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Abstract

Data scientists go through an iterative process when building machine learning mod-
els. This process includes operations like feature selection, cross validation, model
fitting, and evaluation, which are repeated until a sufficiently accurate model is pro-
duced. This thesis describes ModelDB Server and the ModelDB Spark Client, which
record operations as the data scientist performs them, stores the operations and
models in a central database, and exposes an API for gleaning information from the
operations and models. ModelDB Server is library agnostic and it can serve as a
foundation for other applications. ModelDB Spark Client is a library for the Apache
Spark ML machine learning library that lets the data scientist log their operations and
models with minimal code changes. ModelDB Server and Spark Client have low time
and space overhead for large training dataset sizes and the overhead is independent
of the dataset size.
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Chapter 1

Introduction

1.1 The Model Building Process

Machine learning models have been used to solve problems in a large number of

domains. They can be used to recommend movies [22], classify tumors as benign

or malignant [23], recognize faces [29], and more. Building these highly predictive

machine learning models, however, is not easy.

A data scientist engaged in the model building process goes through many cycles

of experimentation. For example, in a single cycle, a data scientist may perform the

following steps:

1. Apply preprocessing operations to the data.

2. Split the data into train and test sets.

3. Select a model type and optimization criterion for training.

4. Define a hyperparameter search grid for the model.

5. Use cross validation to evaluate hyperparameter configurations and select a

promising model.

6. Evaluate the model on the test set.
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Over many cycles, the data scientist will create and evaluate many models, apply

various preprocessing pipelines, and try numerous feature sets and hyperparameter

configurations. Currently, recording the operations performed in these cycles re-

quires a lot of manual effort. The data scientist must write their intermediate data

files, models, evaluation metrics, and preprocessing code to different files. They may

invent some ad-hoc directory layout and naming conventions to organize this infor-

mation [20]. Even if the data scientist diligently records all their cycles, it is not easy

for them to glean information from their recorded data without writing some custom

scripts.

Recording information about the model building process can help the data scientist

make better decisions on improving model performance. Comparing hyperparameters

and feature sets may provide insight into why two models differ in performance.

Examining the most important features may highlight what parts of the dataset are

most useful for prediction. Tracing a model’s lineage can show what preprocessing

steps were most effective. Storing evaluation metrics for models can help the data

scientist focus on only the highest quality models.

Recording information about the model building process can answer some useful

questions, but currently it is difficult and time-consuming to do.

1.2 ModelDB Server and ModelDB Spark Client

This challenge of recording, storing, and learning from the model building process is

precisely the problem that ModelDB Server and ModelDB Spark Client aim to solve.

ModelDB Spark Client is a lightweight library for Apache Spark’s machine learning

library (Spark.ML) that allows the user to collect information about their machine

learning operations with minimal changes to their code.

The Spark Client sends the information it collects to ModelDB Server, which

stores the operations and models in a centralized database and the serialized models

in its filesystem.

The abstractions used in ModelDB Server are library agnostic. This means Mod-
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elDB Server and its database schema are not tied to any particular machine learning

library, making it possible to develop clients for other popular machine learning li-

braries like Scikit-learn for Python.

ModelDB Server also exposes an API that allows the user to glean information

about their operations and models. This allows users to compare models, find similar

models, rank models, fetch the steps that produced a model, and more.

While ModelDB Server has functionality for storing and extracting information

from all kinds of models, it stores extra information and provides richer APIs for lo-

gistic regression, linear regression, decision tree, random forest, and gradient boosted

tree models.

Concretely, this thesis makes the following contributions:

1. A set of library-agnostic abstractions that can be used to represent a wide range

of machine learning operations and models.

2. A number of algorithms that can be applied on the above abstractions to gain

insight into the model building process.

3. A working system that can both store data about machine learning operations

and models (especially linear and tree models) as well as extract useful infor-

mation from this data.

4. A working client library for Spark ML that can collect information about various

machine learning operations and models with minimal required changes to a

data scientist’s code.

For the rest of this paper, ModelDB Server and the Spark Client will be referred

to collectively as ModelDB S+C.

1.3 Usage Scenario

To motivate why ModelDB S+C would be useful, consider the usage scenario de-

scribed below.
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Data scientist Alice is trying to build a model that can predict the click through

rate of an advertisement based on various features of the advertisement (e.g. target

demographic, color scheme). She uses Spark and ModelDB S+C. Alice first applies

various preprocessing steps to her data, which are recorded and stored in ModelDB

Server. At one point, she realizes that there is a bug in one of her dataset’s columns,

so she uses ModelDB Server’s API to determine all the operations she has applied

to her dataset. With this information, she realizes she forgot a preprocessing step,

so she makes sure to apply it. Next, Alice trains a few models on the dataset and

computes various evaluation metrics on them. Using ModelDB Server’s API, she

can rank these models along various metrics and identify which one performed best

overall. Alice selects the best model and uses ModelDB Server’s API to rank its

features by importance. She sees that it is one of the few models she created that

uses the "color scheme" feature, so she suspects that this feature may be important.

So, Alice uses ModelDB S+C’s annotation API and annotates the model with the text

"Model works really well, I think the color scheme feature is important for accurate

prediction" so that her colleagues will be informed if they later train similar models.

Alice trains a new model and finds that its performance is worse. To debug the issue,

she uses ModelDB Server’s API to compare the model to the best one she has trained

so far. She sees that there’s a difference in the number of iterations the models were

trained for. Alice trains the new model for a greater number of iterations and finds

that the performance of the model has greatly improved. Happy with the results, she

uses ModelDB’s visualization tool (part of the overall ModelDB system, it is built on

ModelDB Server) to graphically view all the operations she performed so that she can

refer to it as she writes about her process and shares her results with her colleagues.

Later, data scientist Bob comes along and is also looking for a system to predict

ad click through rate. He uses ModelDB Server’s API to find all the models that

descended from the ads dataset. He uses ModelDB Server’s API to group these

models based on their problem type, and he focuses on the ones that were used for

predicting click through rate. Then, he uses ModelDB Server’s API to rank these

models and find the best performing model. The best performing model turns out

22



to be one that would be difficult to scale for Bob’s use case, so he uses ModelDB

Server’s API to find a similar model to the best one. This yields Alice’s model, which

is similar in performance, but much easier to scale. ModelDB S+C stores serialized

models, so Bob loads Alice’s model and uses it to make a few predictions. Happy

with the results, Bob decides to evaluate the model on the latest installment of the

ads dataset. However, he doesn’t know how to preprocess the data. Fortunately, Bob

is able to use ModelDB Server’s API to extract the preprocessing pipeline that was

applied to the model’s original dataset, and he loads each of the data preprocessors

and preprocesses his data. Then, he feeds in his dataset and evaluates the model.

Happy with its performance, he decides to use it in his system.

1.4 Outline of this Thesis

Chapter 2 covers related work. It first discusses machine learning in general, exposing

the key concepts that are relevant in the model building process. The discussion then

shifts to linear and tree models in particular, because ModelDB S+C has special

support for these kinds of models. Next, Spark and Spark ML are briefly described.

The chapter then proceeds to discuss popular machine learning libraries and their

abstractions and concludes by discussing other machine learning support systems.

Chapter 3 covers the abstractions used in ModelDB S+C. It begins with a dis-

cussion of Transformer, TransformerSpec, and DataFrame, which are the primitives

that are used to create the other abstractions. Next, the chapter introduces the Syn-

cable Event abstraction, which represents a machine learning operation that can be

logged. Then, some of the simple Syncable Events, like FitEvent, which represents

the fitting of a model, are described. Next, more complicated Syncable Events, like

PipelineEvent are discussed. The chapter then moves on to discuss the abstractions

for representing linear and tree models. Finally, the ModelDB Syncer, a client side

abstraction for sending events to ModelDB Server, is discussed.

Chapter 4 covers algorithms used in ModelDB S+C. It begins with storage algo-

rithms that capture the complexities involved in storing and connecting the Syncable
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Events. The next topic is ancestry algorithms, which operate on the ancestry forest

of DataFrames. The chapter then talks about algorithms that operate on the feature

sets of models and algorithms that compare, rank, and group models. Finally, the

chapter discusses algorithms for linear models and tree models.

Chapter 5 covers implementation. It starts with an overall view of the system,

including ModelDB Server, the database, the model filesystem, Spark, and more.

Then, attention shifts to an outline of ModelDB Server’s implementation. Next, the

chapter discusses the Spark Client’s implementation. The chapter concludes with a

discussion of how applications can be built on top of ModelDB Server.

Chapter 6 is the evaluation. It first describes an experiment run to measure the

time and space overhead of collecting operations and models from Spark and recording

them in ModelDB Server. The chapter then describes an experiment to measure the

time taken to run some of the more complicated API methods exposed by ModelDB

Server. The chapter then considers real machine learning workflows, and examines

how well ModelDB S+C is able to capture the operations performed. Finally, the

chapter discusses potential performance improvements.

Chapter 7 describes the role of ModelDB S+C in ModelDB, a larger system that

includes other components like a client library for Scikit-learn, a command line toolkit,

a prediction store, and a visualization application.

Chapter 8 covers potential future work that could be done on ModelDB S+C.

Chapter 9 concludes the thesis.
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Chapter 2

Related Work

2.1 Machine Learning

There are many classes of problems that machine learning can be used to solve, such

as the following [3]:

∙ Supervised Learning: Predict a real valued output (regression) or select one

of 𝐶 predefined categorical outputs (classification) for a given input vector. This

also includes problems like anomaly detection, ranking, and regression.

∙ Unsupervised Learning: Find structure or regularity in a given set of input

vectors. This includes problems like density estimation and clustering.

∙ Reinforcement Learning: Develop a policy that allows an agent to observe

the state of its environment and take the actions that will achieve a large cu-

mulative reward in the long run [28].

ModelDB S+C can store operations and models for supervised and unsupervised

learning problems. Reinforcement learning, however, is out of scope for this thesis.

For a supervised learning problem, suppose there is a dataset 𝒟 that consists of

𝑛 pairs of (x(𝑖), 𝑦(𝑖)). There is a pair for each 𝑖 ∈ {1...𝑛}. x(𝑖) is a 𝑝-dimensional

feature vector that decribes the 𝑖𝑡ℎ example. So, x(𝑖) ∈ R𝑝. 𝑦(𝑖) is either the class

label associated with the 𝑖𝑡ℎ example or the regression target for that example. That
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is, 𝑦(𝑖) ∈ {1...𝐶} for classification and 𝑦(𝑖) ∈ R for regression. The x(𝑖) vectors can

also be expressed as a 𝑛× 𝑝 matrix X.

A machine learning model is a function 𝑓(x;𝜃) where 𝜃 is a vector of model

parameters (e.g. the weights of a linear regression model or the encoded splits of a

decision tree model). This function accepts an input vector x ∈ R𝑝 and produces a

real output (for regression) or probability of being in a specific class (for classification).

When training a model, it is useful to split the dataset 𝒟 into a training set 𝒟𝑡𝑟𝑎𝑖𝑛

and testing set 𝒟𝑡𝑒𝑠𝑡. This ensures that the model is evaluated on data it has not seen

before. An objective function 𝐽(𝜃,𝒟𝑡𝑟𝑎𝑖𝑛) is defined and 𝜃 is chosen to maximize (or

minimize, depending on the formulation) the objective function.

Machine learning also requires some hyperparameters (e.g. maximum depth of

decision tree, regularization constant) to be set in order to guide the training of the

model. One way to pick values for the hyperparameters is to use a validation set.

That is, the dataset 𝒟 is broken into three pieces, 𝒟𝑡𝑟𝑎𝑖𝑛, 𝒟𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛, and 𝒟𝑡𝑒𝑠𝑡. For

each hyperparameter configuration, a model is trained on 𝒟𝑡𝑟𝑎𝑖𝑛. Then, the model is

evaluated on 𝒟𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛. Then, the chosen hyperparameter configuration is the one

that yielded the model that performed best on the validation set. Using a technique

called cross validation can make better use of the data. In 𝑘-fold cross validation,

𝒟𝑡𝑟𝑎𝑖𝑛 is broken into 𝑘 pieces (or folds) of roughly equal size. Then, for a given hyper-

parameter configuration, a total of 𝑘 models are trained, each trained on all but one

of the folds. Each model is evaluated on the fold that was left out of its training, and

the resulting evaluation metrics are aggregated (e.g. averaged) to produce the evalua-

tion metric for the hyperparameter configuration. The hyperparameter configuration

with the largest evaluation metric is chosen as the best hyperparameter configuration.

Then, a final model is trained on the entire 𝒟𝑡𝑟𝑎𝑖𝑛 and is then evaluated on 𝒟𝑡𝑒𝑠𝑡 [12].

While the above concepts are not exhaustive, they provide an overview of machine

learning that is sufficient to understand the model building process and ModelDB

S+C.
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2.2 Linear and Tree Models

ModelDB S+C has special support for linear regression, logistic regression, decision

tree, random forest, and gradient boosted tree models. Therefore, it is worth dis-

cussing these models briefly.

A linear regression model is a function 𝑓(x;𝜃) = 𝜃𝑇x, where 𝜃 ∈ R𝑝. Requiring

that all feature vectors have an first entry of 1 allows the model to incorporate an

intercept term.

A logistic regression model is not actually used for regression, it is used for binary

(𝐶 = 2) classification. Under appropriate assumptions, the logistic regression model

aims to predict the likelihood that a given input feature vector belongs to class 1.

Concretely, the logistic regression function is: 𝑓(x;𝜃) = exp𝜃𝑇x
1+exp𝜃𝑇x . Its output lies

between 0 and 1.

A decision tree model partitions the input space into non-overlapping regions,

where all points in the same region are assigned the same value. This value could be

a class label in the case of classification or a real value in the case of regression. For

a given input vector, the decision tree considers a different feature at each internal

node. The input vector is forwarded to a child node based on the value of the feature.

This child node, if it is an internal node, then considers another feature and performs

the same process. Eventually, the input vector arrives at a leaf node. Each leaf node

corresponds to a region of the input space, and thus has an associated value (i.e. class

label or real number), which is taken to be the prediction for the input vector. An

illustration of this is shown in Figure 2-1.

Random forest models and gradient boosted tree models are both ensembles of

decision trees. They just differ in how they are trained and applied. A random

forest model trains many trees in parallel, where each tree is trained on a different

bootstrapped sample of the original dataset and where each split is only allowed to

consider a subset of the features. A gradient boosted tree model trains decision trees

iteratively, where each successive decision tree learns to correct the mistakes of the

previous trees. Like decision trees, random forest and gradient boosted tree models
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Figure 2-1: This is a decision tree model that could be used to predict whether the
weather will be snowy (output 1), rainy (output 2), or neither (output 3) by looking
at the cloud cover and temperature. The tree first checks if the cloud cover is high. If
not, then it predicts there will be neither rain nor snow. Otherwise, the tree checks if
the temperature is below 0. If so, then it predicts snow. Otherwise, it predicts rain.

can be used for both classification and regression. [17]

These are not the only linear and tree models that are used in practice, but

they are models that are supported in Spark.ML. Therefore, ModelDB S+C provides

additional functionalty for the aforementioned models.

2.3 Spark.ML

Apache Spark [32] is a cluster computing engine that efficiently performs distributed

computation on data stored in-memory on many different machines. It is built around

an abstraction called the Resilient Distributed Dataset (RDD). An RDD represents

a dataset, its lineage, and its partitioning. By tracking a dataset’s lineage, an RDD

allows the dataset to be recreated if it is lost, thus providing fault tolerance. By track-

ing the partitioning and lazily performing operations, Spark uses RDDs to schedule

operations intelligently and pipeline them for efficiency.

Spark includes a number of libraries, two of which are relevant for this thesis.
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The first is Spark SQL, which builds an abstraction called a DataFrame on top of

the RDD abstraction. A DataFrame is simply a table of data with named, typed

columns. The second library is Spark.ML, which lets users build machine learning

models using Spark. Spark.ML lets the user create Transformers that take an input

DataFrame and produce an output DataFrame. It lets users use Estimators, which

accept hyperparameters and a DataFrame and produce a resulting model, which

is simply a Transformer. Finally, Spark.ML provides a number of other classes to

support common model building tasks like cross validation and making preprocessing

pipelines.

ModelDB S+C is built on three primitives: Transformer, DataFrame, and Trans-

formerSpec, which are all inspired by Spark SQL and Spark.ML. Transformer and

DataFrame match their Spark counterparts, but unlike a Spark Estimator, a Trans-

formerSpec simply describes how to create a model, rather than containing the logic

for actually training the model. ModelDB S+C does not train models, so there is no

need for it to have model training logic.

The three primitives above, when coupled with ModelDB S+C’s Syncable Event

abstraction, can express a wide range of model building operations.

The ModelDB Spark Client is a library designed for Spark.ML. It allows the user

to use their existing Spark.ML code, and with a few minor changes, store all their

operations and models in ModelDB Server.

2.4 Machine Learning Libraries

Since ModelDB Server aims to be library agnostic, it is worth looking at some other

popular machine learning libraries and understanding their abstractions for the model

building process.

2.4.1 MLI

MLI [27] is an API for distributed machine learning. It includes an MLTable abstrac-

tion that is very similar to the DataFrame abstraction in ModelDB S+C. MLI in-
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cludes two other tabular abstractions, the LocalMatrix and MLNumericTable, which

are more restrictive forms of the MLTable. MLNumericTable and LocalMatrix make

computation easier, but they do not add anything to the expressive power of MLI.

MLI’s Optimizer and Algorithm abstractions help specify the logic for training

a model. However, as stated before, ModelDB S+C does not perform any training

of models and thus these abstractions are not important in the context of ModelDB

S+C. That being said, the user can store information about the algorithms and

optimizer used to train a model in the hyperparameters of the model’s associated

TransformerSpec.

MLI’s Model abstraction maps to the Transformer abstraction in ModelDB S+C.

There are two key differences between these abstractions. First, a Transformer is more

general than a Model; it can represent data preprocessors as well as models. Second,

a Model stores the logic for making predictions while a Transformer does not. This is

because ModelDB S+C does not aim to make predictions, just to store and analyze

the model building process. However, the user is able to store serialized models in

ModelDB S+C, which can later be deserialized and used to make predictions.

2.4.2 Scikit-learn

Scikit-learn [7] is a machine learning library for Python. It expects data to be given

as matrices (two dimensional arrays in the numpy Python library) and DataFrames

(from the Python Pandas library). Both of these abstractions map nicely to ModelDB

S+C’s DataFrame. A matrix can be thought of as a DataFrame where all columns

are numeric and where the column names are ignored.

Scikit-learn includes the concept of an Estimator, which contains logic for training

a model and stores the hyperparameters. This maps well to ModelDB S+C’s Trans-

formerSpec. The logic for training the model is not necessary for ModelDB S+C.

Scikit-learn also includes Transformer and Predictor concepts. The former is almost

identical to ModelDB S+C’s Transformer abstraction while the latter is simply a

more restrictive kind of Transformer.

Finally, Scikit-learn includes abstractions for cross validation and pipelines, much
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like Spark.ML does. Both of these model building tasks are represented in ModelDB

S+C as Syncable Events.

2.4.3 Weka

Weka [16] is a machine learning toolkit that includes a user interface targeted for non-

expert users. It represents data as tables, which is very similar to ModelDB S+C’s

DataFrame. However, Weka does not include separate abstractions for describing

a model and describing the fitting of a model. Instead, it combines them together

in an abstraction called a Scheme. Thus, ModelDB S+C’s TransformerSpec and

Transformer abstraction together reflect the same information as a Weka Scheme.

Finally, Weka includes pre-processing and post-processing utilities which map well to

ModelDB S+C’s Transformer abstraction.

2.4.4 Pylearn 2

Pylearn 2 [13] is a machine learning library geared towards researchers. It includes the

concept of a Dataset, Model, and TrainingAlgorithm, which are analogous to Mod-

elDB S+C’s concepts of a DataFrame, Transformer, and TransformerSpec. ModelDB

S+C’s Transformer abstraction is more general than a Model because it can capture

both models as well as data preprocessors. Pylearn 2 also includes abstractions such

as Cost and TerminationCriterion. Since ModelDB S+C does not concern itself with

the details of training models, it has no corresponding abstractions and instead allows

the data scientist to specify cost and termination criterion as hyperparameters in a

TransformerSpec.

2.4.5 Tensorflow

Tensorflow [1] is machine learning library that allows users to specify computation

graphs, which is especially useful for training neural network models. It represents

data in the form of a Tensor. This is actually more general than the DataFrame

concept in ModelDB S+C. However, using a tensor abstraction in ModelDB S+C
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may add a good deal of complexity to the other abstractions without enabling a great

deal of new functionality.

Tensorflow represents data in the form of a computation graph, where nodes

called variables use operations along edges to send tensors through the graph. Mod-

elDB S+C stores a graph, specified by the TransformEvents, where the nodes are

DataFrames and the edges are Transformers. Tensorflow’s computation graph is use-

ful for performing efficient training of models. However, since ModelDB S+C does

not actually do any training of models and instead just captures operations like trans-

formations and model-fitting, its graph is different than TensorFlow’s. Additionally,

Tensorflow requires the user to specifiy their computation graph up-front in order for

the library to determine how to train the model. ModelDB S+C, on the other hand,

builds up its graph over time as the user performs operations.

2.4.6 Summary

Thus, ModelDB S+C’s abstractions seem to be general enough that there are analogs

in a number of other machine learning libraries. Of the examples above, Tensorflow

is the only one with a significantly different set of abstractions than ModelDB S+C.

2.5 Model Building Support Systems

ModelDB S+C does not actually train any machine learning models and it does not

make any predictions. Rather, it collects, stores, and analyzes data about the model

building process. In this way, ModelDB S+C supports the process of model building

rather than performing the process itself. This section describes other systems that

support the model building process.

2.5.1 ModelHub

ModelHub [26] is similar to the overall ModelDB system in that it also aims to provide

a suite of systems like model version control, a command line toolkit, and a model
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exploration API, to support the model building process. ModelHub focuses on deep

learning and provides specialized tools for that domain, however, while ModelDB is

aimed at machine learning models in general. Additionally, while ModelHub tracks

changes made to models, it does not track transformations made to datasets like

ModelDB S+C does. Finally, ModelHub does not describe any client libraries or ab-

stractions that allow collecting data about the data scientist’s operations as they are

performed. ModelDB Spark Client, on the other hand, records a wide range of ma-

chine learning operations, like random splitting of datasets, annotating datasets, and

creating preprocessing pipelines, as the user does them and stores them in ModelDB

Server.

2.5.2 MLDB

MLDB [11] is a system that allows users to create and store machine learning models

as well as datasets in a central database and access them through a REST API.

While it supports the storage of models, it does not store operations (e.g. random

splitting, pipeline creation) that the user performs. Additionally, there are no client

libraries that can record these operations behind the scenes and send them to the

server with minimal user involvement. Finally, MLDB does not offer an API for

querying operations and gleaning information from them.

2.5.3 Azure ML

Microsoft’s Azure Machine Learning [5] is a cloud service that allows users to create

machine learning models with a web interface, store them in the cloud, and access

them via web service. Azure Machine Learning requires users to construct a dataflow

graph indicating their full pre-processing and model training operations before model

building happens. ModelDB S+C, on the other hand, does not ask the user to indicate

their full model building workflow beforehand, and will instead record the operations

and models as they appear. ModelDB Server focuses on storing and analyzing the

model building process and allows the user to use another library (Spark.ML in this
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thesis) for training models. Azure Machine Learning, on the other hand, requires that

the user use its model training system. Finally ModelDB Spark Client works with

a user’s existing Spark.ML code, allowing them to log their operations and models

with few code changes. Azure Machine Learning, on the other hand, requires users

to convert significant parts of their code into dataflow graphs using its proprietary

user interface.

2.5.4 Velox

Velox [10] is a system for low latency serving and management of machine learn-

ing models. While it does support storage of models, it does not store operations

performed in model building and it does not expose APIs for analyzing the model

building process.

2.5.5 MLBase

MLBase [24] is a database system with the ability to store and serve machine learning

models. It includes an optimizer that figures out a plan for training a model. Unlike

ModelDB S+C, it does not track and store the operations in the model building pro-

cess. It also requires users to specify their model building process using a declarative

language with hints for the optimizer. While this can be useful for non-experts, it

reduces the control that a user has over their model building process. ModelDB S+C

on the other hand, only requires a few minor changes to the user’s Spark.ML code in

order to store the data associated with the model building process.

2.5.6 PMML

PMML [15] is an XML-like markup language for representing machine learning mod-

els. While it can describe a wide range of machine learning models, it cannot represent

general model building operations like ModelDB Server’s database does. It is not pos-

sible to run queries on PMML either. ModelDB Server, on the other hand, exposes

an API for querying model building operations and stores operation data in a SQL
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database. PMML can, however, complement ModelDB Server because a user can

choose to store their serialized models in PMML form.

2.5.7 Longview

Longview is a predictive DBMS. It allows users to store machine learning models

in a relational database and access them via a user defined function in their queries.

Unlike ModelDB S+C, it cannot work with a user’s existing code, and instead requires

them to use Longview for all their model training. Finally, Longview does not store

machine learning operations like ModelDB Server does.
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Chapter 3

Abstractions

While Spark.ML and other machine learning libraries provide abstractions for various

machine learning concepts like cost functions and optimizers, they do not have any

abstractions that are suitable for representing the model building process.

Therefore, ModelDB S+C must develop its own set of abstractions that can rep-

resent the different operations for model building. These abstractions must be simple

so that they are easily understood and not too difficult to implement. Since Mod-

elDB Server aims to be library agnostic, they must be general enough to be applied

to a number of different machine learning libraries. Finally, since it is impossible to

anticipate all the model building operations that a user may be interested in, the

abstractions must be composable and flexible so that new abstractions can be built

from them that can represent other pieces of the model building process.

This chapter describes the abstractions in ModelDB S+C, building up from the

simplest abstractions to the higher level ones.

ModelDB S+C stores data in a SQL database (currently, a SQLite database is

used). Many of the abstractions below are represented in the SQL tables in Appendix

A. Each abstraction will be discussed with a reference to its corresponding tables, if

any. The tables are summarized in Table 3.1.
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3.1 Primitives

ModelDB S+C is built on three primitives: the DataFrame, Transformer, and Trans-

formerSpec.

3.1.1 DataFrame

A DataFrame represents a table of data. It has a number of named, typed columns

and it stores a count of rows. The schema is given in Listing 1.

The DataFrame table stores the number of rows, which is useful for understanding

the sizes of various DataFrames used in the model building process. It also indicates

its data sources, which could be a CSV in the local filesystem, a JSON file stored

on HDFS, or something else altogether. Since users may store data in a variety

of formats and locations, a DataFrame cannot make any assumptions about what

the data looks like or where it lives. The columns of a DataFrame are stored in

another table called DataFrameColumn. Each DataFrame column simply points to

its associated DataFrame and provides the name, type, and numerical index (e.g. 0

for first column, 1 for second column) of the column. Observe that ModelDB S+C

does not place any restrictions on the allowed types in a DataFrame, because this can

vary across machine learning libraries. One notable aspect of ModelDB S+C is that it

only stores metadata about a DataFrame, rather than the actual rows. The reasoning

here is that a user’s dataset could be very large, and importing it into ModelDB S+C

would be intractable. Additionally, storing the data in ModelDB S+C would limit

the user’s freedom to store data in the locations and file formats that best suit their

application. However, by storing the dataSource column for each DataFrame, the

user is given a pointer to the underlying data, which they can load with the tool of

their choice.

3.1.2 Transformer

The DataFrame abstraction describes the data involved in the model building process.

The Transformer abstraction, on the other hand, describes the operations that can be
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performed on that data. A Transformer is an object that takes an input DataFrame

and produces an output DataFrame. Its tables are shown in Listing 2.

The Transformer table is quite simple, just storing a type (e.g. OneHotEncoder,

LinearRegressionModel) and a path to the file containing the serialized Transformer.

This is again done to maximize flexibility. ModelDB S+C does not impose any

restrictions on the kinds of Transformers that can be stored, as different machine

learning libraries may store different kinds of transformers. By storing the filepath

to the serialized Transformer, the user is able to load the Transformer into their

machine learning library of choice and use it to transform data or make predictions.

Many machine learning libraries, including Spark.ML and Scikit-learn offer facilities

for serializing and deserializing Transformers. Transformers include features, which

are the columns they expect as inputs. Each feature has a name, index (in the feature

vector), and importance. Notice that a Transformer does not have to be a machine

learning model, like a logistic regression model. It can also be a data preprocessor,

like a one-hot encoder. One reasonable criticism of the Transformer table is that its

simplicity prevents the user from storing useful model parameters, like the weights

of a linear regression model, that they may want to query. This is not an issue,

however, because it is possible to create additional tables on top of Transformer

which support this information (as in the case of LinearModel and TreeModel, which

will be described later in this chapter).

3.1.3 TransformerSpec

The final primitive in ModelDB S+C is the TransformerSpec. Some Transformers,

which ModelDB S+C calls models, are created by fitting a DataFrame where the

fitting is guided by a set of hyperparameters. These hyperparameters are stored in a

TransformerSpec, whose tables are shown in Listing 3.

The TransformerSpec table is very simple, it just indicates the kind of Transformer

being specified. Each HyperParameter points to its associated TransformerSpec and

indicates the name, type, value, and bounds for the hyperparameter. The bounds may

be ignored for non-numerical hyperparameters. Notice that this allows expressing a
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wide range of hyperparameters such as the regularization parameter of a linear re-

gression model, the number of trees in a random forest, or the optimization algorithm

(e.g. stochastic gradient descent) used to train a logistic regression model.

It is worth noting that the Transformer table does not reference the Transform-

erSpec table and that the TransformerSpec table does not reference the Transformer

table. This is for two reasons. First, some Transformers can be created without

specifying any hyperparameters (e.g. a Transformer that removes all rows contain-

ing null values). Second, a user may want to create a TransformerSpec that lives

independently of any Transformer. For example, suppose that a user has defined a

set of hyperparameters to train a random forest model, and that they receive new

datasets every week. They may choose to re-use the same TransformerSpec for each

week of data. Consequently, the TransformerSpec is not tied to just one Transformer

and can even be tied to zero Transformers when it is first created. With all this

being said, there does exist a mechanism by which ModelDB S+C indicates that a

Transformer was produced from a given TransformerSpec, and that is the FitEvent,

which is introduced later in this chapter.

DataFrame, Transformer, and TransformerSpec are very simple abstractions, but

are powerful in that they can express a huge variety of datasets, models/data prepro-

cessors, and model training configurations. Equally important is the fact that they

are also present, in some capacity, in many other machine learning libraries.

3.2 Syncable Events

ModelDB S+C is designed with the assumption that most of the interesting operations

in model building can be represented as combinations of the three primitives described

in the previous section. A specific operation that occurs in the user’s model building

process is called a Syncable Event ("Syncable" because it is shared between server and

client, "Event" because it is a specific operation performed at a specific time). The

following sections describe several of these Syncable Events. Each Syncable Event

receives its own table (or few tables) in the database and Syncable Events can be
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composed together to create other events. All of the Syncable Events that ModelDB

S+C has stored are referenced in the Event table, which is shown in Listing 4.

An Event includes a type (e.g. "fit", "transform") and the ID of the event in its

corresponding table.

3.3 Core Events

The three foundational Syncable Events are TransformEvent, FitEvent, and Met-

ricEvent.

3.3.1 TransformEvent

A TransformEvent represents the creation of a new DataFrame from an old DataFrame

by applying a Transformer. This is a very general idea and can be used to represent

both data preprocessing steps and prediction-making with a model.

The TransformEvent table has the schema shown in Listing 5.

The event indicates both the old and new DataFrames, the Transformer perform-

ing the transformation, and the input and output columns. The input and output

columns could also be represented in their own tables, rather than as strings. This

may be worth doing in the future because it would more easily enable queries such

as finding the TransformEvent that produced a given column in a DataFrame.

To understand the flexibility of TransformEvent, it is worth considering a few

sample operations that it can represent. First, consider one-hot encoding. One-hot

encoding is a technique for converting categorical variables into binary vectors. If a

categorical variable with 𝑘 levels, then level 𝑙 can be indicated with a vector with

𝑘 entries where the 𝑙𝑡ℎ entry is 1 and the other entries are 0. To represent one-hot

encoding of a column, "col", we can create a Transformer of type OneHotEncoder.

Then, we can create a TransformEvent where the input column is marked as "col"

and the output column is marked as "oneHotEncodedCol". Notice, that the old and

new DataFrames in the TransformEvent only need to be logically, rather than phys-

ically, distinct. Therefore, the underlying machine learning library may actually use
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the same chunk of memory to represent data that is common to the two DataFrames.

Consider another example - making a prediction with a model. In this case, the model

can be the Transformer, the input columns are the feature names, and the output

column can contain the prediction (and perhaps there can be another column that

contains a confidence level in that prediction). As a final example, consider a trans-

formation that removes rows from a DataFrame that contain null values. The "null

remover" can be a Transformer, the input and output columns can be empty strings,

and the old and new DataFrames can have identical columns, but a differing number

of rows. Thus, TransformEvent is a very flexible abstraction that can represent a

wide range of operations.

3.3.2 FitEvent

The second core Syncable Event is the FitEvent, which represents the fitting of a

DataFrame with a TransformerSpec to produce a Transformer. It is given in Listing

6.

The FitEvent is the main abstraction that represents the building of a model. It

indicates the data used to produce the model, the specification that guided training,

and the produced model. It indicates the label columns that were used to teach the

model, the columns in which the model will output its prediction, and the type of

problem (e.g. regression, binary classification) that the model solves. Indeed, it is

possible at this point to clearly define what a model is in ModelDB S+C. A model is

a Transformer with an associated FitEvent. Notice that the feature columns are not

included because they are already stored in the Feature table.

3.3.3 MetricEvent

Thus far, the chapter has explained how ModelDB S+C represents the operations

that create data (TransformEvent) and operations that create models (FitEvent).

Another potential output of an operation is a statistic, metric, or other number that

describes or evaluates a dataset or model. For this purpose, ModelDB S+C includes
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a Syncable Event called MetricEvent. It is shown in Listing 7.

The representation is quite flexible, in that it allows metrics on datasets as well

as metrics on models. For example, consider the problem of finding a the standard

deviation of a column. This could be represented by a MetricEvent where metricType

is "standard deviation", the metricValue is the actual numeric value for the standard

deviation, the transformer is a StandardDeviationComputer (with one feature col-

umn - the column for which the standard deviation is being computed), and the df is

the DataFrame with the column for which the standard deviation is being computed.

As another example, consider the problem of evaluating a model’s prediction accu-

racy. In this case, the transformer could be the model being evaluated, the df could

be the DataFrame for which the model made predictions, the metricType could be

"accuracy", and the metricValue could be the actual accuracy score.

TransformEvent, FitEvent, and MetricEvent are the fundamental Syncable Events

in ModelDB S+C. They build on ModelDB S+C’s three primitives: DataFrame,

Transformer, and TransformerSpec. While these Syncable Events are powerful on

their own, they can also be combined together to represent higher level events.

3.4 Composite Events

ModelDB S+C includes a number of other events which combine the three core Syn-

cable Events and the three primitives. For brevity, only the most interesting events

will be discussed in this paper.

3.4.1 CrossValidationEvent

Cross validation is a model selection operation that is an integral part of the model

building process. Recall that cross validation involves considering a hyperparameter

configuration, breaking a DataFrame into pieces (folds), training a model for each

fold (it is trained on all folds except one), and evaluating a model for each fold (it

is evaluated on the fold that was left out of training). This operation is represented

using the tables shown in Listing 8.
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Figure 3-1: Diagrammatic representation of cross validation in ModelDB S+C. Green
boxes represent primitives and blue boxes represent Syncable Events. Arrows repre-
sent foreign key relationships.

Two simple tables are all that is needed to allow ModelDB S+C to store cross

validation events. They are deceptively simple because ModelDB S+C leverages

the three primitives and three core Syncable Events heavily when representing cross

validation. To illustrate, consider the diagrammatic representation of cross validation

in Figure 3-1 (only one fold has been shown to avoid making the diagram too large).

To understand Figure 3-1, it is best to start at the CrossValidationEvent. The

CrossValidationEvent points to the TransformerSpec (i.e. hyperparameter configu-

ration) that is being evaluated as well as to the full DataFrame that is being used

to train models. There is one CrossValidationFold that points to the CrossValida-

tionEvent. The fold points to the MetricEvent that contains its evaluation metric.

The MetricEvent points to the model (Transformer) that was trained when the fold

was excluded and to the validation DataFrame on which the metric was computed.

The validation DataFrame was produced from the original DataFrame using a special

Transformer that creates folds. The model for the fold was created via a FitEvent

that points to the training DataFrame for the fold. The training DataFrame for the

fold was created from the original DataFrame using the same special Transformer

that creates folds.

Thus, the complex process of cross validation can be represented with ModelDB

S+C by adding two simple tables and cleverly combining the primitives and core

Syncable Events.
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3.4.2 GridSearchCrossValidationEvent

The cross validation operation is often combined with a grid search, in which several

hyperparameter configurations are evaluated and cross validation is performed for

each one. Then, the best hyperparameter configuration (i.e. the one with the largest

average evaluation metric) is selected and used to train a model on the entire dataset.

This is a complex process, but can be easily supported in ModelDB S+C by adding

the tables shown in Listing 9.

The GridSearchCrossValidationEvent table simply stores a reference to a FitEvent

that produced the final model (a Transformer) by using the best TransformerSpec to

train on the entire original DataFrame. Then, GridCellCrossValidations are created

(one for each hyperparameter configuration that was considered) and each points to

the CrossValidationEvent for its corresponding hyperparameter configuration.

Looking back, the prefix "GridSearch" is actually a misnomer, because there is

nothing about the above abstraction that requires a grid search to be performed. The

abstraction above can represent grid search, random search, and various other model

selection strategies that consider a number of hyperparameter configurations.

3.4.3 PipelineEvent

One common practice in Spark.ML, Python Scikit-learn, and perhaps other machine

learning libraries is that of building a preprocessing pipeline. For example, con-

sider the simple preprocessing pipeline in Figure 3-2. This pipeline assumes that

the machine learning library includes Transformer objects that produce an output

DataFrame from an input DataFrame and Estimator objects that apply a Transform-

erSpec on a DataFrame to create a Transformer. Spark.ML and Python Scikit-learn

both include Transformers and Estimators. The user arranges Estimators and Trans-

formers into a chain, called a Pipeline, feeds in a DataFrame, and the result is a chain

of Transformers. This chain of Transformers, or Pipeline Model, can be used in other

parts of the program. Notice that if the final piece of the Pipeline is an Estimator

that produces a model, then the user may be able to represent their entire machine
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Figure 3-2: Creation of a preprocessing pipeline. First, the user chains together
some Transformers and Estimators (objects that can apply their TransformerSpec to
create a Transformer from a DataFrame). Next, the user feeds a DataFrame into
the pipeline. The Transformers transform their input DataFrame, produce an output
DataFrame, and pass the output on to the next step in the pipeline. The Estimators
use the input DataFrame to create a Transformer, and then they replace themselves
with this Transformer - the Transformer then transforms the input DataFrame and
passes the output to the next step.

learning system using a Pipeline Model. They can also add post-processing steps by

adding more Transformers at the end.

ModelDB S+C represents the creation of Pipelines using the table in Listing 10.

First, ModelDB S+C represents the creation of a Pipeline Model (which is a

Transformer) from a DataFrame using a FitEvent. The TransformerSpec associated

with this FitEvent can have an empty set of HyperParameters. Then, the pipeline

creation is broken into "stages". A stage is either a "transform stage" or a "fit

stage". A transform stage is a TransformEvent where a Transformer in the pipeline

transforms its input and forwards the output to the next step. A fit stage is when

an Estimator creates a Transformer by applying its TransformerSpec to its input

DataFrame. Notice that each Estimator in the user’s pipeline produces one fit stage

and one transform stage. The stages are ordered using the stageNumber, which should

be higher for later stages.

47



The transformOrFitEvent and isFit fields are used to distinguish the stage as a

transform stage or fit stage. Admittedly, this is a bit inelegant. A cleaner solution

would be the table shown in Listing 11.

In this case, every Estimator and every Transformer in the Pipeline would produce

a PipelineStage. For the Estimators, the fitStage would point to their creation of

a Transformer by applying their TransformerSpec on their input DataFrame. For

the Estimators, the transformStage would point to the transformation of their input

DataFrame into an output DataFrame using the Transformer that was created. For

a Transformer, the transformStage would be its application to the input DataFrame

to produce an output DataFrame and its fitStage would be NULL.

3.4.4 Annotation

The above events demonstrate how ModelDB S+C is able to express complex model

building operations by cleverly combining its primitives and core events. There are

more such events (e.g. RandomSplitEvent) in ModelDB S+C which are similar in

nature, but which will not be discussed here for brevity.

Another composite event of interest, however, is the Annotation, which does not

simply represent an existing model building operation, but actually enables new func-

tionality. ModelDB Spark Client allows the user to make notes for themselves and

link these notes to DataFrames, Transformers, and TransformerSpecs. This can be

done with Scala code like the following:

ModelDbSyncer.get.annotate(

"I’m getting poor performance on",

testDf1,

"with model",

model1,

"Is there a bug with this model? Should investigate tomorrow."

)

The Scala code sample above stores an Annotation in ModelDB S+C, which in-
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volves the tables in Listing 12.

An Annotation indicates the time it was created and is associated with a number of

AnnotationFragments. The AnnotationFragments are ordered using the fragmentIn-

dex column. A fragment can either contain text, a reference to a Transformer, a

reference to a DataFrame, or a reference to a TransformerSpec (in Spark.ML code,

this would correspond to an Estimator). The Scala code above would result in the

creation of five AnnotationFragments, where the first, third, and fifth store text, the

second refers to a DataFrame, and the fourth refers to a Transformer.

In hindsight, Annotation should be called AnnotationEvent in order to make it

consistent with the "Event" suffix associated with other Syncable Events.

3.5 Linear and Tree Models

While ModelDB S+C does allow the user to serialize their models to a filesystem,

the description of the abstractions so far does not allow querying of the models be-

cause the Transformer table is so simple. To make querying possible, ModelDB S+C

includes additional tables that build off the Transformer table to support storage

(and querying) of additional model data. Specifically, ModelDB S+C has tables for

linear models and tree models, which are designed to support the logistic regression,

linear regression, decision tree, gradient boosted tree, and random forest models in

Spark.ML.

3.5.1 Linear Models

Linear models are defined by their vector of weights. These weight vectors are stored

with the table in Listing 13.

A linear model is represented by a Transformer, and its weights are represented by

the associated LinearModelTerms. Each term indicates the weight (the coefficient)

and some statistics about the weight (t-statistic, standard error, and p-value). The

position of the weight in the weight vector is given by termIndex (which is 0 for an

intercept term).
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This table makes it possible to run some useful queries (e.g. build confidence

intervals aroudn the weights) and also makes it possible to develop tools to reconstruct

linear models based on the weights and the transformerType.

The actual implementation of ModelDB S+C includes a table called LinearModel,

but this is there for legacy purposes and is not actually needed (its rmse, r2, and

explainedVariance columns can be stored in MetricEvents rather than as columns).

3.5.2 Tree Models

A decision tree consists of nodes and edges (or links) between them. ModelDB S+C

represents this using the the tables in Listing 14.

Nodes indicate whether they are leaves. Leaf nodes indicate their prediction,

impurity, and the root node of the tree (unless they are the root). Internal nodes

indicate their gain, impurity, the feature they are splitting, and their root (unless

they are the root). This table could be augmented so that internal nodes also store

the splitting criterion (i.e. how to decide which child to forward an input example

to), but this is not utilized in ModelDB S+C so it is currently omitted.

The TreeLink table simply indicates a parent child relationship. Spark.ML’s deci-

sion trees are binary trees, so ModelDB S+C also assumes decision trees are binary.

However, for generalization to non-binary trees, the isLeft column could be replaced

by a childIndex column that indicates the index (0 being leftmost) of the child.

Random forests and gradient boosted trees are ensembles of decision trees, where

each tree is given some weight. In fact, a decision tree can be thought of as an

ensemble consisting of a single tree that gets all the weight. With this in mind,

ModelDB S+C defines the tables in Listing 15.

A TreeModel simply indicates the associated Transformer and the type of the

model. The model is associated with a number of trees through the TreeModelCom-

ponent, which indicates the tree’s numerical order in the overall ensemble (compo-

nentIndex), the tree’s weight, and the root node of the tree. A decision tree can be

thought of as TreeModel with a single TreeModelComponent.

While the above tables are designed for tree ensembles specifically, they could be
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extended to support ensemble models in general.

3.6 ModelDB Syncer

ModelDB Syncer is a client side abstraction for recording events and sending them

to ModelDB Server. When operations (e.g. creation of a model, splitting of a

DataFrame) are detected by the ModelDB Spark Client, a SyncableEvent object

is created and sent to a global ModelDB Syncer object. This ModelDB Syncer main-

tains an ordered buffer of Syncable Events that it periodically flushes to ModelDB

Server. Each Syncable Event is imbued with logic for converting the Spark objects it

represents into the corresponding ModelDB S+C abstraction and sending that infor-

mation to ModelDB Server. The ModelDB Syncer performs other roles as well, such

as maintaining a mapping between Spark objects and their IDs in ModelDB S+C.

ModelDB Syncer is described in greater detail in the Implementation chapter.
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Chapter 4

Algorithms

The abstractions discussed in the previous chapter are stored in SQL tables in Mod-

elDB Server’s database. This database is useful on its own because the user can query

it or build applications on top of it. Nevertheless, ModelDB Server provides a number

of algorithms that can be run on the database to glean useful information about the

model building process.

This chapter covers some of the algorithms used in ModelDB Server.

The first section discusses storage algorithms, which describe how operations are

stored in the database while respecting the constraints between events and primi-

tives. It begins by discussing the storage algorithms for the three primitives and core

Syncable Events. Then, the storage algorithms for some of the more complicated

Syncable Events, such as RandomSplitEvent, GridSearchCrossValidationEvent, and

PipelineEvent are discussed. Finally, the storage algorithms for linear and tree models

are covered.

The second section covers algorithms that operate on the DataFrame ancestry

forest, which consists of the DataFrames and the links between them, as reflected in

the TransformEvents. The section explains how the forest can be used to find the

ancestry of a given DataFrame or model, the common ancestor of two DataFrames,

and the models that derived from a given DataFrame. The section concludes by show-

ing how the forest can be used to extract machine learning pipelines from ModelDB

Server.
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The third section focuses on algorithms that operate on the feature sets of models.

It first discusses how it is possible to find the original DataFrame columns that were

used to generate the features used by a given model. Next, it explains how to find

models that use all the features in a given feature set.

The fourth section discusses algorithms that operate on multiple models. It begins

by discussing how the feature sets of two models can be compared. Next, it explains

how the DataFrame ancestry forest can be used to find a common DataFrame from

which two models are derived. Afterwards, it shows how the hyperparameters of two

models can be compared. The section concludes by explaining how models can be

ranked and how ModelDB S+C can find models similar to a given model.

The fifth section focuses on algorithms for linear and tree models. It explains how

features can be ordered by importance, how models can be compared by convergence

time, and how feature importance can be compared between models.

The final section briefly mentions some other algorithms that ModelDB S+C

provides, but which, for brevity, are not covered at length in this thesis document.

4.1 Storage Algorithms

Before discussing the algorithms that glean information about model building, it

is important to first consider the algorithms that store data in ModelDB Server’s

database. These algorithms are straightforward, but it is illustrative to see how they

store data and what tables they affect.

4.1.1 DataFrame, Transformer, and TransformerSpec

To begin, consider the algorithms for storing the three primitives: DataFrame, Trans-

former, and TransformerSpec.

When ModelDB Server is asked to store a primitive, it first checks if there is

already a primitive in the database with the same ID. If not, then ModelDB Server

stores the primitive in the corresponding table. Next, it stores any auxiliary data

(e.g. DataFrameColumns for a DataFrame, HyperParameters for a TransformerSpec)
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associated with the primitive.

4.1.2 TransformEvent, FitEvent, MetricEvent

The core Syncable Events are TransformEvent, FitEvent, and MetricEvent. They

are defined as compositions of the three primitives. Similarly, the algorithms that

store the core Syncable Events to the database utilize the storage algorithms for the

primitives.

Consider the TransformEvent. When ModelDB Server is asked to store a Trans-

formEvent, it first stores the input DataFrame, output DataFrame, and Transforer

using the corresponding storage algorithm for the primitive. Then, it performs some

processing specific to TransformEvent (e.g. sorting and de-duplicating the input and

output columns). Next, it stores an entry in TransformEvent. Finally, it stores an

entry in the Event table.

FitEvent and MetricEvent have storage algorithms that are similar in structure

to TransformEvent’s storage algorithm.

4.1.3 Annotation

In order to store an Annotation, the client sends ModelDB Server a list containing

the annotation fragments (each is a Transformer, TransformerSpec, DataFrame, or

a String). ModelDB Server first stores the primitives that the fragments refer to.

Then, it stores an entry in Annotation. Next, it stores an AnnotationFragment for

each fragment. Finally, it makes an entry in the Event table. ModelDB Server also

verifies that each fragment refers to exactly one primitive or contain a String. This

check could also potentially be done at the database level.

4.1.4 RandomSplitEvent

This is a Syncable Event which represents the random splitting of a DataFrame to

create smaller DataFrames according to a weight vector. For example, doing a random
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split of a 100-row DataFrame with weights of 0.7 and 0.3 would produce DataFrames

with row-counts of 70 and 30.

To store a RandomSplitEvent, ModelDB Server first makes an entry in a table

called RandomSplitEvent and an entry in Event. Next, it stores the input DataFrame

as well as all the output DataFrames. Then, it indicates the weight of each output

DataFrame in a table called DataFrameSplit. Finally, it stores TransformEvents to

indicate that the output DataFrames were derived from the input DataFrame (it uses

a synthetic Transformer called "RandomSplitTransformer" to reflect this operation).

Note that RandomSplitEvent demonstrates how to overcome TransformEvent’s

single-input, single-output limitation. A RandomSplitEvent has a single input and

multiple outputs.

4.1.5 PipelineEvent

Recall that PipelineEvent represents the creation of a Pipeline Model from a Pipeline.

A Pipeline is a chain of Transformers and Estimators (i.e. an object that applies

a TransformerSpec to a DataFrame in order to create a Transformer). When a

DataFrame is fed into the Pipeline, a Pipeline Model (a chain of Transformers) is

produced. The storage algorithm is shown below:
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Data: A PipelineEvent, denoted 𝑝𝑒

Store 𝑝𝑒.𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝐹 𝑖𝑡𝐸𝑣𝑒𝑛𝑡, which stores the actual FitEvent that created the

PipelineModel from the input DataFrame using a dummy Pipeline

TransformerSpec.

Sort 𝑝𝑒.𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑆𝑡𝑎𝑔𝑒𝑠 and 𝑝𝑒.𝑓𝑖𝑡𝑆𝑡𝑎𝑔𝑒𝑠 by stageNumber.

Apply the merge procedure (i.e. from merge sort) to order all the stages by

increasing stageNumber. Also require that a fit stage precede a transform

stage if they have the same stageNumber.

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑎𝑡𝑎𝐹𝑟𝑎𝑚𝑒← 𝑝𝑒.𝑖𝑛𝑝𝑢𝑡𝐷𝑎𝑡𝑎𝐹𝑟𝑎𝑚𝑒

for each 𝑠𝑡𝑎𝑔𝑒, taken in increasing stageNumber do

if 𝑠𝑡𝑎𝑔𝑒 is a fit stage then
Store a FitEvent for the stage where 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑎𝑡𝑎𝐹𝑟𝑎𝑚𝑒 is the the

input DataFrame for the FitEvent.

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑎𝑡𝑎𝐹𝑟𝑎𝑚𝑒← 𝑠𝑡𝑎𝑔𝑒.𝑖𝑛𝑝𝑢𝑡𝐷𝑎𝑡𝑎𝐹𝑟𝑎𝑚𝑒

else
Store a TransformEvent for the stage where 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑎𝑡𝑎𝐹𝑟𝑎𝑚𝑒 is the

input DataFrame for the TransformEvent.

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑎𝑡𝑎𝐹𝑟𝑎𝑚𝑒← 𝑠𝑡𝑎𝑔𝑒.𝑜𝑢𝑡𝑝𝑢𝑡𝐷𝑎𝑡𝑎𝐹𝑟𝑎𝑚𝑒

end

end

for 𝑓𝑖𝑡𝑆𝑡𝑎𝑔𝑒 in 𝑝𝑒.𝑓𝑖𝑡𝑆𝑡𝑎𝑔𝑒𝑠 do
Store an entry in the PipelineStage table.

end

for 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑆𝑡𝑎𝑔𝑒 in 𝑝𝑒.𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑆𝑡𝑎𝑔𝑒𝑠 do
Store an entry in the PipelineStage table.

end
Algorithm 1: Storage of a PipelineEvent

The key challenge in the PipelineEvent algorithm is enforcing the constraint that

the output of one pipeline stage is the input to the next pipeline stage. This is done by

processing the stages in increasing stageNumber (with fit stages put before transform

stages if they have equal stageNumbers). The 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑎𝑡𝑎𝐹𝑟𝑎𝑚𝑒 variable marks

the input into the next pipeline stage.
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4.1.6 CrossValidationEvent

Recall that a CrossValidationEvent corresponds to a single hyperparameter configu-

ration.

To store a CrossValidationEvent, ModelDB Server first stores the input DataFrame

and the TransformerSpec (i.e. the hyperparameter configuration under considera-

tion). Then, it stores an entry in the CrossValidationEvent table and an entry in the

Event table. Next, ModelDB Server iterates through each fold in cross validation and,

for each fold, it stores a FitEvent, MetricEvent, and an entry in CrossValidationFold.

ModelDB Server also enforces that the same input DataFrame is used for all the folds.

4.1.7 GridSearchCrossValidationEvent

Recall that grid search cross validation considers multiple hyperparameter configura-

tions and performs cross validation event for each one. GridSearchCrossValidation-

Event’s storage algorithm is the following. First, a FitEvent is stored that represents

the creation of the final model over all the data. Next, an entry is made into the Grid-

SearchCrossValidationEvent table and an entry is made into the Event table. Then,

all the DataFrames used for validation and all the DataFrames used for training are

stored, and a TransformEvent is logged for each to indicate that they originated from

the original input DataFrame. Next, the CrossValidationEvent storage algorithm is

run for each cross validation that was performed. ModelDB Server includes some

additional logic to ensure that the validation DataFrames and training DataFrames

are shared across the different cross validations.

4.1.8 LinearModel

Recall that ModelDB S+C can augment the Transformer table with tables to store

the weights of a linear model. To store a linear model, ModelDB Server requires

that the user indicate (via ID) an existing Transformer to augment. Next, ModelDB

Server makes an entry in the LinearModel table for the linear model. It then stores a

LinearModelTerm for each coefficient of the linear model. Next, it updates the Feature
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rows associated with the Transformer with the feature importance scores computed by

the linear model. Finally, ModelDB Server logs the history of the objective function

used for training into a table called ObjectiveFunctionHistory.

4.1.9 TreeModel

Recall that ModelDB S+C can augment the Transformer table with tables to store

ensembles of trees. In addition, recall that a decision tree model can be thought of

as an ensemble of one tree.

The storage algorithm for a tree model goes as follows. First, ModelDB Server

requires the user to indicate (via ID) an existing Transformer to augment. ModelDB

makes an entry in the TreeModel table for the tree model. Then, for each tree in

the model, ModelDB Server stores an entry in the TreeModelComponent table, then

does a breadth first search starting at the root for the tree, and for each encountered

node, it stores an entry in TreeNode and (if the node is not the root node) an entry

in TreeLink. Finally, after storing all the trees in the tree model, ModelDB Server

updates the Feature rows of the associated Transformer to indicate their feature

importance scores as computed by the tree model.

4.2 Ancestry Algorithms

Recall that a TransformEvent indicates an input DataFrame and an output DataFrame.

If each DataFrame is a node, and there is a directed edge from input DataFrame

to output DataFrame, then the TransformEvent table defines a forest over all the

DataFrames. This forest is hereafter referred to as the "DataFrame Ancestry For-

est", or ℱ . Suppose that each DataFrame, 𝑑𝑓 , in ℱ has a field 𝑑𝑓.𝑝𝑎𝑟𝑒𝑛𝑡 that points

to the DataFrame that created it and suppose that it also has a field 𝑑𝑓.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 that

points to a list of the DataFrames that it produced.

There are a number of interesting algorithms that can be run on ℱ .
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4.2.1 Ancestry of a DataFrame

The simplest algorithm is to find the ancestry of a DataFrame. That is, given a

DataFrame 𝑑𝑓 in ℱ , we follow parent pointers all the way up to a root DataFrame

(i.e. a DataFrame with an empty parent pointer). The reverse of this path is the

ancestry of a given DataFrame. This operation allows a data scientist to see how a

particular DataFrame was created and identify where potential bugs in the data may

have been introduced.

4.2.2 Ancestry of a Model

It is also possible to find the ancestry of a model. Recall that a model is simply a

Transformer with an associated FitEvent. Finding the ancestry of a model involves

looking up the DataFrame in its associated FitEvent and finding the ancestry of that

DataFrame. This allows the user to see what DataFrames contributed towards the

data used to train a model.

4.2.3 Common Ancestor of Two DataFrames

Given two DataFrames 𝑑𝑓1 and 𝑑𝑓2 in ℱ , it is possible to find the common ancestor

DataFrame (if there is one) that led to their creation. This can be useful in finding

commonalities between intermediate DataFrames (e.g. 𝑑𝑓1 is producing good results

and 𝑑𝑓2 is producing bad results - where in their lineage did they start to differ?).

Finding the common ancestor is implemented by simplying finding the ancestry of

𝑑𝑓1 and the ancestry of 𝑑𝑓2, and finding youngest DataFrame common to both the

ancestries.

4.2.4 Descendent Models of DataFrame

In addition to following parent pointers in ℱ , it is also useful to follow child pointers.

A data scientist may be interested in determining all the models that used data that

originated in a DataFrame 𝑑𝑓 . To compute this, a breadth-first search is performed
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starting at 𝑑𝑓 and following child pointers. All the DataFrames encountered in the

search are added to a list 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑒𝑛𝑡𝐷𝑓𝑠. Then, a scan is made of the FitEvent table

to find all Transformers that were created by fitting a DataFrame in 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑒𝑛𝑡𝐷𝑓𝑠.

These are the models that descended from 𝑑𝑓 .

4.2.5 Pipeline Extraction

The user may explicitly create Pipeline Models via ModelDB S+C’s PipelineEvent.

However, since Pipeline Models are simply chains of Transformers (some of which were

produced by fitting a TransformerSpec to a DataFrame), the user implictly creates

Pipeline Models as they make FitEvents and TransformEvents. ModelDB Server

offers a mechanism for extracting pipelines from ℱ . The algorithm for extracting a

pipeline is specified below.

First the user specifies the ID, 𝑚𝐼𝑑, of a model (i.e. Transformer with associated

FitEvent) that they’d like to extract a pipeline for.

Second, the FitEvent table is scanned to find the DataFrame 𝑑𝑓 that is associated

with the Transformer with ID 𝑚𝐼𝑑.

Third, the ancestry of 𝑑𝑓 is computed, and all the TransformEvents along the

chain are noted down in a list (call it 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝐸𝑣𝑒𝑛𝑡𝑠).

Fourth, the Transformer for each TransformEvent in 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝐸𝑣𝑒𝑛𝑡𝑠 is ex-

tracted and put into a list (call it 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟𝑠).

Fifth, the FitEvent table is scanned and the TransformerSpec is extracted for all

the FitEvents who have a Transformer appearing in 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟𝑠 (call the resulting

list of TransformerSpecs 𝑠𝑝𝑒𝑐𝑠).

Finally, 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟𝑠 and 𝑠𝑝𝑒𝑐𝑠 are returned to the user, sorted by the position

of their corresponding TransformEvent in the ancestry chain.

4.3 Feature Algorithms

The Feature table lists the features that are used by a model (i.e. Transformer with

associated FitEvent). There are a number of useful operations we can perform using
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this table.

4.3.1 Original Feature Set of Model

Suppose that there is a DataFrame 𝑑𝑓1 with the columns 𝑙𝑎𝑏𝑆𝑐𝑜𝑟𝑒 and ℎ𝑜𝑚𝑒𝑤𝑜𝑟𝑘𝑆𝑐𝑜𝑟𝑒.

Then, suppose that 𝑑𝑓1 is transformed to produce 𝑑𝑓2, which contains a column called

𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑆𝑐𝑜𝑟𝑒 that is computed by combining 𝑙𝑎𝑏𝑆𝑐𝑜𝑟𝑒 and ℎ𝑜𝑚𝑒𝑤𝑜𝑟𝑘𝑆𝑐𝑜𝑟𝑒 in

some way. Finally, suppose that a model, 𝑚, is created to predict a new column,

called 𝑓𝑖𝑛𝑎𝑙𝐸𝑥𝑎𝑚𝑆𝑐𝑜𝑟𝑒, based on the value of 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑆𝑐𝑜𝑟𝑒.

In the above example, 𝑚 has a single feature column, 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑆𝑐𝑜𝑟𝑒. However,

the data scientist may find it useful to find the original features that produced the

𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑆𝑐𝑜𝑟𝑒 column (i.e. 𝑙𝑎𝑏𝑆𝑐𝑜𝑟𝑒 and ℎ𝑜𝑚𝑒𝑤𝑜𝑟𝑘𝑆𝑐𝑜𝑟𝑒).

It is possible to use the Feature table and the DataFrame ancestry forest (ℱ) to

compute the original features. The algorithm for doing so is presented below.

First, the user must specify the ID (call it 𝑚𝐼𝑑) of a model.

Second, the corresponding FitEvent for model 𝑚𝐼𝑑 is found, and its DataFrame

(call it 𝑑𝑓) is extracted.

Third, a set called 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 is initialized to contain the features (from

the Features table) of model 𝑚𝐼𝑑.

Fourth, the ancestry of 𝑑𝑓 is computed, with the TransformEvents noted down in

the list 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝐸𝑣𝑒𝑛𝑡𝑠.

Fifth, the 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝐸𝑣𝑒𝑛𝑡𝑠 list is scanned such that the TransformEvent that di-

rectly produced 𝑑𝑓 is first and the TransformEvent that operated on a root DataFrame

is last. For each such TransformEvent 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝐸𝑣𝑒𝑛𝑡, the following steps are per-

formed:

1. If none of the columns listed in 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 appears

in 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝐸𝑣𝑒𝑛𝑡.𝑜𝑢𝑡𝑝𝑢𝑡𝐶𝑜𝑙𝑢𝑚𝑛𝑠, then 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝐸𝑣𝑒𝑛𝑡

is skipped and the next TransformEvent is considered.

2. Otherwise, all the columns in 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 that are also
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in 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝐸𝑣𝑒𝑛𝑡.𝑜𝑢𝑡𝑝𝑢𝑡𝐶𝑜𝑙𝑢𝑚𝑛𝑠 are removed from 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠.

3. All columns in 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝐸𝑣𝑒𝑛𝑡.𝑖𝑛𝑝𝑢𝑡𝐶𝑜𝑙𝑢𝑚𝑛𝑠 are added to 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠.

Finally, 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 is returned.

The above algorithm simply starts with the model’s described feature columns

and walks up the ancestry chain trying to find the columns that originated these

columns.

4.3.2 Models using a Given Feature Set

ModelDB Server can also find models that use any of the features listed in a given

set of features, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑆𝑒𝑡. Basically, the Feature table is scanned for rows whose

feature name is included in 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑆𝑒𝑡. The Transformer IDs for these Feature rows

are extracted, de-duplicated, and returned to the user.

Note that a data scientist may find it useful to find all the models that indirectly

OR directly use any features in a given feature set. The above algorithm handles the

"directly" case, but a variation of the Original Features algorithm would be needed

to handle the "indirectly" case. This has not been implemented, but may be a useful

algorithm to implement in the future.

4.4 Multi-model Algorithms

A data scientist creates multiple models in the model building process, and therefore

may want to compare models in some way to help select the best ones. The algorithms

described in this section offer some useful ways of doing this.

4.4.1 Compare Features of Two Models

One simple operation is to find the features shared by two models. Given the IDs of

two models, 𝑚𝐼𝑑1 and 𝑚𝐼𝑑2, ModelDB Server finds their corresponding features (by

scanning the Feature table) and returns the features they have in common, as well as

the features that appear in only one of them.
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While it has not been implemented, it would not be hard to utilize the Original

Features algorithm here so that the original, rather than direct, features of the models

are compared.

4.4.2 Common Ancestor DataFrame of Two Models

Identifying the DataFrame from which two models are derived can be useful in un-

derstanding their commonalities. Given the IDs, call them 𝑚𝐼𝑑1 and 𝑚𝑖𝑑2, of two

models, ModelDB Server finds the common ancestor DataFrame as follows.

First, the FitEvent table is scanned to yield the DataFrames 𝑑𝑓1 and 𝑑𝑓2 that

produced the models with IDs 𝑚𝐼𝑑1 and 𝑚𝐼𝑑2.

Then, the common ancestor DataFrame (using the algorithm described earlier in

this chapter) of 𝑑𝑓1 and 𝑑𝑓2 is computed and returned.

4.4.3 Compare Hyperparameters of Two Models

Models of the same type (e.g. random forest) can have wildly different performance

outcomes on the same training DataFrame because they have different hyperparam-

eters. ModelDB Server makes it possible to compare the hyperparameters of two

models given their IDs (call them 𝑚𝐼𝑑1 and 𝑚𝐼𝑑2).

First, the FitEvents for 𝑚𝐼𝑑1 and 𝑚𝑖𝑑2 are read and their TransformerSpecs 𝑠𝑝𝑒𝑐1

and 𝑠𝑝𝑒𝑐2, respectively, are extracted.

Second, the hyperparameters for 𝑠𝑝𝑒𝑐1 and 𝑠𝑝𝑒𝑐2 are read from the HyperParam-

eter table and put into lists ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠1 and ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠2, respectively,

Third, hyperparameters in ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠1 and ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠2 with the

same name are extracted and put into a list called 𝑐𝑜𝑚𝑚𝑜𝑛𝐻𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠. Hy-

perparameters with names unique to just one of lists are put into lists called

𝑚𝑜𝑑𝑒𝑙1𝐻𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 and 𝑚𝑜𝑑𝑒𝑙2𝐻𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠.

Finally, the three resulting hyperparameter lists are returned to the user.
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4.4.4 Rank Models

Sometimes, a user may want to find the model that performs best in a given set of

models. Since ModelDB Server stores MetricEvents for these models, it can sort the

models according to a given metric type (e.g. accuracy) when evaluated on a given

DataFrame.

4.4.5 Find Similar Models

A user may want to find other models similar to a given model. ModelDB Server

allows the user to search for models that match the given model’s type (e.g. Random

Forest), problem type (e.g. regression, binary classification), performance, and more.

4.5 Linear Model and Tree Model Algorithms

ModelDB S+C stores extra data about linear and tree models, and this section sum-

marizes a few of the algorithms that can be run on these models.

4.5.1 Features ordered by Importance

One operation of great value in model building is computing the most important

features in a model. ModelDB Server stores an importance column in the Feature

table for its linear and tree models. Thus, it simply sorts the features in descending

importance and returns them to the user.

For linear models, ModelDB Server only computes feature importance if the linear

model is standardized (i.e. all feature columns were scaled to have zero mean and

unit variance). In this case, the feature importance is taken to be the absolute value

of the weight associated with the feature.

For tree models, ModelDB Server defers to Spark.ML’s implementation of fea-

ture importance. Thus, the Spark Client uses Spark.ML’s algorithm to compute

feature importances and then notifies ModelDB Server. However, since ModelDB
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Server stores the entire tree model in its database, this algorithm could also just be

implemented in ModelDB Server directly.

4.5.2 Iterations Until Convergence

ModelDB Server has a table called ObjectiveFunctionHistory, which stores, for a

given model, the value of the objective function over several iterations of training.

With this table in hand, it is easy for ModelDB Server to simply return the number

of iterations taken for a model to converge (convergence occurs when the value of the

objective function changes by less than 𝜖 in a single iteration).

4.5.3 Compare Feature Importances

ModelDB Server also supports comparing the importance of features between two

models. First, it gets the list of features for each model, ordered by importance. Using

the order, it then computes the percentile ranking of the feature’s importance. Then,

ModelDB Server finds features common to both features and returns the percentile

ranking of the feature in each model. It also returns the percentile rankings for the

features that appear in only one of the models.

4.6 Other Algorithms

There are a number other algorithms that ModelDB Server supports (e.g. building

confidence intervals for linear model coefficients) and even more that can be imple-

mented without much code (e.g. for a given model, see if there is another model

that has scored higher than it for every MetricEvent). For brevity, however, these

algorithms will not be discussed.
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Chapter 5

Implementation

This chapter discusses some important aspects of ModelDB S+C’s implementation.

5.1 System Architecture

The overall architecture for ModelDB S+C is shown below in Figure 5-1.

In the figure, the operations occur and the models first appear on the Spark

worker nodes. These nodes send their data to the Spark driver node. The driver

node runs the Spark.ML library, which stores objects representing the models and

which has functions to trigger the operations. The ModelDB Spark Client sits on

top of the Spark.ML library, and receives the operations and model data. The Spark

Client runs an Apache Thrift client, which it uses to send data to ModelDB Server.

ModelDB Server receives the data, performs the appropriate computations, and stores

it in the SQLite Database. Notice that ModelDB Server does not speak directly to

the model filesystem, which contains the serialized model files. Instead, the Spark

Client speaks directly to the model filesystem. The reasoning for this decision will be

discussed later in this chapter.

Recall that ModelDB Server also exposes an API for gleaning information about

the model building process. ModelDB Spark Client includes convenience functions

that the user can call to get this information. In this case, the arrows would be

reversed. When the Spark Client makes a request (via Apache Thrift) to ModelDB
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Figure 5-1: The overall architecture of ModelDB S+C. The arrows indicates the flow
of operation + model data. Notice that the data originates at the Spark workers and
finds its way into the SQLite database or model filesystem.
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Server to run an API method, ModelDB Server reads the database, performs the

appropriate computations, and responds to the Spark Client. The Spark Client then

extracts the desired information from the response, and returns it to be used in the

user’s driver node program.

The two key pieces of this diagram are the ModelDB Server and Spark Client.

Both will be discussed below.

5.2 Server

While there is a good deal of code (written in Java) in ModelDB Server, this section

will focus only on interesting pieces of implementation that were not described in the

previous chapters.

5.2.1 Database

Currently, ModelDB Server stores its data in a SQLite database. However, it can

be configured to use a number of other SQL databases, like PostgreSQL. This is

primarily achieved by using the JOOQ library. This library asks the user to provide a

configuration file that specifies the database and runs a code generator to create Java

classes that ModelDB Server can use to interact with the database. Changing this

configuration file (and making appropriate changes to the database schema, in order

to correct for slight differences in the SQL language) can allow ModelDB Server to

use a different SQL database than SQLite. In addition, ModelDB Server is designed

to avoid using any esoteric SQLite data types, functions, or features. Some problems

which could be solved by appealing to a special database function are instead solved

in ModelDB Server. This places minimal requirements on the SQL database that

ModelDB Server uses.
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5.2.2 Model Filesystem

ModelDB Server allows the user to store their serialized model files in a filesystem.

However, as shown in Figure 5-1, the ModelDB Server does not ever communicate

with this filesystem. Instead, the flow is as follows.

First, the user calls a function in ModelDB Spark Client to indicate that they’d

like to save a model and optionally provides a filename that they would like to use.

Second, the Spark Client indicates to the ModelDB Server that it would like to

store the given model under the given filename.

Third, ModelDB Server generates a filepath (incorporating the user’s requested

filename, if one is provied) for the model, updates the model’s entry in Transformer

table to reflect this filepath, and sends the filepath to the Spark Client.

Finally, the Spark Client serializes the model and writes the result to the desig-

nated filepath.

There are a number of advantages that the above approach has over an approach

in which the client sends the serialized model to the server and the server stores the

model in the filesystem. First, the serialized model file may be large, so storing it

directly to the filesystem is cheaper than first sending it to the server and having

the server store the model. Second, some machine learning libraries (e.g. Spark.ML)

store models in a directory structure rather than as a file, and having the client store

the model directly to the given filepath makes this possible. Finally, by pushing the

storage logic to the client, the client could allow the user to provide logic that stores a

serialized model to a brand new or esoteric filesystem (perhaps their own experimental

filesystem).

5.2.3 Configuration

All the configuration for ModelDB Server (e.g. port to launch server on, prefix for

filepath generation) is defined in a single configuration file, and some sensible defaults

are provided so that ModelDB Server is usable right out of the box rather than

requiring configuration before use.
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5.2.4 Stateless, Separated, Logic

ModelDB Server exposes all its functionality to the client as Thrift endpoints. The

client can make remote procedure calls to this endpoint to store operations, store

models, compute ancestries, and more. The actual implementation of these Thrift

endpoints are extremely short, most of them being just a single function call. This is

done for three reasons. First, it pushes all of ModelDB Server’s logic into other classes,

called Data Access Objects (DAOs), for which unit tests can be easily written without

having to worry about complexities that come with using Apache Thrift. Second, it

allows ModelDB Server to be used as a library, so that other programs could import

and use it without having to launch a Thrift server. Finally, it makes the server

stateless, which can be useful if future work adds support to scale ModelDB Server

to multiple machines.

The ModelDB Server algorithms described in Chapter 4 are each implemented as

a single function or group of functions. They do not persist state between executions

and they are expected to have all their dependencies injected as arguments. The

abstractions described in Chapter 3 are implemented as SQL tables and also have

corresponding Thrift structures to allow them to be sent and received via Thrift

calls.

5.3 Spark Client

The Spark Client is written in Scala, primarily because Spark is written in Scala.

Before discussing the implementation details, it is worth seeing a sample usage of the

Spark Client.

5.3.1 Sample Usage

Consider the following sample code, written without ModelDB Spark Client, in which

a model is trained and evaluated.
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val Array(train, test) = data.randomSplit(Array(0.7, 0.3))

val lr = new LogisticRegression()

.setMaxIter(20)

.setLabelCol(FeatureVectorizer.indexed(labelCol))

.setPredictionCol(predictionCol)

.setFeaturesCol(featuresCol)

val ovr = new OneVsRest()

.setClassifier(lr)

.setLabelCol(FeatureVectorizer.indexed(labelCol))

.setPredictionCol(predictionCol)

.setFeaturesCol(featuresCol)

val model = ovr.fit(train)

val predictions = model.transform(test)

val eval = new MulticlassClassificationEvaluator()

.setLabelCol(FeatureVectorizer.indexed(labelCol))

.setPredictionCol(predictionCol)

.setMetricName("f1")

val score = eval.evaluate(predictions, model)

Below, consider the same code WITH ModelDB Spark Client. The changed or

new lines are commented.

// New line.

import edu.mit.csail.db.ml.modeldb.client.ModelDbSyncer._

// New line.

val syncer = ModelDbSyncer.setSyncer(new ModelDbSyncer())

// Use randomSplitSync instead of randomSplit.

val Array(train, test) = data.randomSplitSync(Array(0.7, 0.3))

val lr = new LogisticRegression()
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.setMaxIter(20)

.setLabelCol(FeatureVectorizer.indexed(labelCol))

.setPredictionCol(predictionCol)

.setFeaturesCol(featuresCol)

val ovr = new OneVsRest()

.setClassifier(lr)

.setLabelCol(FeatureVectorizer.indexed(labelCol))

.setPredictionCol(predictionCol)

.setFeaturesCol(featuresCol)

// Use fitSync instead of fit.

val model = ovr.fitSync(train)

// Use transformSync instead of transform.

val predictions = model.transformSync(test)

val eval = new MulticlassClassificationEvaluator()

.setLabelCol(FeatureVectorizer.indexed(labelCol))

.setPredictionCol(predictionCol)

.setMetricName("f1")

// Use evaluateSync instead of evaluate.

val score = eval.evaluateSync(predictions, model)

As displayed above, the key changes required to use ModelDB Spark Client are

to import and set up the ModelDB Syncer (the first two lines) and append the suf-

fix "Sync" to the operations that the user would like to store in ModelDB Server.

ModelDB Spark Client provides "Sync" variants of many Spark.ML methods such

as evaluate(), transform(), fit(), save(), and randomSplit(). Additionally, the Mod-

elDBSyncer object (called "syncer" in the code sample above) exposes a number of

methods for interacting with ModelDB Server as well (e.g. deserialize a model stored

in the ModelDB S+C filesystem, compute ancestry of a DataFrame).
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ModelDB Spark Client uses the same types as Spark.ML, so it should interact

nicely with other Spark.ML code and with other libraries that build on Spark.ML.

Additionally, it does not re-implement the functionality of Spark.ML, it only adds

functionality. To understand how this is done, it is worth looking at some aspects of

the implementation.

5.3.2 Syncable Event

Recall that a Syncable Event represents an operation that can be stored on ModelDB

Server. The ModelDB Spark Client has a SyncableEvent class that is responsible for

converting Spark objects into their corresponding Thrift structures and then making

the appropriate Thrift endpoint call to store the operation and its primitives on Mod-

elDB Server. Specifically, SyncableEvent is a class from which many other subclasses

derive. These subclasses implement a few methods:

1. constructor: The constructor accepts a number of Spark.ML objects (e.g. a

DataFrame, Estimator, and Transformer, in the case of FitEvent) and sets them

as state variables.

2. makeEvent: This method uses the state variables described above and creates

a Thrift structure representing the event.

3. sync: This method calls makeEvent and stores the result on ModelDB Server

using the appropriate API endpoint. It then passes the result of the API call

to the associate method.

4. associate: This method uses the result of the API call to update the ModelDB-

Syncer as appropriate. This includes, for example, updating the ID mappings.

The ModelDBSyncer is described later in this chapter.

There are SyncableEvent subclasses for all of the Syncable Events that can be

stored on ModelDB Server. These include FitEvent, TransformEvent, MetricEvent,

GridSearchCrossValidationEvent, and more.
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5.3.3 ModelDBSyncer

The Spark Client includes a global object called the ModelDBSyncer. This object

has a few responsibilities:

1. It maintains a buffer of SyncableEvents, which it periodically flushes (by calling

sync() on each entry of the buffer). The user can configure the syncing strategy

(e.g. sync immediately when the buffer contains a SyncableEvent, sync only

when the ModelDBSyncer is explicitly told to sync).

2. It exposes convenience functions for interacting with ModelDB Server’s API

endpoints for gleaning information about the model building process (e.g load a

deserialized model, find the original features that were used to create a model).

3. It maintains some state about the Spark objects. For example, it stores a

mapping between Spark objects (e.g. Transformer) to their corresponding IDs

in ModelDB Server. This makes it possible to easily get the Spark object with a

given ID and to get the corresponding ID of a Spark object. Another example,

it stores, for each DataFrame, the filepath containing the DataFrame’s data.

4. It implements all the traits in the ModelDB Syncer, making it possible to bring

all the implicit classes into the user’s program with just a single import state-

ment.

5.3.4 Implicit Classes and Traits

ModelDB Spark Client aims to augment methods in Spark.ML without having to

reimplement or modify any existing code in Spark.ML. For example, consider the

following Spark.ML method:

val model = estimator.fit(dataframe)

The method invocation above uses an Estimator to train a model (a Transformer)

on a DataFrame.
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ModelDB Spark Client includes the following method, which involves the same

estimator, dataframe, and model objects indicated above and each one is the same

type as it is in the code sample above.

val model = estimator.fitSync(dataframe)

This is almost identical in function to Spark.ML’s fit method, except that it logs

a FitEvent (or a GridSearchCrossValidationEvent or PipelineEvent if estimator is a

CrossValidator or Pipeline, respectively) to ModelDB Server.

To make the above code possible, ModelDB Spark Client uses a combination of

Scala implicit classes and Scala traits. A Scala trait is similar to an interface in Java

or C#, but it also can provide default implementations for interface methods. A Scala

implicit class serves a purpose similar to Java’s autoboxing and unboxing features.

Implementing the fitSync above requires the following:

1. A Scala trait called SyncableEstimator is defined.

2. Inside SyncableEstimator, a Scala implicit class for Estimator, called Estima-

torSync, is defined. This EstimatorSync implicit class contains an implementa-

tion for fitSync(), which calls fit() on its corresponding Estimator object, creates

a FitEvent (a SyncableEvent in Spark Client), and buffers it onto the global

ModelDBSyncer.

3. ModelDBSyncer is marked as implementing the SyncableEstimator trait, so

that the EstimatorSync implicit class is automatically imported into the user’s

main program.

Thus, when the user calls fitSync, the following occurs.

1. Scala looks for an implementation of fitSync() in the Estimator class, and cannot

find one.

2. Scala notices there is an implicit class (imported when ModelDBSyncer was

imported) for Estimator called EstimatorSync that does implement fitSync().
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3. Scala creates an EstimatorSync object and passes the Estimator object as a

constructor argument.

4. Scala calls the fitSync() method on the EstimatorSync object.

5. Scala returns the result of the fitSync() call, which is the trained model.

This makes it possible augment the Estimator class’s fit() function so that it

buffers a FitEvent in the ModelDBSyncer without having to rewrite or edit existing

Spark.ML code.

This technique is used many times in ModelDB Spark Client (e.g. for transform-

Sync(), evaluateSync()).

5.3.5 FeatureVectorizer

ModelDB Spark Client also includes a class called FeatureVectorizer which is a con-

venience class for building pre-processing pipelines. The user specifies a DataFrame

and indicates the categorical and numerical columns they would like to use. Then,

FeatureVectorizer builds a PipelineModel that performs common preprocessing steps

(e.g. string indexing, one-hot encoding, standardization of numerical columns) and

creates an output DataFrame with a "features" column that can be used by a machine

learning Estimator or Model.
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Chapter 6

Evaluation

By importing ModelDBSyncer and appending "Sync" to the method names, the user

can use ModelDB Spark Client to record and send their operations and models on

ModelDB Server, which stores the data in its database and model filesystem. Nat-

urally, this takes extra running time and storage space than if the user did not use

ModelDB S+C at all. Additionally, the API methods exposed by ModelDB Server

take some time to run too. The goal of this chapter is to measure whether the time

and space requirements of ModelDB S+C are reasonable.

6.1 Overview

Experiments were conducted to answer the following questions:

1. Is the time overhead of storing operations and models on ModelDB Server rea-

sonably small (compared to the overall running time of the Spark.ML program)?

2. Is the space taken up by ModelDB S+C’s database and model files reasonably

small (compared to the size of the dataset)?

3. Are ModelDB S+C’s tree model and linear model representations reasonably

small (compared to the size of corresponding PMML files)?
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Dataset Name Problem Type Number of Rows Number of Features
IMDB Regression 5,043 28
Animal Shelter Multiclass Classification 26,729 10
Housing Prices Regression 1,460 81
Iris Multiclass Classification 150 5
Titanic Binary Classification 1,309 14
SMS Spam Binary Classification 5,574 N/A (text)
Flight Delays Binary Classification 7,453,215 29

Table 6.1: Datasets used in evaluation

4. Is the time take to execute the ModelDB Server API methods reasonably small

(compared to the training time of the model)?

5. Can ModelDB S+C record most of the machine learning operations in real

Spark.ML programs?

The chapter also discusses performance improvements that can further improve

ModelDB S+C with regard to the above questions.

6.2 Datasets

ModelDB S+C was evaluated on real datasets, which are described below and outlined

in Table 6.1.

The IMDB dataset [19] includes features like genre, number of reviews, language,

and more for over 5000 movies in the IMDB Movie Database. The dataset also

includes the IMDB score (i.e. a 1 to 10 rating of how good the movie is considered)

for each movie. A machine learning model could solve a regression problem on this

dataset in which it predicts the IMDB score for a given movie. Such a model could

be used to identify the best movies and recommend them to users. This dataset was

used when measuring the time/space overhead of ModelDB S+C and was also used

when measuring the execution time for ModelDB Server API methods.

The Animal Shelter dataset [21] includes features like animal type (cat or dog),

breed, color, age, and more for over 25,000 animals. The dataset also includes the

animal’s outcome (e.g. adopted, returned to owner, transferred) for each animal. A
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machine learning model could solve a multi-class classification problem on this dataset

in which it predicts the most likely outcome for a given animal. Such a model could

be used to identify the most likely outcome for an animal newly admitted into the

animal shelter. This dataset was used when measuring the time/space overhead of

ModelDB S+C.

The Housing Prices dataset [18] includes features like square footage, number

of bathrooms, neighborhood type, and more for about 1,500 houses. The dataset

also includes the sale price of each house. A machine learning model could solve a

regression problem on this dataset in which it predicts the sale price of a given home.

Such a model could be used by realtors who are trying to find the best price for a

home when putting it up on the market. This dataset was used when measuring the

time/space overhead of ModelDB S+C.

The Iris dataset [25] is a famous dataset that includes features like petal length,

sepal width, and more for 150 Iris plans. The dataset also includes the species of the

Iris plant. A machine learning model could solve a multi-class classification problem

on this dataset in which it predicts the species of a given Iris plant. Such a model

may be useful for botanists looking to classify their plants. This dataset was used

when comparing the size of ModelDB S+C models to PMML models (the PMML

website includes model files for the Iris dataset).

The Titanic dataset [9] is a famous dataset includes features like passenger sex,

passenger class, and more for over 1300 passengers of the Titanic. The dataset also

includes whether each passenger survived or died. A machine learning model could

solve a binary classification problem on this dataset in which it predicts whether a

given passenger survived. Such a model may be useful for historians. This dataset

was used when evaluating ModelDB S+C on an existing machine learning workflow.

The SMS Spam dataset [2] includes over 5500 text messages and a label indi-

cating whether the message is spam or not. A machine learning model could solve

a binary classification problem on this dataset in which it predicts whether a given

text message is spam. Such a model could be used as a text messaging app’s spam

filter. This dataset was used when evaluating ModelDB S+C on an existing machine
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learning workflow.

The Flight Delays dataset [4] includes features like carrier, departure time, and

more for over 7 million airplane departures. It also includes a field indicating whether

the plane was delayed. A machine learning model could solve a binary classification

problem on this dataset in which it predicts whether a given airplane is delayed. Such

a model could be used by airports and airlines to anticipate delays for particular

airplanes. This dataset was used when evaluating ModelDB S+C on an existing

machine learning workflow.

6.3 Methodology

6.3.1 Machine

These experiments were run on a DigitalOcean machine with a 160 GB SSD disk, an

8 core processor, and 16GB of memory.

6.3.2 Time and Space Overhead

The first experiment focused on evaluating the time and space overhead of ModelDB

S+C. The IMDB, Housing Prices, and Animal Shelter datasets were used for this

experiment.

First, for each of the datasets listed above, three programs (called workflows)

were created. The simple workflow simply trains and evaluates one machine learning

model. The full workflow creates a preprocessing pipeline for the data, trains some

models with grid search cross validation (thus trying many hyperparameter config-

urations), and evaluates the best model. The exploratory worklow executes many

full workflows, trying different model types (e.g. random forest, linear regression) and

different feature sets.

Second, a program was written to artificially increase the size of the dataset by

duplicating rows. Dataset sizes were varied from the dataset’s original number of

rows to one million rows.
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Third, ModelDB Spark Client was instrumented so that it recorded the time spent

running code related to ModelDB S+C.

Fourth, each (dataset, dataset size, workflow) triple’s program was executed with

ModelDB S+C enabled. The time that ModelDB S+C spent recording and storing

each operation and model was recorded. The database size, number of rows in each

table, and size of the model files was also recorded. Finally, the overall running time of

the program and the size of the (artificially enlarged) dataset were also noted. Due to

Spark’s large memory requirements, it was not possible to run the exploratory work-

flow for the housing dataset when the number of rows was large because Spark.ML

consumed too much memory. This is because Spark is designed to be run on machines

with large amounts of RAM, and the machine used for these experiments had only

16 GB of RAM.

6.3.3 Computation Time of API Methods

The second experiment focused on evaluating the running time of ModelDB Server’s

API methods. The IMDB dataset was used here.

First, the IMDB exploratory workflow was run to populate ModelDB Server’s

database.

Second, the database was duplicated 𝑁 times (i.e. 𝑁 additional rows were created

for every row in every table of the database), where 𝑁 was varied from 0 to 400. This

was done to simulate many exploratory workflows being run on ModelDB S+C.

Third, various API methods were executed on the (artificially enlarged) database

and the running time for each method was recorded.

6.3.4 Compare ModelDB S+C Models to PMML

The PMML website [14] includes sample files for a 200 tree random forest model and

logistic regression model that were trained on the Iris dataset. So, this experiment

trained a 200 tree random forest model and a one vs. rest logistic regression model in

Spark.ML (with ModelDB S+C enabled). The sizes of the model files and database
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were recorded.

6.3.5 Evaluating Existing Workflows

Three machine learning workflows were collected from the Internet. The first [31],

from a Hortonworks article, uses the Flight Delays dataset to build a classification

model to predict delays. The second [8] and third [33] are from ZeppelinHub, a website

that allows users to share their machine learning workflows as Zeppelin notebooks.

The second workflow trains two models to predict passenger survival status for the

Titanic dataset and the third builds a spam classifier using the SMS Spam dataset.

These workflows were cleaned up, ported to Spark v2.0.0, and augmented with Mod-

elDB Spark Client (i.e. import ModelDbSyncer and add *Sync to the methods).

6.4 Time Overhead Results

To measure the time overhead, the time spent running ModelDB S+C code is divided

by the total running time of the program and the result is taken as a percentage.

Plotting this time overhead percentage, for each (dataset, workflow) pair, as a function

of the number of rows in the dataset yields Figure 6-1. For this experiment, ModelDB

S+C did NOT count the number of rows in each DataFrame.

Figure 6-1 shows that, as the dataset size grows, the time overhead percentage

for ModelDB S+C goes down. For a one million row dataset, most of the workflows

spend less than 5% of their time running ModelDB S+C code.

For the results here, ModelDB S+C is configured not to count the number of rows

in the DataFrames. Counting the number of rows in a Spark DataFrame requires a

sequential scan of the DataFrame. Doing this would cause the absolute time spent

running ModelDB S+C code to grow linearly with the dataset size. So, ModelDB

Spark Client disables row-counting by default.

In Figure 6-1, the dataset size is measured in number of rows, rather than in the

actual size of the data file. This is done because the file format of the data has a big

impact on the size of the data file. Nevertheless, for reference, the largest dataset size
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Figure 6-1: Time overhead of ModelDB S+C.

(1 million rows) was under 300 MB in size. All data was in CSV format.

Thus, Figure 6-1 shows that the time overhead of ModelDB S+C becomes in-

significant as the dataset grows beyond 300 MB.

The slowest step in recording and storing a model or operation, as determined

by instrumenting various lines of code, is writing to the SQLite database. This is

not a surprise because the SQLite file lives on disk and because SQLite is not a very

performant database. Replacing SQLite with a more performant database may not

only reduce the time overhead, it may also reduce the storage requirements as well if

data is appropriately compressed.

Focusing on the individual operations, the operation that consumed the most time,

by far, was GridSearchCrossValidationEvent. The average time overhead percentages

for the most time consuming operations are shown in Figure 6-2.

Figure 6-2 shows that roughly 3% of the time in the overall program is spent stor-

ing GridSearchCrossValidationEvents. This occurs because a GridSearchCrossValida-

tionEvent has many other smaller events contained inside it, such as TransformEvents,

FitEvents, MetricEvents, and CrossValidationEvents. Consequently, ModelDB Server

has to write many rows to many database tables when a GridSearchCrossValidation-
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Figure 6-2: Average time overhead percentage by event.

Event occurs. If the user is not interested in storing all the intermediate FitEvents,

TransformEvents, etc. for a GridSearchCrossValidation, then much of this overhead

is a waste. Therefore, ModelDB S+C allows the user to configure whether they would

like to actually store all the data associated with a GridSearchCrossValidationEvent,

or whether they would like to simply store the FitEvent associated with the pro-

duced model. This makes it possible to cut out much of the overhead caused by

GridSearchCrossValidationEvents.

Thus, to summarize, ModelDB S+C’s time overhead is small when the dataset

is large (i.e. 300 MB or more). A large fraction of the time is spent storing Grid-

SearchCrossValidationEvents, and since the user may not care about storing all the

intermediate TransformEvents, MetricEvents, etc., the user is allowed to indicate

whether they would like to store the full event or or just the FitEvent for the pro-

duced model.
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Figure 6-3: Database size (in MB) for each (dataset, workflow) pair.

6.5 Storage Overhead Results

For a fixed (dataset, workflow) pair, the size of ModelDB S+C’s database and the size

of the model files do not change even as the number of rows in the dataset changes.

This makes sense because, except for counting the number of rows, ModelDB S+C

does not access any data from the DataFrame’s rows. The size of ModelDB S+C’s

SQLite database is shown for each of the (dataset, workflow) pairs in Figure 6-3.

For all the (dataset, workflow) pairs, the database size remains under 10MB, and

is just a few MB for most of the (dataset, workflow) pairs. Since machine learning

datasets tend to be large (e.g. several hundred GB), 10MB is quite small. That being

said, inspecting the number of rows in each table for the Animal Shelter exploratory

workflow can provide some insight into reducing the database size even further. This

is shown in Figure 6-4.

Overwhelmingly, the TreeModel and TreeLink tables have the most rows. A little

thought, however, shows that this is not surprising. The Animal Shelter exploratory

workflow trains a number of random forest models. Consider a random forest with 20

decision trees where each tree has depth 7. Further assume that each decision tree is a
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Figure 6-4: Size of tables (in number of rows) for exploratory workflow for Animal
Shelter dataset.

binary tree. This means that each tree has on the order of 27 = 128 nodes (and roughly

the same number of links). Thus, the random forest has 20× 128 = 2560 nodes (and

roughly the same number of links). If 3-fold grid search cross validation is conducted

with 8 hyperparameter configurations (a 4 × 2 search grid), and a total of 3 such

grid search cross validations are performed, this becomes 2560× 8× 3× 3 = 184, 320

nodes (and roughly the same number of links). Therefore, it is no surprise that the

TreeNode and TreeLink tables are so large.

ModelDB S+C provides two mechanisms to reduce database size. First, as de-

scribed before, it allows the user to forgo storing ALL the data associated with a

GridSearchCrossValidationEvent and instead store only the most important parts.

Second, it allows the user to forgo storing entries in the TreeLink and TreeNode table

(the node and link data are already stored in the serialized model file) except for

specified models. This can reduce the database size greatly, and allow the user to

only store TreeNode and TreeLink rows when it is necessary. In the exploratory work-

flow for the Animal Shelter workflow, only one (i.e. the best) model’s TreeLink and

TreeNode data is really needed, but the workflow stores data for dozens of random
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Figure 6-5: Size of database for each (dataset, workflow) pair when GridSearchCross-
ValidationEvent intermediates are not stored and when the TreeLink and TreeNode
tables are only populated for the last model.

forest models. When the above two mechanisms are applied, the size of the database

falls from about 9 MB to 1.6 MB, as shown in figure 6-5.

Finally, it is worth looking at the size of the model files produced by each (dataset,

workflow) pair. This is shown in Figure 6-6.

Again, while these sizes are small (< 5 MB) compared to the size of typical machine

learning datasets, they can still be reduced. Rather than serializing and storing every

single model produced in the workflow, ModelDB S+C allows the user to indicate

which models they would actually like to serialize and store (by calling saveSync() on

the model). When the final models are explicitly serialized and stored, rather than

serializing and storing all the produced Transformers, the model sizes in Figure 6-7

occur.

The models in Figure 6-7 take up much less space.
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Figure 6-6: Size of model files for each (dataset, workflow) pair.

Figure 6-7: Size of model files for each (dataset, workflow) pair when only the final
models are serialized and stored, rather than serializing and storing all produced
Transformers.
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Figure 6-8: Time taken for each method, plotted as a function of the number of times
that each row was duplicated.

6.6 API Method Time Results

The IMDB exploratory workflow took about 490 seconds (a little over 8 minutes) to

execute, and the majority of this time was spent training models. Figure 6-8 shows

the time taken by various API method, as a function of the number of times each row

was duplicated (recall that the duplication was done to simulate multiple workflows).

Figure 6-8 shows that the running times of the API methods are very small, with

not a single API method taking more than 500 milliseconds. The fast running times

are due to the indices in ModelDB Server’s database, which speed up the slow queries

and due to the fact that all of ModelDB Server’s API methods run in 𝑂(𝑛) time

or better, where 𝑛 is the size of the database. The running time grows slowly with

the number of workflows, and should remain small (under a few seconds) even for a

large number of workflows. That being said, there are still a few potential indices

that could be created in order to speed up the API methods. Second, some API

methods (e.g. descendent models) could theoretically be parallelized. Third, the

overall ModelDB system includes abstractions for grouping together Syncable Events
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Model Type Database Size (KB) Models Size (KB) PMML Size (KB)
Logistic Regression 16 12 4
Random Forest 116 224 420

Table 6.2: Comparing ModelDB database and model files to PMML file

and primitives (e.g. ExperimentRun, Project), and queries could be restricted to run

within a specific ExperimentRun or Project, because these tend to be small. Fourth,

using a more performant database than SQLite could speed up the API methods.

Overall, though, the running time of the API methods is very small compared to the

time taken to run the IMDB exploratory workflow.

6.7 Model Files Compared to PMML Results

The PMML Website includes model files for a random forest model and logistic re-

gression model training on the Iris dataset. To compare ModelDB S+C’s storage

to PMML, a a random forest model and one vs. rest logistic regression model were

trained on the Iris dataset. The results are shown in Table 6.2. Note that the one vs.

rest classifier actually trains multiple logistic regression models. A one vs. rest clas-

sifier was used because Spark.ML does not currently support the multi-class logistic

regression model. To compensate, only one logistic regression model is counted for

the sizing, rather than all of them.

So, for the logistic regression model, ModelDB S+C uses 16+ 12 = 28 KB, which

is higher than the 4 KB required for PMML. This is because the logistic regression

model is quite simple, which allows the PMML file to be small. ModelDB S+C must

store information about the DataFrame, TransformerSpec, DataFrameColumns, and

Hyperparameters in its database and it stores some metadata for the deserializer in

the model file. These two factors cause ModelDB S+C to use more storage space

than the PMML file does.

The situation is reversed for the random forest, however. ModelDB S+C only

uses 116 + 224 = 340 KB, while the PMML file uses 420 KB. The random forest

is large (200 trees), so the overhead of storing the DataFrame, TransformerSpec,
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DataFrameColumn, and Hyperparameters and the overhead of storing deserialization

metadata are now small. ModelDB is able to leverage the (somewhat) efficient storage

format of SQLite and efficient storage format of Parquet (for the model file), which

keeps the overall storage space small. PMML, on the other hand, is an XML-like

language, which becomes quite verbose for a large model like the random forest.

Overall, it seems that ModelDB S+C does not require significantly more storage

space than PMML for storing models. While it may require more storage space in

some cases, it is worth it because PMML cannot be queried like the SQLite database

can and Spark.ML cannot deserialize PMML models and use them in the program.

One advantage that PMML has is that it is a human readable file (The Parquet file

and SQLite file are not human readable) and it is more well-known. However, since

ModelDB S+C is not tied to a particular storage format, the user could store their

serialized model in PMML, if they so choose.

6.8 Evaluating Existing Workflows Results

Three real machine learning workflows (Flight Delays, Titanic, and SMS Spam) were

considered and modified to use ModelDB S+C. This was done to see how many

operations in the machine learning workflow ModelDB S+C is able to record. Note

in the following paragraphs that "captures" means that ModelDB S+C is able to

automatically record and store the operations and machine learning models associated

with a step of the workflow.

The Flight Delays workflow begins by reading the CSV file and parsing the data.

These parsing steps (e.g. convert timestamp into Java Date) are not captured by

ModelDB S+C. While it is possible for the user to indicate this parsing step by manu-

ally buffering a TransformEvent in the ModelDBSyncer, it is not done automatically.

Then, the workflow creates a pre-processing pipeline, which can be captured com-

pletely by ModelDB S+C. Next, a decision tree model and logistic regression model

are trained and used to make predictions on the test data - this too can be captured

completely by ModelDB S+C.
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The Titanic workflow begins by reading the data and splitting the data into train-

ing and testing sets, which is captured by ModelDB S+C. Then, it creates a number

of visualizations - this is completely ignored by ModelDB S+C. Next, some null val-

ues are are replaced with the median value of the column - this is not automatically

captured by ModelDB S+C, but the user could manually log a TransformEvent to

indicate this cleaning step. Then, grid search cross validation is used to train a logis-

tic regression model - ModelDB S+C completely captures this step. Next, a random

forest model is trained using grid search cross validation, and this too is completely

captured by ModelDB S+C. Then, the feature importances of the models are listed

- this too is captured by ModelDB S+C (it stores feature importances for linear and

tree models).

The SMS Spam workflow begins by reading the data and applying a HashingTF

transformer to it - ModelDB S+C can capture this step. Then, a logistic regression

mdoel is trained, which ModelDB S+C captures. Finally, the model is used to make

some predictions, which is also captured by ModelDB S+C.

The above examples illustrate that ModelDB S+C is able to log many of the

machine learning operations and models in actual machine learning workflows. It is

not able to log any created visualizations, but that is out of scope for ModelDB S+C.

There are some data parsing and cleaning steps that it is not able to log automatically,

but it allows the user to manually buffer a TransformEvent for this purpose. In the

case of the workflows above, it may actually be possible to log some of the data

parsing and cleaning steps automatically (create implicit classes for Spark’s RDD

methods and log a TransformEvent when they are executed), but that has not been

implemented yet in ModelDB Spark Client.

6.9 Improvements

While a number of potential improvements have been discussed in the previous sec-

tions, it is worth focusing on a few of them below.

First, using a better database than SQLite may improve ModelDB S+C’s storage
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and time overhead. SQLite is not designed for performance. It was used because it

is simple and allows ModelDB S+C to be used out of the box.

Second, ModelDB S+C misses a number of opportunities to parallelize queries.

For example, when storing CrossValidationEvents in a GridSearchCrossValidation-

Event, each CrossValidationEvent is stored one at a time. This is not strictly neces-

sary, as they could be stored in parallel. Writing ModelDB’s storage algorithms so

that they can store multiple Syncable Events or primitives in parallel may speed up

the runtime significantly.

Third, rather than creating a TreeLink table and TreeNode table, it may be pos-

sible to store tree models in a JSON column. Since JSON columns are not supported

in SQLite, however, this was not done.

Fourth, ModelDB does not apply any compression of its model files. Doing this

can reduce their storage requirements.
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Chapter 7

Role in Overall ModelDB System

ModelDB S+C was not built in isolation. It interacts with a number of other systems

in an overall system called ModelDB [30]. ModelDB is a system for machine learning

model management. It includes:

1. a web application for visualizing and examining data about models and opera-

tions

2. a client, like the Spark Client, designed for Python’s Scikit-learn machine learn-

ing library

3. a command line toolkit that includes a versioning system for code

4. a prediction store for the predictions made by models

Figure 5-1 showed the system architecture of ModelDB S+C. Figure 7-1 augments

Figure 5-1 to show how some of the other pieces of ModelDB interact with ModelDB

S+C. The prediction store is excluded from the figure because it currently has not

been integrated into the rest of the ModelDB system.

The other systems in ModelDB can be seen as use cases that demonstrate how

ModelDB S+C can serve as a foundation for other applications.
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Figure 7-1: The overall architecture of ModelDB that shows the components that
interact with ModelDB S+C. The arrows indicates the flow of operations + models
data.
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7.1 Scikit-learn Client

ModelDB includes a client for Python’s Scikit-learn machine learning library. Like

the ModelDB Spark Client, the Scikit-learn Client also utilizes the ModelDB Syncer

abstraction, the Syncable Event abstraction, and the "Sync" API (e.g. fitSync, trans-

formSync). This Scikit-learn Client was inspired by the abstractions in ModelDB

Spark Client, and demonstrates that the ModelDB Server abstractions (e.g. FitEvent,

TransformerSpec) can generalize to other machine learning libraries and that Mod-

elDB Spark Client abstractions (e.g. ModelDBSyncer) can also generalize to other

machine learning libraries.

7.2 Command Line Toolkit

ModelDB includes a command line toolkit that allows users to record various opera-

tions (e.g. evaluation of a model) without using any kind of machine learning library.

This command line toolkit still uses the underlying abstractions in ModelDB Server,

showing that they can generalize even if there is no machine learning library.

7.3 Web Application

ModelDB includes a web application that can display information about models and

visualizations of the model building process. This web application is built directly

on the API methods exposed by the ModelDB Server, and does not actually use the

database directly. This shows how an application can be built on top of ModelDB

Server’s data and API.

7.4 Possible Database Applications

Although no applications in ModelDB access the database directly, the database,

on its own, could serve as a building block for other applications. Additionally, the

database could simply be used in other data management systems, like DataHub [6].
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Chapter 8

Future Work

ModelDB S+C is a usable end-to-end system with other systems being built on top

of it. However, there are a number of areas for improvement.

8.1 Neural Networks

ModelDB S+C supports special storage and algorithms for linear and tree models. It

may be interesting to also add support for neural network models. This was omitted

for this thesis because Spark.ML supports only simple multi-layer perceptron models,

which is one kind of neural network. Adding support for more general neural network

models, especially deep neural networks, could be valuable.

8.2 Library Agnostic Model Format

ModelDB S+C stores detailed data about linear and tree models that could be used

to reconstruct them. Consequently, ModelDB Server’s database tables could serve as

a library agnostic storage format for machine learning models. It may be interesting

to implement classes in Spark Client and Scikit-learn Client to read ModelDB Server’s

tables and reconstruct a Spark Transformer or Scikit-learn Predictor from the contents

of the table. This would make it possible, for example, to create a model in Scikit-

learn, store it in ModelDB Server’s database, and then read it and use it in Spark.ML.
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Currently, ModelDB supports storage of serialized model files, so a model created in

Spark.ML can later be read and used in Spark.ML.

8.3 Scalability

ModelDB Server currently runs on a single node, but its design is stateless. Therefore,

it may be interesting to see how ModelDB Server scales to multiple nodes.

8.4 New clients, API methods, columns

It would be useful to create client libraries for other machine learning libraries, such

as those in R. There are a number of interesting operations that could be performed

on the data stored in ModelDB Server, so it may be useful to implement more API

methods. Finally, storing additional data in the columns of ModelDB Server’s tables

(e.g. descriptive statistics for each DataFrameColumn), may enable a whole new set

of API methods.
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Chapter 9

Conclusion

This thesis describes ModelDB Server and ModelDB Spark Client, which together

constitute an end-to-end system for logging operations and models created in the

model building process.

The primitives and Syncable Event abstractions in ModelDB S+C were presented

as building blocks for representing a wide range of operations, such as random splitting

of a DataFrame, grid search cross validation, and creation of pre-processing pipelines.

ModelDB Server provides a number of algorithms, exposed as Thrift API end-

points, which leverage the aforementioned abstractions to glean useful information,

like model rankings and comparisons, about the model building process.

ModelDB S+C stores detailed data about logistic regression, linear regression,

decision tree, random forest, and gradient boosted tree models. It also supports

storing serialized models in a filesystem.

ModelDB Spark Client allows automatic logging of machine learning operations

performed in Spark.ML, requiring only minor changes to code. Its client side abstrac-

tions, such as ModelDB Syncer and SyncableEvent, are general and can be applied

to other machine learning libraries (e.g. Scikit-learn).

ModelDB S+C serves as a foundation for the overall ModelDB system, and other

systems have been built on top of it.

Recording the model building process is currently difficult and time-consuming

to do. ModelDB S+C aims to make this process much easier and utilize data about
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the model building process to provide insights for the data scientist. ModelDB S+C

hopes to be a step towards an era of applications that use data about the model

building process to make the model building process easier, more efficient, and less

time consuming.
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Appendix A

Schema

This appendix contains the schema for the various tables in ModelDB Server’s database.

Some details (e.g. primary key, non-nullity constraints, indices, non-essential columns)

have been omitted for brevity and ease of understanding.

CREATE TABLE DataFrame (
numRows INTEGER,
dataSource TEXT

);

CREATE TABLE DataFrameColumn (
dfId INTEGER REFERENCES DataFrame,
name TEXT,
type TEXT,
columnIndex INTEGER

);

Listing 1: DataFrame Schema
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CREATE TABLE Transformer (
transformerType TEXT,
filepath TEXT

);

CREATE TABLE Feature (
name TEXT,
featureIndex INTEGER,
importance DOUBLE,
transformer INTEGER REFERENCES TRANSFORMER

);

Listing 2: Transformer Schema

CREATE TABLE TransformerSpec (
transformerType TEXT

);

CREATE TABLE HyperParameter (
spec INTEGER REFERENCES TransformerSpec,
paramName TEXT,
paramType TEXT,
paramValue TEXT,
paramMinValue REAL,
paramMaxValue REAL

);

Listing 3: TransformerSpec Schema

CREATE TABLE Event (
eventType TEXT,
eventId INTEGER

);

Listing 4: Event Schema

106



CREATE TABLE TransformEvent (
oldDf INTEGER REFERENCES DataFrame,
newDf INTEGER REFERENCES DataFrame,
transformer INTEGER REFERENCES Transformer,
-- Should be comma-separated, no spaces, alphabetical.
inputColumns TEXT,
-- Should be comma-separated, no spaces, alphabetical.
outputColumns TEXT

);

Listing 5: TransformEvent Schema

CREATE TABLE FitEvent (
transformerSpec INTEGER REFERENCES TransformerSpec,
transformer INTEGER REFERENCES Transformer,
df INTEGER REFERENCES DataFrame,
-- Should be comma-separated, no spaces, alphabetical.
predictionColumns TEXT,
-- Should be comma-separated, no spaces, alphabetical.
labelColumns TEXT,
problemType TEXT

);

Listing 6: FitEvent Schema

CREATE TABLE MetricEvent (
transformer INTEGER REFERENCES Transformer,
df INTEGER REFERENCES DataFrame,
metricType TEXT,
metricValue REAL

);

Listing 7: MetricEvent Schema

CREATE TABLE CrossValidationEvent (
df INTEGER REFERENCES DataFrame,
spec INTEGER REFERENCES TransformerSpec

);

CREATE TABLE CrossValidationFold (
metric INTEGER REFERENCES MetricEvent NOT NULL,
event INTEGER REFERENCES CrossValidationEvent NOT NULL,

);

Listing 8: CrossValidationEvent Schema
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CREATE TABLE GridSearchCrossValidationEvent (
best INTEGER REFERENCES FitEvent,

);

CREATE TABLE GridCellCrossValidation (
gridSearch INTEGER REFERENCES GridSearchCrossValidationEvent,
crossValidation INTEGER REFERENCES CrossValidationEvent

);

Listing 9: GridSearchCrossValidationEvent Schema

CREATE TABLE PipelineStage (
pipelineFitEvent INTEGER REFERENCES FitEvent,
transformOrFitEvent INTEGER REFERENCES Event,
isFit INTEGER, -- 0 if transform stage and 1 if this is a fit stage.
stageNumber INTEGER

);

Listing 10: PipelineStage Schema

CREATE TABLE PipelineStage (
pipelineFitEvent INTEGER REFERENCES FitEvent,
transformStage INTEGER REFERENCES TransformEvent,
fitStage INTEGER REFERENCES FitEvent,
stageNumber INTEGER

);

Listing 11: PipelineStage Modified Schema

CREATE TABLE Annotation (
posted TIMESTAMP

);

CREATE TABLE AnnotationFragment (
annotation INTEGER REFERENCES Annotation,
fragmentIndex INTEGER,
transformer INTEGER REFERENCES Transformer,
dataFrame INTEGER REFERENCES DataFrame,
spec INTEGER REFERENCES TransformerSpec,
message TEXT,

);

Listing 12: AnnotationEvent Schema
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CREATE TABLE LinearModelTerm (
model INTEGER REFERENCES Transformer,
termIndex INTEGER,
coefficient DOUBLE,
tStat DOUBLE,
stdErr DOUBLE,
pValue DOUBLE

);

Listing 13: LinearModelTerm Schema

CREATE TABLE TreeNode (
-- 1 if node is leaf, 0 if node is internal
isLeaf INTEGER,
-- Internal nodes obviously do not use their predictions
prediction DOUBLE,
-- Impurity of node.
impurity DOUBLE,
-- Information gain at node. NULL for leaf nodes.
gain DOUBLE,
-- Index of feature that the internal node is splitting.
-- NULL if this is a leaf node.
splitIndex INTEGER,
-- NULL for the root node
rootNode INTEGER REFERENCES TreeNode

);

DROP TABLE IF EXISTS TreeLink;
CREATE TABLE TreeLink (

parent INTEGER REFERENCES TreeNode,
child INTEGER REFERENCES TreeNode,
-- 1 if the child is a left child
-- 0 if the child is a right child.
isLeft INTEGER NOT NULL

);

Listing 14: TreeNode and TreeLink Schema
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CREATE TABLE TreeModel (
model INTEGER REFERENCES Transformer,
-- Should be "Decision Tree", "GBT", or "Random Forest"
modelType TEXT NOT NULL

);

CREATE TABLE TreeModelComponent (
model INTEGER REFERENCES Transformer,
componentIndex INTEGER,
componentWeight DOUBLE,
rootNode INTEGER REFERENCES TreeNode

);

Listing 15: TreeModel Schema
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