Computer Science and Artificial Intelligence Laboratory

Technical Report

MIT-CSAIL-TR-2018-007 September 1,2012

Learning and recognition of hybrid
manipulation tasks in variable
environments using probabilistic flow tubes
Shuonan Dong

massachusetts institute of technology, cambridge, ma 02139 usa — www.csail.mit.edu

CSAIL

Learning and Recognition of Hybrid Manipulation
Tasks in Variable Environments using Probabilistic
Flow Tubes
by

Shuonan Dong

Submitted to the Department of Aeronautics and Astronautics

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 2012
(© Massachusetts Institute of Technology 2012. All rights reserved.

< / g

Author ~ /—>
Department of Aeronaﬁﬁﬁmz)nd“ stronautics

— S August 23, 2012
Certified by .. C‘_, o

/ ? - 7 Thesis Supervisor

Certified by.....«77 .o ... JERRRRRRREY T
Dr. Andreas Hoffmann

— : Thesis Committee

Certified by R - P
Prof. Patrick Winston

YA Thesis Committee

Accepted by .. <L R T T

ﬂl/ Prof. Eytan Modiano
Chair, Committee on Graduate Students

Learning and Recognition of Hybrid Manipulation Tasks in
Variable Environments using Probabilistic Flow Tubes
by

Shuonan Dong

Submitted to the Department of Aeronautics and Astronautics
on August 23, 2012, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

Abstract

Robots can act as proxies for human operators in environments where a human oper-
ator is not present or cannot directly perform a task, such as in dangerous or remote
situations. Teleoperation is a common interface for controlling robots that are de-
signed to be human proxies. Unfortunately, teleoperation may fail to preserve the
natural fluidity of human motions due to interface limitations such as communication
delays, non-immersive sensing, and controller uncertainty.

I envision a robot that can learn a set of motions that a teleoperator commonly
performs, so that it can autonomously execute routine tasks or recognize a user’s
motion in real time. Tasks can be either primitive activities or compound plans.
During online operation, the robot can recognize a user’s teleoperated motions on
the fly and offer real-time assistance, for example, by autonomously executing the
remainder of the task.

I realize this vision by addressing three main problems: (1) learning primitive
activities by identifying significant features of the example motions and generalizing
the behaviors from user demonstration trajectories; (2) recognizing activities in real
time by determining the likelihood that a user is currently executing one of several
learned activities; and (3) learning complex plans by generalizing a sequence of ac-
tivities, through auto-segmentation and incremental learning of previously unknown
activities.

To solve these problems, I first present an approach to learning activities from
human demonstration that (1) provides flexibility and robustness when encoding a
user’s demonstrated motions by using a novel representation called a probabilistic
flow tube, and (2) automatically determines the relevant features of a motion so
that they can be preserved during autonomous execution in new situations. I next
introduce an approach to real-time motion recognition that (1) uses temporal in-
formation to successfully model motions that may be non-Markovian, (2) provides
fast real-time recognition of motions in progress by using an incremental temporal
alignment approach, and (3) leverages the probabilistic flow tube representation to
ensure robustness during recognition against varying environment states. Finally, I

3

develop an approach to learn combinations of activities that (1) automatically deter-
mines where activities should be segmented in a sequence and (2) learns previously
unknown activities on the fly.

I demonstrate the results of autonomously executing motions learned by my ap-
proach on two different robotic platforms supporting user-teleoperated manipulation
tasks in a variety of environments. I also present the results of real-time recognition
in different scenarios, including a robotic hardware platform. Systematic testing in
a two-dimensional environment shows up to a 27% improvement in activity recogni-
tion rates over prior art, while maintaining average computing times for incremental
recognition of less than half of human reaction time.

Thesis Supervisor: Prof. Brian C. Williams

Acknowledgments

First, I must thank my partner in life, Thomas Coffee, for the long hours talking
through the major stumbling blocks in my research with me, reviewing and proof-
reading my papers, and cooking for me so I can have more time to work.

This thesis would not have been possible without the support, insights, and en-
couragement of my research advisor, Brian Williams, and my committee members,
Andreas Hofmann and Patrick Winston. Their patience and understanding through-
out the thesis development and writing process has reduced a most stressful period
into something approachable and even enjoyable.

To all my friends in the MERS lab, past and present, I say “thank you” for being
such an important part of my life for the past number of years. In no particular order,
thank you, Julie Shah, for all your advice and friendship inside the lab and out; David
Wang for all those memories since freshman year; Hui Li, for introducing me to the
wonders of Seattle; Larry Bush, for providing entertainment in the most unexpected
ways; Lars Blackmore, for being such an inspirational go-getter; Bobby Effinger, for
showing me what lies ahead; Hiro Ono, for being the role model of hard work; Cristi
Wilcox, for reminding us that there is life outside of lab; Patrick Conrad, for all those
long hours on the WAM and ATHLETE; Peng Yu, for his humble brilliance; Eric
Timmons, for bringing social life to our group; Steve Levine, for making the WAM
work like magic; Andrew Wang, for his leadership and initiatives; Pedro Santana, for
his Brazilian sense of humor; and Simon Fang, for keeping the lab fun.

Special thanks also go to David Mittman, Sarah Osentoski, and Shuo Wang for
their help in operating the different robots used in the demonstrations and experi-
ments presented in this thesis. Special thanks also to Sonia Chernova for organizing
an excellent Learning from Demonstration Challenge at AAAI 2011.

This research was in part funded by the National Science Foundation graduate
fellowship and the National Defense Science and Engineering Graduate (NDSEG)
Fellowship, 32 CFR 168a. Additional support was provided by a NASA JPL Strategic

University Research Partnership.

In memory of Darrell Cain, a space visionary.

August 25, 1985 - July 31, 2012

Contents

1 Introduction
1.1 Motivation

1.2 Problem Description . .

1.3 Approach Overview and Innovations

1.3.1 Activity Learning

1.3.2 Real-time Recognition

1.3.3 Plan Learning . .
1.4 Thesis Layout

2 Related Work

2.1 Learning from Demonstration

2.2 Motion Recognition . . .

2.3 Flow Tube Background from Plan Execution

2.4 Adaptive Interfaces . . .

3 Problem Statement

3.1 Definitions of Inputs and Outputs

3.2 Definition of an Activity Learning Problem

3.3 Definition of an Activity Recognition Problem

3.4 Definition of a Plan Learning Problem

3.5 Relationship to Prior Art

4 Learning Single Activities

19
19
24
26
26
28
29
31

33
33
40
40
41

43
45
43
49
a0
50

53

4.1 Identifying Motion Variables, 55

4.2 Data Processing and Flow Tube Generation 60
43 Prelearning L 66
4.4 Enabling Autonomous Execution 69
Recognizing Motions Online 71
9.1 Partial Flow Tube Matching 73
5.2 Temporal Alignment of Partial Motion 75
5.3 Compute Log Likelihoods 76
Learning High-level Plans 79
6.1 Determining Activity Sequence 83
6.2 Learning Unknown Activities 87
6.3 Auto-segmentation 89
6.4 Validate auto-segmentation 98
6.5 Generating Plan-level Probabilistic Flow Tube 99
Experimental Results 103
7.1 Validation of Activity Learning and Recognition 103

7.1.1 Two-dimensional Variable Environment 103

7.1.2 Two-dimensional Static Environment 108

7.1.3 Hardware Validation of Real-time Recognition 109

7.1.4 Hardware Demonstration of Autonomous Execution 111
7.2 Validation of Plan Learning 117

7.2.1 Two-dimensional Environment Tests 117

7.2.2 Hardware Demonstration of Plan Learning 123
7.3 Results Summary 131
Conclusions , 133
8.1 Future Extensions S 133

8.1.1 Compliant Execution 133

8.1.2 Obstacle Avoidance 133

8.1.3 Plan Recognition

8.2 Conclusion

10

List of Figures

1-1

1-2

1-3

1-4

1-5

1-6

1-7

Docked Tri-ATHLETE robots transporting a habitat off of a lunar
lander mock-up. The initial and goal states are shown in the first and

last images, respectively.o oL

Knowing only the previous state at the highlighted position will not

distinguish the two motions.

Example visual representation of a probabilistic flow tube

Architecture of learning and recognition problems

Probabilistic flow tubes can look drastically different for different en-

vironment states L L L e

Given a user’s current execution (black arrow), the algorithm first de-
termines correspondence points (pink dots) in each candidate learned

MOGION o o o e e e e e e e

[lustration of auto-segmentation

Mixtures of Gaussians may not be an intuitive representation of con-

tinuous motions.

20

22

23

25

27

28

30

34

3-1

4-1

4-2

4-4

4-5

Illustrated example of a learning and recognition problem. Initially,
a user demonstrates a set of motions a few times (1). The learning
problem consists of generalizing the demonstrations into probabilistic
flow tube representations for each of the three motions in the new
environment state (2). Given a new user motion depicted as the shift
in the red box position in the direction of the arrow, the recognition
problem consists of determining which motion the user is most likely

performing (3).

Example illustrations of five possible ways that motion variables can

be relevant. Arrows refer to the robot end effector trajectories.

Four training examples of P, position data at time steps when contact,
changes. Notice that across different training samples, the effector
(blue) and box (red) positions match at the start of contact, and the
effector (blue) and bin (green) positions match at the end of contact.

These are the relevant features of the “move box to bin” motion. . . .

Clustering identifies motion variables for a 2-D “move object to bin”
motion. Left: robot effector and bin locations at the start and end of
cach demonstration. Middle: values of (P*™ (0) — P°F (0)) to deter-
mine if relEffStart is a relevant motion variable for position—the large
spread indicates low relevance. Right: values of (P (N) — PeF (N)
to determine if relEiffEnd is a relevant motion variable for position—the

narrow spread indicates that this variable is relevant to this motion. .

lllustrated steps of the approach with three demonstrations of the
“move the box to the bin” task in the two-dimensional simulation en-

vironment

Nlustration of how normalization works for position and orientation

variables.

56

o7

58

62

4-6

5-1

6-1

6-2

6-3

For two sets of environment states p (“prelearned”) and ¢ (“current”)
that correspond to the same set of five training sequences shown in
blue, generating the PFT for c directly from training sequences (left)
is equivalent to generating the PFT for ¢ from normalizing the PF'T

for p (right).

An example partial test motion (black) is compared to each learned
PFT (blue) in a 2D environment initially with a red box, green bin,
and stationary locations x and o as shown. The magenta marking on
each PFT indicates the spot on the PFT that best matches the current
execution (rightmost end of black motion) as determined by lines 2 to 6

in Algorithm 5.1.

During incremental dynamic time warping, the algorithm only needs to
update the cost and back pointer matrices from the previously stored
values (depicted by the inner box) to obtain a new temporal matching

(red and purple path).

Summary of plan learning approach

TMlustration of performing online recognition on task sequences. In
the two keyframe trials); and), the log likelihood of activity 2 is
highest during the first segment, activity 3 is highest during the second
segment, and activity 1 is highest during the third segment. Therefore,
it is likely that the activity sequence in this plan is {2, 3, 1}.

Example process of determining the sequence of activities that compose
the demonstrated plan from keyframe trials. Shading represents rec-
ognized log likelihood, and red values represent the percentage of time
steps during which a particular activity was recognized in a keyframe
segment. The keyframe trials “vote” on an average recognition fre-
quency for each segment and agree on a recognized activity sequence

fortheplan.

68

74

76

82

85

6-4 Illustration of generating candidate keyframes on a non-keyframe trial
using time proportions in a keyframe trial, and updating candidate
keyframes based on motion variables observed in keyframe trial. . . . 91

6-5 Illustration of how a keyframe is selected based on motion variable
geometryo 93

6-6 Generating the PFT for the entire plan involves concatenating the
PFTs for each activity in the sequence initialized at evolving environ-
ment states Lo 101

7-1 Example learned PFTs in randomly generated initial environment states. 104

7-2 Example learned flow tubes of different activities overlaid in three dif-
ferent initial environment states. Blue PFTs represent “move box to
bin,” red PFTs represent “move box left 1 unit,” and green PFTs
represent “move box tox.” L. 105

7-3 Compare learned PFT and GMM models (blue) against user generated
trajectories (red) in different initial environment states. Blue ellipses
represent the range of 1 standard deviation. 106

7-4 Example log likelihoods over time for the same test cases using the
PFT approach (top row) and the HMM approach (bottom row) . . . 107

7-5 Example output of an “encircle bin clockwise with box” motion. Left:
the PFT model. Right: the GMM model. 108

7-6 ' WAM robot setups for the five motions: “move ball to bin” (A), “wind
cable” (B), “unwind cable” (B), “anchor rope left then right” (C), and
“anchor rope right then left” (C) 110

7-7 ' WAM end effector trajectories 111

7-8 ATHLETE move box to platform task 112

7-9 Five teleoperated demonstrations of the “ATHLETE move box to plat-
form” task. Autonomous execution of the task is shown in thick green. 112

7-10 Autonomous execution of ATHLETE move box to platform task . . . 113

7-11 PR2 and potential task setup 114

7-12
7-13

7-14

7-15

7-16

7-17

7-18

7-19

7-20

7-21

3-1

8-2

Results of learning from 5 demonstrations of each motion.
Result of auto segmentation on non-keyframe trials (boxed) of “box to
bin, ball to center” plan, from 3 user provided keyframe trials using
motion variable inference approach. Compare with Figure 7-14.

Result of auto segmentation on non-keyframe trials (boxed) of “box to
bin, ball to center” plan, from 3 user provided keyframe trials using
recognition optimization approach. Compare with Figure 7-13.
Example generated plan PFTs for “box to bin and ball to center” plan
from different initial environment states.
Hardware environment setupo
Simulation environmento e e e e e

Auto-generated PFT trajectories for the “red on green, pink on red”

Auto-generated trajectory and PFT for the “red on green, pink on red”
task plan for new environment state trial 2.
Auto-generated trajectory and PFT for the “red on green, pink on red”
task plan for new environment state trial 6.
Auto-generated trajectory and PFT for the “red on green, pink on red”

task plan for new environment state trial 9.

Obstacle avoidance may be achieved by overlaying a potential field that

pushes away from obstacles in the environment

To model a sequence of activities with different durations, one can ex-

plicitly model each activity at different time steps as separate states.

Each activity time slice at” represents the r*® activity in the plan tra-

jectory at time step 7 since the beginning of the activity. At each time
(T+1)

step, an activity a,(f) can transition either to itself ar (downward)

or to the next activity a§21 (rightward).

15

118

119

122

124

125

127

128

129

130

134

16

List of Algorithms

4.1
4.2
4.3
4.4
4.5
5.1
6.1
6.2
6.3
6.4
6.5
6.6
6.7

OFFLINEACTIVITYLEARNING (7, L, T(0)) 54
IDENTIFYMOTIONVARS (S) oo 59
MAKEPET (S, F,T(0)) © . o o oo e e 61
PRELEARNPFTS (S, ¢, TO), 67
GETPFTSFROMHERE (L,7(0)) 68
ONLINERECOGNITION (PFT:LMW(O), L,Tewr, W> 72
OFFLINEPLANLEARNING (S, ¢, T(0), L) 81
RECOGNIZETASKSUSINGKEYFRAMETRIALS (V, L) 84
LEARNUNKNOWNACTIVITIESINPLAN (S, £,¢,TO) 88
UpPDATEUSINGPOSITIONMOTIONVARS (T, ¢, F,K) 95
UPDATEUSINGORIENTATIONMOTIONVARS (T, ¢, F,K) 96
UPDATEUSINGRECOGOPTIMIZATION (T, q, L, K) 97
GENERATEPLANPFT (¢,¢,L,T0) 100

17

18

Chapter 1

Introduction

This thesis presents an approach to enable more natural interaction between hu-
mans and robots by allowing an agent to learn and recognize complex manipulation
tasks based on human demonstrations. This capability is necessary for agents to
play a more collaborative role in human-robot interactions, moving beyond the stan-
dard master-slave relationship of humans and computers today. This thesis provides
an enabling capability for learning from user demonstration and recognizing human
operated motions, through offline task learning and online recognition at both the
primitive activity level and more complex plan level.

In this chapter, I discuss the motivations for this research in Section 1.1 and
provide a problem description in Section 1.2. Next, I outline my approach to the
problem in Section 1.3. Finally, I lay out the roadmap for the rest of the thesis in

Section 1.4.

1.1 Motivation

Robots can act as proxies for human operators in environments where the human
operator is not present or cannot directly perform the task. These situations are
pervasive in our world today: robots have been designed to aid in the aftermath of
the recent nuclear reactor meltdown in Japan [32], assist in cleaning up the oil spill

in the Gulf of Mexico [51], perform intravehicular and extravehicular activities on the

19

Figure 1-1: Docked Tri-ATHLETE robots transporting a habitat off of a lunar lan-
der mock-up. The initial and goal states are shown in the first and last images,
respectively.

International Space Station [4, 16], transport space habitats on the moon [74], disarm
bombs in warring regions [10], extract injured soldiers from the battlefield [24], and
even execute surgeries in the operating room [45].

Many current day robots are controlled manually from low level commands. An
example is JPL’s ATHLETE (All-Terrain Hex-Legged Extra-Terrestrial Explorer),
which has 36 joints that can be independently controlled. It is designed to transport
large payloads on the surface of the Moon. Figure 1-1 shows two units of a newer
version of ATHLETE called Tri-ATHLETE docked together to carry a habitat off of
a lunar lander mockup. Currently, the robots are commanded at the level of joint

angles, with only a few higher level commands such as moving the end effector of the

20

robot in a certain direction. As a result, the process of moving the habitat off of the
Jander shown in Figure 1-1 spanned several hours during the field test.

Teleoperation is a common alternative interface for controlling robots that are
designed to be human proxies. Unfortunately, motions that humans can produce
naturally may not maintain the same fluidity through teleoperation due to limitations
in the interface such as communications delay, non-immersive sensing, and controller
uncertainty [64]. Such teleoperation interfaces can make it tedious and difficult for
operators to perform a given task. A demonstrated undesirable consequence of fatigue
during a telepresence operation is a reduction in the achieved precision during the
task [70].

Instead of either direct low level commanding or continuous teleoperation, I envi-
sion a robot that can recognize a teleoperator’s intended motion and autonomously
continue the execution of recognized routine tasks. To do this, the robot first learns
offline a library of generalized activities from a training set of user demonstrations.
During online operations, the robot can perform real-time recognition of a user’s
teleoperated motions, and if requested, autonomously execute the remainder of an
activity. The real-time motion recognition problem involves determining which mo-
tion in the learned activity library an operator is currently most likely executing.

In many real-world motions, local state information is not enough to identify the
motion. For example, if a rope is made into an anchor loop around left and right
anchors as shown in Figure 1-2, it is necessary to know if the loop passes around
the left anchor first followed by the right one, or vice versa, in order to undo the
loop properly. Locally, the looping motion around each anchor looks the same in
both cases. Therefore, a model with a Markovian assumption will have difficulty
distinguishing between the two motions due to its limited history capacity. Instead,
I choose a representation that reflects the temporal history of the entire motion.

My approach builds upon the capabilities of existing motion recognition algo-
rithms while providing three important features. First, since physical manipulation
tasks are often non-Markovian, in that later parts of a motion may depend on past

states, [use a model that can describe non-Markovian motions by leveraging temporal

21

/ﬂ

1 2 2 1

Figure 1-2: Knowing only the previous state at the highlighted position will not
distinguish the two motions.

information. Second, my approach achieves real-time performance by efficiently shar-
ing information across consecutive time steps. Third, the model of learned behaviors
is robust to variations in initial environment states.

I have developed a representation called probabilistic flow tubes (PFTs) [20, 19,
21], which are used to generalize the demonstrated motion to be applicable for new
situations. The covariance of the flow tube varies with the precision with which the
demonstrated motions are performed. For example, a motion that moves a limb to the
ground may have lots of variation in the trajectory initially, but when the limb reaches
closer to the ground, the motion is executed with more precision to avoid crashing
into the ground. Such a motion’s flow tube would have larger covariance initially
and narrower covariance toward the ground. During execution, the controller should
follow the flow tube trajectory as well as possible, with deviations from the trajectory
penalized according to the covariance of the flow tube at that time. In this way, the
probabilistic flow tube representation provides robustness during execution.

Constraint-based flow tubes have been used in the context of planning and exe-
cution to represent sets of trajectories with common characteristics [26, 38]. In this
context, a flow tube defines a state region where valid trajectories of a motion can be
feasibly achieved given constraints on the system dynamics. In the motion learning
context, a probabilistic version of a flow tube is computed by inferring the desired
Gaussian state distribution at each time step from human demonstrations.

Geometrically, as shown in Figure 1-3, the width of a probabilistic flow tube rep-
resents flexibility in the robot’s desired movement, enabling it to optimize additional

performance criteria or recover from disturbances. The PFT representation produces

22

Figure 1-3: Example visual representation of a probabilistic flow tube

humanlike trajectories because it is directly modeled from the user’s demonstrations
with minimal abstraction. In contrast, some motions generated by planners may
not be intuitive for human collaborators, even though they may be valid. Further-
more, the PFT representation can be easily applied to situations with different initial

conditions because it is parameterized by the relevant variables of the motion.

Manipulation tasks of interest in this work can be either primitive activities, which
are described by important motion features at the start or end of the motion, or com-
plex plans composed of sequences of primitive activities. An example of a primitive
activity might be “reach for box,” where the robot end effector starts from some loca-
tion and ends near the box location. An example of a complex plan might be “stack
boxes in corner,” which might involve the sequence of primitive activities { “reach for
box1”, “move boxl to corner”, “reach for box2”, “move box2 on box1”}. To learn a
task, the system must keep track of all the important features in the task so that if
the robot needs to autonomously execute the task in the future, the defining features
of the task are preserved, even if the environment is different.

When a user demonstrates a complex plan through teleoperation or kinesthetic
teaching, he or she might indicate when one subtask is complete and the next begins,
using interfaces such as voice, keyboard, or other devices. However, this is an added

layer of effort for the user, so a useful learning system should not require the user

23

to provide segmentations for every demonstrated trial. Thus, when learning complex
plans from user demonstrations, the system also has the added challenge of inferring
the points of segmentation in most trials from only a few pre-segmented trajectories

provided by the user.

1.2 Problem Description

There are three main problems that this thesis focuses on: learning primitive motions,
learning complex motions, and recognizing motions in real-time. The term activity
is used to describe primitive motions, and plan is used to describe complex motions
composed of sequences of activities. The term task is used to generically refer to
either activities or plans. An overview of how the learning and recognition problems
relate to each other is illustrated in Figure 1-4.

Task learning refers to the problem of determining the relevant features of a mo-
tion and creating a generalization of it (in the form of probabilistic flow tubes) that
can be applied to new situations, given a set of labeled user demonstrations. The
demonstration trajectories are recorded as a hybrid combination of continuous and
discrete values. Specifically, the input data includes position and orientation informa-
tion for the robot end effector during teleoperation or kinesthetic teaching, position
and orientation of other sensed objects in the environment, other single dimensional
continuous variables such as temperature or voltage, and discrete variables such as
whether the power is on or off or whether the gripper is open or closed.

Both activity learning and plan learning aim to achieve the same goals of identify-
ing relevant motion variables and creating a general representation of the motion to
apply to different situations. The added complication in plan learning is that input
user demonstrations may not necessarily be pre-segmented, since providing this extra
information may be an additional burden on the user. I assume that out of all the
user demonstrations for a particular motion label, only a few contain segmentation
information. The system, therefore, must autonomously extrapolate this information

onto the non-segmented demonstrations.

24

Set of labeled user
demonstration trajectories

Offline task
learning

Current environment state ——» | Activity
learning

learning

Plan

Task library

Probabilistic
flow tubes

Motion
features

Execution

-

Current observed trajectory —

o

Online
recognition

\

i/

Incrementally updated parameters

Recognition
likelihoods

Figure 1-4: Architecture of learning and recognition problems

25

After a task or a set of tasks is learned in a generalized form, it can be stored
into the task library for future use. For example, tasks generalized as probabilistic
flow tubes can be sent to a controller for autonomous execution, or sent to the online
motion recognizer to perform real-time recognition of a new user execution. Controller
design is not within the scope of this thesis, but I envision a controller that can follow
the mean trajectory of the probabilistic flow tube while dynamically adjusting the
amount of allowable deviation based on the flow tube’s width over time by tuning
parameters like stiffness, speed, or gain.

Task recognition refers to the problem of determining how likely a user is currently
executing one of several learned motions, given the currently observed user execution
trajectory. This is useful during long user teleoperation procedures, to enable the
system to recognize which task the user is trying to perform, and potentially au-
tonomously complete the task, saving the user some amount of effort. To enable the
recognition process to compute in real-time, the system reuses as much as possible the
analyzed information from one time step to the next, and only updates recognition

parameters incrementally as needed.

1.3 Approach Overview and Innovations

I now provide a brief overview of my approach to each of the activity learning, activity
recognition, and plan learning problems. For a detailed discussion of each of these

approaches, see Chapters 4 through 6.

1.3.1 Activity Learning

There are two key innovations in my approach to activity learning. First, from ob-
serving different demonstration trials of a motion, the system is able to determine
the important features that define the motion, without any a priori knowledge. For
example, suppose a sensing system is constantly tracking the positions of a box, ball,
and bin in the environment. Suppose the objects are initially located in different

places for every demonstrated trial. If the demonstrated motion is “move box to

26

bin,” then only the box and bin positions are important while the position of the ball
is irrelevant for this motion. By comparison, a motion to “move up 1 foot” is not
concerned with any of the objects, but instead, is focused on the relative difference
between the start and end positions of the robot. The approach determines what
features are relevant or important in a motion by observing which features are per-
sistent throughout different trials. When learning a new motion, the system asks the
following questions: (1) Do the trials all start or end in the same absolute position?
(2) Do the trials all start or end relative to a particular object or point of interest in
the environment? (3) Do the trials all display a relative movement from the start to
end positions? If a consistent pattern is noted across different demonstration trials,
then the system identifies that pattern as a relevant motion characteristic. Once these
characteristics are found for a motion, the algorithm can create a motion model in a

new environment while ensuring that the same motion characteristics hold.

The second key innovation in my activity learning approach is the development of
the probabilistic flow tube model to represent a motion. The idea of the probabilistic
flow tube is grown from prior art in the planning and execution field, where constraint-
based flow tubes have been used for feasibility analysis in controller design 26, 38, 66,
76]. In these applications, flow tubes are computed from the dynamics of the system to
describe the region of possible trajectories. In the manipulation domain, the dynamics

are difficult or impractical to compute, so activity learning addresses the inverse

Figure 1-5: Probabilistic flow tubes can look drastically different for different envi-
ronment states

27

problem of generating the flow tube probabilistically from example trajectories. A
motion’s probabilistic flow tube is different for different initial environment states.
For example, a robot’s motion during a “move box to bin” task may look drastically
different if the box is initially to the left of the bin as opposed to the right, as shown
in Figure 1-5. In a new environment state, the algorithm first determines what the
start and end states of the motion should be given the identified motion variables.
Next, it normalizes similar training trajectories to the desired start and end states
to generate a mean and covariance trajectory, which make up the probabilistic flow
tube. This probabilistic flow tube is then stored into the task library for future use

such as autonomous execution or real-time recognition.

1.3.2 Real-time Recognition

My approach to real-time recognition has three main components. In order to deter-
mine the likelihood that a user’s current partial execution is of each learned motion,
the approach first determines the time step in each learned probabilistic flow tube
that best corresponds to the user’s current executed state. Suppose a user has cur-
rently moved the robot half a foot to the right, in the direction of a distant object, as
illustrated in Figure 1-6. At this moment, an observer might estimate that the user
could be executing a motion such as “move right 1 foot,” or “reach for the object.”

If the correct motion were “move right 1 foot,” then the point in the learned PFT

user execution

o RSN
reach for object ' = :::::I;) cj%l&ﬂ"'[”‘""w‘":

correspondence points

“move right 1 ft”

Figure 1-6: Given a user’s current execution (black arrow), the algorithm first deter-
mines correspondence points (pink dots) in each candidate learned motion

28

for the motion that best corresponds to the current executed state should be roughly
in the middle of the motion. If the correct motion were “reach for the object,” then
the correspondence point should be more toward the beginning of this motion’s PFT
since the object is assumed to be quite far away in the environment, and the execu-
tion has not reached very far yet. The algorithm determines these correspondence
points in the PFTs by looking at both how far the current executed state is spatially
from each PFT and how much time has passed in the execution as compared with
the trained models.

Once the system determines how much of each PFT corresponds to the user’s
current execution, the next component in the recognition approach is to temporally
align the user’s partial execution to the corresponding PFT portions to remove tem-
poral variations among different executions. An existing algorithm called dynamic
time warping exists to perform temporal matching between two trajectories, but my
online recognition approach implements an incremental version of this algorithm that
minimizes computation from one time step to the next by intelligently keeping ap-
propriate parts of certain algorithmic parameters in memory.

Finally, after the user’s execution is temporally aligned with appropriate portions
of the learned PFTs, the last component of my recognition approach uses the mean
and covariances of the PFTs to compute the likelihood that the user’s partial execu-
tion actually belongs to each PFT. The result of online recognition is a set of such log
likelihoods over the different motion labels at a particular time step of the execution.
New information as the user’s execution progresses will result in updated recognition

likelihoods at each new time step.

1.3.3 Plan Learning

In order to teach a robot a compound activity, users generally find it more natural to
provide a demonstration for an entire plan in one continuous movement rather than
demonstrating each subtask separately. To generalize complex tasks consisting of
multiple activities in sequence,I developed a plan learning approach to overcome two

major challenges. First, not all the activities demonstrated in the plan are necessarily

29

Pre-segmented trial Un-segmented trial

1

=30

=30 (=40

Figure 1-7: Illustration of auto-segmentation

in the task library or learned in the past. The system may be encountering certain
activities in the plan for the first time. For these previously unknown activities,
the system uses the segments of the plan demonstration trials that correspond to
the unknown activity to learn that activity right away, as part of the plan learning

process.

Secondly, I assume that only a small subset of the demonstrated trials have user
provided segmentation information. My approach leverages the few pre-segmented
trials to auto-generate segmentation points on all other trials. As shown in the illus-
trated example in Figure 1-7, the algorithm first initializes candidate segmentation
points in un-segmented trials proportionately in time as the pre-segmented trials
(panel 2), then updates each candidate segment to reflect what the system knows
should happen based on the motion variables in the activity. Suppose running the
recognizer over the pre-segmented trials reveals that the plan’s activity sequence is
{“reach box”, “move box to bin”}, then the system knows that the point of segmen-
tation between the two activities should be whenever the robot end effector meets
the box (panel 3). Finally, the system can validate the auto-generated segmentation

points with the user through an interactive display.

30

1.4 Thesis Layout

I present this thesis in the following manner: In Chapter 2, I perform a literature
review of related work in the areas of learning from demonstration, motion recogni-
tion, flow tubes, and other related fields. In Chapter 3, I present formal definitions
of the problems to be solved in this thesis. I describe the approach and algorithms of
activity learning in Chapter 4, activity recognition in Chapter 5, and plan learning
in Chapter 6. Next, I present results in a two-dimensional world as well as on several
hardware platforms in Chapter 7. Finally, I discuss possible future advancements in

Chapter 8. This concludes the introduction as I move into the details of the work.

31

32

Chapter 2

Related Work

2.1 Learning from Demonstration

Learning and recognizing human motions has long been an interest for human-robot
interaction. [6, 40]. For example, learning human-taught policies has proven useful
in the domains of underactuated pendulum control [7], autonomous helicopters [12],
and vehicle navigation [1]. My work focuses on manipulation tasks, where interaction
with objects in the environment becomes important. My approach is inspired by
existing work in learning manipulation tasks from demonstration.

Peters and Campbell [52] demonstrated automatic skill acquisition by the hu-
manoid Robonaut developed at NASA Johnson Space Center. Robonaut was shown
several demonstrations of a task through teleoperation, and the data was time nor-
malized and averaged to produce a characteristic sequence that can be linearly scaled
to be autonomously executed in new situations. Their work showed that learning from
teleoperated demonstrations is an attractive approach to controlling complex robots.
With a more robust motion representation and better adaptability to new situations,
this type of approach will become compelling for a wider range of applications.

A comparable approach to mine is that developed by Muhlig et al. [43], who
demonstrated an imitation learning framework that allows a robot to autonomously
perform tasks that were shown to it by human demonstration. Specifically, the demon-

strated task was to pour fluid from a bottle to a cup, and experiments were run on

33

Figure 2-1: Mixtures of Gaussians may not be an intuitive representation of contin-
uous motions.

Honda’s humanoid ASIMO robot. The authors used task spaces to model motions,
which allowed them to track only object trajectories instead of full human postures.
They then applied Dynamic Time Warping (DTW) [44] to normalize the temporal
information in the demonstrated motions, and described the resulting normalized mo-
tion using Gaussian Mixture Models (GMM). To autonomously reproduce the motion,
the authors used the learned probabilistic trajectory to initialize an attractor-based
movement generation algorithm that takes into account additional criteria such as

collision avoidance.

One major difference between my approach and that of Muhlig et al. is the use of
probabilistic flow tubes instead of Gaussian Mixture Models to represent the proba-
bilistic motions. Determining the optimal number of Gaussian components in a GMM
approach can be somewhat arbitrary or cost-intensive [60]. Furthermore, I argue that
while mixtures of Gaussians work well in applications concerning discrete clusters
such as in localization [53] and classification [72], they do not describe continuous
motions as intuitively as probabilistic flow tubes. As shown in Figure 2-1, GMMs can

create artificial ’kinks’ in the probability distribution of a learned trajectory.

Pastor et al. [49] also address the problem of learning general motions from demon-
stration. Their approach differs from mine because they represent the demonstrated
movement with a set of differential equations describing a linear spring system per-
turbed by an external forcing term, whereas I represent motions with probabilistic
flow tubes. Their representation is motivated by the dynamics of the system and can

describe any smooth motions, whereas I learn the demonstrated trajectories directly,

34

and thus my learned motions closely reflect those of the human’s, even if the motions
are not smooth. Their actions are generalized by changing the goal parameter in the
differential equations, and they record these actions in a library of movement prim-
itives so that complex motions can be composed by sequencing. My approach also

maintains a library, but consisting of both primitive and higher level motions.

Hsiao and Lozano-Perez [27] have developed a method that uses imitation learn-
ing through teleoperation to teach a robot to perform complex grasping of differently
shaped objects. Their work differs from mine in their focus on the grasping task do-
main, where a large part of the problem is in identifying appropriate contact points
and determining the appropriate amount of force to apply. Instead, my motion learn-
ing approach is more concerned with determining the trajectory that a human would

take throughout a task.

An important part of my approach is the ability to identify the relevant features
of a motion, so that a learned flow tube can be adjusted to new environments ap-
propriately based on relations in existing data. Alissandrakis et al. [3] developed a
system called Jabberwocky that, given a single demonstration and the desired effect
metrics (which, in my terminology, are the motion characteristics), can produce the
same effect of the motion in a new environment setup. The problem they address is
quite different from my motion characteristic identification problem: in their prob-
lem, the metrics are known in advance and the goal is to produce an imitation of
the demonstrated behavior using those metrics, whereas in my problem, the metrics
(or motion characteristics) are not known in advance and have to be learned from
observing patterns across many demonstrations. I agree with Alissandrakis et al. in
their assessment that “the choice of metrics used is very important as it will have
an impact on the quality and character of the imitation,” and thus I chose to allow
the system to autonomously learn them. I note that the candidate metrics presented

” W

in their paper are very similar to mine, including “relative displacement,” “absolute

FPEN1d %

position,” “relative position,” “rotation,” and “orientation,” suggesting that these
candidate metrics are good choices for describing manipulation motions.

Calinon et al. [9] present an approach to learn demonstrated movements for mo-

35

tion generation. Their approach represents motions as HMMs learned using the EM
algorithm, and employs Gaussian Mixture Regression to compute the desired veloci-
ties (and accelerations) for autonomous motion generation. The HMM representation
is starkly different from the probabilistic flow tube (PFT) representation used in my
approach. Learning an HMM using EM requires determining the optimal number
of states using, for example, a BIC criteria, which can be computationally intensive.
Furthermore, the resulting number of states is usually small: for example, 4 states in
the “S” shape motion presented by Calinon et al. In contrast, probabilistic flow tubes
approximate the region of flexibility in the trajectory by modeling a single Gaussian
at every time step. Despite having many Gaussians, the lack of a need to compute
Gaussian mixtures actually enables the PFT representation computation to be quite
efficient. For these reasons, the HMM representation is more compact while the PFT
representation is more detailed. The HMM representation presented by Calinon et al.
is closely related to that in Martin et al. (2010), to which I compared my results, with
the difference being that Calinon et al.’s HMM incorporates velocity data whereas

Martin et al.’s HMM does not.

Calinon et al. handle landmarks (objects in the environment) by first expressing
the training trajectories in the reference frames of each landmark, computing an HMM
in each landmark’s reference frame, and upon the introduction of a new environment
state, project the respective HMMs back onto the robot torso frame, after which
taking a product of the corresponding Gaussians in the HMMs produces the final
representation in the new environment. In this setup, the relevant landmarks must
be given in advance. If irrelevant landmarks are included at random locations during
each demonstration, they could skew the final motion representation in unnecessary or
undesirable ways. Also, it is unclear if their approach would be able to handle motions
that, for example, start relative to a landmark that can be moved around, and end at
an absolute location, since it is unclear if their approach deals with motions that have
"relative displacement” or ”absolute position” characteristics. Furthermore, training
trajectories for cases like these that could start all over the place and end in some

absolute location can have a radial appearance, in which case it is unclear how the EM

36

learning will determine where the Gaussian mixtures of the HMM should go. These
are all cases that are handled by the motion characteristic identification approach

developed in this thesis.

Cederborg et al. [11] present an unsupervised motion learning and generation
approach that first stores all of the demonstrated data of all different motions in
one data structure, then when given a starting state, selects a set of training data
points that are approximate nearest neighbors of that state, uses EM to learn a GMM
with a predefined number of mixtures on the local points, and uses GMR to estimate
the desired velocity for the next time step. Their motion representation is distinctly
different from my probabilistic flow tube representation. Their learning process occurs
entirely online at every time step during autonomous execution; after one time step
is over, the previously learned local model is forgotten and the algorithm moves on to
learn the next Gaussian mixture for the subsequent time step. My approach performs
learning globally over entire motions offline and uses the learned flow tubes for online
recognition. It is unclear in Cederborg et al. how their local algorithm handles, for
example, motion trajectories that have different sized loops that tangentially meet at
the same local state: for example, how will it know which branch is the correct one to
take at that point? The global temporal information used in the PFT representation

prevents my approach from getting "lost” locally.

Cederborg et al. consider three possible reference frames in which a motion can be
performed: relative to the starting position, relative to the robot frame, and relative
to an object position. The desired velocity estimated at every state is the weighted
sum of the desired velocities in each reference frame, where the weights reflect how
well the data trains in each frame. In all of their examples and results, the motion
belonged to exactly one of the reference frames; no examples were given of motions
that span multiple reference frames, such as moving an object to an absolute location,
so it is uncertain how their algorithm will perform in these cases. My approach does
not view the entire motion in multiple reference frames; instead, relevant motion char-
acteristics are determined at the start and end of a motion (which can correspond to

different reference frames in their approach), and the motion trajectories are adjusted

37

accordingly.

Lee and Ott [36] present an approach to combine teaching by observational demon-
strations (where a robot watches what a human does) with kinesthetic demonstrations
(where a human physically moves the robot around). Here the idea is that a robot
will learn the bulk of the motion from observational demonstrations, and then re-
fine the more precise manipulation parts of the movement from direct user guidance.
They present a representation called a refinement tube that ”helps the human teacher
to correct only the desired part of the motion without accidentally disturbing other
joints” and present an impedance controller that increases the robot’s stiffness once
outside the refinement tube. Despite the common word "tube” in the names of their
representation and mine, the essence of the two representations are distinctly differ-
ent. Their approach is as follows: use EM to learn an HMM on the training data
where the states are a GMM and the number of states is given in advance, then use
the Viterbi algorithm to determine the optimal state sequence through the HMM
after adding in temporal data. This sequence of Gaussians in space-time is used to
determine the refinement tube, whose radius is defined as a function of the condi-
tional variance at a given time step. In the conducted experiments, Lee and Ott
chose to set the number of learned HMM states to 10. The resulting refinement tube
bulges at time steps close to the middle of each Gaussian, and narrows at time steps
in between different Gaussians; had the number of states been chosen at 2, the re-
finement tube would have two bulges. It seems undesirable that the refinement tube
may arbitrarily change shape depending on the chosen number of states. In my PFT
representation, Gaussians exist in the spatial dimensions at each time step. If time
steps were sampled less frequently, the model would end up with a coarser PFT, but
it would maintain the same basic shape. The problem Lee and Ott are solving is also
quite different from the goals of this thesis. While I focus on online recognition of

user motions, they work toward a better paradigm of teaching robots.

Riley and Cheng [57] present an unsupervised motion learning and generation
capability that segments motions based on curvature, groups similar trajectories to-

gether, and generalizes the motion groups using linear regression where potentially

38

non-linear features are represented with radial basis functions. My approach differs
from theirs in three main ways: (1) My motion representation describes not only the
demonstrated motion itself, but also a probabilistic region of flexibility around it;
their representation is geared more towards autonomously generating specific trajec-
tories that are reasonable. (2) My approach is concerned with variable environments
during demonstrations whereas theirs maintains the same environment state through-
out different demonstrations. (3) I am focused on the online recognition problem after
supervised motion learning, while they are focused on autonomous motion generation

after unsupervised motion clustering.

The problem addressed by my probabilistic flow tube representation is also differ-
ent from regression using Gaussian processes [56]. Regression treats all demonstration
data points independently. Gaussian processes can then be used to determine a dis-
tribution over functions that best models the underlying function. In contrast, I am
interested in modeling the time sequence in a way that leverages the temporal infor-
mation. Consequently, my model maintains the temporal ordering of the data points
in each demonstration, and Gaussian distributions are used to describe the spatial

variability of the motion.

I note several other related works in the broader area of learning human mo-
tions. Blackburn and Ribeiro [8] used isometric feature mapping (Isomap) [67] for
dimensionality reduction in human motion recognition in videos abstracted as silhou-
ettes, and then used Dynamic Time Warping for motion pattern matching. They
reported that Isomap combined with DTW achieved recognition rates of over 95% on
the particular motions they used, which performed better or at least comparable to
methods using locally preserving projections (LPP) for dimension reduction with a
hidden Markov model (HMM) approach for recognition, as presented by Wang and
Suter [71]. This gives reassurrance over the efficacy of approaches using dynamic time
warping. Work by Jia and Yeung [30] introduced a manifold embedding method that
considers both spatial and temporal discriminative structure of silhouetted actions in
a supervised learning setting. Anthony [5] and Fitriani [22] developed an algorithm

called Dynamic Time and Space Warping that was used for video matching and align-

39

ing. Although these approaches focus on domains different from manipulation tasks,
they provide insight into the importance of utilizing both spatial and temporal in-
formation during motion learning and identification, which I also emphasize in my

approach.

2.2 Motion Recognition

Motion recognition applications have ranged from visual gesture recognition [42, 73] to
understanding domestic activities [25] to gait analysis [23], among others. I am mainly
interested in learning and recognizing teleoperated manipulation tasks, although my
approach is potentially extensible to other applications.

Recognition in the context of teleoperation has commonly been explored using
Hidden Markov Models (HMMs) [39, 64, 75]. Specifically, Martin et al. [39] model
motions learned from training data as sequences of HMM states, where each state
refers to a mixture of Gaussians, and recognition can be performed using either the
Viterbi algorithm or posterior probabilities during model learning. Their approach
proved promising in recognizing grasping tasks and provides a good basis of compar-
ison.

Using probabilistic flow tubes, my algorithm performs recognition of a new partial
motion by computing the likelihood of its being described by each model, after tem-
porally aligning relevant time steps. Real-time performance is achieved by storing
parts of the computation in memory and using an incremental version of dynamic

time warping [44] for temporal matching.

2.3 Flow Tube Background from Plan Execution

Hofmann and Williams [26] proposed a robust plan execution approach that allows
for spatial and temporal plan flexibility for under-actuated systems performing mixed
discrete-continuous motions. The example used in their paper is a biped walking on

uneven terrain. Their approach compiles a temporally flexible plan, called a Qual-

40

itative State Plan (QSP), into a concurrent timed flow tube description called a
Qualitative Control Plan (QCP) that represents all feasible control trajectories and
their temporal coordination constraints. During execution, the plan dispatcher only
needs to maintain state trajectories within the bounds of the flow tubes. Thus this
execution approach is robust to disturbances as long as they do not perturb the states
outside the flow tubes.

The Qualitative State Plan is an input to their system that is manually defined by
the user. In applications where the user may not have a predefined idea of the exact
steps of a task, I propose to allow the user to start controlling the robot at a lower
level right away, and have the system learn possible plans along the way by observing
the user’s interactions.

Furthermore, Hofmann and Williams compute the flow tubes in their Qualitative
Control Plans by performing reachability analyses, given the kinematics of the system.
Instead of deriving the flow tubes brute force, my approach uses human teleoperation
to demonstrate a few feasible state trajectories, and then learns a probabilistic flow
tube from the data. Learning from the user is advantageous because it can produce
a more intuitive motion. For example, experience with the Barrett Whole Arm Ma-
nipulator robot has shown that it can reach a certain location in a normal forward
motion, or in an awkward backward-handed way that is surprising to the user. In
human-robot interaction, the human operator needs to be able to trust the robot,
so the robot must behave in an intuitive way. The best way to determine what is

intuitive to a human is to learn directly from them.

2.4 Adaptive Interfaces

Although my plan learning capability applies human-robot interaction during training
and learning, it is different from prior art in adaptive interfaces such as [33, 62, 31,
29, 65, 68] where the focus is on designing user interfaces that change appropriately
with the task. For example, Kazi et al. [33] describe a multimodal interface that

uses speech and gesture along with stereo visual sensing to assist disabled persons,

41

and Serenko [62] describe an intelligent assistant for organizing e-mail. In contrast,
I focus on learning to execute physical actions rather than adapting to behavioral
tendencies of a user. I am also less concerned with the actual display of the interface

than with enabling the agent to gather information through the interaction process.

42

Chapter 3

Problem Statement

An illustrated example of the learning and recognition problem is shown in Figure 3-
1. In this example, user demonstration training data is collected in a 2D world
consisting of three movable objects: “box,” “ball,” and “bin.” The user has given
several demonstrations each of three different types of motion: “move box to bin,”
“move box left,” and “move box home,” in which “home” refers to the center position
of the environment. Given a new environment setup where the objects are in different
locations, the offline learning algorithm computes a probabilistic flow tube in the new
environment for each type of motion. As the user starts to execute a motion in this
environment, the recognition algorithm determines in real time the likelihood that

the user is executing each type of motion.

In my experiments, human motion data is collected directly using a teleoperated
or kinesthetic teaching interface, where human driven motion is recorded through
robot poses. Objects or other points of interest in the environment can be sensed
through vision, laser range finding, infrared, motion capture, or any other standard

devices.

In the rest of the chapter, I first define the variables involved in the inputs and out-
puts of the learning and recognition system, and then define three types of problems:

activity learning, activity recognition, and plan learning.

43

move box to bin| move box left || move box home

@ . -/". L
@

®
.\ LA ® R-,. 2. Learning problem

® i I-I

«m " .\: LA

1. Given user demonstrations 3. Recognition problem

Figure 3-1: Illustrated example of a learning and recognition problem. Initially, a
user demonstrates a set of motions a few times (1). The learning problem consists of
generalizing the demonstrations into probabilistic flow tube representations for each of
the three motions in the new environment state (2). Given a new user motion depicted
as the shift in the red box position in the direction of the arrow, the recognition
problem consists of determining which motion the user is most likely performing (3).

44

3.1 Definitions of Inputs and Outputs

A user demonstration trajectory is a hybrid mix of time-evolved continuous and dis-
crete variables described in Definition 1. These variables capture the world state
through time, including the position and orientation of the robot end effector, the
position and orientation of objects or points of interest in the environment, other
single dimensional continuous variables that describe the world, and other discrete

variables in the world.

Definition 1 A demonstrated trajectory T is a tuple (C,D,P,Q) denoting a

sequence of values through time, where:

e C is a set of ¢ single dimensional continuous variables at time stepst =0... N.
Ezxamples of such continuous variables include execution time, temperature, volt-

age, etc.

e D is a set of d discrete variables at time stepst = 0...N. FEzamples of such

discrete variables include gripper open/close, power on/off, etc.

e P is the set of Cartesian position variables x,y, z for each of b=1... B points
of interest at time stepst = 0...N. P denotes the position variables of the
specific point of interest where b = eff , the robot end effector. The index eff is
typically equal to 1.

o Q is the set of quaternion orientation variables qi,q2,q3,qs for each of B points
of interests at time steps t = 0...N. Similarly, Q%7 refers to the orientation

variables of the robot end effector.

Points of interest in the environment can be the robot end effector, objects or parts
of objécts that can be sensed, or other known markers in the environment. Future
extensions of the learning algorithm may also utilize velocity V and acceleration
A inputs for each point of interest over time, but is not within the scope of the
current discussion. The manipulation tasks studied here are generally slow enough

that position information alone is sufficient for good motion learning performance.

45

The state of the world at a particular time step ¢ in the demonstrated trajectory
is denoted by T (t), which is the cross section of all the variables at that time step
(C(t),D(t),P(t),Q(t)). Therefore the initial environment state of a trajectory
is denoted as T (0). N is the number of time steps for a particular demonstrated
trajectory, and can be different for different demonstrations.

When a user is executing a trajectory in real-time, it is useful to record the partial
execution of the motion by the current time step, especially for online recognition.

This current execution of a trajectory is described in Definition 2.

Definition 2 A current execution TV is a user’s current partial execution of a

trajectory from t = 0 to the current time step t =t

Every unique motion that the system learns is assigned a motion label, described

in Definition 3.
Definition 3 A motion label { is a unique string associated with a task.

Motion labels are typically provided by the user. In the absence of user interaction,
motion labels can also be randomly generated by the system.
When the system is learning a task, it is typically provided multiple trials of user

demonstrations for that task. Definition 4 describes the training set.

Definition 4 A set of training sequences for a particular motion S is the set

of demonstrated trajectories {T},._; for a particular motion label £.

The number of time steps in a training sequence Nj may vary among different se-
quences. To enable batch learning of multiple motions, the system can be provided a

set of training sequences for multiple motions, described in Definition 5.

Definition 5 A set of all training sequences T is the combined set of training

sequences {S;} e for all M motions with labels L = {£y, ..., ly}.

A probabilistic flow tube (PFT) is formally described in Definition 6. It is com-

prised of a mean trajectory and its corresponding covariances through time.

46

Definition 6 A probabilistic flow tube associated with a motion label £ and start-
ing from environment state T (0) is denoted as PFT[T © and is composed of a tuple

<Teﬁ, 2€ﬁ>, where

o T = <C,D,P8ﬁ,Qeﬁ> refers to a nominal desired robot end effector trajec-

tory.

o Xff = <UC,JD,E§,ﬁ,2fg> refers to the covariances throughout the trajectory

at time steps corresponding to those in T .

A probabilistic flow tube that is generated for a motion ¢ is dependent on the starting
environment state for which it was computed (7°(0)). PFTs created from different
environment states can be quite different from one another. For example, a “move
box to bin” motion trajectory will appear greatly different if the box is initially to
the left of the bin versus if the box is initially to the right of the bin.

A task library, described in Definition 8, is composed of a set of task entries,
described in Definition 7. Tasks can be either primitive activities composed of no

subtasks, or plans composed of more than one subtask.

Definition 7 A task library entry, or simply task, associated with a given label

¢ is denoted by lib, and is composed of a tuple <PFTE, E,J—",q)u where:

e E, is a set of initial environment states {1y, (0)},cx -

o PFT} is a set of probabilistic flow tubes starting from the different initial en-

vironment states described by Eg, or {PFT?(O)}T()eB,
0)€E,

o F; is a tuple of features (Fg,Fp, Fp, Fq), also known as motion variables or
characteristics that describe motion £. Each Fx is a set {(,u, 3, relevant)g"de},

where mode € { absStart, absEnd, rellnit, relEffStart, relEfEnd }.

e g is a sequence of motion labels {{1 ...y}, also known as subtasks, that com-

pose task £. If £ is a primitive activity, then g = 0.

Here I only provide the organizational structure of the variables used in the system.

For an in-depth description of motion variables F, see Section 4.1.

47

Definition 8 A task library L is the library of task entries {libe},c;, where L is
the set of all task labels in the library.

When handling trajectories that represent plans, which consist of a sequence of
activities, the system must know or compute the segmentation points between activ-

ities in the trajectory. These points of segmentation are described in Definition 9.

Definition 9 A set of keyframes K*V are time steps in a plan trajectory that seg-
ments one subtask from the next in the plan. Keyframes are embedded into a demon-
strated sequence T as part of the discrete variable D¥V € D, where D*V (K*¥) =1

and all other elements in D*¥ are zero.

Next, I formally define the different kinds of problems that the system is able to
handle.

3.2 Definition of an Activity Learning Problem

The problem of learning an activity from user demonstrations is presented in Defini-
tion 10. The goal is to identify the important features of the activity and generate a
probabilistic flow tube in a new environment state. The detailed approach to activity

learning will be discussed in Chapter 4.

Definition 10 Given a set of training sequences S for activity label £ and a starting
environment state T (0), determine the set of motion variables Fy that are relevant
in the activity, and generate a probabilistic flow tube PFTgT(O) that describes the robot

end effector motion in the activity.

The outputs to the activity learning problem can be used for several purposes.
First, the learned probabilistic flow tube can be sent to a controller for autonomous
activity execution in the current environment state 7°(0). The controller would try
to follow the PFT’s nominal trajectory while using the covariances as a guide to the

amount of deviation allowed.

48

Additionally, the resulting motion variables Fy and probabilistic flow tube PF' T;TF(O)

that are learned can be used to create a new task library entry
liby = <PFTZ<°>, T(0), Fe, (/)>

if the motion labeled ¢ does not already exist in the task library. In the case that ¢
already has an entry lib, = <PFTE, E, F, q>e, the entry can be updated with the new

PFT and initial environment, producing
liby = <{PFTE, PFTT(O)} AE,T(0)},F, q>€.

The system is allowed to be able to learn multiple activities as a batch, so it is
also possible to provide a set of training sequences for multiple activities 7~ with their
corresponding labels I and expect a set of different motions’ probabilistic flow tubes

PFTZ(O) = {PF TET(O)} that all start from the same environment state as output.
tel

3.3 Definition of an Activity Recognition Problem

The problem of real-time activity recognition as a user executes a motion is presented
in Definition 11. Real-time recognition computes the likelihood that a user is currently
executing any one of several activities. These likelihoods change at every time step
with new user information. The detailed approach to activity recognition will be

discussed in Chapter 5.

Definition 11 Given a user’s current partial activity execution T, a set of learned
probabilistic flow tubes PFT;CW(O) corresponding to activity labels L all starting at
environment state T<“" (0), compule in real-time, a set of log probabilities LL =

{lly,..., U} over the set of known labels L = {€y,...,¢n} that reflect the likelihood

that the label of the user’s current motion is one of L.

The resulting log likelihoods LL are computed for a specific moment in time, up

to which the user’s execution is T°¥". At the next time step, the user’s execution

49

will have progressed, so a new set of log likelihoods would need to be computed.

3.4 Definition of a Plan Learning Problem

The problem of learning a plan from user demonstration trajectories is presented in
Definition 12. I assume that a small subset of demonstration trajectories contain
keyframes, or points of segmentation, indicating exactly when the trajectory transi-
tions from one activity to the next. Users can provide this information throﬁgh voice
or keyboard inputs during demonstrations, or through data annotation post demon-
stration. Since providing this additional segmentation information is an additional
effort for the user, I assume that most of the training demonstrations do not contain
keyframes, and thus the system must extrapolate this information for most trials from
the few provided pre-segmented trajectories. The detailed approach to plan learning

will be discussed in Chapter 6.

Definition 12 Given a set of training sequences S for plan label £ (of which a subset
Y C S contains keyframes), a starting environment state T (0), and the current task

library L, generate a task entry liby that describes the plan and update the task library.

Like activity learning, plan learning also involves generating a probabilistic flow
tube that can be used for execution. Again it is worth pointing out that the plan’s
PFT can vary vastly depending on the initial environment state. For example, the
trajectory of a plan involving { “move box to bin”, “reach for ball”, “move ball to x”}
can look drastically different for different initial locations of the objects. The system
must utilize the important features of the subtasks in a plan to generate a correct

PFET for a given environment.

3.5 Relationship to Prior Art

As discussed in Chapter 2, many researchers have addressed the learning from demon-

stration problem [52, 12, 49, 43], but in each instance, the important features of the

50

task is known in advance. For example, Pastor et al. [49] teach a robot arm to place
a cup on a saucer while avoiding a ball obstacle. The roles of all the objects in the
world are known in advance, and the system just needs to reproduce the task. In
the problems addressed in this thesis, however, the relationships among objects and
the robot end effector that are important for one task or another are not known in
advance, and must be learned from the user demonstrations. For example, there may
be a dozen objects detected in the world, and only objects 1 and 2 are relevant for
task A while only object 10 is relevant for task B. This information is not known
in advance in the problems addressed here, while approaches presented in prior art
assume it is given.

I have now formally defined the inputs and outputs of the learning and recognition
system as well as presented the problem statements of the activity learning, activity
recognition, and plan learning problems. The next three chapters discuss my approach

in addressing each of these problems.

51

52

Chapter 4
Learning Single Activities

The activity learning procedure is summarized in Algorithm 4.1. The inputs
include the training set for all motions T, the set of motion labels L, and a new
environment state 7 (0) in which the test motion will be performed. The output
is a set of activity models describing the training motions in the new environment.
Additionally, certain computations are stored in memory during the offline activity
modeling phase in order to achieve fast performance during online recognition later.

There are two major steps in Algorithm 4.1. First, for each labeled motion,
the algorithm determines the important features or relations in the demonstrations,
which is called motion variables F. Then it uses the training sequences S to create a
probabilistic flow tube defined as (T, ¥; f) that abides by the same relations (F)
in the new environment 7 (0).

The nominal robot end effector trajectory T¢ is defined as the tuple
(C,D,PY¥,Q7),

where C and D are collections of ¢ and d single-dimensional continuous and dis-
crete variables, respectively, through time, P/ is the 3-dimensional position vari-
able of the robot end effector through time, and Q% is the 4-dimensional quater-
nion orientation variable of the robot end effector through time. Correspondingly,

nelf = <ac, op, E;ﬁ , 287 > is the covariance trajectory through time.

53

Algorithm 4.1 OFFLINEACTIVITYLEARNING (T, L, T (0))

Input:
T = {Se}4er; Se, training set for motion £ € L
L, set of labels of all learned motions
T (0), a new environment state
Output:
PFTZ(O) = {PFT},c;, set of augmented probabilistic flow tubes
F, set of relevant motion variables
Notable local variables:
T = <C, D, P, Q"'ﬁ>, PFT end effector trajectory

yeff — <a-c, oD, Ef,ﬁ, ng>, PF'T covariance trajectory

1: for /€ L do
2: F < IDENTIFYMOTIONVARIABLES (Sp)
3 (T, 50 « MAKEPFT (S, F, T (0))

¢ I={30m)7} _

G = {—log ((2w)w |5eF (n)‘%) }
n=1..Np

6: PFT, = (T 20 1,G)
7: end for

&

Aside from the two major steps in lines 2 to 3 of Algorithm 4.1, the probabilistic
flow tube is also augmented with some additional values that will be used during
recognition. The recognition problem involves determining how closely an unknown
motion follows each flow tube by computing probability density values based on the
nominal trajectories and corresponding covariances of each PFT. To generate these
probabilities quickly, the algorithm pre-computes the inverse covariance matrices

I= {2 (n)7'}

n=1..Ny

and probability density factors

G= {——log ((27r)dim(2TL) |Eeﬁ (n)l%)})
n=1..Ng

where dim (Teff) is the dimension of the trajectory, and N, is the number of time

steps activity £. Any function applied to the effector trajectory T or covariance

54

trajectory ©¢ is equivalent to applying that function to its subcomponents:

7,50 = (1 (X7, 2F))

VXe{C,D,P.Q}

Finally, all of these values computed for motion label ¢ are stored in a data structure
PFTy = (T 20 1, G).

I now proceed to describe each of the two main steps in detail.

4.1 Identifying Motion Variables

A key feature of the learning system is the ability to autonomously determine what
features or relations, if any, are characteristic of a particular demonstrated motion.
I use the general term motion variables to describe a class of potentially important
features or characteristics of a motion. Of these, the relevant motion variables are
those preserved over different demonstrated trials of that motion, while other motion
variables may vary due to changes in the environment or the human’s movement.

For example, demonstrated sequences of the motion “move box to bin” will show
a pattern whereby the robot end effector starts at the location of the box, makes
contact with it, moves to the location of the bin, and breaks contact with the box.
The system will learn that the distance between the robot effector and the bbx is
a relevant motion variable at the beginning of the motion, and that the distance
between the robot effector and the bin is a relevant motion variable at the end of the
motion. The system will also learn that the positions of any other objects known in
the environment are not relevant to this motion.

In the implementation described here, motions are segmented at a subset of time
steps determined by the operator, and the learning algorithm determines relevant
motion variables at the endpoints of these segments. Typically these are time points
corresponding to a qualitative change in the behavior of the task, such as the robot
making or breaking contact with an object. In Chapter 6, I extend the implemen-

tation to automatically determine these temporal segmentation points from changes

95

@Jsolute start

\ ﬂbsolute end \

{ relative to object at start

L%

PN 8

Figure 4-1: Example illustrations of five possible ways that motion variables can be
relevant. Arrows refer to the robot end effector trajectories.

in the discrete motion variables. Thus I assume in the remainder of this section that

demonstrated motions consist of a single segment.

For each of the continuous, discrete, position, and orientation input variables of

a demonstrated motion, I consider up to five possible modes for candidate motion

variables, as shown in Figure 4-1:

e absStart: Does this variable generally start at the same value across the demon-

strations?

e absEnd: Does this variable generally end at the same value across the demon-

strations?

e rellnit: Does this variable generally shift the same amount from start to end

across the demonstrations?

e relEffStart: Is the starting position or orientation of the robot end effector gen-

erally the same relative to certain points of interest across the demonstrations?

96

10 10 : :
8 8 - -
5 6 o) v——r
% 5 z
R 4 | A :
0 5 5 2 :
oL = —) B —
4 6 8 10 0 2 4 6 8
Peff Pbox Pbin Dcontact
X X X
10 - : 10
8 - e 8
G 6 7 = 7 6
g 4 i -4
2 : S 2
’ .
0 / . N\ 0
0 1 2 3 . 6
time tlme

Figure 4-2: Four training examples of P, position data at time steps when contact
changes. Notice that across different training samples, the effector (blue) and box
(red) positions match at the start of contact, and the effector (blue) and bin (green)
positions match at the end of contact. These are the relevant features of the “move
box to bin” motion.

e relEffEnd: Is the ending position or orientation of the robot end effector gen-

erally the same relative to certain points of interest across the demonstrations?

Since the continuous and discrete variables C and D (such as time and power on/off)
are independent of the points of interest (such as objects) in an environment, they
are not considered in the relEffStart and relEffEnd modes.

This particular set of candidate motion variables was chosen based on common-
alities observed among many practical robot manipulation tasks. A more thorough
study of other possible modes may be warranted for other task domains. The learning
approach described here remains applicable for additional types of motion variables.

After identifying all of the candidate motion variables, the algorithm uses clus-
tering to determine if patterns exist across different training samples, such as those

shown in Figure 4-2, for each candidate X € {C,D, P, Q} across the different modes.

57

A1||0|='erf and P°" att=0 and t=N P""(0)-P°*(0) PPN(N)-PEf(N)
10 10

L] ° > 5
2 .
. .. 0 ’
: . ' _5
-10
0 10 =10 0 10
Peﬁ o u::elEffStarl o u?f'EﬂE"d
; relEffStart < relEffEnd
—— Pbln EP ZP

Figure 4-3: Clustering identifies motion variables for a 2-D “move object to bin” mo-
tion. Left: robot effector and bin locations at the start and end of each demonstration.
Middle: values of (P%"(0) — P/ (0)) to determine if relEffStart is a relevant mo-
tion variable for position—the large spread indicates low relevance. Right: values
of (P¥" (N)— P (N)) to determine if relEffEnd is a relevant motion variable for
position—the narrow spread indicates that this variable is relevant to this motion.

A narrow spread in the values of a motion variable across many training samples
indicates that the variable is relevant to the motion. Algorithm 4.2 describes the
details of the approach.

The approach determines which of the parameters listed above are statistically
similar over the different training sequences by fitting a Gaussian (u,X) for each
parameter at the start and end of all the trials. Resulting Gaussians with very narrow

spread compared to the range of the motion, i.e.
max (eig (£%°%)) < emax (range (X)),

indicate that the motion variable in question is relevant. Figure 4-3 visualizes the
process of determining the relevance of the variables relEffStart and relEffEnd for
position during a “move object to bin” motion. Judging by the large spread in
P" (0) — P (0) values, one can conclude that relEffStart is not a relevant feature
of the candidate variable P, or that the relative positions between the bin and effector
does not matter at the start of the motion. On the other hand, P%" (N) — P¢7 (N)

values have a very narrow spread, indicating that relEffEnd is relevant for P, or that

o8

Algorithm 4.2 IDENTIFYMOTIONVARS (S)

Input:
S, set of K demonstrated sequences {Ty},_; j, where T = (C,D,P,Q)
Output:

F, tuple of features (F¢, Fp, Fp, Fq), where each F = (u, 3, relevant)
Notable local variables:

M = {absStart, absEnd, rellnit, rel EffStart, relEffEnd }
—
! = TOQUATERNION (Pi — Pzﬁ), orientation of ray from object b to robot

end effector (eff = index 1) for trial k&
¢, small ratio to determine relevant motion variables, e.g., 0.01

XX, ifX=Q
A(Xy, Xy) = { Xy — X; otherwise
1. for X € {C,D, P, Q% } do
absStart {Xk (0)}k:1K
2 (T P FirGauss ¢ {Xi (No)}yor i
relInit {A (Xk (0) ,Xk (Nk)>}k=l..K
3: end for . b=2..B

rel EffStart

{PLO)-PF ()}
4: <l‘l'7 Z)P { relEffEnd } +— F1rGauss 1 k=1,K

(
{PL (M) - P (Nk)}:i

1 0= b=2..B
rel EffStart {(QZ (0)) qzl (O)}
5. (, E)Q{ rel EffEnd }(— FirGAuss |} o k=1,K, o
| {@) el)
6: for X € {C,D,P,Q}, mode € M, and b=1...B as applicable do
7. relevant°® = 0
8 if max (eig (Eg"de’b)) < emax (range (X™")) then
9: relevant T = 1
10: end if
1. Fx = {(u, E,relevant);mOdeeM
12: end for

59

the relative position of the effector to the bin at the end of the motion is consistently

similar across demonstrations.

4.2 Data Processing and Flow Tube Generation

After identifying the motion variables, the system knows which points of interest
in the environment are relevant to the motion in the new situation. The next step
is to process the training data into a format with which the system can create the
probabilistic flow tube. Algorithm 4.3 describes this process.

The algorithm can be summarized intuitively in the following steps, with numbers

corresponding to the illustrations in Figure 4-4:

1. Collect training data: Training data includes continuous, discrete, position,
and orientation information. In Figure 4-4, there are three recorded training

sequences.

2. Identify the relevant motion variables: Using the motion variable identification
algorithm, the system determines the relevant features of the demonstrated
motion. In the “move box to bin example,” the locations of the box and bin

are identified as relevant, while the ball location is not.

3. Extract relevant states in new environment (line 1): During autonomous exe-
cution of the demonstrated task in the new environment, the system can use
sensing to determine the new environment states. This step simply extracts
those states that are relevant based on the identified motion variables. In the
example, the system will examine the new scene and extract the locations of

the box and bin for the next steps.

4. Gather similarly initialized demonstrations (line 2): Identify a subset of the
demonstrated data sequences that have a relevant initial environment most
similar to the new situation. In the example, the system will select a subset
of demonstrations in which the relative initial positions of the box and bin are

most similar to those in the new situation.

60

Algorithm 4.3 MAKEPFT (S, F,T (0))

Input:

S, set of K demonstrated sequences {Ti}r_; g

where T = (C,D, P, Q)

F, tuple of features (Fg, Fp, Fp, FQ)

T (0), a new environment state
Output:

T = (C,D, P, Q) robot trajectory

v covariances at each corresponding time step
Notable local variables:

w, temporal matching indexes for two trajectories

T' (0) + EXTRACTRELEVANTOBJECTS (T (0) , F)
S’ C S «+ SIMILARINITCONDSEQS (S, 7" (0))
S™™ « NORMALIZESCALEROTATE (S, F,T" (0))
T = Trem™ where T™ € S™or™
for k=2to K do

w < FASTDTW ([P, Q7 [P, Q]Z""”)

T« £ [(k = 1) Teg (w.2) + T (W2)]
end for
for k =1to K do

w ¢ FASTDTW ([P, Q [P, Q]EW”)

© o QR W

H
=]

11: T;™P INTERPOLATE (T}™ (w.») , |TF|)
12: end for

13: forn=1to |T“’ﬁ| do

14: S (n) + COVARIANCE {T{"? (n) : k =1..K}
15: end for

61

1. Collect user
demonstrations

2. ldentify relevant
motion variables

3. Sense new
parameters

5

4. Choose similarly
initialized
demonstrations

5. Normalize
demonstration
sequences

6. Generate
probabilistic flow tube

Figure 4-4: Illustrated steps of the approach with three demonstrations of the “move
the box to the bin” task in the two-dimensional simulation environment

62

5. Normalize demonstration sequences (line 3): Normalize the selected subset of
demonstrated data sequences to fit the values of the motion variables for the
new situation. In the example, the system will scale, translate, and rotate
the data sequences so that the robot end effector location upon initial contact
with the box matches the box location in the new situation, and the effector
location upon releasing contact with the box matches the bin location in the

new situation.

The steps during normalization in position is shown on the left of Figure 4-5:
Suppose there exists a demonstrated sequence shown in black, and the cur-
rent environment state desires the motion to start from point A and end at
point B. First, the sequence is scaled to the proper size. Next, the sequence
is translated to match the start with the desired start location. Finally, the
sequence is rotated so the end matches the desired end location. The steps
during normalization in orientation is shown on the right of Figure 4-5: Sup-
pose a demonstrated sequence has initial orientations depicted as black arrows,
and the current environment state desires the motion to start in the orientation
marked in green and end in the orientation marked in red. First, all orientations
throughout the motion are rotated by an amount equal to the offset between the
start orientation and the desired start orientation. Next, incremental rotations
are computed using spherical linear interpolation (slerp) from the resulting end
orientation and the desired end orientation. Finally, the incremental rotations
are applied to the orientations along the trajectory such that the start orien-
tation is rotated by zero amount and remains at the desired start orientation,
and the end orientation is rotated by the full offset to end up at the desired end

orientation.

6. Generate flow tube (lines 4-15): Temporally match all the space-normalized
sequences, and create a probabilistic flow tube to be used for autonomous exe-
cution. This is accomplished through the use of dynamic time warping, which

is discussed next.

63

Position Orientation

? 5
L2 -

1. Scale 1. Rotate all by initial offset

{ -

2. Translate 2. Slerp from end to desired

-,
-
” "
-
-)
-
- -
-
-
-
-
-

3. Apply slerp increments

Figure 4-5: Illustration of how normalization works for position and orientation vari-
ables.

64

The algorithm uses dynamic time warping (DTW) [44, 61] to temporally match
observed sequences. Intuitively, dynamic time warping temporally deforms two se-
quences to minimize the overall difference between them. The basic algorithm takes
two recorded state sequences R = [R;, Ry . .. ,Rm]T and S = [51,5:. .. ,Sn]T, and
creates an m X n local cost matrix with entries containing the pairwise distances be-
tween all the data points in both sequences, ¢;; = |R; — S;|, where s € {1...m} and
je{l...n}.

Any temporal matching of the two sequences corresponds to a traversal of the
cost matrix from the element matching the origin of the two sequences, ¢y, to the
opposite corner, ¢,,,. Thus the problem of finding the best temporal matching reduces
to finding the traversal of the cost matrix that results in the least total cost. Dynamic
programming is employed to find this optimal matching by computing the minimal

cumulative cost:

00, ifi=0o0rj=0
Cijs ifi,j=1
Cij =9 Cz‘—l,j—l
cij+ming Cy_y, ; , otherwise
Cij-1

\

The minimal cumulative cost at the last entry, C, , is the minimal total cost, and
the path taken to achieve it reflects the best matching between the two sequences.
If the two sequences are very similar, the traversal of the cost matrix will be near
diagonal. This optimal matching is represented as a p X 2 matrix w containing the
indices of R and S such that R (w;;) is aligned with S (w;2), where p > m,n is the
number of elements along the matched path.

My implementation uses a fast DTW algorithm developed by Salvador and Chan
[68], which uses a projection algorithm to recursively refine a solution from coarse
resolution approximations, resulting in comparable accuracy performance but linear

time and space complexity.

Using dynamic time warping, the algorithm can determine the mean of two tra-

65

jectories R and S as 3 (R (wy1) +S(w;2)). Referring back to the set of normalized
demonstrated sequences S™™ in Algorithm 4.3, the approach iteratively computes
a representative mean sequence using this procedure (lines 4-8). This is the output
trajectory sequence of the robot end effector 7. For orientation variables, the al-
gorithm takes the arithmetic mean of the quaternions. The result is very close to the
true quaternion mean if the collection of observations are clustered near each other.
The true quaternion mean can be used instead, but is more computationally intensive
[50].

The demonstrated sequences may have different numbers of data entries, so fast
dynamic time warping is used again to temporally match each of the normalized
demonstrated sequences in S™™ to the mean sequence 7%, and interpolate them
so that all have the same number of data entries (lines 9-12). Finally, the algorithm

computes covariances at each corresponding time step across the temporally matched

normalized demonstrated sequences (lines 13-15).

4.3 Pre-learning

To enable faster performance online, the approach can pre-learn a large set of proba-
bilistic flow tubes randomly initialized at different environment states offline. These
pre-learned PFTs are stored so that during online recognition, the PFT with envi-
ronment states most similar to the online environment is selected and normalized to
the online environment. The pre-learning process is described in Algorithm 4.4. The
inputs to pre-learning include a set of demonstrated sequences S, a task label ¢, and
a set of initial environment states TO, potentially randomly generated. The essence
of pre-learning involves calling OFFLINEACTIVITYLEARNING for each environment
state in TO, and then storing all of the pre-learned PFTs in the library entry for
activity £.

Once PFTs have been pre-learned for many activities in the library, new activity
PFTs can be easily generated given a new environment state by selecting the stored

PFT that has the most similar initial environment state. The process of generating

66

Algorithm 4.4 PRELEARNPF TS (S, ¢, TO)
Input:
S, set of K demonstrated sequences {T;},_; g, where T'= (C,D,P, Q)
£, the label of the task
TO, set of initial environment states from where to prelearn PFT's
Output:
liby = <PFTE, E, F, q>e, library entry containing
a set of prelearned PFTs (PFT),
a set of corresponding initial environment states (E),
relevant motion characteristics (F),
and subtasks (q)

: for T0 € TO do

(PFT/°,F) + OFFLINEACTIVITYLEARNING (S, £, T0)
end for
libe — ({PFT[})0y TO, F,0)

Ll

a PFT for a new environment state given pre-learned flow tubes is described in Al-
gorithm 4.5. The inputs include the library of learned tasks L, where pre-learned
PFTs are stored, and a new environment state T (0). For each entry in the library,
GETPFTsFROMHERE first determines the relevant components of the initial envi-
ronment state using each library entry’s identified motion variables. It next selects
among the pre-learned PFTs in the library entry the one PFT that has the most sim-
ilar relevant initial environment state components as the current situation. Finally,
the selected PFT is normalized through scaling, translation, and rotation in position
and spherical interpolation in orientation (as depicted in Figure 4-5) to fit the current
environment state.

The idea of pre-learning PFTs is made useful by the following property: two envi-
ronment states that correspond to the same set of k similarly initialized demonstra-
tions will produce PFTs that are equivalent after normalization. Figure 4-6 illustrates
this property using an example: Suppose there exists some set of training demonstra-
tions, of which the five shown in blue are most similar in initial environment state to
the environment state depicted by p. There may exist other training sequences not
depicted in the illustration. Suppose also that among all training sequences, the five

with most similar initial environment states to that of ¢ also happen to be the same

67

Algorithm 4.5 GETPFTsFroMHERE (£, T (0))

Input:
L, library of previously learned task entries {libs},,
where each entry lib, = (PFT,E, F,q),
T (0), a new environment state
Output:
PFTI(O), set of probabilistic flow tubes for different labels starting from 7' (0)

: for /€ L do
T, (0) +— EXTRACTRELEVANTOBJECTS (T (0) , F¢)
PFT}<® + SIMILARINITCONDSEQ (PFT}, T; (0))
PFT;® « NORMALIZESCALEROTATE (PFTE, F;, Ty (0))
end for

. PFT,” « {PFT]}

Sy Ot s W N

el

P

C
O
c
Normalize training sequences for p only

Generate PFTs separately for pand ¢ Normalize p's PFT to ¢’s environment

Figure 4-6: For two sets of environment states p (“prelearned”) and ¢ (“current”)
that correspond to the same set of five training sequences shown in blue, generating
the PFT for ¢ directly from training sequences (left) is equivalent to generating the
PFT for ¢ from normalizing the PFT for p (right).

68

five blue trajectories as before. Given the training set, one can generate a probabilistic
flow tube for the environment state given by ¢ using the OFFLINEACTIVITYLEARN-
ING algorithm. This option, shown on the left side of Figure 4-6, requires performing
dynamic time warping twice along the entire sequence of the trajectory, which takes
on the order of 0.5 seconds to run on an Intel Core i7 processor for trajectories on
the order of 30 data points. Alternatively, one can pre-learn the PFT associated with
environment state p (by calling PRELEARNPFTS offline), and normalize its flow tube
to the environment state given by ¢ (by calling GETPFTSFROMHERE). This option
is shown on the right side of Figure 4-6. Generating a PFT from pre-learned PFTs
takes on the order of 0.01 seconds, and is thus far more desirable when it is necessary
to generate a PFT on the fly, such as when preceding online recognition.

The property described above is only useful if there are enough pre-learned PF'Ts
to provide good coverage of the environment states. Without specific domain knowl-
edge of the tasks of interest, one can safely assume that randomly generating envi-
ronment states from which to pre-learn PFTs will give good coverage as the number
of pre-learned PFTs goes toward infinity. To achieve reasonably good coverage of
the state space in the implementation, I typically use a large number of randomly
generated initial environment states (e.g. 100 to 500) from whence to pre-learn PFTs.
Since the pre-learning process is performed offline in advance and storing a large num-
ber of PFTs in memory is not a problem for modern machines, a generous number
of PFTs is chosen to be pre-learned for good performance. For specific épplications,
domain knowledge may be used to intelligently select the set of environment states

from which to generate pre-learned PFTs.

4.4 Enabling Autonomous Execution

The probabilistic flow tubes generated by the learning algorithm can be used to per-
form autonomous execution in new environment states. In a simple implementation,
the mean trajectory of a PFT can be down sampled and sent to a controller as way-

points to follow. This approach assumes the existence of an inverse kinematics solver

69

on the robot to generate appropriate robot poses that move the end effector to the
target waypoint positions in Cartesian space. A more sophisticated implementation
can incorporate the covariances as cost functions for deviations from the nominal tra-

jectory. This approach is presented as a possible future extension in Section 8.1.1.

70

Chapter 5

Recognizing Motions Online

After a library of probabilistic flow tube models of all the different motions £ € L

from the current environment state T°“" (0) is learned by calling either
<PFT€CW(0),f > < OFFLINEACTIVITYLEARNING (7, L, T°*" (0))

or

PFTfCW(O) < GETPFTSFROMHERE (L, T (0))

if the motion was pre-learned, the system is ready to perform real-time recognition
of a user’s executed motion online.

The real-time motion recognition approach is summarized in Algorithm 5.1. The
inputs include the data structure PFT obtained from activity model learning, the set
of motion labels L, a current execution trajectory 7" containing N " data points,
and a set of utility parameters W that is incrementally updated every time the current
execution proceeds. When ONLINERECOGNITION is called for the first time, i.e. an
operator is starting a new motion to be recognized, W is initially empty. As the
execution progresses, the algorithm reuses parameters in W as much as possible to
avoid redundant computations and enable real-time recognition.

The three main components of the recognition approach are: determine where in
each probabilistic flow tube the current partial motion might correspond, temporally

align the identified portion of the PFT with the current partial motion, and compute

71

Algorithm 5.1 ONLINERECOGNITION (PFT?W(O), L,TC“",W)

Input: _
PFT.""©® = {PFT},.,, where PFT; = (T/, £ 1,G), and
TF = (C,D, P, Q¥)
Zeﬁ = <0’c, oD, E;ﬁ, ngf>
L, set of labels of all learned motions
T current observed trajectory
W, cost matrices for dynamic time warping
Output:
LL = {llg},cy,, set of log likelihoods for each motion in L
W, updated cost matrices for DTW
Notable local variables:
Ctime glme temporal component of C,o¢ in PFT
d, spatial distance between a PFT and current state
p, probability densities evaluated at time steps in PF'T
Ng, length of flow tube £
Ne¥™ length of current trajectory 7"
te¥T . time at current position 7% (N)
w, temporal matching indexes for two trajectories
e, prior log likelihood of flow tube ¢

1: for £ € L. do
2 d={[|P, Qe (ver) - 1P, QI ()

}n:L..Ng

3: P= {N (Céime (n) ’atcizne (n)) t““"}n:L..Nz
4. P < —_mag(p)
5: d={d
Pn n=1...Ny
6: n* = argmin, (d’)
7. PFT; = PFTy(1...n")
8 (w,W,) < INCREMENTDTW (T;ﬁr L re, Wz)
|w
1
9 U=+ Z (Ge (Wj1) — §5Tle (Wj1) 5)
=1
where § = T (w;3) — Tgeﬁ (Wj1)
10: end for

72

the log likelihood that the current partial motion is recognized as each PFT. I now

discuss each component in more detail.

5.1 Partial Flow Tube Matching

To determine the location in a probabilistic flow tube that best corresponds to the
current executed state (lines 2 to 6 in Algorithm 5.1), the approach looks at both
how far the current executed state is from the PFT, and how much time has passed
in the execution as compared with the trained models. Intuitively, the point in the
PFT that best corresponds to the current executed state should have a small spatial
distance to it while having been executed at around the same time.

The algorithm first computes the distances from the current position and orienta-
tion in 7€ (N°¥T) to those in the nominal trajectory T for motion ¢ through all

the time steps in the PFT, or

d={||tp, Qi (v — [P, QI (m)| }

TL=1...NZ

Small values in d may help indicate which time steps in the PFT correspond to the
current executed state.

Next, the algorithm represents how temporally different the current execution
time %" is from the points in the temporal component of the PFT, or (C#™e gme)
by evaluating the probability density of the current time at each point in the tube,

or

p={N(C{™(n),oq" (n))

tC“"}nzL..Ng)

The distances are weighted by the temporal similarity measure to obtain

d - {%} .
Pn n=1...Ny

The time step in the PFT that corresponds to the current executed state occurs when

the weighted distance is smallest.

73

Move to bin Move left 1 Move to x
10 10 10
5 X u 5 ..~>;-/ 5 :
0 0 0
0 5 10 0 5 10 0 5 10
Circle CW Circle CCW Anchor x,0 Anchor 0,x

10 10 10 10

5 5 5 L5)

0 0 0 0

0 5 10 0 5 10 0 5 10 0 5 10

Figure 5-1: An example partial test motion (black) is compared to each learned
PFT (blue) in a 2D environment initially with a red box, green bin, and stationary
locations x and o as shown. The magenta marking on each PFT indicates the spot
on the PFT that best matches the current execution (rightmost end of black motion)
as determined by lines 2 to 6 in Algorithm 5.1.

I choose to use the actual distances between the current state and the points
in the nominal PFT trajectory (i.e., ||Tcu”' (Newr) — Teff (n)”) to represent spatial
consistency instead of computing the spatial probability densities of the current state

evaluated through all the Gaussians in the PFT (i.e., N (T (n) 27 (n))

T(:urr(N(.‘urr))
because of the real-time recognition requirement. While spatial probability densities

give a more accurate estimate of a point’s deviation from the flow tube, they take
longer to compute due to the higher dimensionality of spatial states. I have found
direct distances to be good estimates of spatial consistency for motions with flow tube

widths that do not vary greatly with high frequency, as is true in most robotic tasks.

Figure 5-1 shows the result of determining the best correspondence points in 7
different learned PFTs for a partially executed test motion. The data is collected in
a 2D world consisting of two movable objects “box” and “bin” and two stationary

locations and o. The trained motions are “move box to bin.” “move box left 1
b

EE A 11 7w

unit,” “move box to point z,” “circle the box around bin in clockwise direction,”

74

7

“circle the box around bin in counter-clockwise direction,” “make an anchor loop (or
‘figure 8’), first around z, then around o,” and “make an anchor loop, first around
0, then around z.” The highlighted magenta markings indicate the positions in each
PFT that was determined to best correspond to the current position of the partial
test motion in black. Notice that the identified position in the “circle clockwise”

PFT is not spatially near the current test position, but rather in a more reasonable

position that is temporally consistent with the current execution.

5.2 Temporal Alignment of Partial Motion

The next step in the recognition approach is to temporally align the identified por-
tion of each PFT to the current execution trajectory in order to compute likelihoods.
While the algorithm could use basic dynamic time warping to perform temporal
matching in the recognition problem, it is undesirable that the algorithm would re-

compute similar cost matrices each time the test motion progresses.

To leverage as much information as possible from one time step to the next, the
algorithm performs incremental dynamic time warping [17] by keeping previously

computed cost and back pointer matrices in memory and updating as necessary.

The INCREMENTALDTW algorithm used in line 8 of ONLINERECOGNITION ac-
cepts two input trajectories R and S of lengths M and N, respectively, and an input
parameter W = (¢, C, b), where ¢, C, and b are the m X n cost matrix, cumulative
cost matrix, and back pointer matrix, respectively, computed at the previous time
step. Incremental DTW reuses these matrices when temporally aligning R and S by
computing new values only for rows m + 1 to M, and columns n + 1 to N. A new
temporal matching is found by tracing the updated back pointer matrix from the end
to the beginning, as shown in Figure 5-2. The temporal alignment is represented as

a two column matrix w of corresponding indexes of the two input trajectories.

75

] | <+ | T+ CMN

Figure 5-2: During incremental dynamic time warping, the algorithm only needs to
update the cost and back pointer matrices from the previously stored values (depicted
by the inner box) to obtain a new temporal matching (red and purple path).

5.3 Compute Log Likelihoods

Finally, after temporally matching the current partial trajectory with the corre-
sponding portions of each probabilistic flow tube, the algorithm can proceed to
compute the likelihood that the current trajectory belongs to a particular mod-
eled motion. Formally, I define random variables £ and O to represent motion la-
bels and observations, respectively. The probability that the motion is ¢ given the
current observation sequence T is pgio (|T°“), and applying Bayes Rule gives
prio (E)T) o< poje (T |€) pe (€). The prior probability of each motion label p, (£)
is obtained by recording the number of times the motion was used during training
weighted by how far along the current motion is in the flow tube, i.e. p, (£) = ##—(jt%%
The problem that remains is computing the likelihood of observing the current tra-
jectory given a particular flow tube.

I model the observation likelihood pe|z (T*|f) as the product of the probability

densities of each spatial distribution in the flow tube evaluated at the temporally

aligned points in the current trajectory, i.e.,

1

|w

[w]
ai eff

76

Since the length of the temporal matching matrix |w| can vary between max (M, N)
and M + N — 1, T use the exponent (l—jv') to perform a multiplicative renormalization
over the resampled points to ensure that the overall contribution of the probability
values for the trajectory is not inflated by the resampling process.

Taking the log of the observation probability gives

eff
Zl?(wj-,l)

2 2(wj,1)

Wll % {— log ((2%)%

j=1

) _Lgrsar g

where d = dim (7) and § = T (w;2) —Tfﬁ (w;1). Finally, the approach uses the
pre-computed inverse covariances I and probability density coefficients G obtained
from model learning to efficiently compute the posterior log likelihood as shown in
line 9 of Algorithm 5.1,

Iwl

1 1
e+ — Gy (wj1) — —8"1, (wj1) 6|,
] 2~ 2

where 7, = log (pc (£)) is the log of the prior on motion label ¢.
In the case that the trajectory does not belong to any of the motion labels in the
library, the computed log likelihoods of all labels will be very small in value. I define

the log likelihood that the motion is “unknown” to be
T — max (LL),

where 7 is a user-generated threshold, and is set to -1000 in experiments. In practice,
“unknown” is treated as an additional entry in the task library with its computed log
likelihood value. During recognition, the most likely recognized activity can be any

of the activities in the library, including “unknown.”

7

78

Chapter 6

Learning High-level Plans

The two challenges when extending learning and recognition to high-level tasks con-
sisting of activity sequences are (1) determining where activities should be segmented
in a sequence and (2) identifying and learning previously unseen activities embedded
in a sequence. Existing research typically assume that either sequences are already
pre-segmented into discrete action labels, or no segmentation information is provided
and unsupervised learning is required to cluster portions of motion trajectories into
activities.

In practical applications of teleoperation or kinesthetic teaching, users may nat-
urally provide segmentation information to a subset of the training demonstrations.
Akgun et al. [2] describe an intuitive kinesthetic teaching method that enables users
to easily provide important points called keyframes during a training demonstration
through a voice commanding interface. Kinesthetic teaching involves a user physically
moving a robot’s end effector around in the environment. The goal of Akgun et al. is
to provide easier and more intuitive ways for users to generate demonstrations during
teaching. In their experiments, users could choose to provide only keyframes and not
worry about the trajectories between keyframes, relying on a planner to autonomously
proceed from one keyframe to another during autonomous execution. I borrow their
idea of keyframes and use them as segmentation points overlaid on the demonstrated
trajectories that describe the behavior of the activities within the segments. Akgun

et al. show that trajectory demonstrations without providing keyframes require less

79

time for the user [2], so I assume that of a set of K demonstrations of a particular

task plan, only a small subset contain keyframes.

As shown in the setup of Algorithm 6.1, the inputs of plan learning consist of
a set of demonstrations S of the sequence of activities that compose the plan, a
new label ¢ that is used to describe the plan, a new environment state 7'(0), and
the current library of learned tasks L£. Of the demonstrations, a subset } contain
keyframes recorded as an additional discrete variable in the demonstrations. My plan
learning approach as illustrated in Figure 6-1 achieves the following: (1) determines
the sequence of activities that compose the demonstrated plan if it is a new plan, (2)
learns any previously unseen activities in the plan, (3) auto-segments non-keyframe
trials by bootstrapping on keyframe trials, and (4) generates a new probabilistic flow
tube for the entire plan in the new environment state. The resulting output of plan
learning is an updated task library with the new learned plan and any additional

previously unknown activities.

The plan learning approach also allows for and encourages an interactive mode
that actively probes the user for validation of the bootstrapped auto-segmentation if
the system is below a certain level of confidence. In practice this feature is natural
and unencumbering for the user as it mimics a student asking a teacher for validation
when performing a task, which is common in human teacher-student interactions.

More discussion of the user validation capability can be found in Section 6.3.

An overview of the plan learning approach is shown in Algorithm 6.1. The algo-
rithm first checks whether the input plan label ¢ already exists in the set of library
task labels L (line 1), and if so, updates the entry in the library lib, with a new plan
PFT from the input environment state 7'(0) (line 2). More steps are involved if the
input demonstrations refer to a new label not already in the library. I now discuss

each major step in more detail.

80

Algorithm 6.1 OFFLINEPLANLEARNING (S, ¢,T(0), L)

Input:

S, set of K demonstrated sequences {T;},_, x for a particular plan,
where T = (C,D, P, Q)
¢, a new plan label
T (0), a new environment state
L, library of previously learned task entries {libs},c;
where each entry lib, = (PFT, E, F, q) has a label (£), a set of pre-learned
PFTs (PFT), a set of corresponding initial environment states (E),
relevant motion characteristics (F), and a list of subtasks (q)

Output:

L, updated task library

Notable local variables:

1:

»—
e

[ORRE—Y
N =

o e e e e e e

20:
21:

Y C S, trials with user-provided segmentation keyframes

Z = 8\, trials without user-provided segmentation keyframes
DFey € D, discrete keyframe variables in) trials

KFey = {Dkey == 1}, indexes of discrete keyframes in) trials
«v, confidence in bootstrapped auto-segmentation

if ¢ € L then
liby < GENERATEPLANPFET (¢, g0, L, T (0))
else
LL + RECOGNIZETASKSUSINGKEYFRAMETRIALS (V, £)
q < VOTEACTIVITYSEQUENCE (LL)
while Z # () do
(L', q') + LEARNUNKNOWNACTIVITIESINPLAN (Y, £, ¢, {T} (0) }yr, c2)
for j=1...|2| do
K[+ INITIALIZEPROPORTIONATELYINTIME (Z;,))

<Kf€y, Y5 u> < UPDATEUSINGMOTIONVARS (Zj, ¢ AFe}ier KJ’?ey)
if 'u then
Kfey, fyj> + UPDATEUSINGRECOGOPTIMIZATION (Zj, q, L, Kfey)

end if

end for

(Y, Z) + VALIDATEAUTOSEGMENTATIONS (KF¥, ~)
end while
TO < RANDOMENVIRONMENTSTATES ()
(L,q') + LEARNUNKNOWNACTIVITIESINPLAN (Y, £, ¢, TO)
liby < GENERATEPLANPFT (¢',¢, L, T (0))
L+ {L,liby}

end if

81

Task library Keyframe trial Non-keyframe trial
LK to bin q
ey
If | .
left |
. O
' — Activity sequence:
l t ball to x to bin
Ra$ unknown
' ball to x e
] ';"“'uiﬁr"" tid Tty :

1. Determine activity sequence from keyframe trials

Task library
- 3. lteratively auto-segment
: non-keyfr. i
1 +obin q yframe trials
i left - Activity sequence:
_ to bin
. Ny reach ball
B ball to x ball to x
.w A bR T L B
"’]—1.: reach ball
& agoe
4. Generate plan PFT in
2. Learn previously unknown subtasks new environment

Figure 6-1: Summary of plan learning approach

82

6.1 Determining Activity Sequence

First, to determine the sequence of activities that compose the demonstrated plan,
the algorithm performs recognition on the keyframe training sequences (line 4 in
Algorithm 6.1), which are the pre-segmented demonstrations of the plan. REcCoG-
NIZETASKSUSINGKEYFRAMETRIALS (Algorithm 6.2) is a wrapper function that calls
ONLINERECOGNITION for all the segments in the keyframe trials). Its inputs in-
clude the set of keyframe trials)} and the task library £, and it outputs a set of log
likelihoods through time LL that reflects which label each activity segment describes.
For each trial in), the algorithm walks through each time step ¢ in the trial (lines 1
and 3). If the time step marks the beginning of a new activity segment because it is
a keyframe for trial i (t € K*®), then the algorithm makes a note of the environment
state at that time step Y (), and generates PFTs from that environment state using
the pre-learned PFTs in the library (line 7). Once the PFTs for an activity segment
are obtained, it can call ONLINERECOGNITION on each partial segment Y (tprey - - - t)
in the activity (lines 10 and 11) until the next keyframe is reached. In addition to the
generated PFTs from the current environment state, the set of motion labels, and the
current partial execution, ONLINERECOGNITION also requires a set of parameters W
for incremental dynamic time warping, which is initialized to empty in the beginning
of each activity segment (line 8). For each time step in a trial, ONLINERECOGNITION
outputs a set of log likelihoods LL; (t) = {LLs},., that reflect how likely the current
segment Y; (tprey - - - t) belongs to each activity label £ in the library.

An example illustration of the log likelihoods is shown in Figure 6-2. With time
progressing horizontally across, suppose there are two keyframe trials represented
by the two blue lines (simplified down to one dimension for illustration purposes)
with keyframes indicated by red markers. The goal of the RECOGNIZETASKSUS-
INGKEYFRAMETRIALS algorithm is to generate the log likelihoods depicted as green
lines, so that after a bit of processing, the system can derive the most likely sequence
of activity labels that is represented by the keyframe trials. Judging by the illus-

trated log likelihoods in the example, one might eventually conclude that the activity

83

Algorithm 6.2 RECOGNIZETASKSUSINGKEYFRAMETRIALS (Y, £)

Input:
VY, set of keyframe trials
L, library of previously learned task entries {libs},.,
where each entry lib, = (PFT,E, F,q)
Output:
LL, set of log likelihoods
Notable local variables:
D*¢¥ € D, discrete keyframe variables in) trials
K* = {D*¥ == 1}, indexes of discrete keyframes in) trials

1: fori=1...|Y| do

2 tprey < 0

33 fort=0...|Y] do

4: if t € K'Y then

5: tprev —t

6: T (0) < Vi (tprev)

7: {PFT},c; < GETPFTsFrRoOMHERE (L, T (0))
8: W <@, @, @)

9: end if
10: T < Vi (tprey - - - £)
11: (LL; (t) ,W) = ONLINERECOGNITION ({ PFT¢},c; , L, T, W)
12: end for
13: end for

84

<« keyframes —

LL],K:] M ACt|V|ty 1\
LL;,, ﬁ Activity 2

LL; ,_; e el Activity 3
A\ 5/

Y,

LL,,_, Q\J\/\ Activityl\

LLy,_, /’X_// Activity 2

LL; -3 _/\ _ Activity 3
N : B J/

Figure 6-2: Illustration of performing online recognition on task sequences. In the
two keyframe trials) and)%, the log likelihood of activity 2 is highest during the
first segment, activity 3 is highest during the second segment, and activity 1 is highest
during the third segment. Therefore, it is likely that the activity sequence in this plan
is {2, 3, 1}.

85

Keyframe Keyframe Average Agreed

trial 1 trial 2 frequency sequence

- N ™M N ™M - (o] m

Z 2z 2 & £ Py =y = Fy

2 2 B = 2 = = = =

P R =)] = =

222 g & g 2 % 2
99% | 1% | 0% 1
27% | 2% | 71% ,:> 3
3% | 97% | 0% 2

Figure 6-3: Example process of determining the sequence of activities that compose
the demonstrated plan from keyframe trials. Shading represents recognized log likeli-
hood, and red values represent the percentage of time steps during which a particular
activity was recognized in a keyframe segment. The keyframe trials “vote” on an
average recognition frequency for each segment and agree on a recognized activity
sequence for the plan.

sequence for) is activity 2, followed by activity 3, followed by activity 1.

Next, suppose the log likelihoods have been computed for each activity segment
through time for each trial, the keyframe trials “vote” on an activity label sequence
by determining the fraction of the time spent in each activity segment recognizing
each of the labels (Algorithm 6.1 line 5). The label with the most “votes” is deemed

the recognized activity for that segment.

Figure 6-3 illustrates this process in an example: Suppose there are three keyframe
trials, and time progresses downwards vertically. Keyframes are depicted as dark
black lines that segment the trials, and the computed log likelihoods are represented
as gray scale shading along the trials for activity labels 1, 2, and 3. Focusing on

a single activity segment in a trial and comparing the likelihoods, the algorithm

86

identifies the percentage of time the recognizer labels the activity segment with a
certain label (in this case, “17, “2”, or “3”). For example, in the first segment of
trial 1, the recognizer found that 96% of the time spent in that segment, activity 1
had the highest log likelihood among the three activity labels. If this pattern persists
across different trials, then the system can conclude that the first segment is activity
1. Sometimes, a keyframe trial can be noisy, causing errors in recognition. These can
be averaged out among the different trials. For example, the second segment of trial 1
is recognized as most likely activity 1, but after averaging the recognition frequencies
from the other two trials, it becomes clear that the label of the second segment is

most likely activity 3.

6.2 Learning Unknown Activities

The resulting activity sequence may contain activities in the task library or previously
unknown activities. For every activity segment in the sequence that was recognized
most likely as “unknown,” the training segments in the keyframe trials) are used
to learn new PFTs in the task library for the previously unseen activities using the
LEARNUNKNOWNACTIVITIESINPLAN algorithm. A temporary new library £’ is cre-
ated, and a new activity sequence ¢’ is generated from the new library. For example, a
previously recognized activity sequence ¢ might be “activity 2”, “unknown”, “activity
47 “unknown”, and after calling LEARNUNKNOWNACTIVITIESINPLAN, the updated
activity sequence ¢’ might be {“activity 2", “activity 57, “activity 4”7, “activity 6” }.

If all input demonstration trials are pre-segmented with keyframes, the algorithm
directly pre-learns PFTs (using the methods presented in Section 4.3) for a large set
of randomly generated environment states (lines 17-18 in Algorithm 6.1). Otherwise,
an iterative process is used to determine segmentation for the non-keyframe trials,
the first step of which is to generate PFTs starting at all the initial environment
states of the non-keyframe trials (line 7 in Algorithm 6.1). More discussion about the
auto-segmentation process is described in Section 6.3.

Details of the LEARNUNKNOWNACTIVITIESINPLAN function can be found in Al-

87

Algorithm 6.3 LEARNUNKNOWNACTIVITIESINPLAN (S, £, ¢, TO)
Input:
S, set of K pre-segmented demonstrated sequences {Tx},._; x for a plan,
where T = (C,D, P, Q) and
DFev ¢ D contains segmentation information
L, library of previously learned task entries {lib;},.
g, sequence of activities in plan, including unknown activities
TO, a set of initial environment states
Output:
L', updated task library
q', updated sequence of activities in plan
Notable local variables:
{T}},—, k- set of all i*" segments of trials in S

1 g g
. for all i : ¢; == "unknown’ do

¢ <+ GETNEWLABEL ()

lib; < PRELEARNPFTS ({3}, x4, TO)
end for

R LR % —

gorithm 6.3. The inputs to the algorithm include a set of pre-segmented demonstrated
sequences S (when calling the function, the keyframe trials)/ can be given as input),
the existing task library £ that will be updated, the activity sequence g determined
by the algorithms in Section 6.1 that contains “unknown” activities, and a set of
initial environment states TO, possibly randomly generated, from which to pre-learn

PFTs.

The algorithm first searches through the activity sequence in the plan for previ-
ously unknown activities (line 2), and generates a new label for each new activity by
calling GETNEWLABEL (line 3). GETNEWLABEL is a simple function that queries
the user for a new label on the activity, or if the system is run without user interac-
tion, randomly generates a new string label by default. Next, the new activities are
pre-learned using the initial environment states specified by the input (line 4), and

the library is updated with the new entries (line 6).
When LEARNUNKNOWNACTIVITIESINPLAN is used in the context of learning a

plan, it is first called using the keyframe trials that are provided as training input.

88

This works well if there are many such keyframe trials provided. However, in typical
operations, because of the additional overhead of providing keyframes, I assume that
the user only provides a few keyframe trials, while a greater number of trials do
not have keyframes. In order to also take advantage of the non-keyframe trials,
the OFFLINEPLANLEARNING algorithm iterates the process of learning previously
unknown activities from keyframe trials and using the newly learned activities to aid
in auto-segmentation, which converts more non-keyframe trials into keyframe trials.

The details of auto-segmentation is discussed next.

6.3 Auto-segmentation

Since it is easier for a user to demonstrate entire plan trajectories without having
to indicate where one activity stops and the next starts, the system auto-segment
the activities in a plan for most trials from observing just a few fully pre-segmented
trials. In this approach, auto-segmentation proceeds incrementally in lines 6 to 16 of
Algorithm 6.1, in which the goal is to determine a set of key time frames K*¢¥ that
correctly segments the corresponding set of previously unsegmented trials Z.

For every non-keyframe trial in Z, the algorithm first initializes its candidate
keyframes proportionately in time based on average keyframe trials (line 9 in Algo-
rithm 6.1) in order to provide a rough temporal estimate on where keyframes are
located. For example, suppose a non-keyframe trial Z; of a plan containing three ac-
tivities has 120 time steps, and there are three keyframe trials Y with keyframes [5, 20],
[30,60], [25, 75] and total time steps 40, 80, and 100, respectively. The initial temporal
estimate of the keyframes for trial z should be 1—30 [(% + %8 + %’0) , (i—g + % + 1—7555)],
or [30,80].

Next, the candidate keyframes are updated based on geometric information from
the motion characteristics of each activity segment. As an illustrative example, con-
sider the “move box to bin” motion that always ends at the same position relative
to the bin (to within a small epsilon). This relevant motion variable reveals that a

task sequence containing this activity can be reliably segmented at the point where

89

the effector position reaches the observed position relative to the bin.

Figure 6-4 illustrates an example of determining candidate segmentation points on
a non-keyframe trial using information provided by a keyframe trial. In this example,
there are three objects—a red box, a green bin, a blue ball—and a stationary location
marked by x. The demonstrated task sequence in both trials is {“reach box”, “move
box to bin”, “reach ball”, “move ball to x”, “done with ball”}. The shaded regions in
the keyframe trial (panel 1) depicts objects’ motions. Let’s assume the keyframes fall
at time steps 20, 60, 70, and 80 of a 100 time step keyframe trajectory, as shown panel
3. Given a new non-keyframe trial as illustrated in panel 2, candidate keyframes are
initially assigned at the same temporal proportions as in the keyframe trial (panel
4). These temporally assigned candidate keyframes typically give a good estimate of

where the true keyframes lie.

Next, in panels 5 through 8, each candidate keyframe is updated based on the
identified motion variables from the keyframe trial, following procedures in Algo-
rithms 6.4 and 6.5. The search window for updating the i*® candidate keyframe (K;)
is from keyframe K;_; to K1, where Ky and K41 are set to the beginning and
end time points of the entire trial. Limiting the search space when updating the can-
didate keyframes based on spatial motion variables helps to prevent large temporal
discrepancies caused by spatial reasoning alone. Such an error can occur when earlier
and later activity segments in a task sequence revisit the same spatial feature—in this
case, spatial reasoning alone may confuse the two segments, but limiting the temporal

focus on the generated candidate keyframes can help reduce the confusion.

The function UPDATEUSINGMOTIONVARS handles both position and orientation
motion variables, given in Algorithms 6.4 and 6.5, respectively. The inputs to each
algorithm include an unsegmented plan trajectory T, the sequence of activities g
that the trajectory is supposed to describe based on other keyframe trials, a set of
learned motion characteristics F for activities in the library, and the set of candidate
keyframes K initialized by temporally matching keyframe trials. Each algorithm steps
through the candidate keyframes and makes adjustments to the target end effector

position P*¢7 or the target end effector orientation Q*ef' respectively, based on which

90

1. Keyframe trial 2. New non-keyframe trial

V

3. Keyframe trial (=100 4. Initialize candidate keyframes proportionately
in time on new non-keyframe trial
Ko
K,=60 K,=20
Ks=100
=80
=80 K=70

5. Update keyframe K, based on motion
Keyframe trial recognized activity sequence (and variables, t=K,...K,

identified motion variables):

* reach box (relEffEnd at box)

* boxto bin (relEffStart at box, relEffEnd at bin)
* reach ball (relEffEnd at ball)

« ball to x (relEffStart at ball, absEnd at x)

* done with ball (relEffStart at ball)

K,=60

>
tn

6. Update keyframe K, based on motion 7. Update keyframe K; based on motion
variables, t=K,...K; variables, t=K;...K,
K,=57 K,=57
o L\
K;=70 K;=65 K,=80
8. Update keyframe K, based on motion 9. Final candidate keyframes for new trial

Variables, I:K_;...Kj

2N
I

=

=]

K,=65

Figure 6-4: Illustration of generating candidate keyframes on a non-keyframe trial
using time proportions in a keyframe trial, and updating candidate keyframes based
on motion variables observed in keyframe trial.

91

motion variables are relevant for each activity ¢; being considered.

For example, if any relEffEnd motion variables are relevant in position for a par-
ticular activity ¢;, then uﬁfﬂ?nd’b reflects what the mean difference between the end
effector position and a relevant object b’s position should be at the end of activity g;.
In the training trajectory, an object b’s motion is recorded as P’ (¢), and the end effec-
tor’s motion is P¢F (¢). When the difference in these two trajectories closely matches
what the mean indicates it should be, then that time step is the point that marks the
end of activity ¢;, and where the keyframe should be placed. Figure 6-5 illustrates
this in an example: three (faded) training samples of a “move to bin” activity sug-
gest that for a new bin location (in dark green), a “move to bin” activity should end
at the location marked by the asterisk. Given an executed plan trajectory (in dark
blue) that contains the “move to bin” activity followed by some other activity, the
algorithm selects the point in the trajectory that is closest to the target end location
(red) to mark the segmentation between the two activities. This type of analysis is
performed for each mode (absStart, absEnd, rellnit, relEffStart, relEffEnd) in both
position (Algorithm 6.4) and orientation (Algorithm 6.5).

For a motion with multiple identified motion variables, the variables are prioritized

in the following order:

1. relEffEnd
relInit
absEnd

rel EffStart
absStart

AT el

For example, let’s say a “move box to bin” motion is trained in environments where
the bin is always positioned at the stationary point x, then both relEffEnd at bin
and absEnd at x would be relevant motion variables. In this case, the higher priority
motion variable (relEffEnd at bin) is used for geometrically determining trajectory
segmentation. In othe