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Abstract

The Nyström method has long been popular for scaling up kernel methods. Its theoretical
guarantees and empirical performance rely critically on the quality of the landmarks selected.
We study landmark selection for Nyström using Determinantal Point Processes (Dpps), discrete
probability models that allow tractable generation of diverse samples. We prove that landmarks
selected via Dpps guarantee bounds on approximation errors; subsequently, we analyze impli-
cations for kernel ridge regression. Contrary to prior reservations due to cubic complexity of
Dpp sampling, we show that (under certain conditions) Markov chain Dpp sampling requires
only linear time in the size of the data. We present several empirical results that support our
theoretical analysis, and demonstrate the superior performance of Dpp-based landmark selection
compared with existing approaches.

1 Introduction

Low-rank matrix approximation is an important ingredient of modern machine learning methods.
Numerous learning tasks rely on multiplication and inversion of matrices, operations that scale
cubically in the number of data points N, and therefore quickly become a bottleneck for large data.
In such cases, low-rank matrix approximations promise speedups with a tolerable loss in accuracy.

A notable instance is the Nyström method [32, 43], which takes a positive semidefinite matrix K ∈
RN×N as input, selects from it a small subset C of columns K·,C, and constructs the approximation
K̃ = K·,CK†

C,CKC,·. The matrix K̃ is then used in place of K, which can decrease runtimes from
O(N3) to O(N|C|3), a huge savings (since typically |C| � N).

Since its introduction into machine learning, the Nyström method has been applied to a wide
spectrum of problems, including kernel ICA [6, 36], kernel and spectral methods in computer
vision [8, 18], manifold learning [39, 40], regularization [35], and efficient approximate sampling
[1]. Recent work [2, 5, 12] shows risk bounds for Nyström applied to various kernel methods.

The most important step of the Nyström method is the selection of the subset C, the so-called
landmarks. This choice governs the approximation error and subsequent performance of the
approximated learning methods [12]. The most basic strategy is to sample landmarks uniformly
at random [43]. More sophisticated non-uniform selection strategies include deterministic greedy
schemes [37], incomplete Cholesky decomposition [7, 17], sampling with probabilities proportional
to diagonal values [14] or to column norms [15], sampling based on leverage scores [19], via
K-means [44], or using submatrix determinants [9].

We study landmark selection using Determinantal Point Processes (Dpp), discrete probability
models that allow tractable sampling of diverse non-independent subsets [26, 31]. Our work
generalizes the determinant based scheme of Belabbas and Wolfe [9].1 We refer to our scheme as
Dpp-Nyström, and analyze it from several perspectives.

1The authors do not make any connection to Dpps.
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A key quantity in our analysis is the error of the Nyström approximation. Suppose k is the
target rank; then for selecting c ≥ k landmarks, Nyström’s error is typically measured using the
Frobenius or spectral norm relative to the best achievable error via rank-k SVD Kk; i.e., we measure

‖K− K·,CK†
C,CKC,·‖F

‖K− Kk‖F
or

‖K− K·,CK†
C,CKC,·‖2

‖K− Kk‖2
.

Several authors also use additive instead of relative bounds. However, such bounds are very
sensitive to scaling, and become loose even if a single entry of the matrix is large. Thus, we focus
on the above relative error bounds.

First, we analyze this approximation error. Previous analyses [9] fix a cardinality c = k; we
allow the general case of selecting c ≥ k columns. Our relative error bounds rely on the properties
of characteristic polynomials. Empirically, Dpp-Nyström obtains approximations competitive to
state-of-the-art methods.

Second, we consider its impact on kernel methods. Specifically, we address the impact of
Nyström-based kernel approximations on kernel ridge regression. This task has been noted as
the main application in [2, 5]. We show risk bounds of Dpp-Nyström that hold in expectation.
Empirically, it achieves the best performance among competing methods.

Third, we consider the efficiency of Dpp-Nyström; specifically, its tradeoff between error and
running time. Since its proposal, determinantal sampling has so far not been used widely in
practice due to valid concerns about its scalability. We consider a Gibbs sampler for k-Dpp, and
analyze its mixing time using a path coupling [11] argument. We prove that under certain conditions
the chain is fast mixing, which implies a linear running time for Dpp sampling of landmarks.
Empirical results indicate that the chain yields favorable results within a small number of iterations,
and the best efficiency-accuracy traedoffs compared to state-of-art methods (Figure 6).

2 Background and Notation

Throughout, we are approximating a given positive semidifinite (PSD) matrix K ∈ RN×N with
eigendecomposition K = UΛU> and eigenvalues λ1 ≥ . . . ≥ λN . We use Ki,· for the i-th row and
K·,j for the j-th column, and, likewise, KC,· for the rows of K and K·,C for the columns of K indexed
by C ⊆ [N]. Finally, KC,C is the submatrix of K with rows and columns indexed by C. In this
notation, Kk = U·,[k]Λ[k],[k]U>·,[k] is the best rank-k approximation to K in both Frobenius and spectral

norm. We write r(·) for the rank and (·)† for the pseudoinverse, and denote a decomposition of K
by B>B, where B ∈ Rr(K)×N .

The Nyström Method. The standard Nyström method selects a subset C ⊆ [N] of c = |C| land-
marks, and approximates K with K·,CK†

C,CKC,·. The actual set of landmarks affects the approximation
quality, and is hence the subject of a substantial body of research [7, 9, 12, 14, 15, 17, 19, 37, 44].
Besides various landmark selection methods, there exist variations of the standard Nyström method.
The ensemble Nyström method [27], for instance, uses a weighted combination of approximations.
The modified Nyström method constructs an approximation K·,CK†

·,CKK†
C,·KC,· [38]. In this paper, we

focus on the standard Nyström method.
Determinantal Point Processes. A determinantal point process Dpp(K) is a distribution over all

subsets of a ground set Y of cardinality N that is determined by a PSD kernel K ∈ RN×N . The
probability of observing a subset C ⊆ [N] is proportional to det(KC,C), that is,

Pr(C) = det(KC,C)/ det(K + I). (2.1)

When conditioning on a fixed cardinality, one obtains a k-Dpp [25]. To avoid confusion with the
target rank k, and since we use cardinality c = |C|, we will refer to this distribution as c-Dpp

2, and
2Note that we refer to Dpp-Nyström as kDPP in experimental parts.
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note that

Pr(C | |C| = c) = det(KC,C)ec(K)−1J |C| = cK,

where ec(K) is the c-th coefficient of the characteristic polynomial det(λI−K) = ∑N
j=0(−1)jej(K)λN−j.

Sampling from a (c-)Dpp can be done in polynomial time, but requires a full eigendecomposition
of K [23], which is prohibitive for large N. A number of approaches have been proposed for more
efficient sampling [1, 29, 42]. We follow an alternative approach based on Gibbs sampling and
show that it can offer fast polynomial-time Dpp sampling and Nyström approximations.

3 Dpp for the Nyström Method

Next, we consider sampling c landmarks C ⊆ [N] from c-Dpp(K), and use the approximation
K̃ = K·,CK†

C,CKC,·. We call this approach Dpp-Nyström. It was essentially introduced in [9], but
without making the explicit connection to Dpps. Our analysis builds on this connection and
subsumes existing results that only apply to c being the rank k of the target approximation.

We begin with error bounds for matrix approximations:

Theorem 1 (Relative Error). If C ∼ c-Dpp(K), then Dpp-Nyström satisfies the relative error bounds

EC

[
‖K− K·C(KC,C)

†KC·‖F
‖K− Kk‖F

]
≤
(

c + 1
c + 1− k

)√
N − k,

EC

[
‖K− K·C(KC,C)

†KC·‖2

‖K− Kk‖2

]
≤
(

c + 1
c + 1− k

)
(N − k).

These bounds hold in expectation. An additional argument based on [33] yields high probability
bounds, too (Appendix A).

To show Theorem 1, we exploit a property of characteristic polynomials observed in [22]. But
first recall that the coefficients of characteristic polynomials satisfy ec(K) = ∑|S|=c det(B>·,SB·,S) =
ec(Λ).

Lemma 2 (Guruswami and Sinop [22]). For any c ≥ k > 0, it holds that

ec+1(K)
ec(K)

≤ 1
c + 1− k ∑

i>k
λi.

With Lemma 2 in hand, we are ready to prove Theorem 1.

Proof (Thm. 1). We begin with the Frobenius norm error, and then show the spectral norm result.
Using the decomposition K = B>B, it holds that

EC

[
‖K− K·CK†

C,CKC·‖F

]
= EC

[
‖B>B− B>B·,C(B>·,CB·,C)†B>·,CB‖F

]
= EC

[
‖B>(I − B·,C(B>·,CB·,C)†B>·,C)B‖F

]
= EC

[
‖B>(I −UC(UC)>)B‖F

]
,

where UCΣC(VC)> is the SVD of B·,C. Next, we extend UC ∈ Rr(K)×c to an orthogonal basis
[UC (UC)⊥] ∈ Rr(K)×r(K) of RN . Using that I − UC(UC)> = (UC)⊥((UC)⊥)> and applying
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Cauchy-Schwartz yields

EC

[
‖B>(I −UC(UC)>)B‖F

]
= EC

[
‖B>(UC)⊥((UC)⊥)>B‖F

]
= EC

[√
∑i,j(b

>
i (UC)⊥((UC)⊥)>bj)2

]
≤ EC

[√
(∑i,j ‖b

>
i (UC)⊥‖2

2‖b>j (UC)⊥‖2
2)
]

= EC

[
∑i ‖b

>
i (UC)⊥‖2

2

]
=

1
ec(K)

∑|C|=c ∑i det(B>·,CB·,C)‖b>i (UC)⊥‖2
2

(a)
=

1
ec(K)

∑|C|=c ∑i/∈C det(B·,C∪{i}B
>
·,C∪{i})

(b)
= (c + 1)

ec+1(K)
ec(K)

.

In (a), we use that (UC)⊥ projects vectors onto the null (column) space of B, and (b) uses the
definition of ec. With Lemma 2, it follows that

(c + 1) ec+1(K)
ec(K)

≤ c+1
c+1−k ∑i>k λi

≤ c+1
c+1−k

√
N − k

√
∑i>k λ2

i = c+1
c+1−k

√
N − k‖K− Kk‖F.

The bound on the Frobenius norm immediately implies the bound on the spectral norm:

EC

[
‖K− K·C(KC,C)

†KC·‖2

]
≤ EC

[
‖K− K·CK†

C,CKC·‖F

]
≤ c + 1

c + 1− k

√
N − k‖K− Kk‖F ≤ c + 1

c + 1− k
(N − k)‖K− Kk‖2

Remarks. Compared to previous bounds (e.g., [19] on uniform and leverage score sampling), our
bounds seem somewhat weaker asymptotically (since as c→ N they do not converge to 1). This
suggests that there is an opportunity for further tightening our bounds, which may be worthwhile,
given than in Section Sec. 6.1 our extensive experiments on various datasets with Dpp-Nyström
show that it attains superior accuracies compared with various state-of-art methods.

4 Low-rank Kernel Ridge Regression

Our theoretical (Section 3) and empirical (Section 6.1) results suggest that Dpp-Nyström is well-
suited for scaling kernel methods. In this section, we analyze its implications on kernel ridge
regression. The experiments in Section 6 confirm our results empirically.

We have N training samples {(xi, yi)}N
i=1, where yi = zi + εi are the observed labels under

zero-mean noise with finite covariance. We minimize a regularized empirical loss

min
f∈F

1
N

N

∑
i=1

`(yi, f (xi)) +
γ

2
‖ f ‖2

over an RKHS F . Equivalently, we solve the problem

min
α∈RN

1
N

N

∑
i=1

`(yi, (Kα)i) +
γ

2
α>Kα,

for the corresponding kernel matrix K. With the squared loss `(y, f (x)) = 1
2 (y − f (x))2, the

resulting estimator is

f̂ (x) =
N

∑
i=1

α̂ik(x, xi), α̂ = (K + nγI)−1y, (4.1)
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and the prediction for {xi}N
i=1 is given by ẑ = K(K + NγI)−1y ∈ RN . Denoting the noise covariance

by F, we obtain the risk

R(ẑ) = 1
N Eε‖ẑ− z‖2

= Nγ2z>(K + NγI)−2z + 1
N tr(FK2(K + NγI)−2)

= bias(K) + var(K). (4.2)

Observe that the bias term is matrix-decreasing (in K) while the variance term is matrix-increasing.
Since the estimator (4.1) requires expensive matrix inversions, it is common to replace K in (4.1) by
an approximation K̃. If K̃ is constructed via Nyström we have K̃ � K, and it directly follows that
the variance shrinks with this substitution, while the bias increases. Denoting the predictions from
K̃ by ẑK̃, Theorem 3 completes the picture of how using K̃ affects the risk.

Theorem 3. If K̃ is constructed via Dpp-Nyström, then

EC

[√
R(ẑK̃)

R(ẑ)

]
≤ 1 +

(c + 1)
Nγ

ec+1(K)
ec(K)

.

Again, using [33], we obtain bounds that hold with high probability (Appendix A).

Proof. We build on [2, 5]. Knowing that Var(K̃) ≤ Var(K) as K̃ � K, it remains to bound the bias.
Using K = B>B and K̃ = B>B·,C(B>·,CB·,C)†B>·,CB, we obtain

K− K̃ = B>(I − B·,C(B>·,CB·,C)†B>·,C)B

= B>(UC)⊥((UC)⊥)>B � ‖B>(UC)⊥((UC)⊥)>B‖F I

=
√

∑i,j(b
>
i (UC)⊥((UC)⊥)>bj)2 I

�
√
(∑i,j ‖b

>
i (UC)⊥‖2

2‖b>j (UC)⊥‖2
2)I

= ∑i ‖b
>
i (UC)⊥‖2

2 I = νC I,

where νC = ∑i ‖b>i (UC)⊥‖2
2 ≤ ∑i ‖b>i ‖2

2 = tr(K). Since (K− K̃) and νC I commute, we have

‖(K̃+NγI)−1(K− K̃)‖2
2

= ‖(K̃ + NγI)−1(K− K̃)2(K̃ + NγI)−1‖2

≤ ν2
C‖(K̃ + NγI)−2‖2 ≤

( νC
Nγ

)2
.

It follows that

‖(K̃+NγI)−1z− (K + NγI)−1z‖2

= ‖(K̃ + NγI)−1(K− K̃)(K + NγI)−1z‖2

≤ ‖(K̃ + NγI)−1(K− K̃)‖2‖(K + NγI)−1z‖2

≤ νC
Nγ
‖(K + NγI)−1z‖2.

Hence, √
z>(K̃ + NγI)−2z = ‖(K̃ + NγI)−1z‖2

≤ ‖(K + NγI)−1z‖2 + ‖(K̃ + NγI)−1z− (K + NγI)−1z‖2

≤ (1 +
νC
Nγ

)‖(K + NγI)−1z‖2

= (1 +
νC
Nγ

)
√

z>(K + NγI)−2z.

5



Finally, this inequality implies that √
bias(K̃)
bias(K)

≤ (1 +
νC
Nγ

).

Taking the expectation over C ∼ c-Dpp(K) yields

EC

√bias(K̃)
bias(K)

 ≤ 1 + EC

[
νC
Nγ

]
= 1 +

(c + 1)
Nγ

ec+1(K)
ec(K)

.

Together with the fact that var(K̃) ≤ var(K), we obtain

EC

[√
R(ẑK̃)

R(ẑ)

]
= EC

√bias(K̃) + var(K̃)
bias(K) + var(K)


≤ 1 +

(c + 1)
Nγ

ec+1(K)
ec(K)

(4.3)

for any k ≤ c.

Remarks. Theorem 3 quantifies how the learning results depend on the decay of the spectrum
of K. In particular, the ratio ec+1(K)/ec(K) closely relates to the effective rank of K: if λc > a and
λc+1 � a, this ratio is almost zero, resulting in near-perfect approximations and no loss in learning.

There exist works that consider Nyström methods in this scenario [2, 5]. Our theoretical bounds
could also be tightened in this setting, possibly by a tighter bound on the elementary symmetric
polynomial ratio. This theoretical exercise may be worthwhile given our extensive experiments
comparing Dpp-Nyström against other state-of-art methods in Sec. 6.2 that reveal the superior
performance of Dpp-Nyström.

5 Fast Mixing Markov Chain Dpp

Despite its excellent empirical performance and strong theoretical results, determinantal sampling
for Nyström has rarely been used in applications due to the computational cost of O(N3) for
directly sampling from a Dpp, which involves an eigendecomposition. Instead, we follow a
different route: an MCMC sampler, which offers a promising alternative if the chain mixes fast
enough. Recent empirical results provide initial evidence [24], but without a theoretical analysis3;
other recent works [21, 34] do not apply to our cardinality-constrained setting. We offer a theoretical
analysis that confirms fast mixing (i.e., polynomial or even linear-time sampling) under certain
conditions, and connect it to our empirical results. The empirical results in Section 6 illustrate
the favorable performance of Dpp-Nyström in trading off time and error. Concurrently with this
paper, Anari et al. [4] derived a different, general analysis of fast mixing that also confirms our
observations.

Algorithm 1 shows a Gibbs sampler for k-Dpp. Starting with a uniformly random set Y0, at
iteration t, we try to swap an element yin ∈ Yt with an element yout /∈ Yt, according to Pr(Yt) and
Pr(Yt ∪ {yout} \ {yin}). The stationary distribution of this chain is exactly the desired k-Dpp(K).

The mixing time τ(ε) of the chain is the number of iterations until the distribution over the states
(subsets) is close to the desired one, as measured by total variation: τ(ε) = min{t|maxY0 TV(Yt, π) ≤
ε}. We bound τ(ε) via coupling techniques. Given a Markov chain (Yt) on a state space Ω with

3The analysis in [24] is not correct.
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Algorithm 1 Gibbs sampler for c-Dpp

Input: K the kernel matrix, Y = [N] the ground set
Output: Y sampled from exact c-Dpp(K)
Randomly Initialize Y ⊆ Y , |Y| = c
while not mixed do

Sample b from uniform Bernoulli distribution
if b = 1 then

Pick yin ∈ Y and yout ∈ Y\Y uniformly randomly

q(yin, yout, Y)←
det(KY∪{yout}\{yin})

det KY∪{yout}\{yin}+det(KY)

Y ← Y ∪ {yout}\{yin} with prob. q(yin, yout, Y)
end if

end while

transition matrix P, a coupling is a new chain (Yt, Zt) on Ω×Ω such that both (Yt) and (Zt), if
considered marginally, are Markov chains with the same transition matrix P. The key point of
coupling is to construct such a new chain to encourage Yt and Zt to coalesce quickly. If, in the new
chain, Pr(Yt 6= Zt) ≤ ε for some fixed t regardless of the starting state (Y0, Z0), then τ(ε) ≤ t [3].

Such coalescing chains can be difficult to construct. Path coupling [11] relieves this burden
by reducing the coupling to adjacent states in an appropriately constructed state graph. The
coupling of arbitrary states follows by aggregation over a path between the states. Path coupling is
formalized in the following lemma.

Lemma 4. [11, 16] Let δ be an integer-valued metric on Ω×Ω where δ(·, ·) ≤ D. Let E be a subset of
Ω×Ω such that for all (Yt, Zt) ∈ Ω×Ω there exists a path Yt = X0, . . . , Xr = Zt between Yt and Zt where
(Xi, Xi+1) ∈ E for i ∈ [r− 1] and ∑i δ(Xi, Xi+1) = δ(Yt, Zt). Suppose a coupling (R, T)→ (R′, T′) of the
Markov chain is defined on all pairs in E such that there exists an α < 1 such that E[δ(R′, T′)] ≤ αδ(R, T)
for all (R, T) ∈ E, then we have

τ(ε) ≤ log(Dε−1)

(1− α)
.

The lemma says that if we have a contraction of the two chains in expectation (α < 1), then the
chain mixes fast. With the path coupling lemma, we obtain a bound on the mixing time that can be
linear in the data set size N.

The actual mixing time depends on three quantities that relate to how sensitive the transition
probabilities are to swapping a single element in a set of size c. Consider an arbitrary set S of
columns, |S| = c− 1, and complete it to two c-sets R = S ∪ {r} and T = S ∪ {t} that differ in
exactly one element. Our quantities are, for u /∈ R ∪ T, and v ∈ S:

p1(S, r, t, u) = min{q(r, u, R), q(t, u, T)}
p2(S, r, t, u) = min{q(v, t, R), q(v, u, T)}

p3(S, r, t, v, u) = |q(v, u, R)− q(v, u, T)|.
Theorem 5. Let the contraction coefficient α be given by

α = max
|S|=c−1,r,t∈[n]\S,r 6=t

∑
u3∈S,u4 /∈S∪{r,t}

p3(S, r, t, u3, u4)− ∑
u1 /∈S∪{r,t}

p1(S, r, t, u1)− ∑
u2∈S

p2(S, r, t, u2).

When α < 1, the mixing time for the Gibbs sampler in Algorithm 1 is bounded as

τ(ε) ≤ 2c(N − c) log(cε−1)

(1− α)
.

7



Proof. We bound the mixing time via path coupling. Let δ(R, T) = |R⊕ T|/2 be half the Hamming
distance on the state space, and define E to consist of all state pairs (R, T) in Ω×Ω such that
δ(R, T) = 1. We intend to show that for all states (R, T) ∈ E and next states (R′, T′) ∈ E, we have
E[δ(R′, T′)] ≤ αδ(R, T) for an appropriate α.

Since δ(R, T) = 1, the sets R and T differ in only two entries. Let S = R ∩ T, so |S| = c− 1 and
R = S∪ {r} and T = S∪ {t}. For a state transition, we sample an element rin ∈ R and rout ∈ [n]\R
as switching candidates for R, and elements tin ∈ T and tout ∈ [n]\T as switching candidates for T.
Let bR and bT be the Bernoulli random variables indicating whether we try to make a transition. In
our coupling we always set bR = bT . Hence, if bR = 0 then both chains will not transition and the
distance of states remains. For bR = bT = 1, we distinguish four cases:

Case C1 If rin = r and rout = t, we let tin = t and tout = r. As a result, δ(R′, T′) = 0.

Case C2 If rin = r and rout = u1 /∈ S ∪ {r, t}, we let tin = t and tout = u1. In this case, if both
chains transition, then the resulting distance is zero, otherwise it remains one. With probability
p1(S, r, t, u1) = min{q(r, u1, R), q(t, u1, T)} both chains transition.

Case C3 If rin = u2 ∈ S and rout = t, we let tin = u2 and tout = r. Again, if both chains
transition, then the resulting distance is δ(R′, T′) = 0, otherwise it remains one. With probability
p2(S, r, t, u2) = min{q(u2, t, R), q(u2, u1, T)} both chains transition.

Case C4 If rin = u3 ∈ S and rout = u4 /∈ S ∪ {r, t}, we let tin = u3 and tout = u4. If both
chains make the same transition (both move or do not move), the resulting distance is one,
otherwise it increases to 2. The distance increases with probability p3(S, r, t, u3, u4) = |q(u3, u4, R)−
q(u3, u4, T)|.

With those four cases, we can now bound E[δ(R′, T′)]. For all (R, T) ∈ E, i.e., δ(R, T) = 1:

E[δ(R′, T′)]
E[δ(R, T)]

=
1
2
+ Pr(C2)E[δ(R′, T′)|C2] + Pr(C3)E[δ(R′, T′)|C3] + Pr(C4)E[δ(R′, T′)|C4]

=
1
2
+

1
2c(n− c)

(
∑

u1 /∈S∪{r,t}
(1− p1(u1)) + ∑

u2∈S
(1− p2(u2)) + ∑

u3∈S,
u4 /∈S∪{r,t}

(1 + p3(u3, u4))
)

=
1

2c(n− c)
(
2c(n− 1) + ∑

u3∈S,
u4 /∈S∪{r,t}

p3(u3, u4)− ∑
u1 /∈S∪{r,t}

p1(u1)− ∑
u2∈S

p2(u2)− 1
)
,

where we did not explicitly write the arguments S, r, t to p1, p2, p3. For

α = max
|S|=c−1,
r,t∈[n]\S,

r 6=t

∑
u3∈S,

u4 /∈S∪{r,t}

p3(u3, u4)− ∑
u1 /∈S∪{r,t}

p1(u1)− ∑
u2∈S

p2(u2)

and α < 1 the Path Coupling Lemma 4 implies that

τ(ε) ≤ 2c(N − c) log(cε−1)

(1− α)
.

Remarks. If α < 1 is fixed, then the mixing time (running time) depends only linearly on N.
The coefficient α itself depends on our three quantities. In particular, fast mixing requires p3 (the
difference between transition probabilities) to be very small compared to p1, p2, at least on average.
The difference p3 measures how exchangeable two points r and t are. This notion of symmetry is

8
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Figure 1: Relative Frobenius/spectral norm errors from different kernel approximations (Ailerons data).

closely related to a symmetry that determines the complexity of submodular maximization [41]
(indeed, F(S) = log det KS is a submodular function). This symmetry only needs to hold for most
pairs r, t, and most swapping points u, v. It holds for kernels with sufficiently fast-decaying
similarities, similar to the conditions in [34] for unconstrained sampling.

One iteration of the sampler can be implemented efficiently in O(c2) time using block inversion
[20]. Additional speedups via quadrature are also possible [30]. Together with the analysis of
mixing time, this leads to fast sampling methods for k-Dpps.

6 Experiments

In our experiments, we evaluate the performance of Dpp-Nyström on both kernel approximation
and kernel learning tasks, in terms of running time and accuracy.

We use 8 datasets: Abalone, Ailerons, Elevators, CompAct, CompAct(s), Bank32NH, Bank8FM
and California Housing4. We subsample 4,000 points from each dataset (3,000 training and 1,000

test). Throughout our experiments, we use an RBF kernel and choose the bandwidth σ and
regularization parameter λ for each dataset by 10-fold cross-validation. We initialize the Gibbs
sampler via Kmeans++ and run for 3,000 iterations. Results are averaged over 3 random subsets of
data.

6.1 Kernel Approximation

We first explore Dpp-Nyström (kDPP in the figures) for approximating kernel matrices. We compare
to uniform sampling (Unif) and leverage score sampling (Lev) [19] as baseline landmark selection
methods. We also include AdapFull (AdapFull) [13] that performs quite well in practice but scales
poorly, as O(N2), with the size of dataset. Although sampling with regularized leverage scores
(RegLev) [2] is not originally designed for kernel approximations, we include its results to see how
regularization affects leverage score sampling.

Figure 1 shows example results on the Ailerons data; further results may be found in the
appendix. Dpp-Nyström performs well, achieving the lowest error as measured in both spectral

4http://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
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Figure 2: Improvement in relative Frobenius/spectral norm errors (%) over Unif (with corresponding
landmark sizes) for kernel approximation, averaged over all datasets.
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Figure 3: Training and test errors for kernel ridge regression with different Nyström approximations (Ailerons
data).

and Frobenius norm. The only method that is on par in terms of accuracy is AdapFull, which has
a much higher running time.

For a different perspective, Figure 2 shows the improvement in error over Unif. Relative
improvements are averaged over all data sets. Again, the performance of Dpp-Nyström almost
always dominate those of other methods, and achieves an up to 80% reduction in error.

6.2 Kernel Ridge Regression

Next, we apply Dpp-Nyström to kernel ridge regression, comparing against uniform sampling
(Unif) [5] and regularized leverage score sampling (RegLev) [2] which have theoretical guarantees
for this task. Figure 3 illustrates an example result: non-uniform sampling greatly improves
accuracy, with kDPP improving over regularized leverage scores in particular for a small number of
landmarks, where a single column has a larger effect.

Figure 4 displays the average improvement over Unif, averaged over 8 data sets. Again, the
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Figure 4: Improvements in training/test errors (%) over uniform sampling (with same number of landmarks)
in kernel ridge regression, averaged over all datasets.
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Figure 5: Relative Frobenius norm error of Dpp-Nyström with 50 landmarks as changing across iterations of
the Markov Chain (Ailerons data).

performance of kDPP dominates RegLev and Unif, and leads to gains in accuracy. On average kDPP

consistently achieves more than 20% improvement over Unif.

6.3 Mixing of the Gibbs Markov Chain

In the next experiment, we empirically study the mixing of the Gibbs chain with respect to matrix
approximation errors, the ultimate measure that is of interest in our application of the sampler. We
use c = 50 and choose N as 1,000 and 4,000. To exclude impacts of the initialization, we pick the
initial state Y0 uniformly at random. We run the chain for 5,000 iterations, monitoring how the
error changes with the number of iterations. Example results on the Ailerons data are shown in
Figure 5. Empirically, the error drops very quickly and afterwards fluctuates only little, indicating
a fast convergence of the approximation error. Other error measures and larger c, included in the
appendix, confirm this trend.

Notably, our empirical results suggest that the mixing time does not increase much as N
increases greatly, suggesting that the Gibbs sampler remains fast even for large N.
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In Theorem 5, the mixing time depends on the quantity α. By subsampling 1,000 random sets S
and column indices r, t, we approximately computed α on our data sets. We find that, as expected,
α < 1 in particular for kernels with a smaller bandwidth, and in general α increases with k. In
accordance with the theory, we found that the mixing time (in terms of error) too increases with k.
In practice, we observe a fast drop in error even for cases where α > 1, indicating that Theorem 5

is conservative and that the iterative MCMC approach is even more widely applicable.

6.4 Time-Error Tradeoffs
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Figure 6: Time-Error tradeoffs with 20 landmarks on Ailerons (size 4,000) and California Housing
(size 12,000). Time and Errors are shown on a log scale. Bottom left is the best (low error, low
running time), top right is the worst. We did not include AdapFull, Lev and RegLev on California
Housing due to their long running times.

Iterative methods like the Gibbs sampler offer tradeoffs between time and error. The longer the
Markov Chain runs, the closer the sampling distribution is to the desired Dpp, and the higher the
accuracy obtained by Nyström. We hence explicitly show the time and accuracy trade-off of the
sampler on Ailerons (of size 4,000) for up to 200 and California Housing (of size 12,000) for up to
100 iterations.

A similar tradeoff occurs with leverage scores. For the experiments in the other sections,
we computed the (regularized) leverage scores for Lev and RegLev exactly. This requires a full,
computationally expensive eigendecomposition. For a fast, rougher approximation, we here
compare to an approximation mentioned in [2]. Concretely, we sample p elements with probability
proportional to the diagonal entries of kernel matrices Kii, and then use a Nyström-like method
to construct an approximate low-rank decomposition of K, and compute scores based on this
approximation. We vary p from 20 to 340 on Ailerons and 20 to 140 on California Housing to
show the tradeoff for approximate leverage score sampling (AppLev) and regularized leverage score
sampling (AppRegLev). We also include AdapPartial (AdapPart) [28] that approximates AdapFull
and is much more efficient, and Kmeans Nyström (Kmeans) [44] that empirically perform very well
in kernel approximation.

Figure 6 summarizes and compares the tradeoffs offered by these different methods on the
Ailerons and California Housing datasets. The x axis indicates time, the y axis error, so the lower
left is the preferred corner. We see that AdapFull, Lev and RegLev are expensive and perform
worse than kDPP. The approximate variants AdapPart, AppLev and AppRegLev have comparable
efficiency but higher error. On the smaller data, Kmeans is accurate but needs more time than kDPP,

12



while on the larger data it is dominated in both accuracy and time by kDPP. Overall, on the larger
data, Dpp-Nyström offers the best tradeoff of accuracy and efficiency.

7 Conclusion

In this paper, we revisited the use of k-Determinantal Point Processes for sampling good landmarks
for the Nyström method. We theoretically and empirically observe its competitive performance, for
both matrix approximation and ridge regression, compared to state-of-the-art methods.

To make this accurate method scalable to large matrices, we consider an iterative approach,
and analyze it theoretically as well as empirically. Our results indicate that the iterative approach,
a Gibbs sampler, achieves good landmark samples quickly; under certain conditions even in a
number of iteratons linear in N, for an N by N matrix. Finally, our empirical results demonstrate
that among state-of-the-art methods, the iterative sampler yields the best tradeoff between efficiency
and accuracy.
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A Bounds that hold with High Probability

To show high probability bounds we employ concentration results on homogeneous strongly
Rayleigh measures. Specifically, we use the following theorem.

Theorem 6 (Pemantle and Peres [33]). Let P be a k-homogeneous strongly Rayleigh probability measure
on {0, 1}N and f an `-Lipschitz function on {0, 1}N , then

P( f −E[ f ] ≥ a`) ≤ exp{−a2/8k}.

It is known that a k-Dpp is a homogeneous strongly Rayleigh measure on {0, 1}N [4, 10], thus
Theorem 6 applies to results obtained with k-Dpp. Concretely, for the bound in Theorem 1 that
holds in expectation, we have the following bound that holds with high probability:

Corollary 7. When sampling C ∼ k-Dpp(K), for any δ ∈ (0, 1), with probability at least 1− δ we have

‖K− K·C(KC,C)
†KC·‖F

‖K− Kk‖F
≤
(

c + 1
c + 1− k

)√
N − k +

√
8c log(1/δ)

√√√√ ∑N
i=1 λ2

i

∑N
i=k+1 λ2

i
,

‖K− K·C(KC,C)
†KC·‖2

‖K− Kk‖2
≤
(

c + 1
c + 1− k

)
(N − k) +

√
8c log(1/δ) λ1

λk+1
,

where λ1 ≥ λ2 ≥ . . . ≥ λN are the eigenvalues of K.

Proof. The Lipschitz constants of the relative errors are upper bounded by
√

∑N
i=1 λ2

i
∑N

i=k+1 λ2
i

and λ1
λk+1

,

respectively. Applying Theorem 6 yields the results.

For the bound in Theorem 3 that holds in expectation, we have the following bound that holds
with high probability:

Corollary 8. If K̃ is constructed via Dpp-Nyström, then with probability at least 1− δ,
√

bias(K̃)
bias(K) is

upper-bounded by

1 +
1

Nγ

(
(c + 1)ec+1(K)

ec(K)
+
√

8c log(1/δ)tr(K)
)

.

Proof. Consider the function fC(K) = νC = ∑i ‖b>i (UC)⊥‖2
2 ≤ ∑i ‖b>i ‖2

2 = tr(K). Since 0 ≤
fC(K) ≤ tr(K), it follows that the Lipschitz constant for fC is at most tr(K). Thus when C ∼ k-Dpp

and δ ∈ (0, 1), by applying Theorem 6 we see that the inequality νC ≤ E [νC] +
√

8c log(1/δ)tr(K)
holds with probability at least 1− δ. Hence

EC

√bias(K̃)
bias(K)

 ≤ 1 + E

[
νC
Nγ

]
+
√

8c log(1/δ)
tr(K)
Nγ

= 1 +
1

Nγ

(
(c + 1)ec+1(K)

ec(K)
+
√

8c log(1/δ)tr(K)
)

holds with probability at least 1− δ.

16



B Supplementary Experiments

B.1 Kernel Approximation

Fig. 7 shows the matrix norm relative error of various methods in kernel approximation on the
remaining 7 datasets mentioned in the main text.
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Figure 7: Relative Frobenius norm and spectral norm error achieved by different kernel approxima-
tion algorithms on the remaining 7 data sets.
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B.2 Approximated Kernel Ridge Regression

Fig. 8 shows the training and test error of various methods for kernel ridge regression on the
remaining 7 datasets.
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Figure 8: Training and test error achieved by different Nyström kernel ridge regression algorithms
on the remaining 7 regression datasets.
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(d) Relative Spectral norm error

Figure 9: Performance of Markov chain Dpp-Nyström with 50 landmarks on Ailerons. Runs for
5,000 iterations.

B.3 Mixing of Markov Chain k-Dpp

We first show the mixing of the Gibbs Dpp-Nyström with 50 landmarks with different performance
measures: relative spectral norm error, training error and test error of kernel ridge regression
in Fig. 9.

We also show corresponding results with respect to 100 and 200 landmarks in Fig. 10 and Fig. 11,
so as to illustrate that for varying number of landmarks the chain is indeed fast mixing and will
give reasonably good result within a small number of iterations.

B.4 Running Time Analysis

We next show time-error trade-offs for various sampling methods on small and larger datasets
with respect to Fnorm and 2norm errors. We sample 20 landmarks from Ailerons dataset of size
4,000 and California Housing of size 12,000. The result is shown in Figure 12 and Figure 13 and
similar trends as the example results in the main text could be spotted: on small scale dataset (size
4,000) kDPP get very good time-error trade-off. It is more efficient than Kmeans, though the error
is a bit larger. While on larger dataset (size 12,000) the efficiency is further enhanced while the
error is even lower than Kmeans. It also have lower variances in both cases compared to AppLev

and AppRegLev. Overall, on larger dataset we obtain the best time-error trade-off with kDPP.
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Figure 10: Performance of Markov chain Dpp-Nyström with 100 landmarks on Ailerons. Runs for
5,000 iterations.
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Figure 11: Performance of Markov chain Dpp-Nyström with 200 landmarks on Ailerons. Runs for
5,000 iterations.
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(a) Fnorm Error vs. Time
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Figure 12: Time-Error tradeoff with 20 landmarks on Ailerons of size 4,000. Time and Errors shown
in log-scale.
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Figure 13: Time-Error tradeoff with 20 landmarks on California Housing of size 12,000. Time and
Errors shown in log-scale. We didn’t include AdapFull, Lev and RegLev due to their inefficiency
on larger datasets.
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