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SUMMARY

Obesity is a major human health crisis that promotes
insulin resistance and, ultimately, type 2 diabetes.
The molecular mechanisms that mediate this
response occur across many highly complex biolog-
ical regulatory levels that are incompletely under-
stood. Here, we present a comprehensive molecular
systems biology study of hepatic responses to high-
fat feeding in mice. We interrogated diet-induced
epigenomic, transcriptomic, proteomic, and metab-
olomic alterations using high-throughput omic
methods and used a network modeling approach
to integrate these diverse molecular signals. Our
model indicated that disruption of hepatic architec-
ture and enhanced hepatocyte apoptosis are
among the numerous biological processes that
contribute to early liver dysfunction and low-grade
inflammation during the development of diet-
induced metabolic syndrome. We validated these
model findings with additional experiments on
mouse liver sections. In total, we present an integra-
tive systems biology study of diet-induced hepatic
insulin resistance that uncovered molecular features
promoting the development and maintenance of
metabolic disease.
INTRODUCTION

Human obesity is a major worldwide health crisis (Flegal et al.,

2013) that promotesmetabolic syndrome (characterized by insu-

lin resistance, hyperglycemia, and hypertension) (Lusis et al.,

2008), b-cell dysfunction, and, ultimately, type 2 diabetes
Cell Repor
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(Kahn et al., 2006). The liver is an insulin-sensitive organ that is

critical for the maintenance of normal glucose homeostasis

(Michael et al., 2000). Insulin promotes increased uptake of

glucose in peripheral tissues (primarily skeletal muscle) and re-

duces hepatic gluconeogenesis (DeFronzo et al., 1985). Insulin

resistance suppresses these normal regulatory mechanisms

and, thus, promotes hyperglycemia. Consumption of a high-fat

diet (HFD) causes insulin resistance, which prevents insulin-

mediated inhibition of hepatic gluconeogenesis (Pilkis and

Granner, 1992). Moreover, peripheral insulin resistance (e.g., in

adipose tissue) causes increased lipolysis that promotes hepatic

gluconeogenesis (Perry et al., 2015; Titchenell et al., 2015, 2016).

The critical role of the liver in glycemic regulation is particularly

highlighted by the widespread use of the drug metformin to treat

type 2 diabetes, which principally acts in the liver to inhibit gluco-

neogenesis and reduce plasma triglyceride levels (Viollet and

Foretz, 2013). Thus, understanding the molecular mechanisms

of hepatic insulin resistance may provide a basis for the design

of therapeutic interventions.

The intracellular pathways that promote and maintain insulin

resistance and type 2 diabetes are highly complex and still not

fully understood. Perplexingly, diabetics experience ‘‘selective

insulin resistance’’ whereby insulin fails to suppress hepatic

glucose production but still promotes hepatic lipogenesis

(Brown and Goldstein, 2008; Shimomura et al., 2000; Titchenell

et al., 2016). Surprisingly, triple-knockout Akt1/Akt2/Foxo1 and

double-knockout Insr/Foxo1mice still suppress hepatic glucose

production in response to insulin (Lu et al., 2012; Perry et al.,

2015; Titchenell et al., 2015). As a result, systems biology ap-

proaches are increasingly being recognized as vital to the study

of metabolic diseases (Zhao et al., 2015). Systems biology em-

braces the inherent complexities of disease and draws upon

the wealth of available knowledge from molecular biology and

biochemistry to facilitate comprehensive, multi-dimensional

analysis and modeling of disease-relevant systems and pro-

cesses (Kitano, 2002).
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Figure 1. Overview of Systems Biology

Study of HFD-Induced Insulin Resistance

We fed 8-week-old male C57BL/6J mice a 16-

week standard laboratory chow diet (CD) or a

high-fat diet (HFD) to induce obesity and insulin

resistance. At 24 weeks, we sacrificed the mice

and extracted, flash froze, and pulverized their

livers. We used these tissue samples to assay

epigenomes, transcriptomes, proteomes, and

metabolomes. We then used mRNA-seq (differ-

ential genes) and histone modification ChIP-seq

(valleys within enriched peaks) data with known

DNA-binding motifs to infer active transcriptional

regulators. These regulators, along with differential

proteins andmetabolites, were used as input to the

prize-collecting Steiner forest (PCSF) algorithm to

uncover a network of interconnections among the

data. ESI, electrospray ionization; GC-MS, gas

chromatography-mass spectrometry; LC-MS/MS,

liquid chromatography-tandem mass spectrom-

etry; TF, transcription factor.
Available omic technologies enable rapid and comprehensive

analysis of many biological regulatory levels. Epigenomic and

transcriptomic methodologies (e.g., chromatin immunoprecipi-

tation sequencing [ChIP-seq] and mRNA sequencing [mRNA-

seq]) rapidly profile full genomic regulatory and gene expression

landscapes (Metzker, 2010). Proteomic analysis via mass spec-

trometry is increasingly becoming more sensitive and compre-

hensive, allowing for detailed analysis of global and modified

proteomes (Azimifar et al., 2014). Metabolomics, the collective

study of small-molecule species, is now being used extensively

to identify new mechanisms and biomarkers of metabolic dis-

ease in both targeted and untargeted fashions (Dunn et al.,

2011).

Few studies, to date, have attempted to analyze and integrate

multiple types of omic data in the context of diet-induced meta-

bolic disease. Those that have used simple correlative statistics

(Miraldi et al., 2013; Oberbach et al., 2011), overlaid proteomic

and metabolomic data onto known pathways with genome-

scale metabolic reconstructions (Yizhak et al., 2010), or com-

bined transcriptomic and metabolomic data with known

pathway and regulatory data for analysis within local interaction

neighborhoods (Eckel-Mahan et al., 2013). By contrast, we inte-

grate matched multi-omic data into a tractable network model

that is not biased toward interactions occurring in well-estab-

lished signaling or metabolic pathways. Instead, we collate

diverse types of interactions from databases of literature-

curated and high-throughput data to build a large network of

physical associations. We then use advanced network optimiza-

tion methods to prune the possible interaction space to only the

most relevant connections that model the input data. Our results

are, thus, more interpretable and provide clearer directions for

follow-up studies.

We present a comprehensive integrative analysis of high-fat-

diet (HFD)-induced hepatic insulin resistance in the mouse liver.

We fed male C57BL/6J mice a 16-week HFD to induce obesity

and insulin resistance and compared these animals to normal

chow-diet (CD)-fed controls. We collected genome-wide epige-

nomic data using histone modification ChIP-seq to interrogate
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active genomic regulatory regions, performed mRNA-seq to

quantify hepatic transcriptomes, utilized an untargeted shotgun

proteomic profiling methodology to quantify >6,000 hepatic pro-

teins, and quantified nearly 400 small molecules to interrogate

molecular responses to high-fat feeding. We identified genes,

proteins, and metabolites altered between CD and HFD and

jointly analyzed our epigenomic and transcriptomic data to pre-

dict transcriptional regulators that likely influence gene expres-

sion changes between the diets. We then developed a network

modeling approach based on the prize-collecting Steiner forest

(PCSF) algorithm (Tuncbag et al., 2013, 2016) to analyze all

the omic data in the context of known protein-protein and pro-

tein-metabolite interactions. For this purpose, we constructed

a vast interactome of such associations and developed compu-

tational methods to avoid biases from well-studied, highly

connected proteins and metabolites. The PCSF model revealed

a richly interconnected network of biological species and

processes perturbed by HFD that could be divided into func-

tional sub-networks. This analysis uncovered well-established

features of hepatic insulin resistance, including glucose, lipid,

and amino acid metabolism. Importantly, it also revealed

poorly characterized aspects of the condition, including hepato-

cellular injury, cell-cell interactions, extracellular matrix (ECM)

organization, and apoptosis. Finally, we validated several

network modeling predictions with additional experiments on

frozen liver sections from CD and HFD livers. We showed that

HFD feeding leads to disrupted hepatic architecture and tight

junctions, altered bile acid handling, and enhanced cellular

apoptosis.

RESULTS

High-Fat-Diet Feeding Induces Obesity and Insulin
Resistance in Mouse
We examined diet-induced obesity and insulin resistance by

feeding 8-week-old male C57BL/6J mice an HFD for 16 weeks

(Figure 1). Control mice were fed a standard chow diet (CD) for

the same 16-week period, and all animals were euthanized at



Figure 2. HFD Induces Perturbations to Hepatic Omic Levels
(Top panels) Smoothed read density profiles in ±2-kb windows around the

union of all identified enrichment regions (22,974 total) for histone marks

H3K27Ac, H3K4me3, and H3K4me1 from CD liver samples. The mappings on

the left are with respect to the closest RefSeq gene start site: promoter (±2 kb

to start site); intragenic, �20 kb (within 20 kb upstream), +20 kb (within 20 kb

downstream), and intergenic (>20 kb away from nearest gene). (Lower panels)

We found 2,507 genes (n = 3 for CD and HFD), 362 global proteins (n = 4 for CD

and HFD), and 96 metabolites (n = 6 for CD and HFD) perturbed by HFD

consumption. Clustergrams show individual Z-scored values for species from

CD and HFD replicates. Only the most significantly changing peptide is shown

as a representative for each of the differential global proteins, though full

statistics were performed on all peptides.

See also Figures S1, S2, S3, and S4.
the 24-week time point. This model is particularly suited for the

study of human metabolic diseases, as HFD consumption by

mice induces complications consistent with the progression of

human metabolic syndrome (Collins et al., 2004). Indeed, we

found that HFD-fed mice exhibited obesity, hepatic steatosis,

hyperglycemia, insulin resistance, and glucose intolerance

compared with CD-fed mice (Figure S1).

Omic Datasets Demonstrate Wide-Ranging Effects of
HFD on Mouse Liver Biology
We collected an array of datasets using high-throughput omic

experimental methods to broadly capture the effects of HFD in

the liver (Figures 1 and 2). We used the information obtained

from analysis of these datasets to inform our subsequent inte-

grative network modeling efforts.
Epigenomics

We profiled the epigenomes of CD and HFD livers with histone

modification ChIP-seq experiments for H3K27Ac, which marks

active enhancers (Creyghton et al., 2010); H3K4me3, which

marks active and poised promoters (Santos-Rosa et al., 2002);

and H3K4me1, which marks active and poised enhancers

(Creyghton et al., 2010) (Figure 2, top panels). We tested for dif-

ferences in histone modification levels between the diets but

found few significant differential regions (<1%). Overall, these

data provide a comprehensive map of >22,000 active regulatory

regions, of which 89% map within ±20 kb of >14,000 expressed

liver genes.

Transcriptomics

We used mRNA-seq to identify 2,507 genes differentially ex-

pressed between CD and HFD livers. Of these, 1,572 genes

are upregulated, and 935 genes are downregulated in HFD livers

(Figure 2, bottom left; Figure S2A). Genes upregulated by HFD

are enriched in lipid metabolism (Aacs, Ldlr, and Srebf1) and

carbohydrate metabolism (Gck, Hk2, and Pfkl), while genes

downregulated by HFD are enriched in amino-acid catabolism

(Arg1, Gldc, Got1, and Hdc) and small-molecule catabolism

(Aadat, Aass, Cps1, Csad). Shared biological enrichments be-

tween the two classes of genes include carboxylic acid and

oxoacid metabolism. We also performed TaqMan assays on

additional CD and HFD samples (8 or more livers per condition)

to further test for evidence of immune cell infiltration in HFD livers

(as observed in our mRNA-seq results) (Figure S3). We found up-

regulation of Cd3e (T cells), Cd11c (dendritic cells/monocytes/

macrophages), Emr1 (monocytes/macrophages), and Nos2

(M2-like macrophages), together with downregulation of Arg1

(M2-like macrophages). These results suggest that immune

cell infiltration, indeed, plays a role in promoting and maintaining

the insulin-resistant state of HFD mice.

Proteomics

We used mass spectrometry (Zhou et al., 2013) to quantify CD

and HFD liver global proteomes, identifying 51,689 unique pep-

tides that mapped to 6,384 unique proteins. We used a weighted

least-squares regression procedure to find 362 differentially ex-

pressed proteins, with 189 upregulated and 173 downregulated

in HFD livers (Figure 2, bottom middle; Figure S2B). Proteins up-

regulated by HFD are uniquely enriched in fatty acid b-oxidation

(CROT, ECI1, and HADH), fatty acid transport (CD36, FABP1,

and FABP2) and carbohydrate biosynthesis (FBP1, GBE1,

GCK, and GYS2), while the proteins downregulated by HFD

are uniquely enriched in cholesterol biosynthesis (CYP51,

DHCR7, FDPS, and IDI1) and the urea cycle (CPS1, NAGS,

andOTC). Both sets of proteins are enriched in amino acid meta-

bolism, carboxylic acid metabolism, and oxidation-reduction

processes (Data S1).

Metabolomics

We obtained metabolomic measurements by mass spectrom-

etry of 381 metabolites in CD and HFD livers (Figure 2, bottom

right; Figure S2C); 96 metabolites are significantly different be-

tween the two diets, with 43 upregulated and 53 downregulated

by HFD. These metabolites include amino acids (11 upregulated

and 22 downregulated by HFD), lipids (11 upregulated and 21

downregulated by HFD), carbohydrates (10 upregulated and 1

downregulated by HFD), and peptides (2 upregulated and 2
Cell Reports 21, 3317–3328, December 12, 2017 3319
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Figure 3. Motif Regression Procedure Iden-

tifies Transcriptional Regulators

(A) We extracted read density profiles for signifi-

cantly enriched histone modification levels,

smoothed the profiles, and scanned for ‘‘histone

valleys,’’ or regions of local signal depletion (an

H3K27Ac enrichment region is shown here as an

example). TSS, transcription start site.

(B) For each valley, we scanned the underlying

genomic sequence formatches to a library of DNA-

binding factor motifs. Against each differential

gene, we computed a transcription factor affinity

(TFA) score for all motifs as a distance-weighted

sum of individual match scores.

(C) For each motif, we used linear regression to

predict gene expression levels from the motif TFA

scores.

(D) This procedure found 358 significant motifs that

map to 272 regulatory proteins; select results are

shown in the table.
downregulated by HFD) (Data S2). We also observed expected

increases in the levels of glucose and other carbohydrate mole-

cules, as hyperglycemia is a well-established feature of hepatic

insulin resistance.

Overall changes in gene and protein expression induced by

HFD consumption are only weakly to moderately correlated

(r = 0.2–0.4), even when we restrict our analyses to genes and

proteins that were called significantly different between both

conditions (Figures S4A and S4B). This modest correlation is

generally consistent with other systems (Schwanhäusser et al.,

2011) and is also consistent with prior observations from CD

and HFD mouse livers on a smaller, targeted set of �200

matched species (Wu et al., 2014). We also observed specific

biological processes that are enriched in the set of differential

mRNAs but not in the set of differential proteins (and vice

versa). For example, proteins upregulated by HFD are uniquely

enriched in fatty acid b-oxidation and carboxylic acid catabo-

lism (Figure S4C). These comparisons demonstrate how individ-

ual omic datasets can highlight different aspects of disease

processes.

Epigenomic and Transcriptomic Dataset Integration
Uncovers Transcriptional Regulators Influencing
Differential Gene Expression
We collected epigenomic and transcriptomic data with the goal

of uncovering changes in transcriptional regulation between CD

and HFD livers. To reconstruct this transcriptional regulatory

network, we inferred the genomic binding locations of potential

transcriptional regulators using our ChIP-seq datasets and

DNA-binding motif data from TRANSFAC (Wingender et al.,

1996). As we found little evidence for changes in these histone

modifications between diets, we used the set of significant

ChIP-seq regions in CD livers for our analyses. We searched

each dataset for histone ‘‘valleys,’’ or regions between peaks
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of local modification enrichment where histones are depleted

and where regulators likely bind (Figure 3A) (Ramsey et al.,

2010; Wamstad et al., 2012). We merged these discovered val-

leys into one set of 123,974 total loci and scanned the underlying

genomic sequences for matches to a set of 1,588 DNA-binding

motifs that map to at least one human or mouse transcriptional

regulator (Figure 3B). For each regulator (motif) and each differ-

entially expressed gene, a transcription factor affinity (TFA) score

was derived as a distance-weighted sum of individual motif

enrichment scores in regions near the gene’s annotated tran-

scription start site. We then used the linear regression of each

motif’s TFA scores against the expression levels of all the differ-

entially expressed genes and took significant regression coeffi-

cients (false discovery rate [FDR] < 0.01) as evidence for active

regulators (Figures 3C and 3D).

In total, we identified 358 significant DNA-binding motifs that

mapped to 272 unique transcriptional regulatory proteins (Data

S3), including known liver-enriched transcription factors such

as hepatic nuclear factors 1a, 1b, and 4a; retinoid X receptors

a and b; peroxisome proliferator-activated receptor a; and

C/EBPa (Schrem et al., 2002, 2004). We also found strong

enrichment for nuclear factor I proteins (A, B, C, and X), SOX4,

FOXO1, and the vitamin D receptor (VDR). These significant fac-

tors served as the core transcriptional regulatory data that we

incorporated into our network models.

Prize-Collecting Steiner Forest Model Integrates
Multiple Omic Datasets
Each type of omic data provides a glimpse into the effect of HFD

on a particular regulatory level. To obtain a more comprehensive

view of the data, we expanded upon an established network

modeling algorithm called the prize-collecting Steiner forest

(PCSF) (Tuncbag et al., 2013, 2016). We built a combined

protein-protein and protein-metabolite interactome from the



iRefIndex (v.13) database (Razick et al., 2008) for protein-protein

interactions and obtained protein-metabolite interactions from

the Human Metabolome Database (HMDB; v.3.6) (Wishart

et al., 2013) and the human metabolic reconstruction Recon 2

(v.3) (Thiele et al., 2013). To account for differences in reliability

of the various types of interactions, we assigned to each an

‘‘edge cost’’ that scaled inversely with our confidence in the

interaction (see Experimental Procedures for details). We used

this interaction network and the omic data as input to the

PCSF algorithm to identify interactions that connect the omic

data (Figure S5).

As part of the PCSF approach, omic results (e.g., differential

proteins) are assigned prizes (e.g., as log2 fold changes), and

the algorithm attempts to maximize the inclusion of these prize

nodes while avoiding low-confidence edges, which have high

edge costs. Thus, the algorithm is not constrained to include

all data in the final network but, at the same time, is capable of

introducing species not present in the original set of data. These

interactome-derived species are called ‘‘Steiner’’ nodes and are

included when necessary to create connections between the

data. We also implemented a method that assigns ‘‘negative pri-

zes’’ to interactome nodes with many interactions. These highly

connected species, or ‘‘hubs,’’ have a high likelihood of appear-

ing in network models run with almost any input data (e.g., ubiq-

uitin or water). Negative prizes discourage the algorithm from

using such nodes in the PCSF solution and allow for more spe-

cific interactions to explain the data (Figures S6A and S6B).

We used as input data—or ‘‘terminals’’ in PCSF parlance—83

differential metabolites, 329 differential proteins, and the 272

transcriptional regulators identified by our motif regression anal-

ysis (Data S4). We generated and merged multiple solutions by

running the algorithm on the same data multiple times with

random noise added to the edge costs. This procedure pro-

duced a richer set of possible connections explaining the data

and enabled the assessment of network components’ robust-

ness. We also assessed node specificity to hepatic insulin resis-

tance by comparing how many times each node appears in

networks generated with random input data (i.e., random inter-

actome nodes that match the degree distribution of the real input

data).

The full PCSF solution (Figure 4; Data S5) includes 907 species

connected by 2,365 interactions (see also Table 1). We found

that the vast majority of nodes included in the final network are

very specific to our system (Figure S6C). To increase interpret-

ability of the network model, we identified smaller sub-networks

and performed gene, small-molecule, and pathway enrichment

analyses on these. We computed rank scores for these sub-net-

works according to their prize densities (the sum of prizes multi-

plied by the fractional size of the sub-network; Figure S7).

Among the top ranked sub-networks are those enriched for

amino acid and pyruvate metabolism, fatty acid oxidation,

apoptosis, transcription, ECM, and bile acid metabolism. Addi-

tionally, we devised a scheme to rank interactome-derived

Steiner nodes by their likely importance in the model according

to several features, including the robustness and specificity of

nodes. We used a weighted summation of scores based on

these features to perform this ranking (see Experimental Proced-

ures for details).
The PCSF Model Introduces Species with Known
Relevance to Metabolic Disease
We developed an automated strategy to identify network nodes

that have not been previously reported as associated with insulin

resistance and related complications. For this purpose, we used

the DisGeNET database (Piñero et al., 2015), which collates

gene-disease information from public data as well as from liter-

ature via natural language processing, to determine which of

the predicted molecules introduced by the PCSF into the

network (Steiner nodes) are known to be associated with

obesity, insulin resistance, and/or type 2 diabetes. Of 394 Steiner

proteins, 121 (�30%) possess some known disease link accord-

ing to DisGeNET (Data S4). Some examples include: clusterin

(CLU), in which polymorphisms are associated with type 2 dia-

betes (Daimon et al., 2011) and where knockout in C57BL/6J

mice exacerbates HFD-induced insulin resistance (Kwon et al.,

2014); L-arginine:glycine amidinotransferase (GATM, a.k.a.

AGAT), where knockout in C57BL/6J mice depletes creatine, en-

hances glucose tolerance, and protects from diet-induced

obesity (Choe et al., 2013); and nuclear receptor co-activator 1

(NCOA1, a.k.a. SRC-1), depletion of which can result in

increased glucose uptake, enhanced insulin sensitivity, and

resistance to age-associated obesity and glucose intolerance

(Wang et al., 2012). A literature review revealed additional Steiner

nodes with known relevance to disease, including themetabolite

glyoxylic acid, which has been characterized as amarkermetab-

olite for type 2 diabetes (Nikiforova et al., 2014). Thus, our model

incorporates many predicted nodes with known relevance to

these conditions, though many are not well-established actors

in these contexts.

The PCSF Model Identifies Biological Features of
Obesity-Induced Hepatic Insulin Resistance
Among the 20 sub-networks we identified from the full PCSF

model are networks enriched in glucose and glycogen meta-

bolism (sub-network 2), amino acid metabolism (sub-network 1),

fatty acid and lipid oxidation (sub-network 7), transcriptional

regulation (sub-network 11), and bile acid metabolism (sub-

network 13). These sub-networks all describe well-established

aspects of hepatic insulin resistance (Data S5 and S6). Specific

details for some of the biological mechanisms contained in these

sub-networks are included in the Supplemental Information.

Importantly, we also identified sub-networks enriched in bio-

logical processes not typically associated with hepatic insulin

resistance. One such sub-network is enriched in ECM organiza-

tional and structural proteins (sub-network 10; Figure 5). Proteins

associated with the ECM in this sub-network include collagens

1A1, 1A2, and 6A1 (COL1A1/1A2/6A1), as well as endoglin

(ENG), fibronectin 1 (FN1), intergrin a5 (ITGA5), and the trans-

forming growth factor b (TGF-b) receptor 1 (TGFB1). At the cen-

ter of this sub-network is FN1, which connects, among other

nodes, most of the collagen proteins and ITGA5. Both ENG

and TGFBR1 are predicted Steiner nodes connected through

ITGA5. Several Steiner nodes in this sub-network rank very

highly by our criteria, including CD79A, 50-30 exoribonuclease 1

(XRN1), and CLU.

Changes to the hepatic ECM may also implicate altered cell-

cell communication between hepatocytes in response to ECM
Cell Reports 21, 3317–3328, December 12, 2017 3321
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Figure 4. Multi-omic PCSF Model Uncovers Features of Hepatic Insulin Resistance

The full PCSFmodel includes 398 terminal nodes and 509 predicted Steiner nodes connected by 2,365 interactions.We divided the solution into 20 sub-networks

and highlight the specific biological processes containedwithin these. Colored nodes (red or blue) represent terminal nodes, gray nodes represent Steiner nodes,

and shapes indicate node types (proteins, metabolites, transcription factors, or receptors).

See also Figures S5 and S6.
and liver architectural disruption. Indeed, we found a sub-

network enriched in proteins related to cell-cell interactions

(sub-network 9; Figure 5). Included in this sub-network are the

proteins E-cadherin (CDH1), cadherin 5 (CDH5), junction plako-

globin (JUP), and vimentin (VIM). These enrichments strongly

suggest that changes to liver structure and the composition of

the ECM are relevant to hepatic insulin resistance.

We also identified a sub-network enriched in apoptotic pro-

cesses (sub-network 5; Figure 5). Terminal proteins involved in

apoptosis here include autophagy-related 5 (ATG5, a late-

apoptosis protein that interacts with FADD; Pyo et al., 2005),

BCL-2-associated transcription factor 1 (BCLAF1), and inter-

feron (IFN)-g-inducible protein 16 (IFI16). The majority of the
3322 Cell Reports 21, 3317–3328, December 12, 2017
apoptosis-related proteins are predicted nodes, including

BCL2; BCL2L1; caspases 7, 9, and 10; FAS; the FAS-associated

death domain (FADD); and BAD. The model captures aspects of

the extrinsic apoptotic pathway, whereby the death-inducing

signaling complex composed of FAS, FADD, and pro-caspase 8

or -10 signals to downstream effectors (Wang et al., 2001), as

well as the intrinsic pathway, which involves the pro-apoptotic

Bcl-2 family member BAX and anti-apoptotic members BCL2

and BCL2L1 (Lee and Pervaiz, 2007). The model includes both

initiator (CASP8 and CASP10) and effector caspases (CASP7)

linked to these initiator proteins (Wang, 2014). Thus, our PCSF

model, overall, suggests a role for apoptosis in maintaining he-

patic insulin resistance.



Table 1. PCSF Model Terminal Node Inclusion Statistics

Terminal Type

Number of

Terminals

Number Included

in Final Model % Included

Metabolites 83 63 75.9

Global proteins 329 301 91.5

Transcription factors 272 34 12.5

This table shows numbers of terminals (input data) supplied to the PCSF

algorithm for metabolite, global protein, and transcription factor data

types. The numbers of terminals for each data type present in the final

solution are shown, along with percentages.

See also Figure S5.
Liver Tissue Analysis Confirms Global Alterations in
Hepatic Processes Identified by the PCSF Model
The network results imply roles for unexpected processes

related to diet-induced insulin resistance. To test these predic-

tions, we performed imaging studies on frozen liver sections

from CD and HFD mice. First, we tested the prediction that

HFD livers would display altered cell-cell interactions and overall

structural deficiencies. We stained liver sections for Zo1, a cyto-

plasmic membrane protein of intercellular tight junctions, and

cytokeratins 8 and 18, which are dimerized intermediate fila-

ments present in epithelial cells that help maintain cellular struc-

tural integrity. Using DAPI staining to identify nuclei, we found

cellular boundaries and tight junctions around bile ducts in the

liver of CD-fed mice. By contrast, tight junctions and structure

near bile ducts of HFD liverswere highly disorganized (Figure 6A).

In larger fields of view, we saw highly structured hepatocyte bor-

ders and normal architecture in CD livers (Figure 6B). In contrast,

HFD livers displayed irregular cytokeratin 8/18 staining, with few

discernable cell borders, indicating overall disruption of the he-

patic tissue architecture in response to the long-term dietary

challenge.

We also tested the prediction that HFD livers would display

abnormal bile acid handling by staining liver sections for collagen

and bile/bilirubin (Figure 6C). As expected, we found no bile acid

leakage or accumulation in CD livers. However, we observed sig-

nificant bile accumulation in HFD livers. These results corrobo-

rate our prediction that HFD livers possess defects in bile acid

maintenance and are consistent with the altered cellular struc-

tures we found surrounding the bile ducts of HFD-fed mice.

Finally, we tested whether consumption of an HFD enhances

the number of hepatocytes undergoing apoptosis in the liver.

We used DAPI and terminal deoxynucleotidyl transferase dUTP

nick-end labeling (TUNEL) to assess the number of apoptotic

cells. The fraction of TUNEL-positive cells in CD livers was very

low (�1%), whereas HFD livers displayed regions of high TUNEL

positivity (as high as 37%; Figure 6D). While not prevalent in all

regions, overall apoptosis was higher in HFD samples (Figure 6D,

p = 0.014). Thus, we show here evidence for enhanced hepato-

cyte apoptosis as a feature of HFD-induced hepatic insulin

resistance.

DISCUSSION

Weundertook a large-scale integrative systems analysis of HFD-

induced hepatic insulin resistance. We used ChIP-seq and
mRNA-seq to interrogate epigenomic regulation and transcrip-

tion, untargeted shotgun proteomics to quantify >6,000 hepatic

proteins, and metabolomics to profile nearly 400 small-molecule

species. Using a network approach, we integrated these data-

sets and highlighted major biological processes perturbed by

HFD. The algorithm also incorporated disease-relevant proteins

and metabolites from the interactome that were either not

measured or found to be differentially expressed in our omic

data. We validated several high-level model predictions by

examining mouse livers for markers of specific physical features

and biological processes. We found that HFD consumption per-

turbs hepatic architecture, disrupts bile acid handling, and en-

hances hepatocyte apoptosis.

The liver is a major contributor to overall glycemic regulation.

Indeed, insulin-stimulated clearance of blood glucose is medi-

ated, in part, by the inhibition of hepatic gluconeogenesis (Pilkis

and Granner, 1992) and consumption of an HFD causes hepatic

insulin resistance, which disrupts this process (Pilkis and Gran-

ner, 1992). As expected, we found that the HFD feeding in

mice caused obesity, insulin resistance, and impaired glucose

homeostasis. These features were accompanied by HFD-

induced changes in >2,000 genes, 362 global proteins, and 96

metabolites. We note that these findings derive from molecules

measured from whole-liver extracts. While hepatocytes repre-

sent the dominant cell type in liver tissue, hepatic stellate cells,

vascular endothelial cells, and various immune cells do, indeed,

influence liver function and molecular concentrations. Thus, our

results must be interpreted within this framework.

We used a motif regression procedure that incorporated epi-

genomic, transcriptomic, and motif data to identify transcrip-

tional regulators relevant to insulin resistance, identifying 272

significant factors. Several of these top predictions are consis-

tent with factors identified in a prior study that used different epi-

genomic techniques to find regulatory regions (Leung et al.,

2014). Interestingly, both our study and theirs did not observe

many changes in histone modification levels between the diets,

despite significant gene expression changes. An advantage of

our integrative modeling approach is that, even if a pathway is

not detected as changing by one experimental method, it may

emerge in the network based on evidence from other types

of data.

To integrate all the omic datasets we collected, we built on the

established PCSF network modeling approach (Tuncbag et al.,

2013, 2016). The PCSF method is not required to include all

omic data yet is capable of introducing predicted nodes that

are critical for establishing connections between the detected

molecules. PCSF networks are generally much smaller and

more tractable than solutions derived from more naive methods

and reveal interpretable sub-networks enriched in specific bio-

logical processes and pathways. Here, we have significantly

expanded the scope of the PCSF methods by adding physical

associations of proteins and metabolites to the protein-protein

interactome. This unified approach allowed us to capture a wider

range of biological pathways and processes relevant to insulin

resistance. We also used several strategies to improve the accu-

racy of our networks. Prior studies have noted that network

methods can be biased toward highly studied proteins that

appear as ‘‘hubs’’ in the interactome (Paull et al., 2013). To
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Figure 5. PCSF Sub-networks for Select

Biological Processes

We highlight PCSF model sub-networks that are

enriched in extracellular matrix (ECM, top left), cell-

cell interactions (top right), and apoptosis (bottom

left). Note that node specificities should only be

compared within sub-networks, as overall panel

sizes differ for clarity. TF, transcription factor.

See also Figure S7.
reduce this bias, we applied a soft penalty to highly connected

nodes to discourage their inclusion while still allowing for their

use when particularly necessary. We additionally tested our net-

works for robustness to noise and assessed the specificity of

network nodes to our system.

Our integrated approach can identify many different types

of links among the omic data. We found pathways that

were largely dominated by proteomic data (e.g., cell-cell interac-

tions, ECM, apoptosis) but also found several sub-networks

almost entirely composed of protein-metabolite connections

(e.g., bile acid metabolism and glucose metabolism). The inclu-

sion of direct metabolomic data along with protein-metabolite

interactions was critical to capturing, for instance, relevant con-

nections among differential proteins whose roles are best ex-

plained in the context of metabolic processes (e.g., GCK and

CYP7B1).

Increasingly, systems biology and omic approaches are being

recognized for their utility to the study of insulin resistance and

type 2 diabetes (Zhao et al., 2015). To date, however, few studies

have formally integrated multiple types of omic data in these

contexts, with even fewer including metabolomics. Prior studies

attempting such joint analyses used correlative statistical rou-

tines (Miraldi et al., 2013; Oberbach et al., 2011), methods that

overlay proteomic and metabolomic data onto genome-scale

metabolic reconstructions (Yizhak et al., 2010), or methods

that map metabolomic and transcriptomic data onto known
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pathway and transcriptional regulatory

data without identifying high-confidence

sub-networks (e.g., the CircadiOmics

resource) (Eckel-Mahan et al., 2013). Our

approach goes well beyond these previ-

ous methods by incorporating multiple

data types from the same samples, allow-

ing for interactions that occur outside

well-established signaling or metabolic

pathways, and using advanced ap-

proaches to reduce the possible interac-

tion space to only the most relevant

connections, thus increasing the inter-

pretability of results and providing clear

guidance for designing experiments.

Our model uncovered a highly intercon-

nected network associated with the insu-

lin-resistant state in the liver. We pre-

dicted that changes to the ECM, cell-cell

interactions, and overall hepatic architec-

ture are features of insulin resistance.
Subsequent experiments confirmed that the overall structure

of HFD mouse livers is highly disrupted, especially near bile

ducts. Consistent with this observation, we also found enhanced

bile acid leakage (cholestasis) into the tissue of HFD-fed

mouse livers. These structural abnormalities likely also

contribute to the increased apoptosis that we observed in

insulin-resistant livers. The link between hepatic ECM and

architectural structural remodeling with insulin resistance has

been studied sparingly (Williams et al., 2015a). In one study,

tail-vein injection of HFD-fed mice with a hydrolase for

hyaluronan, an ECM component, reduces features of muscle

and liver insulin resistance (Kang et al., 2013). Moreover,

integrin-a1-subunit-deficient mice (Itga1�/�) fed an HFD display

reduced fatty liver content but also severe hepatic insulin resis-

tance, compared to wild-type HFD-fed controls (Williams et al.,

2015b).

The hepatic structural changes detected in HFD-fed mice may

be related to changes in apoptosis. Crosstalk between proteins

relevant to insulin resistance and hepatocellular injury, including

tumor necrosis factor (TNF), nuclear factor kB (NF-kB), and JNK,

has been proposed as a potential driver of apoptosis in the liver

(Schattenberg and Schuchmann, 2009). Indeed, apoptosis is

associated with severe hepatocellular injury and steatohepatitis

(Guicciardi and Gores, 2005). Here, we report increased hepatic

apoptosis in HFD-fed mice. This increased hepatic apoptosis

may be related to dysregulation of the hepatobiliary system
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A Figure 6. Hepatic Imaging Validates Global

PCSF Model Predictions

(A) HFD-induced changes in tight junction struc-

ture near bile ducts (BD) as assessed by cytoker-

atin 8/18 (CK8/18) and Zo1 staining. Scale bars: for

CD, 6 mm; for HFD, 8 mm.

(B) CK8/18 staining revealed overall hepatic

architectural defects in HFD samples. Scale bars,

48 mm.

(C) We observed enhanced bile acid leakage in

HFD livers stained for collagen and bile/bilirubin

compared to CD livers. Scale bars, 100 mm.

(D) TUNEL imaging revealed enhanced regions

of hepatocyte apoptosis in HFD samples. Points

on graph represent values from individual fields

of view (ns = 9, 7, and 4 for HFD livers; ns = 4, 5,

and 5 for CD livers), and bars indicate overall

TUNEL-positive fraction (total TUNEL-positive

cells over total cells) based on all fields of view.

We found that the overall difference in TUNEL

staining between the diets is statistically sig-

nificant by two-tailed t test (p = 0.014). Scale bars,

40 mm.
(Wang, 2014) and promotes low-grade inflammation and hepatic

insulin resistance.

Previous studies have associated changes in liver architecture

with late stages of hepatic steatosis that lead to non-alcoholic

steatohepatitis and the development of hepatic fibrosis (Rama-

chandran andHenderson, 2016). The results of the present study

demonstrate that defects in hepatic architecture precede

fibrosis and can be detected in early stages of the response to

the consumption of a HFD. It is likely that these early changes

in hepatic architecture contribute to the long-term development

of hepatic dysfunction.

To summarize, we undertook a large-scale systems biology

approach to study HFD-induced hepatic insulin resistance. We

integrated multiple types of omic datasets into a network model

that uncovered altered biological processes associated with the

condition. By incorporating metabolites into the protein-protein

interaction network, we were able to identify a wide range of mo-

lecular changes. We validated several global predictions from

our network model with additional experiments and highlighted

components relevant to the hepatic response to HFD consump-

tion. The pathways and processes we found to be altered by

HFD present a wide range of directions for future research. Our

methods are easily applicable to other large-scale omic analyses

of diverse biological systems and diseases.
Cell Report
EXPERIMENTAL PROCEDURES

Animals

We obtained male C57BL/6J mice (stock number

000664) from the Jackson Laboratory. All mice

were housed in a specific pathogen-free facility

accredited by the American Association for

Laboratory Animal Care. We fed the mice either

(1) a standard CD (Prolab Isopro RMH 3000,

Purina) for 24 weeks or (2) 8 weeks of standard

CD followed by 16 weeks of HFD (S3282, Bio-

serve). We measured fat and lean mass noninva-

sively using 1H-MRS (Echo Medical Systems).
We euthanized all mice at 24 weeks after an overnight fast and froze the

livers prior to removal using clamps cooled in liquid nitrogen. The frozen livers

were then pulverized into a powder using a CryoPREP impactor (Covaris).

We prepared aliquots of pulverized liver for all samples for subsequent

analyses. All experiments were carried out in accordance with guidelines for

the use of laboratory animals and were approved by the Institutional Animal

Care and Use Committees (IACUCs) of the University of Massachusetts Med-

ical School.

Glucose and Insulin Tolerance Tests

We performed glucose and insulin tolerance tests by intraperitoneal injection

ofmicewith glucose (1 g/kg) or insulin (1.5 U/kg) usingmethods described pre-

viously (Sabio et al., 2008).

Immunoblot Analysis

Protein extracts from pulverized liver were prepared in Triton lysis

buffer (20 mM Tris [pH 7.4], 1% Triton X-100, 10% glycerol, 137 mM NaCl,

2 mM EDTA, 25 mM b-glycerophosphate, 1 mM sodium orthovanadate,

1 mM PMSF, and 10 mg/mL each of aprotinin and leupeptin). We quan-

tified protein content by the Bradford method (Bio-Rad). Standard tech-

niques were used to separate cell extracts (15–80 mg protein) by SDS-

PAGE for immunoblot analysis using antibodies from Cell Signaling

Technology (AKT and pSer473-AKT). The primary antibodies were detected

by incubation with anti-mouse or anti-rabbit immunoglobulin G (IgG)

conjugated to infrared dyes (IRDye, LI-COR Biosciences). We detected im-

mune complexes using the Odyssey Infrared Imaging system (LI-COR

Biosciences).
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mRNA-Seq and Analysis

We prepared mRNA-seq libraries from three CD and three 16-week HFD

mouse livers using the TruSeq RNASample Prep Kit v.1 (Illumina). This was fol-

lowed by 180 ± 25 bp insert size selection using 2% agarose gel electropho-

resis. WemultiplexedmRNA-seq libraries and paired-end sequenced samples

for 40–50 bp on an Illumina Hi-Seq 2000 machine. On average, we obtained

�20–30 million raw paired-end sequencing reads. Read alignment, gene

quantification, and differential analysis details are provided in the Supple-

mental Information. Briefly, we aligned reads to the mm9 genome using

TopHat (v.1.4.0) (Trapnell et al., 2009) and used DESeq2 (v.1.0.18) (Love

et al., 2014) to perform differential expression analyses. We considered a

gene to be differentially expressed if it possessed an absolute log2 fold change

between conditions R 0.5 and an FDR-adjusted p value (q value) % 0.05 and

was expressed in at least one tested condition (i.e., R0.1 fragments per kilo-

base of transcript per million mapped reads [FPKM]).

ChIP-Seq and Analysis

Histone modification ChIP experiments were performed using the MAGnify

Chromatin Immunoprecipitation System Kit (Life Technologies, Carlsbad,

CA), with antibodies against H3K4me1 (17-676, Millipore), H3K4me3 (17-

614, Millipore), and H3K27ac (ab4729, Abcam, Cambridge, MA). ChIP-seq

libraries were constructed using the NEBNext DNA Library Prep Master Mix

Set for Illumina (New England Biolabs, Ipswich, MA, USA) and sequenced

on an Illumina Hi-Seq 2000 machine. We aligned raw reads using Bowtie

(v.0.12.7) (Langmead, 2010) and performed peak calling using model-based

analysis of ChIP-seq (MACS) (v.1.4.0rc2) (Zhang et al., 2008) against an IgG

control. We considered significant MACS peaks to be those possessing a

p value < 1e�6 and an FDR < 10%. We also performed differential peak ana-

lyses between conditions; details of these methods are provided in the Sup-

plemental Information. We considered regions possessing an FDR-corrected

p value < 0.05 as significant.

Global Proteomics

We collected global proteomic data from four CD and four 16-week HFD

mouse livers using mass-spectrometry-based methods. Full details of the

experimental methods and statistical analyses are provided in the Supple-

mental Information. We deemed proteins possessing an FDR < 0.1 between

CD and HFD livers as differentially expressed.

Metabolomics and Analysis

We extracted and split samples (6 independent livers per condition, per

Metabolon recommendations for appropriate statistical power) into equal

parts for analysis on gas chromatography-mass spectrometry (GC-MS) and

liquid chromatography-tandem mass spectrometry with electrospray ioniza-

tion in positive and negative ion modes (LC-MS/MS, ESI ±). A total of 381

metabolites were identified and quantitated. We imputed missing values

with a k-nearest-neighbors procedure (k = 10), normalized samples according

to the procedure in Anders and Huber (2010), and tested for differences using

two-tailed t tests, correcting p values for multiple hypotheses. We observed

strong intra-sample correlations between CD (Pearson’s r > 0.923) and HFD

(r > 0.85) replicate abundances (Figure S2C). Metabolites possessing an

FDR < 0.1 were deemed significant. The raw data and differential expression

results for these data are provided as Data S2.

Motif Regression Analysis

General methods are described in the main text. Full details of these proced-

ures are provided in the Supplemental Information.

Prize-Collecting Steiner Forest Modeling

Full details of all methods related to the prize-collecting Steiner forest (PCSF)

modeling approach are included in the Supplemental Information. Briefly, the

prize-collecting Steiner forest (Tuncbag et al., 2013, 2016) aims to find a forest

F(VF, EF) from the graph G(V, E, c(e), p(v)), with nodes V, edges E, edge costs

c(e) R 0, and node prizes p(v) for v ˛ V, that minimizes the objective function:

PCSFðFÞ=
X

v;VF

pðvÞ+
X

e˛EF

cðeÞ+u,k;
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where k represents the number of trees in the forest, u represents a tuning

parameter that influences the number of trees included in the final forest, and:

pðvÞ= b,poðvÞ � m,degreeðvÞn:

The b parameter scales the importance of node prizes versus edge costs.

We used a ‘‘negative prize’’ scaling scheme to each node in G proportional

to its degree, or number of connections in the interactome, to reduce the influ-

ence of highly connected, well-studied nodes. The parameter m scales the in-

fluence of the negative prizes, and the exponent n allows for non-linearity in the

scaling. We built a combined protein-protein and protein-metabolite interac-

tome using v.13 of the iRefIndex database (Razick et al., 2008) for protein-pro-

tein interactions (scored with the MIscore system; Villaveces et al., 2015) and

v.3.6 of the HMDB (Wishart et al., 2013), supplemented with manually curated

interactions from the human metabolic reconstruction Recon 2 (v.3) (Thiele

et al., 2013), for protein-metabolite interactions. We used a community clus-

tering algorithm (Blondel et al., 2008) to break the full PCSF model into smaller

sub-networks and visualized all networks with Cytoscape (Shannon et al.,

2003).

Liver Tissue Section Analysis and Imaging

Histology was performed using liver fixed in 10% formalin for 24 hr, dehy-

drated, and embedded in paraffin. Dewaxed and rehydrated sections

(7 mm) were cut and stained for bile acids (product #KTHBI, American Master

Tech Scientific) or with H&E (American Master Tech Scientific). Sections

(7 mm) prepared from liver frozen in O.C.T. Compound (Tissue-Tek) were

stained with oil red O (Sigma) to visualize lipid droplets. We acquired images

using a Zeiss Axiovert 200M microscope. Liver architecture was assessed

using frozen sections fixed with 4% paraformaldehyde and stained with an

antibody to cytokeratin 8 (TROMA-1-c, Developmental Studies Hybridoma

Bank [DSHB], University of Iowa). Immune complexes were detected using

anti-rat Ig conjugated to Alexa Fluor 488. Liver damage was assessed in

frozen (7-mm) sections fixed with cold ethanol/acetic acid (2:1) using an

in situ cell death kit (Roche). Bile duct architecture was assessed in frozen

(7-mm) sections fixed with cold methanol by staining with antibodies to

Zo-1 (sc-10804, Santa Cruz Biotechnology) and cytokeratin 8/18 (sc-

52325, Santa Cruz). Immune complexes were detected using anti-mouse

Ig conjugated to Alexa Fluor 488 and anti-rabbit Ig conjugated to Alexa Fluor

633 (Life Technologies). DNA was detected by staining with DAPI (Life

Technologies). Fluorescence was visualized using a Leica TCS SP2 confocal

microscope equipped with a 405-nm diode laser.

TUNEL Imaging Analysis

We used CellProfiler (v.2.1.1) (Carpenter et al., 2006) with a custom-built anal-

ysis pipeline frommodules included in the program to analyze TUNEL images.

All images across CD and HFD samples were analyzed in a single run of

the program at the same settings. Pipeline details are described in the

Supplemental Information. The TUNEL-positive percentage per field of view

was calculated as the number of positive nuclei over the total. For each

liver, we calculated a single TUNEL-positive fraction by dividing the total

number of TUNEL-positive nuclei by the total number of nuclei across all

fields of view (ns = 9, 7, and 4 for HFD livers; ns = 4, 5, and 5 for CD livers).

We used a two-tailed t test to test for statistical significance between CD

and HFD livers.

Clustering and Enrichment Analyses

All hierarchical clustering analysis was done with the clustergram function in

MATLAB with Euclidean distance and average linkage. For enrichment ana-

lyses, we used custom MATLAB code, implementing the hypergeometric dis-

tribution for enrichment p value calculations and used theBenjamini-Hochberg

FDR procedure to correct for multiple hypotheses. In general, an FDR < 0.1

was deemed significant.

DATA AND SOFTWARE AVAILABILITY

The accession number for the mRNA-seq and ChIP-seq raw and processed

data reported in this paper is GEO: GSE77625.
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