done an amazing job conveying their story. It is their animated epitaph.

A testimony of a life that may not have otherwise have been heard.. All that

remains of them. Man.. .I'm really just blown away."

* "This is absolutely beautiful, yet gut-wrenchingly awful stuff. Well done to all

* "Tragic are comments... Everyone is talking just "how great is this visual work"

and not caring about story." involved. All Australians should watch."

* "Heart broken, how can anybody be so inhuman."

* "This is such a terrible matter. It feels so wrong when people say stuff in this

forum praising the animation. There's so much more than the animation to

this."

* "This was really heavy."

" "Really effective, you put me in their shoes man"

A number of comments emphasize the point of the movie - it's not the "visual work"

that's important, but the story itself. This speaks broadly to movies, where the

visual work should be used with purpose. We see many comments highlighting how

this film builds empathy by affecting them at a deep, emotional level. We also find
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further evidence of the power of a story well told, with one comment applauding a

story that "may not have otherwise have been heard" and another suggesting that "all

Australians should watch [this video]".

Example 2 - Double Happy.2 This short tells a coming-of-age story between

four teenagers, driven by the uncomfortable group dynamics and pressures special to

teenage life. The story focuses on a budding relationship between Rory and Rebecca,

who nevertheless feels pressure from her friends to exclude Rory from a party. Their

day culminates in an explosive scene of anger and arson when the quiet, artsy Rory is

pushed to his edge, simultaneously setting a corner store and his possible relationship

with Rebecca in flames.

Reflecting the idea of arc as a dynamic force, many of the comments focus on the

"change of character" and the "volatile storytelling". Others again note empathy as

an element of their viewing experience.

* "Amazing, Love the change of character. Very convincing"

* "powerful. very character-driven. props to kiwi cinema"

* "The turning point for the main character felt a bit unbelievable. I don't think

theres enough time to develop a character to that point in a short structured

this way, would have been nicely executed if it was longer (feature length as

such). Besides that I thought it was good, nicely shot."

* "Completely unexpected yet totally realistic. I loved it."

* "Loved the slow burn, no pun, leading to the dramatic ending. Wonderful

storytelling."

* "This impressively captures the turbulent emotions of teen angst. I also really

enjoyed how the film was scored."

" "Mercilessly volatile storytelling."

* "Amazingly empathetic, the rare short film that could have stood to be longer."

* "Short filmmaking at it's finest. Beautifully shot, and I really connected with

the story."

2 https://vimeo.com/24407168
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7.2.1.2 Good shape #2

With an even larger positive model coefficient, the arcs in the k = 8 and k = 10

clusterings are both characterized by a large, sharp peak near the end of the film,

immediately followed by a steep decline. In other words, these films often end with a

bang. The model results are listed in Table 7.3 and 7.4.
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Figure 7-3: Statistically significant arc in k = 8 clustering

Example 1 - Benigni ' (k = 8, some increase before the big peak). This

animated short tells the tale of a lonely xylophone player and the unusual tumor he

one day grows. The tumor sprouts eyes, a mouth, and feelings to boot. A friendship

emerges, and they soon do everything from tag-teaming dish washing to dressing up

as Batman and Robin. The film ends as man and tumor are happily blowing bubbles

out the window, only for the window to slam down and cleave off his tumor. The

man is saddened but also looks on with fond remembrance.

A few users commented on the impact and suddenness of the ending. Another theme

was the feeling of disgust felt while watching, with more than one user commenting

on the "gross[ness]" of the film. We note this simply to show that even when negative,
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strong emotions can elicit engagement from viewers.

* "Very intense!"

* "Oh man! Jumped out of my seat."

* "..one of the saddest of sad endings."

* "Very nice but I felt sad for the man in the film. :( heartbreaking."

* "That was beautiful. Amazing how much emotion you were able to capture in

that piece."

* "At first I thought of being gross out, but it was a good film. I like how it

reflected on loneliness remedied by a odd friendship."

* "Gross, depressing and at the same time endearing and thought-provoking

Good Job."

" "Saw this at Annecy and tracked you down, extremely dark subject matter and

cuteness makes it all the more disturbing."

Example 2 - ABE ' (k = 10, relatively flat before the big peak). A young

woman awakens in a dim, blue room and finds herself strapped to a surgical table,

her mouth sealed by duct tape. A robot walks in, questioning the nature of love and

human desire. The robot states that he too was once programmed to love. But one

day the humans he loved stopped reciprocating. The solution? To try to 'fix' the

humans and make them love him again. Even though he has yet to succeed, he can't

give up, and he tries to operate once more on the tied-down woman. The film cuts to

a new, brightly lit outdoor scene, where the robot stalks a new woman and expresses

the wish that he could stop falling in love.

We include this short to illustrate two things. First, we are reminded by the last

scene that relying on the visual alone can fail to capture the true sentiment. Second,

a peak or valley can also be used not just as an emotional moment, but to create

change and add a sense of motion to a film. Here, the last scene sharply contrasts the

static, eerie blue of the former scene. The robot's final words are tinged with a hint

of sadness - perhaps this helped lead one user to comment "you did an amazing job

4https://vimeo.com/64114843
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of making the viewer empathize with the antagonist." But one could also argue that

the last scene effectively both emphasizes the disturbing image seen in the previous

minutes and adds another dimension to a film that may otherwise feel too flat.

A small number of comments reference the ending, with two noting creepiness and

fear. Many others simply compliment the script and visual effects.

* "An incredibly well executed sci-fi horror short. The end was just plain eerie.

The VFXs and acting were fantastic. Absolutely riveting to watch!"

" "The last scene with ABE scoping out his next 'crush' made my freakin' hair

stand on end."

* "This is just chilling!"

" "awesome script and work"

* "Utterly blown away by this. Beautifully shot and wonderfully written, terrify-

ing as it may be. :)"

" "Creepily beautiful! Great script! Well done!"

* "A lot of people are fixating on the VFX, which are admittedly awesome, but I

was most impressed by the writing. Well done."

* "Freaking WOW dude! That was brilliantly written, effects were amazing, just

all around, and amazing movie! Loved it!"

* "A great complementary relationship between story and VFX. How did you get

the financing for such quality of cgi?"
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Feature Coefficient p-value
Duration -0.1209 0.001

Year -0.1720 0.000
Month -0.0664 0.058
Day -0.0079 0.820
Hour 0.0085 807

Authornumcomments 0.0048 0.891
k=8 cluster 0 -0.0594 0.680

k=8 cluster 1 0.3280 0.012
k=8 cluster 2 0.0852 0.434
k=8 cluster 3 0.0968 0.471
k=8 cluster 4 -0.0831 0.245
k=8 cluster 5 -0.0121 0.951
k=8 cluster 6 -0.0480 0.552
k=8 cluster 7 -0.0224 0.741

Table 7.3: Emotional cluster features k=8: coefficients and p-values for model
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Figure 7-4: Statistically significant arc in k = 10 clustering

93



Feature Coefficient p-value

Duration -0.1195 0.001
Year -0.1771 0.000

Month -0.0664 0.045
Day -0.0142 0.897

Hour 0.0045 0.897
Author num comments 0.0110 0.753

k-=10 cluster 0 -0.0110 0.932
k=10 cluster 1 -0.0962 0.423

k-10 cluster 2 0.3251 0.006
k-10 cluster 3 -0.0006 0.994

k=10 cluster 4 -0.0440 0.761
k=10 cluster 5 -0.1063 0.375
k=10 cluster 6 -0.0061 0.956
k=10 cluster 7 0.0371 0.665
k=10 cluster 8 -0.0448 0.687
k=10 cluster 9 -0.1499 0.294

Table 7.4: Emotional cluster features k :10: coefficients and p-values for model
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Part III

Wrap up - where we are and beyond
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Chapter 8

Related work

8.1 Emotional arcs

The research that most closely parallels this work is [64], which analyzes books from

Project Gutenberg to state that "the emotional arcs of stories are dominated by

six basic shapes." Using text-based sentiment analysis, they use a singular value

decomposition analysis to find a basis for emotional arcs. Looking at the bases that

explain the greatest amount of variance in the emotional arcs, they are able to find

typical arcs such as "rags to riches" (rise), "tragedy" (fall), "Icarus" (rise-fall), and

"Cinderalla" (rise-fall-rise).

In contrast to our computational approach, writers at Dramatica [5] have manually

analyzed a number of books and films under the Dramatica theory of story. While

they don't explicitly create an emotional arc, many of the elements they extract are

closely related, such as story outcome, emotional 'Throughlines', and main character

growth. In fact, in response to the claims of [64], they cite their analysis of the

film Amadeus as an example of a classic "Icarus"-style (rise-fall) emotional arc. This

theory has since been used to create software that can guide storytellers in their

writing.
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8.2 Sentiment analysis, deep learning, and affect anal-

ysis

Research in sentiment analysis has primarily been text-based, with work ranging from

short, sentence-length statements to long form articles [71, 56]. In contrast, there has

been comparatively little work on images, with the Sentibank dataset [16] and [66]'s

use of color distribution and SIFT-based features for visual sentiment analysis on web

images being prominent examples.

Neural networks and convolutional neural networks in particular have been applied

successfully in earlier research to tasks like document recognition [43]. In recent years,

neural networks have seen a resurgence due in part to advances in hardware usage

[42]. Deep convolutional networks have since been widely successful in both the visual

and audio domain. On image-based tasks, they've been used for classification [42],

object detection [27], and segmentation [45], among others. They've also been used

for audio-based tasks such as automatic tagging of music [21], speech recognition [31],

and speech synthesis [75].

Deep neural networks have also been previously applied to the Sentibank dataset.

The authors of [20] compare their AlexNet-based results to the results of the original

Sentibank paper, while [79] introduces a framework to progressively fine-tune the

network by discarding noisy training examples.

Finally, we also consider our work to fall into the broad field of affect analysis. We

highlight one especially relevant work, in which the authors of [491 used webcams

to collect over three million facial responses from people watching over 3,000 videos.

Using facial emotion recognition, this data was used in part to learn moments in

videos that would trigger emotional responses.
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8.3 Computational approaches to understanding story

Outside of creating emotional arcs, there exists a number of works that apply com-

putational methods to understanding story. The M-VAD and MovieQA datasets

include a combination of subtitles, scripts, and Described Video Service narrations

for movies. This enables, for example, research on visual question-answering of plot

[73, 69]. In the same vein of multi-modal understanding of stories, [80] looks at movies

and the books they were based on, with the goal of automatically aligning scenes and

passages.

There is also work centered on characters and their relationships between them. The

project Movie Galaxies, for example, constructs social graphs for movies out of the

interactions between characters. Elsewhere, [37] uses deep neural network-based, un-

supervised topic modeling to map how character relationships evolve over the course

of a novel.
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Chapter 9

Limitations and future work

In this chapter, we explore the main limitations of the current system and areas for

improvement. The future work is split into two broad categories. In the first, we

examine immediate extensions that can improve or directly extend existing pieces of

the system. In the second, we explore new directions that require greater additions

to the system and expand upon ideas presented in this work.

9.1 Limitations

The main limitations center around a lack of ground truth data for movies. Though

we were able to bootstrap emotional arcs by training on unrelated datasets, there

are weaknesses in our system as a result. We see the problem arise in three in-

stances:

" Lack of training data for the visual classifiers for certain commonly occurring

scenes in film, leading to poorer performance in action / thriller-type genres

(see section 6.5.5).

" Similarly, lack of training data covering commonly occurring sounds in films,
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and thus the need for uncertainty estimates for the audio emotional arc.

e Most critically, lack of ground truth data for all the various types of scenes

found in movies, resulting in a poorer combined emotional arc (see section 6.6.4).

Ideally, we would have many more annotated 30-second clips. Not only would we

be able to train on more relevant data, we could also train a joint audio-visual

model.

Other limitations include:

" A limited ability to relate the core emotional arcs to existing groupings of

movies, whether that be genre, studio, release year, budget, etc.

" Finding core emotional arcs on 'only' a set of 509 films - this could be expanded

to a larger dataset that also includes older films.

" Little interaction with filmmakers, video game designers, storytellers, and oth-

ers who have may have useful domain knowledge about how this work reflects

and/or could help their creative process.

" Limited understanding of what kind of scenes prompt varied emotional re-

sponses, and the degree to which they may vary depending on culture, context,

and other dimensions.

" No modeling of dialogue or relationship between characters.

9.2 Future work

9.2.1 Extensions

For each extension, we attempt to note:
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* Where or why it would improve the system.

" How much it would help the system.

" How difficult it would be with respect to extending the current system.

The last two points serve to inform how to prioritize work in extending the sys-

tem.

Image models. We would likely see decent gains in the performance of the image

classifiers by using a model architecture closer to the state of the art. Common archi-

tectures include, for example, a Residual Network [33], which uses skip connections

between layers to create deeper networks, or an Inception Network [68], which uses

multi-scale convolution layers. This could enable the sentiment classifier to do a better

job of capturing the semantics that affect sentiment. However, we note performance

should be measured not by the increases in accuracy in classification performance,

but on downstream tasks regarding emotional arcs and engagement analysis. As

such, it's unclear how helpful this upgrade would be. These networks may sometimes

be harder to train, but in general swapping image model architectures is relatively

straightforward.

Other image tasks. Similarly, we could find gains by extended image modeling

through facial expression recognition and image aesthetics. For instance, the AVA

dataset [54] contains labels for how aesthetically pleasing an image is. To motivate

this task, we note how much image aesthetics are considered on popular services such

as the photo-sharing app Instagram. In the case that this work extends to videos

beyond high quality films, this could be a useful signal when analyzing short form

videos that spread on social networks. Training with the AVA dataset should be

straightforward.

Video modeling. We could potentially train visual models at the video-level in-

stead of the image-level. There is some work prior work here - [38] predicted emo-

tions on 7,701 videos from YouTube and Flickr, and [57] built a dataset of 156,219
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videos by using Sentibank adjective-noun pairs as search terms on YouTube. However,

we question the amount of improvement video-level predictions can provide. While

frame-level predictions can be un-smooth, video classification tasks have shown that

using some form of pooling across frame-level predictions is only slightly worse than

video-level predictions. We believe substantial improvement would require more so-

phisticated modeling of the dynamics of movie scenes, backed by some understanding

of how scenes are cut and shot. We further note that this is limited by the availability

of high quality, large-scale datasets.

Clustering emotional arcs. While simple to use, k-medoids may not be the most

effective clustering algorithm for our task. Improvements here could be especially

impactful given downstream analysis on how certain emotional arcs affect engagement.

We note two promising algorithms: 1) HDBSCAN, a hierarchical, non-parametric

algorithm that doesn't require every point be assigned to a cluster [19], and 2) an

approach designed specifically for time series that combines Gaussian Processes with

Dirichlet Processes [34]. Open source implementations of both algorithms exist.

Collecting more ground truth data. All else being equal, free data is better than

not for free data. We look to two examples of websites that made annotation into a

playful task. If the task is enjoyable enough, we can collect data 'for free'. GIFGIF

capitalizes on the popularity of gifs by presenting people with an emotion and two

gifs, after which they are asked to select the gif that best matches the emotion [4]. The

ESP game paired users with another random user, after which they would collaborate

to label images. As images became progressively labeled, words would become "taboo"

and off-limits. This would force people to come up with rich, descriptive labels [76].

We believe that watching movie clips is a relatively enjoyable annotation task and

has the potential to be built into a playful website. While this may require investing

some time with no guarantee that such a website would take off, the effort may be

worth spending given that this lack of ground truth data is a real limitation of the

current system.
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Combining audio and visual emotional arcs. Here we consider ways to improve

the combined emotional arc in lieu of collecting more data. First, when creating the

combined arc, we might consider modeling the linear regression using a Gaussian

process, which gives confidence intervals for every prediction [62]. At the very least,

we'll be more aware of when the combined arc is inaccurate. In addition, in an attempt

to squeeze as much as use from our limited ground truth data as possible, we might

look to [30] and see how we can model the individual annotators when considering

how to weight their responses. The first option is straightforward to implement, but

the second requires more effort and consideration (do we even have enough data

annotators?).

Audio event data. With large portions of movies backgrounded by audio that isn't

explicitly music, it could be useful to train against a dataset of commonly occur-

ring audio events. AudioSet is one such recently released large-scale dataset, which

contains an ontology of 632 audio events pulled from various moments in YouTube

videos. Given that we have more relevant (relating to movies) ground truth data for

visual than audio, we could also bootstrap sound models by training on movie data

against the representations and labels provided by an image classifier. For example,

SoundNet explores a similar idea in which they use object recognition models to learn

sound representations on unlabeled video [11]. While this extension may be inter-

esting, we caution that the effort to train this event network and integrate with the

existing sentiment network may not justify the unclear gains.

Emotion prediction. Representing emotional response as a binary positive-negative

scale is hardly reflective of the complex nature of emotion. We could theoretically

train classifiers to predict emotion as well. For example, the adjective-noun pairs

in the Sentibank dataset could be mapped to emotions using Emolex [53], which

indicates for every word in its lexicon whether it's associated with one of Plutchik's

eight emotions. Even better, the MVSO dataset [23] extends upon the Sentibank

dataset and includes for each adjective-noun pair the probability that it's associated

with one of the eight emotions. Outputting emotion labels could give a richer view
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of movie scenes. However, we note the predictions are likely to be much noisier than

binary sentiment given the imprecise nature of emotion. The signal might only be

clear enough for a few emotionally charged moments in a movie. Nevertheless, after

a little data setup, training on a new dataset should be straightforward.

9.2.2 New Directions

We consider four possible follow ups to this work:

1. Character-level emotional arcs. One could argue that the overall emotional

arc of the story is really defined and constructed from the emotional arcs of the

main characters. Viewers root for likable heroes and cheer the downfall of de-

spicable villains. Plotting the emotional arcs of individual characters could also

help explain the relationships between characters, with the fall of one perhaps

mirrored by the rise of another.

2. Dialogue-based emotional arcs. Guided by crowdsourcing results in section

B.2, we could also create emotional arcs based on dialogue. While the data may

be sparser throughout a movie, it could at times be a more direct signal. Simple

sentiment analysis could be applied on each utterance, but a more interesting

approach might be to explicitly model the characters and the utterances spoken

between them.

3. From sentiment to semantics. The two previous points suggest that to fully

understand the sentiment of a movie, one must also understand the semantics

of the story. We again note research on aligning books and movies [80] and

question-answering in movies [69] as work that could be useful in this endeavor.

4. Engagement analysis on social media. While intriguing, our engagement

analysis was performed against a relatively simple engagement metric - the

number of comments on a website. It would be interesting to see how, if at

all, emotional features affect the way videos propagate through social media
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platforms like Twitter and Reddit.
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Chapter 10

Conclusion

10.1 Summary of work

In this thesis, we were motivated by the idea that emotional arcs for movies both exist

and matter - that every movie takes the viewer on a journey, which in turn affects

how much it resonates with them. In an effort to find support for this hypothesis,

we:

e constructed audio and visual emotional arcs.

e evaluated small moments within those arcs using crowdsourced annotations.

e found families of arcs in our movie datasets.

Finally, we examined whether certain emotional arcs elicit greater engagement than

others, ultimately showing that this is indeed the case for a small subset of online

Vimeo shorts.
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10.2 Final remarks

We find our final results encouraging from a technical point of view, but not necessarily

surprising from a humanist point of view. It is no secret emotions play no small part in

people's lives. The history of human development is marked by increasing biological

and cultural ability for emotional expression. Since the birth of mythic culture, we

have seen emotional narratives as a convincing medium for explaining the world we

inhabit, enforcing societal norms, and giving meaning to our existence [48].

Stories continue to have tremendous power in society today. Not only useful for en-

tertainment, a powerful story can also activate our interests and mobilize our actions.

It has been shown, for example, that emotions are the most important factor in how

we make meaningful decisions in life [44].

Technological trends suggest that stories will be increasingly told in video (mobile

phones) and video-like formats (virtual and augmented reality). Work that continues

to push in understanding the emotional content in these mediums could shed light

on the kinds of stories that connect to our large capacity for emotion.

Finally, if a movie is shown in a theater and no one is around to watch it, does it

really tell a story? A deeper understanding in this area could help any storyteller,

whether it be a big budget documentary director, a freelance journalist, or even a

video game designer, reach and connect to a wider audience.
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Appendix A

A second method for finding families

of arcs

In this section, we utilize a second approach to finding typical emotional arcs by

following the singular value decomposition-based approach described in [64].

A.1 Formulation

Singular value decomposition (SVD) is a widely used linear algebra method used to

decompose a matrix M into the product of a unitary matrix U, a diagonal matrix

E, and the conjugate transpose of another unitary matrix VT, as shown in Equation

A.1. In our case, each row of M is an emotional arc.

M =UEVT =WVT (A.1)

Each row of VT represents a basis function for the matrix M, and can thus be in-

terpreted as basis functions for the emotional arcs. [64] refers to these as 'modes',

where each 'mode' can be interpreted as a 'core emotional arc'. The values in row i
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of W represents the coefficients for weighting these basis functions in order to recon-

struct the i-th emotional arc. More concretely, the contribution of mode j to the i-th

emotional arc can be calculated as Wjj * V.
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A.2 Basis results

The top modes for films and shorts are shown in Figures A-1 and A-2. Note that

since the coefficients can be negative, each mode has an inverse, which is simply the

mode flipped across the x-axis. Again, the steep inclines and declines at the start

and end, most visible in the first three modes, are artifacts of a movie's opening and

closing scenes and credits.

We can also look at the films that are most similar to each mode. We illustrate this

only on the Films Corpora, as we assume readers will be more familiar with the movies

found in this collection. Mode 3-flipped, as shown in Figure A-3, for instance, has a

slight but steady incline throughout the film, ultimately ending on a high note. That

a number of the most similar films are romantic comedies makes some sense. These

films tend to be lighter affairs with lower stakes and happy endings. In contrast, Mode

6, as shown in Figure A-4 experiences a series of large ups and downs. That a number

of the most similar films are action-adventure epics again makes some sense.
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Appendix B

Other crowdsourcing results

B.1 Q3: Emotions in clips

Due to their more ambiguous nature, emotions

Nevertheless, the annotation results allows us

relationship between emotions.

were not a central part of the system.

to get a sense of the prevalence and

Table B.1 lists the emotions rank-ordered by their average valence rating. The average

valence per emotion is calculated as the average valence rating of all clips that were

labeled with the given emotion.

Emotion Avg. valence Avg. valence variance
Fear 2.96 2.83

Anger 3.00 2.29
Sadness 3.07 2.25
Disgust 3.26 2.60

Anticipation 3.81 2.83
Surprise 4.14 3.00
Trust 4.74 2.43

Joy 5.25 2.10
None of the above 4.01 2.08

Table B.1: Average valence of emotions
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We can also look at the percent of ratings that included each emotion, broken down

by positive and negative ratings. This is shown in Table B.2. In line with the valence-

ordered emotions from Table B.1, fear occurs most frequently in negative ratings, and

joy occurs most frequently in positive ratings.

Emotion % of ratings % of pos ratings % of neg ratings
Anticipation 43.0 39.5 43.9

Joy 40.5 82.8 11.4
Sadness 35.5 16.6 51.5
Disgust 22.5 14.0 31.6
Anger 33.7 15.2 51.9

Surprise 54.8 64.4 46.8
Fear 46.7 18.1 70.6

Trust 21.4 35.1 10.7
None of the above 20.7 18.6 14.7

Table B.2: Percent of ratings that contain given emotion

However, we highlight that every 'negative' emotion has a not insignificant presence

in positive ratings. For example, even fear was checked off for 18.1% of all positive

ratings. The opposite also holds true for 'positive' emotions. We emphasize this point

to reinforce the idea that an emotional response to a video clip is highly nuanced.

Even a short 30-second snippet can elicit a multitude of complex emotions, some

positive and others negative.

anticipation

Joy

sadness

disgust

anger

surprise

fear

trust

- p
a

Figure B-1: Pairwise occurences of emotions

Finally, we examine the relationships between emotions, as the emotions are non-
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exclusive. Many clips were labeled with multiple emotions, and the pair-wise oc-

currences are visualized in a heatmap in Figure B-1. While there are some expected

pairs, such as surprise-anticipation, we also see slightly more interesting combinations

such as sadness-surprise. Understanding the network of emotions can lead to better

modeling of emotional responses.

B.2 Q4: Audio, dialogue, visual in clips

We also analyze the responses to Q4, which asks annotators what combination of

audio, dialogue, and visual input contributed to their previous answers. Annotators

are allowed to select more than one answer. Understanding this is helpful for guiding

how to improve the models.

We first examine the most common combinations in Table B.3. Note that the second

column adds up to 100%.

Full answer % of ratings

Audio 2.6
Dialogue 11.7

Visual 12.1
Audio + Dialogue 4.1

Audio + Visual 18.2
Dialogue + Visual 22.1

All three 29.3

Table B.3: Used to convey sentiment - full answer

Next, we examine each of the three options (audio, dialogue, visual) separately. For

every rating, we calculate if a given option is present. The results are shown in Table

B.4.

As expected, in both cases, visual is the most selected option. Audio is last, which

affirms our suspicion that audio, while powerful, often works as a subtler emotional

cue. The importance of dialogue suggests work in grounding the emotion of the scene
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Answer includes % of ratings
Audio 54.2

Dialogue 67.1
Visual 81.6

Table B.4: Used to convey sentiment - individual items

in the semantics, such as the relationship between characters.
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Appendix C

Combined audio-visual model

example

Imagine a video clip was extracted for annotation at 1:28:00 in Figure C-1.
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Figure C-1: Combined model: audio and visual arcs used for example

We list the features used to predict the mean valence rating given by the annotators

as follows. At 1:28:00, the visual valence is 0.54, the audio valence is 0.38, and the

standard deviation of the audio predictions is 0.12.

1. value of visual valence = 0.54

2. (value of visual valence) - (movie's mean visual valence) = 0.54 - 0.53 = 0.01

3. (max of movie's visual valence) - (value of visual valence) = 0.58 - 0.54 = 0.04
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4. (value of visual valence) - (min of movie's visual valence) = 0.54 - 0.29 = 0.25

5. peakiness* of visual valence (recall that this is four values, measuring the (pro-

portional) slope and mean on either side of the point) =[0.54 - 0.50 = 0.04, 0.50

- 0.54 = -0.04, 0.52, 0.52j

6. value of audio valence = 0.38

7. (value of audio valence) - (movie's mean audio valence) = 0.39 - 0.49 = -0.10

8. (max of movie's audio valence) - (value of audio valence) = 0.75 - 0.39 = 0.36

9. (value of audio valence) - (min of movie's audio valence)= 0.39 - 0.35 = 0.04

10. peakiness* of audio valence = [0.39 - 0.44 = -0.05 0.53 - 0.39 = 0.14, 0.41, 0.451

11. binned audio stddev = bin 10 (categorical variable)

12. time in movie = 1:28:00 / 1:32:53 = 0.947

13. movie embeddings** (recall that this is a 10 x 1 vector) = [0.00107333, 0.0168943,

0.0306714, 0.0330115, 0.0225832, 0.0667559 , 0.0272143, 0.0361546, 0.0531328,

0.0328967]
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