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Abstract

The thalamic reticular nucleus (TRN) is strategically located at the interface between
the cortex and the thalamus, and plays a key role in regulating thalamo-cortical in-
teractions. Current understanding of TRN neurobiology has been limited due to the
lack of a comprehensive survey of TRN heterogeneity. In this thesis, I developed an
integrative computational framework to analyze the single-nucleus RNA sequencing
data of mouse TRN in a data-driven manner. By combining transcriptomic, genetic,
and functional proteomic data, I discovered novel insights into the molecular mecha-
nisms through which TRN regulates sensory gating, and suggested targeted follow-up
experiments to validate these findings.
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BACKGROUND

Autism spectrum disorders (ASDs) are a class of neurodevelopmental disorders affecting
approximately one in every 68 children in the United States'. Patients with ASD typically
experience social interaction deficits and are prone to repetitive, restrictive behaviors and
interests2

-'. Noticeably, there are significant phenotypic variations among ASD patients,
suggesting that it is a highly polygenic disease where each genetic risk variant confers only a
small incremental risk5 . The complex genetic landscape and the intricate connectivity pattern of
diverse cell types in the brain have been the major challenges in understanding ASD as well as
other neuropsychiatric disorders. Importantly, there are currently no cure or effective treatment
for ASD core symptoms6 7.

Among the diverse symptoms with which ASD patients present, atypical sensory-based
behaviors are ubiquitously reported8 . In fact, abnormal regulation of the flow of sensory input
has also been observed in other psychiatric disorders including attention deficit/hyperactivity
disorder (ADHD)9 and schizophrenia10, and recent evidence showed that sensory processing
dysfunction can lead to attentional deficiencies with implications for overall cognitive
performance". Given the convergence of clinical presentations on sensory overload from
distinct diagnoses, sensory gating may be a common circuit perturbed in many of these
diseases and therefore present a promising target for therapeutic interventions. Unfortunately,
our understanding of the molecular and cellular mechanism which regulates sensory gating has
been lacking.

The thalamus plays a key role in relaying sensory inputs to the neocortex for high level sensory
processing dictated by behavioral states12 . Thalamo-cortical interactions are regulated by the
thalamic reticular nucleus (TRN), a thin layer of GABAergic neurons strategically located
between the neocortex and the thalamus 13 14 . TRN provides strong inhibitory projections to the
thalamus, thereby controlling thalamic sensory input and, in addition to sensory gating,
regulates other important physiological processes including sleep rhythms, attention selection,
and higher cognitive functions 15,6. It has been suggested that a "leaky thalamus" as a
consequence of TRN dysfunction could produce overwhelming cortical sensory input as to
disrupt attention and sleep, which has been observed in patients with neurodevelopmental
disorders, particularly early-course schizophrenia 7 and ASD 8 .

Although TRN consists mainly of GABAergic neurons, recent studies have uncovered
considerable diversity in terms of topographic connections, electrophysiological properties, and
functions among TRN cells19-2 2 . TRN neurons can be further partitioned into functionally
divisible modules which control sensory processing in distinct modalities 21'23 . It is therefore likely
that different sectors of the TRN play distinct roles in modulating thalamo-cortical interactions,
but to date there has been no comprehensive survey of the molecular heterogeneity of TRN
neurons.

In this thesis, I aim to leverage the powerful emerging single-cell RNA sequencing technologies
to dissect the diversity of TRN cellular identity in detail. Single-cell transcriptomics studies have
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been successfully applied in characterizing immune cells24 , tumor cells25 , stem cells 26 , and more

recently, neurons 27, and are therefore particularly suitable for application to the TRN. In the
current study, we obtained mouse TRN samples using PV-tdTomato labeling28, enriched for
neurons using Neun antibody selection, isolated individual nuclei by FACS sorting to 96-well
plates, and sequenced single-nucleus full-length transcriptomes using optimized Smart-Seq2
and Nextera protocols (sNuc-Seq) 29. This method could avoid transcriptional degradation and
mRNA level changes caused by neuronal dissociation, and was successful in detecting rare
hippocampal cell types and GABAergic neurons in the adult spinal cord2 9.

This thesis is organized as follows. In Section I, I provide detailed computational analysis of the
TRN sNuc-Seq data to dissect the molecular basis of TRN cellular diversity. In Section 11, I
present a TRN-specific co-expression network (TRNNet) and demonstrate its potential to
annotate ASD risk genes. In Section III, I highlight ongoing computational and experimental
follow-up analyses to complement current sNuc-Seq data. I conclude this thesis with a
perspective on the extension of this work in Section IV.
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SECTION I: MOLECULAR BASIS OF TRN HETEROGENEITY

Our TRN dissection yielded single-nucleus RNA sequencing data for 1,687 cells in total. After
dimensionality reduction and clustering using a standard pipeline as previously described9 , we
identified 694 Gad2"Pvalb' neurons mainly from the TRN (<5% are external globus pallidus
[GPe] cells). We found two anti-correlated transcriptional programs among the 694 cells,
marked by Ecell and Sppl expression respectively. Cells with high levels of Ecell expression
are segregated from cells with high levels of Sppl expression as observed in the two-
dimensional t-SNE30 embedding (Figure 1). From the RNA fluorescent in situ hybridization
(FISH) detection of Ecell and Sppl in Pvalb+ TRN neurons, we found that Ecell+ cells
primarily occupy the edge of the TRN while Sppl+ cells reside in the core region (data not
shown). Further, using electrophysiological recording, we found that Sppl+ neurons present
robust rebound bursting elicited by hyperpolarization with high firing frequencies within a burst,
whereas Ecel1+ neurons present only single bursts (data not shown). This suggests that Sppl+
cells might play a key role in sleep spindle generation and sensory filtering, which I will
investigate further in this thesis. Additionally, we found that retrograde tracing from first-order
thalamo-cortical relay nuclei mainly labeled Sppl+ cells in the center of TRN, while those from
high-order nuclei labeled Ecell+ cells in the peripheral (data not shown). Together, these data
revealed remarkable molecular, cellular, functional, and connectivity heterogeneity of TRN
neurons (manuscript in preparation).

' ll. . Ecell Sppl
S-. (PM+) I (TPM+1)

bISNE 1 b0SNE 1

Figure 1 I Ecell and Sppl mark two transcriptional programs in TRN inhibitory neurons. Here I
plotted the log-transformed expression levels of Ecell (left) and Sppl (right) in the 694 TRN
Gad2+Pvalb+ neurons, where the coordinates correspond to the t-SNE embedding of the high-
dimensional gene expression data. We adapted the original t-SNE algorithm to be more sensitive for

29 r

detectin rare celtye.0SE
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Ecell + and Sppl + cells are identified based on gene expression profiles

To investigate the molecular basis of the observed heterogeneity, I first set out to define Ecel1 +
and Sppl+ cells based on their gene expression profiles. Both Ecell and Sppl expressions
exhibit bimodal distributions among the 694 TRN cells (Figure 2). To capture the majority of
cells in the second peak, I defined the threshold values such that Ecell+ cells have Ecell
expression log(TPM + 1) > 5, resulting in 148 cells, and Sppl+ cells have Sppl expression
log(TPM + 1) > 6, resulting in 243-cells.

0.4-

0.3

4!r Gene
2 0.2 - Ecel1

gi spp1

0.1-

0.0-

0.0 245 5- 7.5 10.0
Gene Expression

log(TPM + 1)

Figure 2 I Log-transformed Ecell and Sppl expression profiles both conform to a bimodal
distribution among 694 Gad2+Pvalb* (primarily) TRN neurons. The dotted lines are the threshold
values used to determine Ecell+ and Sppl+ cells. The density distribution was calculated using the
default Gaussian kernel estimation from the base package of the R software version 3.2.

To assess the robustness of differential gene expression to the choice of threshold values which
define Ecell+ and Sppl+ cells, I varied threshold around the aforementioned values (5 for
Ecell and 6 for Sppl log-transformed expression levels), and calculated the one-sided
differential expression p-values for each gene in the entire genome between the resulting
Ecell+ and Sppl+ cells. I then measured the concordance of differential gene expression by
the rank-based Kendall Tau coefficient for the p-values of each gene under each choice of the
threshold values. I noted that p-values are well correlated (above 0.8) in the range of threshold
values tested (Figure 3), suggesting that the differentially expressed genes are robust to my
choices of threshold values. Not surprisingly, the chosen cells are confirmed by the two-
dimensional t-SNE embedding in that Ecell+ cells, which reside mainly in the second (II)
quadrant, are well segregated from Sppl+ cells, which mainly occupy the fourth (IV) quadrant
(Figure 4).
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5.5 5.6 5.7 5.8 5.9 6.0 6.1
Sppl Cell Cutoffs

6.2 6.3 6.4 6.5

Figure 3 | Differentially expressed genes are robust to the choices of threshold values. I varied the
threshold value to define Sppl+ cells within the window [5.5, 6.5] (x-axis), and for each population of

Sppl+ cells such defined, computed the p-value associated with differential expression between Ecell+
cells (fixed) and Sppl+ cells for each gene. I computed the Kendall Tau coefficient for the p-values in
each case with the real p-values obtained in my choice of threshold 6 (so that the threshold of 6 will have
the perfect Kendall Tau coefficient 1), plotted as the y-axis.

Ecell Cells

,1* 0%

00

-0 -30 6
bISNE 1
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z
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Sppl Cells

-60 -30 6
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Figure 4 | t-SNE embedding of chosen Ecell+ and Sppl+ cells. Here I colored the chosen cells dark
red and the rest of the unlabeled cells light yellow. Ecell+ cells reside mainly in the second (II) quadrant,

while Sppl+ cells reside mainly in the fourth (IV) quadrant.
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Identification of additional gene markers for Ecell+ and Sppl+ cells revealed a
continuum of cellular identity

To identify potential gene markers for Ecell+ and Sppl+ neurons, I looked for genes whose
expression are highly consistently correlated with Ecel1 and Sppl across TRN Gad2'Pvalb+
neurons. Pearson correlation measures the overall concordance of gene expression using all
TRN cells, but it could be sensitive to extensive technical noise owing to the low starting
material of the single-cell RNA sequencing experiments, which results in zero-inflated
distribution of gene expression values31. I therefore devised a novel measure of gene-gene
expression similarity, called IoU (intersection over the union). For each gene, I looked for the
cells in which the gene has the highest expressions ("signature cells" for each gene), and
defined the IoU between a gene pair as the Jaccard index between their signature cells. IoU
therefore ranges from 0 to 1, where an IoU of 1 means the gene pair has exactly the same set
of cells in which they are highly expressed (thus have very similar expression profiles), and an
IoU of 0 means the signature cells between the gene pair do not overlap. IoU is robust against
dropout noise because it only considers the cells where our genes of interest are highly
expressed. I noted that IoU is in general highly correlated with Pearson correlation except for
genes with extensive dropout noise.

I leveraged the fact that our single-nucleus RNA sequencing data come from two batches of
mice sacrificed on different dates (January 20, 2016 and October 26-28, 2016), and treated the
two batches as two independent samples. I then looked for genes highly correlated with
EcellISppl by both Pearson correlation and IoU in both batches, thus obtaining genes which
are consistently co-regulated with Ecel/Sppl. In each case, I used a threshold for Pearson
Correlation and IoU to define highly correlated genes based on the empirical distribution (Figure
5 for Spp1 as an example).

Ca,,alh SAn S

Cyp1a1l Sc2a37 Cl.kb- C0t24aV Ntng2
-. 050 Ano

Gpc5b MW
-# b1 Kcnc1 . ) afn Dusp

I A10051 a. ' 11* ndod P4
025 SC2513

Sp1 3USp1 I
I,. -025 M

CL-000

0,Z.02 03, 0.4 0.0 0 2 04 0 .8
SPPl IOU SPPl IOU

Figure 5 | Additional markers for Sppl+ cells are identified as genes highly correlated with Sppl
by both Pearson correlation and IoU in both batches. For each gene except Sppl, 0 plotted its
Pearson correlation (y-axis) and IoU (x-axis) with Sppl in both batch 1 (left, N = 177 cells) and batch 2
(right, N = 457 cells). Labeled genes were chosen to be highly correlated with Sppl according to both
measures based on threshold values determined by the empirical distribution.
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Using this stringent scheme, I found nine genes for each of Ecel1+ and Sppl1 + cells which could
serve as additional markers for these populations (Figure 6). Interestingly, when viewed
through two-dimensional t-SNE embedding, the aggregate expression profiles of these marker
genes (10 each for Ecell+ and Sppl+ neurons as defined above) revealed a continuum of
cellular identify extending from Ecell+ to Sppl+ cells (Figure 7).

Spp1

57 Clls

27 Genes

Figure 6 | Genes consistently correlated with Ecell (left) and Sppl (right) expression by both
Pearson correlation and IoU in both batches. Genes in light blue are from batch 1 (N = 177 cells) and
genes in light yellow are from batch 2 (N = 457 cells). Genes identified from both batches are labeled in
the overlap region.
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Figure 7 1 A continuum of cellular identity is revealed by gene markers. For each Gad2+Pvalb+
neuron, I counted the number of marker genes expressed and plotted the count for Ecel1+ cell markers
(left) and Sppl+ cell markers (right).
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Ecel1-Spp1- (double negative) cells are unlikely to be a distinct cell population

The observation of the continuum prompted me to investigate whether a third intermediate cell
type exist in the TRN. I sought to characterize cells with no Ecell or Spp1 expression ("double
negative cells", N = 162, Figure 8). Genome-wide scan of the differential gene expression
revealed six genes which are statistically enriched in the double negative cells compared to
Ecell+ and Sppl+ cells. Five of them are either predicted genes, cDNA, or pseudo genes
(Gm10471, 5031410I06Rik, Speer7-psl, Gm10220, and Speer8-psl). The other gene, TIe2, is
a transcriptional co-repressor which is also enriched in Ecell+ cells (but not Sppl+ cells).
Overall, I could not find gene markers with clear functional meaning for these double negative
cells, and thus they are unlikely to be a distinct neuronal population. These data suggest that
double negative cells mark the transition in the Ecell+ - Sppl+ spectrum; consequently, it is
likely that there does not exist a third cell type in the TRN.

40-

N%
wUZ
CA

0.

-40-

Double Negative Cells

0

000 *0 0

400 0

0 *0

-0 -3o 0 30
bISNE 1

Figure 8 | Cells with no Ecell or Sppl expression. Highlighted in dark red, these cells (N = 162)
mainly occupy the central region of the t-SNE map connecting Ecel1+ cells on the second (11) quadrant
and SppI+ cells on the fourth (IV).
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Synaptotagmin 2 is enriched in Spp1+ cells and physically interacts with Navl.7, which in
turn interacts with Cav1.2 and HCN1

I next sought to investigate the potential functional roles of the marker genes as they could
contribute to the observed differences between EcelI+ and SppI+ neurons. I noted that the
alpha-1G subunit of the T-type voltage-dependent calcium channel (Cav3.1, encoded by
Cacna1g) is enriched in Ecel1+ cells, while the alpha-11 subunit (Cav3.3, encoded by CacnaIi)
is enriched in Spp1+ cells. This suggests subunit-specific regulation of T-type calcium channels
which could be relevant for the differential electrophysiological properties between the two cell
populations. I found that Slc6al, the gene encoding a principal GABA transporter that mediates
rapid removal of GABA and termination of GABAergic transmission32 , was enriched in Ecel1+

cells.

Furthermore, I also found that synaptotagmin 2 (encoded by Syt2) is enriched in Spp1+ cells

(Figure 9), but not its close paralogs Sytl and Syt9 (data not shown). Synaptotagmin 2
functions as a fast calcium sensor triggering synchronous neurotransmitter release 33, and
compared to Syti, it is the primary Ca2

+ sensor in inhibitory neurons which ensures fast and
efficient feedforward inhibition in the central nervous system34. Based on these data, I therefore
hypothesized that first-order peripheral-thalamic-cortical pathway, which mainly involve Spp1+
cells, may operate at a shorter timescale than higher-order pathways.

40-

C4J
'UZ 0-

-40-

0*. 0

0 06

*% 00
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Figure 9 1 Syt2 is enriched in Sppl+ cells. In the t-SNE embedding of TRN Gad2+Pvalb+ neurons,
cells with high level of Syt2 expression co-localizes with Sppl+ cells in the fourth (IV) quadrant.
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Interestingly, recent experimental evidence suggests that Syt2 physically binds to Nav1.735
(encoded by Scn9a), a voltage-gated sodium channel. Nav1.7 plays a major role in pain
signaling36 and physically interacts with both Cavl.2 (alpha-1C subunit of the L-type voltage-
dependent calcium channel) and HCN1 (hyperpolarization-activated cyclic nucleotide-gated
potassium channel 1) in Ngn-induced human neurons (Figure 10). Notably, both CACNAIC
and HCNI genes are located in a locus with an index SNP genome-wide significantly
associated with schizophrenia37. Because HCN1 is not highly expressed in the TRN (data not
shown) and Syt2 is located at axonal terminal, it is likely that the Syt2-Nav1.7-Cav1.2 complex
mediates presynaptic neurotransmitter release in Sppl+ cells, and the disruption of this
pathway could lead to increased risk for psychiatric disorders.
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Figure 10 j Nav1.7 (SCN9A) physically interacts with Cav1.2 (CA CNAIC) and HCNI in Ngn-induced
human cortical neurons. We performed immunoprecipitation followed by tandem mass spectrometry
(IP-MS) in Ngn-induced human neurons, using Cav1.2 (harvested at days 19, 22, 29, and 50 post-
differentiation) and HCN1 (harvested at day 50 post-differentiation) as baits. We found that Nav1.7
interacts with Cav1.2 at all time points and with HCN1. In this plot, the lines connecting gene pairs
represent detected physical interactions with false discovery rate less than 0.1. For each gene, the x-axis
denotes the negative logarithm of the p-values of association with schizophrenia 37 using the nearest SNP.
Genes in red are used as baits, genes in green (blue) are genome-wide (sub-genome-wide) significantly
associated with schizophrenia. The dotted vertical line represents the genome-wide significance threshold
5E-8. SCN9A is highlighted. GWS - genome-wide significant.

17



Multiple psychiatric disease risk genes are differentially expressed between Ecell+ and
Sppl+ neurons

Next, given the important role of TRN in sensory gating, attention selection, and sleep rhythm15 ,
I looked at genes differentially expressed between Ecell+ and Sppl+ neuron which have been
implicated in psychiatric disorders. I curated five datasets from recent studies based on
common variants from genome-wide association studies (GWAS) and rare variants from
exome-sequencing and copy number variant (CNV) analysis. Given the ongoing debate about
ASD risk genes3 8 , I included all candidate genes from three large-scale sequencing studies
(Sanders et al, 201539, N = 65 genes; Stessman et al, 201740, N = 87 genes; and Yuen et al,
201741, N = 61 genes). Not surprisingly, only 26 genes (20.2% of genes from all studies) were
found in all three studies, and only 49 genes (38.1%) were found in at least two studies. I also
included 93 genes enriched for damaging de novo mutations in individuals with
neurodevelopmental disorders 42. Lastly, I included genes found in the loci with an index SNP
gemone-wide significantly associated with schizophrenia 37. Based on the CEU population from
the 1000 Genomes project43, I defined each locus to be delineated by SNPs with r2 at least 0.6
with the index SNP, plus 50kb up- and downstream, thus partitioning schizophrenia risk genes
into two groups: 37 genes which reside in a single-gene locus and 417 genes which reside in a
locus with more than one gene (multi-gene locus).

I found 23 genes which are both enriched for psychiatric disease risks from at least one of the
above studies, and enriched in either Ecell+ or Spp1+ neurons (Figure 11). Intriguingly, Slc6al
is enriched in Ecell+ cells and implicated in both ASD and neurodevelopmental delay, and
Aphia is enriched in Sppl+ cells and implicated in both ASD and schizophrenia. Some genes
encoding important channel proteins are also differentially expressed, including Kcnbl, Kcnq2,
Cacnaii, Scn1a, Grin2a, Scn8a, and Grm3. Of particular interest is Scn8a (which encodes
sodium voltage-gated channel alpha subunit 8, Nav1.6) because Scn8a deficiency in the TRN
impairs intra-TRN synaptic inhibition and tonic firing output, resulting in absence seizures**, a
common comorbidity with cognitive and developmental deficits4 5. I found that Scn8a is enriched
in Sppl+ neurons, suggesting that these cells could be important in regulating thalamo-cortical
network synchrony.
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Figure 11 | Differential expression of psychiatric disease risk genes in the TRN. I included disease
risk genes differentially expressed between Ecell+ and Sppl+ cells, plus Ece/l and Sppl. The panel on
the left indicates the source of each gene (i.e. the study in which each gene is reported). The heatmap on
the right shows the log-transformed expression level of each gene. The cells (x-axis) are ranked based on
Ece/l expression minus Sppl expression. The genes (y-axis) are ranked based on the correlation with
Ecel1. The grey bar on the top indicates Ecell+ cells, and the grey bar on the bottom indicates Sppl+
cells.
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Integrative analysis using proteomic datasets suggests pivotal role of cholinergic
transmission in the TRN

To better dissect the molecular basis of the observed differences between Ecell+ and Sppl+
cells, I sought to investigate the potential functions of Ecel1 and Sppl based on proteomics data.
Ece/l encodes a member of the M13 family of endopeptidases which is predominantly

expressed in the central nervous system46 , and is present in both the plasma membrane and
the endoplasmic reticulum 47. Currently, no natural substrate of Ecell has been found 48.

49Simulation studies have reported Ecell substrate specificity based on its secondary structure ,
suggesting that Ecell may have fewer substrates than its paralog Ecel. Although Ecell might
target neurotransmitters from other nerve terminals, I set out to identify possible Ecell
substrates in the TRN based on our single-nucleus RNA sequencing data. I collected all 82
neuropeptides from the Neuropeptide Database (http://www.neuropeptides.nl/) and found 10
which are highly expressed in the TRN, among which 4 are statistically enriched in Ecell+ cells
compared to Sppl+ cells: prepronociceptin (Pnoc), somatostatin (Sst), Secretogranin II (Scg2),
and thyrotropin releasing hormone (Trh). To yield a mechanistic understanding of the role Ecell
plays in the TRN, a follow-up experiment using immunoprecipitation followed by tandem mass
spectrometry (IP-MS) to probe the interaction partners of Ecell in human neurons would be
helpful.

Sppl encodes osteopontin, an extracellular matrix protein with diverse functions50 , most notably
cell-mediated immune responsess1. 2 and cancer progression and prognosis53. Contrary to Ecell,
there is abundant literature on the interaction partners of Sppl. I sought to identify secreted
proteins and plasma membrane proteins which physically interact with Sppl and are relevant to
the TRN using an unbiased approach. First, I obtained the human "secretome" from the Human
Protein Atlas54 which contains 2,916 genes predicted to have at least one secreted protein
product. I then curated physical interaction partners of Sppl from six major human protein-
protein interaction databases, including InWeb 5 '56 , lID5 , Mentha58, HINT59, PINA 0 , and
iReflndex 6 1'6 2, and obtained 157 proteins with varying degree of experimental support. Finally, I
took the top 10% of genes with the highest mean level of expression across the entire TRN. The
rationale of using all 694 TRN neurons rather than only Sppl+ neurons is that osteopontin is a
secreted protein and could potentially act on all TRN cells. I found three genes in the overlap of
above three datasets (Figure 12). Two of them, Adam22 and Adam15, encode members of the
ADAM (a disintegrin and metalloprotease domain) family which function in cell-cell and cell-
matrix interactions63 . Of note, Adam22 plays an important role in the correct myelination in the
peripheral nervous system64 and maturation of excitatory synapses65 , making it an interesting
candidate with which we could investigate the potential functional role of Sppl in regulating TRN
cells.
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Figure 12 | Data-driven approach identifies Ache, Adam22, and Adam15 as interesting candidates.
This Venn diagram shows the overlap between genes with secreted protein products ("secretome"54,

2,916 genes), physical interaction partners of Sppl in six protein-protein interaction databases55-62 (157
genes), and genes highly expressed in the entire TRN (2,137 genes) from our single-nucleus RNA
sequencing data.

Additionally, I identified AChE (acetylcholinesterase), encoded by Ache, which hydrolyzes
acetylcholine (ACh) and thus terminates cholinergic synaptic transmission66 . Ache expression is
enriched in the TRN (Figure 13), and mutations of Ache are associated with ASD risk39,
prompting me to further interrogate functional roles of cholinergic transmission in the TRN. In
fact, I found a converging line of evidence when investigating Grm3, a schizophrenia risk gene
also selectively enriched in the TRN (Figure 14). Grm3 encodes metabotropic glutamate
receptor 3 which has 210 known interaction partners in the aforementioned six protein-protein
interaction databases55 -6 2. I compared our TRN single-nucleus RNA sequencing data with three
other single-cell datasets, including Zeisel et al, 201527 on mouse somatosensory cortex and
hippocampal CA1, Tasic et al, 201667 on mouse V1 cortex, and Habib et al, 201629 on mouse
hippocampus. Importantly, I found that Hrh3 (histamine receptor H3) and Chrm2 (cholinergic
receptor muscarinic 2) are both physical interaction partners of mGluR36 ,6 9 and selectively
enriched in the TRN (Table 1). The histamine receptor H3 functions as a modulator of the
release of neurotransmitters including ACh, whose antagonists exhibit a wide range of
cognitive-enhancing effects70.
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Figure 13 | Ache expression is enriched in the TRN.
shows that expression of Ache is enriched in the mouse
reference (right). Both slices are from adult mice (P56).
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Figure 14 1 Metabotropic glutamate receptor 3 (mGluR3), encoded by Grm3 gene, is enriched in
the TRN and also a schizophrenia risk gene. a) In situ hybridization from Allen Brain Atlas71 of Grm3
expression in adult mouse brain (P56). b) rs12704290 is associated with schizophrenia, which lies in the
intron of Grm3 on chromosome 7. The linkage disequilibrium block is defined by a r2 with the index SNP
of at least 0.6 in the CEU population from the 1000 Genomes Project43 . The x-axis represents genomic
location and gene annotations, and the y-axis represents r2 with the index SNP. Plot generated by SNP
Annotation and Proxy Search tool (http://archive.broadinstitute.orq/mpq/snap/ldplot.php).
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Gene TRN Tasic 67  Zeise 27  Habib & U29

V1 Cortex Somatosensory cortex & Hippocampus
hippocampal CA1

% Cells % Cells Adj. P-Value % Cells Adj. P-Value % Cells Adj. P-Value

Grm3 84% 66% 1.42E-18 64% 4.59E-24 15% 8.41E-188

Hrh3 70% 34% 2.52E-57 33% 1.48E-70 14% 9.91E-133

Cep 164 64% 32% 1.59E-44 29% 2.46E-66 43% 4.70E-17

Chrm2 49% 21% 3.33E-43 7% 3.89E-189 2% 5.19E-139

Sst 60% 31% 7.91E-40 54% 0.015 7% 2.1OE-136

Pickl 65% 40% 2.02E-27 35% 4.44E-46 56% 0.001

Grm7 83% 60% 1.39E-26 50% 5.92E-56 75% 0.0004

Oprkl 12% 2% 3.28E-21 6% 4.26E-07 2% 9.32E-21

Htr2b 15% 5% 7.20E-16 2% 9.21E-62 11% 0.0174

Npy 53% 40% 6.96E-08 42% 8.36E-07 8% 3.45E-107

Grip 1 48% 38% 1.84E-05 24% 4.78E-36 35% 1.56E-07

Grm8 41% 34% 0.0028 13% 1.38E-72 10% 5.75E-55

Table I I Interaction partners of mGIuR3 which are enriched in the TRN. Genes are sorted by their
adjusted p-value (false discovery rate) between Tasic et al, 201667 and TRN datasets. For each gene in
each dataset, I showed the percentage of cells expressing that particular gene and the adjusted p-value
of the one-sided proportion test2 . There are 11 genes that achieve genome-wide significance, among
which Hrh3 and Chrm2 rank on top. Grm3 is highlighted in the top row.
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These findings complement the emerging literature on the cholinergic afferents to the TRN from
the brainstem and basal forebrain. Specifically, the pedunculopontine tegmental nucleus (PPN)
has many long-range projections on many thalamic nuclei, including the TRN7 3. Although both
GABAergic and glutamatergic neurons in the PPN have distinct roles in modulating cortical
activity and sleep/wake states, cholinergic neurons in the PPN specifically suppress slow
cortical rhythms 74 and induce REM sleep75 . In the TRN, optical stimulation of cholinergic fibers
induces the generation of sleep spindles regardless of sleep/wake states and promotes sleep76.
Consistent with my finding of the enrichment of Chrm2 in the TRN, it was reported that ACh
release leads to fast and precise biphasic excitatory-inhibitory synaptic signaling mediated by
both nicotinic ACh receptor a4P2 and muscarinic ACh receptor M277. Therefore, cholinergic
afferents to the TRN have a major modulatory role in updating behavioral states based on
sensory inputs78 .

Recently, synergistic activation of mGluR1 and mGluR5 has been shown to be critical in the
regulation of cholinergic synaptic transmission in the TRN79. My observations above suggest a
potentially novel mechanism in which mGluR3 interfaces with cholinergic signaling such that the
mGluR3 - Chrm2/Hrh3 complex could potentially regulate TRN neuronal firing properties.
Follow-up experiments are therefore warranted to validate the interaction of Chrm2 and Hrh3
with mGluR3 in the TRN, and to compare TRN neuronal firing activity changes in the presence
of mGluR3 agonists with or without Chrm2/Hrh3 antagonists.
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Osteopontin interaction partners enriched in Sppl+ cells could potentially explain their
unique firing properties

Lastly, I sought to find differentially expressed genes which could explain the unique firing
patterns of Sppl+ cells. I started with 157 known interaction partners of Sppl and looked for
those that are enriched in Sppl+ cells. After adjusting for false discovery rate (FDR), I found 16
genes which are statistically enriched, among which Kcnipl and Cacng4 ranked among the
most differentially expressed (Table 2). Although both enriched in Sppl+ cells, Kcnipl is highly
expressed across the TRN while the expression level of Cacng4 is relatively low (Figure 15 and
Figure 16).

Gene P-Value FDR

Co/1al 9.15E-15 1.52E-12

Kcnipl 6.46E-10 5.36E-08

Cc2d1b 2.69E-05 1.20E-03

Mapla 2.88E-05 1.20E-03

Itgav 4.62E-05 1.53E-03

Cola2 9.43E-05 2.24E-03

Cacng4 8.82E-05 2.24E-03

CoI4a5 2.27E-04 4.71E-03

Fam20c 2.75E-04 5.07E-03

Bag6 8.28E-04 1.38E-02

FthI 1.07E-03 1.62E-02

Itga4 1.71E-03 2.37E-02

Itgb3 2.88E-03 3.67E-02

Stk39 3.34E-03 3.97E-02

Cir 4.05E-03 4.36E-02

Atp2a2 4.20E-03 4.36E-02

Table 2 | Interaction partners of Sppl which are enriched in Sppl+ cells. I examined all known
interaction partners of Sppl and calculated the p-value associated with the one-sided t-test of expression
levels in Sppl+ cells compared to Ecell+ cells for each gene, and adjusted for false discovery rate (FDR).
There are 16 genes which passed the FDR threshold of 0.05.
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Figure 15 ICacng4 and Kcnipl are statistically enriched in Sppl+ cells. In the t-SNE embedding of
TRN Gad2+Pvalb+ neurons, Sppl+ cells in the fourth (IV) quadrant have higher levels of Cacng4 and
Kcnipl expression compared to Ecell+ cells in the second (11) quadrat, although Kcnipl is highly
expressed across the entire TRN while Cacng4 expression is restricted to a few cells.
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Figure 16 | Cacng4 and Kcnipl are enriched in Sppl+ cells in the center of the TRN. In situ
hybridization from Allen Brain Atlas71 confirms that Cacng4 expression is restricted to a few cells while
Kcnipl is highly expressed in the TRN. Ecell and Sppl expressions are shown as references. All slices
are from adult mice (P56).

Cacng4 encodes transmembrane AMPAR regulatory protein (TARP) gamma 4. Members of the
TARP gamma family associate with AMPAR on the plasma membrane and can profoundly
influence gating. Studies of another gamma subunit, TARP gamma 2, suggested that AMPAR-
TARP interaction destabilizes the closed state of AMPAR through electrostatic interactions
between the extracellular domains80 ,81, which are conserved across TARPs, including TARP
gamma 4 (Cacng48 2). In addition, an earlier GWAS identified rs17645023, which lies in the
intergenic region upstream of Cacng4, to be sub-genome-wide significantly associated with
schizophrenia and bipolar disorder8 3 (p-value = 6.OE-7). These data suggest that Cacng4 could
be an interesting gene for follow-up studies. Given that glutamate receptor 3 (Gria3) are highly
expressed in the TRN and enriched in Sppl+ cells (adjusted p-value [FDR] = 3.3E-4), it is
therefore possible that Cacng4 regulates Sppl+ neuron activity through modulating fast
glutamatergic synaptic transmissions.
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Kcnipl encodes a potassium voltage-gated channel interacting protein 1 (KChIP1), which
associates with Kv4 channel alpha subunit8 4 and transduces calcium signals through the EF
hand domains 85 . In hippocampal interneurons, KChIP1-Kv4.3 complex enables fast recovery
from inhibition of A-type currents and stronger inhibitory control of firing86 . Interestingly, T-type
calcium channels bind to Kv4-KChIP complexes, and this coupling allows efficient modulation
of Kv4 activity by calcium currents87 . Moreover, a long non-coding RNA NEAT1 directly binds
KChIP1 and is associated with neuronal hyperexcitability states88 . I found that Kcnipl (which
encodes KChIP1), kcnd2 (which encodes Kv4.2), and Cacnali (which encodes Cav3.3) are all
highly expressed in the TRN (Figure 11 and Figure 16), and that Kcnipl and Cacnali are
selectively enriched in the TRN compared to other brain regions 2 7,29,67 (data not shown). These
data suggest that Kv4.2-KChIP1-Cav3.3 interaction in the TRN could potentially regulate
neuronal excitability and sleep spindle generation, most likely through Sppl+ neurons.
Questions remain regarding the functional implications of the Sppl-KChIP1 interaction,
particularly given that Sppl is secreted and KChIP1 is intracellular 4 . We have begun
investigating potential functional interactions between A-type potassium currents and T-type
calcium currents in the TRN. Moreover, based on the observation that KChIP1 is selectively
enriched in the TRN (Figure 16), we have started exploring therapeutic potential to target
KChIP1 and specifically regulate TRN neuronal firing properties.

Section I Summary

Through computational analysis of the single-nucleus RNA sequencing data of 694 TRN
Gad2'Pvalb+ neurons, and integrating genetics and proteomics data, I have found a gradient of
cellular identity marked by Ece/l and Sppl expression, identified several gene candidates which
could explain the electrophysiological and functional differences between Ecell+ and Spp1+
cells, and formed new hypotheses on TRN neurobiology, particularly with respect to cholinergic
transmission and sleep spindle generation.
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SECTION II: TRN-SPECIFIC CO-EXPRESSION NETWORK

Background

Recent technological advances in mapping genomic, transcriptomic, and proteomic data have
made it possible for us to generate unprecedented amounts of functional genomic datasets,
which can be conveniently summarized as biological networks, where nodes represent genes
and edges represent functional association between gene pairs. These networks have emerged
as a powerful tool to dissect complex biological processes that would otherwise have been
missed without a comprehensive genome-wide view of the functional associations89 ,90.

It has been suggested that diverse functional genomics networks converge on a set of core
features, such as

- Scale-free: most genes have few connections and only a handful of genes have many
connections91.

- Small-world: shortest paths between any pair of genes are usually small92

- Modular: some genes connect more strongly to each other than to the rest of the
network93

These features correspond to the fundamental premises of molecular biology in that most genes
collaborate with other genes to exert their functions concertedly 94, and that some essential
genes represent hubs in the network with many functional connections95 .

Given the biological basis of functional networks, one of their key usage is to interpret large-
scale genomic sequencing data. Combining functional genomics networks with exome-
sequencing or genome-wide association studies (GWAS) is a cost-efficient and scalable method
to uncover candidate cellular circuits enriched for genetic risk in a particular disease, which can
be followed up in a targeted manner both computationally and experimentally to dissect disease
mechanism and identify novel drug targets.

As a concrete example, in the context of psychiatric disorders, common variants from GWAS
and rare variants from exome-sequencing and copy number variant (CNV) analysis have
converged on protein complexes including chromatin remodeling complex, glutamate receptor,
hyperpolarization-activated cyclic nucleotide-gated (HCN) channel, and the L-type calcium
channel37 ,39,96 -98. Therefore, using a protein-protein interaction network we developed earlier
(InWeb3 56), I previously identified a novel gene NAGA based on its topological similarity to a set
of 65 ASD risk genes 39. Interestingly, NAGA has a brain-specific expression quantitative trait
loci (eQTL) from the GTEx portal (https://www.gtexportal.org/home/) and is also implicated in
schizophrenia GWAS 37. Mutations of NAGA have been implicated in Schindler disease9 , which
has overlapping symptoms with ASDs' 00. These data suggest NAGA could be an interesting
autism candidate gene for targeted follow-up studies (manuscript in preparation), and highlight
the utility of network-based methods to interpret and augment psychiatric disease risk gene sets.
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Constructing and benchmarking TRN-specific co-expression network (TRNNet)

To further exploit the unbiased nature of genomic networks to aid discovery of novel gene
associations in psychiatric disorders, I first developed a TRN-specific co-expression network
from the single-nucleus RNA-Sequencing data, treating each cell as independent samples. To
construct this network, I applied the Weighted Gene Co-Expression Network (WGCNA) toolkit 01,
chose the soft-power coefficient 0 = 3 to simulate the scale-free property of the co-expression
network, and used a cutoff topological overlap matrix (TOM) coefficient 0.05, resulting in a
network with 229,205 edges spanning 11,934 genes (called TRNNet henceforth). In TRNNet, an
edge between two genes represents robust co-regulation between those genes in the 694
Gad2'Pvalb' (primarily) TRN cells based on our single-nucleus RNA sequencing data. I used
the Vertebrate Homology database from the Mouse Gene Informatics Portal
(http://www.informatics.'ax.org/homoloqy.shtml, downloaded on March 16, 2017) and the HUGO
Gene Nomenclature Committee (http://www.genenames.org/, downloaded on March 15, 2017)
to convert mouse genes to human genes.

To establish the uniquely enabling features of TRNNet, we constructed a control co-expression
network from the Gene Expression Omnibus 02 . Briefly, we chose the threshold of the
expression matrix from Affymetrix arrays to exclude low quality samples by the following criteria:

1) We excluded samples where the ratio of signals coming from 3' end to that coming from
5' end is above 2 for ACTB and GAPDH gene transcripts. These two genes are standard
control which reflect the extent of mRNA degradation and labeling accuracy.

2) We excluded samples where the average signal across all genes is below 150 based on
the empirical distribution.

3) We excluded samples where the number of detected genes is less than 30.
4) We excluded samples where the goodness of fit to the scale-free (power-law) regression

is less than 4 based on the empirical distribution.

We then constructed the gene correlation matrix from the 19,019 filtered samples, and applied
global silencing10 3 and network deconvolution10 4 to remove indirect effects between pairs of
genes. The resulting network (called GEONet henceforth) has 500,000 edges spanning 12,390
genes. Importantly, because the original samples of GEONet come from a variety of tissue
types, it is a good control to compare with TRNNet which should possess tissue specificity
relevant to studying neurodevelopmental disorders.

To examine potential neuronal specificity of TRNNet, I applied the random forest classifier
("Quack", manuscript in preparation, please see http://apps.broadinstitute.org/genets for details)
to assess whether topological features in a particular network can be leveraged to identify
neuronal pathway relationships. First, we curated a set of pathways that are likely involved in
neurodevelopmental processes, using a text-mining approach on C2:CP (canonical pathways)
and C5:BP (GO biological processes) gene sets from the Molecular Signature Database
(MSigDB, http://software.broadinstitute.orq/qsea/msiqdb/). We found 306 such manually-curated
pathways which have evidence to be involved in neuronal functions.
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Next, I computed 18 topological properties for each gene in each pathway, including node
degree, centrality, and local clustering coefficient metrics, and repeated the same calculations
for context genes, which are defined as neighboring genes in the network but not pathway
members, down-sampled to match the size of pathway genes (Figure 17a). Notably, pathway
genes and context genes exhibit differential distributions of these topological features (data not
shown). I then trained a random forest classifier with an ensemble of 500 decision trees which
can optimally distinguish pathway genes from context genes based on the 18 topological
features, and calculated the probability for each gene to belong to a particular pathway (Figure
17b).
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Figure 17 1 Building a general classifier to predict pathway membership from networks. a) For a
given pathway, we measured its topological properties exemplified here with the 21 genes of the AKT
pathway in the InWeb3 protein-protein interaction network . In the matrix, there are 18 topological
properties shown as columns and the corresponding values for each of the 21 genes in the AKT pathway
(black circles) as rows (metric values correspond to colors as indicated in the figure legend). One row in
this matrix corresponds to one row in the final modeling dataset. We made the same measurements for
genes in the context of the AKT pathway (white squares); only 2 of 2,449 context genes shown in the
illustration. b) This procedure was repeated for 306 neuronal pathways from which the modeling dataset
used to train the classifier is derived. For any candidate gene in a network, the classifier can assign a
probability that it belongs to a pathway (e.g., the AKT pathway) as defined by the candidates' topological
properties in the overall network and in relation to a specific set of genes (e.g., the 21 AKT genes).
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For a subset of the 306 neuronal pathways ("training pathways"), I randomly masked 30% of the
pathway members and asked Quack classifier to distinguish these held-out pathway genes from
the context genes based on the topological features of the 70% of the remaining pathway genes.
I then assessed the ability of a network-specific Quack model to make such predictions by
computing the area under the receiver operating characteristic curves (AUCs) using the yet-
unseen pathways ("validation pathways"). I found that even though TRNNet contains less data
(694 single cells compared to 19,019 samples), it outperforms GEONet in learning the
topological features of the neuronal pathways, with an AUC of 0.80 compared to 0.78 of
GEONet (Figure 18). Further analyses have shown that co-expression networks constructed
using tumor samples 051 06 performed worse in this task with AUCs <0.70 (data not shown).
These results suggest that TRNNet is particularly suited for studying the architecture of
pathways related to neurodevelopmental processes. Given that TRNNet is constructed using
only TRN inhibitory neurons, it is highly likely that the increase in predictive power originates
from its tissue specificity compared to the generic co-expression networks.
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Figure 18 | Comparison of area under the receiver operating characteristic curve (AUC) between
TRNNet and GEONet. I applied Quack classifier to assess the ability of TRNNet and GEONet to
recapitulate pathway relationships using 306 curated neuronal gene sets. For each network, I trained the
Quack random forest classifier using 70% of the pathways ("training pathways"), and validated the model
using the 30% validation pathways. In the model training phase, I masked a random 30% of each training
pathways asked each model to maximally segregate the held-out pathway members from the context
genes, based on the 18 topological features of the 70% of the pathway genes. Among the validation
pathways, the Quack model trained on the TRNNet has an AUC of 0.80 compared to that trained on
GEONet which has an AUC of 0.78.
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TRNNet predicts ARL6IP4 as a potential novel ASD gene

I next applied the TRNNet-specific Quack model to analyze 65 genes implicated through
genetics in ASD39. I found 226 genes with a Quack Probability (QuackP) larger than 0.3, which
are likely to be functionally related to the 65 ASD seed genes because of their similar
topological features in TRNNet. Among these 226 genes, I found FAM47A (QuackP = 0.54)
which emerged as a new ASD candidate gene in a recent whole genome sequencing study
(Yuen et al, 201741), and DOCK8 (QuackP = 0.40) which was reported in another recent
candidate gene sequencing study (Stessman et al, 201740). Further, I found a novel gene
ARL6IP4 (QuackP = 0.36). ARL6IP4 has a brain-specific eQTL based on the GTEx portal
(https://www.qtexportal.org/home/). Additionally, ARL6IP4 resides in a locus defined by the
linkage disequilibrium with SNP rs2851447 on chromosome 12, which is genome-wide
significantly associated with risk of schizophrenia (p-value = 2.19E-1437, Figure 19). Together,
these independent genetic data and eQTL data suggests that ARL6IP4 could be an interesting
autism candidate gene that can be followed up with targeted functional experiments. Gene
ontology annotations of ARL61P4 includes poly(A) RNA binding, which may reflect a novel
aspect of ASD pathophysiology.
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Figure 19 1 TRNNet-specific Quack model predicts ARL6IP4 as a novel ASD gene. ARL6IP4 resides
in a 14-gene locus indexed by SNP rs2851447 on chromosome 12. The linkage disequilibrium block is
defined by a r2 with the index SNP of at least 0.6 in the CEU population from the 1000 Genomes Project4 3.
The x-axis represents genomic location and gene annotations, and the y-axis represents r2 with the index
SNP. ARL6IP4 is highlighted in the red box. Plot generated by SNP Annotation and Proxy Search tool
(http://archive.broadinstitute.orq/mpq/snap/ldplot.php).
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Section I Summary

I constructed a TRN-specific co-expression network based on single-nucleus RNA-Sequencing
of 694 Gad2*Pvalb' (primarily) TRN neurons (TRNNet). TRNNet exhibits tissue specificity and
outperforms generic co-expression networks in predicting neuronal pathway structures.
TRNNet-specific Quack model can replicate ASD risk genes emerging from recent sequencing
studies, and predict novel ASD candidate genes when complemented by genetic and eQTL
data. We have enabled the workflow of network analysis illustrated above on the GeNets web
platform (http://apps.broadinstitute.org/qenets) where users can easily leverage functional
networks like TRNNet to interpret large-scale genomic data (manuscript in preparation).
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SECTION III: ONGOING WORK

To complement TRN single-nucleus RNA sequencing data, I am working with various
collaborators to perform follow-up experiments and computational analyses to further dissect
interesting aspects of TRN neurobiology.

Part I: Causal Gene-Marker Pairs

My computational analysis of the 694 Gad2'Pvalb' (primarily) TRN neurons are mainly based
on the assumption that Ece/l and Sppl are not only marker genes, but also play functional roles
in their respective cell populations. However, it could be the case that both genes are only
associated with the phenotypic differences between Ecell+ and Sppl+ cells, while there may
exist other genes that causally explain the molecular mechanisms of such divergence. We have
started investigating additional gene-marker pairs which could potentially serve as causal genes
underlying the electrophysiological and functional differences between Ecell+ and Sppl+ cells.
One such pair is Sst-Met. In the t-SNE space, cells with high Sst expression roughly co-localize
with Ecell+ cells on the second (II) quadrant, while those with high Met expression co-localize
with Sppl+ cells on the fourth (IV) quadrant. Out of the 694 neurons, 51 (7%) express both Sst
and Met, and 192 (28%) express neither Sst nor Met (Figure 20). These proportions are similar
to the case of Ece/l-Sppl, where 34 cells (5%) express both Ece/l and Sppl while 162 cells
(23%) express neither.

The reason why the Sst-Met pair is particularly of interest is that both have compelling evidence
as regulating important neurodevelopmental processes. Met is an established autism genetic
risk factor'07  and MET signaling is critical in controlling the timing of neuronal growth,
glutamatergic maturation, and cortical circuit function'0 8. Somatostatin (Sst) is a classic marker
for GABAergic interneurons whose expression is regulated by brain-derived neurotrophic factor
(BDNF)109. Reduction in Sst expression has been described in diverse brain disorders, including
mood disorders101" 11 and neurodegenerative diseases 12 . Therefore, it is possible that Sst and
Met are functionally causal gene markers for the cell populations labeled by Ecell and Sppl in
our dataset.
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Figure 20 ISst and Met mark two anti-correlated transcriptional programs in the TRN.
Cells expressing Sst but not Met (green) roughly co-localizes with Ecell1+ cells on the second (11)
quadrant of the t-SNE map, while cells expressing Met but not Sst (red) co-localizes with Sppl+
cells. Cells expressing both Sst and Met are labeled yellow, while double negative cells are
labeled grey.
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Part II: Molecular Circuits through which PTCHDI Regulates TRN Function

Mutations in the X-linked PTCHDI gene have been identified in approximately 1% of patients
with intellectual disability and ASD, and these mutations significantly increase the risk of
developing ASD-like behaviors 13 . However, the cellular mechanisms associated with PTCHD1
is poorly understood. Recent evidence suggests that PTCHD1 protein binds with post-synaptic
proteins PSD95 and SAB102, whose deficiency could cause excitatory synaptic dysfunction'1 .
In the TRN, the expression of PTCHDI is highly enriched during early postnatal development. In
our single-nucleus RNA sequencing dataset, Ptchdl is expressed in more than 80% of TRN
neurons, although it is not differentially expressed between Ecell+ and Sppl+ cells.
Functionally, PTCHD1 deletion attenuates TRN activity by reducing calcium-dependent
potassium currents, thereby directly regulating attention, activity, and sleep 15 . These data
suggest that studying PTCHDI function in the TRN could afford valuable insights into how TRN
influences both normal and pathological neurodevelopmental processes.

We are performing two experiments towards this aim.

Comparing TRN Single-Cell RNA Sequencing between Wild-Type and Ptchd*'l Mice

As a pilot experiment, we collected 16,952 cells covering the entire TRN area from four mice
(P10), following the standard single cell protocol from 1OX Genomics (10X Genomics,
Pleasanton, CA). The four mice consist of two pairs of littermates with one Ptchdl knock-out
(KO, mouse 2 and 4) and one wild type (WT, mouse 1 and 3) each, to ensure comparable
environment and genetic background' 6. We used the default cellranger aggr from the Cell
Ranger software v1.3 to aggregate data from all four mice, by downsampling and normalizing to
have the same sequencing depth for each sample.

We applied the Seurat package for data processing1 7 and identified 297 TRN neurons (Figure
21a). We did not observe significant batch effect, although there are many more cells from Mice
1 and 2 compared to those from 3 and 4 (Figure 21b). We have identified several robustly
differentially expressed (DE) genes between WT and KO; however, the yield of TRN
Gad2+Pvalb+ cells are fairly low (1.8%). We are working to improve the dissociation protocol to
obtain more cells from more mice, which will increase power for DE gene detection.
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Figure 21 1 Pilot study of TRN single-cell RNA sequencing from four wild-type (WT) and Ptchd1l'
(KO) mice. a) t-SNE embedding of TRN Gad2+Pvalb+ neurons (blue, N = 297 cells) combined with
excitatory neurons (red, N = 326 cells). b) Cells labeled by their mouse of origin. Mice 1 and 3 are WT,
and mice 2 and 4 are KO. Among the 297 TRN neurons, there are 130 cells from mouse 1, 115 cells from
mouse 2, 24 cells from mouse 3, and 28 cells from mouse 4.
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Identifying the interaction partners of PTCHD1 protein using BiolD

BiolD is a new technique which can screen for protein interactions in living mammalian cells
based on proximity 18. By fusing a promiscuous biotin ligase to the bait protein, BiolD identifies
physiologically relevant interacting proteins in native cellular environment, including those with
weak or transient interactions 119-120. Roughly half of BiolD-detected proteins likely reside within
20-30nm of the bait 19.

To identify interaction partners of PTCHD1 using BiolD, we have transfected N-terminus-labeled
PTCHD1 construct into HEK293 cells and selected for stable clones. We have also transfected
TCF4, CACNB2, CUL3, and C4A constructs. We plan to repeat these experiments in human
glioblastoma cells (LN-229 from ATCC, Manassas, VA), and compare the interaction partners
identified from two cell lines to assess cell-type specificity (or lack thereof).

Once we obtain proximity-based interaction partners of these genes, as quality control, we will
cross-reference these interaction partners with those identified using traditional IP-MS
approaches to evaluate the concordance between different experimental. Based on the
important roles of PTCHD1 in regulating TRN functions through calcium-dependent potassium
currents 15, we plan to screen for evidence of interaction between PTCHD1 and SK channel
proteins. We also plan to search among PTCHD1 interaction partners for enrichment of genes
with rare deleterious variants and de novo variants in ASD and schizophrenia patients, and
enrichment of genes with depletion of missense mutations in the normal population using the
ExAC database12 1 . Finally, we will overlay genes differentially-expressed in Ptchd1*' mice with
genes encoding proteins interacting with PTCHD1. All of these filtering analyses will facilitate
prioritization of candidate genes for targeted follow-up experiments.
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Part III: Elucidating Brain-Specific Pathways Using Single-Cell-Type Proteomics

As part of the ongoing Brain Interaction Network (BINe) project, we have performed systematic
quantitative interaction proteomics followed by tandem mass spectrometry targeting genes
implicated in psychiatric disorders using Ngn-induced human neurons. Such single-cell-type
proteomic experiments have yielded compelling insights on human neurobiology.

For instance, one of such genes we have studied is CACNAIC, which encodes the alpha-1C
subunit of L-type calcium channel (Cavl.2). CACNA1C is genome-wide significantly associated
with schizophrenia37. We found 109 proteins interacting with Cav1.2 at a false discovery rate
(FDR) threshold of 0.1, in which all parts of the L-type calcium channel machinery were
identified (cc, P, and U26 subunits). We also detected an enrichment of known Cav1.2 interaction
partners based on our comprehensive catalog of the human interactome (InWebIM)55 (Figure
22a). Notably, compared to the proteomics data obtained in heart tissues, Cav1.2 interaction
partners in the brain are expressed at much higher levels in the prenatal period based on the
BrainSpan Atlas of the developing human brain' 22 (Figure 22b), suggesting their important roles
during development. Interestingly, we have also found evidence that Cav1.2 interacts with
complement C4A (Figure 10). C4A is a member of the classical complement pathway and has
recently been found to mediate synaptic pruning during postnatal development and established
as a schizophrenia risk gene123 . This observation has prompted us to study the potential
functional role of the Cav1.2-C4A complex in regulating synapse elimination. Overall, Cav1.2
pulldown data are reproducible and of high quality, exhibit neuronal tissue-specificity, and have
provided us with novel hypotheses which can direct future experiments.

We plan to screen for the interaction partners using this pipeline for the gene candidates we
identified from TRN single-nucleus RNA sequencing data. Currently, we have planned for the
pulldown experiments of one particular gene GRIN2A, which is enriched in Sppl+ cells and
genome-wide significantly associated with schizophrenia (Figure 11).
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Part IV: Annotating Recent Psychiatric Genetics Datasets Using TRNNet

We have recently developed an efficient and powerful method (called network mutation burden,
or NMB) to computationally assess the mutation burden of genes by aggregating the mutation
frequencies of its neighboring genes in the network, effectively increasing power to detect genes
with low mutation burden2 . Using this method, we were able to annotate cancer driver genes
and ASD risk genes with good accuracy5 5. We have also curated genes with multiple de novo
protein-truncating mutations from 3,982 ASD trios126 , several cohorts of patients with intellectual
disability 1 27- 12 9, and 3,954 individuals with neurodevelopmental delay42. Given TRN's important
role in sensory gating, we plan to apply NMB on TRNNet to uncover novel gene associations
and identify pathways disturbed by pathogenic mutations in neurodevelopmental delay and ASD.

Section III Summary

We have initiated both targeted functional experiments based on interesting candidate genes,
and computational analyses using orthogonal datasets, to elucidate the molecular circuits
through which TRN regulates sensory gating. Such efforts have resulted in deep collaborations
with laboratories not only at MIT and Harvard but also at McGill University in Canada.
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SECTION IV: OVERALL SUMMARY

Single-cell technologies have enabled us to dissect the molecular basis of cellular diversity in
complex tissues with unprecedented resolution. By applying state-of-the-art computational
methods on our single-nucleus RNA sequencing data, I discovered many novel insights into the
mechanisms through which TRN regulates sensory gating, and formulated actionable
hypotheses to further interrogate TRN neurobiology. Importantly, many of these findings have
profound implications for the diagnosis and treatment of psychiatric disorders like autism
spectrum disorders, and I have initiated follow-up experiments through collaborations to identify
promising therapeutic targets based on these data.

More generally, my thesis established a comprehensive analytical pipeline where I
complemented high-throughput single-cell transcriptomics data with unbiased human genetics
and functional proteomics data. I have demonstrated that such deep integration of diverse data
types can yield important biological insights. As large-scale data-driven research become
increasingly common in biomedicine, this work could serve as a useful exemplar for future
investigations.
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