
Developing a Generalized Intelligent Agent by
Processing Information on Webpages

by

Phillip Gabriel Hege
S.B. Electrical Engineering & Computer Science,

Massachusetts Institute of Technology (2017)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Masters of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2017

c○ Phillip Gabriel Hege, MMXVII. All rights reserved.

The author hereby grants to MIT permission to reproduce and to
distribute publicly paper and electronic copies of this thesis document
in whole or in part in any medium now known or hereafter created.

Author .
Department of Electrical Engineering and Computer Science

May 26, 2017
Certified by. .

Tomaso Poggio
Eugene McDermott Professor at the Department of Brain and Cognitive

Sciences
Thesis Supervisor

Accepted by .
Christopher J. Terman

Chairman, Department Committee on Graduate Theses

2

Developing a Generalized Intelligent Agent by Processing

Information on Webpages

by

Phillip Gabriel Hege

Submitted to the Department of Electrical Engineering and Computer Science
on May 26, 2017, in partial fulfillment of the

requirements for the degree of
Masters of Engineering in Electrical Engineering and Computer Science

Abstract

In this thesis, I designed and implemented a framework for reinforcement learning
(RL) agents to interact with a web environment. With this framework, I introduce a
new challenge for RL agents to learn human activity on the web. By defining a series
of tasks such as using the web as a navigable resource to perform actions, I introduce
an extention to natural language processing models. The framework provides an agent
with rich features including element positioning, color, and size in order to process
text represented in a 2D web space.

Thesis Supervisor: Tomaso Poggio
Title: Eugene McDermott Professor at the Department of Brain and Cognitive Sci-
ences

3

4

Acknowledgments

I would like to give special thanks to Qianli Liao and to the members of CBMM for
their extraordinary support on this thesis. The ideas discussed are the result of the
many conversations between Qianli and me over the course of the year.

5

6

Contents

1 Introduction 11

1.1 Motivation for Browser Environments 12

1.2 Goals . 13

1.3 Thesis Structure . 14

2 Concepts and Terminology 15

2.1 Web Browsers . 15

2.2 Reinforcement Learning . 15

2.3 Models . 16

2.3.1 Convolutional Neural Network 16

3 Related Work 21

3.1 OpenAI . 21

3.1.1 Gym . 21

3.1.2 Analysis . 22

3.2 Tasks . 22

3.2.1 VQA . 23

3.2.2 Analysis . 24

4 Framework Uses 25

4.1 Extending Reinforcement Learning 25

4.2 Flexibility of Reinforcement Learning on the Browser 26

4.3 Supporting New Tasks . 27

5 Environment 29

5.1 Implementation . 29

5.1.1 Chrome-CLI . 29

7

5.1.2 ChromeNavigator . 30
5.2 Models . 32

5.2.1 Testing . 32
5.2.2 Results . 32

5.3 Analysis . 32
5.3.1 Benefits . 32
5.3.2 Limitations . 33

6 Micro-Web 35

6.1 Implementation . 35
6.1.1 Webpage Modules . 35
6.1.2 Webapp Modules . 36
6.1.3 Example Views . 37

6.2 Analysis . 38
6.2.1 Benefits . 38
6.2.2 Limitations . 38

7 Conclusion 39

7.1 Recommendations for Future Work 39
7.2 Contribution . 39

8

List of Figures

2-1 Reinforcement Learning Workflow. The agent performs an action in
the environment which affects the state of the environment in some
manner. A reward is calculated by the environment and returned to
the agent. The change in state is returned in the form of an observation
to the agent. 16

2-2 A visualization of a simple neural network arrangement from cs231n [4].
The input layer receives some value from data, and passes it through
the edges of the graph to nodes in subsequent layers. Each edge has a
weighted value attached to it that amplifies or diminishes the input. A
node fires when it has been stimuluated by enough of its input nodes.
The output layer in this case will either turn on or off if its inputs
satisfy a threshold. 17

2-3 A visualization of convolution over an image with vector output from
cs231n [4]. An extension of the simple network designed to work over an
entire image. Notice the hidden layers have fewer nodes than the input
image has pixels. Each neuron in the hidden layer is connected to a
group of pixels and convolves over them, resulting in a reduced version
of the starting image. Performing convolution many times after which
leads to the output vector, where each location represents a possible
object classification. 18

2-4 Example filters produced by Krizhevsky et al[7]. Here are 96 filters
that detect various kinds of line and shade in an input image. This
was created after being shown to a large set of images. These filters
produce the features necessary for input into more learning networks
in order to solve more tasks. 18

3-1 OpenAI’s implementation of OCR . 22

9

3-2 Image from the VQA challenge shows an example of how the VQA
challenge is meant to be performed. The AI model that can answer
this question must have already learned what a mustache is and then
be able to visually identify that a banana is and understand how it is
being used. 23

4-1 With an example of a slight modification to the VQA challenge now
trains a model on its ability to learn a new task instead of measuring
how much it knows. 26

4-2 This diagram shows how integrating browser framework won’t alter the
reinforcement learning workflow. 27

6-1 Basic search results showing accessible webpages. The links point to
files in the local directory and do not require internet access in order
to function . 37

6-2 Selecting link allows for local navigation. An example of a webpage
displayed locally. 37

6-3 A snapshot of simple message written onto a messageboard. This in-
cludes basic information such as timestamp and message. 38

10

Chapter 1

Introduction

Since the wide adoption of the world wide web, much of human knowledge has been
made accessible through it. Many people interact with this resource on a daily basis
through a web browser, which translates information encoded in markup language
into easily viewable content. Although online resources may range in type, from
encylopedic references, to news articles, to opioninated blog posts; the information
all can be viewed through the same web browser. An intelligent agent that is capable
of navigating our world must also be able to navigate the web as well. This thesis
primarily describes a framework that allows reinforcement learning agents to interact
with a web environment through a browser. The framework allows researchers to
easily create simple extensions using standard web technologies like html, css, and
javascript while not having to worry about implementation details such as connecting
their custom model to the environment or how to calculate model accuracy.

Humans do not memorize everything they need to know. They are resourceful
and rely on reference materials that help them complete tasks. The best references
are designed and formatted to optimize human efficiency. Decisions regarding image
and caption arrangement, page formatting, and text coloring all convey information
to a human. AI agents must be able to parse reference material as well as humans
can in order to learn more quickly and excel at general knowledge tasks.

The popularization of artificial intelligence has brought with it a number of de-
velopment environments and frameworks. Computationaly, there are Tensorflow and
Theano, which have become standard platforms for general AI development. Addi-
tionally, OpenAI released the reinforcement learning measurement and training envi-
ronment, Universe, and its companion interface, Gym. These tools allow researchers

11

to test models against various popular video games. The video games feature simple
interfaces and allow models to make decisions in an open environment more similar
to a real environment.

This thesis introduces a new challenge for reinforcement learning agents to ac-
complish; training a reinforcement learning agent to complete multiple offline tasks
with the help of online resources. Data inputted from the online resource contains
multidimensional information including text location on a 2d grid, size, and coloring.
I define simple tasks such that agents can begin training. More specifically, I go on to
describe how to evaluate an agent on its ability to use the information provided from
a web page and define a new training workflow based on the standard reinforcement
learning workflow.

1.1 Motivation for Browser Environments

The idea of a browser based environment for reinforcement learning stems from the
desire to modularize machine learning research. Computer vision is a difficult prob-
lem that many higher level learning tasks are dependent. For example, solving any
visual question answering (VQA) problem or training an RL agent to play a video
game requires understanding information that is displayed on the screen. Convolu-
tional neural networks are becoming the standard go-to image parsing method for
reinforcement learning tasks[9]. As long as vision is an open problem, general intel-
ligence agents can only rely on feature extraction from the current "best" computer
vision models. There is no way of knowing whether the output of the vision models is
even the best input for the next stage of a higher learning model. Until a solution to
the problem is found, it is prudent to find a substitute method in order to standard-
ize learning accuracy and success. If there were a way to automatically extract the
important visual information without yet having a perfect model, then general intelli-
gence research could continue unencumbered. Providing a model with visual elements
in addition to raw images gives learning algorithms more features with which to train
and can accelerate the search for an ideal model. Building a tool that can extract
information from a graph or image will increase modularity between the research and
development of computer vision models and general intelligence models.

Alternatively, natural language processing based tasks such as reading compre-
hension are accomplished by first serializing text input. These tasks are designed to

12

process text directly and forgo all means of perceptual understanding. Many NLP
models cannot handle inputs that are not linear[1]. Therefore, information organized
into tables or graphs cannot easily be tested, unless they are treated like an image.
Leveraging web environments provides a robust language to generate multimedia
content. Web technology has developed rapidly, and is how many people recieve and
process information today. Web browsers display content in a meaningful way such
that we can easily parse the information.

AI research is defined by the various tasks available. Each has its own unique
dataset with some combination of formatted text and images. There have been at-
tempts to standardize this data collection method, however few have used existing
web technologies to generate, manipulate and store training and validation data. This
has partially been because of a lack of interest in web technologies in AI research.

There also appeard to be a lack of coverage on web environments. Most of the
existing RL environments extend video games or simplify web interfaces into basic
components. None of them tackled the web itself as an environment for training and
testing models. Because we spend so much time on the web, it should also be an area
of focus.

1.2 Goals

I have identified a set of criteria necessary to measure the effectiveness of the proposed
framework.

Customizable In order for a framework to be useful it must be capable serving
many needs. The framework should be agnostic of model.

Simple There are a large number of frameworks that all provide different specific
features and behave in slightly different ways. A framework that is complicated
to understand will not be used for very long. There should be few features that
are focused on providing intuitive functionality.

Compatible The best way to increase liklihood of use, the framework must be com-
patible with the system architectures researchers use to train or test their models
currently.

13

1.3 Thesis Structure

In chapter 2, I briefly explain the concepts necessary to understand my work, including
how web browsers display web pages, what is reinforcement learning, and the intuition
behind convolutional neural networks.

In chapter 3, I describe related work to my thesis where I analyze the existing
OpenAI framework, what is missing from it, and what additions I will make to it.
I also analyze existing AI challenges such as visual question answering, and include
possible areas of improvement.

In chapters 4 - 6, I describe the extension I wrote to the OpenAI framework that
allows control over a web browser, and how I developed the microweb environment
where a reinforcement learning agent can safely explore during training. I analyze
how this framework improves current challenges such as visual question answering
and how it can potentially extend AI research into new fields. Additionally, I explain
how I tested the OpenAI extension and showed that it works with current models,
like convolutional neural networks.

Lastly in chapter 7, I review my contributions to AI research as a whole, and make
recommendations for future work in the field.

14

Chapter 2

Concepts and Terminology

2.1 Web Browsers

Web Browsers are commonly used programs that convert scripts written in hypertext
markup language (html), cascading style sheets (css), javascript into a functional user
interface. A general html page is made up of a series of tags which define the items
that appear on the screen. For instance, a hyperlink is surrounded by the <a> tag,
an image has the tag, and a paragraph has the <p> tag. Elements can be
named as well, by class or by id. Typically an id will be locally unique and no other
elements will have the same id. Elements with the same class will share the same
styling and attributes. The in-memory representation of a webpage is referred to as
a Document Object Model (DOM). CSS and javascript both interact with the
DOM and is the key to making webpages interactive. CSS is used to modify the visual
appearance of elements such as the color, font, and size. Lastly, javascript provides
computational logic to web pages. Javascript defines how an interface will respond
to actions taken by the user whether they be click, scroll, or type commands.

2.2 Reinforcement Learning

Reiinforcement Learning is the area of machine learning that studies how agents per-
form actions in an environment. An observation is the information that an agent
receives from the environment. An agent then decides to make an action which will
alter the environment in some way. Lastly, an environment has a reward function.
Based on the agent’s action and how it alters the environment, a value is calcu-

15

lated that scores how good or bad the agents performance was. Here is a diagram
illustrating the control flow of a reinforcement learning environment.

Figure 2-1: Reinforcement Learning Workflow. The agent performs an action in the
environment which affects the state of the environment in some manner. A reward
is calculated by the environment and returned to the agent. The change in state is
returned in the form of an observation to the agent.

This is a popular field of study because it requires combining perceptual under-
standing with logical reasoning. It is not enough that an agent can correctly identify
an object, it must also be able to reason logically, plan, and make a decision that
will benefit it over the longterm. A common place to find reinforcement learning
challenges is in video games because playing video games maps directly to the RL
paradigm. The environment is the screen, the agent is a character, actions are button
presses on a controller, and the reward is the game score.

2.3 Models

2.3.1 Convolutional Neural Network

A Convolutional Neural Network is a type of neural network that involves multiple
layers. Convolution occurs between subsequent layers in the network. CNNs have
show utility in the development of image parsing applications shown by the entries
of the ImageNet competition. At a high level they extract the features from an

16

image by passing a filter over patches of an image. Then systematically combining
and recombinging the filtered patches until a decision signal is produced. Every
connection has a weight attached to it. During the training phase the weights are
adjusted to maximize the networks success rate over all images in the training set.
There is usually an output vector over a range of all possible answers with a probability
attached to the liklihood of each possibility.[5]

Figure 2-2: A visualization of a simple neural network arrangement from cs231n [4].
The input layer receives some value from data, and passes it through the edges of the
graph to nodes in subsequent layers. Each edge has a weighted value attached to it
that amplifies or diminishes the input. A node fires when it has been stimuluated by
enough of its input nodes. The output layer in this case will either turn on or off if
its inputs satisfy a threshold.

17

Figure 2-3: A visualization of convolution over an image with vector output from
cs231n [4]. An extension of the simple network designed to work over an entire
image. Notice the hidden layers have fewer nodes than the input image has pixels.
Each neuron in the hidden layer is connected to a group of pixels and convolves over
them, resulting in a reduced version of the starting image. Performing convolution
many times after which leads to the output vector, where each location represents a
possible object classification.

Initally the network begins with a random assignment of edge weights. During
the training stage, as images are passed through the network an output signal is pro-
duced. The output signal is compared to the true signal and the difference between
signal and ground truth propagates backward through the CNN in a process known
as backpropagation. Backpropagation is the analog to learning where weight cor-
rections are made. This process takes a lot of data, time and computational resources
to finely tune these models.

The wonder behind CNNs is that upon inspection one can observe the filters
produced within the network and see the beginnings of edge and shape detection.

Figure 2-4: Example filters produced by Krizhevsky et al[7]. Here are 96 filters that
detect various kinds of line and shade in an input image. This was created after being
shown to a large set of images. These filters produce the features necessary for input
into more learning networks in order to solve more tasks.

18

A common practice currently is leveraging pre-trained CNNs using them as a
starting point to solve more complex problems. By removing the final ouptut layer
and then connecting them to other AI models, the combined model can then begin
to complete tasks such as VQA, drive cars, or play video games.[2]

19

20

Chapter 3

Related Work

3.1 OpenAI

Developing a framework that leverages web technologies can extend pre-existing, pop-
ular AI libraries, which currently train and validate one distinct environment at a
time. OpenAI provide the libraries, "Universe" and "Gym"[3] in order to train an
agent on a particular task or game (i.e. pong). The Universe architecture follows the
standard reinforcement learning process, input action, output next frame in pixels
and score. This happens repeatedly until either a maximum number of turns has
been taken or when a completion state has been reached.

3.1.1 Gym

The OpenAI architecture is outlined as three modules: The agent, the environment
and the interface in between. Typically, a researcher designs a custom agent, while
OpenAI provides the interface and the environment. Most of the provided environ-
ments are games (i.e. pong). OpenAI implements the standard reinforcement learning
procedure with the following adaptations:

1. The image from the original game is generated.

2. The agent makes a ’legal’ move within the world of the environment based on
the input image

3. The in-game score is updated

4. A new image from the game is generated

21

5. A pre-existing Optical Character Recgonition (OCR) model extracts the score
from the image. In a game like pong, the score boxes appear on the screen
above the gameplay.

6. The score and the gameplay image is passed to the RL agent in order to generate
a new action.

Figure 3-1: OpenAI’s implementation of OCR

Although the workflow is straightforward, to add a new environment type requires
additional work to extract the score from the game. This inherently limits the speed
at which new games can be added, and the type of games that can be added, thus
limiting the project’s scope.

3.1.2 Analysis

The tasks provided by OpenAI Gym are primarily arcade style video games, with
simple game mechanics[10]. This is a mechanism that allows for agents to explore
indepth environments while still having full developmental control. Training agents
to play games develops a visual processor in a more realistic way but existing in a
video game is simulation, not realism.

3.2 Tasks

This section discusses the current state of AI and their drawbacks as well as describe
a new set of tasks that can push research in perception and intelligence. AI research

22

tasks are currently divided into various problem areas including Natural Language
Processing (NLP), Percption, and Reasoning. There have also been developments
made in bridging the gap between these areas through tasks and endeavors like Visual
Question Answering (VQA) and OpenAI Universe. VQA requires agents to parse
images, understand its contents enough to answer logical questions about the image.
OpenAI Universe provides access to various video games which require agents to parse
an image and perform an action in order to optimize a reward function.

3.2.1 VQA

The VQA challenge is a dataset of questions paired with questions. The challenge
provides an image (byte array) separate from a question (string). One popular way to
tackle this challenge is to parse the string with the state of art NLP model and parse
the image with the state of art computer vision model. Although this modularizes
the development of each model, it limits the amount of interconnection possible. The
appropriate mental model when researching this problem is to imagine you open your
eyes with to a scene, and you hear a question spoken to you. That appropriately
conveys the idea that the image is received from a separate input mechanism than
the question.[6] Given this setup, it is time consuming to create new data. New
images are either realistic photographs collected over time or computer generated
images generated very quickly but not realistic. By the very nature of VQA, and
tasks like it, require models to be too passive. There is no interaction between agent
and image. VQA is good method of testing an intelligent visual processor but not
training one.

Figure 3-2: Image from the VQA challenge shows an example of how the VQA chal-
lenge is meant to be performed. The AI model that can answer this question must
have already learned what a mustache is and then be able to visually identify that a
banana is and understand how it is being used.

23

3.2.2 Analysis

VQA is a good first step into developing the multimedia models necessary to exist
in our sensor rich world. However, the VQA task as it is currently defined side-steps
what intelligence really is. A person who has never seen a mustache or banana would
not be able to answer the above example question yet they would still be deemed
intelligent. An agent shows more intelligence if when it does not know something can
search for a solution.

24

Chapter 4

Framework Uses

4.1 Extending Reinforcement Learning

A new approach to reinforcement learning changes the workflow slightly in order to
produce a more robust method to train an RL model. Instead of completing one task
in one environment, there is the option to complete a large number of tasks using a
local web environment. As an example I will show the workflow as it applies to VQA.
The work flow proceeds with the following steps:

1. The agent is provided with a question and image, "What is the mustache made
out of?"

2. The image and image content from the browser is generated.

3. An agent takes a ’legal’ action (i.e. mouse click, or button press) based on the
input image

4. The environment tracks movement and counts number of UI actions taken

5. A new image from the web is generated

6. An agent produces an answer, if incorrect: continue search. else go to next
question

7. The score and the next browser image is passed to the RL agent in order to
generate a new action.

To accomplish this, there are essentially two environments present. One environment,
the resource environment, maintains the browser state and navigation score, while the

25

other environment, the task environment, maintains the agent’s performance when
completing an offline task. Some tasks include "Write a function in python that
can print input text", "What is the price of an apple?", or "How long does it take
to fly from Boston to Seattle?". One can imagine these questions requiring varying
level of skills, yet all could be solved farily easily when provided with the appropriate
resource. In this design, the resource environment points to a particular webpage
that has supporting information pertaining to the task environment. There is a score
for each environemnt being maintained. The resource score is calculated the same
way regardless of what the information task is, while the task score will changed
depending on the specific task. This two environment model lends itself to general
knowledge based problems and can quickly grow in complexity.

Figure 4-1: With an example of a slight modification to the VQA challenge now trains
a model on its ability to learn a new task instead of measuring how much it knows.

4.2 Flexibility of Reinforcement Learning on the Browser

Placing the content on a series of webpage instead of as raw images and text turns
the VQA task into another reinforcement learning task. The web browser can either
produce an image or raw text and image using the and <p> tags.

26

Figure 4-2: This diagram shows how integrating browser framework won’t alter the
reinforcement learning workflow.

4.3 Supporting New Tasks

With the additional control provided by the web browser, multimedia content can be
easily controlled. This also introduces possibility of new areas of research. A new
task, existing between computer vision and nlp parallels a more realistic scenario for
machines in the real world. Whereas the model for nlp is to be listening to words and
being able to parse sounds into letters and the inputting those characters into your
mental model, this new tasks extends visual reading tasks. When we are presented
with text, visually we see the entire page. We notice if it’s a paragraph, a list or a
caption. Each visual detail tells us important information which we can use to help
decipher a document. Existing AI tasks including VQA do not effective test for this.

Web pages are especially designed for this sort of problem because web browser
must know exactly where each element shows up in the page and its relative position-
ing to other elements. It must be able to distinguish an image caption from a button
label. Training AI models should leverage the robust markup languages to create the
plethora of information availble on the web.

27

28

Chapter 5

Environment

The resource environemnt is the part of the framework that integrates with existing
OpenAI architecture. This module is in charge of breaking down the content provided
on a webpage to modular compontents that can be fed directly into an AI agent. An
example of a resource could be a wikipedia page, a cnn article, or python reference
manual. As long as the content is represented using DOM objects instead of images
or flash content, then the information can be parsed and provided to agents.

5.1 Implementation

The resource environment is a custom extension to OpenAI Gym. It can be instan-
tiated following the standard syntax as defined in their API

env = ResourceEnvironment ()

5.1.1 Chrome-CLI

To enable interactions with chrome, I first wrote a wrapper for the chrome command
line interface in python, Chrome-CLI-PY [8]. The chrome-cli provides window and
tab support but limited javascript console support. I provided handlers to support
click and page scroll. ResourceEnvironment makes calls to Chrome-CLI-PY to in-
terface AI models and the Google Chrome web browser. With these controls, the
ResourceEnvironment can track the relative position and organization of all elements
present on the page.

29

The key variables and methods in the Controller object are defined in the following
way

VARIABLES

action_record Stores all the action values it receives including, click, scroll, and
type

screen_dimensions Dimensions of the screen (monitor)

window_dimensions Dimensions of the window on the screen

element Stores the id of the last selected item

METHODS

click(x,y) Calls a click on the browser window at location x,y

scrollTo(x,y) Scrolls the browser window to location x,y

type(value) When an input element has been selected, it will fill the value

open(url) Opens a new tab at url

close() Closes the currently active tab

getScreenshot() Takes a screenshot of the browser and saves to the file screen-
shot.png

getSrc() Fetches the html src code from the currently active page

getItems(tag) Fetches all of the instances of a particular html tag type such as <a>
or <p>

5.1.2 ChromeNavigator

The ChromeNavigator Environment is the object that follows the OpenAI specifica-
tion and is the direct interface between a model and the chrome controller. To support
the OpenAI spec, I first created the ChromeNavigator Environment by adding the
resource to the Gym env directory. This allows for creation of the new environment
by including gym and running

env = gym. make (’ ChromeNavigator−v0 ’)

30

Within this env, the step, act, and reset functions were overridden to support the
chrome actions.

VARIABLES

starting_url The url the controller will reset to

goal_url In the Navigator example, the target reference material

reward_terms A list of words and phrases that will increase the environment score
when they appear

controller An instance of the chrome controller pointed at the starting_url

METHODS

Action is a tuple generated by the model. Like the name suggests, it represents
the current action the model would like to make in the current browser. These
actions are ("click",(x,y)), ("scroll",(x,y)), or ("type",(value)).

Step takes an action tuple as input and outputs a tuple containing (observation,
reward, done, info). These are open ended variables that can be redefined as
necessary. For the ChromeNavigator environment, observation is a dictionary
which includes an image array representing the current page view in chrome,
and the html source for the page. The current iteration of the framework parses
the source for hyperlink tags. This parsing can be applied to any tag type. Re-
ward is a float value representing how well the agent is using the interface. The
primarily goal of a web browser is to train the agent to use the web properly
which means that the agent must be scored by how well it finds a particular
bit of information. The agent is scored by how few actions it takes and how
similar the current url is to the destination url. In pseudocode the equation is
𝛼𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒−𝑏𝑒𝑡𝑤𝑒𝑒𝑛−𝑠𝑡𝑟𝑖𝑛𝑔𝑠(𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝑢𝑟𝑙,𝑡𝑎𝑟𝑔𝑒𝑡−𝑢𝑟𝑙)

𝑛𝑢𝑚𝑏𝑒𝑟−𝑜𝑓−𝑎𝑐𝑡𝑖𝑜𝑛𝑠−𝑡𝑎𝑘𝑒𝑛
where 𝛼 is a tunable parameter. Es-

sentially, the sooner the model selects an accurate link to a webpage, the higher
it scores. The done variable is a boolean that returns true when the browser
has reached the target url, otherwise returns false. Info is a variable contains
debugging information on the state of the environment useful for the researcher
to know what is going on even if they cannot see the state of the webpage.

31

Reset is a function that is meant to return the environment back to its initial starting
state. For the ChromeNavigator it returns the browser to the defined starting
page, clearing the action list allowing the model to start with a clean slate.

5.2 Models

In order to test the framework, I implemented some common models used on rein-
forcement learning tasks.

5.2.1 Testing

To test the ChromeNavigator, I first passed an image of the browser window through a
convolutional neural network. The model produced two outputs, one discrete variable
that selected the action either click, scroll, or type; and one continuous variable that
corresponded with a location on the screen if click or scroll were selected or from a list
of letters. This effectively tested whether the agent could interact with the controller.
Essentially the model would perform one action per turn and an action could either
be a clicking a point on the window, scroll to a location, or typing a character from
a character list.

5.2.2 Results

The selected model is likely not the ideal model for intelligence however it proved the
framework was functional. Even a simple model could perform actions in the browser
environment.

5.3 Analysis

5.3.1 Benefits

The ChromeNavigator is defined open-ended enough such that new metrics can be
modified as necessary. The resource environment fits in well with the existing OpenAI
architecture making it a part of a larger ecosystem of research and development. The
framework leverages web technologies to make it extendable and easier to pick up.
These reasons could facilitate the creation of new research tasks such as:

32

Navigable VQA Asking a question that requires the model to interact with the
image in order to find the answer. Just like with VQA, in navigable VQA, a
question is posed and an image is provided. The answer may or may not be
present on the current image, but when the agent interacts with the image in a
particular manner, produces a new image with the answer on it.

Common Web Tasks Comparative shop for an item across multiple websites, or
search for the U.S. city with the largest population. Most of the popular website
look and behave similarlly. This is a rich area for researchers to design agents
that can interact with user interfaces.

Custom Research Tasks Design new interfaces to test an agent’s proficiency at one
tasks. Such as the current VQA task could be loaded as a series of webpages
that a model could be trained on.

Automatically Generate Tasks Web language relies on ids and class tags, which
can make simple tasks such as "click on the header" instantly scale from tens of
webpages to thousands of webpages. Instead of having to define tasks by hand,
adding a new taks type is a matter of defining the question by searching for a
DOM element id which can then be applied across the entire micro-web.

5.3.2 Limitations

This environment is open ended but because it is new it is limited in scope. As more
webapp modules are added to the micro-web the framework because more useful.
Additionally, adding functionality such as video support would allow for a larger range
of tasks that can be accomplished by this framework. The next step in AI research
is to train agents to solve a large set of problems in a multimedia environment. In
preparation of that, we need multimedia frameworks and datasets that can support
the activities researchers will want to investigate.

33

34

Chapter 6

Micro-Web

This chapter explains the micro-web system and how it was created. Any agent
that uses this framework should interact with the micro-web instead of training on
live websites. In this way, an agent can be tested in sandbox which can produce
reproducible test results. Furthermore any agent that works on the entire web, should
first be able to successfully navigate the micro-web.

6.1 Implementation

There are two key directories included in the micro-web, the webpage modules, and
the webapp modules.

6.1.1 Webpage Modules

In order to ensure reproducible results, the browser connects to a micro-web instead
of actual web pages. A set of static, hyperlinked .html files from websites including
wikipedia, mit news, and, open courseware are included. There are also a set of
simple web app interfaces defined simply in html and javascript including a message
board and search engine. These webpage samples were scraped from live websites
using the Httrack command line tool. Approximately 20 250 mb website samples
were downloaded. Within each domain the links are active and will allow an agent
to navigate between webpages. If a link points to a resource outside of the domain,
a file not found error will return.

35

6.1.2 Webapp Modules

There are two webapps provided in this version. The first is a search app which
contains an index over all the webpage modules provided in the modules directory.
The index can be recreated by running

python index_websites . py

(See Appendix A). The directory search-index contains the index-ing files. The second
is a message board that allows agents to write and read messages from other users.
There are no user accounts, however messags are stored in ’data.csv’. Both the search
and message board applications are supported by server.py (See Appendix A).

Index_websites.py is implemented using the whoosh python library. Whoosh
provides easy to use local file indexing. It is commonly used for creating indexes to
documentation for large software projects and is capable of handling a corpus of html
documents. Indexing files with whoosh requires defining a schema. For the first index
used in this system, I defined three fields, FileName, FilePath, and Content. These
values will then become searchable.

schema = Schema(FileName=TEXT(s to r ed=True) ,
Fi lePath=TEXT(s to r ed=True) ,
Content=TEXT(s to r ed=True))

Server.py is implemented using python’s web.py library. The script creates a lo-
cal server at that accepts requests at ’http://0.0.0.0:8080/’. Searching is accomplished
by placing a GET request with the id tag with a search term (i.e. http://0.0.0.0:8080/?id=MIT).
The server opens the local database and finds documents containing the word MIT
and returns them in a json encoded object. The message board can be interacted
with the at the ’msg’ route. To do this, send a POST request with a content and
date tage (i.e. http://0.0.0.0:8080/msg?content=hello&date=5/10/2017). To fetch
the list of messages saved in a local file, perform a GET request with no tags (i.e.
http://0.0.0.0:8080/msg). A json object will be returned with the complete set of
messages.

These implementations are small and non-scalable by design. With the scope of
creating a realistic online environment, a given agent should only ever experience a
relatively small amount of data.

36

6.1.3 Example Views

Figure 6-1: Basic search results showing accessible webpages. The links point to files
in the local directory and do not require internet access in order to function

Figure 6-2: Selecting link allows for local navigation. An example of a webpage
displayed locally.

37

Figure 6-3: A snapshot of simple message written onto a messageboard. This includes
basic information such as timestamp and message.

6.2 Analysis

The micro-web is a catalog of webpages and webapps in order for AI researchers to
train and validate models on web tasks without having to create quality web pages
by hand. Each module is 250 mb each which is 5gb for 20 websites. The index that
allows the search engine to run over the microweb is also 5gb. This limit was set
arbitrarily and may vary depending on what kind of tasks somoene wishes to perform.

6.2.1 Benefits

The catalaog of webpages are simple text-based webapges filled with rich information
displayed in the same format that would be viewed online. While most AI tasks
and frameworks must sacrifice realism for magnitude, this repository does not. The
webpages are the same as how a human would view them.

6.2.2 Limitations

Because the content is scraped from websites, dynamic content beyond local moving
gif files is not yet supported. Any content that would be supported by a server must
be built in explicitly which takes additional time.

38

Chapter 7

Conclusion

7.1 Recommendations for Future Work

The framework requires many modules in order to appropriately simulate the world
wide web. With a larger suite of applications, more skills can be learned before it
is used in a live, online setting. Additionally the framework lacks video support.
Although images on a web browser will be contained in the screenshot of the browser
the framework doesn’t refresh quick enough to support a video feed. Reading and
writing the latest video frame to the file system would be particularly slow. One
possible solution to this is to open a channel between chrome and the agent so it will
see the video directly.

Currently most AI models are trained and validated on large server clusters and
must be able to work on those server setups in order to be widely adopted.

7.2 Contribution

For this M.Eng thesis, I extended the popular OpenAI framework to allow reinforce-
ment learning agents access to train and control a web browser as a resource to
complete offline tasks. To support this, I designed a micro-web that provides offline
access to a suite of webpages and webapps for training and validation. This environ-
ment is easily extendable through a set of webpage modules. I tested the framework
with a convolutional neural network that converted a raw image input into actions
that explored the browser environment. Lastly, I define new AI tasks and describe
how they can lead to more intelligent machines.

39

40

Bibliography

[1] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Ba-
tra, C. Lawrence Zitnick, and Devi Parikh. VQA: visual question answering.
CoRR, abs/1505.00468, 2015.

[2] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat
Flepp, Prasoon Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller, Jiakai
Zhang, Xin Zhang, Jake Zhao, and Karol Zieba. End to end learning for self-
driving cars. CoRR, abs/1604.07316, 2016. http://arxiv.org/abs/1604.07316.

[3] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba. Openai gym. CoRR, abs/1606.01540,
2016.

[4] cs231n. Cs231n: Convolutional neural networks for visual recognition., 2075.
http://cs231n.github.io/convolutional-networks/.

[5] Adit Deshpande. A beginner’s guide to understanding convolutional neural net-
works, 2017. https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner

[6] Yash Goyal, Akrit Mohapatra, Devi Parikh, and Dhruv Batra. Interpreting
visual question answering models. CoRR, abs/1608.08974, 2016.

[7] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bot-
tou, and K. Q. Weinberger, editors, Advances in Neural Information Processing
Systems 25, pages 1097–1105. Curran Associates, Inc., 2012.

[8] Peter Rasmussen. Chrome-cli, 2015. https://github.com/prasmussen/chrome-
cli.

[9] Tanmay Shankar, Santosha K. Dwivedy, and Prithwijit Guha. Reinforcement
learning via recurrent convolutional neural networks. CoRR, abs/1701.02392,
2017.

[10] Ilya Sutskever Vicki Cheung, Jonas Schneider and Greg Brockman. Infrastruc-
ture for deep learning, 2017. https://blog.openai.com/infrastructure-for-deep-
learning/.

41

