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Abstract

Due to their hydrophilic, biocompatible, and highly tunable nature, hydrogel materials have 

attracted strong interest in the recent years for numerous biotechnological applications. In 

particular, their solution-like environment and non-fouling nature in complex biological samples 

render hydrogels as ideal substrates for biosensing applications. Hydrogel coatings, and later, gel 

dot surface microarrays, were successfully used in sensitive nucleic acid assays and 

immunoassays. More recently, new microfabrication techniques for synthesizing encoded particles 

from hydrogel materials have enabled the development of hydrogel-based suspension arrays. 

Lithography processes and droplet-based microfluidic techniques enable generation of libraries of 

particles with unique spectral or graphical codes, for multiplexed sensing in biological samples. In 

this review, we discuss the key questions arising when designing hydrogel particles dedicated to 

biosensing. How can the hydrogel material be engineered in order to tune its properties and 

immobilize bioprobes inside? What are the strategies to fabricate and encode gel particles, and 

how can particles be processed and decoded after the assay? Finally, we review the bioassays 

reported so far in the literature that have used hydrogel particle arrays and give an outlook of 

further developments of the field.
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1. Introduction

In recent years, there has been significant development of hydrogel-based technologies for a 

range of biotechnology applications including diagnostics [1–3], drug delivery [4, 5], and 

tissue engineering [1, 6–8]. Hydrogels are versatile materials due to their hydrophilic, 

biofriendly, and highly tunable nature, making them applicable in this varied range of 

contexts. Recent significant advances in types of gel materials [9, 10], microfabrication 
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techniques [11–14] and biosensor development [15] have come together to assemble the key 

components for fabrication of encoded hydrogel particles for biosensing. In this review, we 

will focus specifically on the development of these unique microparticles for biosensing, 

methods of synthesis and functionalization, and detection assays that have been reported in 

literature. We will also comment on the future of the field and the expansion into other areas 

such as single-cell characterization. This introduction will enumerate the chemical 

advantages of hydrogels and their initial success in being used in a microarray format, which 

led to the gel bead-based advances that we will describe later.

Hydrogels, made of cross-linked hydrophilic polymer chains, are readily functionalized with 

diverse biological entities such as nucleic acids or proteins [5]. Thus, hydrogels can be 

engineered for capture and detection of clinically relevant analytes including but not limited 

to proteins, DNA, mRNA, and microRNA (miRNA). Their solution-like environment, 

chemical tunability and non-fouling nature in biologically complex fluids (e.g. serum), 

further render hydrogels ideal candidates for diagnostic applications. The three-dimensional 

scaffold can be porosity-tuned to allow the diffusion and reaction of large biomolecules 

while remaining structurally stable under harsh mixing or flow conditions.

In a molecular diagnostic context, hydrogels were first utilized for the fabrication of 

hydrogel sensing planar microarrays (Figure 1). A wide range of hydrogel chemical 

compositions have been explored for DNA or protein microarrays, in particular 

polyacrylamide [2, 16, 17], polyethylene glycol [18–20], and alginate [21] derivatives. 

Several methods to functionalize the gels have been explored, ranging from in situ 

functionalization at the time of synthesis to post-synthesis functionalization utilizing 

functional groups in the gel [22]. In a series of studies where probe-functionalized 

polyacrylamide hydrogel pads were immobilized on a surface for DNA detection, hydrogels 

were found to be superior for biosensing relative to rigid two-dimensional planar surfaces 

[22–25]. These pioneering studies demonstrated better thermodynamic association constants 

for nucleic acid hybridization inside the gel environment and proved that biological probes 

could be functionalized at significantly higher densities than possible on standard 

microarrays. Further studies extended to antibody-based protein detection revealed similar 

advantages with regard to probe-functionalization density [2, 26]. These favorable 

characteristics enabled higher specificity and detection sensitivity inside the gel 

environment. We note that the substrate used in those studies, polyacrylamide, has a small 

pore size (~ nm) and analytes showed significantly hindered diffusion inside the gels [27]. 

Despite this constraint, the gel microarrays had significant advantages over planar 

microarrays simply due to the unique chemistry inside the gel environment.

Most planar microarrays, however, suffer from inherent diffusional limitations that are 

difficult to overcome since these systems are not well mixed. These constraints apply to 

hydrogel planar arrays as well. For example, assuming solution diffusivity of a protein to be 

~100 μm2 s−1 [28], the characteristic diffusion time across even 1 cm is on the order of days. 

This precludes the possibility of reaching equilibrium in a reasonable period of time. In 

addition, although microarrays can accommodate high-density multiplexing, there is low 

flexibility with regards to rapidly changing probe sets to tailor clinical panels, since probes 

are pre-immobilized on a single surface. Instead, bead-based suspension arrays can 
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overcome mass transfer limitations by maintaining a well-mixed solution through shaking, 

thereby providing near-solution kinetics, and further offering high flexibility for rapid target 

panel modification [29]. A natural advance in the field was thus to adapt hydrogel substrates 

in a particle-array format for solution-based detection.

In the field of particle-based arrays, the vast majority of reported examples focus on 

polyethylene glycol derived-materials, while a few recent studies use alginate gels. After 

discussing the properties of those materials and the strategies for probe immobilization 

(Section 2), we will review the methods for particle synthesis and encoding developed for 

these gels, ranging from graphical codes to spectral codes (Section 3). Among the key 

contributions to the field that we will discuss in this article are novel methodologies to 

fabricate multifunctional hydrogel microparticles using lithographic processes (including 

replica molding and stop flow lithography) [3] and spherical particles using droplet-based 

processes [13, 30, 31]. In some applications, gels were synthesized, functionalized and 

encoded in a single step, while in others synthesis, encoding and functionalization occurred 

at different times. We will review protocols for processing and reading the hydrogel particle 

array (Section 4) and examples of application for measurements of proteins, DNA, mRNAs 

and microRNA, in a range of sensing conditions (Section 5). Finally, we will discuss the 

perspectives of hydrogel-based particle sensing, in particular how more recent assays have 

begun to examine the utility of such microparticles in applications such as single-cell 

analysis (Section 6).

2. Selecting a material and a strategy for probe immobilization

2.1. Materials

i. Polyethylene glycol—Polyethylene glycols (PEG) are commonly used in 

biotechnological applications due to their biocompatibility and low-biofouling properties [1, 

4–7]. In particular, PEG layers have been used to prevent non-specific binding of protein on 

sensing surfaces [19, 32]. PEGs are relatively inexpensive and available in a large range of 

molecular weights and chemical modifications: PEG molecular weights ranging from a few 

hundred to several thousand grams per mole have been used to fabricate particles (Table 1). 

Conveniently, PEGs show good solubility in aqueous buffers required for biomolecule 

manipulation. PEG particles have thus been the substrate of choice for hydrogel particle-

based assays so far (Table 2).

Polymerization reaction: PEG particles are usually prepared using the free-radical 

polymerization of reactive (meth)acrylate PEG derivatives or polyethylene glycol 

diacrylates (PEGDA) (Figure 2a) in the presence of a UV-sensitive photoinitiator, typically 

a hydroxyalkylphenone species (Table 1) [33–40]. The UV-induced activation of the 

photoinitiator generates a benzoyl free radical through a homolytic scission of a C-C bond, 

subsequently triggering the covalent crosslinking of the gel [41]. The controlled initiation 

and relatively fast propagation kinetics of this polymerization reaction are well suited to 

lithographic synthesis methods, as it will be further described in Section 3.2 [3].

Optimizing gel properties: Different biosensing applications require the ability to fine-tune 

gel microstructure on-demand. Robust biomolecule capture and target accessibility should 
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be ensured while maintaining structural integrity of the gel scaffold. Accordingly, the 

composition of the monomer blend and the polymerization conditions must be tuned to 

optimize the gel porosity, particle rigidity, and swelling behavior. Reaction kinetics and 

double bond conversion ultimately determine gel properties. Both are critically affected by 

the light intensity, the exposure time and the concentration of photoinitiator (typically 1 to 

10% v/v) [42]. Increasing any of these parameters leads to greater double bond conversion, 

ultimately providing the gel with smaller pore size and higher structural rigidity. Detailed 

models of these parameters have been reported [42, 43].

There is also value in altering PEGDA properties. Increasing the molecular weight of the 

PEGDA precursor and lowering its concentration in the prepolymer blend are effective ways 

to increase the gel porosity. Indeed, longer PEGDA chains or lower concentrations of active 

species result in a reduced crosslinking density. PEGDA precursors are typically diluted in 

aqueous buffers from 20% to 60% v/v (Table 1). It should be noticed though that at low 

PEGDA concentration, even at 20% v/v compositions, particles could display deformation 

and loss of mechanical stability under flow conditions [44].

Finally, the pore size can also be increased by adding an inactive porogen to the precursor 

solution, typically inert PEG [20, 45]. The porogen, which is not covalently bound, can be 

washed away after gelation, leading to a higher porosity. Beebe and coworkers observed 

than the pore size enhancement using porogens was particularly effective for short PEGDA 

species (molecular weight <1000 g mol−1) [20]. Indeed, adding PEG35,000 as a porogen to 

PEGDA700 led to macroporous gels, whereas the effects were minimal for PEGDA8,000. 

The appearance of macropores results from polymerization-induced phase separation 

reaction [46]. Although the mixture of water and PEG species is initially homogenous, as 

the polymer chain grows, its solubility in water decreases, generating a polymer-rich phase 

and water-rich phase. Phase separation competes with the polymerization reaction and 

results in heterogeneous hydrogels with macropores.

Hybrid particles: Hybrid particles can be prepared by copolymerizing PEGDA with a 

second species, such as polylactic acid [47], chitosan [48, 49] or polyacrylamide [50]. 

Hybrid particles can also contain varying concentrations of PEGDA along the length of the 

particle to give the particle greater structural rigidity [35, 51]. Incorporating a second 

material can be a way to adjust the gel mechanical and chemical properties. For example, 

Jung et al. reported the synthesis of hydrogel particles functionalized with single-stranded 

DNA using a hybrid chitosan-PEG material [48, 49]. The authors suggested a covalent 

binding mechanism between chitosan and PEGDA. Chitosan brings primary amines with 

low pKA value (~6.5) into the material, which can be further engaged for conjugation of 

biomolecules with high surface density (Figure 2a) [52]. However, pure chitosan is poorly 

soluble in organic solvents and aqueous buffers and yields hydrogels with low mechanical 

strength. Associating chitosan with PEDGA brings ease of fabrication and robustness.

ii. Alginate—Recent publications report the fabrication of encoded particles made of 

alginate gels and their potential sensing applications [53–55]. Alginate is a naturally 

available anionic polysaccharide that is extracted from brown algae and can be precipitated 
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into alginic acid at low pH (1.5–3.5). Sodium alginate is commercially available in a wide 

range of molecular weights from 32,000 to 400,000 g mol−1 [56].

Alginate can be crosslinked in the presence of multivalent cations, typically calcium (Ca2+) 

and barium (Ba2+) divalent ions. Its structure has been shown to be a mixture of unbranched 

copolymers containing different sequences of (1,4)-linked-β-D-mannuronate (M) and α-L-

guluronate (G) residues (Figure 2a) [57]. The interaction between the cations and the 

carboxylic groups of the polysaccharide induces gelation, and it is now believed that only G-

blocks are involved in intermolecular cross-linking [56]. The hydrogel physical properties, 

such as its porosity and stiffness, depend on alginate composition (molecular weight 

distribution, G block/M block ratio and sequence) and on the stoichiometry of the alginate 

with the divalent cation.

Due to its biocompatibility and requirement for mild gelation conditions, alginate is an 

attractive and cost-effective material for biomedical applications. Thus, alginate and 

modified alginate hydrogels [58] have been investigated for tissue engineering [59], drug 

delivery [60, 61], cell encapsulation [62, 63] and wound healing [64] applications. 

Regarding sensing applications, alginate solution droplets (1–5% w/w) were crosslinked 

with either barium acetate [53] or calcium chloride solutions [54, 55] to form quantum dot-

doped particles [53], multi-compartmental particles with fluorescent nanobeads [54] and 

particles encapsulating sensing liposomes [55].

2.2. Immobilizing bioprobes on hydrogel particles

Defining a reliable strategy for the immobilization of bioreceptors within the support 

material is a critical step for the fabrication of a biosensing array. Major criteria to take into 

account are: the availability of reactive groups on the substrate and biomolecule (or 

possibilities to modify as needed), the type of immobilization (covalent, non-covalent), and 

the risk for biomolecule degradation in the coupling conditions (UV exposure, free radicals, 

temperature, organic solvents).

i. Physical adsorption and encapsulation—Ji et al. investigated the possibility to 

immobilize unmodified antibodies on optically encoded crosslinked alginate particles 

through physical adsorption [65]. Physical adsorption does not require reactive chemical 

groups and typically proceeds through a simple incubation step. Although the resulting 

particles were then successfully engaged in a proof-of-concept immunoassay, physical 

adsorption techniques often result in bioreceptor leaching or high non-specific adsorption.

While this first example involved a post-synthesis modification of the particle, another 

strategy consists in physically entrapping the bioprobe in the hydrogel mesh at the time of 

gelation. Indeed, voluminous sensing entities present in the monomer solution may remain 

captured inside the gel upon crosslinking, if the pore size is small enough. Accordingly, 

enzymes (horseradish peroxidase (HRP), glucose oxidase (GOx) [66, 67] and concanavalin 

A [39]) have been encapsulated within PEGDA575 or PEGDA700 particles for glucose 

sensing applications. Such protocols require tightly crosslinked gels to prevent probe from 

leaching out, especially in high swelling saline conditions. This limits the ability to freely 

tune pore size of the gel and prevents access for large targets (further discussed in Section 
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2.3). In these examples, the target (glucose) and detection molecules (hydrogen peroxide, 

Ampliflu™Red) were small enough to diffuse efficiently through the tight gel mesh (pores ~ 

1 nm).

In another study, Park et al. showed that increasing the molecular weight of the PEGDA 

precursor from 575 to 3400 g mol−1 resulted in improved kinetics for glucose readout at the 

cost of higher probe leaching, due to an increased porosity [36]. To circumvent the leaching 

issue, the authors covalently captured the enzyme on magnetic nanoparticles of larger 

diameter (~30nm) first, that were then efficiently embedded within the hydrogel mesh. It is 

worth noticing that encapsulation methods can be used not only for the probe 

immobilization but also for loading the particle with entities that will confer additional 

properties to the gel such as magnetic properties (superparamagnetic particles [68]) or 

spectral encoding (quantum dots [65]).

ii. Covalent immobilization in PEGDA gels during particle synthesis—
Copolymerizing the bioprobe with the gel material, when possible, guarantees a stable 

immobilization and overcomes leaching issues. The probe is functionalized with a 

polymerizable moiety beforehand and added to the monomer solution before 

polymerization. Acrylate and methacrylate modifications have been widely explored to 

covalently anchor biomolecules in PEGDA during the free-radical polymerization reaction 

(Table 1).

Oligonucleotides: The Acrydite™ phosphoramidite modification introduces a UV-

polymerizable methacrylamide group on an oligonucleotide probe (Figure 2b). Most reports 

of PEGDA sensing particles rely on the Acrydite™ group chemistry [33, 35, 37, 38, 45, 69–

71]. Meiring et al. compared oligonucleotide immobilization in PEGDA575 particles in the 

presence or absence of a 5′-methacrylamide modification [33]. The 18-mer bioprobes were 

fluorescently labeled to assess incorporation yields. The fluorescence appeared dramatically 

increased in the case of the covalent immobilization, demonstrating the efficiency of 

covalent binding over physical entrapment. Moreover, when soaking particles in deionized 

water for 24h, over 95% of the covalently bound oligoprobes remained captured.

Similarly, Pregibon et al. copolymerized 5′Acrydite™-oligonucleotides (50-bp) with 

PEGDA700 solutions ranging from 15% to 35% v/v (PEG200 was used as porogen) [35]. 

The authors observed a linear probe incorporation, ranging from ~5% to 25%. According to 

the authors, this trend can be explained by the linear propagation rate with respect to double-

bond concentration observed for multifunctional, reactive monomers. The authors suggested 

that efforts in matching the reaction rates of the monomer and probe species could possibly 

increase incorporation efficiency, as acrylates are known to react faster than methacrylates.

Proteins: A similar approach was used to immobilize proteins and antibodies into PEGDA 

particles. The Doyle group reported the functionalization of antibody probes using a 2kDa 

heterobifunctional PEG linker [72]. An acrylate moiety on one end guaranteed 

copolymerization with the gel, whereas and an N-hydroxysuccinimide (NHS) activated ester 

on the other end captured primary amines on the protein side chains (Figure 2b). Probe 

antibodies were incubated with the linker at room temperature and the resulting mixture was 
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directly added into the monomer blend before polymerization. Notably, although others have 

reported the precipitation of unmodified proteins in PEG monomer mixes, no solubility 

issues were observed after PEGylation [18].

The incorporation of antibodies in the hydrogel was higher than for oligonucleotides for 

similar monomer compositions (respectively 26% and 10%). Although the immobilization 

mechanism was not elucidated, the authors suggested two causes for this increased 

efficiency: the presence of multiple PEGylation sites on the protein and the possible direct 

photopolymerization reaction of thiol groups on amino acids side chains [73]. The 

immobilized antibodies efficiently captured their antigen in spite of the exposure to UV 

radiations and free radicals. Other commercially available heterobifunctional linkers target 

cysteine residues on proteins in order to incorporate an acrylate moiety on the protein.

iii. Post-synthesis covalent immobilization—Finally, an alternate strategy consists in 

covalently immobilizing biomolecules in the particles after the gelation. For PEGDA gels, 

however, such an approach requires adding functional groups beforehand to the gel 

monomer structure. Park et al. incorporated carboxylic acid groups in PEGDA particles 

using a copolymerization reaction with acrylic acid [74]. Those groups were then converted 

into reactive esters moieties to capture proteins through 1-ethyl-3-(3-dimethylaminopropyl)-

carbodiimide/N-hydroxysulfo-succinimide chemistry. The lack of specificity of functional 

group though makes it difficult to functionalize several types of particles simultaneously.

Work by the Herr group has indicated the possibility to also couple biological species into 

gels using biotin-streptavidin interactions [75]. Likewise, Jung and Yi copolymerized 

PEGDA with chitosan, resulting in particles with reactive primary amines with low pKa 

value (~6.5) [48, 49]. A heterobifunctional linker captured those amino groups on one end 

while reacting with an oligonucleotide or protein through a copper free click-chemistry 

reaction on the other end. The authors applied this strategy to functionalize particles with 

oligonucleotides used as anchors to assemble supramolecules (tobacco mosaic virus) with 

high density on the particles [48]. The virus further served as a template to conjugate 

multiple proteins on the gel surface [76].

2.3. Hydrogels in biosensing applications

The three-dimensional nature of hydrogels may affect the sensitivity of biosensing assay. 

Those considerations must be taken into account when selecting a material for a particle-

based assay.

i. Particle swelling—Salt-containing solutions typically cause hydrophilic gels to swell 

and to uptake more water, but these behaviors can vary based on the composition and charge 

of the gel. Since hydrogel microparticles should be able to robustly detect analytes in 

biological samples, it is important to understand their swelling behavior in aqueous solutions 

that could contain physiologically-relevant (~140 mM) or high (200–400 mM) salt 

concentrations that are necessary for nucleic acid binding. A thorough characterization of 

these behaviors would allow researchers to ensure that gel swelling does not affect 

concentration of entities that are physically immobilized within, assay conditions or particle 
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decoding (for example due to anisotropic swelling that could deform a graphically encoded 

particle).

The theory behind swelling behavior of crosslinked hydrogels in different chemical 

environments has been extensively discussed in previous reviews [4, 5]. Few groups also 

empirically examined swelling of gel particles made from different starting compositions. 

One study focused on the effect of the molecular weight of the PEGDA precursor on the 

swelling of shape-encoded particles (Figure 3a). The amount of swelling increased with the 

precursor molecular weight (40% for PEGDA700, 80% for PEGDA3400). However, the 

particle deformation was isotropic and the overall shape and aspect ratio were not affected 

[36, 67]. Another study found that increasing the percentage of PEGDA in the prepolymer 

solution increased the tendency of particles to uptake water immediately after 

polymerization [33].

ii. Probe density—Due to their three-dimensional nature and increased effective surface 

area, hydrogel substrates offer higher capacity for bioprobe immobilization in comparison to 

surface-based systems such as planar microarrays or polystyrene beads. Similar starting 

concentrations of the probe solution generate greater effective projected densities on the gel 

(projection the 3-D gel onto 2-D) than on a surface since there is functionalization 

throughout the gel [26, 71]. Assuming first-order Langmuir kinetics for the target/probe 

interaction, this increased density leads to more target/probe complexes formed at 

equilibrium and hence a better assay sensitivity [71]. Srinivas et al. reported an effective 

oligoprobe density of 105 molecules per μm2 on PEGDA gel particles prepared from a 10 

μM probe solution. This probe concentration is at least one order of magnitude denser than 

on an equivalent microspot [71].

Zubtsov et al. carried an extensive comparison between surface spots and gel pads for 

antibody immobilization [26]. On surface spots, the relatively large molecular size of 

antibodies limited the effective density to 104 molecules per μm2. Increasing the probe 

concentration in the spotting solution did not necessarily lead to greater probe density. 

Furthermore, at maximum capacity, molecules were separated only from ~ 10 nm, which 

may restrict the target accessibility to those probes. Hydrogel substrates overcome those 

constrains: optimized immobilization conditions on gel pads provided up to 107 molecules 

μm−2 and an approximate 100 nm separation between molecules. Notably, however, 

miscibility of probe molecules into the more hydrophobic monomer solutions could pose an 

upper constraint on maximum achievable homogenous probe concentration throughout the 

gel [72].

iii. Probe accessibility and target diffusion—The second critical factor for assay 

sensitivity is the ability of target to diffuse freely throughout the volume of the gel and to 

access inner probe molecules. Indeed, if the mesh is too tight, large biological targets might 

not be able to penetrate the network or enter only at very low diffusion rates, significantly 

delaying approach to equilibrium. Meanwhile, if the gel is too porous, functionalization 

efficiency of probe molecules could be significantly lower than optimal, which would also 

affect sensitivity [35]. The porosity of hydrogel microparticles can be adjusted to allow 

diffusion and reaction of biological entities of different size including proteins, microRNA, 
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and antibodies and mRNA (respective typical radii of gyration rg: 2 nm, 3 nm, 6 nm and 

10nm) [45].

Hydrogel pads: Target diffusion and probe/target interaction kinetics in hydrogel substrates 

were first extensively studied and modeled for hydrogel pads [25, 26, 77] and hydrogel posts 

[20]. Sorokin et al. compared the kinetics of oligonucleotide hybridization on gel pads with 

surface microspots [25]. Although the gel array showed slower hybridization kinetics due to 

hindered diffusion of analytes within the porous gel mesh, the fluorescence signals when the 

assay came to thermodynamic equilibrium were stronger. The increase in signal was 

attributed both to better thermodynamic association constants of binding and to the higher 

effective probe density in the gel environment.

Indeed, it has been previously demonstrated that solution-phase hybridization poses the 

lowest energy barriers for nucleic acid binding. Solid-phase hybridization suffers from 

higher free energies of binding because targets need to diffuse through densely packed probe 

regions, creating steric constraints [78]. The gel environment appears closer to the ideal 

solution limit due to the high water content and to the sufficient space between probe 

molecules despite a higher effective probe density. Accordingly, observed free energies of 

binding were actually lower for nucleic acid binding relative to a standard microarray. The 

reduction of steric hindrance provides not only better sensitivity, but also better specificity, 

since there is less tolerance for mismatch sequences when probe molecules are spaced 

further apart [25].

Zubstov et al. performed similar studies for protein-based gel chips [26]. Once again, the gel 

environment enhanced protein detection. The signal enhancement, however, was primarily 

due to the increased probe immobilization efficiency inside the gel with no significant 

difference between kinetic rates of signal saturation for surface spots and gel pads.

Hydrogel particles: Similarly, target binding inside hydrogel particles has been investigated 

through experiments as well as modelling. Using both approaches, Pregibon and Doyle 

characterized diffusion and reaction inside a well-mixed gel particle array [35]. In particular, 

the authors considered the rate of target-probe association to the rate of analyte diffusion 

into the gel particles, defined as the Dahmköhler number (Da). The study showed that the 

gel array was mass-transport limited since reaction occurred significantly faster than 

diffusion throughout the gel (Da≫1). These characteristics can lead to restricted target 

penetration depth, confining the majority of signal at the outer edge of the gel particles at 

low target concentrations. That confinement has been observed in a number of studies 

(Figure 3b) [37, 38, 69, 74].

The gel composition should be finely tuned to optimize target diffusivity and hence assay 

sensitivity. An extensive optimization of the composition of PEGDA700 hydrogel particles 

for the quantitative detection of oligonucleotide targets of increasing length (20, 50, 100 and 

200 bp) demonstrated that Increasing PEGDA concentrations caused reduced diffusion of 

the largest targets (Figuer 3c) [35]. Such diffusion considerations should not be limited to 

targets but should be applied to any molecule required for signal generation. Indeed, bulky 
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labels such as streptavidin-phycoerythrin might also face restrictive diffusion constraints 

(Figure 3c) [35].

As mentioned earlier in this section, increasing the molecular weight of the PEGDA 

precursor and/or adding a porogen species are additional ways to enhance the porosity of 

PEGDA particles and improve target diffusivity. For example, Choi et al. successfully 

adapted a particle-based assay designed for small miRNA targets (rg~3 nm) to full-length 

mRNA targets (rg~10 nm) by replacing the PEG200 porogen with PEG600 (Figure 3d) [45]. 

The authors showed clear evidence of the significant steric hindrance arising with the 

smaller porogen by using hydrogel posts as model systems to study solute diffusion.

In conclusion, the gel should be designed to mitigate effects arising from swelling behavior, 

be porous enough to allow target diffusivity, but still be dense enough to preserve a large 

reactive surface area with high probe densities. Particles should also retain their mechanical 

integrity and structural stability through the course of the assay. For optimal hydrogel 

composition, each probe/target pair and assay conditions should be taken into consideration 

in order to balance these phenomena.

3. Synthesizing encoded hydrogel particles

We discussed the chemical nature of the hydrogels commonly used for particle-based 

bioassays, as well as the gel crosslinking and probe immobilization reactions at the 

molecular level. We will now review techniques for fabricating particles of controlled 

morphology and size. In most examples considered throughout this review, particle 

dimensions fall in the micron range (10–1000 microns).

Conventional methods for the fabrication of micrometer-sized hydrogel particles include 

dispersion, precipitation, and emulsion polymerization techniques [79]. However, these 

approaches are often limited to the production of spherical particles with uniform surface 

properties and cannot achieve monodispersity. Furthermore, these techniques may require 

organic solvents and high temperature conditions, which are typically incompatible with 

biomolecule stability. Nevertheless, recent advances in microfabrication techniques [11–14, 

80] have opened new avenues to produce complex particles, in mild chemical conditions and 

with high reproducibility and monodispersity. New routes to chemically and structurally 

anisotropic hydrogel particles have considerably expanded strategies for hydrogel particle 

encoding.

3.1. Building a library of encoded particles

Multiplexed assays using suspension arrays require techniques for individual particle 

encoding. Indeed, as particles are pooled and mixed in the sample for target capture, a 

unique particle code is essential to identify each particle and corresponding probe-target 

couple at the time of assay readout. The code must also remain unaffected by the assay 

conditions, and its readout must be orthogonal to the signal of target reporters and optical 

labels involved in the assay to prevent convolution. Numerous encoding strategies and 

substrates (including spherical latex, silica, or glass particles, as well as metallic nanowires) 

have been investigated over the years for bead-based arrays and have been thoroughly 
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reviewed by others [29, 82, 83]. The vast majority of reports are based on spectrally-

encoded beads involving fluorophores, quantum dots, photonic beads or photo-bleached 

microspheres [29]. Suspension arrays of polystyrene particles with up to 500 unique 

fluorescence signatures are now commercially available for nucleic acid tests and 

immunoassays [84, 85]. However, spectral overlap limits the size of the code library. In 

contrast, more recent approaches have focused on the fabrication of anisotropic particles 

with tunable non-spherical shapes and internal features, allowing graphical encoding [83].

Hydrogel particles have been encoded using both spectral and graphical codes (Figure 4). 

Table 1 presents the various encoding strategies reported in the literature along with particle 

fabrication techniques. In all cases, the particle synthesis technique and the encoding 

strategy are tightly linked. One class of synthesis platforms utilizes photolithographic 

techniques for generation of particles with predefined geometrical patterns from UV-curable 

monomer. Additionally, the recent advances in droplet generation techniques, especially 

droplet microfluidics, have led to innovative production methods of spherical hydrogel 

particles that can be optically encoded. Particle encoding generally occurs at the time of 

synthesis.

3.2. Photolithographic methods for graphical encoding

Most hydrogel particle arrays reported in the literature were generated from the UV-induced 

polymerization of PEGDA. Top-down particle fabrication techniques take advantage of this 

photopolymerization step to pattern particles in two dimensions. Specific shapes or internal 

features, such as extruded holes, can be generated to create graphical codes. The shapes 

and/or internal features imposed on the particle are typically fabricated using one of two 

strategies: by using a photomask to limit UV illumination to specific regions, or by particle 

molding on a polymeric mold with negative features. Figure 5 presents the corresponding 

workflows.

i. Contact photolithography

Patterning shapes: In 2004, Meiring et al. reported the first example of graphically encoded 

hydrogel particle array for biosensing, named MUFFINS for mesoscale unaddressed 

functionalized features indexed by shape [33]. The authors adapted photolithographic 

fabrication techniques originally developed for the production of submicron features in the 

semiconductor industry [12], to the production of millimeter-sized PEGDA particles 

functionalized with oligonucleotides. A blend of PEGDA monomer and acrylated 

oligonucleotides were poured onto a Teflon substrate and covered with a photomask placed 

in direct contact with the pre-polymer. The mask consisted of a laser-printed transparency 

film mounted on a glass slide. Most of the mask was black with transparent features for 

reproduction of particles with desired shape and size. When the device was exposed to UV 

light through the photomask (approximately 200 mJ cm−2, broadband UV), the light was 

blocked by dark areas and could only reach regions of the material beneath the transparent 

portions of the mask. Only these illuminated regions crosslinked into particles, transferring 

the shape pattern to the hydrogel (Figure 5a). Finally, the uncrosslinked pre-polymer was 

washed away and the patterned hydrogel particles were physically detached from the mask 

on which they adhered. As a result, the authors successfully synthesized 1 mm hydrogel 
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particles shaped as squares, triangles, circles, and crosses. All these encoded particles were 

functionalized with different methacrylated oligonucleotides during the free radical 

polymerization (Figure 4a).

PDMS devices: Later studies reported the use of polydimethylsiloxane (PDMS)-based 

devices for producing shape-encoded particles through static contact photolithography. 

Conveniently, PDMS prevents particle adhesion to the substrate, enabling easy collection of 

the formed particles. Indeed, oxygen can diffuse through PDMS and locally inhibit the 

polymerization reaction on the surface substrate [43]. PDMS devices were used to produce 

200 μm long PEGDA particles that were shape-encoded and functionalized with antibodies 

for immunoassays [74] or with enzymes (GOx, HRP) for glucose sensing [36, 67, 86] 

(Figure 4b).

One synthetic approach consisted of simply sandwiching the pre-polymer solution between 

PDMS-coated glass slides [36, 74]. In a second approach, the monomer was enclosed in a 

rectangular 50 μl PDMS chamber (2 cm×4 cm×50 μm) sealed with a PDMS- coated glass 

slide [67]. Using a chrome soda lime photomask with a 40×80 array of features, the authors 

polymerized ~ 3,000 hydrogel microparticles per UV exposure (1 second, 365 nm, 300 mW 

cm−2). Well-resolved particles with sizes ranging from 50 μm – 200 μm were obtained, 

although a significant difference in particle diameter between the mask and the polymerized 

feature was observed for the smallest particle size (20%).

Dual encoding through shape and color: Notably, Ye et al. reported the fabrication of an 

array of particles indexed by both shape and structural color, for aptamer-based detection of 

proteins [50]. In addition to a unique geometrical shape, the photonic crystal hydrogel 

micro-sensors displayed unique brilliant colors and particle reflection spectra originating 

from light diffraction inside the particle (Figure 4c). With a negligible fluorescence 

background, such particles are compatible with fluorescence-based assays.

The particle fabrication process involved two polymerization steps. First, a PEGDA 

monomer blend was mixed with a suspension of monodisperse colloidal silica nanoparticles 

(150 nm) and used to polymerize shape-encoded particles (500–1000 μm; thickness 125 μm) 

between quartz slides using contact lithography. HF etching then degraded the silica 

nanoparticles, resulting in an inverse nanoporous structure imprinted in the gel that 

conferred the structural color to the particle. Then, an additional acrylamide-based layer 

polymerized on top of the PEGDA material enabled covalent capture of acryloyl-modified 

oligoprobes in the particle.

Key parameters for photolithography: The resolution of the imprinted features is a 

critical parameter for graphical encoding. Particle edges and overall shape should be sharp, 

well resolved, and highly reproducible among particles to ensure a reliable decoding 

process. In case of contact photolithography, the resolution mainly depends on the light 

source collimation and photomask quality. Although a laser-printed transparency will 

provide sufficient resolution to prepare particles in the range of 100 to 1000 microns [87], 

finer resolution often demands more costly and time-intensive techniques, such as 

chromium-on-glass mask writing. The quality of UV illumination is an additional key 
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parameter for the reproducibility and resolution of the imprinted features. Indeed, the UV 

light intensity should be even across the entire illumination area in order to generate 

reproducible particles. Proper collimation is critical to achieve a high resolution and the light 

intensity imposes the exposure time required for polymerization [42].

ii. Flow lithography—The contact lithography techniques described above rely on static 

batch processes with limited throughputs. Particle collection time and set-up times in 

between runs reduce the synthesis rate. In 2006, the Doyle group reported an innovative 

method for the continuous production of hydrogel particle using flow-lithography [88–90]. 

Fabricating particles under flow in a PDMS microfluidic device enabled dramatic increase 

in production throughput (up to 18,000 particles per hour).

Stop-flow lithography: Figure 5b presents a typical workflow for flow-lithography. The 

PDMS microfluidic channel is filled with PEGDA monomer using a pressure-driven flow. 

The device is then exposed to UV light through a photomask to induce particle formation 

inside the microfluidic channel. Oxygen permeation through PDMS creates local inhibition 

of the polymerization reaction near the channel walls, resulting in formation of free-floating 

particles [43]. Activating the flow pushes particles towards the channel outlet, where they 

can be collected. Subsequently, another synthesis cycle can take place in the channel filled 

with fresh monomer. The particle thickness is determined by the channel height (20–50 μm) 

and the thickness of the oxygen inhibition layer (typically ~ 2.5 μm) [43].

In contrast to previous approaches, the photomask is typically not placed in direct contact 

with the device. The microfluidic device is placed on the stage of an inverted microscope 

and the mask is placed in the field stop position, projecting the mask pattern onto the 

monomer layer through the objective. The great degree of control over light focus leads to 

creation of uniform particles [89]. Upon projection through the microscope objective and 

internal lenses, the pattern size is reduced. This reduction enables further reduction of the 

minimum size of particles.

In comparison to contact lithography techniques, the restricted field of view limits the 

number of particles that can be synthesized per UV exposure. However, the UV light 

condensation through the objective leads to dramatically shortened exposure times (tens of 

milliseconds instead of seconds) and the overall cycle time is on the order of a second. 

Using projection flow-lithography, the authors reported particle throughputs as high as 

18,000 particles per hour (~ 250 μm x 70 μm particles) and throughputs could be further 

increased [51].

Graphical barcodes: Complex graphical codes (extruded holes, shapes) can be patterned 

using projection flow lithography as long as codes are reliably polymerized. Accurate 

polymerization of well-resolved particles with sharp code regions required precision with 

respect to focal plane and alignment between the projected pattern and the narrow channel. 

Although the barcoding technique was originally developed to operate under continuous 

flow [88], stopping the flow during UV exposure (stop-flow lithography) was shown to 

improve particle resolution up to micrometer precision, light diffraction being the ultimate 

limit to the mask feature size [89]. In 2007, Pregibon et al. fabricated an array of extruded 
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particles using 2D dot-coded scheme possibly leading to millions of uniquely graphically 

encoded particles (Figure 4e) [69]. Later, the group reported multiple applications of 1D- 

barcoded particles in multiplex bioassays (Figure 4f) in the field of nucleic acid detection 

(oligonucleotide, miRNA, and mRNA [35, 45, 70]) as well as protein detection [51, 71].

Chemically anisotropic particles: In addition, exploiting laminar flow properties in 

microfluidic devices enable to generate chemically anisotropic and graphically encoded 

particles in a single UV exposure. Indeed, under laminar flow conditions, multiple monomer 

solutions (introduced through different inlets) form a co-flow in the main channel and 

remain as parallel streams with negligible mixing. Upon UV exposure, the polymerized 

particle will therefore have spatially segregated regions bearing different chemical 

functionalities depending on the number of co-flowing streams in the device. The stream 

widths can be easily tuned by adjusting the relative pressure driving each flow [91].

In the first demonstration by Pregibon et al. in 2007, two streams were co-flowed in the 

same device [69]. One stream had PEGDA mixed with an acrylated rhodamine to provide a 

fluorescent barcoded region, and the other stream contained acrylated DNA probes used for 

sensing. The photomask used imparted the bit-code design to the fluorescent stream. Since 

the two regions of the resulting particle were spatially segregated, single-wavelength 

excitation could be used both for decoding the particle identity and for quantifying the target 

after hybridization and fluorescence labeling. The authors also demonstrated ability to 

synthesize multiple target capture regions on the same particle to use a single particle to 

measure several markers.

Further applications of SFL have led to creation of multifunctional particles bearing distinct 

intraplexed regions for different proteins [72], microRNAs [92], or with varying probe 

concentrations [71]. The latter can been exploited for assay development or to expand assay 

dynamic range or sensitivity [71]. Additionally, in a recent report, up to six chemistries were 

used to pattern spectral barcodes using up-converting nanoparticles [81] (Figure 4h). 

Notably, recent iterations have extended the technique to non-oxygen permeable devices 

using hydrodynamic focusing and inert fluid streams enabling vertical layering [93, 94]. 

Particles with significantly smaller heights (~2–6 μm) were also fabricated using oxygen-

controlled flow lithography [95]. Strategies to make 3-D particles using stop-flow 

lithography were also recently reported [96, 97].

Color-coded particles and dynamic masking: Flow lithography was further developed by 

the Kwon group to use a digital micromirror device in place of a static mask [98]. A 

computer-controlled digital micromirror device (two-dimensional array of micro-mirrors) 

gives dynamic control over the projected UV exposure pattern, enabling real-time 

modification of the microstructures to pattern. Moreover, the large field of view increases 

the number of particles that can be polymerized per exposure.

This technique was applied to the synthesis of multifunctional particles for multiplex DNA 

detection with complex codes [38]. The graphical encoding used a combination of a binary 

barcode (bit sequence) and spectral code, as the bits displayed eight different colors (Figure 

4g). With a 10-bit sequence, 810 unique codes could potentially be generated. To polymerize 
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color-coded bits, the authors used a PEGDA pre-polymer solution containing 

superparamagnetic colloidal nanocrystal clusters, named M-ink. The modulation of an 

external magnetic field induced the reorganization of the nanocrystal clusters structure, 

resulting in a color shift of the ink solution. The spatially controlled UV exposure triggered 

the gel crosslinking at desired bit position, thereby fixing its color. The color and position of 

the next bits were simply adjusted by tuning the magnetic field intensity and changing the 

dynamic projected light pattern. The production of barcoded particles with eight different 

colors was achieved in approximately 1 second, with a unique ink solution. The technique 

however required a second solution and an alignment step for polymerizing a target capture 

region that was spatially separated the code region.

iii. Replica molding—Instead of using a photomask to create a patterned UV 

illumination, it is possible to use a polymeric substrate patterned with negative features to 

mold shape-encoded particles. Figure 5c presents the usual workflow for replica molding 

(also known as imprint lithography), which is directly inspired from the soft lithography 

techniques developed for the fabrication of microfluidic devices [12]. Typically, a liquid 

UV-curable monomer (usually PEGDA) is poured into an array of shape-encoded wells. 

After removal of excess material if necessary, UV light exposure induces gel crosslinking 

and form individual particles in wells.

The DeSimone group first reported the fabrication of sub-200 nm to micron scale hydrogel 

particles via replica molding in 2005 [99]. For the “PRINT” method (Particle Replication In 

Nonwetting Templates), the authors used a non-wetting perfluoropolyether (PFPE) as the 

mold material to confine the liquid monomer into the isolated cavities. Applying the 

material onto the mold with a roller ensured even spreading of the material across the mold. 

In a later version of the technique, an additional sacrificial layer improved particle recovery 

[100]. This adhesive layer was designed to adhere to particles, but not to PFPE, and helped 

with unmolding of the cured features. The layer was disrupted later on, in order to release 

the monodisperse particles into solution. The applications of the PRINT technique, however, 

have mainly focused on high resolution production of nanoparticles dedicated to drug 

delivery and nanomedicine [101].

Other groups applied similar replica molding techniques to produce larger hydrogel 

microparticles for biosensing. For example, the Yi group demonstrated the polymerization 

of a PEG substrate [37], as well as of a hybrid material of PEG and chitosan [48, 49], into 

particles in PDMS microwells. Particles were shape-encoded and functionalized with 

oligonucleotides (Figure 4d). PDMS molds were patterned using silicon wafers, through 

standard soft lithography methods. The mold was filled with monomer, cleared of excess 

solution and air bubbles, and sealed with a PDMS-coated glass slide, leaving a small air gap 

above monomer layer. It appeared necessary to assemble the device in a high humidity 

controlled chamber to prevent monomer evaporation. Indeed, in ambient conditions, the 400 

pl volume per well rapidly evaporated, resulting in gel non-uniformity and variable DNA 

density within the material. This technique enabled production of 1,600 particles per batch 

with a minimal use of monomer (100 μl for 100 batches, assuming that excess monomer was 

recovered at each step). Particle recovery, however, required multiple steps of physical 

bending of the mold and re-suspension of particles on the mold surface through pipetting.
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3.3. Droplet-based synthesis of spectrally encoded spherical particles

While lithographic techniques are used to generate graphically encoded hydrogel 

microparticles (extruded or shape-encoded), spherical spectrally encoded gel beads can be 

synthesized using water-in-oil droplet-based synthesis systems. Most platforms are based on 

microfluidic techniques for generating monodisperse and stable aqueous droplets in an 

immiscible oil phase. These innovative techniques have been reviewed extensively 

elsewhere [13, 31, 102–106]. Here, we focus more specifically on applications to crosslink 

droplets of photocurable or chemically crosslinkable monomers into hydrogel beads.

Hydrogel bead arrays are typically generated by optically encoding the spheres using a range 

of techniques. By choosing biofriendly monomers such as PEG-DA or alginate, researchers 

have been able to crosslink these droplets in situ upon formation in the microfluidic device, 

load them with dyes or quantum dots, and/or functionalize them with biomolecules for 

biosensing applications. PEG-based monomers can be crosslinked using UV exposure 

whereas alginate is chemically cross-linked using introduction of calcium or barium ions. 

Although some of the studies reviewed below do not demonstrate biomolecule 

immobilization in the particle yet, the innovative encoding routes they report are attractive 

candidates for future multiplex bioassay development.

i. Droplet formation using T-junctions—A common geometry employed in synthesis 

of droplet-based hydrogel beads is the T-junction. The aqueous dispersed phase meets the 

continuous-phase at a cross-junction where droplets are pinched off. Stream flow-rates and 

device dimensions control the droplet formation rate and size. For example, Kantak et al. 

used a microfluidic T-junction and UV induced photopolymerization to generate PEG 

spheres with a 72 μm diameter (Figure 6a) [39]. The spherical particles contained 

fluorescein isothiocyanate dextran (FITC-dextran) and a sugar binding protein for a 

fluorescence-based glucose detection assay. Others reported the use of a T-junction made of 

PTFE tubing for the fabrication of 300 – 400 μm photonic crystal hydrogel beads. PEGDA 

was mixed with a suspension of with silica nanoparticles (similar encoding method as Ye et 

al. [50]). Droplets of the mixture were dispersed in oil and UV-polymerized [107, 108].

The simplicity of the T-junction has led to its use in combination with other microfluidic 

techniques for fabricating particles with higher complexity. Gerver et al. combined a 

microfluidic herringbone mixer with a T-junction scheme to synthesize spectrally encoded 

46 μm PEGDA spheres with mixtures of down-converting lanthanide nanocrystals [40]. 

Prior to the T-junction, three input streams were separately fed into the device. Each one 

contained PEGDA, a photoinitiator, and different lanthanide nanophosphor. Streams were 

mixed on the herringbone mixer. Precise pressure control on these streams was used to 

program the relative ratios of nanophosphors. The monomer mixture was then pushed into 

the T-junction using a high-pressure water stream for droplet formation. Finally, droplets 

were exposed to UV light and crosslinked into hydrogel beads entrapping nanophosphors 

(down-converting lanthanide nanoparticles) inside particles (Figure 4i). The input stream 

ratios could be adjusted before each bead synthesis, providing an easy route to generating 

uniquely encoded beads in a single device. The study demonstrated the generation of 24 

unique codes that were read out with high precision. However, by increasing number of 
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lanthanide nanophosphor inputs (potentially up to 14), the multiplexing capability could be 

significantly increased.

ii. Hydrodynamic flow-focusing for droplet synthesis in conjunction with T-
junctions—In a flow-focusing device, hydrodynamic focusing is used to generate 

emulsions of the dispersed aqueous phase (such as the monomer solution) into a sheath 

stream of the continuous oil phase. The droplets are pinched off into the continuous phase. 

Based on the dimensions of the device and the flow-rate of the dispersed phase, there is full 

control over droplet size and rate of droplet formation.

One study combined a flow-focusing scheme with a double-T-junction to synthesize 

quantum-dot encoded alginate particles with a 25 – 30 μm diameter [53, 65]. The flow-

focusing geometry was used to generate stable alginate droplets in the continuous phase 

(soybean oil), while the T-junctions were used to introduce the barium ions necessary to 

crosslink the alginate matrix in a fusion chamber (Figure 6b). CdSe/ZnS quantum dots (QD) 

added to the monomer solution beforehand were eventually encapsulated in the final 

hydrogel particles. The authors demonstrated the ability to create different codes by 

changing the ratio of alginate to QD solutions in the inlet (Figure 4j). By using a long wavy 

channel, these streams were then allowed to mix before being injected into the soybean oil, 

providing the capability to make up to 100 codes using only two QD colors. The QD-doped 

particles were further functionalized with an antibody through non-covalent adsorption and 

were used in IgG detection assays.

Another study reported the use of a similar double T-junction combined with a flow-

focusing scheme to produce alginate beads loaded with glucose oxidase, for glucose sensing 

applications [109].

iii. Capillary microfluidic devices—An alternate strategy for droplet formation uses 

coaxial capillaries. The dispersed phase flows through the inner injection capillary, while the 

outside capillary contains the continuous phase, resulting in droplet formation at the tip of 

the injection capillary. The Weitz group developed complex microfluidic geometries for 

generating QD-tagged gel spheres through double emulsion polymerization [110]. The 

authors used a capillary microfluidic device utilizing both co-flowing streams and a flow-

focusing geometry to polymerize double emulsions containing quantum dots in the 

innermost droplet and PEGDA in the outer shells. PEGDA hydrogel shells (diameter~ 200 

μm) were generated with UV illumination, entrapping 50-μm QD inside the resulting 

particles. Using only two quantum dot colors at 30 levels, the technique could provide up to 

899 codes. The double emulsion technique was also used to make the resulting particles 

magnetic for easy post-processing and collection.

Similarly, Cheng et al. designed a capillary microfluidic device to generate anisotropic 

encoded particles from a PEGDA precursor containing colloid crystals [111]. Right after 

formation, droplets were captured in an anisotropic collection capillary of smaller cross 

section. Droplets were squeezed into a rectangular or square collection capillary, forcing 

them into anistropic shapes, and photopolymerized in situ.
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iv. Centrifugal synthesis—In parallel to aforementioned microfluidic chip-based 

techniques, two recent studies take advantage of centrifugal forces to synthesize complex 

multi-compartmental spherical alginate particles [54]. Both studies use modified microtubes 

to perform centrifugal synthesis. Figure 6c depicts the typical device used. Two physically 

separated compartments contain an alginate solution (top) and a calcium ion solution 

(bottom). An ejection system makes the liaison between the top and bottom compartments. 

Placed in a centrifuge (simple bench top system) and rotated, the alginate mixture is pushed 

down through the ejection system by the centrifugal force, eventually forming a droplet at 

the interface between air and liquid. If the rotation is fast enough, the centrifugal force 

overcomes the interfacial tension effects, resulting in the droplet ejection. Physical 

crosslinking of the droplet is immediate upon entry into the solution containing calcium 

ions. The resulting gelified particles are monodisperse and their size can be adjusted with the 

centrifugal force while their shape (sphere or ellipse) depends on the distance between the 

tip and the surface of calcium ion solution. The alginate precursor can be mixed with 

biological species to be incorporated in the structure. Moreover, using multiple capillaries, 

two (or more) alginate solutions can be co-injected as laminar flows to form Janus particles.

Using an ejection system based on multiple glass capillaries fixed in an acrylic holder, 

Maeda et al. demonstrated the fabrication of multiphasic hydrogel particles with up to six-

compartment body compositions [54]. The authors separately encapsulated magnetic 

nanobeads and cells in 2-compartment spheres. Lee et al. used a needle-based droplet 

ejection system to fabricate 250–750 μm complex alginate particles embedded with sensory 

polydiacetylene liposomes for the colorimetric detection of melamine, a chemical with 

kidney toxicity [55] (Figure 4k). Biphasic and triphasic particles were also produced using 

co-injection of monomer solutions of various formulations. This simple process, which 

operates in mild conditions (no oil, heating or UV light) with a simple equipment, appears 

particularly well-suited for the capture of sensitive biological materials such as cells and 

liposomes into hydrogel particles.

4. Processing particles and reading the code

A major advantage of suspension arrays in comparison to planar arrays is the possibility to 

mix particles thoroughly in the sample or washing solution and to overcome diffusion 

constraints during incubations. However, it is necessary to develop strategies for washing 

and collecting particles at multiple steps of the assay protocol without particle loss. 

Similarly, methods for analyzing the code and target level for each particle individually 

should be designed.

4.1. Mixing and washing particles

i. Passive manipulation—Different assay formats have been reported depending on the 

specific requirements of the application (throughput, end-user). Hdrogel particles assays 

have been performed in microtubes (50 – 500 μl) [70–72], in microplates (50 – 500 μl) for 

higher throughput [51], and in microfluidic devices (< 10 μl) for low volume applications 

[34, 38]. For all of these scenarios, it is necessary to establish efficient techniques for 

particle mixing, washing and collection.
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In tubes or microplates, particles can be separated from the supernatant using centrifugation. 

Once particles form a pellet at the bottom of the vial, the supernatant is removed and 

particles are re-suspended in fresh washing buffer. Alternatively, Appleyard et al. proposed 

a protocol for performing a hydrogel-based immunoassay in a hydrophilic low protein-

binding filtration microplate (polyvinylidene fluoride membrane) [51]. Rinses were 

performed using vacuum suction, and the 250-μm barcoded particles were large enough to 

be retained by the 1.2 μm filter membrane using vacuum rinse steps (although we note that 

excessive suction can induce deformation). Incubation and rinsing steps could thus be 

performed in a single well.

In microfluidic devices, it is necessary to trap particles during buffer exchange steps and 

during introduction of new reagents to avoid particle loss (for general reviews on particle or 

bead handling in microfluidic devices see [82, 112]). Choi et al. developed a microfluidic 

chip that combines a polymerization chamber for particle in-situ fabrication and a reaction 

chamber to perform the assay and to read the particle output [34]. To capture particles, the 

authors included pillars at the end of the reaction chamber, as a filter (Figure 7a). Trau and 

coworkers reported a strategy for capturing cylindrical sensing particles (50 μm diameter) on 

a gel well array in a microfluidic chamber [66]. To form the particle array, the solution of 

sensing PEG-based particles was dispensed on the gel well array. Some particles settled in 

wells and remained immobilized in gel wells merely through physical entrapment for the 

entire duration of the assay. Meanwhile free particles were easily rinsed off. Notably, similar 

techniques of particle docking in well arrays have been recently reported by the Sia group 

for docking particles based on their shape [113] and by the Kwon group for creating arrays 

of spectrally encoded gel beads [114].

ii. Active control using magnetic particles—Magnetic microbeads can be entrapped 

inside a tightly crosslinked hydrogel at the time of the gel polymerization. These embedded 

entities confer magnetic properties to the resulting sensing particles and offer a way to orient 

and transport them. Bong et al. demonstrated that the incorporation of superparamagnetic 

beads on one end of barcoded sensing particles generated magnetically addressable particles 

that were responsive to weak magnetic fields. There was no interference with the assay 

sensitivity or specificity [68]. Using a magnet, particles could be efficiently separated from 

bulk solutions for washing steps and could be oriented for imaging. In a subsequent paper, 

Suh et al. used magnetic tweezers to transport and array such particles inside microwells for 

imaging [115].

Lee et al. reported precise multi-axis rotational control over particles made using a color 

tunable magnetic material through an external magnetic field [38]. The particles were 

dedicated to a DNA hybridization assay in a low volume chamber. For buffer exchange or 

imaging steps, the external magnetic field was applied to trap particles in the micro-

chamber, forcing them to lay flat and in a specific 2D orientation (Figure 7b). On the 

contrary, during the incubation and washing steps, particles were continuously rotated on the 

vertical axis, thereby creating local microscale rotating stirrers.
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4.2. Detection and signal acquisition

As for the majority of bead-based assays, reading the code and quantifying the target 

reporter signal on hydrogel particles can often rely on optical detection methods (for general 

reviews on bead-based array decoding see [83, 112, 116, 117]). Two approaches have been 

reported for signal acquisition: imaging methods [33, 34, 37, 38] and flow cytometry-like 

scanning techniques [44, 69]. It is critical to use non-interfering methods for decoding the 

array and for target level quantification and to make sure that both readouts are easily de-

convoluted from each other. Examples of non-interfering readouts are: orthogonal 

fluorescence reporters [65], spatially-separated code and target regions [38, 55, 69], or 

shape-encoding in combination with a fluorophore signal reporter [33, 34, 118].

i. Imaging particles—The majority of strategies for decoding hydrogel particles rely on 

imaging techniques. Transmission, reflection, or fluorescence microscopy is used to image 

the structural color of particles [38, 50] or their spectral signature when encoded with 

fluorophores [33, 37, 69], quantum dots [65], up-converting nanoparticles (excited in near 

IR) [81], or down-converting nanoparticles (excited in deep UV) [40]. For graphical 

encoding in particular, imaging enables capture of complex information about the particle 

shape or bit-code (extruded regions) in a single acquisition. However, examples of 

automated particle decoding based on image analysis are rare [119] and decoding is often 

manual.

For a reliable and faster decoding process, it is often necessary to orient particles before 

imaging. High aspect ratio shape-encoded or barcoded particles tend to fall flat when 

dropped and sandwiched on a glass slide, making it easier to image them in 2D. In addition, 

magnetic particles can also be oriented in 2D and aligned using an external magnetic field 

(Figure 7b) [38, 115]. Particles can also be trapped in microfluidic devices, one example is 

in a filtering chamber (Figure 7a) [34]. Another method is to trap them as a single line of 

particles in a narrow microfluidic channel (Figure 4g)[40].

ii. Scanning particles—The Doyle group developed a microfluidic scanner dedicated to 

the high-throughput analysis of barcoded hydrogel particles [51, 69] (Figure 7c) The sensing 

particles display a tablet-like shape and are typically composed of four sections: a 

graphically encoded fluorescent head with internal holes and a probe functionalized tail for 

target capture, flanked by two inert spacing regions. For analysis, particles are fed into a 

flow-focusing microfluidic channel with several contractions. Side sheath streams orient the 

tablets with the flow at the center of the channel [44]. The well-ordered particles then pass 

through a thin excitation beam generated by focusing a laser beam through a slit, and the 

fluorescence signal is integrated on the portion of particle passing through the detection 

zone. The fluorescence profile of the entire particle is automatically reconstructed from the 

multiple data points acquired per particle. The holes in the code region generate a unique 

fluorescent signature and enable determination of the particle orientation in the flow (code 

region or probe region first). Indeed, for anisotropic particles, assessing the particle 

orientation and position at the time of the analysis is often a challenge [83]. Using a similar 

principle, the company Firefly™ BioWorks developed a particle array based on 1D-

barcoded particles, that can be read using conventional benchtop cytometers [120]. Particles 
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are used in miRNA multiplex detection assays. Currently, up to 68 miRNA targets can be 

analyzed simultaneously in a sample.

Notably, scanning detection techniques can be advantageously coupled with microfluidic 

particle sorting techniques. Thus, Tumarkin et al. used a flow-cytometer coupled with a 

microfluidic sorter to sort cell-laden agarose particles in a high-throughput combinatorial 

cell co-culture screen [121]. Hydrogel sensing particles could similarly be separated and 

collected selectively, based on the assay outcome or on the particle code.

5. Multiplex biosensing on hydrogel particle arrays

In this section, we review the applications of hydrogel particles to biosensing assays 

reported in the literature to date. We focus here on the assay design and performance 

(multiplex encoding and decoding strategies are detailed in Sections 3 and 4 respectively). 

Table 2 compares the main characteristics of these nucleic acid detection assays, 

immunoassays, and enzymatic assays. Figure 8 summarizes the different strategies used for 

target capture and reporting. Notably, all assays reported so far rely on optical methods 

generally utilizing fluorescent reporters.

5.1. Nucleic acid detection

i. Oligonucleotide

Direct hybridization assay: Shape-encoded PEG-DA hydrogel arrays were used in 2004 by 

Meiring et al. for nucleic acid sensing [33]. In these assays, particles were functionalized 

using methacrylamide-modified oligonucleotides. The authors demonstrated the detection of 

three different target sequences, labeled using different fluorophores (Figure 8a). The 

authors were also able to show specific detection of single nucleotide polymorphisms 

(SNPs). Since that time, multiple other types of hydrogel particles have been used for 

nucleic acid detection.

Stop-flow lithography-synthesized hydrogel particle arrays have been used and optimized 

extensively for nucleic acid detection. In 2007, Pregibon et al. synthesized multifunctional 

graphically encoded particles that were covalently functionalized with acrylate-modified 

DNA probes [69]. The particle array was hybridized with complementary fluorescent DNA 

targets. The authors demonstrated high assay specificity and functionalized individual 

chemically anisotropic single particles with more than one DNA probe, allowing for 

multiplexing on the same particle. A 2009 study further optimized these particles and 

showed single-attomole DNA detection using two types of fluorescent markers (streptavidin 

phycoerythrin and PicoGreen®) [35].

In 2010, Lee et al. demonstrated the use of color-coded magnetic polymeric microparticles 

for use in DNA hybridization assays using a variation of flow lithography, demonstrating 

the specific detection of two different nucleotide target sequences [38]. Additionally, the 

authors showed that magnetic mixing enhances reaction kinetics significantly in the same 

reaction time period relative to running the hybridization assay on stationary particles.
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Meanwhile, Lewis et al. examined the use of shape-encoded PEG-DA hydrogel particles 

fabricated using replica-molding for oligonucleotide sensing as well [37]. Three different 

fluorescently-labeled DNA sequences were used to demonstrate specificity and sensitivity of 

the assay. The assay demonstrated a limit of detection of ~10 pM with linear signal from 10 

pM to 100 nM. Finally, the Gu group demonstrated proof-of-concept hybridization assays 

on PEG particles synthetized using microfluidics and encoded with photonic crystals [107, 

111, 122].

Alkaline dehybridization assay: Zhang et al. demonstrated the use of hydrogel particles 

generated via stop flow lithography for SNP discrimination using alkaline dehybridization 

[123]. In these assays, spatio-optically-encoded particles contained probes for two different 

allele-specific oligonucleotides that differed by a single nucleotide. The particles were 

annealed with fluorescent targets. Duplex de-hybridization was then induced via alkaline 

stimulus in the form of either a pH step function or a temporal pH gradient. Fluorescence 

microscopy allowed the characterization of signal change over time, which accordingly 

provided information about the kinetics of the dehybridization process. Using the pH 

gradient the method provided data about dehybridization rate over a large temperature range 

for targets with different SNP insertion points. This result was particularly significant for 

being able to identify SNPs closer to the end of a DNA strand. Furthermore, the authors 

applied the assay to the detection of clinically relevant SNPs in thrombotic disorders. The 

authors successfully identified the samples’ genotypes.

ii. microRNA (miRNA)—In 2011, Chapin et al. developed a novel universal labeling 

system for microRNA detection on gel particles [70]. In contrast to protein detection assays, 

in which one can employ a gel-embedded capture antibody for target capture and a detection 

antibody for target labeling, nucleic acids do not offer several epitopes. Chapin’s approach 

made use of a microRNA probe with two distinct binding regions: one for the miRNA target 

and one for the universal label. Figure 8b describes the assay workflow. Hydrogel particles 

were incubated with the sample first, and then with the universal label. When both the target 

sequence and the biotinylated universal label were hybridized on the probe, an enzymatic 

ligation step linked the universal label to the bound miRNA target. Finally, the complex was 

labeled with a fluorophore through the biotin group.

This concept of using a universal linker to label the bound targets eliminates the need for 

pre-labeling of the targets. Additionally, this approach does not introduce target-based biases 

like PCR-based approaches do. The universal linker in this study was further used to 

develop a signal amplification scheme using rolling circle amplification [92], where the 

miRNA target was bound to the probe and the amplification that occurred was based on the 

universal linker, rather than the target, once more eliminating bias. Sub-femtomolar 

concentrations of miRNA could be successfully detected in complex samples, with an 

overall detection range expanding over six orders of magnitude.

iii. mRNA—Nucleic acid laden particles were also developed for the detection of longer 

mRNA sequences. Choi et al. demonstrated that it is possible to increase overall particle 

porosity by altering the porogen in the PEG particles, allowing diffusion of larger nucleic 

acids such as mRNA while preserving the same degree of probe functionalization [45]. The 
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porosity-adjusted particles were functionalized with short probe sequences and reacted with 

capture extenders to enable capture of the mRNA target. The targets were then labeled using 

a mixture of label extenders specific to each target. All the extenders bore a similar universal 

labeling region that was biotinylated (with one or several biotins for signal amplification). 

The complexes were finally labeled using a streptavidin-conjugated fluorophore. The 

authors demonstrated up to 6.4 amol detection limit using a universal adaptor with multiple 

biotins, which was comparable to commercial bead-based assays.

5.2. Protein/antibody sensing

Given the need for multiplexed tests in the biomarker analysis field, parallel efforts have 

focused on adapting traditional immunoassays to hydrogel particles for protein or antibody 

detection. First, the traditional antibody-linked sandwich assay was successfully transferred 

to a multiplex particle-based format by immobilizing antibodies into hydrogel particles [51]. 

Recent reports explore aptamer-based strategies for innovative protein sensing on hydrogels 

[50, 71]. Multiplexed immunoassays are usually more complex to develop than nucleic acid 

sensing assays. Indeed, proteins are fragile biological entities, reagent reproducibility is low, 

and frequent cross-reactivity and non-specific binding issues are often encountered.

i. Antibody-based capture of protein

Sandwich assay: The first immunoassay on hydrogel particles, and most advanced one so 

far, was reported in 2011 by Appleyard et al. [51]. The authors developed a complete 

sandwich immunoassay for multiplexed detection of cytokines on barcoded PEGDA 

particles. The assay was successfully applied to the detection of a panel of three cytokines 

involved in immune response signaling: interleukin-2 (IL-2), interleukin-4 (IL-4) and, tumor 

necrosis factor alpha (TNFα) [72]. Three sets of particles with unique barcodes were 

functionalized with antibodies against the three proteins and were pooled in the sample. The 

captured targets were sandwiched between the immobilized probe antibody and a secondary 

biotinylated reporter antibody (Figure 8f). Streptavidin-phycoerythrin conjugates enabled 

generation of fluorescent reporter signal. Target samples were spiked in with fetal bovine 

serum (FBS) in order to mimic the complexity of biological samples. The bio-inert PEG 

hydrogel did not collect non-specific signal in these complex samples, avoiding the need for 

prior purification of the sample.

Single-plex calibration studies demonstrated a 3-log dynamic range for each target and low 

limits of detection comparable to gold standard ELISAs (8.4 pg/ml for IL-4 and down to 1.1 

and 2.1 pg ml−1 for IL-2 and TNFα; calculated as three standard deviations greater than the 

control). These results were compared to two commercial multiplex assays. First, the 

hydrogel particles clearly demonstrated an improved sensitivity compared to the reference 

planar array based-assay, without any signal amplification. Additionally, limits of detection 

ranged in the same order of magnitude as detection limits reported for the Luminex® bead-

based assay. The Luminex® assay, however, required higher number of bead replicates for 

statistical purposes and additional filtration steps.

Multiplexing studies successfully demonstrated the simultaneous detection of the three 

targets in a single sample, in both an interplex format (one probe per particle, three particle 
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types) and an intraplex format (a unique particle type with three chemical probe regions). 

Target detection was selective, quantitative recovery of the FBS spike-ins ranged within 

20% of predicted values from the calibration curves, and no significant cross-reactivity was 

observed.

Direct antibody capture: Two proof-of-concept studies demonstrated the direct detection 

of target antibodies on different antibody-functionalized hydrogel particles (Figure 8e). In 

2012, Park et al. functionalized shape-encoded PEGDA particles with mouse IgG and IgM 

antibodies [74]. Particles were engaged in a two-plex assay for the direct capture of FITC-

labeled anti-mouse IgG and IgM target antibodies. Targets were detected selectively with a 

linear correlation between the fluorescent signal and the target concentration in the tested 

range (up to 500 ng/ml; no LOD determined).

The second study featured alginate beads [65]. In 2011, Ji et al. demonstrated a proof-of-

concept immunoassay on alginate particles functionalized with anti-human IgG antibodies 

through non-covalent adsorption. A 2.2 mg ml−1 limit of detection was demonstrated for a 

FITC-labeled human IgG target, with a linear correlation between the fluorescence signal 

and the target concentration from 5 to 40 mg ml−1 (plateau at 60 mg ml−1). Particles were 

blocked with bovine serum albumin (BSA) to prevent non-specific binding, but no complex 

sample was tested. Although no multiplexed study was performed, the particles were 

encoded with a mixture of two quantum dots (λem 570 nm; 613 nm). It appeared, however, 

that the red tail of the FITC target reporter signal overlapped the 570 nm QD signature, 

hence potentially interfering with target quantification.

Finally, Yang et al. reported a strategy to detect tumor markers on encoded silica–hydrogel 

hybrid beads through a non-competitive immunoassay [124]. Labeled reported antibodies 

are incubated with the sample as well as particles functionalized with the protein of interest. 

Higher amounts of targets in the sample capture more reporter antibodies in solution, 

resulting in a decreased signal on the particles. Calibration curves were obtained for two 

markers (pure solutions of target proteins; 1 ng ml−1 to 0.1 mg ml−1).

ii. Aptamer-based capture of protein

Aptamers: Recent studies have explored aptamer–based sensing approaches for the 

detection of proteins on hydrogel particles array [50, 71]. Aptamers are short single-stranded 

nucleic acid sequences designed and engineered to bind to a target of interest with high 

affinity and selectivity. Aptamers are selected through an iterative in vitro selection process 

called SELEX (systematic evolution of ligands by exponential enrichment). With 

dissociation constants in the low-nanomolar range, low cross-reactivity, better stability and 

reproducibility, aptamers have gained increasing attention as an attractive alternative to 

antibodies as affinity agents for biosensing applications [125]. Due to the existing 

knowledge base in the field built around DNA multiplexed assays, aptamers can be readily 

modified, and integrated into microarrays, bead-based assays, as well as amplification 

schemes. The secondary structure of aptamers, though, is particularly sensitive to the assay 

conditions such as the ionic environment. As the structure is critical for target binding, assay 

optimization can be challenging.
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Sandwich assay: In 2011, Srinivas et al. reported an α-thrombin detection sandwich assay 

using an aptamer probe embedded in barcoded PEGDA particles [71]. Two strategies were 

simultaneously evaluated for the reporter molecule: a second reporter aptamer sequence or a 

specific reporter antibody (Figure 8c). Both reporters were biotinylated to enable the 

subsequent labeling of target capture events with streptavidin-phycoerythin conjugates. By 

optimizing buffers, the authors achieved limits of detection in the picomolar range 

(respectively 21.7 pM and 4.09 pM), surpassing standard non-amplified surface-based assay 

for thrombin. Additionally, an excellent assay reproducibility was observed (CV<10%). 

Using two sets of barcoded particles, the authors demonstrated the ability to simultaneously 

measure thrombin and IL-2 for both aptamer and antibody-based detection and showed 

minimal interference from background proteins such as BSA and IgG. A mixture of proteins 

with structures similar to α-thrombin was used to assess specificity with regard to thrombin 

subtype. Specificity assays were successful for the aptamer/aptamer sandwich, but failed for 

the aptamer/antibody system.

Displacement assay: In 2011 also, Ye et al. reported a displacement assay for aptamer-

based protein sensing in PEG hydrogel particles [50]. In this approach, the hydrogel particle 

was functionalized with an oligonucleotide sequence complementary to the aptamer probe. 

Particles were initially saturated with the aptamer probe. The aptamer probe was labeled 

with a fluorophore (Cy3), so that the particles were initially fluorescent. In presence of the 

target protein, however, the aptamer was released from the particle and preferentially 

interacted with the protein (Figure 8d). As a result, the particle fluorescence decreased. The 

signal decrease correlated to the concentration of target in the sample.

The authors demonstrated selectivity for the multiplex detection of three targets: adenosine, 

thrombin, and IgE. A unique combination of shape (graphical code) and structural color 

(photonic code) was used to encode particles for a 3-plex assay. Buffers were optimized to 

maximize the fluorescence shift upon target binding and minimize the cross-reactivity 

between capture/target pairs. A dose-response curve for adenosine detection demonstrated a 

dynamic range from μM to mM concentrations, along with a good reproducibility (CV (inter 

particles): 2.2%; CV (inter assays): 4.7 % (n=5)).

5.3. Enzymatic sensors

A few reports investigated the synthesis of enzyme-immobilized hydrogel microparticles 

and their ability to sense small molecule analytes such as glucose [66] (Figure 8g). For 

example, in a 2008 study by Lee et al, both glucose oxidase (GOx) and horseradish 

peroxidase were physically entrapped into PEG hydrogel particles [67]. Particles were 

pooled in samples along with Amplex® Red molecules. GOx units reacted with target 

glucose molecules, releasing hydrogen peroxide. In turn, hydrogen peroxide molecules were 

subsequently consumed by HRP to convert Amplex® Red molecules into fluorescent 

resorufin. The fluorescent product then remained in the gel in a dose-responsive manner. 

The authors examined glucose concentration over the range of 0.1 mM to 10 mM. The 

authors have also shown the ability to run similar reactions using alkaline phosphatase as the 

enzyme and FDP as the substrate. In these assays, the fluorescent product emits at a different 

wavelength, opening up the possibility of running multiplexed enzyme assays.
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Polymerized PEG droplets were also used to run glucose detection assays by different 

groups. In 2012, Kantak et al. synthesized PEG spheres that contained fluorescein 

isothiocyanate dextran and tetramethyl rhodamine isothiocyanate conjugated concanavalin 

A (TRITC-ConA), a sugar binding protein [39]. The TRITC-ConA acted as a quencher, 

reducing fluorescent signal in the presence of the fluorescein-dextran conjugate. However, 

since glucose has a higher affinity for ConA than dextran, upon introduction of glucose, the 

FITC-dextran was released from the TRITC-ConA, providing signal increase proportional to 

the amount of glucose. The authors demonstrated a linear relationship between resulting 

fluorescent intensity and glucose concentration between 1 and 10 mM. In addition to PEG, 

glucose oxidase functionalized alginate droplets have additionally been used for glucose 

detection in a study by Um et al. in 2008 [109].

6. Perspectives

The field of hydrogel particles for sensing has progressed significantly since the first 

demonstration of hydrogel substrates as scaffolds for biosensors. For example, the 

microRNA gel particle kit sold by Firefly™ Bioworks now can profile 68 microRNAs 

directly in clinical samples, such as total RNA and cell lysate. The technique is compatible 

with several commercially available cytometers, and has been used to generate biologically 

relevant data in prominent fundamental research studies [126]. Such examples of translation 

of a proof-of-concept into a fully developed product remain, however, limited. Although 

there has been tremendous development in fabrication and encoding techniques, a survey of 

the literature shows that often, platforms are lacking in development of companion 

technologies to enable analysis of particles after assay with sufficient throughput or 

automated solutions. Additionally, particle performance has not always been gauged in real 

clinical samples. Moreover, though many technologies have high multiplexing capacities in 

theory, usually only 2–3 targets were measured at once, which may not be representative of 

a real clinical setting. For this field to continue advancing, it is necessary to take other 

reported innovative advances in gel particle synthesis and enable their clinical integration 

forward from current proof-of-concept applications. Given the clearly high potential of 

hydrogel particle arrays for biomolecule quantification, these benchmarks should be a 

priority in assay design and optimization.

Furthermore, the majority of the work discussed in this review used fluorescence-based 

detection methods for target quantification. However, it is also possible to use label-free 

sensing on gel particles as shown in by the Gu group [122, 127]. In future work, it should be 

also possible to integrate other types of label-free sensing methods with hydrogel particles or 

to leverage the potential of stimuli-responsive gels for sensing [128]. A recent paper 

reported the use of temperature-responsive poly(N-isopropylacrylamide) particles in 

conjunction with an electrochemical luminescence amplification method [129]. Hydrogel 

microlenses were fabricated from poly(N-isopropylacrylamide-co-acrylic acid (pNIPAAM) 

for label-free sensing using differential interference constrast imaging [130], and microlens 

particles were produced using stop-flow lithography [131]. Combined with detection 

techniques and biomolecule immobilization strategies, these novel chemistries could open 

new avenues for target detection on gel particle arrays.
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Another application of stimuli-responsive pNIPAAM gel particles is protein or analyte 

concentration using “high-affinity baits” embedded in the gel matrix [132, 133]. The “bait” 

can be a charged molecule or a functional group that encourages proteins to enter the gel 

matrix. The defined gel pore size enables to control the size of target molecules that diffuse 

in, hence selecting proteins of only a certain size. The same concept of bait molecule is used 

in pull-down assays on agarose gel beads, in order to study physical interactions between 

two or more proteins (Thermo Fisher Scientific [134]). The agarose gel is pre-functionalized 

with an affinity ligand which can later capture a tagged protein as interest. That protein is 

used as a bait to capture interacting proteins in biological samples. Interacting complexes 

can be eluted and analyzed. On a different note, biological gels composed of DNA or 

proteins are interesting for sensing applications. Bulk studies using DNA-based aptamer gels 

or single-stranded DNA gels that can be structurally switched have yielded promising results 

for sensing of proteins [135, 136]. These concepts truly take advantage of the various 

advantages of tunable hydrogels and could be translated to a particle array format in future 

work.

Looking forward, we foresee significant opportunity for single cell sensing using hydrogel 

microparticles. Single cell characterization is of notable recent interest due to 

heterogeneities in cell populations, implying that that measuring analytes on a bulk scale 

from cell cultures or from cell lysates may not provide a full picture of cell behavior in 

various diseases or settings. Rather, looking at single cell secretion tendencies or response to 

stimuli would lead to better understanding of biological processes that accounts for intrinsic 

population variation [137]. However, such studies require the analysis of up to thousands of 

cells to generate statistically significant data. Thus far, microfluidic technologies appear as a 

promising technology for single-cell analysis, but these endeavors have required significant 

fluidic optimization and are still being developed [138]. For example, it is now possible to 

achieve encapsulation of a single cell per droplet using droplet-based microfluidics [139]. 

Alternatively, others have encapsulated single cells in microwells and analyzed secretion of 

proteins over time [140]. There has also been a parallel effort towards the creation of novel 

device geometries for high throughput single-cell analysis [141, 142].

We expect that hydrogel particles could additionally be a valuable and particularly unique 

tool for single-cell encapsulation and subsequent analyte profiling, and could be interfaced 

with some of the technologies mentioned above. Importantly, the hydrogel chemistries 

discussed in this review are biocompatible and non-fouling and can be readily 

functionalized. In contrast to water droplets, the gels themselves could be functionalized 

with probe molecules to capture single-cell secreted analytes. Significant effort has been 

devoted to developing strategies for immobilization of cells and creation of co-cultures in 

three-dimensional hydrogel scaffolds and even particles [7, 87, 143–145]. For example, 

PEGDA beads were recently synthesized using droplet microfluidics and used to create 

micro-cultures of liver tissue [146]. Other droplet-based systems were able to successfully 

trap cells into alginate or agarose gel microparticles in proof-of-concept work [62, 121, 147–

149]. Flow lithography was used to capture cells inside PEG microparticles [150], and to 

create free-flowing cell-containing complex microcarriers [97]. Although several groups 

have indeed begun to investigate fabrication techniques for single-cell encapsulation, 
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analytical measurements have not yet been made on such hydrogel arrays. Development of 

gel particles for single-cell sensing will be very promising in future applications.
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Highlights

• As hydrophilic, biofriendly, and highly tunable materials, hydrogels are ideal 

candidates for biosensing applications.

• Engineered and functionalized PEG and alginate hydrogels have been developed 

for bioassays.

• Lithography processes and droplet---based microfluidic techniques enable 

generation of libraries of encoded particles for multiplexed sensing.

• Strategies for nucleic acid and protein detection assays on hydrogel particles are 

discussed.
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Figure 1. From microarrays to gel particle arrays
Cartoon depiction of technology advancements that led to creation of hydrogel particle 

arrays. Spots on microarrays were first translated into hydrogel spots functionalized with 

biological probes. Techniques were then established to fabricate free-floating hydrogel 

particles that were similarly functionalized and could be suspended in solution for assays.
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Figure 2. Examples of commonly used chemistries to construct hydrogel particles
(A) PEG-DA subunit, alginate subunit and chitosan (which has been blended into PEG 

particles); (B) Examples of biomolecule functionalization to enable covalent incorporation 

into hydrogel meshes including acrydite modified DNA and attaching acrylated linkers 

using amine chemistry on proteins.
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Figure 3. Characterization of hydrogel particles
(A) PEGDA particle swelling changes depending on starting molecular weight of PEG 

chains. Reproduced from [67]. Copyright 2008 Springer. (B) Confocal z-scan images reveal 

that DNA target hybridization profiles depend on crosslinking density of particles 

Reproduced from [37]. Copyright 2010 ACS. (C) Systematic characterization of encoded gel 

particles show that increasing PEG-DA in precursor solution leads to greater 

functionalization efficiency but limits penetration of larger DNA molecules. Penetration 

ability also depends on size of labeling analyte. Reproduced from [35]. Copyright 2009 

ACS. (D) Comparison of porogens in fabrication of gel particle arrays shows that PEG600 

leads to the larger pore size required for mRNA detection in comparison to use of PEG200. 

Use of smaller targets confirms that functionalization efficiency of probe is not 

compromised by using PEG600 as a porogen. Reproduced from [45]. Copyright 2012 ACS.
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Figure 4. Overview of strategies for particle encoding
Shape encoding: Particles polymerized using contact lithography (A) for DNA assay 

(Reproduced from [33]. Copyright 2004 American Chemical Society) and (B) for enzyme 

assay (Reproduced from [67]. Copyright 2008 Springer). (C) Particles doped with photonic 

crystals. Reproduced from [50]. Copyright 2011 RSC. (D) Particles fabricated via replica 

molding. Reproduced from [37]. Copyright 2012 ACS. Graphical encoding: Particles 

polymerized using flow-lithography with (E) 2D-barcode (Reproduced from [69]. Copyright 

2007 AAAS), (F) 1D-barcode (Reproduced from [71]. Copyright 2004 American Chemical 

Society) and (G) color-barcode (Reproduced from [38]. Copyright 2010 NPG). Spectral 
encoding: (H) Optical barcodes using upconverting nanocrystals. Reproduced from [81]. 

Copyright 2014 NPG. (I) PEGDA spheres encapsulating downconverting nanocrystals. 

Reproduced from [40]. Copyright 2012 RSC. (J) Quantum-dot tagged alginate 

microparticles. Reproduced from [65]. Copyright 2011 RSC. (K) Janus alginate 

microparticles encapsulating liposomes. Reproduced from [55]. Copyright 2012 ACS.
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Figure 5. Photolithography methods for particle synthesis
(A) Contact lithography: a photomask is placed in direct contact with monomer solution. (B) 

Flow lithography: photomask designs are projected onto streams inside microchannels. (C) 

Replica molding: features created using soft lithography are used to impart designs onto soft 

hydrogel particles.
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Figure 6. Droplet and Centrifugal force- based approached for particle synthesis
(A) Fabrication of PEG microbeads using T-junction geometry: droplets of monomer are 

formed at the T-junction and are crosslinked with UV exposure. Reproduced from [39]. 

Copyright 2012 AIP. (B) Fabrication of alginate microparticles using a combination of flow-

focusing and T-junction geometries in a microfluidic device: gelation occurs in a fusion 

chamber and QD-doping is visible under fluorescence. Reproduced from [65]. Copyright 

2011 RSC. (C) Centrifugal synthesis of alginate microspheres using multibarrel capillaries: 

alginate microdroplets fall into a solution of CaCl2 and gel upon contacting the solution. 

Reproduced from [54]. Copyright 2012 Wiley).
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Figure 7. Particle processing techniques
(A) Fabrication of PDMS microposts inside microfluidic device to retain gel particles 

through rinsing and assay steps. Reproduced adapted from [34]. Copyright 2008 Springer. 

(B) Use of magnetic fields to manipulate particles that are doped with magnetic entities: 

direction of field can be exploited to either make particles align along an axis or 

continuously rotate in solution. Reproduced from [38]. Copyright 2010 NPG. (C) 

Microfluidic cytometer used to decode and analyze graphically encoded gel microparticles: 

reading throughput is up to 50 particles/second; sheath flows and sharp contractions in the 

device lead to alignment of particles into single file as they cross the detector. Reproduced 

from [51]. Copyright 2011 NPG.
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Figure 8. Bioassays on hydrogel particles
Various methodologies used to functionalize gel particles with biological entities and 

quantitate analytes in solution reported in the literature: A [33, 35, 37, 38, 45, 69, 107, 108, 

111], B [70, 92], C [71], D [50], E [65, 74], F [51, 72], G [66, 67, 109]. Three classes of 

molecules that have been detected using gel particle arrays: oligonucleotides (using 

hybridization and/or ligation labeling techniques), proteins or antibodies (using sandwich or 

competition assays), and are small molecules (using enzymatic sensors).
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