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Abstract

Real-time prediction of clinical interventions remains a challenge within intensive
care units (ICUs). This task is complicated by data sources that are noisy, sparse,
heterogeneous and outcomes that are imbalanced. In this thesis, we integrate data
from all available ICU sources (vitals, labs, notes, demographics) and focus on learn-
ing rich representations of this data to predict onset and weaning of multiple invasive
interventions. We first investigate the ability of both deep and sequence autoencoders
to effectively learn low-dimensional and dense underlying patient states in an unsu-
pervised way. In addition, we compare these representations along with both long
short-term memory networks (LSTM) and convolutional neural networks (CNN) for
prediction of five intervention tasks: invasive ventilation, non-invasive ventilation,
vasopressors, colloid boluses, and crystalloid boluses. Our predictions are done in a
forward-facing manner to enable “real-time” performance, and predictions are made
with a six hour gap time to support clinically actionable planning. We achieve state-
of-the-art results on our predictive tasks using deep architectures. We explore the
use of feature occlusion to interpret LSTM models, and compare this to the inter-
pretability gained from examining inputs that maximally activate CNN outputs. We
show that our models are able to significantly outperform baselines in intervention
prediction, as well as provide insight into model learning, which is crucial for the
adoption of such models in practice.
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Chapter 1

Introduction

As Intensive Care Units (ICUs) play an increasing role in acute healthcare delivery
[59], clinicians must anticipate patient care needs in a fast-paced, data-overloaded
setting. The secondary analysis of healthcare data is a critical step toward improving
modern healthcare, as it affords the study of care in real care settings and patient
populations [16].

Prognostic models to predict the outcome of patients in Intensive Care Units

(ICU) are valuable for many reasons, among them:

1. Risk stratification: Stratifying patients by their risk to various adverse events
provides a way to evaluate and compare ICUs and new therapies. For example,
if one hospital has a higher mortality rate than another, it does not necessarily
mean that the hospital is performing more poorly. It may just be a reflection of
a difference in the average health of the two different patient populations. The
ability to empirically risk stratify patients essentially allows these evaluations
to calibrate themselves to the unique state of patients in the hospital for more

accurate comparisons [55].

2. Resource utilization: The ICU is a high-cost and resource-constrained envi-
ronment. ICUs are already over-crowded, and many patients are not able to
receive critical care that would be beneficial to them [34]. In this environment,

utilization strategies are clearly essential. Detsky et al. showed that both total
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expenditure and expenditure per day in the ICU were highest for patients whose
outcomes were the most unexpected when compared to a physician’s predicted
prognosis [17]. Being able to predict how at-risk various patients are throughout
their stay provides an empirical basis for scheduling and resource allocation. It
also provide estimates for how long a patient should continue a therapy or what

the optimal time for discharging a patient is [37].

. Clinical decision-making: Predictive models can provide a reliable and unbiased
way to use past experiences to guide future ones. Qutside of reducing expendi-
tures [17], this guidance can lead to more efficient and helpful care for patients
[26]. Physicians perform clinical decision-making everyday. However, a data-
derived prognostic model provides the advantage of being supported by more
data than any one physician’s experiences, and thus being less biased than any
single doctor. When implemented effectively, prognostic models have improved
patient care. For example, the Thrombolytic Predictive Instrument (TPI) esti-
mates the risk of key outcomes of thrombolytic therapy. Sekler et al. performed
a randomized controlled clinical effectiveness trial and showed that printing the
TPI on electrocardiogram headers improved and expedited the appropriate use

of therapies for patients [54].

Throughout this thesis, we focus specifically on clinical decision-making. Elec-

tronic Healthcare Record (EHR) systems that meet federal requirements are present

in most acute care hospitals (97% in 2014 [6]) and office-based physicians’ prac-

tices (78% in 2015 [32]). This widespread availability allows new investigations into

evidence-based decision support.

Specifically, we aim to predict when patients need or can be weaned off of certain

interventions. This is important because the efficacy of interventions can drastically

vary from patient to patient, and unnecessarily administering an intervention can be

harmful and expensive [19].

Understanding how patients react to interventions and progress through time de-

pends on a robust understanding of the patient’s underlying acuity [7]. Traditional
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measures of acuity are often based on mortality evaluated at a single endpoint [5, 23],
or on static scores such as SAPS that don’t take into account evolving clinical infor-
mation [48, 1].

We aim to create richer representations of patient health with the end goal of
predicting actionable interventions. A model of patient health that is able to capture
complex relationships in physiological signals over time is key to accurately predict-
ing onset/weaning of interventions for different patients and necessary for successful
personalized medicine. Continuous, forward-facing event prediction is particularly
applicable in an ICU setting, where we want to account for evolving clinical needs
and information throughout the patient’s stay.

This type of patient phenotyping is challenging because robust representations
of human physiology are complicated, and contain many non-obvious dependencies
between observed measurements. Moreover, modeling evolving clinical information
requires using timeseries data, but this data is often varying-length, irregularly sam-
pled or has missing values. Previously, multitask gaussian processes have been tested
for modelling patient acuity but only in Traumatic Brain Injury (TBI) patients [24]
or only using longitudinal billing data [7].

To this end, we first experiment with using autoencoders for physiological time-
series signal reconstruction. Autoencoders are neural networks where the target values
are the same as the input values, and the hidden layer(s) compress the inputs into a
lower dimensional embedding. Since this embedding tries to reconstruct the original
input, it must capture fundamental features about the input timeseries, and can be
thought of as encoding an underlying patient representation. Feature learning in this
approach is entirely unsupervised, so unlike traditional acuity measures it is not lim-
ited by a manually-defined feature space. Furthermore, recurrent autoencoders are
able to model signals of varying length and are robust to missing data due to the
ability of Long-Short Term Memory (LSTM) cells to forget unimportént inputs.

Furthermore, we focus on actionable insights using robust patient representations
by predicting onset and weaning of interventions. Any treatments come with inherent

risks, and we target interventions that span a wide severity of needs in critical care

13



— specifically, invasive ventilation, non-invasive ventilation, vasopressors, colloid bo-
luses, and crystalloid boluses. Mechanical ventilation is commonly used for breathing
assistance, but has many potential complications [63] and small changes in ventilation
settings can have large impact in patient outcomes [58]. Vasopressors are a common
ICU medication, but there is no robust evidence of improved outcomes from their use
[47], and some evidence they may be harmful [19]. Fluid boluses are used to improve
cardiovascular function and organ perfusion. There are two bolus types: crystalloid
and colloid. Both are often considered as less aggressive alternatives to vasopressors,
but there are no multi-center trials studying whether fluid bolus therapy should be
given to critically ill patients, only studies trying to distinguish which type of fluid
should be given [43].

Capturing the complex relationships across many disparate data types is key for
predictive performance in our tasks. We take advantage of the success of deep learn-
ing models to capture rich representations of data with little hand-engineering by
domain experts. We use long short-term memory networks (LSTM) [31], which have
been shown to effectively model complicated dependencies in timeseries data [3]. Pre-
viously, LSTMs have achieved state-of-the-art results in many different applications,
such as machine translation [28], dialogue systems [12] and image captioning [61].
They are well-suited to our modeling tasks because clinical conditions may be spread
over several hours. We compare the LSTM models to a convolutional neural network
(CNN) architecture that has previously been explored for longitudinal laboratory
data [52]. All models predict outcomes in a continuous manner given any patient

record over vitals, labs, demographic, and notes. In doing so, we:

1. Achieve state-of-the-art prediction results in our forward-facing, hourly predic-
tion of clinical interventions (onset, weaning, and continuity) that could be used

at the time of care.

2. Demonstrate that different data modalities and features are most important for
different types of predictive tasks in our LSTM using feature occlusion. This is

an important step in making models more interpretable by physicians.
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3. Highlight patient trajectories that lead to the most and least confident pre-
dictions in our CNN across outcomes and features, further aiding model inter-

pretability.

4. Compare supervised and unsupervised patient representations in their ability

to predict onset and weaning of interventions.
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Chapter 2

Background

2.1 Long Short-Term Memory Networks

Long Short Term Memory Networks (LSTMs) [31] are a variant of Recurrent Neural
Networks (RNNs) in which each hidden unit contains several logic gates that allow
it to forget specific information from a certain timestep, or allow information to pass
through several timesteps unchanged.

While traditional RNNs suffer from the vanishing gradient problem that arises
when backpropagating gradients to timesteps far in the past [29], the gated flow of
information in LSTMs avoids this training pitfall [30]. LSTM cells are thus able to
effectively model varying-length data and capture long-term dependencies [13].

LSTMs have achieved state-of-the-art results in many different applications, such
as machine translation [11], dialogue systems [12], and image captioning [13]. |

Having seen the input sequence z; . . . z; of a given example, an LSTM performing
classification predicts g;, a probability distribution over the outcomes, with target

outcome ;.

Uy = softmax(Wyh, + by) (2.2)

where z; € RV, W, € RVexl2 p, € Rl2 b, € RN where V is the dimensionality of
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the input (number of variables), N¢ is the number of classes we predict, and Ly is
the second hidden layer size.
LSTM performs the following update equations for a single layer, given its previ-

ous hidden state and the new input:

fo=o(Wilher, m] + by) (23)

it = o(Wilhe_y, 2] + bs) (2.4)

é = tanh(W,[hs_1, z¢] + b.) (2.5)
= f,0 0 +ic O (2.6)

0r = o (Wolhe_1, z1] + bo) 2.7)

he = 0y ® tanh(c;) (2.8)

where Wy, W;, W, W, € REXUL1+V) b b b b, € R are learned parameters, and
fs, 44, G, Ct, 0¢, hy € RI1. In these equations, o stands for an element-wise application of
the sigmoid (logistic) function, and ® is an element-wise product. This is generalized

to multiple layers by providing h; from the previous layer in place of the input.

2.2 Convolutional Neural Networks

In a Convolutional Neural Network (CNN) [40], a number of filters (or kernels) slide
across an image to produce a convolved output. Convolutional layers are usually
alternated with max-pooling layers that achieve non-linear down-sampling, and fol-
lowed by fully connected layers at the end of the network to produce a classification
output.

CNNs have achieved state-of-the-art results in video classification [36], image
recognition [56], image segmentation [42], and transfer learning for image process-
ing tasks [49].

They have also been extended successfully to the 1D space for timeseries classifi-
cation. In this case, the convolutional kernels are one-dimensional and operate along

the temporal dimension [65]. CNNs have proven to be useful for timeseries because
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important factors may often operate at different and unpredicatable timescales. For
example, for sepsis prediction, certain fluctuation patterns in body temperature that
occur over several hours have high predictive value [18]. It is unlikely that pre-defined
features will capture the most predictive variations at all important timescales.

To this end, CNNs have been used for human activity recognition using sensor-
based timeseries data [62], for seizure prediction from intracranial EEG signals [46],
as well as evaluated on several tasks from the UCR timeseries classification archive

[14].
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Chapter 3

Related Work

3.1 Computational Phenotyping

Clinical data is noisy, sparse, and heterogeneous. Additionally, many different pat-
terns present both across features and time can be very important. Therefore, raw
data often benefits from being transformed into a more dense and semantically mean-
ingful feature space that captures the important facets of the data. Furthermore,
following this transformation, patient representations can be examined or clustered
to extract meaningful descriptors of health [35].

One way to create such a representation of patient state is by using features
pre-defined by an expert (i.e. a physician) . However, this approach can be costly,
time-consuming and/or miss important factors. Discovering latent representations
automatically is a more sustainable approach and is more likely to create optimal
representations [9]. When inferring latent representations, unsupervised methods
have the advantage of identifying patterns that completely represent the source data,
without the risk of overfitting to any specific prediction task [39].

In this vein, Multitask Gaussian Processes [24] were used to model multivariate
clinical timeseries by transforming the irregularly-sampled data into a new discrete
latent space. The inferred representations were then assessed in their ability to predict
patient acuity. When used as additional classification features, these representations

improved predictive performance.
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Autoencoders have been trained on random 30-day patches of serum uric acid
measurements [39] to display learned population subtypes, though using these features
did not significantly improve performance on a supervised classification task.

Stacked denoising autoencoders were trained on aggregated event data [45] to
learn underlying patient phenotypes. The learned features improved performance
when predicting a subset of future ICD-9 codes.

These approaches concatenate or aggregate timestamped data, which makes tem-
poral trends difficult to capture. Rather, it may be advantageous to use a sequence-
modeling approach to capture time-dependencies in the data. We make use of se-
quence autoencoders for this purpose.

Sequence autoencoders take in measured signals one timestep at a time into a layer
of LSTM (Long-Short Term Memory) cells and produce a fixed-length embedding.
This embedding is then used as input to another layer of LSTM cells that try to
predict the original input sequence.

Sequence autoencoders using LSTM cells were inspired by the success of general
sequence-to-sequence models applied to machine translation. They were recently used
as an initialization step for recurrent neural networks for text classification [15], but

have not been applied to the clinical space.

3.2 Actionable Prediction Tasks

Clinical decision-making often happens in settings of limited knowledge and high
uncertainty; for example, 55 of the 72 ICU interventions evaluated in randomized
controlled trials (RCTs) resulted in non-significant results [50]. The goal of post-
hoc EHR analysis is to gain insight from healthcare data previously collected during
patient care.

Recent studies have applied recurrent neural networks (RNNs) to modeling se-
quential EHR data to tag ICU signals with billing code labels [8, 41, 10] or to identify
the impact of different drugs for diabetes [38]. Razavian et. al. [52] compared CNNs

to LSTMs for longitudinal outcome prediction on billing codes using lab tests.
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Although predicting billing codes may be useful for automating some billing tasks,
the clinical usefulness of this prediction as well as the predictive strength of these
models (many billing codes may be indicating chronic diseases, rather than disease
onset) is unclear.

Others have focused on using representations of clinical notes [23] or patient phys-
iological signals to predict mortality [24]. Evaluating mortality at a single endpoint,
while providing a proxy for patient acuity, may not provide enough information to be
clinically useful and actionable.

Previous work that has targeted on interventions in ICU populations have often
either focused on a single outcome or used data from specialized cohorts. Such mod-
els with vasopressors as a predictive target have achieved AUCs of 0.79 in patients
receiving fluid resuscitation [22], 0.85 in septic shock patients [53|, and 0.88 for onset
after a 4 hour gap and 0.71 for weaning, only trained on patients who did receive a
vasopressor [60]. However, we train our models on general ICU populations in order
to make them more applicable. In the most recent prior work on interventions, also
on a general ICU population, the best AUC performances were 0.67 (ventilation),
0.78 (vasopressor) for vasopressor onset prediction after a 4 hour gap [25]. These
were lowered to 0.66 and 0.74 with a longer gap time of 8 hours.

With regard to interpretability, Choi et. al. [11] used temporal attention to
identify important features in early diagnostic prediction of chronic diseases from

time-ordered billing codes.
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Chapter 4

Data

4.1 MIMIC Database

We use data from the Multiparameter Intelligent Monitoring in Intensive Care (MIMIC-
III v1.4) database [33]. Since 2001, the MIMIC database has been built up and main-
tained by the Laboratory of Computational Physiology at the Massachusetts Institute
of Technology, Beth Israel Deaconess Medical Center, and Philips Healthcare, with
support from the National Institute of Biomedical Imaging and Bioinformatics [23].
The most recent version of this database, MIMIC III, contains data from around
38,600 adults, comprising over 58,000 hospital admissions, from 2001-2012.

The data includes features such as demographics, bedside vital sign measurements,
laboratory test results, procedures, medications, caregiver notes, imaging reports, and
mortality (both in and out of hospital). MIMIC is unique in its scale, as well as the

robustness of the included variables and presence of highly granular data.

4.2 Types of Data Used

We consider patients 15 and older who had ICU stays from 12 to 240 hours and
consider each patient’s first ICU stay only. This yields 34,148 unique ICU stays.
We use patients from the Medical Care Unit (MICU), Cardiac Care Unit (CCU),
Cardiovascular Intensive Care Unit (CVICU), Medical/Surgical Intensive Care Unit
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(MSICU), Surgical Intensive Care Unit (SICU), and Trauma Surgical Intensive Care
Unit (TSICU). ‘

For each patient, we extract:
1. 5 static variables such as gender and age.

2. 29 time-varying vitals and labs such as oxygen saturation and blood urea nitro-
gen. We use these 29 variables because they are the least sparse in the dataset,

and have verified item IDs.

3. All available, de-identified clinical notes for each patient as timeseries across

their entire stay.

See Table 4.1 for a full list of static, vitals, and labs, and Table 4.2 for dataset

statistics.
Table 4.1: Variables
Static Variables Gender Age
Ethnicity ICU
Admission Type
Vitals and Labs Anion gap Bicarbonate
blood pH Blood urea nitrogen
Chloride Creatinine
Diastolic blood pressure Fraction inspired oxygen
Glascow coma scale total Glucose
Heart rate Hematocrit
Hemoglobin INR"
Lactate Magnesium
Mean blood pressure Oxygen saturation
Partial thromboplastin time Phosphate
Platelets Potassium
Prothrombin time Respiratory rate
Sodium Systolic blood pressure
Temperature Weight
White blood cell count

“International normalized ratio of the prothrombin time
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Figure 4-1: Data preprocessing and feature extraction with numerical measurements
and lab values, clinical notes and static demographics.

Table 4.2: Dataset Statistics

Train Test Total
Patients 27,318 6,830 34,148
Notes 564,652 140,089 | 703,877
Elective Admission 4,536 1,158 5,694
Urgent Admission 746 188 934
Emergency Admission 22,036 5,484 27,520
Mean Age 63.9 64.1 63.9
Black/African American 1,921 512 2,433
Hispanic/Latino 702 166 868
White 19,424 4,786 24,210
CCU (coronary care unit) 4,156 993 5,149
CSRU (cardiac surgery recovery) 5,625 1,408 7,033
MICU (medical ICU) 9,580 2,494 12,074
SICU (surgical ICU) 4,384 1,074 5,458
TSICU (trauma SICU) 3,573 861 4,434
Female 11,918 2,924 14,842
Male 15,400 3,906 19,306
ICU Mortalities 1,741 439 2,180
In-hospital Mortalities 2,569 642 3.211
30 Day Mortalities 2,605 656 3.216
90 Day Mortalities 2,835 722 3,557
Vasopressor Usage 8,347 2,069 10,416
Ventilator Usage 11,096 2,732 13,828
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4.3 Data Processing

Static variables were replicated across all timesteps for each patient. Vital and lab
measurements are given timestamps that are rounded to the nearest hour. If an hour
has multiple measurements for a signal, those measurements are averaged.

Clinical narrative notes were processed to create a 50-dimensional vector of topic
proportions for each note using Latent Dirichlet Allocation [4, 27]. These vectors
are replicated forward and aggregated through time [23]. For example, if a patient
had a note A recorded at hour 3 and a note B at hour 7, hours 3-6 would contain
the topic distribution from A, while hours 7 onward would contain the aggregated
topic distribution from A and B combined. See Figure 4-1 for a schematic of data

extraction and processing. Important topics are displayed in the Appendix.
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Chapter 5

Unsupervised Patient Phenotyping

We use autoencoders to create low-dimensional embeddings of underlying patient
phenotypes that we hypothesize are a governing factor in determining how different
patients will react to different interventions. We compare the reconstruction perfor-
mance of autoencoders that take fixed length sequences of concatenated timesteps
as input with a recurrent sequence-to-sequence autoencoder. We evaluate our meth-
ods on around 35,500 patients from the latest MIMIC III dataset from Beth Israel

Deaconess Hospital.

5.1 Methods

5.1.1 Features

In this section, we use 29 vitals and labs from MIMIC III for each patient as hourly
timeseries spanning their entire stay. These features were chosen because they were
the least sparse, and had verified item IDs. A more detailed description of this data
and preprocessing is found in Chapter 4.

Since there are many missing values, we first forward-fill for each patient using
existing values, and then fill in remaining missing values with the mean value for that

variable across all patients.

The work in this chapter was submitted to the NIPS 2016 Machine Learning for Healthcare
workshop with Marzyeh Ghassemi.
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We take one interval from each patient’s record, resulting in 34,469 total examples.
The data is split into training/validation/testing sets with a 70/10/20 split, stratified
on in-hospital mortality in order to have a spectrum of patient severity in both the

train and test sets.

5.1.2 Awutoencoders

We test the ability of a simple autoencoder with a single hidden layer, an autoencoder
with two hidden layers, and a sequence autoencoder to reconstruct the input (Figure
5-1). We also compare the performance of these models over inputs of different interval

lengths, specifically 4, 16, 32 and 64 hours.

For the fixed-length input autoencoders, we concatenate all 30 features for each
hour throughout the given interval length. We use an embedding size equal to the

total number of input values divided by 10 to achieve a compression factor of 10x.

The sequence autoencoder comnsists of a single hidden layer made up of LSTM
cells. We feed in the input one timestep at a time. If we have k timesteps and f
features per timestep, the hidden layer is of size %. After feeding in the entire input,
this hidden layer at time k encodes the entire input of size f*k, also achieving a 10x

compression.

5.1.3 Experimental Settings

We train on mini-batches of 128 samples with early stopping based on validation set

loss to determine the number of epochs.

In the feedforward autoencoder, all hidden layers use a ReLU activation function,
and the output layer uses a sigmoidal activation function. We implemented all models

in TensorFlow version 1.0.1 using the Adam optimizer.
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t=0 t=1 o t=k

(a) The single layer autoencoder takes a fixed-
length timeseries where the input is length n =
k % f, where k=the number of timesteps, and
f=the number of features per timestep. The hid-
den layer is length m = n/10. The multi-layer au-
toencoder simply adds an additional hidden layer
of dimension m above the first one.

k inputs

(b) The sequence autoencoder first takes a timeseries one timestep at
a time. Each input is of size f (the number of features per timestep)
and there are k inputs (one for each of k timesteps). The hidden layer
is of size m = %4 and each hidden unit is an LSTM cell. After k
timesteps, the m hidden units in the hidden layer encode information
about all the previous k timesteps. The state of these m hidden units
are then used as input to a decoder which outputs a reconstruction of
the input one timestep at a time.

Figure 5-1: Schematics of autoencoder architectures.
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MSE of Autoencoders on Patient Subsets with Timeseries
MSE of Autoencoders on Timaseries Intervals intervals of 32 hours
0.005

B Single Hidden Layer AE
B Double Hidden Layer AE
L] AE

9 4 16 a2 64 MICU CSRU ccu SiCuU TSICU
Input Interval Length Care Unit
(a) Performance of autoencoders on recon- (b) Performance of autoencoders on patient pop-
structing timeseries input of various lengths. ulation subsets with intervals of 32 hours.

Figure 5-2: Schematics of LSTM and CNN model architectures.

5.2 Results

5.2.1 Reconstruction Performance

We first evaluate the performance of each autoencoder by taking the mean squared
error (MSE) between the predicted sequence of values and the true sequence of values.
The sequential autoencoder with one LSTM layer achieves a lower MSE than the
single-layer fixed length autoencoder on all interval lengths, but varies in comparison

to the double-layer fixed length autoencoder (Figure 5-2a).

We also show that reconstructing input timeseries with autoencoders is fairly
robust to stratifications in population subsets. We run the autoencoders on intervals
of 32 hours with patient subsets stratified by care unit. MSEs are higher than when
the autoencoders were trained on the entire patient population, but less than 0.08
in all cases, even though the training sets are much smaller (Figure 5-2b). On these
smaller subsets of patients, the sequence autoencoder appears to be able to generalize
to smaller amounts of training data and does better in all cases; in reconstructions,

the sequence autoencoder appears less susceptible to signal noise.
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Figure 5-3: Examples of feature reconstructions for a single patient for an interval of
32 hours. Note that the scales for each variable are normalized between 0 and 1 based
on the population minimum and maximum. All autoencoders are able to predict the
values of variables well, and the sequence autoencoder generally produces a smoother

trajectory.
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5.2.2 Predictive Ability

Accurately reconstructing the input demonstrates that a dense representation is able
to capture important facets of the data. However, these facets should also have pre-
dictive value. In the following chapter, we use the hidden representation from the
sequence autoencoder to predict several clinical outcomes, and compare its perfor-

mance along with a variety of other supervised representations.
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Chapter 6

Actionable Intervention Prediction

We integrate data from all available ICU sources (vitals, labs, notes, demographics)
and focus on learning rich representations of this data to predict onset and weaning
of multiple invasive interventions. In particular, we compare autoencoder representa-
tions, long short-term memory networks (LSTM) and convolutional neural networks
(CNN) for prediction of five intervention tasks: invasive ventilation, non-invasive
ventilation, vasopressors, colloid boluses, and crystalloid boluses.

Our predictions are done in a forward-facing manner to enable “real-time” per-
formance, and predictions are made with a six hour gap time to support clinically
actionable planning. We achieve state-of-the-art results on our predictive tasks using

deep architectures.

6.1 Data Representation

Physiological variables, static data, and clinical text topics are extracted from MIMIC
ITI as described in Chapter 4.

We compare forward-filled and normalized data (“raw” data) to physiological words,
where we categorize the vitals data and topic distributions by first converting each

value into a z-score based on the population mean and standard deviation for that

The work in this chapter was submitted to the 2017 Machine Learning for Healthcare Conference
with contributions from Nathan Hunt, Tristan Naumann, Alistair Johnson, Leo Celi, and Marzyeh
Ghassemi.
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variable, and then rounding this score to the nearest integer and capping it to be
between -4 and 4. Each z-score value then becomes its own column, which explicitly
allows for a representation of missingness (e.g., all columns for a particular variable

zeroed) that does not require imputation (Figure 6-1) [60].

Numerical Physiological Words
patient } hmr ;17 glucose  patient hoursin | g _-2 | glucose_-1 :‘ : .0 ' mf 1 V uheon _21
3 ‘ 1 NaN 3 1 0 0 0 | o o AU;
B ‘ 2 NaN N o | o o | o o
3 i 3 101.2344 3 3 3 ] 1 0 I 0 0 |
T : ‘ . T T —

Figure 6-1: Converting data from continuous timeseries format to discrete “physiolog-
ical words.” The numeric values are first z-scored and rounded, and then each z-score
is made into its own category. On the right, glucose -2 indicates the presence of a
glucose value that was 2 standard deviations below the mean. A row containing all
zeros for a given variable indicates that the value for that variable was missing at the
timestep.

The physiological variables, topic distribution, and static variables for each pa-
tient are concatenated into a single feature vector per patient per hour [21|. The
intervention state of each patient (a binary value indicating whether or not they are
on the intervention of interest at each timestep) and the time of day for each timestep
(an integer from 0 to 23 representing the hour) are also added to this feature vector.
Using the time of day as a feature makes it easier for the model to capture circadian

rhythms that may be present in, e.g., the vitals data.

6.2 Prediction Task

We split each patient’s record into 6 hour chunks using a sliding window and make
a prediction for a window of 4 hours after a gap time of 6 hours (Figure 6-2). When
predicting ventilation, non-invasive ventilation, or vasopressors, the model classifies
the prediction window as one of four possible outcomes: 1) Onset, 2) Wean, 3) Staying
on intervention, 4) Staying off intervention. A prediction window is an onset if there

is a transition from a label of 0 to 1 for the patient during that window; weaning is
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gap prediction window
—
Sanai ) H i
Signal (Y)
Figure 6-2: Given data from a fixed-length (6 hour) sliding window, models predict
the status of intervention in a prediction window (4 hours) after a gap time (6 hours).

Windows slide along the entire patient record, creating multiple examples from each
record.

Omnset | Weaning | Stay Off | Stay On
Ventilation 0.005 0.017 0.798 0.180
Vasopressor 0.008 0.016 0.862 0.114
NI-Ventilation || 0.024 0.035 0.695 0.246
Colloid Bolus 0.003 - - -
Crystalloid Bol || 0.022 - - -

Table 6.1: The proportion of each intervention class. Note that colloid and crystalloid
boluses are not administered for specific durations, and thus have only a single class
(onset). NI = non-invasive.

the opposite: a transition from 1 to 0. A window is classified as "stay on" if the label
for the entire window is 1 or "stay off" if 0. When predicting colloid or crystalloid
boluses, we classify the prediction window into one of two classes: 1) Onset, or 2) No
Onset, since these interventions are not administered for on-going durations of time.
After splitting the patient records into fixed-length chunks, we end up with 1,154,101

examples. Table 6.1 lists the proportions of each class for each intervention.

6.3 Methods

6.3.1 Long Short-Term Memory Network (LSTM)

We use long short-term memory networks (LSTM) as our first model, as described in

Chapter 2. For a model schematic, see Figure 6-3a.
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6.3.2 Convolution Neural Network (CNN)

We employ a similar CNN architecture to [52], except that we do not initially convolve
the features into an intermediate representation. We represent features as channels
and perform 1D temporal convolutions, rather than treating the input as a 2D image.
Our architecture consists of temporal convolutions at three different temporal granu-
larities with 64 filters each. The dimensions of the filters are 1 x ¢, where ¢ € {3,4,5}.

We pad the inputs such that the outputs from the convolutional layers are the
same size, and we use a stride of 1. Each convolution is followed by a max pooling
layer with a pooling size of 3. The outputs from all three temporal granularities
are concatenated and flattened [57], and followed by two fully connected layers with

dropout in between and a softmax over the output (Figure 6-3b).

(a) The LSTM consists of two hidden layers (b) The CNN architecture performs temporal
with 512 nodes each. We sequentially feed convolutions at 3 different granularities (3, 4,
in each hour’s data. At the end of the ex- and 5 hours), max-pools and combines the out-
ample window, we use the final hidden state puts, and runs this through 2 fully connected
to predict the output. layers to arrive at the prediction.

Figure 6-3: Schematics of LSTM and CNN model architectures.

6.3.3 Autoencoder Representations

We use the sequence autoencoder from Chapter 5 to generate representations in an
unsupervised framework, and compare these to the supervised representations that
are learned in the neural network models. The autoencoder representation is of size
m = f * k, where f is the number of features per timestep and k is the number of
timesteps being summarized. In a separate step, this representation is fed through a

2-layer feedforward neural network in order to predict the intervention class.
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We compare representations trained to reconstruct either the numerical data (AE

Raw) or the physiological words data (AE Words).

6.3.4 Experimental Settings

We use a train/validation/test split of 70/10/20 and stratify the splits based on
.outcome. For the LSTM, we use dropout with a keep probability of 0.8 during
training (only on stacked layers), and L2 regularization with lambda = 1 x 107
We use 2 hidden LSTM layers of 512 nodes each.. For the CNN, we use dropout
between fully-connected layers with a keep probability of 0.5. For the feedforward
neural net used to make predictions on the autoencoder representation, we use 2
layers of size 128 and 56. We use a weighted loss function during optimization to
account for class imbalances. All parameters were determined using cross-validation
with the validation set. We implemented all models in TensorFlow version 1.0.1 using
the Adam optimizer on mini-batches of 128 examples. We determine when to stop

training with early stopping based on the macro AUC on the validation set.

6.3.5 Evaluation

We evaluate our results based on per-class AUCs as well as aggregated macro AUCs.
If there are K classes each with a per-class AUC of AUC) then the macro AUC is
defined as the average of the per-class AUCS, AUCynocro = & > AUCk. We use the
macro AUC as an aggregate score because it weights the AUCs of all classes equally,
regardless of class size [44]. This is important because of the large class imbalance

present in the data.

We use L2 regularized logistic regression (LR) as a baseline for comparison with
the neural networks [51]. The same input is used as for the numerical LSTM and

CNN (imputed 6 hour chunks of data).
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6.3.6 Interpretibility
LSTM Feature-Level Occlusions

Because of the additional time dependencies of recurrent neural networks, getting
feature-level interpretability from LSTMs is notoriously difficult. To achieve this,
we borrow an idea from image recognition to help understand how the LSTM uses
different features of the patients. Zeiler et. al. use occlusion to understand how
models process images: they remove a region of the image (by setting all values in
that region to 0) and compare the model’s prediction of this occluded image with the
original prediction [64]. A large shift in the prediction implies that the occluded region
contains important information for the correct prediction. With our LSTM model,
we remove features one by one from the patients (by replacing the given feature with
noise drawn from a uniform distribution in [0,1)). We then compare the predictive
ability of the model with and without each feature; when this difference is large, then

the model was relying heavily on that feature to make the prediction.

CNN Filter/Activation Visualization

We get interpretability from the CNN models in two ways. First, in order to un-
derstand how the CNN is using the patient data to predict certain tasks, we find
and compare the top 10 real examples that our model predicts are most and least
likely to have a specific outcome. As our gap time is 6 hours, this means that the
model predicts high probability of onset of the given task 6 hours after the end of the

identified trajectories.

Second, we generate “hallucinations” from the model which maximize the predicted
probability for a given task [20]. This is done by creating an objective function that
maximizes the activation of a specific output node, and backpropagating gradients
back to the input image, adjusting the image so that it maximally activates the output

node.

40



6.4 Results

We found deep architectures achieved state-of-the-art prediction results for our inter-
vention tasks. The AUCs for each of our five intervention types and 4 prediction tasks
are shown for all models in Table 6.2. All models use 6 hour chucks of “raw” data
which have either been transformed to a 0-1 range (normalized and mean imputed),

or discretized into physiological words (Section 6.1).

6.4.1 Physiological Words Improve Predictive Task Perfor-
mance With High Class Imbalance

We observed a significantly increased AUC for some interventions when we used
physiological words — specifically for ventilation onset (from 0.61 to 0.75) and colloid
bolus onset (from 0.52 to 0.72), which have the lowest proportion of onset examples
(Table 6.1). This may be because physiological words have a smoothing effect. Since
we round the z-score for each value to the nearest integer, if a patient has a heart rate
of 87 at one hour and then 89 at the next, those will probably be represented as the
same word. This may make the model invariant to small fluctuations in the patient’s
data and more resilient to overfitting small classes. In addition, the physiological
word representation has an explicit encoding for missing data. This is in contrast to
the raw data that has been forward-filled and mean-imputed, introducing noise and
making it difficult for the model to know how confident to be in the measurements it is
given [8]. It may be for the same reason that the autoencoder representation trained
on physiological words also equal to or better on all tasks than the autoencoder for

numerical values.

6.4.2 Feature-Level Occlusions Identify Important Per-Class

Features

We are able to interpret the LSTM’s predictions using feature occlusion (Section

4.5.1). We note that vitals, labs, topics and static data are important for different
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interventions (Figure 6-4). Table A.1 has a complete listing of the

words for each topic mentioned.
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Figure 6-4: We are able to make interpretable predictions using the LSTM and oc-
cluding specific features. The top eight features that cause a decrease in prediction
AUC for each intervention task. In general, physiological data were more important
for the more invasive interventions — mechanical ventilation (6-4a, 6-4b) and vaso-
pressors (6-4c, 6-4d) — while clinical note topics were more important for less invasive
tasks — non-invasive ventilation (6-4e, 6-4f) and fluid boluses (6-4g, 6-4h). Note that
all weaning tasks except for ventilation have significantly less AUC variance.

For mechanical ventilation, the top five important features are consistent for wean-
ing and onset (pH, sodium, lactate, hemoglobin, and potassium). This is sensible,
because all are important lab values used to assess a patient’s physiological stability,
and ventilation is an aggressive intervention. However, ventilation onset additionally
places importance on a patient’s Glasgow Coma Score (GCS) and Topic 4 (assessing
patient consciousness), likely because patient sedation is a critical part of mechanical
ventilation. We also note that the scale of AUC difference between ventilation onset
and weaning is the largest observed (up to 0.30 for weaning and 0.12 for onset).

In vasopressor onset prediction, physiological variables such as potassium and
hematocrit are consistently important, which agrees with clinical assessment of car-

diovascular state [2|. Similarly, Topic 3 (noting many physiological values) is also

42



important for both onset and weaning. Note that the overall difference in AUC for
onset ranges up to 0.16, but there is no significant decrease in AUC for weaning (<
0.02). This is consistent with previous work that demonstrated weaning to be a more
difficult task in general for vasopressors [60]. We also note that weaning prediction
places importance on time of day. As noted by [60], this could be a side-effect of
patients being left on interventions longer than necessary.

For non-invasive ventilation onset and weaning the learned topics are more im-
portant than physiological variables. This may mean that the need for less severe
interventions can only be detected from clinical insights derived in notes. Similarly
to vasopressors, we note that onset AUCs vary more than weaning AUCs (0.14 vs
0.01), and that time of day is important for weaning,.

For crystalloid and colloid bolus onsets, topics are all but one of the five most
important features for detection. Colloid boluses in general have more AUC variance
for the topic features (0.14 vs. 0.05), which is likely due to the larger class imbalance

compared to crystalloids.

6.4.3 Convolutional Filters Target Short-term Trajectories

We are able to understand the CNN by examining maximally activating patient tra-
jectories (Section 4.5.2). Figure 6-5 shows the mean with standard deviation error
bars four features of the 10 real patient trajectories that are the highest and lowest
activating for each task. The trends suggest that patients who will require ventilation
in the future have higher diastolic blood pressure, respiratory rate, and heart rate, and
lower oxygen saturation — possibly corresponding to patients who are experiencing
hyperventilation. For vasopressor onsets, we see a decreased systolic blood pressure,
heart rate and oxygen saturation rate. These could either indicate altered peripheral
perfusion or stress hyperglycemia. Topic 3, which was important for vasopressor onset
using occlusion 6-4, is also increased.

In the less invasive tasks, we saw decreased creatinine, phosphate, oxygen sat-
uration and blood urea nitrogen for non-invasive ventilation, potentially indicating

neuromuscular respiratory failure. For colloid and crystalloid boluses we note general
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Figure 6-5: Trajectories of the 10 maximally and minimally activating examples for
onset of each of the interventions.

indicators of physiological decline, as boluses are given for a wide range of conditions.

While we observe many differences in value, the trajectories do not display sig-
nificant trends (i.e. spikes, increases, decreases), suggesting that an absolute value
being higher or lower is more important than the way that value fluctuates in the
short term.

“Hallucinations” for vasopressor and ventilation onset are shown in Figure 6-6.
While our model was not trained with any physiological knowledge or priors, we note
that it identifies blood pressure drops as being maximally activating for vasopressor
onset, and respiratory rate decreasing for ventilation onset. This suggests that it
is still able to independently learn physiological factors that are important for in-
tervention prediction. We note that these hallucinations give us more insight into
underlying properties of the network and what it is looking for. However, since these
trajectories are made to maximize the output of the model, they do not necessarily

correspond to physiologically plausible trajectories.
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systolic BP

——— vasopressor onset
—— ventilation onset

Figure 6-6: Trajectories generated by adjusting inputs to maximally activate a specific
output node of the CNN.

Intervention Type

Task Model VENT | NI-VENT | VASO | COL BOL | CRYS BOL
Lo 8 Baseline 0.60 0.66 0.43 0.65 0.67
O g« LSTM Raw 0.61 0.75 0.77 0.52 0.70
LSTM Words || 0.75 0.76 0.76 0.72 0.71
CNN 0.62 0.73 0.77 0.70 0.69
AE Raw 0.56 0.71 0.73 0.61 0.62
AE Words 0.61 0.72 0.73 0.66 0.64
:‘cg % Baseline 0.83 0.71 0.74 - -
= < LSTM Raw 0.90 0.80 0.91 - -
LSTM Words 0.90 0.81 0.91 - -
CNN 0.91 0.80 0.91 - =
AE Raw 0.88 0.78 0.90 - -
AE Words 0.90 0.79 0.90 - -
2 C:-)) Baseline 0.50 0.79 0.55 - -
h O < LSTM Raw 0.96 0.86 0.96 - 5
LSTM Words || 0.97 0.86 0.95 - -
CNN 0.96 0.86 0.96 - -
AE Raw 0.95 0.85 0.94 - -
AE Words 0.96 0.85 0.94 - -
= » 8 Baseline 0.94 0.71 0.93 - -
h O < LSTM Raw 0.95 0.86 0.96 - -
LSTM Words || 0.97 0.86 0.95 - -
CNN 0.95 0.86 0.96 - -
AE Raw 0.95 0.80 0.92 - -
AE Words 0.95 0.83 0.92 - -
(@]
g 8 Baseline 0.72 0.72 0.66 - -
= < LSTM Raw 0.86 0.82 0.90 - -
LSTM Words || 0.90 0.82 0.89 = -
CNN 0.86 0.81 0.90 = s
AE Raw 0.84 0.78 0.87 - i
AE Words 0.85 0.80 0.87 = 2

Table 6.2: Comparison of model performance on five targeted interventions. Models
that perform best for a given (intervention, task) pair are bolded.
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6.4.4 Supervised Representations Outperform Unsupervised

Previous work has shown that intermediate layers of neural networks are able to learn
a robust hierarchy of representations of the input [49].

We find that the representations learned within our supervised CNN and LSTM
networks perform better than the unsupervised representations learned by the au-
toencoders. While supervised learning tasks risk learning features too specific to a
single task, we posit that our networks are not as susceptible to overfitting due to
the fact that we predict not just onset, but all parts of the patient trajectory. Using
regularization, dropout, and many hidden units likely improves these representations

as well.
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Chapter 7

Conclusion

This work aims to create robust representations of patient physiological state in order
to predict actionable ICU interventions covering multiple physiological organ systems.

We are able to create dense representations of sparse, heterogeneous physiological
timeseries using both feedforward and sequence-to-sequence autoencoders trained to
reconstruct variable timeseries.

We also perform a comprehensive comparison of unsupervised (autoencoder) and
supervised (LSTM, CNN) representations for predicting onset and weaning of a num-
ber of interventions.

To our knowledge, this work is the first to use deep neural networks to predict
both onset and weaning of interventions using all available modalities of ICU data.
In our tasks, deep learning methods beat state-of-the-art AUCs reported in prior
work for intervention prediction tasks — this is sensible given that prior works have
focused on single targets with smaller datasets [60] or unsupervised representations
prior to supervised training [25]. We also note that using an LSTM with physiological
words significantly improved performance in the two intervention tasks with the lowest
incidence rate — possibly because this representation encodes important information
about what is “normal” for each physiological value, or is more robust to missingness
in the physiological data.

Importantly, we are able to gain interpretability in both models. In the LSTMs,

we examine feature importance using occlusion, and find that physiological data are
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important in more invasive tasks, while clinical note topics are more important for
less invasive interventions. This could indicate that there is more clinical discretion
at play for less invasive tasks. We also find that all weaning tasks save ventilation
had less AUC variance, which could indicate that these decisions are also made with
a large amount of clinical judgment.

The temporal convolutions in our CNN filters over the multi-channel input learned
interesting and clinically-relevant trends in real patient trajectories, and these were
further mimicked in the hallucinations generated by the network. As in prior work,
we found that RNNs often have similar or improved performance as compared to
CNNs [52]. However, it is possible that more complex models would perform better
as they uncover more long and short-term dependencies.

These results are an interest start to extracting interpretability from neural net-
works on patient data, and a step towards enabling these models to be adopted in

real clinical settings.
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Appendix A

Tables

A.1 Generated Topics

Topic

Top Ten Words

Possible Topic

Topic 1

pt care resp vent respiratory secretions remains
intubated abg plan psv bs support settings cont
placed changes note wean rsbi coarse cpap continue

peep suctioned clear extubated rr mask weaned

Respiratory fail-

ure/infection

Topic 2

family pt ni care patient dnr stitle dr home daugh-
ter support team meeting wife son comfort note
social doctor sw dni known time status hospital

contact pt’s work plan lastname

Discussion of

end-of-life care

Topic 3

hr resp gi pt cont gu neuro bs c¢v id note abd soft
bp today stool social noted progress clear remains

nursing skin urine sats foley npn yellow stable Is

Multiple physio-

logical changes

Topic 4

pain pt assessment response action plan control
continue given dilaudid monitor chronic acute
morphine iv po prn patient pca hr meds bp drain

cont nausea ordered relief sbp pericardial assess

Assessments of
patient respon-

siveness
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Topic 10 | pt intubated vent propofol sedation sedated fen- | Continued need
tanyl peep tube versed secretions abg wean re- | for ventilation

mains continue ett suctioned plan ps increased ex-
tubation settings ac sounds min cpap sputum res-

piratory hr ogt

Topic 38 | ml dl mg pm meq assessed icu ul total medica- | Many labs tested
tions systems review pulse labs balance comments
code hour rr min respiratory rhythm prophylaxis

admission allergies blood urine mmhg status dose

Topic 48 | ed pt patient transferred hospital pain admitted | Emergency ad-
denies admission days nausea received ago pre- | mission/transfer
sented micu showed vomiting past reports history | patient

given blood bp old year arrival known osh diarrhea

unit

Table A.1: Most probable words in the topics most important for intervention pre-
dictions.
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